WorldWideScience

Sample records for fault location algorithm

  1. Inter-Circuit Fault Location Algorithm for Two-Parallel Transmission Line

    Institute of Scientific and Technical Information of China (English)

    张庆超; 李大勇; 李晖; 屈洪鑫

    2003-01-01

    A novel numerical algorithm of fault location estimation for four-line fault without ground connection involving phases from each of the parallel lines is presented in this paper. It is based on one-terminal voltage and current data. The loop and nodal equations comparing faulted phase to non-faulted phase of two-parallel lines are introduced in the fault location estimation model, in which the source impedance of a remote end is not involved. The effects of load flow and fault resistance on the accuracy of fault location are effectively eliminated, therefore a precise algorithm of locating fault is derived. The algorithm is demonstrated by digital computer simulations.

  2. Parameter identification algorithm for fault location using one terminal data based on frequency domain

    Institute of Scientific and Technical Information of China (English)

    Kang Xiaoning; Suonan Jiale

    2007-01-01

    This paper presents a novel algorithm of fault location for transmission line. Solving the network spectrum equations for different frequencies the fault can be located accurately by this algorithm with one terminal data of voltage and current, and the identified parameters, such as fault distance, fault resistance, and opposite terminal system resistance and inductance. The algorithm eliminates the influence of the opposite system impedance on the fault location accuracy, which causes the main error in traditional fault location methods using one terminal data. A method of calculating spectrum from sampled data is also proposed. EMTP simulations show the validity and higher accuracy of the fault location algorithm compared to the existing ones based on one terminal data.

  3. A Hybrid Algorithm for Fault Locating in Looped Microgrids

    DEFF Research Database (Denmark)

    Beheshtaein, Siavash; Savaghebi, Mehdi; Quintero, Juan Carlos Vasquez

    2016-01-01

    occurs within them. Two criteria are defined in such a way to prevent injection of voltage harmonic by the other DGs. Finally, the fault is located in the reduced space of search by wavelet transform and optimized multiclass support vector machine (M-SVM). In the simulation results, the contribution...

  4. Fault Locating in HVDC Transmission Lines Using Generalized Regression Neural Network and Random Forest Algorithm

    Directory of Open Access Journals (Sweden)

    M. Farshad

    2013-09-01

    Full Text Available This paper presents a novel method based on machine learning strategies for fault locating in high voltage direct current (HVDC transmission lines. In the proposed fault-location method, only post-fault voltage signals measured at one terminal are used for feature extraction. In this paper, due to high dimension of input feature vectors, two different estimators including the generalized regression neural network (GRNN and the random forest (RF algorithm are examined to find the relation between the features and the fault location. The results of evaluation using training and test patterns obtained by simulating various fault types in a long overhead transmission line with different fault locations, fault resistance and pre-fault current values have indicated the efficiency and the acceptable accuracy of the proposed approach.

  5. A voltage resonance-based single-ended online fault location algorithm for DC distribution networks

    Institute of Scientific and Technical Information of China (English)

    JIA Ke; LI Meng; BI TianShu; YANG QiXun

    2016-01-01

    A novel single-ended online fault location algorithm is investigated for DC distribution networks.The proposed algorithm calculates the fault distance based on the characteristics of the voltage resonance.The Prony's method is introduced to extract the characteristics.A novel method is proposed to solve the pseudo dual-root problem in the calculation process.The multiple data windows are adopted to enhance the robustness of the proposed algorithm.An index is proposed to evaluate the accuracy and validity of the results derived from the various data windows.The performances of the proposed algorithm in different fault scenarios were evaluated using the PSCAD/EMTDC simulations.The results show that the algorithm can locate the faults with transient resistance using the 1.6 ms data of the DC-side voltage after a fault inception and offers a good precision.

  6. A Novel Fault Location Algorithm for Double-Circuit Transmission Lines based on Distributed Parameter

    Institute of Scientific and Technical Information of China (English)

    商立群; 施围

    2006-01-01

    A new fault location algorithm for double-circuit transmission lines is described in this paper. The proposed method uses data extracted from two ends of the transmission lines and thus eliminates the effects of the source impedance and the fault resistance. The distributed parameter model and the modal transformation are also employed. Depending on modal transformation, the coupled equations of the lines are converted into decoupled ones. In this way, the mutual coupling effects between adjacent circuits of the lines are eliminated and therefore an accurate fault location can be achieved. The proposed method is tested via digital simulation using EMTP in conjunction with MATLAB. The test results corroborate the high accuracy of the proposed method.

  7. Parameter identification algorithm for fault location using one terminal data based on frequency domain

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fault locationtechniques for power systemhavebeen investigated for many years.The quicker theaccurate location of a fault,the faster the electricpower restoration of service.The fault location techniques can be classifiedintot wo classes:one uses the data fromone ter minalof trans mission line;the other uses the data fromboth ter minals.The accuracy of one ter minal faultlocators is affected by the assumptions about thefault resistance,the source i mpedance,and the cur-rent flowinto fault fromremote end sou...

  8. Fuzzy theory-based fault location algorithm for electric power transmission lines with OPGW

    Energy Technology Data Exchange (ETDEWEB)

    Egawa, Masanao; Sugiyama, Koichi; Kanemaru, Kimiharu; Kano, Hitoshi

    1988-11-20

    OPGW (optical fiber composite overhead grounding wire) is used for advanced information system in major power transmission lines. Attention has been gathered on its application to the maintenance and monitoring, especially the FL unit to locate section where a fault has occurred. A fault location system has been developed, employing the overhead grounding wire (GW) current as the fault information. GW currents have distinctive features in its distribution in the fault section, making its location simple. The new location technique applies the fuzzy theory to incorporate this human thinking into a computer. This method defines the feature of GW current in the fault section with a fuzzy set and, assuming that a fault is more likely to have occurred in a section with more data belonging to this set, determines the section with the largest proportion of such data as the fault section. Two systems have been put in operation based on this method and successfully located faults by lightning strokes. 18 references, 14 figures, 2 tables.

  9. Accurate fault location algorithm on power transmission lines with use of two-end unsynchronized measurements

    Directory of Open Access Journals (Sweden)

    Mohamed Dine

    2012-01-01

    Full Text Available This paper presents a new approach to fault location on power transmission lines. This approach uses two-end unsynchronised measurements of the line and benefits from the advantages of digital technology and numerical relaying, which are available today and can easily be applied for off-line analysis. The approach is to modify the apparent impedance method using a very simple first-order formula. The new method is independent of fault resistance, source impedances and pre-fault currents. In addition, the data volume communicated between relays is sufficiently small enough to be transmitted easily using a digital protection channel. The proposed approach is tested via digital simulation using MATLand the applied test results corroborate the superior performance of the proposed approach.

  10. Accurate Fault Location Algorithm on Power Transmission Lines With Use of Two-end Unsynchronized Measurements

    Directory of Open Access Journals (Sweden)

    DINE Mohamed

    2012-10-01

    Full Text Available This paper presents a new approach of fault location on power transmission line. This approach uses two-end unsynchronizedmeasurements of the line and uses the advantages of digital technology and numerical relaying which are available today and can easily be applied for off-line analysis. The approach is based on modifying the apparent impedance method using a very simplefirst-order formula. It is shown that the new method is independent of fault resistance, source impedances and pre-fault currents. In addition, the data volume communicated between relays issufficiently small to be easily transmitted using a digital protection channel. The proposed approach was tested via digital simulation using MATLAB. Applied test results corroborate the superiorperformance of the proposed approach.

  11. Correlation Analysis Algorithm for Transmission Line Fault Location Based on Travelling Wave%行波相关法的输电线路故障定位

    Institute of Scientific and Technical Information of China (English)

    杜林; 庞军; 司马文霞

    2008-01-01

    This paper introduced correlation method to locate transmission line fault. First it described the principle of transmission line fault location based on traveling waves. The principle of correlation analysis is introduced, then the method using correlation analysis in fault location is given. Transmission line model is established with EMTP-ATP. Basing on the model, some kinds of fault are simulated. The feasibility of this algorithm is proved based on simulation results. By comparing with the classical wavelet analysis, this paper gave the advantages of this algorithm in two cases:noise influence suppression and accuracy of near distance fault location. Experiment is established to simulate transmission line grounding fault. The experiment result showed the correlation algorithm's validity . All the analysis result indicated that the correlation algorithm have a high precision.

  12. Fault Location Based on Synchronized Measurements: A Comprehensive Survey

    Directory of Open Access Journals (Sweden)

    A. H. Al-Mohammed

    2014-01-01

    Full Text Available This paper presents a comprehensive survey on transmission and distribution fault location algorithms that utilize synchronized measurements. Algorithms based on two-end synchronized measurements and fault location algorithms on three-terminal and multiterminal lines are reviewed. Series capacitors equipped with metal oxide varistors (MOVs, when set on a transmission line, create certain problems for line fault locators and, therefore, fault location on series-compensated lines is discussed. The paper reports the work carried out on adaptive fault location algorithms aiming at achieving better fault location accuracy. Work associated with fault location on power system networks, although limited, is also summarized. Additionally, the nonstandard high-frequency-related fault location techniques based on wavelet transform are discussed. Finally, the paper highlights the area for future research.

  13. Single Ended Fault Location Estimation for EHV Transmission Systems

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qing-chao张庆超; LI Hui李晖; D. W. P. Thomas

    2004-01-01

    A novel numerical algorithm for fault location estimation of single-phase-to-earth fault on EHV transmission lines is presented in this paper. The method is based on one-terminal voltage and current data and is used in a procedure that provides the automatic determination of faulted types and phases, rather than requires engineer to specify them. The loop and nodal equations comparing the faulted phase to non-faulted phases of multi-parallel lines are introduced in the fault location estimation models, in which source impedance of remote end is not involved. Precise algorithms of locating fault are derived. The effect of load flow and fault resistance,on the location accuracy, are effectively eliminated. The algorithms are demonstrated by digital computer simulations.

  14. Arcing Faults Location Methods for Power Transmission Lines

    Directory of Open Access Journals (Sweden)

    Mateusz Pustułka

    2014-03-01

    Full Text Available This paper presents three different fault location approaches: one-end Takagi algorithm, two-end algorithm considering natural fault loops and neural network. It is assumed that three-phase voltages and currents from both ends of the line measured asynchronously are the input signals of the fault locator. In addition to natural fault loop signals also the use of symmetrical components (positive and negative or incremental positive sequence components for fault location were considered. Results of the evaluation study have been included, analyzed and discussed. The impact of filtration has also been considered.

  15. Locating Minimal Fault Interaction in Combinatorial Testing

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    2016-01-01

    Full Text Available Combinatorial testing (CT technique could significantly reduce testing cost and increase software system quality. By using the test suite generated by CT as input to conduct black-box testing towards a system, we are able to detect interactions that trigger the system’s faults. Given a test case, there may be only part of all its parameters relevant to the defects in system and the interaction constructed by those partial parameters is key factor of triggering fault. If we can locate those parameters accurately, this will facilitate the software diagnosing and testing process. This paper proposes a novel algorithm named complete Fault Interaction Location (comFIL to locate those interactions that cause system’s failures and meanwhile obtains the minimal set of target interactions in test suite produced by CT. By applying this method, testers can analyze and locate the factors relevant to defects of system more precisely, thus making the process of software testing and debugging easier and more efficient. The results of our empirical study indicate that comFIL performs better compared with known fault location techniques in combinatorial testing because of its improved effectiveness and precision.

  16. A Large Scale Automatic Earthquake Location Catalog in the San Jacinto Fault Zone Area Using An Improved Shear-Wave Detection Algorithm

    Science.gov (United States)

    White, M. C. A.; Ross, Z.; Vernon, F.; Ben-Zion, Y.

    2015-12-01

    UC San Diego's ANZA network began archiving event-triggered data in 1982. As a result of improved recording technology, continuous waveform data archives are available starting in 1998. This continuous dataset, from 1998-present, represents a wealth of potential insight into spatio-temporal seismicity patterns, earthquake physics and mechanics of the San Jacinto Fault Zone. However, the volume of data renders manual analysis costly. In order to investigate the characteristics of the data in space and time, an automatic earthquake location catalog is needed. To this end, we apply standard earthquake signal processing techniques to the continuous data to detect first-arriving P-waves in combination with a recently developed S-wave detection algorithm. The resulting dataset of arrival time observations are processed using a grid association algorithm to produce initial absolute locations which are refined using a location inversion method that accounts for 3-D velocity heterogeneities. Precise relative locations are then derived from the refined absolute locations using the HypoDD double-difference algorithm. Moment magnitudes for the events are estimated from multi-taper spectral analysis. A >650% increase in the S:P pick ratio is achieved using the updated S-wave detection algorithm, when compared to the currently available catalog for the ANZA network. The increased number of S-wave observations leads to improved earthquake location accuracy and reliability (ie. less false event detections). Various aspects of spatio-temporal seismicity patterns and size distributions are investigated. Updated results will be presented at the meeting.

  17. RFID Location Algorithm

    Directory of Open Access Journals (Sweden)

    Wang Zi Min

    2016-01-01

    Full Text Available With the development of social services, people’s living standards improve further requirements, there is an urgent need for a way to adapt to the complex situation of the new positioning technology. In recent years, RFID technology have a wide range of applications in all aspects of life and production, such as logistics tracking, car alarm, security and other items. The use of RFID technology to locate, it is a new direction in the eyes of the various research institutions and scholars. RFID positioning technology system stability, the error is small and low-cost advantages of its location algorithm is the focus of this study.This article analyzes the layers of RFID technology targeting methods and algorithms. First, RFID common several basic methods are introduced; Secondly, higher accuracy to political network location method; Finally, LANDMARC algorithm will be described. Through this it can be seen that advanced and efficient algorithms play an important role in increasing RFID positioning accuracy aspects.Finally, the algorithm of RFID location technology are summarized, pointing out the deficiencies in the algorithm, and put forward a follow-up study of the requirements, the vision of a better future RFID positioning technology.

  18. Fault Tolerant External Memory Algorithms

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund; Brodal, Gerth Stølting; Mølhave, Thomas

    2009-01-01

    Algorithms dealing with massive data sets are usually designed for I/O-efficiency, often captured by the I/O model by Aggarwal and Vitter. Another aspect of dealing with massive data is how to deal with memory faults, e.g. captured by the adversary based faulty memory RAM by Finocchi and Italiano....... However, current fault tolerant algorithms do not scale beyond the internal memory. In this paper we investigate for the first time the connection between I/O-efficiency in the I/O model and fault tolerance in the faulty memory RAM, and we assume that both memory and disk are unreliable. We show a lower...... bound on the number of I/Os required for any deterministic dictionary that is resilient to memory faults. We design a static and a dynamic deterministic dictionary with optimal query performance as well as an optimal sorting algorithm and an optimal priority queue. Finally, we consider scenarios where...

  19. Fault location of two-parallel transmission line for double phase-to-earth fault using one-terminal data

    Institute of Scientific and Technical Information of China (English)

    张庆超; 段晖; 耿超; 宋文南

    2003-01-01

    An accurate algorithm for fault location of double phase-to-earth fault on transmission line of direct ground neutral system is presented. The algorithm, which employs the faulted phase network and zero-sequence network as fault-location model in which the source impedance at the remote end is not involved, ef-fectively eliminates the effect of load flow and fault resistance on the accuracy of fault location. The algorithm achieves accurate location by measuring only one local end data and is used in a procedure that provides automatic determination of faulted types and phases, and does not require the engineer to specify them. Simulation results showed the effectiveness of the algorithm under the condition of double phase-to-earth fault.

  20. Fault location of two-parallel transmission line for double phase-to-earth fault using one-terminal data

    Institute of Scientific and Technical Information of China (English)

    张庆超; 段晖; 耿超; 宋文南

    2003-01-01

    An accurate algorithm for fault location of double phase-to-earth fault on transmission line of direct ground neutral system is presented. The algorithm, which employs the faulted phase network and zero-sequence network as fault-location model in which the source impedance at the remote end is not involved, effectively eliminates the effect of load flow and fault resistance on the accuracy of fault location. The algorithm achieves accurate location by measuring only one local end data and is used in a procedure that provides automatic determination of faulted types and phases, and does not require the engineer to specify them. Simulation results showed the effectiveness of the algorithm under the condition of double phase-to-earth fault.

  1. Fault Location in Power Electrical Traction Line System

    Directory of Open Access Journals (Sweden)

    Yimin Zhou

    2012-11-01

    Full Text Available In this paper, methods of fault location are discussed in electrical traction single-end direct power supply network systems. Based on the distributed parameter model of the system, the position of the short-circuit fault can be located with the aid of the current and voltage value at the measurement end of the electrical traction line. Furthermore, the influence of the transient resistance, the position of the locomotive, locomotive load for fault location are also discussed. MATLAB simulation tool is used for the simulation experiments. Simulation results are proved the effectiveness of the proposed algorithms.

  2. Automatic location of short circuit faults

    Energy Technology Data Exchange (ETDEWEB)

    Lehtonen, M. [VTT Energy, Espoo (Finland); Hakola, T.; Antila, E. [ABB Power Oy, Helsinki (Finland); Seppaenen, M. [North-Carelian Power Company (Finland)

    1996-12-31

    In this presentation, the automatic location of short circuit faults on medium voltage distribution lines, based on the integration of computer systems of medium voltage distribution network automation is discussed. First the distribution data management systems and their interface with the substation telecontrol, or SCADA systems, is studied. Then the integration of substation telecontrol system and computerised relay protection is discussed. Finally, the implementation of the fault location system is presented and the practical experience with the system is discussed

  3. Automatic location of short circuit faults

    Energy Technology Data Exchange (ETDEWEB)

    Lehtonen, M. [VTT Energy, Espoo (Finland); Hakola, T.; Antila, E. [ABB Power Oy (Finland); Seppaenen, M. [North-Carelian Power Company (Finland)

    1998-08-01

    In this chapter, the automatic location of short circuit faults on medium voltage distribution lines, based on the integration of computer systems of medium voltage distribution network automation is discussed. First the distribution data management systems and their interface with the substation telecontrol, or SCADA systems, is studied. Then the integration of substation telecontrol system and computerized relay protection is discussed. Finally, the implementation of the fault location system is presented and the practical experience with the system is discussed

  4. Study on fault locating technology for satellite power system

    Institute of Scientific and Technical Information of China (English)

    LONG Bing; JIANG Xing-wei; SONG Zheng-ji

    2005-01-01

    It is currently prevalent to locate faults for a satellite power system based on an expert system, not utilizing all the available information provided by tests. The casual network model for a satellite power system is presented. Considerations for failure probability of each component of the power system, the cost of applying each test, the influence of a precedent test result on the next test selection, and an optimal sequential testing algorithm for fault location is presented. This program is applied to locate the failure component of the power system of a satellite. The results show this program is very effective and it is very fast to generate an optimal diagnosis tree.

  5. Fault location in underground cables using ANFIS nets and discrete wavelet transform

    Directory of Open Access Journals (Sweden)

    Shimaa Barakat

    2014-12-01

    Full Text Available This paper presents an accurate algorithm for locating faults in a medium voltage underground power cable using a combination of Adaptive Network-Based Fuzzy Inference System (ANFIS and discrete wavelet transform (DWT. The proposed method uses five ANFIS networks and consists of 2 stages, including fault type classification and exact fault location. In the first part, an ANFIS is used to determine the fault type, applying four inputs, i.e., the maximum detailed energy of three phase and zero sequence currents. Other four ANFIS networks are utilized to pinpoint the faults (one for each fault type. Four inputs, i.e., the maximum detailed energy of three phase and zero sequence currents, are used to train the neuro-fuzzy inference systems in order to accurately locate the faults on the cable. The proposed method is evaluated under different fault conditions such as different fault locations, different fault inception angles and different fault resistances.

  6. Fault-tolerant Concave Facility Location Problem with Uniform Requirements

    Institute of Scientific and Technical Information of China (English)

    Xing WANG; Da-Chuan XU; Zheng-Hai HUANG

    2012-01-01

    In this paper,we consider the fault-tolerant concave facility location problem (FTCFL) with uniform requirements. By investigating the structure of the FTCFL,we obtain a modified dual-fitting bifactor approximation algorithm.Combining the scaling and greedy argumentation technique,the approximation factor is proved to be 1.52.

  7. Fault locator of an allyl chloride plant

    Directory of Open Access Journals (Sweden)

    Savković-Stevanović Jelenka B.

    2004-01-01

    Full Text Available Process safety analysis, which includes qualitative fault event identification, the relative frequency and event probability functions, as well as consequence analysis, was performed on an allye chloride plant. An event tree for fault diagnosis and cognitive reliability analysis, as well as a troubleshooting system, were developed. Fuzzy inductive reasoning illustrated the advantages compared to crisp inductive reasoning. A qualitative model forecast the future behavior of the system in the case of accident detection and then compared it with the actual measured data. A cognitive model including qualitative and quantitative information by fuzzy logic of the incident scenario was derived as a fault locator for an ally! chloride plant. The obtained results showed the successful application of cognitive dispersion modeling to process safety analysis. A fuzzy inductive reasoner illustrated good performance to discriminate between different types of malfunctions. This fault locator allowed risk analysis and the construction of a fault tolerant system. This study is the first report in the literature showing the cognitive reliability analysis method.

  8. 蚁群算法在超高压输电线路故障测距的应用%Fault Location for EHV Transmission Line Based on Ant Colony Algorithm

    Institute of Scientific and Technical Information of China (English)

    刘迅; 黄纯

    2012-01-01

    Through analyzing the existing fault location methods and the effect of optimization for transmission line, a method of fault location based on ant colony algorithm is presented. Based on the distributing parameter transmission line model, the fault location function is educed according to the principle that the amplitude of fault point's voltage calculated from the two ends of a line is equal. The ant colony algorithm is introduced to resolve the fault location function optimization problems. To eliminate the effect of untransposed conductors and unbalanced transmission line impedances, phase components are transformed to model components. At last, the simulation based on a 750 kV transmission system model is presented to demonstrate that the algorithm is of high accuracy and not affected by fault type, system impedance, fault resistance, unsynchronized angle. The method has high practical value.%通过对现有输电线路故障测距方法的探讨以及优化算法测距效果的对比分析,提出了一种基于蚁群算法的故障测距方法.该方法基于线路分布参数模型,依据从线路两端分别推算出的故障点电压的幅值相等的原理,列出故障测距方程.引入蚁群算法来求解故障测距方程,并通过相模变换来减少实际线路的不换位和参数不平衡的影响.最后以750 kV超高压输电线路故障测距为例进行仿真,结果表明此算法测距精度高,不需要选择故障类型,不受系统阻抗、过渡电阻、不同步角的影响,有很强的实用价值.

  9. Fault Locating, Prediction and Protection (FLPPS)

    Energy Technology Data Exchange (ETDEWEB)

    Yinger, Robert, J.; Venkata, S., S.; Centeno, Virgilio

    2010-09-30

    One of the main objectives of this DOE-sponsored project was to reduce customer outage time. Fault location, prediction, and protection are the most important aspects of fault management for the reduction of outage time. In the past most of the research and development on power system faults in these areas has focused on transmission systems, and it is not until recently with deregulation and competition that research on power system faults has begun to focus on the unique aspects of distribution systems. This project was planned with three Phases, approximately one year per phase. The first phase of the project involved an assessment of the state-of-the-art in fault location, prediction, and detection as well as the design, lab testing, and field installation of the advanced protection system on the SCE Circuit of the Future located north of San Bernardino, CA. The new feeder automation scheme, with vacuum fault interrupters, will limit the number of customers affected by the fault. Depending on the fault location, the substation breaker might not even trip. Through the use of fast communications (fiber) the fault locations can be determined and the proper fault interrupting switches opened automatically. With knowledge of circuit loadings at the time of the fault, ties to other circuits can be closed automatically to restore all customers except the faulted section. This new automation scheme limits outage time and increases reliability for customers. The second phase of the project involved the selection, modeling, testing and installation of a fault current limiter on the Circuit of the Future. While this project did not pay for the installation and testing of the fault current limiter, it did perform the evaluation of the fault current limiter and its impacts on the protection system of the Circuit of the Future. After investigation of several fault current limiters, the Zenergy superconducting, saturable core fault current limiter was selected for

  10. Fault Locating, Prediction and Protection (FLPPS)

    Energy Technology Data Exchange (ETDEWEB)

    Yinger, Robert, J.; Venkata, S., S.; Centeno, Virgilio

    2010-09-30

    One of the main objectives of this DOE-sponsored project was to reduce customer outage time. Fault location, prediction, and protection are the most important aspects of fault management for the reduction of outage time. In the past most of the research and development on power system faults in these areas has focused on transmission systems, and it is not until recently with deregulation and competition that research on power system faults has begun to focus on the unique aspects of distribution systems. This project was planned with three Phases, approximately one year per phase. The first phase of the project involved an assessment of the state-of-the-art in fault location, prediction, and detection as well as the design, lab testing, and field installation of the advanced protection system on the SCE Circuit of the Future located north of San Bernardino, CA. The new feeder automation scheme, with vacuum fault interrupters, will limit the number of customers affected by the fault. Depending on the fault location, the substation breaker might not even trip. Through the use of fast communications (fiber) the fault locations can be determined and the proper fault interrupting switches opened automatically. With knowledge of circuit loadings at the time of the fault, ties to other circuits can be closed automatically to restore all customers except the faulted section. This new automation scheme limits outage time and increases reliability for customers. The second phase of the project involved the selection, modeling, testing and installation of a fault current limiter on the Circuit of the Future. While this project did not pay for the installation and testing of the fault current limiter, it did perform the evaluation of the fault current limiter and its impacts on the protection system of the Circuit of the Future. After investigation of several fault current limiters, the Zenergy superconducting, saturable core fault current limiter was selected for

  11. A fast fault location method using modal decomposition technique of traveling wave

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kyung Rae; Kim, Sung Soo; Kang, Yong Cheol; Park, Jong Keun [Seoul National University, Seoul (Korea, Republic of); Hong, Jun Hee [Kyungwon University, Songnam (Korea, Republic of)

    1996-02-01

    In this paper, a fault location algorithm is presented, which uses novel signal processing techniques and takes a new paradigm to overcome some drawbacks of the conventional methods. This new method for fault location on electric power transmission lines uses only one-terminal fault signals. The main feature of the method is hat it uses the high frequency components in fault signal and considers the influence of the source network by using a traveling wave propagation characteristics. As a result, we can develop a high speed, good accuracy fault locator. (author). 15 refs., 15 figs., 1 tab.

  12. Optimizing solution of fault location using single terminal quantities

    Institute of Scientific and Technical Information of China (English)

    DONG XinZhou; SHI ShenXing; CUI Tao; LU Qiang

    2008-01-01

    This paper firstly evaluated the impedance method and traveling waves method for fault location, and studied the robustness of fault location method based on im-pedance. Then it proposed an assembled fault location method for a transmission line based on single-terminal electrical quantities, in which the fault zone was firstly determined by impedance method with robustness then the accurate fault position was pinpointed by traveling waves method. EMTP (Electromagnetic Transient Pro-gram) simulations showed that the proposed method can overcome the drawbacks of impedance method and traveling waves method when either one is used alone, and improve both the accuracy and the reliability of fault location.

  13. Research on fault location technology based on BP neural network in DWDM optical network

    Institute of Scientific and Technical Information of China (English)

    LIAO Xiao-min; ZHANG Yin-fa; YANG Shi-ping; LIN Chu-shan

    2008-01-01

    BP neural network is introduced to the fault location field of DWDM optical network in this paper. The alarm characteris-tics of the optical network equipments are discussed, and alarm vector and fault vector diagrams are generated by analyzingsome typical instances. A 17×14×18 BP neural network structure is constructed and trained by using MATLAB. Bycomparing the training performances, the best training algorithm of fault location among the three training algorithms ischosen. Numerical simulation results indicate that the sum squared error (SSE) of fault location is less than 0.01, and theprocessing time is less than 100 ms. This method not only well deals with the missing alarms or false alarms, but alsoimproves the fault location accuracy and real-time ability.

  14. Locating hardware faults in a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-04-13

    Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.

  15. An Overview of Transmission Line Protection by Artificial Neural Network: Fault Detection, Fault Classification, Fault Location, and Fault Direction Discrimination

    Directory of Open Access Journals (Sweden)

    Anamika Yadav

    2014-01-01

    Full Text Available Contemporary power systems are associated with serious issues of faults on high voltage transmission lines. Instant isolation of fault is necessary to maintain the system stability. Protective relay utilizes current and voltage signals to detect, classify, and locate the fault in transmission line. A trip signal will be sent by the relay to a circuit breaker with the purpose of disconnecting the faulted line from the rest of the system in case of a disturbance for maintaining the stability of the remaining healthy system. This paper focuses on the studies of fault detection, fault classification, fault location, fault phase selection, and fault direction discrimination by using artificial neural networks approach. Artificial neural networks are valuable for power system applications as they can be trained with offline data. Efforts have been made in this study to incorporate and review approximately all important techniques and philosophies of transmission line protection reported in the literature till June 2014. This comprehensive and exhaustive survey will reduce the difficulty of new researchers to evaluate different ANN based techniques with a set of references of all concerned contributions.

  16. An Algorithm for Fault-Tree Construction

    DEFF Research Database (Denmark)

    Taylor, J. R.

    1982-01-01

    An algorithm for performing certain parts of the fault tree construction process is described. Its input is a flow sheet of the plant, a piping and instrumentation diagram, or a wiring diagram of the circuits, to be analysed, together with a standard library of component functional and failure...... models. A systematic approach to component model construction is also presented....

  17. Fault location by one-terminal measurement in distribution network

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Presents the theory behind, the system design of the acquisitionof parameters for and the experiment on the fault location by one-terminal measurement in actual distribution network, and some of laws governing the on-site acquisition of parameters and fault location established through experimental research on actual power distribution lines.

  18. Fault-Tolerant Systems with Concurrent Error-Locating Capability

    Institute of Scientific and Technical Information of China (English)

    JIANG JianHui(江建慧); MIN YingHua(闵应骅); PENG ChengLian(彭澄廉)

    2003-01-01

    Fault-tolerant systems have found wide applications in military, industrial andcommercial areas. Most of these systems are constructed by multiple-modular redundancy or er-ror control coding techniques. They need some fault-tolerant specific components (such as voter,switcher, encoder, or decoder) to implement error-detecting or error-correcting functions. However,the problem of error detection, location or correction for fault-tolerance specific components them-selves has not been solved properly so far. Thus, the dependability of a whole fault-tolerant systemwill be greatly affected. This paper presents a theory of robust fault-masking digital circuits forcharacterizing fault-tolerant systems with the ability of concurrent error location and a new schemeof dual-modular redundant systems with partially robust fault-masking property. A basic robustfault-masking circuit is composed of a basic functional circuit and an error-locating corrector. Sucha circuit not only has the ability of concurrent error correction, but also has the ability of concurrenterror location. According to this circuit model, for a partially robust fault-masking dual-modularredundant system, two redundant modules based on alternating-complementary logic consist of thebasic functional circuit. An error-correction specific circuit named as alternating-complementarycorrector is used as the error-locating corrector. The performance (such as hardware complexity,time delay) of the scheme is analyzed.

  19. Distribution Grid Fault Location Applying Transient Zero-mode Current

    Directory of Open Access Journals (Sweden)

    Yunchuan Zhang

    2012-09-01

    Full Text Available To aim at the puzzles on faults location in distribution grids, the paper analyzed the distributing characteristics of transient zero-mode currents as the faults occurred, with the aid of correlation theory, a new fault circuit-selection and fault-location method was proposed based on transient zero model current for power distribution grid faults. The method is based on such a fact that the RMS was maximum of fault line transient zero-mode current, and the inner products between it and other line transient zero-mode current were less than zero, in addition, the transient zero-model currents at two sides of the fault point possessed opposite polarity and diverse waveform, and as well as small correlation coefficient closer to zero. In the end, the simulation results show that the proposed method on circuit-selection and fault-location for power distribution grids fault based on transient zero- mode current is correct and effective, and not affected by voltage epoch angle, and grounding resistance, and as well as neutral-point grounding modes.

  20. Application of Six-Sequence Fault Components in Fault Location for Joint Parallel Transmission Line

    Institute of Scientific and Technical Information of China (English)

    FAN Chunju; CAI Huarong; YU Weiyong

    2005-01-01

    A new fault location method based on six-sequence fault components was developed for parallel lines based on the fault analysis of a joint parallel transmission line. In the six-sequence fault network, the ratio of the root-mean square value of the fault current from two terminals is the function of the line impedance, the system impedance, and the fault distance away from the buses. A fault location equation is given to relate these factors. For extremely long transmission lines, the distributed capacitance is divided by the fault point and allocated to the two terminals of the transmission line in a lumped parameter to eliminate the influence of the distributed capacitance on the location accuracy. There is no limit on fault type and synchronization of the sampling data. Simulation results show that the location accuracy is high with an average error about 2%, and it is not influenced by factors such as the load current, the operating mode of the power system, or the fault resistance.

  1. Fault location method for transmission line based on traveling waves

    Institute of Scientific and Technical Information of China (English)

    ZHENG Na; ZHAO Yulin

    2007-01-01

    The single phase grounding fault location is the focus which researchers pay attention to and study in power system. The accurate fault location can lighten the patrolling burden, and enhance the reliability of the power network. It adopts A/D which has high speed, and uses TMS320VC5402 DSP chip as the system core. This paper presented theory of operation based on traveling waves and achieved software and hardware in detail.

  2. Single-phased Fault Location on Transmission Lines Using Unsynchronized Voltages

    Directory of Open Access Journals (Sweden)

    ISTRATE, M.

    2009-10-01

    Full Text Available The increased accuracy into the fault's detection and location makes it easier for maintenance, this being the reason to develop new possibilities for a precise estimation of the fault location. In the field literature, many methods for fault location using voltages and currents measurements at one or both terminals of power grids' lines are presented. The double-end synchronized data algorithms are very precise, but the current transformers can limit the accuracy of these estimations. The paper presents an algorithm to estimate the location of the single-phased faults which uses only voltage measurements at both terminals of the transmission lines by eliminating the error due to current transformers and without introducing the restriction of perfect data synchronization. In such conditions, the algorithm can be used with the actual equipment of the most power grids, the installation of phasor measurement units with GPS system synchronized timer not being compulsory. Only the positive sequence of line parameters and sources are used, thus, eliminating the incertitude in zero sequence parameter estimation. The algorithm is tested using the results of EMTP-ATP simulations, after the validation of the ATP models on the basis of registered results in a real power grid.

  3. State of the art analysis of online fault location on AC cables in underground transmission systems

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Gudmundsdottir, Unnur Stella; Bak, Claus Leth

    2011-01-01

    In this article the state of the art research for online fault location on cross-bonded transmission level cables is presented. The article is focused on the difficulties in using the algorithms developed for OHL-systems and distribution cables directly on cross-bonded transmission cables. Impeda...

  4. An optimization algorithm of collaborative indoor locating

    Directory of Open Access Journals (Sweden)

    SHI Ying

    2014-06-01

    Full Text Available Based on triangular centroid locating algorithm,this paper will use the idea of collaboration to indoor locating system.On account of the condition which has two nodes to be located in the test environment,we have designed a circular type optimization algorithm.Verified simulation results show that the circular type optimization algorithm,compared with the triangular centroid locating algorithm,can decrease the average error by 11.62%,decrease the maximum error by 7.74% and decrease the minimum error by 22.66%.The maximum value of the optimize degree of the circular type optimization algorithm is 28.63%,and the minimum value of that is 0.05%.

  5. The Fault Location Method Research of Three-Layer Network System

    Directory of Open Access Journals (Sweden)

    Hu Shaolin

    2012-09-01

    Full Text Available The fault location technology research of three-layer network system structure dynamic has important theoretic value and apparent engineering application value on exploring the fault detection and localization of the complex structure dynamic system. In this article, the method of failure propagation and adverse inference are adopted, the fault location algorithm of the three-layer structure dynamic network system is established on the basis of the concept of association matrix and the calculating method are proposed, and the simulation calculation confirmed the reliability of this paper. The results of the research can be used for the fault diagnosis of the hierarchical control system?testing of the engineering software and the analysis of the failure effects of layered network of all kinds and other different fields.

  6. Study on BSS Algorithm used on Fault Diagnosis of Gearbox

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2013-06-01

    Full Text Available The gearbox is a complicated rotating machinery equipment, in order to realize the gearbox fault early detection and prevention, it is the key to carry out the online diagnosis. This paper used the adaptive variable step-length natural gradient blind source separation algorithm to realize the helicopter gearbox meshing vibration signal and fault vibration signal effective separation. Through the algorithm simulation, the accuracy of the algorithm gained the verification and the separation error trended to zero, which has higher separation precision. This algorithm can realize the complicated mechanical vibration signal blind source separation and fault diagnosis, which has a broad application prospect.

  7. Robust location algorithm for NLOS environments

    Institute of Scientific and Technical Information of China (English)

    Huang Jiyan; Wan Qun

    2008-01-01

    One of the main problems facing accurate location in wireless communication systems is non-line-of-sight(NLOS)propagation.Traditional location algorithms are based on classical techniques under minimizing a least-squares objective function and it loses optimality when the NLOS error distribution deviates from Gaussian distribution.An effective location algorithm based on a robust objective function is proposed to mitigate NLOS errors.The proposed method does not require the prior knowledge of the NLOS error distribution and can give a closed-form solution.A comparison is performed in different NLOS environments between the proposed algorithm and two additional ones(LS method and Chan's method with an NLOS correction).The proposed algorithm clearly outperforms the other two.

  8. Modeling Technology in Traveling-Wave Fault Location

    Directory of Open Access Journals (Sweden)

    Tang Jinrui

    2013-06-01

    Full Text Available Theoretical research and equipment development of traveling-wave fault location seriously depend on digital simulation. Meanwhile, the fault-generated transient traveling wave must be transferred through transmission line, mutual inductor and secondary circuit before it is used. So this paper would maily analyze and summarize the modeling technology of transmission line and mutual inductor on the basis of the research achievement. Firstly several models of transmission line (multiple Π or T line model, Bergeron line model and frequency-dependent line model are compared in this paper with analysis of wave-front characteristics and characteristic frequency of traveling wave. Then modeling methods of current transformer, potential transformer, capacitive voltage transformer, special traveling-wave sensor and secondary cable are given. Finally, based on the difficult and latest research achievements, the future trend of modeling technology in traveling-wave fault location is prospected.  

  9. Colony location algorithm for assignment problems

    Institute of Scientific and Technical Information of China (English)

    Dingwei WANG

    2004-01-01

    A novel algorithm called Colony Location Algorithm (CLA) is proposed. It mimics the phenomena in biotic conmunity that colonies of species could be located in the places most suitable to their growth. The factors working on the species location such as the nutrient of soil, resource competition between species, growth and decline process, and effect on environment were considered in CLA via the nutrient function, growth and decline rates, environment evaluation and fertilization strategy.CLA was applied to solve the classical assignment problems. The computation results show that CLA can achieve the optimal solution with higher possibility and shorter running time.

  10. Based on the Wavelet Function of Power Network Fault Location

    Directory of Open Access Journals (Sweden)

    Fan YU

    2013-04-01

    Full Text Available In order to improve the measurement accuracy, in the traditional measuring method based on, by avoiding wave speed influence on fault location of transmission line method, and compares it with the combination of wavelet transform. This article selects dBN wavelet and three B spline wavelet contrast, compared them with new methods, through the Xi'an City Power Supply Bureau of the actual fault data validation. The results show that, with3 B spline wavelet and the new method combined with the location results are closer to the actual distance, its accuracy is higher than that of db3wavelet transform and a new method derived from the results, the error is far less than the db3 wavelet function, location is satisfactory.

  11. Online fault location on crossbonded AC cables in underground transmission systems

    DEFF Research Database (Denmark)

    F. Jensen, Christian; Bak, Claus Leth; Gudmundsdottir, Unnur Stella

    2014-01-01

    system are identified. The fault locator system uses the Wavelet Transform both to create reliable triggers in the units and to estimate the fault location based on time domain signals obtained in the substations by two fault locator units. Field measurements of faults artificially created on a section...

  12. Energy Efficient Distributed Fault Identification Algorithm in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Meenakshi Panda

    2014-01-01

    Full Text Available A distributed fault identification algorithm is proposed here to find both hard and soft faulty sensor nodes present in wireless sensor networks. The algorithm is distributed, self-detectable, and can detect the most common byzantine faults such as stuck at zero, stuck at one, and random data. In the proposed approach, each sensor node gathered the observed data from the neighbors and computed the mean to check whether faulty sensor node is present or not. If a node found the presence of faulty sensor node, then compares observed data with the data of the neighbors and predict probable fault status. The final fault status is determined by diffusing the fault information from the neighbors. The accuracy and completeness of the algorithm are verified with the help of statistical model of the sensors data. The performance is evaluated in terms of detection accuracy, false alarm rate, detection latency and message complexity.

  13. Structural Analysis Extended with Active Fault Isolation - Methods and Algorithms

    DEFF Research Database (Denmark)

    Gelso, Esteban R.; Blanke, Mogens

    2009-01-01

    on system inputs can considerably enhance fault isolability. This paper investigates this possibility of active fault isolation from a structural point of view. While such extension of the structural analysis approach was suggested earlier, algorithms and case studies were needed to explore this theory....... The paper develops algorithms for investigation of the possibilities of active structural isolation and it offers illustrative examples and a larger case study to explore the properties of active structural isolability ideas....

  14. A data structure and algorithm for fault diagnosis

    Science.gov (United States)

    Bosworth, Edward L., Jr.

    1987-01-01

    Results of preliminary research on the design of a knowledge based fault diagnosis system for use with on-orbit spacecraft such as the Hubble Space Telescope are presented. A candidate data structure and associated search algorithm from which the knowledge based system can evolve is discussed. This algorithmic approach will then be examined in view of its inability to diagnose certain common faults. From that critique, a design for the corresponding knowledge based system will be given.

  15. Robust Fault Diagnosis Algorithm for a Class of Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Hai-gang Xu

    2015-01-01

    Full Text Available A kind of robust fault diagnosis algorithm to Lipschitz nonlinear system is proposed. The novel disturbances constraint condition of the nonlinear system is derived by group algebra method, and the novel constraint condition can meet the system stability performance. Besides, the defined robust performance index of fault diagnosis observer guarantees the robust. Finally, the effectiveness of the algorithm proposed is proved in the simulations.

  16. Fault Identification Algorithm Based on Zone-Division Wide Area Protection System

    Directory of Open Access Journals (Sweden)

    Xiaojun Liu

    2014-04-01

    Full Text Available As the power grid becomes more magnified and complicated, wide-area protection system in the practical engineering application is more and more restricted by the communication level. Based on the concept of limitedness of wide-area protection system, the grid with complex structure is divided orderly in this paper, and fault identification and protection action are executed in each divided zone to reduce the pressure of the communication system. In protection zone, a new wide-area protection algorithm based on positive sequence fault components directional comparison principle is proposed. The special associated intelligent electronic devices (IEDs zones which contain buses and transmission lines are created according to the installation location of the IEDs. When a fault occurs, with the help of the fault information collecting and sharing from associated zones with the fault discrimination principle defined in this paper, the IEDs can identify the fault location and remove the fault according to the predetermined action strategy. The algorithm will not be impacted by the load changes and transition resistance and also has good adaptability in open phase running power system. It can be used as a main protection, and it also can be taken into account for the back-up protection function. The results of cases study show that, the division method of the wide-area protection system and the proposed algorithm are effective.

  17. Interactive animation of fault-tolerant parallel algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Apgar, S.W.

    1992-02-01

    Animation of algorithms makes understanding them intuitively easier. This paper describes the software tool Raft (Robust Animator of Fault Tolerant Algorithms). The Raft system allows the user to animate a number of parallel algorithms which achieve fault tolerant execution. In particular, we use it to illustrate the key Write-All problem. It has an extensive user-interface which allows a choice of the number of processors, the number of elements in the Write-All array, and the adversary to control the processor failures. The novelty of the system is that the interface allows the user to create new on-line adversaries as the algorithm executes.

  18. New Passive Methodology for Power Cable Monitoring and Fault Location

    Science.gov (United States)

    Kim, Youngdeug

    The utilization of power cables is increasing with the development of renewable energy and the maintenance replacement of old overhead power lines. Therefore, effective monitoring and accurate fault location for power cables are very important for the sake of a stable power supply. The recent technologies for power cable diagnosis and temperature monitoring system are described including their intrinsic limitations for cable health assessment. Power cable fault location methods are reviewed with two main categories: off-line and on-line data based methods. As a diagnostic and fault location approach, a new passive methodology is introduced. This methodology is based on analyzing the resonant frequencies of the transfer function between the input and output of the power cable system. The equivalent pi model is applied to the resonant frequency calculation for the selected underground power cable transmission system. The characteristics of the resonant frequencies are studied by analytical derivations and PSCAD simulations. It is found that the variation of load magnitudes and change of positive power factors (i.e., inductive loads) do not affect resonant frequencies significantly, but there is considerable movement of resonant frequencies under change of negative power factors (i.e., capacitive loads). Power cable fault conditions introduce new resonant frequencies in accordance with fault positions. Similar behaviors of the resonant frequencies are shown in a transformer (TR) connected power cable system with frequency shifts caused by the TR impedance. The resonant frequencies can be extracted by frequency analysis of power signals and the inherent noise in these signals plays a key role to measure the resonant frequencies. Window functions provide an effective tool for improving resonant frequency discernment. The frequency analysis is implemented on noise laden PSCAD simulation signals and it reveals identical resonant frequency characteristics with theoretical

  19. An Adaline based arcing fault detection algorithm for single-pole autoreclosers

    Energy Technology Data Exchange (ETDEWEB)

    Karacasu, Ozgur; Hakan Hocaoglu, M. [Gebze Institute of Technology, Department of Electronics Engineering, 41400 Gebze, Kocaeli (Turkey)

    2011-02-15

    In this paper, a new Adaline based adaptive single-pole autorecloser algorithm is proposed to discriminate permanent and transient faults in HV transmission lines. The proposed algorithm is implemented by processing only terminal voltages and also used to estimate secondary arc extinction time. The algorithm is simulationally analyzed using ATP version of EMTP by varying fault locations and pre fault loading conditions to demonstrate the capabilities and limitations of the method. In addition to that, measured data, which are taken from an actual power system, are also used for testing the algorithm. Results show that the method can successfully be implemented for real time application and computationally less expensive when compared with other methods. (author)

  20. A New and Accurate Fault Location Method in Three-Terminal Transmission Lines Compensated by Series-Connected Flexible AC Transmission System Devices

    Directory of Open Access Journals (Sweden)

    Haniyeh Marefatjou

    2013-09-01

    Full Text Available This paper proposes a new method to fault location in the three terminals transmission line compensated with series FACTS Devices. This method is based on the converting three line networks to two line networks after recognizing the faulty section and solving accessing the fault distance. So to solve the problem of fault location before determining distance to faulty section, new method to determine faulty section is proposed and then by converting three line networks to two line networks, the location of fault is determined using the proposed algorithm. In this method distributed transmission line model in time domain has been used which is another advantage of the proposed method compared to previous methods. This method for determining the faulty section used simultaneous voltage and current of all three terminals as input data. Due to problems in the modeling of FACTS devices during fault location, our proposed method does not used modeling series FACTS devices. Our proposed algorithm is not sensitive to the resistance of fault, the fault inception angle and fault type and do not dependent on compensator device location and its parameters. This method is good for all transmission lines compensated with any type of series compensator. Different types of fault in any different distance and situation simulated by using MATLAB/SIMULINK software on compensated three line network with Thyristor Control Series Capacitor(TCSC. The performance of the proposed algorithm is evaluated under different structural and fault conditions. The simulation results confirm the high accuracy of the proposed algorithm

  1. Combinatorial Optimization Algorithms for Dynamic Multiple Fault Diagnosis in Automotive and Aerospace Applications

    Science.gov (United States)

    Kodali, Anuradha

    In this thesis, we develop dynamic multiple fault diagnosis (DMFD) algorithms to diagnose faults that are sporadic and coupled. Firstly, we formulate a coupled factorial hidden Markov model-based (CFHMM) framework to diagnose dependent faults occurring over time (dynamic case). Here, we implement a mixed memory Markov coupling model to determine the most likely sequence of (dependent) fault states, the one that best explains the observed test outcomes over time. An iterative Gauss-Seidel coordinate ascent optimization method is proposed for solving the problem. A soft Viterbi algorithm is also implemented within the framework for decoding dependent fault states over time. We demonstrate the algorithm on simulated and real-world systems with coupled faults; the results show that this approach improves the correct isolation rate as compared to the formulation where independent fault states are assumed. Secondly, we formulate a generalization of set-covering, termed dynamic set-covering (DSC), which involves a series of coupled set-covering problems over time. The objective of the DSC problem is to infer the most probable time sequence of a parsimonious set of failure sources that explains the observed test outcomes over time. The DSC problem is NP-hard and intractable due to the fault-test dependency matrix that couples the failed tests and faults via the constraint matrix, and the temporal dependence of failure sources over time. Here, the DSC problem is motivated from the viewpoint of a dynamic multiple fault diagnosis problem, but it has wide applications in operations research, for e.g., facility location problem. Thus, we also formulated the DSC problem in the context of a dynamically evolving facility location problem. Here, a facility can be opened, closed, or can be temporarily unavailable at any time for a given requirement of demand points. These activities are associated with costs or penalties, viz., phase-in or phase-out for the opening or closing of a

  2. A New Fault Diagnosis Algorithm for PMSG Wind Turbine Power Converters under Variable Wind Speed Conditions

    Directory of Open Access Journals (Sweden)

    Yingning Qiu

    2016-07-01

    Full Text Available Although Permanent Magnet Synchronous Generator (PMSG wind turbines (WTs mitigate gearbox impacts, they requires high reliability of generators and converters. Statistical analysis shows that the failure rate of direct-drive PMSG wind turbines’ generators and inverters are high. Intelligent fault diagnosis algorithms to detect inverters faults is a premise for the condition monitoring system aimed at improving wind turbines’ reliability and availability. The influences of random wind speed and diversified control strategies lead to challenges for developing intelligent fault diagnosis algorithms for converters. This paper studies open-circuit fault features of wind turbine converters in variable wind speed situations through systematic simulation and experiment. A new fault diagnosis algorithm named Wind Speed Based Normalized Current Trajectory is proposed and used to accurately detect and locate faulted IGBT in the circuit arms. It is compared to direct current monitoring and current vector trajectory pattern approaches. The results show that the proposed method has advantages in the accuracy of fault diagnosis and has superior anti-noise capability in variable wind speed situations. The impact of the control strategy is also identified. Experimental results demonstrate its applicability on practical WT condition monitoring system which is used to improve wind turbine reliability and reduce their maintenance cost.

  3. A method for detection and location of high resistance earth faults

    Energy Technology Data Exchange (ETDEWEB)

    Haenninen, S.; Lehtonen, M. [VTT Energy, Espoo (Finland); Antila, E. [ABB Transmit Oy (Finland)

    1998-08-01

    In the first part of this presentation, the theory of earth faults in unearthed and compensated power systems is briefly presented. The main factors affecting the high resistance fault detection are outlined and common practices for earth fault protection in present systems are summarized. The algorithms of the new method for high resistance fault detection and location are then presented. These are based on the change of neutral voltage and zero sequence currents, measured at the high voltage / medium voltage substation and also at the distribution line locations. The performance of the method is analyzed, and the possible error sources discussed. Among these are, for instance, switching actions, thunder storms and heavy snow fall. The feasibility of the method is then verified by an analysis based both on simulated data, which was derived using an EMTP-ATP simulator, and by real system data recorded during field tests at three substations. For the error source analysis, some real case data recorded during natural power system events, is also used

  4. Fault-tolerant search algorithms reliable computation with unreliable information

    CERN Document Server

    Cicalese, Ferdinando

    2013-01-01

    Why a book on fault-tolerant search algorithms? Searching is one of the fundamental problems in computer science. Time and again algorithmic and combinatorial issues originally studied in the context of search find application in the most diverse areas of computer science and discrete mathematics. On the other hand, fault-tolerance is a necessary ingredient of computing. Due to their inherent complexity, information systems are naturally prone to errors, which may appear at any level - as imprecisions in the data, bugs in the software, or transient or permanent hardware failures. This book pr

  5. Transient stability Assessment using Artificial Neural Network Considering Fault Location

    Directory of Open Access Journals (Sweden)

    P.K.Olulope

    2010-06-01

    Full Text Available This paper describes the capability of artificial neural network for predicting the critical clearing time of power system. It combines the advantages of time domain integration schemes with artificial neural network for real time transient stability assessment. The training of ANN is done using selected features as input and critical fault clearing time (CCT as desire target. A single contingency was applied and the target CCT was found using time domain simulation. Multi layer feed forward neural network trained with Levenberg Marquardt (LM back propagation algorithm is used to provide the estimated CCT. The effectiveness of ANN, the method is demonstrated on single machine infinite bus system (SMIB. The simulation shows that ANN can provide fast and accurate mapping which makes it applicable to real time scenario.

  6. Comprehensive bearing condition monitoring algorithm for incipient fault detection using acoustic emission

    Directory of Open Access Journals (Sweden)

    Amit R. Bhende

    2014-09-01

    Full Text Available The bearing reliability plays major role in obtaining the desired performance of any machine. A continuous condition monitoring of machine is required in certain applications where failure of machine leads to loss of production, human safety and precision. Machine faults are often linked to the bearing faults. Condition monitoring of machine involves continuous watch on the performance of bearings and predicting the faults of bearing before it cause any adversity. This paper investigates an experimental study to diagnose the fault while bearing is in operation. An acoustic emission technique is used in the experimentation. An algorithm is developed to process various types of signals generated from different bearing defects. The algorithm uses time domain analysis along with combination low frequency analysis technique such as fast Fourier transform and high frequency envelope detection. Two methods have adopted for envelope detection which are Hilbert transform and order analysis. Experimental study is carried out for deep groove ball bearing cage defect. Results show the potential effectiveness of the proposed algorithm to determine presence of fault, exact location and severity of fault.

  7. A single-terminal fault location algorithm in distribution network for eliminating the effect of the velocity of zero-mode traveling wave%消除零模波速影响的配电网单端行波故障测距算法

    Institute of Scientific and Technical Information of China (English)

    何晓; 雷勇; 周聪聪; 周凯; 王鹏

    2016-01-01

    Due to frequently occurred three-phase unbalanced loads in the ends of large number of branches in distribution networks, it is difficult to extract reflected wave of the fault point in the complex reflected and refracted waves using the traditional single-terminal traveling wave methods. Simultaneously the precision of the fault location methods based on the difference of wave velocity between zero-mode component and line-mode component of traveling waves and the one based on mutation of line-mode traveling wave are decided by the unstable zero-mode wave velocity. Therefore, a new approach is proposed by combining the above two methods to achieve higher efficiency and precision of measuring the fault distance and location. The presented method employs the correspondence between the detected zero-mode wave velocity and the fault distance to achieve the fault location algorithm which is not impacted by zero-mode wave velocity. The approach firstly detects difference of arrival time between the zero-mode traveling wave and line-mode traveling wave at the head end. And then post-injecting high voltage pulses into three phases simultaneously and detecting the arrival time of the first line-mode traveling wave head at the head end of the transmission line. Following, it employs the stable line-mode wave velocity to execute the measurement of the fault distance. Finally, PSCAD-based simulation shows that the absolute errors of this algorithm are less than 100 m in all cases, without influence from the fault location, grounding resistance and fault initial phase angle.%配电网线路分支众多,末端往往具有三相不平衡负载,传统的单端行波法需在复杂的折反射波中提取故障点的反射波,不易实现。而基于模量行波速度差和基于线模行波突变这两种故障测距方法的精确度都受制于不稳定的零模波速度。基于此,将两种方法结合,利用零模检测波速度与传播距离成对应关系的特

  8. Development of Fault Models for Hybrid Fault Detection and Diagnostics Algorithm: October 1, 2014 -- May 5, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Howard [Purdue Univ., West Lafayette, IN (United States); Braun, James E. [Purdue Univ., West Lafayette, IN (United States)

    2015-12-31

    This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment in the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.

  9. Development of Fault Models for Hybrid Fault Detection and Diagnostics Algorithm: October 1, 2014 -- May 5, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Howard; Braun, James E.

    2015-12-31

    This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment in the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.

  10. Intelligent background noise reduction technology in cable fault locator using the magneto-acoustic synchronous method

    Science.gov (United States)

    Mi, JianWei; Huang, JiFa; Fang, XiaoLi; Fan, LiBin

    2017-01-01

    The magneto-acoustic synchronous method has found wide application in accurate positioning of power cable fault due to its advantages of high accuracy and strong ability to reject interference. In the view of principle, the magneto-acoustic synchronous method needs to detect the discharge sound signal and electromagnetic signal emitted from the fault point, but the discharge sound signal is easy to be interfered by the ambient noise around and the magnetic sound synchronization. Therefore, it is challenging to quickly and accurately detect the fault location of cable especially in strong background noise environment. On the other hand, the spectral subtraction is a relatively traditional and effective method in many intelligent background noise reduction technologies, which is characterized by a relatively small computational cost and strong real-time performance. However, its application is limited because the algorithm displays poor performance in low Signal to Noise Ratio (SNR) environment. Aiming at the shortcoming of the spectral subtraction that de-noising effect is weak in low SNR environment, this paper proposes an improved spectral subtraction combining the magnetic sound synchronous principle and analyzing the properties of discharging sound. This method can accurately estimate noise in real time and optimize the performance of the basic spectral subtraction thus solving the problem that the magneto-acoustic synchronous method is unsatisfactory for positioning cable fault in the strong background noise environment.

  11. Study on Fault Detection and PCB Picture-Location Method of Logic Circuit

    Directory of Open Access Journals (Sweden)

    Mingping Xia

    2013-05-01

    Full Text Available The main content of logic circuit fault detection includes describing circuit to be diagnosed, determining fault and circuit initial information, generating circuit location test set. In this study, LASAR is used to carry out the logic circuit simulation so as to create such documents as fault dictionary, node truth value table, etc. for the preparation of fault detection. Due to the limitation of circuit observability and testing vectors, the diagnosis program can not accurately locate the fault just once in the process of diagnosis because the circuit is complex and users are not quite familiarity with the circuit. Therefore, the new circuit-fault-detection technology incorporates techniques of PCB picture-location so that the users can locate the fault quickly and accurately.

  12. Self-Healing Algorithms for Byzantine Faults

    CERN Document Server

    Knockel, Jeffrey; Saia, Jared

    2012-01-01

    Recent years have seen significant interest in designing networks that are \\emph{self-healing} in the sense that they can automatically recover from adversarial attack. Previous work shows that it is possible for a network to automatically recover, even when an adversary repeatedly deletes nodes in the network. However, there have not yet been any algorithms that self-heal in the case where an adversary \\emph{takes over} nodes in a network. In this paper, we address this gap.% by presenting self-healing algorithms that work in the presence of such an attack. In particular, we show how to maintain an overlay network over $n$ nodes that ensures the following properties, even when an adversary controls up to $t \\leq n/4 $ nodes. First, $O(t (\\log^{*} n)^{2})$ message corruptions occur in expectation, before the adversarially controlled nodes are effectively quarantined so that they cause no more corruptions. Second, the network continually provides point-to-point communication with bandwidth and latency costs th...

  13. Research on the Algorithm of Avionic Device Fault Diagnosis Based on Fuzzy Expert System

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the fuzzy expert system fault diagnosis theory, the knowledge base architecture and inference engine algorithm are put forward for avionic device fault diagnosis. The knowledge base is constructed by fault query network, of which the basic element is the test-diagnosis fault unit. Every underlying fault cause's membership degree is calculated using fuzzy product inference algorithm, and the fault answer best selection algorithm is developed, to which the deep knowledge is applied. Using some examples,the proposed algorithm is analyzed for its capability of synthesis diagnosis and its improvement compared to greater membership degree first principle.

  14. Sparsity-based algorithm for detecting faults in rotating machines

    Science.gov (United States)

    He, Wangpeng; Ding, Yin; Zi, Yanyang; Selesnick, Ivan W.

    2016-05-01

    This paper addresses the detection of periodic transients in vibration signals so as to detect faults in rotating machines. For this purpose, we present a method to estimate periodic-group-sparse signals in noise. The method is based on the formulation of a convex optimization problem. A fast iterative algorithm is given for its solution. A simulated signal is formulated to verify the performance of the proposed approach for periodic feature extraction. The detection performance of comparative methods is compared with that of the proposed approach via RMSE values and receiver operating characteristic (ROC) curves. Finally, the proposed approach is applied to single fault diagnosis of a locomotive bearing and compound faults diagnosis of motor bearings. The processed results show that the proposed approach can effectively detect and extract the useful features of bearing outer race and inner race defect.

  15. A Digital Ground Distance Relaying Algorithm to Reduce the Effect of Fault Resistance during Single Phase to Ground and Simultaneous Faults

    Directory of Open Access Journals (Sweden)

    Mohammad Razaz

    2015-03-01

    Full Text Available This paper provides an algorithm of fault resistance compensation for digital ground distance relay considering the voltage and current transformer effects. Performance of the conventional ground distance relaying manner is adversely affected by different ground faults and also typical type, called a simultaneous open conductor and ground fault. The proposed scheme by using local-end data only, has shown satisfactory performances under wide variations in fault location, with different values of fault resistance and having positive and negative of power transfer angle. The presented method which has been carried out on the IEEE 14 bus benchmark is executed in PSCAD/EMTDC and MATLAB software, and the results show the accurate performance of mentioned configuration.

  16. Classification methodology and feature selection to assist fault location in power distribution systems

    Directory of Open Access Journals (Sweden)

    Juan José Mora Flórez

    2008-01-01

    Full Text Available A classification methodology based on Support Vector Machines (SVM is proposed to locate the faulted zone in power distribution networks. The goal is to reduce the multiple-estimation problem inherent in those methods that use single end measures (in the substation to estimate the fault location in radial systems. A selection of features or descriptors obtained from voltages and currents measured in the substation are analyzed and used as input of the SVM classifier. Performance of the fault locator having several combinations of these features has been evaluated according to its capability to discriminate between faults in different zones but located at similar distance. An application example illustrates the precision, to locate the faulted zone, obtained with the proposed methodology in simulated framework. The proposal provides appropriate information for the prevention and opportune attention of faults,requires minimum investment and overcomes the multiple-estimation problem of the classic impedance based methods.

  17. Fuzzy-Expert Diagnostics for Detecting and Locating Internal Faults in Three Phase Induction Motors

    Institute of Scientific and Technical Information of China (English)

    DONG Mingchui; CHEANG Takson; SEKAR Booma Devi; CHAN Sileong

    2008-01-01

    Internal faults in three phase induction motors can result in serious performance degradation and eventual system failures if not properly detected and treated in time. Artificial intelligence techniques, the core of soft-computing, have numerous advantages over conventional fault diagnostic approaches; therefore, a soft-computing system was developed to detect and diagnose electric motor faults. The fault diagnostic system for three-phase induction motors samples the fault symptoms and then uses a fuzzy-expert forward inference model to identify the fault. This paper describes how to define the membership functions and fuzzy sets based on the fault symptoms and how to construct the hierarchical fuzzy inference nets with the propagation of probabilities concerning the uncertainty of faults. The designed hierarchical fuzzy inference nets efficiently detect and diagnose the fault type and exact location in a three phase induction motor. The validity and effectiveness of this approach is clearly shown from obtained testing results.

  18. Algorithm for Detecting Significant Locations from Raw GPS Data

    Science.gov (United States)

    Kami, Nobuharu; Enomoto, Nobuyuki; Baba, Teruyuki; Yoshikawa, Takashi

    We present a fast algorithm for probabilistically extracting significant locations from raw GPS data based on data point density. Extracting significant locations from raw GPS data is the first essential step of algorithms designed for location-aware applications. Assuming that a location is significant if users spend a certain time around that area, most current algorithms compare spatial/temporal variables, such as stay duration and a roaming diameter, with given fixed thresholds to extract significant locations. However, the appropriate threshold values are not clearly known in priori and algorithms with fixed thresholds are inherently error-prone, especially under high noise levels. Moreover, for N data points, they are generally O(N 2) algorithms since distance computation is required. We developed a fast algorithm for selective data point sampling around significant locations based on density information by constructing random histograms using locality sensitive hashing. Evaluations show competitive performance in detecting significant locations even under high noise levels.

  19. Stochastic Resonance algorithms to enhance damage detection in bearing faults

    Directory of Open Access Journals (Sweden)

    Castiglione Roberto

    2015-01-01

    Full Text Available Stochastic Resonance is a phenomenon, studied and mainly exploited in telecommunication, which permits the amplification and detection of weak signals by the assistance of noise. The first papers on this technique are dated early 80 s and were developed to explain the periodically recurrent ice ages. Other applications mainly concern neuroscience, biology, medicine and obviously signal analysis and processing. Recently, some researchers have applied the technique for detecting faults in mechanical systems and bearings. In this paper, we try to better understand the conditions of applicability and which is the best algorithm to be adopted for these purposes. In fact, to get the methodology profitable and efficient to enhance the signal spikes due to fault in rings and balls/rollers of bearings, some parameters have to be properly selected. This is a problem since in system identification this procedure should be as blind as possible. Two algorithms are analysed: the first exploits classical SR with three parameters mutually dependent, while the other uses Woods-Saxon potential, with three parameters yet but holding a different meaning. The comparison of the performances of the two algorithms and the optimal choice of their parameters are the scopes of this paper. Algorithms are tested on simulated and experimental data showing an evident capacity of increasing the signal to noise ratio.

  20. Algorithm-dependent fault tolerance for distributed computing

    Energy Technology Data Exchange (ETDEWEB)

    P. D. Hough; M. e. Goldsby; E. J. Walsh

    2000-02-01

    Large-scale distributed systems assembled from commodity parts, like CPlant, have become common tools in the distributed computing world. Because of their size and diversity of parts, these systems are prone to failures. Applications that are being run on these systems have not been equipped to efficiently deal with failures, nor is there vendor support for fault tolerance. Thus, when a failure occurs, the application crashes. While most programmers make use of checkpoints to allow for restarting of their applications, this is cumbersome and incurs substantial overhead. In many cases, there are more efficient and more elegant ways in which to address failures. The goal of this project is to develop a software architecture for the detection of and recovery from faults in a cluster computing environment. The detection phase relies on the latest techniques developed in the fault tolerance community. Recovery is being addressed in an application-dependent manner, thus allowing the programmer to take advantage of algorithmic characteristics to reduce the overhead of fault tolerance. This architecture will allow large-scale applications to be more robust in high-performance computing environments that are comprised of clusters of commodity computers such as CPlant and SMP clusters.

  1. A New Single DIFAR Sonobuoy Target Location Algorithm

    Institute of Scientific and Technical Information of China (English)

    陶林伟; 王英民

    2011-01-01

    In order to solve the problem of target location of single direction finding and ranging(DIFAR) sonobuoy, a new target location algorithm is proposed. Based on the new generation of high performance sonobuoy signal processing platform, the new algorithm makes full use of the Doppler information of the targets while using the target location data, and success- fully implements the target detection, location and tracking. In the calculation of target parameters, the new algorithm utili- zes the repeated measurement data to further improve the calculation accuracy of the target parameters using the principle of Least Square. The simulation results indicate the correctness of the new algorithm. The algorithm is simple, stable and easily implemented in engineering. And besides, it overcomes the weakness of the traditional algorithm which requires at least two DIFAR buoys to locate the targets.

  2. A robust algorithm based on a failure-sensitive matrix for fault diagnosis of power systems: an application on power transformers

    OpenAIRE

    2015-01-01

    In this paper, a robust algorithm for fault diagnosis of power system equipment based on a failure-sensitive matrix (FSM) is presented. The FSM is a dynamic matrix structure updated by multiple measurements (online) and test results (offline) on the systems. The algorithm uses many different artificial intelligence and expert system methods for adaptively detecting the location of faults, emerging failures, and causes of failures. In this algorithm, all data obtained from the power transforme...

  3. Precise tremor source locations and amplitude variations along the lower-crustal central San Andreas Fault

    Science.gov (United States)

    Shelly, David R.; Hardebeck, Jeanne L.

    2010-01-01

    We precisely locate 88 tremor families along the central San Andreas Fault using a 3D velocity model and numerous P and S wave arrival times estimated from seismogram stacks of up to 400 events per tremor family. Maximum tremor amplitudes vary along the fault by at least a factor of 7, with by far the strongest sources along a 25 km section of the fault southeast of Parkfield. We also identify many weaker tremor families, which have largely escaped prior detection. Together, these sources extend 150 km along the fault, beneath creeping, transitional, and locked sections of the upper crustal fault. Depths are mostly between 18 and 28 km, in the lower crust. Epicenters are concentrated within 3 km of the surface trace, implying a nearly vertical fault. A prominent gap in detectible activity is located directly beneath the region of maximum slip in the 2004 magnitude 6.0 Parkfield earthquake.

  4. Accurate one-end fault location for overhead transmission lines in interconnected power systems

    Energy Technology Data Exchange (ETDEWEB)

    Eisa, Amir A.A.; Ramar, K. [Faculty of Engineering, Multimedia University, 63100 Cyberjaya (Malaysia)

    2010-06-15

    This paper presents a new one-end fault location method for overhead transmission lines embedded in a general n-bus interconnected power system. High accuracy in fault location is achieved by using both an accurate distributed parameters model for the faulted transmission line, and a two-bus Thevenin equivalent network model for the power system that accurately accounts for its interconnectivity. The method has been tested using transient fault data obtained from PSCAD/EMTDC simulations of an 11-bus interconnected power system. The results obtained indicate that the method is capable of estimating the fault distance with high accuracy for various fault conditions. They also indicate that method is sensitive to errors in the value of the local bus impedance, but is insensitive to errors in the value of the remote bus impedance. (author)

  5. Detection and location algorithm against local-worm

    Institute of Scientific and Technical Information of China (English)

    YANG XinYu; SHI Yi; ZHU Huidun

    2008-01-01

    The spread of the worm causes great harm to the computer network. It has recently become the focus of the network security research. This paper presents a local-worm detection algorithm by analyzing the characteristics of traffic generated by the TCP-based worm. Moreover, we adjust the worm location algorithm, aiming at the differences between the high-speed and the low-speed worm scanning methods. This adjustment can make the location algorithm detect and locate the worm based on different scanning rate. Finally, we verified the validity and efficiency of the proposed algorithm by simulating it under NS-2,

  6. The New Algorithm for Fast Probabilistic Hypocenter Locations

    Science.gov (United States)

    Dębski, Wojciech; Klejment, Piotr

    2016-12-01

    The spatial location of sources of seismic waves is one of the first tasks when transient waves from natural (uncontrolled) sources are analysed in many branches of physics, including seismology, oceanology, to name a few. It is well recognised that there is no single universal location algorithm which performs equally well in all situations. Source activity and its spatial variability in time, the geometry of recording network, the complexity and heterogeneity of wave velocity distribution are all factors influencing the performance of location algorithms. In this paper we propose a new location algorithm which exploits the reciprocity and time-inverse invariance property of the wave equation. Basing on these symmetries and using a modern finite-difference-type eikonal solver, we have developed a new very fast algorithm performing the full probabilistic (Bayesian) source location. We illustrate an efficiency of the algorithm performing an advanced error analysis for 1647 seismic events from the Rudna copper mine operating in southwestern Poland.

  7. Parallel Approximation Algorithms for Facility-Location Problems

    OpenAIRE

    Blelloch, Guy E.; Tangwongsan, Kanat

    2010-01-01

    This paper presents the design and analysis of parallel approximation algorithms for facility-location problems, including $\\NC$ and $\\RNC$ algorithms for (metric) facility location, $k$-center, $k$-median, and $k$-means. These problems have received considerable attention during the past decades from the approximation algorithms community, concentrating primarily on improving the approximation guarantees. In this paper, we ask, is it possible to parallelize some of the beautiful results from...

  8. Artificial Neural Network-Based Fault Distance Locator for Double-Circuit Transmission Lines

    Directory of Open Access Journals (Sweden)

    Anamika Jain

    2013-01-01

    Full Text Available This paper analyses two different approaches of fault distance location in a double circuit transmission lines, using artificial neural networks. The single and modular artificial neural networks were developed for determining the fault distance location under varying types of faults in both the circuits. The proposed method uses the voltages and currents signals available at only the local end of the line. The model of the example power system is developed using Matlab/Simulink software. Effects of variations in power system parameters, for example, fault inception angle, CT saturation, source strength, its X/R ratios, fault resistance, fault type and distance to fault have been investigated extensively on the performance of the neural network based protection scheme (for all ten faults in both the circuits. Additionally, the effects of network changes: namely, double circuit operation and single circuit operation, have also been considered. Thus, the present work considers the entire range of possible operating conditions, which has not been reported earlier. The comparative results of single and modular neural network indicate that the modular approach gives correct fault location with better accuracy. It is adaptive to variation in power system parameters, network changes and works successfully under a variety of operating conditions.

  9. Bearing Fault Detection Using Artificial Neural Networks and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Samanta B

    2004-01-01

    Full Text Available A study is presented to compare the performance of bearing fault detection using three types of artificial neural networks (ANNs, namely, multilayer perceptron (MLP, radial basis function (RBF network, and probabilistic neural network (PNN. The time domain vibration signals of a rotating machine with normal and defective bearings are processed for feature extraction. The extracted features from original and preprocessed signals are used as inputs to all three ANN classifiers: MLP, RBF, and PNN for two-class (normal or fault recognition. The characteristic parameters like number of nodes in the hidden layer of MLP and the width of RBF, in case of RBF and PNN along with the selection of input features, are optimized using genetic algorithms (GA. For each trial, the ANNs are trained with a subset of the experimental data for known machine conditions. The ANNs are tested using the remaining set of data. The procedure is illustrated using the experimental vibration data of a rotating machine with and without bearing faults. The results show the relative effectiveness of three classifiers in detection of the bearing condition.

  10. Online fault location on AC cables in underground transmission systems using screen currents

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Nanayakkara, O.M.K.K; Rajapakse, Athula

    This paper studies online travelling wave methods for fault location on a crossbonded cable system using screen currents. During the construction of the electrical connection to the 400 MW off shore wind farm Anholt, it was possible to perform measurements on a 38.4 km crossbonded cable system...... coils if the screen currents contain the necessary information for accurate fault location. In this paper, this is examined by analysis of field measurements and through a study of simulations. The wavelet transform and visual inspection methods are used and the accuracy is compared. Field measurements...... and simulations are compared for testing the reliability of using simulations for studying fault location methods....

  11. Application of Fault Location Mode Based on Travelling Waves for Neutral Non-effective Grounding Systems

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Fault location for distribution feeders short circuit especially single-phase grounding fault is an important task in distribution system with non-effectively grounded neutral.Fault location mode for distribution feeders using fault generated current and voltage transient traveling waves was investigated.The characteristics of transient traveling waves resulted from each short circuit fault and their transmission disciplinarian in distribution feeders are analyzed.This paper proposed that double end travelling waves theory which measures arriving time of fault initiated surge at both ends of the monitored line is fit for distribution feeders but single end traveling waves theory not.According to different distribution feeders,on the basis of analyzing original traveling waves reflection rule in line terminal, Current-voltage mode,voltage-voltage mode and current-current mode for fault location based on traveling waves are proposed and aerial mode component of original traveling waves is used to realize fault location.Experimental test verify the feasibility and correctness of the proposed method.

  12. Multi-Level Wavelet Shannon Entropy-Based Method for Single-Sensor Fault Location

    Directory of Open Access Journals (Sweden)

    Qiaoning Yang

    2015-10-01

    Full Text Available In actual application, sensors are prone to failure because of harsh environments, battery drain, and sensor aging. Sensor fault location is an important step for follow-up sensor fault detection. In this paper, two new multi-level wavelet Shannon entropies (multi-level wavelet time Shannon entropy and multi-level wavelet time-energy Shannon entropy are defined. They take full advantage of sensor fault frequency distribution and energy distribution across multi-subband in wavelet domain. Based on the multi-level wavelet Shannon entropy, a method is proposed for single sensor fault location. The method firstly uses a criterion of maximum energy-to-Shannon entropy ratio to select the appropriate wavelet base for signal analysis. Then multi-level wavelet time Shannon entropy and multi-level wavelet time-energy Shannon entropy are used to locate the fault. The method is validated using practical chemical gas concentration data from a gas sensor array. Compared with wavelet time Shannon entropy and wavelet energy Shannon entropy, the experimental results demonstrate that the proposed method can achieve accurate location of a single sensor fault and has good anti-noise ability. The proposed method is feasible and effective for single-sensor fault location.

  13. The Effect of the Harmonics, the Fault Location and the Fault Resistance on the Performance of the Impedance-Type Distance Relay

    Directory of Open Access Journals (Sweden)

    A. S. Khraiwish

    2009-01-01

    Full Text Available One of today's trends is continuously increasing the number and the power ratings of the non-linear loads connected to the electric power systems. These non-linear loads, such as power-electronic converters, are the main source of the harmonics that affect the performance of the impedance-type distance relays. It was found that, in the presence of harmonics, undesired operation of such type of distance protection will occur, as the distance relay can react improperly and sense faults at zones other than the desired ones and the selectivity of the distance relays will be violated as improper relays will react while those concerned will not. It has been also shown that the fault location and the fault resistance were affecting the impedance seen by the distance relay. The data obtained from the analysis of a three-phase-to-ground fault, in a sample four-bus practical system, was used to study the behavior of the distance relay and to estimate the impedance seen by it. An algorithm, that can be used to calculate the system quantities in the presence of a harmonic source, was suggested.

  14. MOBILE GEO-LOCATION ALGORITHM BASED ON LS-SVM

    Institute of Scientific and Technical Information of China (English)

    Sun Guolin; Guo Wei

    2005-01-01

    Support Vector Machine (SVM) is a powerful methodology for solving problems in non-linear classification, function estimation and density estimation, which has also led to many other recent developments in kernel based methods in general. This paper presents a highaccuracy and fault-tolerant SVM for the mobile geo-location problem, which is an important component of pervasive computing. Simulation results show its basic location performance, and illustrate impacts of the number of training samples and training area on test location error.

  15. Scalable Fault-Tolerant Location Management Scheme for Mobile IP

    Directory of Open Access Journals (Sweden)

    JinHo Ahn

    2001-11-01

    Full Text Available As the number of mobile nodes registering with a network rapidly increases in Mobile IP, multiple mobility (home of foreign agents can be allocated to a network in order to improve performance and availability. Previous fault tolerant schemes (denoted by PRT schemes to mask failures of the mobility agents use passive replication techniques. However, they result in high failure-free latency during registration process if the number of mobility agents in the same network increases, and force each mobility agent to manage bindings of all the mobile nodes registering with its network. In this paper, we present a new fault-tolerant scheme (denoted by CML scheme using checkpointing and message logging techniques. The CML scheme achieves low failure-free latency even if the number of mobility agents in a network increases, and improves scalability to a large number of mobile nodes registering with each network compared with the PRT schemes. Additionally, the CML scheme allows each failed mobility agent to recover bindings of the mobile nodes registering with the mobility agent when it is repaired even if all the other mobility agents in the same network concurrently fail.

  16. New algorithm to detect modules in a fault tree for a PSA

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Woo Sik [Sejong University, Seoul (Korea, Republic of)

    2015-05-15

    A module or independent subtree is a part of a fault tree whose child gates or basic events are not repeated in the remaining part of the fault tree. Modules are necessarily employed in order to reduce the computational costs of fault tree quantification. This paper presents a new linear time algorithm to detect modules of large fault trees. The size of cut sets can be substantially reduced by replacing independent subtrees in a fault tree with super-components. Chatterjee and Birnbaum developed properties of modules, and demonstrated their use in the fault tree analysis. Locks expanded the concept of modules to non-coherent fault trees. Independent subtrees were manually identified while coding a fault tree for computer analysis. However, nowadays, the independent subtrees are automatically identified by the fault tree solver. A Dutuit and Rauzy (DR) algorithm to detect modules of a fault tree for coherent or non-coherent fault tree was proposed in 1996. It has been well known that this algorithm quickly detects modules since it is a linear time algorithm. The new algorithm minimizes computational memory and quickly detects modules. Furthermore, it can be easily implemented into industry fault tree solvers that are based on traditional Boolean algebra, binary decision diagrams (BDDs), or Zero-suppressed BDDs. The new algorithm employs only two scalar variables in Eqs. to that are volatile information. After finishing the traversal and module detection of each node, the volatile information is destroyed. Thus, the new algorithm does not employ any other additional computational memory and operations. It is recommended that this method be implemented into fault tree solvers for efficient probabilistic safety assessment (PSA) of nuclear power plants.

  17. Nonexposure Accurate Location K-Anonymity Algorithm in LBS

    Directory of Open Access Journals (Sweden)

    Jinying Jia

    2014-01-01

    Full Text Available This paper tackles location privacy protection in current location-based services (LBS where mobile users have to report their exact location information to an LBS provider in order to obtain their desired services. Location cloaking has been proposed and well studied to protect user privacy. It blurs the user’s accurate coordinate and replaces it with a well-shaped cloaked region. However, to obtain such an anonymous spatial region (ASR, nearly all existent cloaking algorithms require knowing the accurate locations of all users. Therefore, location cloaking without exposing the user’s accurate location to any party is urgently needed. In this paper, we present such two nonexposure accurate location cloaking algorithms. They are designed for K-anonymity, and cloaking is performed based on the identifications (IDs of the grid areas which were reported by all the users, instead of directly on their accurate coordinates. Experimental results show that our algorithms are more secure than the existent cloaking algorithms, need not have all the users reporting their locations all the time, and can generate smaller ASR.

  18. Nonexposure accurate location K-anonymity algorithm in LBS.

    Science.gov (United States)

    Jia, Jinying; Zhang, Fengli

    2014-01-01

    This paper tackles location privacy protection in current location-based services (LBS) where mobile users have to report their exact location information to an LBS provider in order to obtain their desired services. Location cloaking has been proposed and well studied to protect user privacy. It blurs the user's accurate coordinate and replaces it with a well-shaped cloaked region. However, to obtain such an anonymous spatial region (ASR), nearly all existent cloaking algorithms require knowing the accurate locations of all users. Therefore, location cloaking without exposing the user's accurate location to any party is urgently needed. In this paper, we present such two nonexposure accurate location cloaking algorithms. They are designed for K-anonymity, and cloaking is performed based on the identifications (IDs) of the grid areas which were reported by all the users, instead of directly on their accurate coordinates. Experimental results show that our algorithms are more secure than the existent cloaking algorithms, need not have all the users reporting their locations all the time, and can generate smaller ASR.

  19. New fault location system for power transmission lines using composite fiber-optic overhead ground wire (OPGW)

    Energy Technology Data Exchange (ETDEWEB)

    Urasawa, K. (Tokyo Electric Power Co., Inc. (Japan)); Kanemaru, K.; Toyota, S.; Sugiyama, K. (Hitachi Cable, Ltd., Tokyo (Japan))

    1989-10-01

    A new fault location (FL) method using composite fiber-optic overhead ground wires (OPGWs) is developed to find out where electrical faults occur on overhead power transmission lines. This method locates the fault section by detecting the current induced in the ground wire (GW), i.e. OPGW in this system. Since detected fault information is essentially uncertain, the new FL method treats the fault information oas a current distribution pattern throughout the power line, and applies Fuzzy Theory to realize the human-like manner of fault location used by electrical power engineers. It was confirmed by computer simulations that the fault section can be accurately located using this method under various conditions. This FL system has already been applied to several commercial power transmission lines and successfully located the sections where electrical faults occurred on actual power transmission lines.

  20. Logistics distribution centers location problem and algorithm under fuzzy environment

    Science.gov (United States)

    Yang, Lixing; Ji, Xiaoyu; Gao, Ziyou; Li, Keping

    2007-11-01

    Distribution centers location problem is concerned with how to select distribution centers from the potential set so that the total relevant cost is minimized. This paper mainly investigates this problem under fuzzy environment. Consequentially, chance-constrained programming model for the problem is designed and some properties of the model are investigated. Tabu search algorithm, genetic algorithm and fuzzy simulation algorithm are integrated to seek the approximate best solution of the model. A numerical example is also given to show the application of the algorithm.

  1. An Efficient Algorithm for Capacitated Multifacility Location Problems

    Directory of Open Access Journals (Sweden)

    Chansiri Singhtaun

    2007-01-01

    Full Text Available In this paper, a squared-Euclidean distance multifacility location problem with inseparable demands under balanced transportation constraints is analyzed. Using calculus to project the problem onto the space of allocation variables, the problem becomes minimizing concave quadratic integer programming problem. The algorithm based on extreme point ranking method combining with logical techniques is developed. The numerical experiments are randomly generated to test efficiency of the proposed algorithm compared with a linearization algorithm. The results show that the proposed algorithm provides a better solution on average with less processing time for all various sizes of problems.

  2. The superior fault tolerance of artificial neural network training with a fault/noise injection-based genetic algorithm

    Directory of Open Access Journals (Sweden)

    Feng Su

    2016-08-01

    Full Text Available Abstract Artificial neural networks (ANNs are powerful computational tools that are designed to replicate the human brain and adopted to solve a variety of problems in many different fields. Fault tolerance (FT, an important property of ANNs, ensures their reliability when significant portions of a network are lost. In this paper, a fault/noise injection-based (FIB genetic algorithm (GA is proposed to construct fault-tolerant ANNs. The FT performance of an FIB-GA was compared with that of a common genetic algorithm, the back-propagation algorithm, and the modification of weights algorithm. The FIB-GA showed a slower fitting speed when solving the exclusive OR (XOR problem and the overlapping classification problem, but it significantly reduced the errors in cases of single or multiple faults in ANN weights or nodes. Further analysis revealed that the fit weights showed no correlation with the fitting errors in the ANNs constructed with the FIB-GA, suggesting a relatively even distribution of the various fitting parameters. In contrast, the output weights in the training of ANNs implemented with the use the other three algorithms demonstrated a positive correlation with the errors. Our findings therefore indicate that a combination of the fault/noise injection-based method and a GA is capable of introducing FT to ANNs and imply that the distributed ANNs demonstrate superior FT performance.

  3. Neural network fault diagnosis method optimization with rough set and genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    SUN Hong-yan; XIE Zhi-jiang; OUYANG Qi

    2006-01-01

    Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. The neural network nodes of the input layer can be calculated and simplified through rough sets theory; The neural network nodes of the middle layer are designed through genetic algorithms training; the neural network bottom-up weights and bias are obtained finally through the combination of genetic algorithms and BP algorithms. The analysis in this paper illustrates that the optimization method can improve the performance of the neural network fault diagnosis method greatly.

  4. Location and Shallow Structure of the Frijoles Strand of the San Gregorio Fault Zone, Pescadero, California

    Science.gov (United States)

    Fox-Lent, C.; Catchings, R. D.; Rymer, M. J.; Goldman, M. R.; Steedman, C. E.; Prentice, C. S.

    2003-12-01

    The San Gregorio fault is one of the principal faults of the San Andreas fault system in the San Francisco Bay area. Located west of the active trace of the San Andreas fault and near the coast, the San Gregorio fault zone consists of at least two northwest-southeast-trending strands, the Coastways and Frijoles faults. Little is known about the slip history on the San Gregorio, and information for the Frijoles fault is especially scarce, as it lies mostly offshore. To better understand the contribution of the San Gregorio fault zone to slip along the San Andreas fault system, we conducted a high-resolution, seismic imaging investigation of the Frijoles fault to locate near-surface, onshore, branches of the fault that may be suitable for paleoseismic trenching. Our seismic survey consisted of a 590-meter-long, east-west-trending, combined seismic reflection and refraction profile across Butano Creek Valley, in Pescadero, California. The profile included 107 shot points and 120 geophones spaced at 5-m increments. Seismic sources were generated by a Betsy Seisgun in 0.3-m-deep holes. Data were recorded on two Geometrics Strataview RX-60 seismographs at a sampling rate of 0.5 ms. Seismic p-wave velocities, determined by inverting first-arrival refractions using tomographic methods, ranged from 900 m/s in the shallow subsurface to 5000 m/s at 200 m depth, with higher velocities in the western half of the profile. Migrated seismic reflection images show clear, planar layering in the top 100-200 meters on the eastern and western ends of the seismic profile. However, to within the shallow subsurface, a 200-m-long zone near the center of the profile shows disturbed stratigraphic layers with several apparent fault strands approaching within a few meters of the surface. The near-surface locations of the imaged strands suggest that the Frijoles fault has been active in the recent past, although further paleoseismic study is needed to detail the slip history of the San Gregorio

  5. TOA-BASED ROBUST LOCATION ALGORITHMS FOR WIRELESS CELLULAR NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Sun Guolin; Guo Wei

    2005-01-01

    Caused by Non-Line-Of-Sight (NLOS) propagation effect, the non-symmetric contamination of measured Time Of Arrival (TOA) data leads to high inaccuracies of the conventional TOA based mobile location techniques. Robust position estimation method based on bootstrapping M-estimation and Huber estimator are proposed to mitigate the effects of NLOS propagation on the location error. Simulation results show the improvement over traditional Least-Square (LS)algorithm on location accuracy under different channel environments.

  6. A PROBABILISTIC CHARACTERIZATION OF A FAULT-TOLERANT GOSSIPING ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Xiaohu LI; Paul PARKER; Shouhuai XU

    2009-01-01

    Gossiping is a popular technique for probabilistic reliable multicast (or broadcast). However,it is often difficult to understand the behavior of gossiping algorithms in an analytic fashion. Indeed,existing analyses of gossip algorithms are either based on simulation or based on ideas borrowed from epidemic models while inheriting some features that do not seem to be appropriate for the setting of gossiping. On one hand, in epidemic spreading, an infected node typically intends to spread the infection an unbounded number of times (or rounds); whereas in gossiping, an infected node (i.e., a node having received the message in question) may prefer to gossip the message a bounded number of times. On the other hand, the often assumed homogeneity in epidemic spreading models (especially that every node has equal contact to everyone else in the population) has been silently inherited in the gossiping literature, meaning that an expensive membership protocol is often needed for maintaining nodes' views. Motivated by these observations, the authors present a characterization of a popular class of fault-tolerant gossip schemes (known as "push-based gossiping") based on a novel probabilistic model, while taking the afore-mentioned factors into consideration.

  7. Research on intelligent fault diagnosis based on time series analysis algorithm

    Institute of Scientific and Technical Information of China (English)

    CHEN Gang; LIU Yang; ZHOU Wen-an; SONG Jun-de

    2008-01-01

    Aiming to realize fast and accurate fault diagnosisin complex network environment, this article proposes a set ofanomaly detection algorithm and intelligent fault diagnosismodel. Firstly, a novel anomaly detection algorithm based ontime series analysis is put forward to improve the generalizedlikelihood ratio (GLR) test, and thus, detection accuracy isenhanced and the algorithm complexity is reduced. Secondly,the intelligent fault diagnosis model is established byintroducing neural network technology, and thereby, theanomaly information of each node in end-to-end network isintegrated and processed in parallel to intelligently diagnosethe fault cause. Finally, server backup solution in enterpriseinformation network is taken as the simulation scenario. Theresults demonstrate that the proposed method can not onlydetect fault occurrence in time, but can also implement onlinediagnosis for fault cause, and thus, real-time and intelligent faultmanagement process is achieved.

  8. Improved Fault Classification in Series Compensated Transmission Line: Comparative Evaluation of Chebyshev Neural Network Training Algorithms.

    Science.gov (United States)

    Vyas, Bhargav Y; Das, Biswarup; Maheshwari, Rudra Prakash

    2016-08-01

    This paper presents the Chebyshev neural network (ChNN) as an improved artificial intelligence technique for power system protection studies and examines the performances of two ChNN learning algorithms for fault classification of series compensated transmission line. The training algorithms are least-square Levenberg-Marquardt (LSLM) and recursive least-square algorithm with forgetting factor (RLSFF). The performances of these algorithms are assessed based on their generalization capability in relating the fault current parameters with an event of fault in the transmission line. The proposed algorithm is fast in response as it utilizes postfault samples of three phase currents measured at the relaying end corresponding to half-cycle duration only. After being trained with only a small part of the generated fault data, the algorithms have been tested over a large number of fault cases with wide variation of system and fault parameters. Based on the studies carried out in this paper, it has been found that although the RLSFF algorithm is faster for training the ChNN in the fault classification application for series compensated transmission lines, the LSLM algorithm has the best accuracy in testing. The results prove that the proposed ChNN-based method is accurate, fast, easy to design, and immune to the level of compensations. Thus, it is suitable for digital relaying applications.

  9. The New Algorithm for Fast Probabilistic Hypocenter Locations

    Directory of Open Access Journals (Sweden)

    Dębski Wojciech

    2016-12-01

    Full Text Available The spatial location of sources of seismic waves is one of the first tasks when transient waves from natural (uncontrolled sources are analysed in many branches of physics, including seismology, oceanology, to name a few. It is well recognised that there is no single universal location algorithm which performs equally well in all situations. Source activity and its spatial variability in time, the geometry of recording network, the complexity and heterogeneity of wave velocity distribution are all factors influencing the performance of location algorithms. In this paper we propose a new location algorithm which exploits the reciprocity and time-inverse invariance property of the wave equation. Basing on these symmetries and using a modern finite-difference-type eikonal solver, we have developed a new very fast algorithm performing the full probabilistic (Bayesian source location. We illustrate an efficiency of the algorithm performing an advanced error analysis for 1647 seismic events from the Rudna copper mine operating in southwestern Poland.

  10. Steady Fault Characteristic Analysis of a Missile Power System Based on a Differential Evolution Algorithm

    Institute of Scientific and Technical Information of China (English)

    XU Zhi-gao; GUAN Zheng-xi; MA Jing

    2005-01-01

    The differential evolution (DE) algorithm is applied to solving the models' equations of a whole missile power system, and the steady fault characteristics of the whole system are analyzed. The DE algorithm is robust, requires few control variables, is easy to use and lends itself very well to parallel computation. Calculation results indicate that the DE algorithm simulates faults of a missile power system very well.

  11. DISTANCE ESTIMATION TO THE INTERPHASE-FAULT LOCATION IN THE DISTRIBUTIVE AIR-LINE GRIDS BASED ON ANALYSIS OF THE HARMONIC COMPONENT PARAMETERS OF THE OPERATING EMERGENCY CONDITIONS

    Directory of Open Access Journals (Sweden)

    E. V. Kalentionok

    2015-01-01

    Full Text Available Most techniques of the fault location based on the one-side measurement of the emergency mode characteristics use the short-circuit steady-regime parameters in the fundamental mode frequency. This approach compels to seek additional devices for tuning out the loadings of transformer-substations. Besides, it is susceptible to the nonlinearity effect of closed-circuit arc in the fault location which significantly reduces the accuracy of the remote location of the failure.For estimating the distance to the location of interphase failure on the aerial distributive transmission lines the article proposes a new technique employing the harmonic components of the operating emergency parameters. The algorithm of the present method realization includes: taking down oscillograms of the emergency-mode parameter values (e. g. in doublephase failure – the short-circuit current, the linear voltage between the faulty phases with necessary discretization interval; expansion of the operating emergency parameters in a Fourier series (realized with a quick Fourier expansion algorithm; estimating the distance to the fault location by the analytical expression; performing the statistical analysis of a row of distance values and finding the most probable distance to the fault location.For effectiveness investigation of the proposed method of trapping harmonic components the paper considers a 10 kV distributive electrical grid feeding nine transformer substations. The authors performed calculation of normal and emergency modes utilizing computer program MatLab in dynamic simulating environment Simulink. The arc is represented by a block describing the linearized dynamic volt-ampere characteristic of the arc. The built characteristic curves demonstrate dependence of the fault-location distance value from the frequency at which this value is obtained and the number if its reiterations. Based on the calculations, the authors establish that the accuracy of the distance

  12. Free Search Algorithm Based Estimation in WSN Location

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hui; LI Dan-mei; SHAO Shi-huang; XU Chen

    2009-01-01

    This paper proposes a novel intelligent estimation algorithm in Wireless Sensor Network nodes location based on Free Search, which converts parameter estimation to on-line optimization of nonlinear function and estimates the coordinates of senor nodes using the Free Search optimization. Compared to the least-squares estimation algorithms, the localization accuracy has been increased significantly, which has been verified by the simulation results.

  13. Algorithms of optimum location of sensors for solidification parameters estimation

    Directory of Open Access Journals (Sweden)

    J. Mendakiewicz

    2010-10-01

    Full Text Available The algorithms of optimal sensor location for estimation of solidification parameters are discussed. These algorithms base on the Fisher Information Matrix and A-optimality or D-optimality criterion. Numerical examples of planning algorithms are presented and next foroptimal position of sensors the inverse problems connected with the identification of unknown parameters are solved. The examplespresented concern the simultaneous estimation of mould thermophysical parameters (volumetric specific heat and thermal conductivityand also the components of volumetric latent heat of cast iron.

  14. Fault Location Identification for Localized Intermittent Connection Problems on CAN Networks

    Institute of Scientific and Technical Information of China (English)

    LEI Yong; YUAN Yong; SUN Yichao

    2014-01-01

    The intermittent connection(IC) of the field-bus in networked manufacturing systems is a common but hard troubleshooting network problem, which may result in system level failures or safety issues. However, there is no online IC location identification method available to detect and locate the position of the problem. To tackle this problem, a novel model based online fault location identification method for localized IC problem is proposed. First, the error event patterns are identified and classified according to different node sources in each error frame. Then generalized zero inflated Poisson process(GZIP) model for each node is established by using time stamped error event sequence. Finally, the location of the IC fault is determined by testing whether the parameters of the fitted stochastic model is statistically significant or not using the confident intervals of the estimated parameters. To illustrate the proposed method, case studies are conducted on a 3-node controller area network(CAN) test-bed, in which IC induced faults are imposed on a network drop cable using computer controlled on-off switches. The experimental results show the parameters of the GZIP model for the problematic node are statistically significant(larger than 0), and the patterns of the confident intervals of the estimated parameters are directly linked to the problematic node, which agrees with the experimental setup. The proposed online IC location identification method can successfully identify the location of the drop cable on which IC faults occurs on the CAN network.

  15. ChordPlus:a scalable,decentralized object location and routing algorithm

    Institute of Scientific and Technical Information of China (English)

    柏海寰; 蒋俊杰; 汪为农

    2004-01-01

    Object location is a fundamental problem in distributed system such as grid computing and peer-to-peer environment. Chord is one of the typical scalable object location algorithms for peer-to-peer network. The simplicity, provable correctness and provable performance of Chord make it an attractive option for distributed lookup. However its lookup performance is not satisfying. Based on the decentralized object location mathematical model. This paper proposes ChordPlus, an improved Chord algorithm, by enlarging dimension size of space M (M = 2 in Chord) and utilizing data redundancy technology. ChordPlus is a scalable, fault-tolerant, completely decentralized and self-organizing object location and routing algorithm for overlay network. Results from theoretical analysis and simulation experiments show that increasing the dimension size of space or neighborhood set length can enhance the routing performance of ChordPlus. In a simulation network with 5 000 nodes, the average routing path length of ChordPlus is only as many as half that of Chord algorithm.

  16. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Namju Jeon

    2016-12-01

    Full Text Available An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed.

  17. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles.

    Science.gov (United States)

    Jeon, Namju; Lee, Hyeongcheol

    2016-12-12

    An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed.

  18. Transient Fault Locating Method Based on Line Voltage and Zero-mode Current in Non-solidly Earthed Network

    Institute of Scientific and Technical Information of China (English)

    ZHANG Linli; XU Bingyin; XUE Yongduan; GAO Houlei

    2012-01-01

    Non-solidly earthed systems are widely used for middle voltage distribution network at home and abroad. Fault point location especially the single phase-to-earth fault is very difficult because the fault current is very weak and the fault arc is intermittent. Although several methods have been developed, the problem of fault location has not yet been resolved very well. A new fault location method based on transient component of line voltage and 0-mode current is presented in this paper, which can realize fault section location by the feeder automation (FA) system. Line voltage signal can be obtained conveniently without requiring any additional equipment. This method is based on transient information, not affected by arc suppression coil.

  19. Methodology for selection of attributes and operating conditions for SVM-Based fault locator's

    Directory of Open Access Journals (Sweden)

    Debbie Johan Arredondo Arteaga

    2017-01-01

    Full Text Available Context: Energy distribution companies must employ strategies to meet their timely and high quality service, and fault-locating techniques represent and agile alternative for restoring the electric service in the power distribution due to the size of distribution services (generally large and the usual interruptions in the service. However, these techniques are not robust enough and present some limitations in both computational cost and the mathematical description of the models they use. Method: This paper performs an analysis based on a Support Vector Machine for the evaluation of the proper conditions to adjust and validate a fault locator for distribution systems; so that it is possible to determine the minimum number of operating conditions that allow to achieve a good performance with a low computational effort. Results: We tested the proposed methodology in a prototypical distribution circuit, located in a rural area of Colombia. This circuit has a voltage of 34.5 KV and is subdivided in 20 zones. Additionally, the characteristics of the circuit allowed us to obtain a database of 630.000 records of single-phase faults and different operating conditions. As a result, we could determine that the locator showed a performance above 98% with 200 suitable selected operating conditions. Conclusions: It is possible to improve the performance of fault locators based on Support Vector Machine. Specifically, these improvements are achieved by properly selecting optimal operating conditions and attributes, since they directly affect the performance in terms of efficiency and the computational cost.

  20. Locating Very-Low-Frequency Earthquakes in the San Andreas Fault.

    Science.gov (United States)

    Peña-Castro, A. F.; Harrington, R. M.; Cochran, E. S.

    2016-12-01

    The portion of tectonic fault where rheological properties transtition from brittle to ductile hosts a variety of seismic signals suggesting a range of slip velocities. In subduction zones, the two dominantly observed seismic signals include very-low frequency earthquakes ( VLFEs), and low-frequency earthquakes (LFEs) or tectonic tremor. Tremor and LFE are also commonly observed in transform faults, however, VLFEs have been reported dominantly in subduction zone environments. Here we show some of the first known observations of VLFEs occurring on a plate boundary transform fault, the San Andreas Fault (SAF) between the Cholame-Parkfield segment in California. We detect VLFEs using both permanent and temporary stations in 2010-2011 within approximately 70 km of Cholame, California. We search continous waveforms filtered from 0.02-0.05 Hz, and remove time windows containing teleseismic events and local earthquakes, as identified in the global Centroid Moment Tensor (CMT) and the Northern California Seismic Network (NCSN) catalog. We estimate the VLFE locations by converting the signal into envelopes, and cross-correlating them for phase-picking, similar to procedures used for locating tectonic tremor. We first perform epicentral location using a grid search method and estimate a hypocenter location using Hypoinverse and a shear-wave velocity model when the epicenter is located close to the SAF trace. We account for the velocity contrast across the fault using separate 1D velocity models for stations on each side. Estimated hypocentral VLFE depths are similar to tremor catalog depths ( 15-30 km). Only a few VLFEs produced robust hypocentral locations, presumably due to the difficulty in picking accurate phase arrivals with such a low-frequency signal. However, for events for which no location could be obtained, the moveout of phase arrivals across the stations were similar in character, suggesting that other observed VLFEs occurred in close proximity.

  1. Acoustic monitoring of laboratory faults: locating the origin of unstable slip events

    Science.gov (United States)

    Korkolis, Evangelos; Niemeijer, André; Spiers, Christopher

    2015-04-01

    Over the past several decades, much work has been done on studying the frictional properties of fault gouges at earthquake nucleation velocities. In addition, post-experiment microstructural analyses have been performed in an attempt to link microphysical mechanisms to the observed mechanical data. However, all observations are necessarily post-mortem and it is thus difficult to directly link transients to microstructural characteristics. We are developing an acoustic monitoring system to be used in sliding experiments using a ring shear apparatus. The goal is to locate acoustic emission sources in sheared granular assemblages and link them to processes that act on microstructures responsible for the frictional stability of the simulated fault gouge. The results will be used to develop and constrain microphysical models that explain the relation of these processes to empirical friction laws, such as rate- and state-dependent friction. The acoustic monitoring setup is comprised of an array of 16 piezo-electric sensors installed on the top and bottom sides of an annular sample, at 45 degree intervals. Acoustic emissions associated with slip events can be recorded at sampling rates of up to 50 MHz, in triggered mode. Initial experiments on 0.1 to 0.2 mm and 0.4 to 0.5 mm diameter glass beads, at 1 to 5 MPa normal stress and 1 to 30 um/s load point velocity, have been conducted to estimate the sensitivity of the sensor array. Preliminary results reveal that the intensity of the audible signal is not necessarily proportional to the magnitude of the associated stress drop for constant loading conditions, and that acoustic emissions precede slip events by a small amount of time, in the order of a few milliseconds. Currently, our efforts are focused on developing a suitable source location algorithm with the aim to identify differences in the mode of (unstable) sliding for different types of materials. This will help to identify the micromechanical mechanisms operating

  2. Fault Diagnosis of Nonlinear Systems Based on Hybrid PSOSA Optimization Algorithm

    Institute of Scientific and Technical Information of China (English)

    Ling-Lai Li; Dong-Hua Zhou; Ling Wang

    2007-01-01

    Fault diagnosis of nonlinear systems is of great importance in theory and practice, and the parameter estimation method is an effective strategy. Based on the framework of moving horizon estimation, fault parameters are identified by a proposed intelligent optimization algorithm called PSOSA, which could avoid premature convergence of standard particle swarm optimization (PSO) by introducing the probabilistic jumping property of simulated annealing (SA). Simulations on a three-tank system show the effectiveness of this optimization based fault diagnosis strategy.

  3. A Memetic Algorithm for the Capacitated Location-Routing Problem

    Directory of Open Access Journals (Sweden)

    Laila KECHMANE

    2016-06-01

    Full Text Available In this paper, a hybrid genetic algorithm is proposed to solve a Capacitated Location-Routing Problem. The objective is to minimize the total cost of the distribution in a network composed of depots and customers, both depots and vehicles have limited capacities, each depot has a homogenous vehicle fleet and customers’ demands are known and must be satisfied. Solving this problem involves making strategic decisions such as the location of depots, as well as tactical and operational decisions which include assigning customers to the opened depots and organization of the vehicle routing. To evaluate the performance of the proposed algorithm, its results are compared to those obtained by a greedy randomized adaptive search procedure, computational results shows that the algorithm gave good quality solutions.

  4. Automatic reconstruction of fault networks from seismicity catalogs including location uncertainty

    CERN Document Server

    Wang, Yaming; Woessner, Jochen; Sornette, Didier; Husen, Stephan

    2013-01-01

    We introduce the Anisotropic Clustering of Location Uncertainty Distributions (ACLUD) method to reconstruct active fault networks on the basis of both earthquake locations and their estimated individual uncertainties. After a massive search through the large solution space of possible reconstructed fault networks, we apply six different validation procedures in order to select the corresponding best fault network. Two of the validation steps (cross-validation and Bayesian Information Criterion (BIC) process the fit residuals, while the four others look for solutions that provide the best agreement with independently observed focal mechanisms. Tests on synthetic catalogs allow us to qualify the performance of the fitting method and of the various validation procedures. The ACLUD method is able to provide solutions that are close to the expected ones, especially for the BIC and focal mechanismbased techniques. The clustering method complemented by the validation step based on focal mechanisms provides good solu...

  5. 使用两端非同步测量法的特高压串联补偿双回线路故障定位仪%Fault Locator Using Two-end Unsynchronized Measurements for UHV Series Compensated Double-circuit Lines

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An accurate fault location algorithm for double-circuit series compensated lines is presented. Use of two-end unsynchronized measurements of current and voltage signals is considered. The algorithm applies two subroutines, designated for locating faults on particular line sections, and additionally the procedure for selecting the valid subroutine. The subroutines are formulated with use of the generalized fault loop model and the distributed parameter line model is applied. Performed ATP-EMTP based evaluation has shown the validity of the derived fault location algorithm and its high accuracy.

  6. A TDOA location algorithm based on data fusion

    Institute of Scientific and Technical Information of China (English)

    LIU Jun-min; ZHANG Chen; LIU Shi

    2006-01-01

    A new positioning method in mobile networks is presented.Based on the data fusion technology,it processes multi-layer information fusion for the location estimates achieved by the Chan algorithm,which increases mobile positioning accuracy effectively by only using measured difference of arriving (TDOA) signals.The method is simple and practical,especially when the location estimates are corrupted by the non-line-of-sight (NLOS) error.It not only has high positioning accuracy,but also reduces the location failure probability.Results from computer simulation show that the proposed method is effective in various environments.

  7. Online Fault Location on AC Cables in Underground Transmission Systems using Sheath Currents

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Nanayakkarab, Kasun; Rajapakse, Athula

    2014-01-01

    This paper studies online travelling wave methods for fault location on a crossbonded cable system using sheath currents. During the construction of the electrical connection to the 400 MW off shore wind farm Anholt, it was possible to perform measurements on a 38.4 km crossbonded cable system. A...

  8. Online fault location on AC cables in underground transmission systems using screen currents

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Nanayakkara, O.M.K.K; Rajapakse, Athula

    This paper studies online travelling wave methods for fault location on a crossbonded cable system using screen currents. During the construction of the electrical connection to the 400 MW off shore wind farm Anholt, it was possible to perform measurements on a 38.4 km crossbonded cable system. A...

  9. Modern Travelling Wave Based Fault Location Techniques for HVDC Transmission Lines

    Institute of Scientific and Technical Information of China (English)

    CHEN Ping; XU Bingyin; LI Jing; GE Yaozhong

    2008-01-01

    The modern travelling wave based fault location principles for transmission lines are ana-lyzed. In order to apply the travelling wave principles to HVDC transmission lines, the special tech-nical problems are studied. Based on this, a fault locating system for HVDC transmission lines is developed. The system can support modern double ended and single ended travelling wave princi-ples simultaneously, and it is composed of three different parts: travelling wave data acquisition and processing system, communication network and PC based master station. In the system, the fault generated transients are induced from the ground leads of the over-voltage suppression ca-pacitors of an HVDC line through specially developed travelling wave couplers.The system was applied to 500 Kv Gezhouba-Nanqiao(Shanghai)HVDC transmission line in China. Some field op- eration experiences are summarized, showing that the system has very high reliability and accu- racy,and the maximum location error is about 3 km(not more than 0.3% of the total line length). Obviously, the application of the system is successful, and the fault location problem has finally been solved completely since the line operation.

  10. Implementation of a high-impedance fault detection algorithm. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Balser, S.J.; Lawrence, D.J.; Caprino, B.; Delaney, L.

    1985-05-01

    A digital computer based algorithm was developed to detect high impedance faults on distribution systems using statistical methods. The algorithm is written in PL/M 86 and PASCAL and implemented on an INTEL SYS380 microcomputer system, designed to operate in real time and interface with acquisition software. The report contains a description of the calculation procedures comprising the detection algorithm, implementation requirements, and test results for algorithm verification. A discussion of hardware limitations and an estimation of fault detection rate based on historical records is also presented.

  11. Fault Tolerant Message Efficient Coordinator Election Algorithm in High Traffic Bidirectional Ring Network

    Directory of Open Access Journals (Sweden)

    Danial Rahdari

    2012-12-01

    Full Text Available Nowadays use of distributed systems such as internet and cloud computing is growing dramatically. Coordinator existence in these systems is crucial due to processes coordinating and consistency requirement as well. However the growth makes their election algorithm even more complicated. Too many algorithms are proposed in this area but the two most well known one are Bully and Ring. In this paper we propose a fault tolerant coordinator election algorithm in typical bidirectional ring topology which is twice as fast as Ring algorithm although far fewer messages are passing due to election. Fault tolerance technique is applied which leads the waiting time for the election reaching to zero.

  12. Relocation of the 1998 Zhangbei-Shangyi earthquake sequence using the double difference earthquake location algorithm

    Institute of Scientific and Technical Information of China (English)

    杨智娴; 陈运泰

    2004-01-01

    On January 10, 1998, at 11h50min Beijing Time (03h50min UTC), an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake is the most significant event to have occurred in northern China in the recent years. The earthquake-generating structure of this event was not clear due to no active fault capable of generating a moderate earthquake was found in the epicentral area,nor surface ruptures with any predominate orientation were observed, no distinct orientation of its aftershock distribution given by routine earthquake location was shown. To study the seismogenic structure of the ZhangbeiShangyi earthquake, the main shock and its aftershocks with ML≥3.0 of the Zhangbei-Shangyi earthquake sequence were relocated by the authors of this paper in 2002 using the master event relative relocation technique.The relocated epicenter of the main shock was located at 41.145°N, 114.462°E, which was located 4 km to the NE of the macro-epicenter of this event. The relocated focal depth of the main shock was 15 km. Hypocenters of the aftershocks distributed in a nearly vertical plane striking 180°~200° and its vicinity. The relocated results of the Zhangbei-Shangyi earthquake sequence clearly indicated that the seismogenic structure of this event was a NNE-SSW-striking fault with right-lateral and reverse slip. In this paper, a relocation of the Zhangbei-Shangyi earthquake sequence has been done using the double difference earthquake location algorithm (DD algorithm), and consistent results with that obtained by the master event technique were obtained. The relocated hypocenters of the main shock are located at 41.131 °N, 114.456°E, which was located 2.5 km to the NE of the macro-epicenter of the main shock. The relocated focal depth of the main shock was 12.8 km. Hypocenters of the aftershocks also distributed in a nearly vertical N10°E-striking plane and its vicinity. The relocated results

  13. Research on Fault Tolerant Scheduling Algorithms of Web Cluster Based on Probability

    Institute of Scientific and Technical Information of China (English)

    LIU An-feng; CHEN Zhi-gang; LONG Guo-ping

    2005-01-01

    Aiming at the soft real-time fault tolerant demand of critical web applications at present, such as E-commerce, a new fault tolerant scheduling algorithm based on probability is proposed. To achieve fault tolerant scheduling,the primary/slave backup technology is applied on the basis of task's self similar accessing characteristics, when the primary task completed successfully, the resources allocated for the slave task are reclaimed, thus advancing system's efficiency.Experimental results demonstrate on the premise of satisfying system's certain fault tolerant probability, task's schedulabilistic probability is improved, especially, the higher task's self similar degree is, the more obviously the utilization of system resources is enhanced.

  14. Analytical Model and Algorithm of Fuzzy Fault Tree

    Institute of Scientific and Technical Information of China (English)

    杨艺; 何学秋; 王恩元; 刘贞堂

    2002-01-01

    In the past, the probabilities of basic events were described as triangular or trapezoidal fuzzy number that cannot characterize the common distribution of the primary events in engineering, and the fault tree analyzed by fuzzy set theory did not include repeated basic events. This paper presents a new method to a nalyze the fault tree by using normal fuzzy number to describe the fuzzy probability of each basic event which is more suitably used to analyze the reliability in safety systems, and then the formulae of computing the fuzzy probability of the top event of the fault tree which includes repeated events are derived. Finally, an example is given.

  15. Decision making algorithms for hydro-power plant location

    CERN Document Server

    Majumder, Mrinmoy

    2013-01-01

    The present study has attempted to apply the advantage of neuro-genetic algorithms for optimal decision making in maximum utilization of natural resources. Hydro-power is one of the inexpensive, but a reliable source of alternative energy which is foreseen as the possible answer to the present crisis in the energy sector. However, the major problem related to hydro-energy is its dependency on location. An ideal location can produce maximum energy with minimum loss. Besides, such power-plant also requires substantial amount of land which is a precious resource nowadays due to the rapid and unco

  16. The 2009MW 6.1 L'Aquila fault system imaged by 64k earthquake locations

    Science.gov (United States)

    Valoroso, Luisa

    2016-03-01

    On April 6 2009, a MW 6.1 normal-faulting earthquake struck the axial area of the Abruzzo region in central Italy. We investigate the complex architecture and mechanics of the activated fault system by using 64k high-resolution foreshock and aftershock locations. The fault system is composed by two major SW dipping segments forming an en-echelon NW trending system about 50km long: the high-angle L'Aquila fault and the listric Campotosto fault, located in the first 10km depth. From the beginning of 2009, foreshocks activated the deepest portion of the mainshock fault. A week before the MW 6.1 event, the largest (MW 4.0) foreshock triggered seismicity migration along a minor off-fault segment. Seismicity jumped back to the main plane a few hours before the mainshock. High-precision locations allowed us to peer into the fault zone showing complex geological structures from the metre to the kilometre scale, analogous to those observed by field studies and seismic profiles. Also, we were able to investigate important aspects of earthquakes nucleation and propagation through the upper crust in carbonate-bearing rocks such as: the role of fluids in normal-faulting earthquakes; how crustal faults terminate at depths; the key role of fault zone structure in the earthquake rupture evolution processes.

  17. Robust Fault-Tolerant Control for Satellite Attitude Stabilization Based on Active Disturbance Rejection Approach with Artificial Bee Colony Algorithm

    OpenAIRE

    Fei Song; Shiyin Qin

    2014-01-01

    This paper proposed a robust fault-tolerant control algorithm for satellite stabilization based on active disturbance rejection approach with artificial bee colony algorithm. The actuating mechanism of attitude control system consists of three working reaction flywheels and one spare reaction flywheel. The speed measurement of reaction flywheel is adopted for fault detection. If any reaction flywheel fault is detected, the corresponding fault flywheel is isolated and the spare reaction flywhe...

  18. A Location-Based Business Information Recommendation Algorithm

    Directory of Open Access Journals (Sweden)

    Shudong Liu

    2015-01-01

    Full Text Available Recently, many researches on information (e.g., POI, ADs recommendation based on location have been done in both research and industry. In this paper, we firstly construct a region-based location graph (RLG, in which region node respectively connects with user node and business information node, and then we propose a location-based recommendation algorithm based on RLG, which can combine with user short-ranged mobility formed by daily activity and long-distance mobility formed by social network ties and sequentially can recommend local business information and long-distance business information to users. Moreover, it can combine user-based collaborative filtering with item-based collaborative filtering, and it can alleviate cold start problem which traditional recommender systems often suffer from. Empirical studies from large-scale real-world data from Yelp demonstrate that our method outperforms other methods on the aspect of recommendation accuracy.

  19. Investigation of candidate data structures and search algorithms to support a knowledge based fault diagnosis system

    Science.gov (United States)

    Bosworth, Edward L., Jr.

    1987-01-01

    The focus of this research is the investigation of data structures and associated search algorithms for automated fault diagnosis of complex systems such as the Hubble Space Telescope. Such data structures and algorithms will form the basis of a more sophisticated Knowledge Based Fault Diagnosis System. As a part of the research, several prototypes were written in VAXLISP and implemented on one of the VAX-11/780's at the Marshall Space Flight Center. This report describes and gives the rationale for both the data structures and algorithms selected. A brief discussion of a user interface is also included.

  20. A Novel Dual Separate Paths (DSP) Algorithm Providing Fault-Tolerant Communication for Wireless Sensor Networks.

    Science.gov (United States)

    Tien, Nguyen Xuan; Kim, Semog; Rhee, Jong Myung; Park, Sang Yoon

    2017-07-25

    Fault tolerance has long been a major concern for sensor communications in fault-tolerant cyber physical systems (CPSs). Network failure problems often occur in wireless sensor networks (WSNs) due to various factors such as the insufficient power of sensor nodes, the dislocation of sensor nodes, the unstable state of wireless links, and unpredictable environmental interference. Fault tolerance is thus one of the key requirements for data communications in WSN applications. This paper proposes a novel path redundancy-based algorithm, called dual separate paths (DSP), that provides fault-tolerant communication with the improvement of the network traffic performance for WSN applications, such as fault-tolerant CPSs. The proposed DSP algorithm establishes two separate paths between a source and a destination in a network based on the network topology information. These paths are node-disjoint paths and have optimal path distances. Unicast frames are delivered from the source to the destination in the network through the dual paths, providing fault-tolerant communication and reducing redundant unicast traffic for the network. The DSP algorithm can be applied to wired and wireless networks, such as WSNs, to provide seamless fault-tolerant communication for mission-critical and life-critical applications such as fault-tolerant CPSs. The analyzed and simulated results show that the DSP-based approach not only provides fault-tolerant communication, but also improves network traffic performance. For the case study in this paper, when the DSP algorithm was applied to high-availability seamless redundancy (HSR) networks, the proposed DSP-based approach reduced the network traffic by 80% to 88% compared with the standard HSR protocol, thus improving network traffic performance.

  1. Online Location of Faults on AC Cables in Underground Transmission Systems

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær

    parts; The preliminaries, a part which deals with the use of impedance-based fault location methods on crossbonded cables, a part which deals with travelling wave-based fault location, a part listing the conclusions and contributions of the thesis and an appendix. A state-of-the-art analysis......A transmission grid is normally laid out as an almost pure overhead line (OHL) network. The introduction of transmission voltage level XLPE cables and the increasing interest in the environmental impact of OHL has resulted in an increasing interest in the use of underground cables on transmission...... level. In Denmark for instance, the entire 150 kV, 132 kV and 220 kV and parts of the 400 kV transmission network will be placed underground before 2030. To reduce the operating losses of a cable-based transmission system, crossbonding schemes are normally used. The use of crossbonding introduces new...

  2. Locating hardware faults in a data communications network of a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-01-12

    Hardware faults location in a data communications network of a parallel computer. Such a parallel computer includes a plurality of compute nodes and a data communications network that couples the compute nodes for data communications and organizes the compute node as a tree. Locating hardware faults includes identifying a next compute node as a parent node and a root of a parent test tree, identifying for each child compute node of the parent node a child test tree having the child compute node as root, running a same test suite on the parent test tree and each child test tree, and identifying the parent compute node as having a defective link connected from the parent compute node to a child compute node if the test suite fails on the parent test tree and succeeds on all the child test trees.

  3. An improved CS-LSSVM algorithm-based fault pattern recognition of ship power equipments

    Science.gov (United States)

    Yang, Yifei; Tan, Minjia; Dai, Yuewei

    2017-01-01

    A ship power equipments’ fault monitoring signal usually provides few samples and the data’s feature is non-linear in practical situation. This paper adopts the method of the least squares support vector machine (LSSVM) to deal with the problem of fault pattern identification in the case of small sample data. Meanwhile, in order to avoid involving a local extremum and poor convergence precision which are induced by optimizing the kernel function parameter and penalty factor of LSSVM, an improved Cuckoo Search (CS) algorithm is proposed for the purpose of parameter optimization. Based on the dynamic adaptive strategy, the newly proposed algorithm improves the recognition probability and the searching step length, which can effectively solve the problems of slow searching speed and low calculation accuracy of the CS algorithm. A benchmark example demonstrates that the CS-LSSVM algorithm can accurately and effectively identify the fault pattern types of ship power equipments. PMID:28182678

  4. Improved CICA algorithm used for single channel compound fault diagnosis of rolling bearings

    Science.gov (United States)

    Chen, Guohua; Qie, Longfei; Zhang, Aijun; Han, Jin

    2016-01-01

    A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to realize single channel compound fault diagnosis of bearings and improve the diagnosis accuracy, an improved CICA algorithm named constrained independent component analysis based on the energy method (E-CICA) is proposed. With the approach, the single channel vibration signal is firstly decomposed into several wavelet coefficients by discrete wavelet transform(DWT) method for the purpose of obtaining multichannel signals. Then the envelope signals of the reconstructed wavelet coefficients are selected as the input of E-CICA algorithm, which fulfills the requirements that the number of sensors is greater than or equal to that of the source signals and makes it more suitable to be processed by CICA strategy. The frequency energy ratio(ER) of each wavelet reconstructed signal to the total energy of the given synchronous signal is calculated, and then the synchronous signal with maximum ER value is set as the reference signal accordingly. By this way, the reference signal contains a priori knowledge of fault source signal and the influence on fault signal extraction accuracy which is caused by the initial phase angle and the duty ratio of the reference signal in the traditional CICA algorithm is avoided. Experimental results show that E-CICA algorithm can effectively separate out the outer-race defect and the rollers defect from the single channel compound fault and fulfill the needs of compound fault diagnosis of rolling bearings, and the running time is 0.12% of that of the traditional CICA algorithm and the extraction accuracy is 1.4 times of that of CICA as well. The proposed research provides a new method to separate single channel compound fault signals.

  5. A fault location method using Lamb waves and discrete wavelet transform

    OpenAIRE

    Souza, Pablo Rodrigo de; Nobrega, Eurípedes Guilherme de Oliveira

    2012-01-01

    Non-destructive evaluation methods and signal process techniques are important steps in structural health monitoring systems to assess the structure integrity. This paper presents a method for fault location in aluminum beams based on time of flight of Lamb waves. The dynamic response signal captured from the structure was processed using the discrete wavelet transform. The information accuracy obtained from the processed signal depends on the correct choice of the mother wavelet. The best mo...

  6. Repetitive transients extraction algorithm for detecting bearing faults

    Science.gov (United States)

    He, Wangpeng; Ding, Yin; Zi, Yanyang; Selesnick, Ivan W.

    2017-02-01

    Rolling-element bearing vibrations are random cyclostationary. This paper addresses the problem of noise reduction with simultaneous components extraction in vibration signals for faults diagnosis of bearing. The observed vibration signal is modeled as a summation of two components contaminated by noise, and each component composes of repetitive transients. To extract the two components simultaneously, an approach by solving an optimization problem is proposed in this paper. The problem adopts convex sparsity-based regularization scheme for decomposition, and non-convex regularization is used to further promote the sparsity but preserving the global convexity. A synthetic example is presented to illustrate the performance of the proposed approach for repetitive feature extraction. The performance and effectiveness of the proposed method are further demonstrated by applying to compound faults and single fault diagnosis of a locomotive bearing. The results show the proposed approach can effectively extract the features of outer and inner race defects.

  7. Improved taylor-series location algorithm for cooperation networks

    Institute of Scientific and Technical Information of China (English)

    LIU Jun; GUI Qi-mei; TAG Xiao-feng

    2007-01-01

    This article presents an iterative algorithm for estimating the location of the destination mobile station (DS) when some extra mobile stations around the DS are involved in and assist the base stations to complete the localization process. The proposed method is based on the taylor-series (TS) method and jointly estimates both the DS and the extra mobile stations, named reference mobile station (RS) hi this article, positions simultaneously. Moreover, the time-differential-of-arrival (TDOA) measurements between DS and pairs of RSs are obtained by ultra-wide-band (UWB) signal, which is adept in accurate ranging application. According to the theoretic analysis, the Cramer-Rao lower bound (CRLB) of the modified TS algorithm reduces significantly. The actual performance, under a given simulation scenario, is enhanced by 25% at best.

  8. Tabu Search Algorithm to Solve the Intermodal Terminal Location Problem

    Directory of Open Access Journals (Sweden)

    E. Karimi∗

    2015-03-01

    Full Text Available Establishment of appropriate terminals is effective as the main gate entrance to international, national and local transportation network for economic performance, traffic safety and reduction of environmental pollution. This paper focuses on intermodal terminal location problem. The main objective of this problem is to determine which of the terminals of a set of candidate terminals should be opened such that the total cost be minimized. In this problem, demands of customers will ship directly (without the use of terminals between the origin and destination of customers, or intermodaly (by using two terminals or even by combination of both methods. Since this problem is NP-hard, metaheuristics algorithms such as tabu search (TS is used to solve it. The algorithm is compared with greedy randomized adaptive search procedure (GRASP on instance of this problem. Results show the efficiency of TS in comparision with GRASP.

  9. Reconciling fault-tolerant distributed algorithms and real-time computing.

    Science.gov (United States)

    Moser, Heinrich; Schmid, Ulrich

    We present generic transformations, which allow to translate classic fault-tolerant distributed algorithms and their correctness proofs into a real-time distributed computing model (and vice versa). Owing to the non-zero-time, non-preemptible state transitions employed in our real-time model, scheduling and queuing effects (which are inherently abstracted away in classic zero step-time models, sometimes leading to overly optimistic time complexity results) can be accurately modeled. Our results thus make fault-tolerant distributed algorithms amenable to a sound real-time analysis, without sacrificing the wealth of algorithms and correctness proofs established in classic distributed computing research. By means of an example, we demonstrate that real-time algorithms generated by transforming classic algorithms can be competitive even w.r.t. optimal real-time algorithms, despite their comparatively simple real-time analysis.

  10. Radar Determination of Fault Slip and Location in Partially Decorrelated Images

    Science.gov (United States)

    Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Stough, Timothy; Pierce, Marlon; Wang, Jun

    2016-09-01

    Faced with the challenge of thousands of frames of radar interferometric images, automated feature extraction promises to spur data understanding and highlight geophysically active land regions for further study. We have developed techniques for automatically determining surface fault slip and location using deformation images from the NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), which is similar to satellite-based SAR but has more mission flexibility and higher resolution (pixels are approximately 7 m). This radar interferometry provides a highly sensitive method, clearly indicating faults slipping at levels of 10 mm or less. But interferometric images are subject to decorrelation between revisit times, creating spots of bad data in the image. Our method begins with freely available data products from the UAVSAR mission, chiefly unwrapped interferograms, coherence images, and flight metadata. The computer vision techniques we use assume no data gaps or holes; so a preliminary step detects and removes spots of bad data and fills these holes by interpolation and blurring. Detected and partially validated surface fractures from earthquake main shocks, aftershocks, and aseismic-induced slip are shown for faults in California, including El Mayor-Cucapah (M7.2, 2010), the Ocotillo aftershock (M5.7, 2010), and South Napa (M6.0, 2014). Aseismic slip is detected on the San Andreas Fault from the El Mayor-Cucapah earthquake, in regions of highly patterned partial decorrelation. Validation is performed by comparing slip estimates from two interferograms with published ground truth measurements.

  11. Radar Determination of Fault Slip and Location in Partially Decorrelated Images

    Science.gov (United States)

    Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Stough, Timothy; Pierce, Marlon; Wang, Jun

    2017-06-01

    Faced with the challenge of thousands of frames of radar interferometric images, automated feature extraction promises to spur data understanding and highlight geophysically active land regions for further study. We have developed techniques for automatically determining surface fault slip and location using deformation images from the NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), which is similar to satellite-based SAR but has more mission flexibility and higher resolution (pixels are approximately 7 m). This radar interferometry provides a highly sensitive method, clearly indicating faults slipping at levels of 10 mm or less. But interferometric images are subject to decorrelation between revisit times, creating spots of bad data in the image. Our method begins with freely available data products from the UAVSAR mission, chiefly unwrapped interferograms, coherence images, and flight metadata. The computer vision techniques we use assume no data gaps or holes; so a preliminary step detects and removes spots of bad data and fills these holes by interpolation and blurring. Detected and partially validated surface fractures from earthquake main shocks, aftershocks, and aseismic-induced slip are shown for faults in California, including El Mayor-Cucapah (M7.2, 2010), the Ocotillo aftershock (M5.7, 2010), and South Napa (M6.0, 2014). Aseismic slip is detected on the San Andreas Fault from the El Mayor-Cucapah earthquake, in regions of highly patterned partial decorrelation. Validation is performed by comparing slip estimates from two interferograms with published ground truth measurements.

  12. Study of Fault Diagnosis Method for Wind Turbine with Decision Classification Algorithms and Expert System

    Directory of Open Access Journals (Sweden)

    Feng Yongxin

    2012-09-01

    Full Text Available Study on the fault diagnosis method through the combination of decision classification algorithms and expert system. The method of extracting diagnosis rules with the CTree software was given, and a fault diagnosis system based on CLIPS was developed. In order to verify the feasibility of the method, at first the sample data was got through the simulations under fault of direct-drive wind turbine and gearbox, then the diagnosis rules was extracted with the CTree software, at last the fault diagnosis system proposed and the rules was used to extracted to diagnose the fault simulated. Test results showed that the misdiagnosis rate both within 5%, thus the feasibility of the method was verified.

  13. Fault diagnosis for wind turbine planetary ring gear via a meshing resonance based filtering algorithm.

    Science.gov (United States)

    Wang, Tianyang; Chu, Fulei; Han, Qinkai

    2017-03-01

    Identifying the differences between the spectra or envelope spectra of a faulty signal and a healthy baseline signal is an efficient planetary gearbox local fault detection strategy. However, causes other than local faults can also generate the characteristic frequency of a ring gear fault; this may further affect the detection of a local fault. To address this issue, a new filtering algorithm based on the meshing resonance phenomenon is proposed. In detail, the raw signal is first decomposed into different frequency bands and levels. Then, a new meshing index and an MRgram are constructed to determine which bands belong to the meshing resonance frequency band. Furthermore, an optimal filter band is selected from this MRgram. Finally, the ring gear fault can be detected according to the envelope spectrum of the band-pass filtering result.

  14. A hybrid nested partitions algorithm for banking facility location problems

    KAUST Repository

    Xia, Li

    2010-07-01

    The facility location problem has been studied in many industries including banking network, chain stores, and wireless network. Maximal covering location problem (MCLP) is a general model for this type of problems. Motivated by a real-world banking facility optimization project, we propose an enhanced MCLP model which captures the important features of this practical problem, namely, varied costs and revenues, multitype facilities, and flexible coverage functions. To solve this practical problem, we apply an existing hybrid nested partitions algorithm to the large-scale situation. We further use heuristic-based extensions to generate feasible solutions more efficiently. In addition, the upper bound of this problem is introduced to study the quality of solutions. Numerical results demonstrate the effectiveness and efficiency of our approach. © 2010 IEEE.

  15. 配网自动化故障定位技术研究%Study on Fault Location in Distribution Network Automation

    Institute of Scientific and Technical Information of China (English)

    杨刘一; 苏海滨; 张庆辉; 杨振赢

    2014-01-01

    In response to the existent problems of Distribution Automation (DA) fault location algorithm, with inaccurate positioning and low fault tolerance, This paper offer a calculating method of FTU fault judgment based on Genetic Algorithm (GA) ,and analyze the encoding method as well as fitness function.It also combines with the example of double power supply line to make calculations and verify the method by simulation. And results indicate that the proposed algorithm performs better in improving the accuracy and fault tolerance.%针对现有配电自动化故障定位算法存在的定位不准、容错性不强的问题,提出了基于遗传算法的FTU故障判定计算方法,对编码方法和适应度函数进行了分析和研究,并结合双电源供电馈电线路的算例进行了计算和仿真验证,结果表明所提出的算法在准确性及容错性方面均有所提升。

  16. A scalable, locality aware, fault-tolerant, and decentralized location scheme for distributed networks

    Institute of Scientific and Technical Information of China (English)

    BAI Hai-huan; JIANG Jun-jie; ZOU Fu-tai; WANG Wei-nong

    2005-01-01

    This paper presents Isotope, an efficient, locality aware, fault-tolerant, and decentralized scheme for data location in distributed networks. This scheme is designed based on the mathematical model of decentralized location services and thus has provable correctness and performance. In Isotope, each node needs to only maintain linkage information with about O( log n) other nodes and any node can be reached within O( log n) routing hops. Compared with other related schemes, Isotope' s average locating path length is only half that of Chord,and its locating performance and locality-awareness are sinilar to that of Pastry and Tapestry. In addition, Isotope is more suitable for constantly changing networks because it needs to exchange only O(log n) O(log n)messages to update the routing information for nodes arrival, departure and failure.

  17. Engine gearbox fault diagnosis using empirical mode decomposition method and Naıve Bayes algorithm

    Indian Academy of Sciences (India)

    KIRAN VERNEKAR; HEMANTHA KUMAR; K V GANGADHARAN

    2017-07-01

    This paper presents engine gearbox fault diagnosis based on empirical mode decomposition (EMD) and Naı¨ve Bayes algorithm. In this study, vibration signals from a gear box are acquired with healthy and different simulated faulty conditions of gear and bearing. The vibration signals are decomposed into a finite number of intrinsic mode functions using the EMD method. Decision tree technique (J48 algorithm) is used for important feature selection out of extracted features. Naı¨ve Bayes algorithm is applied as a fault classifier to know the status of an engine. The experimental result (classification accuracy 98.88%) demonstrates that the proposed approach is an effective method for engine fault diagnosis.

  18. Evaluation of the location and recency of faulting near prospective surface facilities in Midway Valley, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

    2002-01-17

    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern

  19. Evaluation of the Location and Recency of Faulting Near Prospective Surface Facilities in Midway Valley, Nye County, Nevada

    Science.gov (United States)

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

    2001-01-01

    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern

  20. Single Phase-to-Ground Fault Line Identification and Section Location Method for Non-Effectively Grounded Distribution Systems Based on Signal Injection

    Institute of Scientific and Technical Information of China (English)

    PAN Zhencun; WANG Chengshan; CONG Wei; ZHANG Fan

    2008-01-01

    A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in thisi oaper. A special diagnostic signal current is injected into the fault distribution system, and then it is de- tected at the outlet terminals to identify the fault line and at the sectionalizing or branching point along the fault line to locate the fault section. The method has been put into application in actual distribution network and field experience shows that it can identify the fault line and locate the fault section correctly and effectively.

  1. Study on the Fault Location Method for Power Cables using the Time-frequency Analysis

    Science.gov (United States)

    Kobayashi, Shin'ichi; Morimoto, Nozomi; Miyajima, Kazuhisa; Hozumi, Naohiro

    The pulse radar method is one of fault location methods for power cables. It locates the breakdown point by measuring the delay time of the echo or the discharge signal coming from the breakdown point. The equipment for the pulse radar method is more compact compared with the Murray loop bridge, and its operation is more simple because sensitive adjustments of proportion are not needed. However the signal propagating through the cable is distorted depending on the distance and frequency, leading to a poor accuracy for the location. In this report, signal processing in the time-frequency domain is proposed to solve this problem. The pulse waveforms received at two different terminals of the cable were extracted by a window function, and subsequently Fourier transformed in order to calculate the phase difference at an appropriate frequency. A special care was taken for un-wrapping the folded phase spectrum. The phase difference was interpreted as the time lag at an identical frequency. The technique was applied to the fault location for a full size XLPE cable line.

  2. Broadcast Using Certified Propagation Algorithm in Presence of Byzantine Faults

    Science.gov (United States)

    2014-11-23

    PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Illinois at Urbana-Champaign ,Coordinated Science Laboratory,1308 West Main Street...necessarily reflect the views of the funding agencies or the U.S. government. Preprint submitted to Computer Science November 23, 2014 Report...correctness of CPA. Keywords: Distributed computing , Byzantine broadcast, CPA, Tight condition 1. Introduction In this work, we explore fault-tolerant

  3. An Online Monitoring and Fault Location Methodology for Underground Power Cables

    Science.gov (United States)

    Govindarajan, Sudarshan

    With the growing importance of underground power systems and the need for greater reliability of the power supply, cable monitoring and accurate fault location detection has become an increasingly important issue. The presence of inherent random fluctuations in power system signals can be used to extract valuable information about the condition of system equipment. One such component is the power cable, which is the primary focus of this research. This thesis investigates a unique methodology that allows online monitoring of an underground power cable. The methodology analyzes conventional power signals in the frequency domain to monitor the condition of a power cable. First, the proposed approach is analyzed theoretically with the help of mathematical computations. Frequency domain analysis techniques are then used to compute the power spectral density (PSD) of the system signals. The importance of inherent noise in the system, a key requirement of this methodology, is also explained. The behavior of resonant frequencies, which are unique to every system, are then analyzed under different system conditions with the help of mathematical expressions. Another important aspect of this methodology is its ability to accurately estimate cable fault location. The process is online and hence does not require the system to be disconnected from the grid. A single line to ground fault case is considered and the trend followed by the resonant frequencies for different fault positions is observed. The approach is initially explained using theoretical calculations followed by simulations in MATLAB/Simulink. The validity of this technique is proved by comparing the results obtained from theory and simulation to actual measurement data.

  4. The structured total least squares algorithm research for passive location based on angle information

    Institute of Scientific and Technical Information of China (English)

    WANG Ding; ZHANG Li; WU Ying

    2009-01-01

    Based on the constrained total least squares (CTLS) passive location algorithm with bearing-only measurements, in this paper, the same passive location problem is transformed into the structured total least squares (STLS) problem. The solution of the STLS problem for passive location can be obtained using the inverse iteration method. It also expatiates that both the STLS algorithm and the CTLS algorithm have the same location mean squares error under certain condition. Finally, the article presents a kind of location and tracking algorithm for moving target by combining STLS location algorithm with Kalman filter (KF). The efficiency and superiority of the proposed algorithms can be confirmed by computer simulation results.

  5. Forward and backward models for fault diagnosis based on parallel genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    Yi LIU; Ying LI; Yi-jia CAO; Chuang-xin GUO

    2008-01-01

    In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of fault sections is developed in the forward model and the message passing interface (MPI) approach is chosen to parallel the genetic algorithms by global sin-gle-population master-slave method (GPGAs). The proposed approach is applied to a sample system consisting of 28 sections, 84 protective relays and 40 circuit breakers. Simulation results show that the new model based on GPGAs can achieve very fast computation in online applications of large-scale power systems.

  6. Application of Improved Genetic Algorithm in Network Fault Diagnosis Expert System

    Institute of Scientific and Technical Information of China (English)

    苏利敏; 侯朝桢; 戴忠健; 张雅静

    2003-01-01

    Knowledge acquisition is the "bottleneck" of building an expert system. Based on the optimization model, an improved genetic algorithm applied to knowledge acquisition of a network fault diagnostic expert system is proposed. The algorithm applies operators such as selection, crossover and mutation to evolve an initial population of diagnostic rules. Especially, a self-adaptive method is put forward to regulate the crossover rate and mutation rate. In the end, a knowledge acquisition problem of a simple network fault diagnostic system is simulated, the results of simulation show that the improved approach can solve the problem of convergence better.

  7. A NOVEL TECHNIQUE FOR MULTIPLE FAULTS AND THEIR LOCATIONS DETECTION AND START ELECTRODE SELECTION IN MICROFLUIDIC DIGITAL BIOCHIP

    Directory of Open Access Journals (Sweden)

    MUKTA MAJUMDER

    2013-10-01

    Full Text Available A device, that is used for biomedical operation or safety-critical applications like point-of-care health assessment, massive parallel DNA analysis, automated drug discovery, air-quality monitoring and food-safety testing, must have the attributes like reliability, dependability and correctness. As the biochips are used for these purposes; therefore, these devices must be fault free all the time. Naturally before using these chips, they must be well tested. We are proposing a novel technique that can detect multiple faults, locate the fault positions within the biochip, as well as calculate the traversal time if the biochip is fault free. The proposed technique also highlights a new idea how to select the appropriate base node or pseudo source (start electrode. The main idea of the proposed technique is to form multiple loops with the neighboring electrode arrays and then test each loop by traversing test droplet to check whether there is any fault. If a fault is detected then the proposed technique also locates it by backtracking the test droplet. In case, no fault is detected, the biochip is fault free then the proposed technique also calculates the time to traverse the chip. The result suggests that the proposed technique is efficient and shows significant improvement to calculate fault-free biochip traversal time over existing method.

  8. Faults

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  9. Induced Voltages Ratio-Based Algorithm for Fault Detection, and Faulted Phase and Winding Identification of a Three-Winding Power Transformer

    Directory of Open Access Journals (Sweden)

    Byung Eun Lee

    2014-09-01

    Full Text Available This paper proposes an algorithm for fault detection, faulted phase and winding identification of a three-winding power transformer based on the induced voltages in the electrical power system. The ratio of the induced voltages of the primary-secondary, primary-tertiary and secondary-tertiary windings is the same as the corresponding turns ratio during normal operating conditions, magnetic inrush, and over-excitation. It differs from the turns ratio during an internal fault. For a single phase and a three-phase power transformer with wye-connected windings, the induced voltages of each pair of windings are estimated. For a three-phase power transformer with delta-connected windings, the induced voltage differences are estimated to use the line currents, because the delta winding currents are practically unavailable. Six detectors are suggested for fault detection. An additional three detectors and a rule for faulted phase and winding identification are presented as well. The proposed algorithm can not only detect an internal fault, but also identify the faulted phase and winding of a three-winding power transformer. The various test results with Electromagnetic Transients Program (EMTP-generated data show that the proposed algorithm successfully discriminates internal faults from normal operating conditions including magnetic inrush and over-excitation. This paper concludes by implementing the algorithm into a prototype relay based on a digital signal processor.

  10. A real-time fault-tolerant scheduling algorithm with low dependability cost in on-board computer system

    Institute of Scientific and Technical Information of China (English)

    WANG Pei-dong; WEI Zhen-hua

    2008-01-01

    To make the on-board computer system more dependable and real-time in a satellite, an algorithm of the fault-tolerant scheduling in the on-board computer system with high priority recovery is proposed in this paper. This algorithm can schedule the on-board fault-tolerant tasks in real time. Due to the use of dependability cost, the overhead of scheduling the fault-tolerant tasks can be reduced. The mechanism of the high priority recovery will improve the response to recovery tasks. The fault-tolerant scheduling model is presented simulation results validate the correctness and feasibility of the proposed algorithm.

  11. Research on GPS Receiver Autonomous Integrity Monitoring Algorithm In the Occurrence of Two-satellite Faults

    Directory of Open Access Journals (Sweden)

    Wang Er Shen

    2016-01-01

    Full Text Available Reliability is an essential factor for GPS navigation system. Therefore, an integrity monitoring is considered as one of the most important parts for a navigation system. GPS receiver autonomous integrity monitoring (RAIM technique can detect and isolate fault satellite. Based on particle filter, a novel RAIM method was proposed to detect two-satellite faults of the GPS signal by using hierarchical particle filter. It can deal with any system nonlinear and any noise distributions. Because GNSS measurement noise does not follow the Gaussian distribution perfectly, the particle filter can estimate the posterior distribution more accurately. In order to detect fault, the consistency test statistics is established through cumulative log-likelihood ratio (LLR between the main and auxiliary particle filters (PFs.Specifically, an approach combining PF with the hierarchical filter is used in the process of two-satellite faults. Through GPS real measurement, the performance of the proposed GPS two-satellite faults detection algorithm was illustrated. Some simulation results are given to evaluate integrity monitoring performance of the algorithm. Validated by the real measurement data, the results show that the proposed algorithm can successfully detect and isolate the faulty satellite in the case of non-Gaussian measurement noise.

  12. Transformer fault diagnosis based on chemical reaction optimization algorithm and relevance vector machine

    Directory of Open Access Journals (Sweden)

    Luo Wei

    2017-01-01

    Full Text Available Power transformer is one of the most important equipment in power system. In order to predict the potential fault of power transformer and identify the fault types correctly, we proposed a transformer fault intelligent diagnosis model based on chemical reaction optimization (CRO algorithm and relevance vector machine(RVM. RVM is a powerful machine learning method, which can solve nonlinear, high-dimensional classification problems with a limited number of samples. CRO algorithm has well global optimization and simple calculation, so it is suitable to solve parameter optimization problems. In this paper, firstly, a multi-layer RVM classification model was built by binary tree recognition strategy. Secondly, CRO algorithm was adopted to optimize the kernel function parameters which could enhance the performance of RVM classifiers. Compared with IEC three-ratio method and the RVM model, the CRO-RVM model not only overcomes the coding defect problem of IEC three-ratio method, but also has higher classification accuracy than the RVM model. Finally, the new method was applied to analyze a transformer fault case, Its predicted result accord well with the real situation. The research provides a practical method for transformer fault intelligent diagnosis and prediction.

  13. Piloted Simulator Evaluation Results of New Fault-Tolerant Flight Control Algorithm

    NARCIS (Netherlands)

    Lombaerts, T.J.J.; Smaili, M.H.; Stroosma, O.; Chu, Q.P.; Mulder, J.A.; Joosten, D.A.

    2010-01-01

    A high fidelity aircraft simulation model, reconstructed using the Digital Flight Data Recorder (DFDR) of the 1992 Amsterdam Bijlmermeer aircraft accident (Flight 1862), has been used to evaluate a new Fault-Tolerant Flight Control Algorithm in an online piloted evaluation. This paper focuses on the

  14. Backpropagation Neural Network Modeling for Fault Location in Transmission Line 150 kV

    Directory of Open Access Journals (Sweden)

    Azriyenni Narwan

    2014-03-01

    Full Text Available In this topic research was provided about the backpropagation neural network to detect fault location in transmission line 150 kV between substation to substation. The distance relay is one of the good protective device and safety devices that often used on transmission line 150 kV. The disturbances in power system are used distance relay protection equipment in the transmission line. However, it needs more increasing large load and network systems are increasing complex. The protection system use the digital control, in order to avoid the error calculation of the distance relay impedance settings and spent time will be more efficient. Then backpropagation neural network is a computational model that uses the training process that can be used to solve the problem of work limitations of distance protection relays. The backpropagation neural network does not have limitations cause of the impedance range setting. If the output gives the wrong result, so the correct of the weights can be minimized and also the response of galat, the backpropagation neural network is expected to be closer to the correct value. In the end, backpropagation neural network modeling is expected to detect the fault location and identify operational output current circuit breaker was tripped it. The tests are performance with interconnected system 150 kV of Riau Region.

  15. Fault Tolerant Control Using Proportional-Integral-Derivative Controller Tuned by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    S. Kanthalakshmi

    2011-01-01

    Full Text Available Problem statement: The growing demand for reliability, maintainability and survivability in industrial processes has drawn significant research in fault detection and fault tolerant control domain. A fault is usually defined as an unexpected change in a system, such as component malfunction and variations in operating condition, which tends to degrade the overall system performance. The purpose of fault detection is to detect these malfunctions to take proper action in order to prevent faults from developing into a total system failure. Approach: In this study an effective integrated fault detection and fault tolerant control scheme was developed for a class of LTI system. The scheme was based on a Kalman filter for simultaneous state and fault parameter estimation, statistical decisions for fault detection and activation of controller reconfiguration. Proportional-Integral-Derivative (PID control schemes continue to provide the simplest and yet effective solutions to most of the control engineering applications today. Determination or tuning of the PID parameters continues to be important as these parameters have a great influence on the stability and performance of the control system. In this study GA was proposed to tune the PID controller. Results: The results reflect that proposed scheme improves the performance of the process in terms of time domain specifications, robustness to parametric changes and optimum stability. Also, A comparison with the conventional Ziegler-Nichols method proves the superiority of GA based system. Conclusion: This study demonstrates the effectiveness of genetic algorithm in tuning of a PID controller with optimum parameters. It is, moreover, proved to be robust to the variations in plant dynamic characteristics and disturbances assuring a parameter-insensitive operation of the process.

  16. An automatic procedure for high-resolution earthquake locations: a case study from the TABOO near fault observatory (Northern Apennines, Italy)

    Science.gov (United States)

    Valoroso, Luisa; Chiaraluce, Lauro; Di Stefano, Raffaele; Latorre, Diana; Piccinini, Davide

    2014-05-01

    The characterization of the geometry, kinematics and rheology of fault zones by seismological data depends on our capability of accurately locate the largest number of low-magnitude seismic events. To this aim, we have been working for the past three years to develop an advanced modular earthquake location procedure able to automatically retrieve high-resolution earthquakes catalogues directly from continuous waveforms data. We use seismograms recorded at about 60 seismic stations located both at surface and at depth. The network covers an area of about 80x60 km with a mean inter-station distance of 6 km. These stations are part of a Near fault Observatory (TABOO; http://taboo.rm.ingv.it/), consisting of multi-sensor stations (seismic, geodetic, geochemical and electromagnetic). This permanent scientific infrastructure managed by the INGV is devoted to studying the earthquakes preparatory phase and the fast/slow (i.e., seismic/aseismic) deformation process active along the Alto Tiberina fault (ATF) located in the northern Apennines (Italy). The ATF is potentially one of the rare worldwide examples of active low-angle (search earthquake location algorithms to compute accurate absolute locations of single-events in a 3D geological model (see Latorre et al. same session); iv) cross-correlation and double-difference location methods to compute high-resolution relative event locations. This procedure is now running off-line with a delay of 1 week to the real-time. We are now implementing this procedure to obtain high-resolution double-difference earthquake locations in real-time (DDRT). We show locations of ~30k low-magnitude earthquakes recorded during the past 4 years (2010-2013) of network operation, reaching a completeness magnitude of the catalogue of 0.2. The spatiotemporal seismicity distribution has an almost constant and high rate of r = 24.30e-04 eqks/day*km2, interrupted by low to moderate magnitude seismic sequences such as the 2010 Pietralunga sequence (M L

  17. A Comparison Between Data Mining Prediction Algorithms for Fault Detection(Case study: Ahanpishegan co.)

    CERN Document Server

    Amooee, Golriz; Bagheri-Dehnavi, Malihe

    2012-01-01

    In the current competitive world, industrial companies seek to manufacture products of higher quality which can be achieved by increasing reliability, maintainability and thus the availability of products. On the other hand, improvement in products lifecycle is necessary for achieving high reliability. Typically, maintenance activities are aimed to reduce failures of industrial machinery and minimize the consequences of such failures. So the industrial companies try to improve their efficiency by using different fault detection techniques. One strategy is to process and analyze previous generated data to predict future failures. The purpose of this paper is to detect wasted parts using different data mining algorithms and compare the accuracy of these algorithms. A combination of thermal and physical characteristics has been used and the algorithms were implemented on Ahanpishegan's current data to estimate the availability of its produced parts. Keywords: Data Mining, Fault Detection, Availability, Predictio...

  18. A New and Efficient Algorithm-Based Fault Tolerance Scheme for A Million Way Parallelism

    CERN Document Server

    Yao, Erlin; Wang, Rui; Zhang, Wenli; Tan, Guangming

    2011-01-01

    Fault tolerance overhead of high performance computing (HPC) applications is becoming critical to the efficient utilization of HPC systems at large scale. HPC applications typically tolerate fail-stop failures by checkpointing. Another promising method is in the algorithm level, called algorithmic recovery. These two methods can achieve high efficiency when the system scale is not very large, but will both lose their effectiveness when systems approach the scale of Exaflops, where the number of processors including in system is expected to achieve one million. This paper develops a new and efficient algorithm-based fault tolerance scheme for HPC applications. When failure occurs during the execution, we do not stop to wait for the recovery of corrupted data, but replace them with the corresponding redundant data and continue the execution. A background accelerated recovery method is also proposed to rebuild redundancy to tolerate multiple times of failures during the execution. To demonstrate the feasibility ...

  19. Location-Aware Mobile Learning of Spatial Algorithms

    Science.gov (United States)

    Karavirta, Ville

    2013-01-01

    Learning an algorithm--a systematic sequence of operations for solving a problem with given input--is often difficult for students due to the abstract nature of the algorithms and the data they process. To help students understand the behavior of algorithms, a subfield in computing education research has focused on algorithm…

  20. An adaptive Phase-Locked Loop algorithm for faster fault ride through performance of interconnected renewable energy sources

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Blaabjerg, Frede

    2013-01-01

    of the phase-locked loop algorithm. The adaptive parameters are adjusted in real time according to the proposed fault classification unit, which permits a fast estimation of the type of the grid fault. The outstanding performance of the proposed adaptive PLL is verified through simulation and experimental......Interconnected renewable energy sources require fast and accurate fault ride through operation in order to support the power grid when faults occur. This paper proposes an adaptive Phase-Locked Loop (adaptive dαβPLL) algorithm, which can be used for a faster and more accurate response of the grid...

  1. A multiobjective scatter search algorithm for fault-tolerant NoC mapping optimisation

    Science.gov (United States)

    Le, Qianqi; Yang, Guowu; Hung, William N. N.; Zhang, Xinpeng; Fan, Fuyou

    2014-08-01

    Mapping IP cores to an on-chip network is an important step in Network-on-Chip (NoC) design and affects the performance of NoC systems. A mapping optimisation algorithm and a fault-tolerant mechanism are proposed in this article. The fault-tolerant mechanism and the corresponding routing algorithm can recover NoC communication from switch failures, while preserving high performance. The mapping optimisation algorithm is based on scatter search (SS), which is an intelligent algorithm with a powerful combinatorial search ability. To meet the requests of the NoC mapping application, the standard SS is improved for multiple objective optimisation. This method helps to obtain high-performance mapping layouts. The proposed algorithm was implemented on the Embedded Systems Synthesis Benchmarks Suite (E3S). Experimental results show that this optimisation algorithm achieves low-power consumption, little communication time, balanced link load and high reliability, compared to particle swarm optimisation and genetic algorithm.

  2. The study of hybrid model identification,computation analysis and fault location for nonlinear dynamic circuits and systems

    Institute of Scientific and Technical Information of China (English)

    XIE Hong; HE Yi-gang; ZENG Guan-da

    2006-01-01

    This paper presents the hybrid model identification for a class of nonlinear circuits and systems via a combination of the block-pulse function transform with the Volterra series.After discussing the method to establish the hybrid model and introducing the hybrid model identification,a set of relative formulas are derived for calculating the hybrid model and computing the Volterra series solution of nonlinear dynamic circuits and systems.In order to significantly reduce the computation cost for fault location,the paper presents a new fault diagnosis method based on multiple preset models that can be realized online.An example of identification simulation and fault diagnosis are given.Results show that the method has high accuracy and efficiency for fault location of nonlinear dynamic circuits and systems.

  3. Soufrière Hills eruption, Montserrat, 1995 - 1997: volcanic earthquake locations and fault plane solutions

    Science.gov (United States)

    Aspinall, W.P.; Miller, A.D.; Lynch, L.L.; Latchman, J.L.; Stewart, R.C.; White, R.A.; Power, J.A.

    1998-01-01

    A total of 9242 seismic events, recorded since the start of the eruption on Montserrat in July 1995, have been uniformly relocated with station travel-time corrections. Early seismicity was generally diffuse under southern Montserrat, and mostly restricted to depths less than 7 km. However, a NE-SW alignment of epicentres beneath the NE flank of the volcano emerged in one swarm of volcano-tectonic earthquakes (VTs) and later nests of VT hypocentres developed beneath the volcano and at a separated location, under St. George's Hill. The overall spatial distribution of hypocentres suggests a minimum depth of about 5 km for any substantial magma body. Activity associated with the opening of a conduit to the surface became increasingly shallow, with foci concentrated below the crater and, after dome building started in Fall 1995, VTs diminished and repetitive swarms of ‘hybrid’ seismic events became predominant. By late-1996, as magma effusion rates escalated, most seismic events were originating within a volume about 2 km diameter which extended up to the surface from only about 3 km depth - the diminution of shear failure earthquakes suggests the pathway for magma discharge had become effectively unconstricted. Individual and composite fault plane solutions have been determined for a few larger earthquakes. We postulate that localised extensional stress conditions near the linear VT activity, due to interaction with stresses in the overriding lithospheric plate, may encourage normal fault growth and promote sector weaknesses in the volcano.

  4. Study on Power Communication Network Fault Location Method Based on Fuzzy Sets with Weight Coefficients%基于权系数的电力通信网故障模糊定位方法的研究

    Institute of Scientific and Technical Information of China (English)

    巢玉坚; 闫生超; 吴德胜

    2011-01-01

    为提高故障定位的效率,提出了基于模糊集合论的电力通信网故障定位方法,通过引入带权系数的隶属度来实现对故障多载体的定位,并结合电力通信网的特点,指出了权系数的确定因素和计算方法,并进一步提出故障影响业务的分析方法,实现了从电力通信网多载体中快速确定故障载体的功能。%In order to improve the efficiency of fault location, we present a power communication fault location approach based on fuzzy set theory. By introducing the membership with weight coefficients to locate the fault location out of multi fault carders, we take the characteristics of electric power communication into consideration and point out the factors for weights to be determined and the method of calculating. Application, which implements the algorithm, managed to find this root fault location quickly from complicated communication networks. In addition, we present a further analysis method for the business fault impact.

  5. Sideband Algorithm for Automatic Wind Turbine Gearbox Fault Detection and Diagnosis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zappala, D.; Tavner, P.; Crabtree, C.; Sheng, S.

    2013-01-01

    Improving the availability of wind turbines (WT) is critical to minimize the cost of wind energy, especially for offshore installations. As gearbox downtime has a significant impact on WT availabilities, the development of reliable and cost-effective gearbox condition monitoring systems (CMS) is of great concern to the wind industry. Timely detection and diagnosis of developing gear defects within a gearbox is an essential part of minimizing unplanned downtime of wind turbines. Monitoring signals from WT gearboxes are highly non-stationary as turbine load and speed vary continuously with time. Time-consuming and costly manual handling of large amounts of monitoring data represent one of the main limitations of most current CMSs, so automated algorithms are required. This paper presents a fault detection algorithm for incorporation into a commercial CMS for automatic gear fault detection and diagnosis. The algorithm allowed the assessment of gear fault severity by tracking progressive tooth gear damage during variable speed and load operating conditions of the test rig. Results show that the proposed technique proves efficient and reliable for detecting gear damage. Once implemented into WT CMSs, this algorithm can automate data interpretation reducing the quantity of information that WT operators must handle.

  6. A New Method of Ground Fault Location in 2 × 25 kV Railway Power Supply Systems

    Directory of Open Access Journals (Sweden)

    Jesús Serrano

    2017-03-01

    Full Text Available Owing to the installation of autotransformers at regular intervals along the line, distance protection relays cannot be used with the aim of locating ground faults in 2 × 25 kV railway power supply systems. The reason is that the ratio between impedance and distance to the fault point is not linear in these electrification systems, unlike in 1 × 25 kV power systems. Therefore, the location of ground faults represents a complicated task in 2 × 25 kV railway power supply systems. Various methods have been used to localize the ground fault position in 2 × 25 kV systems. The method described here allows the location of a ground fault to be economically found in an accurate way in real time, using the modules of the circulating currents in different autotransformers when the ground fault occurs. This method first needs to know the subsection and the conductor (catenary or feeder with the defect, then localizes the ground fault’s position.

  7. Fault diagnosis based on support vector machines with parameter optimisation by artificial immunisation algorithm

    Science.gov (United States)

    Yuan, Shengfa; Chu, Fulei

    2007-04-01

    Support vector machines (SVM) is a new general machine-learning tool based on the structural risk minimisation principle that exhibits good generalisation when fault samples are few, it is especially fit for classification, forecasting and estimation in small-sample cases such as fault diagnosis, but some parameters in SVM are selected by man's experience, this has hampered its efficiency in practical application. Artificial immunisation algorithm (AIA) is used to optimise the parameters in SVM in this paper. The AIA is a new optimisation method based on the biologic immune principle of human being and other living beings. It can effectively avoid the premature convergence and guarantees the variety of solution. With the parameters optimised by AIA, the total capability of the SVM classifier is improved. The fault diagnosis of turbo pump rotor shows that the SVM optimised by AIA can give higher recognition accuracy than the normal SVM.

  8. Fault-tolerant Algorithms for Tick-Generation in Asynchronous Logic: Robust Pulse Generation

    CERN Document Server

    Dolev, Danny; Lenzen, Christoph; Schmid, Ulrich

    2011-01-01

    Today's hardware technology presents a new challenge in designing robust systems. Deep submicron VLSI technology introduced transient and permanent faults that were never considered in low-level system designs in the past. Still, robustness of that part of the system is crucial and needs to be guaranteed for any successful product. Distributed systems, on the other hand, have been dealing with similar issues for decades. However, neither the basic abstractions nor the complexity of contemporary fault-tolerant distributed algorithms match the peculiarities of hardware implementations. This paper is intended to be part of an attempt striving to overcome this gap between theory and practice for the clock synchronization problem. Solving this task sufficiently well will allow to build a very robust high-precision clocking system for hardware designs like systems-on-chips in critical applications. As our first building block, we describe and prove correct a novel Byzantine fault-tolerant self-stabilizing pulse syn...

  9. A Multiconstrained Grid Scheduling Algorithm with Load Balancing and Fault Tolerance.

    Science.gov (United States)

    Keerthika, P; Suresh, P

    2015-01-01

    Grid environment consists of millions of dynamic and heterogeneous resources. A grid environment which deals with computing resources is computational grid and is meant for applications that involve larger computations. A scheduling algorithm is said to be efficient if and only if it performs better resource allocation even in case of resource failure. Allocation of resources is a tedious issue since it has to consider several requirements such as system load, processing cost and time, user's deadline, and resource failure. This work attempts to design a resource allocation algorithm which is budget constrained and also targets load balancing, fault tolerance, and user satisfaction by considering the above requirements. The proposed Multiconstrained Load Balancing Fault Tolerant algorithm (MLFT) reduces the schedule makespan, schedule cost, and task failure rate and improves resource utilization. The proposed MLFT algorithm is evaluated using Gridsim toolkit and the results are compared with the recent algorithms which separately concentrate on all these factors. The comparison results ensure that the proposed algorithm works better than its counterparts.

  10. A Multiconstrained Grid Scheduling Algorithm with Load Balancing and Fault Tolerance

    Directory of Open Access Journals (Sweden)

    P. Keerthika

    2015-01-01

    Full Text Available Grid environment consists of millions of dynamic and heterogeneous resources. A grid environment which deals with computing resources is computational grid and is meant for applications that involve larger computations. A scheduling algorithm is said to be efficient if and only if it performs better resource allocation even in case of resource failure. Allocation of resources is a tedious issue since it has to consider several requirements such as system load, processing cost and time, user’s deadline, and resource failure. This work attempts to design a resource allocation algorithm which is budget constrained and also targets load balancing, fault tolerance, and user satisfaction by considering the above requirements. The proposed Multiconstrained Load Balancing Fault Tolerant algorithm (MLFT reduces the schedule makespan, schedule cost, and task failure rate and improves resource utilization. The proposed MLFT algorithm is evaluated using Gridsim toolkit and the results are compared with the recent algorithms which separately concentrate on all these factors. The comparison results ensure that the proposed algorithm works better than its counterparts.

  11. Aero-engine fault diagnosis applying new fast support vector algorithm

    Institute of Scientific and Technical Information of China (English)

    XU Qi-hua; GENG Shuai; SHI Jun

    2012-01-01

    A new fast learning algorithm was presented to solve the large-scale support vector machine ( SVM ) training problem of aero-engine fault diagnosis.The relative boundary vectors ( RBVs ) instead of all the original training samples were used for the training of the binary SVM fault classifiers.This pruning strategy decreased the number of final training sample significantly and can keep classification accuracy almost invariable.Accordingly , the training time was shortened to 1 / 20compared with basic SVM classifier.Meanwhile , owing to the reduction of support vector number , the classification time was also reduced.When sample aliasing existed , the aliasing sample points which were not of the same class were eliminated before the relative boundary vectors were computed.Besides , the samples near the relative boundary vectors were selected for SVM training in order to prevent the loss of some key sample points resulted from aliasing.This can improve classification accuracy effectively.A simulation example to classify 5classes of combination fault of aero-engine gas path components was finished and the total fault classification accuracy reached 96.1%.Simulation results show that this fast learning algorithm is effective , reliable and easy to be implemented for engineering application.

  12. Study on Immune Relevant Vector Machine Based Intelligent Fault Detection and Diagnosis Algorithm

    Directory of Open Access Journals (Sweden)

    Zhong-hua Miao

    2013-01-01

    Full Text Available An immune relevant vector machine (IRVM based intelligent classification method is proposed by combining the random real-valued negative selection (RRNS algorithm and the relevant vector machine (RVM algorithm. The method proposed is aimed to handle the training problem of missing or incomplete fault sampling data and is inspired by the “self/nonself” recognition principle in the artificial immune systems. The detectors, generated by the RRNS, are treated as the “nonself” training samples and used to train the RVM model together with the “self” training samples. After the training succeeds, the “nonself” detection model, which requires only the “self” training samples, is obtained for the fault detection and diagnosis. It provides a general way solving the problems of this type and can be applied for both fault detection and fault diagnosis. The standard Fisher's Iris flower dataset is used to experimentally testify the proposed method, and the results are compared with those from the support vector data description (SVDD method. Experimental results have shown the validity and practicability of the proposed method.

  13. EXPERIMENT BASED FAULT DIAGNOSIS ON BOTTLE FILLING PLANT WITH LVQ ARTIFICIAL NEURAL NETWORK ALGORITHM

    Directory of Open Access Journals (Sweden)

    Mustafa DEMETGÜL

    2008-01-01

    Full Text Available In this study, an artificial neural network is developed to find an error rapidly on pneumatic system. Also the ANN prevents the system versus the failure. The error on the experimental bottle filling plant can be defined without any interference using analog values taken from pressure sensors and linear potentiometers. The sensors and potentiometers are placed on different places of the plant. Neural network diagnosis faults on plant, where no bottle, cap closing cylinder B is not working, bottle cap closing cylinder C is not working, air pressure is not sufficient, water is not filling and low air pressure faults. The fault is diagnosed by artificial neural network with LVQ. It is possible to find an failure by using normal programming or PLC. The reason offing Artificial Neural Network is to give a information where the fault is. However, ANN can be used for different systems. The aim is to find the fault by using ANN simultaneously. In this situation, the error taken place on the pneumatic system is collected by a data acquisition card. It is observed that the algorithm is very capable program for many industrial plants which have mechatronic systems.

  14. Model-Based Fault Diagnosis Techniques Design Schemes, Algorithms and Tools

    CERN Document Server

    Ding, Steven X

    2013-01-01

    Guaranteeing a high system performance over a wide operating range is an important issue surrounding the design of automatic control systems with successively increasing complexity. As a key technology in the search for a solution, advanced fault detection and identification (FDI) is receiving considerable attention. This book introduces basic model-based FDI schemes, advanced analysis and design algorithms, and mathematical and control-theoretic tools. This second edition of Model-Based Fault Diagnosis Techniques contains: ·         new material on fault isolation and identification, and fault detection in feedback control loops; ·         extended and revised treatment of systematic threshold determination for systems with both deterministic unknown inputs and stochastic noises; addition of the continuously-stirred tank heater as a representative process-industrial benchmark; and ·         enhanced discussion of residual evaluation in stochastic processes. Model-based Fault Diagno...

  15. A DYNAMIC FAULT TOLERANT ALGORITHM FOR IMPROVISING PERFORMANCE OF MULTIMEDIA SERVICES

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Multimedia Services has drawn much attention from both industrial and academic researchers due to the emerging consumer market, how to provide High-Availability service is one of most important issues to take into account. In this paper, a dynamic fault tolerant algorithm is presented for highly available distributed multimedia service, then by introducing SLB(server load balancing) into fault tolerance and switching servers in different ways according to their functions, the proposed schema can preserve reliability and real-time of the system .The analysis and experiments indicate that resuming server's faulty by this method is smooth and transparent to the client The proposed algorithm is effectively improving the reliability of the multimedia service.

  16. ALGORITHMIZATION OF PROBLEMS FOR OPTIMAL LOCATION OF TRANSFORMERS IN SUBSTATIONS OF DISTRIBUTED NETWORKS

    Directory of Open Access Journals (Sweden)

    M. I. Fursanov

    2014-01-01

    Full Text Available This article reflects algorithmization of search methods of effective replacement of consumer transformers in distributed electrical networks. As any electrical equipment of power systems, power transformers have their own limited service duration, which is determined by natural processes of materials degradation and also by unexpected wear under different conditions of overload and overvoltage. According to the standards, adapted by in the Republic of Belarus, rated service life of power transformers is 25 years. But it can be situations that transformers should be better changed till this time – economically efficient. The possibility of such replacement is considered in order to increase efficiency of electrical network operation connected with its physical wear and aging.In this article the faults of early developed mathematical models of transformers replacement were discussed. Early such worked out transformers were not used. But in practice they can be replaced in one substation but they can be successfully used  in other substations .Especially if there are limits of financial resources and the replacement needs more detail technical and economical basis.During the research the authors developed the efficient algorithm for determining of optimal location of transformers at substations of distributed electrical networks, based on search of the best solution from all sets of displacement in oriented graph. Suggested algorithm allows considerably reduce design time of optimal placement of transformers using a set of simplifications. The result of algorithm’s work is series displacement of transformers in networks, which allow obtain a great economic effect in comparison with replacement of single transformer.

  17. Vibration sensor-based bearing fault diagnosis using ellipsoid-ARTMAP and differential evolution algorithms.

    Science.gov (United States)

    Liu, Chang; Wang, Guofeng; Xie, Qinglu; Zhang, Yanchao

    2014-06-16

    Effective fault classification of rolling element bearings provides an important basis for ensuring safe operation of rotating machinery. In this paper, a novel vibration sensor-based fault diagnosis method using an Ellipsoid-ARTMAP network (EAM) and a differential evolution (DE) algorithm is proposed. The original features are firstly extracted from vibration signals based on wavelet packet decomposition. Then, a minimum-redundancy maximum-relevancy algorithm is introduced to select the most prominent features so as to decrease feature dimensions. Finally, a DE-based EAM (DE-EAM) classifier is constructed to realize the fault diagnosis. The major characteristic of EAM is that the sample distribution of each category is realized by using a hyper-ellipsoid node and smoothing operation algorithm. Therefore, it can depict the decision boundary of disperse samples accurately and effectively avoid over-fitting phenomena. To optimize EAM network parameters, the DE algorithm is presented and two objectives, including both classification accuracy and nodes number, are simultaneously introduced as the fitness functions. Meanwhile, an exponential criterion is proposed to realize final selection of the optimal parameters. To prove the effectiveness of the proposed method, the vibration signals of four types of rolling element bearings under different loads were collected. Moreover, to improve the robustness of the classifier evaluation, a two-fold cross validation scheme is adopted and the order of feature samples is randomly arranged ten times within each fold. The results show that DE-EAM classifier can recognize the fault categories of the rolling element bearings reliably and accurately.

  18. Vibration Sensor-Based Bearing Fault Diagnosis Using Ellipsoid-ARTMAP and Differential Evolution Algorithms

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2014-06-01

    Full Text Available Effective fault classification of rolling element bearings provides an important basis for ensuring safe operation of rotating machinery. In this paper, a novel vibration sensor-based fault diagnosis method using an Ellipsoid-ARTMAP network (EAM and a differential evolution (DE algorithm is proposed. The original features are firstly extracted from vibration signals based on wavelet packet decomposition. Then, a minimum-redundancy maximum-relevancy algorithm is introduced to select the most prominent features so as to decrease feature dimensions. Finally, a DE-based EAM (DE-EAM classifier is constructed to realize the fault diagnosis. The major characteristic of EAM is that the sample distribution of each category is realized by using a hyper-ellipsoid node and smoothing operation algorithm. Therefore, it can depict the decision boundary of disperse samples accurately and effectively avoid over-fitting phenomena. To optimize EAM network parameters, the DE algorithm is presented and two objectives, including both classification accuracy and nodes number, are simultaneously introduced as the fitness functions. Meanwhile, an exponential criterion is proposed to realize final selection of the optimal parameters. To prove the effectiveness of the proposed method, the vibration signals of four types of rolling element bearings under different loads were collected. Moreover, to improve the robustness of the classifier evaluation, a two-fold cross validation scheme is adopted and the order of feature samples is randomly arranged ten times within each fold. The results show that DE-EAM classifier can recognize the fault categories of the rolling element bearings reliably and accurately.

  19. A Location-Aware Vertical Handoff Algorithm for Hybrid Networks

    KAUST Repository

    Mehbodniya, Abolfazl

    2010-07-01

    One of the main objectives of wireless networking is to provide mobile users with a robust connection to different networks so that they can move freely between heterogeneous networks while running their computing applications with no interruption. Horizontal handoff, or generally speaking handoff, is a process which maintains a mobile user\\'s active connection as it moves within a wireless network, whereas vertical handoff (VHO) refers to handover between different types of networks or different network layers. Optimizing VHO process is an important issue, required to reduce network signalling and mobile device power consumption as well as to improve network quality of service (QoS) and grade of service (GoS). In this paper, a VHO algorithm in multitier (overlay) networks is proposed. This algorithm uses pattern recognition to estimate user\\'s position, and decides on the handoff based on this information. For the pattern recognition algorithm structure, the probabilistic neural network (PNN) which has considerable simplicity and efficiency over existing pattern classifiers is used. Further optimization is proposed to improve the performance of the PNN algorithm. Performance analysis and comparisons with the existing VHO algorithm are provided and demonstrate a significant improvement with the proposed algorithm. Furthermore, incorporating the proposed algorithm, a structure is proposed for VHO from the medium access control (MAC) layer point of view. © 2010 ACADEMY PUBLISHER.

  20. The Parameters Selection of PSO Algorithm influencing On performance of Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    He Yan

    2016-01-01

    Full Text Available The particle swarm optimization (PSO is an optimization algorithm based on intelligent optimization. Parameters selection of PSO will play an important role in performance and efficiency of the algorithm. In this paper, the performance of PSO is analyzed when the control parameters vary, including particle number, accelerate constant, inertia weight and maximum limited velocity. And then PSO with dynamic parameters has been applied on the neural network training for gearbox fault diagnosis, the results with different parameters of PSO are compared and analyzed. At last some suggestions for parameters selection are proposed to improve the performance of PSO.

  1. An improved particle filtering algorithm for aircraft engine gas-path fault diagnosis

    Directory of Open Access Journals (Sweden)

    Qihang Wang

    2016-07-01

    Full Text Available In this article, an improved particle filter with electromagnetism-like mechanism algorithm is proposed for aircraft engine gas-path component abrupt fault diagnosis. In order to avoid the particle degeneracy and sample impoverishment of normal particle filter, the electromagnetism-like mechanism optimization algorithm is introduced into resampling procedure, which adjusts the position of the particles through simulating attraction–repulsion mechanism between charged particles of the electromagnetism theory. The improved particle filter can solve the particle degradation problem and ensure the diversity of the particle set. Meanwhile, it enhances the ability of tracking abrupt fault due to considering the latest measurement information. Comparison of the proposed method with three different filter algorithms is carried out on a univariate nonstationary growth model. Simulations on a turbofan engine model indicate that compared to the normal particle filter, the improved particle filter can ensure the completion of the fault diagnosis within less sampling period and the root mean square error of parameters estimation is reduced.

  2. Discrimination of Inrush Currents from Faults Current in Power Transformers using Gravitational Search Algorithm (GSA

    Directory of Open Access Journals (Sweden)

    Mohamad Kazem Daryabari

    2011-01-01

    Full Text Available The magnetizing inrush current phenomenon is a large transient condition, which occurs when a transformer is energized. The inrush current magnitude may be as high as ten times of transformer rated current that causes mal-operation of protection systems. Indeed, the similarity between signatures of Inrush current and internal fault condition make this failure. So, for safe running of a transformer, it is necessary to distinguish inrush current from fault currents. In this project, an Artificial Neural Network (ANN which is trained by two different swarm based algorithms; Gravitational Search Algorithm (GSA and Particle Swarm Optimization (PSO have been used to discriminate inrush current from fault currents in power transformers. GSA works based on gravity laws and in opposite of other swarm based algorithms, particles have identity and PSO is based on behaviors of bird flocking. Proposed approach has two general stages, in first step, obtained data from simulation have been processed and applied to ANN, and then in step two, using training data considered ANN has been trained by GSA & PSO. Proposed method has been compared with one of the common training approach which is called Back Propagation (BP and Results show that proposed method is so quick and can do discrimination very accurate.

  3. An Improved DY-Hop Localization Algorithm with Reduced Node Location Error for Wireless Sensor Networks

    Science.gov (United States)

    Chen, Hongyang; Sezaki, Kaoru; Deng, Ping; So, Hing Cheung

    In this paper, we propose a new localization algorithm and improve the DV-Hop algorithm by using a differential error correction scheme that is designed to reduce the location error accumulated over multiple hops. This scheme needs no additional hardware support and can be implemented in a distributed way. The proposed method can improve location accuracy without increasing communication traffic and computing complexity. Simulation results show the performance of the proposed algorithm is superior to that of the DV-Hop algorithm.

  4. Fault Tolerant PLBGSA: Precedence Level Based Genetic Scheduling Algorithm for P2P Grid

    Directory of Open Access Journals (Sweden)

    Piyush Chauhan

    2013-01-01

    Full Text Available Due to monetary limitation, small organizations cannot afford high end supercomputers to solve highly complex tasks. P2P (peer to peer grid computing is being used nowadays to break complex task into subtasks in order to solve them on different grid resources. Workflows are used to represent these complex tasks. Finishing such complex task in a P2P grid requires scheduling subtasks of workflow in an optimized manner. Several factors play their part in scheduling decisions. The genetic algorithm is very useful in scheduling DAG (directed acyclic graph based task. Benefit of a genetic algorithm is that it takes into consideration multiple criteria while scheduling. In this paper, we have proposed a precedence level based genetic algorithm (PLBGSA, which yields schedules for workflows in a decentralized fashion. PLBGSA is compared with existing genetic algorithm based scheduling techniques. Fault tolerance is a desirable trait of a P2P grid scheduling algorithm due to the untrustworthy nature of grid resources. PLBGSA handles faults efficiently.

  5. Chaos-enhanced Stochastic Fractal Search algorithm for Global Optimization with Application to Fault Diagnosis

    Science.gov (United States)

    Rahman, Tuan A. Z.; Jalil, N. A. Abdul; As'arry, A.; Raja Ahmad, R. K.

    2017-06-01

    Support vector machine (SVM) has been known as one-state-of-the-art pattern recognition method. However, the SVM performance is particularly influenced byits parameter selection. This paper presents the parameter optimization of an SVM classifier using chaos-enhanced stochastic fractal search (SFS) algorithm to classify conditions of a ball bearing. The vibration data for normal and damaged conditions of the ball bearing system obtained from the Case Western Reserve University Bearing Data Centre. Features based on time and frequency domains were generated to characterize the ball bearing conditions. The performance of chaos-enhanced SFS algorithms in comparison to their predecessor algorithm is evaluated. In conclusion, the injection of chaotic maps into SFS algorithm improved its convergence speed and searching accuracy based on the statistical results of CEC 2015 benchmark test suites and their application to ball bearing fault diagnosis.

  6. A Tracking-Based Target Locating Algorithm in Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    SUN Xue-bin; ZHOU Zheng

    2004-01-01

    This paper proposes a tracking-based target locating algorithm to locate a target moving in a geographical region under the surveillance of a wireless sensor network. This algorithm first finds a sensor node that has detected the target, and then uses local messages between neighboring nodes to track the trail of the target. The authors implement this algorithm and compare it with an optimized flood-based target locating algorithm. Simulation results show that this algorithm effectively reduces the message transmission, conserves energy and consequently enhances the practicability of resource-limited wireless sensor networks.

  7. Integrated geophysical investigations in a fault zone located on southwestern part of İzmir city, Western Anatolia, Turkey

    Science.gov (United States)

    Drahor, Mahmut G.; Berge, Meriç A.

    2017-01-01

    Integrated geophysical investigations consisting of joint application of various geophysical techniques have become a major tool of active tectonic investigations. The choice of integrated techniques depends on geological features, tectonic and fault characteristics of the study area, required resolution and penetration depth of used techniques and also financial supports. Therefore, fault geometry and offsets, sediment thickness and properties, features of folded strata and tectonic characteristics of near-surface sections of the subsurface could be thoroughly determined using integrated geophysical approaches. Although Ground Penetrating Radar (GPR), Electrical Resistivity Tomography (ERT) and Seismic Refraction Tomography (SRT) methods are commonly used in active tectonic investigations, other geophysical techniques will also contribute in obtaining of different properties in the complex geological environments of tectonically active sites. In this study, six different geophysical methods used to define faulting locations and characterizations around the study area. These are GPR, ERT, SRT, Very Low Frequency electromagnetic (VLF), magnetics and self-potential (SP). Overall integrated geophysical approaches used in this study gave us commonly important results about the near surface geological properties and faulting characteristics in the investigation area. After integrated interpretations of geophysical surveys, we determined an optimal trench location for paleoseismological studies. The main geological properties associated with faulting process obtained after trenching studies. In addition, geophysical results pointed out some indications concerning the active faulting mechanism in the area investigated. Consequently, the trenching studies indicate that the integrated approach of geophysical techniques applied on the fault problem reveals very useful and interpretative results in description of various properties of faulting zone in the investigation site.

  8. An Approximation Algorithm for the Facility Location Problem with Lexicographic Minimax Objective

    Directory of Open Access Journals (Sweden)

    Ľuboš Buzna

    2014-01-01

    Full Text Available We present a new approximation algorithm to the discrete facility location problem providing solutions that are close to the lexicographic minimax optimum. The lexicographic minimax optimum is a concept that allows to find equitable location of facilities serving a large number of customers. The algorithm is independent of general purpose solvers and instead uses algorithms originally designed to solve the p-median problem. By numerical experiments, we demonstrate that our algorithm allows increasing the size of solvable problems and provides high-quality solutions. The algorithm found an optimal solution for all tested instances where we could compare the results with the exact algorithm.

  9. Recent Improvements to the Finite-Fault Rupture Detector Algorithm: FinDer II

    Science.gov (United States)

    Smith, D.; Boese, M.; Heaton, T. H.

    2015-12-01

    Constraining the finite-fault rupture extent and azimuth is crucial for accurately estimating ground-motion in large earthquakes. Detecting and modeling finite-fault ruptures in real-time is thus essential to both earthquake early warning (EEW) and rapid emergency response. Following extensive real-time and offline testing, the finite-fault rupture detector algorithm, FinDer (Böse et al., 2012 & 2015), was successfully integrated into the California-wide ShakeAlert EEW demonstration system. Since April 2015, FinDer has been scanning real-time waveform data from approximately 420 strong-motion stations in California for peak ground acceleration (PGA) patterns indicative of earthquakes. FinDer analyzes strong-motion data by comparing spatial images of observed PGA with theoretical templates modeled from empirical ground-motion prediction equations (GMPEs). If the correlation between the observed and theoretical PGA is sufficiently high, a report is sent to ShakeAlert including the estimated centroid position, length, and strike, and their uncertainties, of an ongoing fault rupture. Rupture estimates are continuously updated as new data arrives. As part of a joint effort between USGS Menlo Park, ETH Zurich, and Caltech, we have rewritten FinDer in C++ to obtain a faster and more flexible implementation. One new feature of FinDer II is that multiple contour lines of high-frequency PGA are computed and correlated with templates, allowing the detection of both large earthquakes and much smaller (~ M3.5) events shortly after their nucleation. Unlike previous EEW algorithms, FinDer II thus provides a modeling approach for both small-magnitude point-source and larger-magnitude finite-fault ruptures with consistent error estimates for the entire event magnitude range.

  10. A New Fault Location Approach for Acoustic Emission Techniques in Wind Turbines

    Directory of Open Access Journals (Sweden)

    Carlos Quiterio Gómez Muñoz

    2016-01-01

    Full Text Available The renewable energy industry is undergoing continuous improvement and development worldwide, wind energy being one of the most relevant renewable energies. This industry requires high levels of reliability, availability, maintainability and safety (RAMS for wind turbines. The blades are critical components in wind turbines. The objective of this research work is focused on the fault detection and diagnosis (FDD of the wind turbine blades. The FDD approach is composed of a robust condition monitoring system (CMS and a novel signal processing method. CMS collects and analyses the data from different non-destructive tests based on acoustic emission. The acoustic emission signals are collected applying macro-fiber composite (MFC sensors to detect and locate cracks on the surface of the blades. Three MFC sensors are set in a section of a wind turbine blade. The acoustic emission signals are generated by breaking a pencil lead in the blade surface. This method is used to simulate the acoustic emission due to a breakdown of the composite fibers. The breakdown generates a set of mechanical waves that are collected by the MFC sensors. A graphical method is employed to obtain a system of non-linear equations that will be used for locating the emission source. This work demonstrates that a fiber breakage in the wind turbine blade can be detected and located by using only three low cost sensors. It allows the detection of potential failures at an early stages, and it can also reduce corrective maintenance tasks and downtimes and increase the RAMS of the wind turbine.

  11. Induction machine bearing faults detection based on a multi-dimensional MUSIC algorithm and maximum likelihood estimation.

    Science.gov (United States)

    Elbouchikhi, Elhoussin; Choqueuse, Vincent; Benbouzid, Mohamed

    2016-07-01

    Condition monitoring of electric drives is of paramount importance since it contributes to enhance the system reliability and availability. Moreover, the knowledge about the fault mode behavior is extremely important in order to improve system protection and fault-tolerant control. Fault detection and diagnosis in squirrel cage induction machines based on motor current signature analysis (MCSA) has been widely investigated. Several high resolution spectral estimation techniques have been developed and used to detect induction machine abnormal operating conditions. This paper focuses on the application of MCSA for the detection of abnormal mechanical conditions that may lead to induction machines failure. In fact, this paper is devoted to the detection of single-point defects in bearings based on parametric spectral estimation. A multi-dimensional MUSIC (MD MUSIC) algorithm has been developed for bearing faults detection based on bearing faults characteristic frequencies. This method has been used to estimate the fundamental frequency and the fault related frequency. Then, an amplitude estimator of the fault characteristic frequencies has been proposed and fault indicator has been derived for fault severity measurement. The proposed bearing faults detection approach is assessed using simulated stator currents data, issued from a coupled electromagnetic circuits approach for air-gap eccentricity emulating bearing faults. Then, experimental data are used for validation purposes.

  12. On a rational stopping rule for facilities location algorithms

    DEFF Research Database (Denmark)

    Juel, Henrik

    1984-01-01

    In the multifacility location problem, a number of new facilities are to be located so as to minimize a sum of weighted distances. Love and Yeong (1981) developed a lower bound on the optimal value for use in deciding when to stop an iterative solution procedure. The authors develop a stronger...

  13. Capacitated Dynamic Facility Location Problem Based on Tabu Search Algorithm

    Institute of Scientific and Technical Information of China (English)

    KUANG Yi-jun; ZHU Ke-jun

    2007-01-01

    Facility location problem is a kind of NP-Hard combinational problem. Considering ever-changing demand sites, demand quantity and releasing cost, we formulate a model combining tabu search and FCM (fuzzy clustering method) to solve the eapacitated dynamic facility location problem. Some results are achieved and they show that the proposed method is effective.

  14. On a rational stopping rule for facilities location algorithms

    DEFF Research Database (Denmark)

    Juel, Henrik

    1984-01-01

    In the multifacility location problem, a number of new facilities are to be located so as to minimize a sum of weighted distances. Love and Yeong (1981) developed a lower bound on the optimal value for use in deciding when to stop an iterative solution procedure. The authors develop a stronger...

  15. Elimination of Multiple Estimation for Fault Location in Radial Power Systems by Using Fundamental Single-End Measurements

    NARCIS (Netherlands)

    Morales-Espana, G.; Mora-Floréz, J.; Vargas-Torres, H.

    2009-01-01

    This paper presents a conceptual approach for eliminating the multiple estimation problem of impedance-based fault location methods applied to power distribution systems, using the available measurements of current and voltage fundamentals at the power substation. Three test systems are used to

  16. AN ALGORITHM FOR CONTINUOUS TYPE OPTIMAL SPHERICALFACILITY LOCATION PROBLEM

    Institute of Scientific and Technical Information of China (English)

    ZHANG Liping; WANG Changyu

    1999-01-01

    In this paper, we study the continuously spherical facilitylocation problem.(P)(minx∈S∫∫(x)=Ωφ(υ)cos-1(υTx)dΩ) We prove a hull property and optimality condition of the problem (P), andpropose an algorithm to solve (P). Global convergence is proved.

  17. Location capability of a sparse regional network (RSTN) using a multi-phase earthquake location algorithm (REGLOC)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L.

    1994-01-01

    The Regional Seismic Test Network (RSTN) was deployed by the US Department of Energy (DOE) to determine whether data recorded by a regional network could be used to detect and accurately locate seismic events that might be clandestine nuclear tests. The purpose of this paper is to evaluate the location capability of the RSTN. A major part of this project was the development of the location algorithm REGLOC and application of Basian a prior statistics for determining the accuracy of the location estimates. REGLOC utilizes all identifiable phases, including backazimuth, in the location. Ninty-four events, distributed throughout the network area, detected by both the RSTN and located by local networks were used in the study. The location capability of the RSTN was evaluated by estimating the location accuracy, error ellipse accuracy, and the percentage of events that could be located, as a function of magnitude. The location accuracy was verified by comparing the RSTN results for the 94 events with published locations based on data from the local networks. The error ellipse accuracy was evaluated by determining whether the error ellipse includes the actual location. The percentage of events located was assessed by combining detection capability with location capability to determine the percentage of events that could be located within the study area. Events were located with both an average crustal model for the entire region, and with regional velocity models along with station corrections obtained from master events. Most events with a magnitude <3.0 can only be located with arrivals from one station. Their average location errors are 453 and 414 km for the average- and regional-velocity model locations, respectively. Single station locations are very unreliable because they depend on accurate backazimuth estimates, and backazimuth proved to be a very unreliable computation.

  18. 基于静态小波变换的T型输电线路行波测距方法%Travelling Wave Fault Location for Three-Terminal Transmission ~Line Based on Static Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    张永健; 胥杰; 孙嘉

    2012-01-01

    In view of the defect in existing travelling wave fault location algorithm that this algorithm is easily affected by wave velocity, a new method for travelling wave fault location of three-terminal transmission line is proposed. Using Clarke's transform the phase currents are turned into independent mode currents, then static wavelet transform (SWT) is applied to mode currents to determine the moments at which travelling wave surges arrive the bus terminals. Firstly the memberships are defined by three initial moments at which the first wave front arrives T-connected buses, and based on the memberships the criterion for distinguishing faulty branch is given. To implement fault location of three-terminal transmission line, based on existing fault location formula for two-terminal transmission line the fault location formula for three-terminal transmission line is derived. Three possible fault conditions near the T-connected node are researched, and a three-time fault location method is put forward to resolve the fault location for the faults occurred near the T-connected node. Comparing with existing fault location methods, due to time-invariance of SWT, making full use of the data measured at three terminals of the three-terminal transmission line and that the wave velocity does not appear in the derived fault location formula, the proposed method can provide more accurate fault location results. Results of simulation using ATP/EMTP show that the proposed fault location method for three-terminal transmission line is simple, reliable and not affected by such factors as transition resistance and fault types and so on.%针对现有T型输电线路行波测距算法易受行波波速影响的不足,提出一种新的T型输电线路行波测距方法。采用Clarke变换将相电流转换为独立的模电流,对模电流进行静态小波变换(staticwavelettransform,SwT)处理,实现各行波浪涌到达各母线端时刻的标定。首先利用

  19. The May 29 2008 earthquake aftershock sequence within the South Iceland Seismic Zone: Fault locations and source parameters of aftershocks

    Science.gov (United States)

    Brandsdottir, B.; Parsons, M.; White, R. S.; Gudmundsson, O.; Drew, J.

    2010-12-01

    The mid-Atlantic plate boundary breaks up into a series of segments across Iceland. The South Iceland Seismic Zone (SISZ) is a complex transform zone where left-lateral E-W shear between the Reykjanes Peninsula Rift Zone and the Eastern Volcanic Zone is accommodated by bookshelf faulting along N-S lateral strike-slip faults. The SISZ is also a transient feature, migrating sideways in response to the southward propagation of the Eastern Volcanic Zone. Sequences of large earthquakes (M > 6) lasting from days to years and affecting most of the seismic zone have occurred repeatedly in historical time (last 1100 years), separated by intervals of relative quiescence lasting decades to more than a century. On May 29 2008, a Mw 6.1 earthquake struck the western part of the South Iceland Seismic Zone, followed within seconds by a slightly smaller event on a second fault ~5 km further west. Aftershocks, detected by a temporal array of 11 seismometers and three permanent Icelandic Meteorological Office stations were located using an automated Coalescence Microseismic Mapping technique. The epicenters delineate two major and several smaller N-S faults as well as an E-W zone of activity stretching further west into the Reykjanes Peninsula Rift Zone. Fault plane solutions show both right lateral and oblique strike slip mechanisms along the two major N-S faults. The aftershocks deepen from 3-5 km in the north to 8-9 km in the south, suggesting that the main faults dip southwards. The faulting is interpreted to be driven by the local stress due to transform motion between two parallel segments of the divergent plate boundary crossing Iceland.

  20. Offshore Substation Locating in Wind Farms Based on Prim Algorithm

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; Chen, Zhe

    2015-01-01

    The investment of offshore wind farm is large while the cost on electrical system can take up to 15% of the total costs. In order to reduce the cost, it is desirable to optimize the electrical system layout in design phase. Since the location of offshore substation (OS) is highly related to the e......The investment of offshore wind farm is large while the cost on electrical system can take up to 15% of the total costs. In order to reduce the cost, it is desirable to optimize the electrical system layout in design phase. Since the location of offshore substation (OS) is highly related...... to the electrical system layout, the optimal layout design work should be done with the consideration of the impact of the location of offshore substation on the submarine cable connection layout to minimize the investment of cables. This paper addresses a new method to optimize the OS location together...

  1. COMPARISON OF TDOA LOCATION ALGORITHMS WITH DIRECT SOLUTION METHOD

    Institute of Scientific and Technical Information of China (English)

    Li Chun; Liu Congfeng; Liao Guisheng

    2011-01-01

    For Time Difference Of Arrival (TDOA) location based on multi-ground stations scene,two direct solution methods are proposed to solve the target position in TDOA location.Therein,the solving methods are realized in the rectangular and polar coordinates.On the condition of rectangular coordinates,first of all,it solves the radial range between the target and reference station,then calculates the location of the target.In the case of polar coordinates,the azimuth between the target and reference station is solved first,then the radial range between the target and reference station is figured out,finally the location of the target is obtained.Simultaneously,the simulation and comparison analysis are given in detail,and show that the polar solving method has the better fuzzy performance than that of rectangular coordinate.

  2. Mobility-Assisted on-Demand Routing Algorithm for MANETs in the Presence of Location Errors

    Science.gov (United States)

    Kwon, Sungoh

    2014-01-01

    We propose a mobility-assisted on-demand routing algorithm for mobile ad hoc networks in the presence of location errors. Location awareness enables mobile nodes to predict their mobility and enhances routing performance by estimating link duration and selecting reliable routes. However, measured locations intrinsically include errors in measurement. Such errors degrade mobility prediction and have been ignored in previous work. To mitigate the impact of location errors on routing, we propose an on-demand routing algorithm taking into account location errors. To that end, we adopt the Kalman filter to estimate accurate locations and consider route confidence in discovering routes. Via simulations, we compare our algorithm and previous algorithms in various environments. Our proposed mobility prediction is robust to the location errors. PMID:24959628

  3. Mobility-Assisted on-Demand Routing Algorithm for MANETs in the Presence of Location Errors

    Directory of Open Access Journals (Sweden)

    Trung Kien Vu

    2014-01-01

    Full Text Available We propose a mobility-assisted on-demand routing algorithm for mobile ad hoc networks in the presence of location errors. Location awareness enables mobile nodes to predict their mobility and enhances routing performance by estimating link duration and selecting reliable routes. However, measured locations intrinsically include errors in measurement. Such errors degrade mobility prediction and have been ignored in previous work. To mitigate the impact of location errors on routing, we propose an on-demand routing algorithm taking into account location errors. To that end, we adopt the Kalman filter to estimate accurate locations and consider route confidence in discovering routes. Via simulations, we compare our algorithm and previous algorithms in various environments. Our proposed mobility prediction is robust to the location errors.

  4. An improved cut-and-solve algorithm for the single-source capacitated facility location problem

    DEFF Research Database (Denmark)

    Gadegaard, Sune Lauth; Klose, Andreas; Nielsen, Lars Relund

    2017-01-01

    In this paper, we present an improved cut-and-solve algorithm for the single-source capacitated facility location problem. The algorithm consists of three phases. The first phase strengthens the integer program by a cutting plane algorithm to obtain a tight lower bound. The second phase uses a two...

  5. An Optimal Bifactor Approximation Algorithm for the Metric Uncapacitated Facility Location Problem

    NARCIS (Netherlands)

    Byrka, J.; Aardal, K.I.

    2010-01-01

    We obtain a 1.5-approximation algorithm for the metric uncapacitated facility location (UFL) problem, which improves on the previously best known 1.52-approximation algorithm by Mahdian, Ye, and Zhang. Note that the approximability lower bound by Guha and Khuller is 1.463 . . . . An algorithm is a (

  6. Constrained total least squares algorithm for passive location based on bearing-only measurements

    Institute of Scientific and Technical Information of China (English)

    WANG Ding; ZHANG Li; WU Ying

    2007-01-01

    The constrained total least squares algorithm for the passive location is presented based on the bearing-only measurements in this paper. By this algorithm the non-linear measurement equations are firstly transformed into linear equations and the effect of the measurement noise on the linear equation coefficients is analyzed,therefore the problem of the passive location can be considered as the problem of constrained total least squares, then the problem is changed into the optimized question without restraint which can be solved by the Newton algorithm, and finally the analysis of the location accuracy is given. The simulation results prove that the new algorithm is effective and practicable.

  7. Application of the Goertzel’s algorithm in the airgap mixed eccentricity fault detection

    Directory of Open Access Journals (Sweden)

    Reljić Dejan

    2015-01-01

    Full Text Available In this paper, a suitable method for the on-line detection of the airgap mixed eccentricity fault in a three-phase cage induction motor has been proposed. The method is based on a Motor Current Signature Analysis (MCSA approach, a technique that is often used for an induction motor condition monitoring and fault diagnosis. It is based on the spectral analysis of the stator line current signal and the frequency identification of specific components, which are created as a result of motor faults. The most commonly used method for the current signal spectral analysis is based on the Fast Fourier transform (FFT. However, due to the complexity and memory demands, the FFT algorithm is not always suitable for real-time systems. Instead of the whole spectrum analysis, this paper suggests only the spectral analysis on the expected airgap fault frequencies employing the Goertzel’s algorithm to predict the magnitude of these frequency components. The method is simple and can be implemented in real-time airgap mixed eccentricity monitoring systems without much computational effort. A low-cost data acquisition system, supported by the LabView software, has been used for the hardware and software implementation of the proposed method. The method has been validated by the laboratory experiments on both the line-connected and the inverter-fed three-phase fourpole cage induction motor operated at the rated frequency and under constant load at a few different values. In addition, the results of the proposed method have been verified through the motor’s vibration signal analysis. [Projekat Ministarstva nauke Republike Srbije, br. III42004

  8. Comparison of optimized algorithms in facility location allocation problems with different distance measures

    Science.gov (United States)

    Kumar, Rakesh; Chandrawat, Rajesh Kumar; Garg, B. P.; Joshi, Varun

    2017-07-01

    Opening the new firm or branch with desired execution is very relevant to facility location problem. Along the lines to locate the new ambulances and firehouses, the government desires to minimize average response time for emergencies from all residents of cities. So finding the best location is biggest challenge in day to day life. These type of problems were named as facility location problems. A lot of algorithms have been developed to handle these problems. In this paper, we review five algorithms that were applied to facility location problems. The significance of clustering in facility location problems is also presented. First we compare Fuzzy c-means clustering (FCM) algorithm with alternating heuristic (AH) algorithm, then with Particle Swarm Optimization (PSO) algorithms using different type of distance function. The data was clustered with the help of FCM and then we apply median model and min-max problem model on that data. After finding optimized locations using these algorithms we find the distance from optimized location point to the demanded point with different distance techniques and compare the results. At last, we design a general example to validate the feasibility of the five algorithms for facilities location optimization, and authenticate the advantages and drawbacks of them.

  9. New optimal algorithm of data association for multi-passive-sensor location system

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li; HE You; ZHANG WeiHua

    2007-01-01

    In dense target and false detection scenario of four time difference of arrival (TDOA)for multi-passive-sensor location system, the global optimal data association algorithm has to be adopted. In view of the heavy calculation burden of the traditional optimal assignment algorithm, this paper proposes a new global optimal assignment algorithm and a 2-stage association algorithm based on a statistic test.Compared with the traditional optimal algorithm, the new optimal algorithm avoids the complicated operations for finding the target position before we calculate association cost; hence, much of the procedure time is saved. In the 2-stage association algorithm, a large number of false location points are eliminated from candidate associations in advance. Therefore, the operation is further decreased, and the correct data association probability is improved in varying degrees. Both the complexity analyses and simulation results can verify the effectiveness of the new algorithms.

  10. Genetic algorithms for dipole location of fetal magnetocardiography.

    Science.gov (United States)

    Escalona-Vargas, D; Murphy, P; Lowery, C L; Eswaran, H

    2016-08-01

    In this paper, we explore the use of Maximum Likelihood (ML) method with Genetic Algorithms (GA) as global optimization procedure for source reconstruction in fetal magnetocardiography (fMCG) data. A multiple equivalent current dipole (ECD) model was used for sources active in different time samples. Inverse solutions across time were obtained for a single-dipole approximation to estimate the trajectory of the dipole position. We compared the GA and SIMPLEX methods in a simulation environment under noise conditions. Methods are applied on a real fMCG data. Results show robust estimators of the cardiac sources when GA is used as optimization technique.

  11. Support vector machine based fault classification and location of a long transmission line

    Directory of Open Access Journals (Sweden)

    Papia Ray

    2016-09-01

    Full Text Available This paper investigates support vector machine based fault type and distance estimation scheme in a long transmission line. The planned technique uses post fault single cycle current waveform and pre-processing of the samples is done by wavelet packet transform. Energy and entropy are obtained from the decomposed coefficients and feature matrix is prepared. Then the redundant features from the matrix are taken out by the forward feature selection method and normalized. Test and train data are developed by taking into consideration variables of a simulation situation like fault type, resistance path, inception angle, and distance. In this paper 10 different types of short circuit fault are analyzed. The test data are examined by support vector machine whose parameters are optimized by particle swarm optimization method. The anticipated method is checked on a 400 kV, 300 km long transmission line with voltage source at both the ends. Two cases were examined with the proposed method. The first one is fault very near to both the source end (front and rear and the second one is support vector machine with and without optimized parameter. Simulation result indicates that the anticipated method for fault classification gives high accuracy (99.21% and least fault distance estimation error (0.29%.

  12. DEVELOPMENT AND TESTING OF FAULT-DIAGNOSIS ALGORITHMS FOR REACTOR PLANT SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Grelle, Austin L.; Park, Young S.; Vilim, Richard B.

    2016-06-26

    Argonne National Laboratory is further developing fault diagnosis algorithms for use by the operator of a nuclear plant to aid in improved monitoring of overall plant condition and performance. The objective is better management of plant upsets through more timely, informed decisions on control actions with the ultimate goal of improved plant safety, production, and cost management. Integration of these algorithms with visual aids for operators is taking place through a collaboration under the concept of an operator advisory system. This is a software entity whose purpose is to manage and distill the enormous amount of information an operator must process to understand the plant state, particularly in off-normal situations, and how the state trajectory will unfold in time. The fault diagnosis algorithms were exhaustively tested using computer simulations of twenty different faults introduced into the chemical and volume control system (CVCS) of a pressurized water reactor (PWR). The algorithms are unique in that each new application to a facility requires providing only the piping and instrumentation diagram (PID) and no other plant-specific information; a subject-matter expert is not needed to install and maintain each instance of an application. The testing approach followed accepted procedures for verifying and validating software. It was shown that the code satisfies its functional requirement which is to accept sensor information, identify process variable trends based on this sensor information, and then to return an accurate diagnosis based on chains of rules related to these trends. The validation and verification exercise made use of GPASS, a one-dimensional systems code, for simulating CVCS operation. Plant components were failed and the code generated the resulting plant response. Parametric studies with respect to the severity of the fault, the richness of the plant sensor set, and the accuracy of sensors were performed as part of the validation

  13. Robust Fault-Tolerant Control for Satellite Attitude Stabilization Based on Active Disturbance Rejection Approach with Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Fei Song

    2014-01-01

    Full Text Available This paper proposed a robust fault-tolerant control algorithm for satellite stabilization based on active disturbance rejection approach with artificial bee colony algorithm. The actuating mechanism of attitude control system consists of three working reaction flywheels and one spare reaction flywheel. The speed measurement of reaction flywheel is adopted for fault detection. If any reaction flywheel fault is detected, the corresponding fault flywheel is isolated and the spare reaction flywheel is activated to counteract the fault effect and ensure that the satellite is working safely and reliably. The active disturbance rejection approach is employed to design the controller, which handles input information with tracking differentiator, estimates system uncertainties with extended state observer, and generates control variables by state feedback and compensation. The designed active disturbance rejection controller is robust to both internal dynamics and external disturbances. The bandwidth parameter of extended state observer is optimized by the artificial bee colony algorithm so as to improve the performance of attitude control system. A series of simulation experiment results demonstrate the performance superiorities of the proposed robust fault-tolerant control algorithm.

  14. A New Algorithm of Online Stator Faults Diagnosis of Three-Phase Induction Motors Using Duty Ratios of Half-Period Frequencies According to Phase Angle Changes

    Directory of Open Access Journals (Sweden)

    Go YoungJin

    2016-01-01

    Full Text Available The causes of faults of induction motors are largely categorized into bearing fault, which causes a mechanical fault, and stator fault and rotor fault, which cause an electrical fault. A stator fault among these faults, which causes an electrical fault, occurs due to the breakdown of insulation, meaning the stator is directly connected with the power supply, and the direct connection is a direct cause of a major accident. For this reason, many studies are being performed to detect the faults. This paper explained the effects of a negative sequence on phase angle change by analyzing the effects of the existing negative sequence on the d-q transform of Park’s vector approach. This paper suggested a new algorithm that identifies the causes of stator faults with the use of the change in the duty ratio of the half-period frequency of the frequency when a phase angle change occurs at that moment.

  15. Iterative optimization algorithm with parameter estimation for the ambulance location problem.

    Science.gov (United States)

    Kim, Sun Hoon; Lee, Young Hoon

    2016-12-01

    The emergency vehicle location problem to determine the number of ambulance vehicles and their locations satisfying a required reliability level is investigated in this study. This is a complex nonlinear issue involving critical decision making that has inherent stochastic characteristics. This paper studies an iterative optimization algorithm with parameter estimation to solve the emergency vehicle location problem. In the suggested algorithm, a linear model determines the locations of ambulances, while a hypercube simulation is used to estimate and provide parameters regarding ambulance locations. First, we suggest an iterative hypercube optimization algorithm in which interaction parameters and rules for the hypercube and optimization are identified. The interaction rules employed in this study enable our algorithm to always find the locations of ambulances satisfying the reliability requirement. We also propose an iterative simulation optimization algorithm in which the hypercube method is replaced by a simulation, to achieve computational efficiency. The computational experiments show that the iterative simulation optimization algorithm performs equivalently to the iterative hypercube optimization. The suggested algorithms are found to outperform existing algorithms suggested in the literature.

  16. Determining the Location and Magnitude of Basin and Range and Laramide Faulting, Southern Nevada

    Science.gov (United States)

    Brundrett, C. E.; Lamb, M. A.; Beard, S.

    2014-12-01

    Southern Nevada records two recent periods of deformation; the Laramide orogeny and Basin and Range extension. Our research focuses on these events to understand the history of faulting in this area and the resulting landscape. First, we have advanced an on-going research project in the Lake Mead region of Nevada, which was deformed by extension that began around 17 Ma. We are currently working in the White Basin, near Lake Mead. The White Basin is comprised of the Lovell Wash Member, ~14-12 Ma, of the Horse Spring Formation. The Lovell Wash Member contains siliciclastic and carbonate units that vary laterally and vertically throughout this area. This is a change from the fairly homogenous Bitter Ridge Limestone Member below and suggests a change in the style of faulting. To determine the faulting history, we mapped out marker beds, focusing on tuffs and limestone beds that form continuous, well-exposed outcrops in the area. We found abrupt stratigraphic thickening of ~50% across faults, documenting syndepositional faulting. We used dated tuffs to determine that this faulting developed from ~13.7-13.2 Ma. Secondly, we are working on a Laramide uplift project. We are testing the hypothesis that an area in the Kingman Uplift region was deformed by a Laramide age fault, prior to Miocene extensional deformation. We are using U-Th/He Apatite and K-Spar Multiple Diffusion Domain thermochronology, to determine the cooling histories of rocks on either side of the proposed fault. Both of these on-going research projects highlight the complex geology that is found in the Basin and Range province in the United States. Understanding this complex geology will help answer questions about the timing, driving forces, and processes associated with extensional and compressional events.

  17. Research of converter transformer fault diagnosis based on improved PSO-BP algorithm

    Science.gov (United States)

    Long, Qi; Guo, Shuyong; Li, Qing; Sun, Yong; Li, Yi; Fan, Youping

    2017-09-01

    To overcome those disadvantages that BP (Back Propagation) neural network and conventional Particle Swarm Optimization (PSO) converge at the global best particle repeatedly in early stage and is easy trapped in local optima and with low diagnosis accuracy when being applied in converter transformer fault diagnosis, we come up with the improved PSO-BP neural network to improve the accuracy rate. This algorithm improves the inertia weight Equation by using the attenuation strategy based on concave function to avoid the premature convergence of PSO algorithm and Time-Varying Acceleration Coefficient (TVAC) strategy was adopted to balance the local search and global search ability. At last the simulation results prove that the proposed approach has a better ability in optimizing BP neural network in terms of network output error, global searching performance and diagnosis accuracy.

  18. Optimal Location of Static Var Compensator Using Bat Algorithm for the Improvement of Voltage Profile

    Directory of Open Access Journals (Sweden)

    D. Venugopal

    2015-04-01

    Full Text Available This paper proposes optimal location of FACTS devices in power system using Evolutionary algorithms. The location of FACTS controllers, their type and rated values are optimized simultaneously by using the proposed algorithm. From the FACTS devices family, shunt device Static Var Compensator (SVC is considered. The proposed BAT algorithm is a very effective method for the optimal choice and placement of SVC device to improve the Voltage profile of power systems. The proposed algorithm has been applied to IEEE 30 bus system.

  19. Fault detection and isolation for complex system

    Science.gov (United States)

    Jing, Chan Shi; Bayuaji, Luhur; Samad, R.; Mustafa, M.; Abdullah, N. R. H.; Zain, Z. M.; Pebrianti, Dwi

    2017-07-01

    Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and design a Fault Detection and Isolation algorithm. The proposed method for the fault identification is using hybrid technique that combines Kalman filter and Artificial Neural Network (ANN). The Kalman filter is able to recognize the data from the sensors of the system and indicate the fault of the system in the sensor reading. Error prediction is based on the fault magnitude and the time occurrence of fault. Additionally, Artificial Neural Network (ANN) is another algorithm used to determine the type of fault and isolate the fault in the system.

  20. Shallow-depth location and geometry of the Piedmont Reverse splay of the Hayward Fault, Oakland, California

    Science.gov (United States)

    Catchings, Rufus D.; Goldman, Mark R.; Trench, David; Buga, Michael; Chan, Joanne H.; Criley, Coyn J.; Strayer, Luther M.

    2017-04-18

    The Piedmont Thrust Fault, herein referred to as the Piedmont Reverse Fault (PRF), is a splay of the Hayward Fault that trends through a highly populated area of the City of Oakland, California (fig. 1A). Although the PRF is unlikely to generate a large-magnitude earthquake, slip on the PRF or high-amplitude seismic energy traveling along the PRF may cause considerable damage during a large earthquake on the Hayward Fault. Thus, it is important to determine the exact location, geometry (particularly dip), and lateral extent of the PRF within the densely populated Oakland area. In the near surface, the PRF juxtaposes Late Cretaceous sandstone (of the Franciscan Complex Novato Quarry terrane of Blake and others, 1984) and an older Pleistocene alluvial fan unit along much of its mapped length (fig. 1B; Graymer and others, 1995). The strata of the Novato Quarry unit vary greatly in strike (NW, NE, and E), dip direction (NE, SW, E, and NW), dip angle (15° to 85°), and lithology (shale and sandstone), and the unit has been intruded by quartz diorite in places. Thus, it is difficult to infer the structure of the fault, particularly at depth, with conventional seismic reflection imaging methods. To better determine the location and shallow-depth geometry of the PRF, we used high-resolution seismic imaging methods described by Catchings and others (2014). These methods involve the use of coincident P-wave (compressional wave) and S-wave (shear wave) refraction tomography and reflection data, from which tomographic models of P- and S-wave velocity and P-wave reflection images are developed. In addition, the coincident P-wave velocity (VP) and S-wave velocity (VS) data are used to develop tomographic models of VP/VS ratios and Poisson’s ratio, which are sensitive to shallow-depth faulting and groundwater. In this study, we also compare measurements of Swave velocities determined from surface waves with those determined from refraction tomography. We use the combination of

  1. Brake fault diagnosis using Clonal Selection Classification Algorithm (CSCA – A statistical learning approach

    Directory of Open Access Journals (Sweden)

    R. Jegadeeshwaran

    2015-03-01

    Full Text Available In automobile, brake system is an essential part responsible for control of the vehicle. Any failure in the brake system impacts the vehicle's motion. It will generate frequent catastrophic effects on the vehicle cum passenger's safety. Thus the brake system plays a vital role in an automobile and hence condition monitoring of the brake system is essential. Vibration based condition monitoring using machine learning techniques are gaining momentum. This study is one such attempt to perform the condition monitoring of a hydraulic brake system through vibration analysis. In this research, the performance of a Clonal Selection Classification Algorithm (CSCA for brake fault diagnosis has been reported. A hydraulic brake system test rig was fabricated. Under good and faulty conditions of a brake system, the vibration signals were acquired using a piezoelectric transducer. The statistical parameters were extracted from the vibration signal. The best feature set was identified for classification using attribute evaluator. The selected features were then classified using CSCA. The classification accuracy of such artificial intelligence technique has been compared with other machine learning approaches and discussed. The Clonal Selection Classification Algorithm performs better and gives the maximum classification accuracy (96% for the fault diagnosis of a hydraulic brake system.

  2. Induction motor broken rotor bar fault location detection through envelope analysis of start-up current using Hilbert transform

    Science.gov (United States)

    Abd-el-Malek, Mina; Abdelsalam, Ahmed K.; Hassan, Ola E.

    2017-09-01

    Robustness, low running cost and reduced maintenance lead Induction Motors (IMs) to pioneerly penetrate the industrial drive system fields. Broken rotor bars (BRBs) can be considered as an important fault that needs to be early assessed to minimize the maintenance cost and labor time. The majority of recent BRBs' fault diagnostic techniques focus on differentiating between healthy and faulty rotor cage. In this paper, a new technique is proposed for detecting the location of the broken bar in the rotor. The proposed technique relies on monitoring certain statistical parameters estimated from the analysis of the start-up stator current envelope. The envelope of the signal is obtained using Hilbert Transformation (HT). The proposed technique offers non-invasive, fast computational and accurate location diagnostic process. Various simulation scenarios are presented that validate the effectiveness of the proposed technique.

  3. Compound faults detection of rolling element bearing based on the generalized demodulation algorithm under time-varying rotational speed

    Science.gov (United States)

    Zhao, Dezun; Li, Jianyong; Cheng, Weidong; Wen, Weigang

    2016-09-01

    Multi-fault detection of the rolling element bearing under time-varying rotational speed presents a challenging issue due to its complexity, disproportion and interaction. Computed order analysis (COA) is one of the most effective approaches to remove the influences of speed fluctuation, and detect all the features of multi-fault. However, many interference components in the envelope order spectrum may lead to false diagnosis results, in addition, the deficiencies of computational accuracy and efficiency also cannot be neglected. To address these issues, a novel method for compound faults detection of rolling element bearing based on the generalized demodulation (GD) algorithm is proposed in this paper. The main idea of the proposed method is to exploit the unique property of the generalized demodulation algorithm in transforming an interested instantaneous frequency trajectory of compound faults bearing signal into a line paralleling to the time axis, and then the FFT algorithm can be directly applied to the transformed signal. This novel method does not need angular resampling algorithm which is the key step of the computed order analysis, and is hence free from the deficiencies of computational error and efficiency. On the other hand, it only acts on the instantaneous fault characteristic frequency trends in envelope signal of multi-fault bearing which include rich fault information, and is hence free from irrelevant items interferences. Both simulated and experimental faulty bearing signal analysis validate that the proposed method is effective and reliable on the compound faults detection of rolling element bearing under variable rotational speed conditions. The comprehensive comparison with the computed order analysis further shows that the proposed method produces higher accurate results in less computation time.

  4. Protection algorithm for a wind turbine generator based on positive- and negative-sequence fault components

    DEFF Research Database (Denmark)

    Zheng, Tai-Ying; Cha, Seung-Tae; Crossley, Peter A.;

    2011-01-01

    A protection relay for a wind turbine generator (WTG) based on positive- and negative-sequence fault components is proposed in the paper. The relay uses the magnitude of the positive-sequence component in the fault current to detect a fault on a parallel WTG, connected to the same power collection...... feeder, or a fault on an adjacent feeder; but for these faults, the relay remains stable and inoperative. A fault on the power collection feeder or a fault on the collection bus, both of which require an instantaneous tripping response, are distinguished from an inter-tie fault or a grid fault, which...

  5. Joint Three-dimensional Location Algorithm for Airborne Interferometric SAR System

    Directory of Open Access Journals (Sweden)

    Mao Yong-fei

    2013-03-01

    Full Text Available Joint three-dimensional location algorithm aims to get the north, east and height coordinates of each pixel in several adjacent Interferometric Synthetic Aperture Radar (InSAR scenes simultaneously. Joint calibration is a key procedure to achieve an accurate three-dimensional location. It can ensure the continuity of three-dimensional location among adjacent scenes, and achieve the location of large areas with few Ground Control Points (GCPs by using Tie Points (TPs. In this paper, a new joint calibration algorithm for airborne interferometric SAR is proposed. It calibrates north, east and height coordinates simultaneously. It employs weighted optimization method to carry out calibration, and introduces weights to calibration to discriminate GCPs and TPs with different coherences and locations. The experimental results on airborne InSAR data show that the three-dimensional location accuracy by using the proposed calibration algorithm is better than that by the traditional method.

  6. Fine-scale delineation of the location of and relative ground shaking within the San Andreas Fault zone at San Andreas Lake, San Mateo County, California

    Science.gov (United States)

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Prentice, C.S.; Sickler, R.R.

    2013-01-01

    The San Francisco Public Utilities Commission is seismically retrofitting the water delivery system at San Andreas Lake, San Mateo County, California, where the reservoir intake system crosses the San Andreas Fault (SAF). The near-surface fault location and geometry are important considerations in the retrofit effort. Because the SAF trends through highly distorted Franciscan mélange and beneath much of the reservoir, the exact trace of the 1906 surface rupture is difficult to determine from surface mapping at San Andreas Lake. Based on surface mapping, it also is unclear if there are additional fault splays that extend northeast or southwest of the main surface rupture. To better understand the fault structure at San Andreas Lake, the U.S. Geological Survey acquired a series of seismic imaging profiles across the SAF at San Andreas Lake in 2008, 2009, and 2011, when the lake level was near historical lows and the surface traces of the SAF were exposed for the first time in decades. We used multiple seismic methods to locate the main 1906 rupture zone and fault splays within about 100 meters northeast of the main rupture zone. Our seismic observations are internally consistent, and our seismic indicators of faulting generally correlate with fault locations inferred from surface mapping. We also tested the accuracy of our seismic methods by comparing our seismically located faults with surface ruptures mapped by Schussler (1906) immediately after the April 18, 1906 San Francisco earthquake of approximate magnitude 7.9; our seismically determined fault locations were highly accurate. Near the reservoir intake facility at San Andreas Lake, our seismic data indicate the main 1906 surface rupture zone consists of at least three near-surface fault traces. Movement on multiple fault traces can have appreciable engineering significance because, unlike movement on a single strike-slip fault trace, differential movement on multiple fault traces may exert compressive and

  7. A New Node Deployment and Location Dispatch Algorithm for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2016-01-01

    Full Text Available Considering that deployment strategies for underwater sensor networks should contribute to fully connecting the networks, a Guaranteed Full Connectivity Node Deployment (GFCND algorithm is proposed in this study. The GFCND algorithm attempts to deploy the coverage nodes according to the greedy iterative strategy, after which the connectivity nodes are used to improve network connectivity and fully connect the whole network. Furthermore, a Location Dispatch Based on Command Nodes (LDBCN algorithm is proposed, which accomplishes the location adjustment of the common nodes with the help of the SINK node and the command nodes. The command nodes then dispatch the common nodes. Simulation results show that the GFCND algorithm achieves a comparatively large coverage percentage and a fully connected network; furthermore, the LDBCN algorithm helps the common nodes preserve more total energy when they reach their destination locations.

  8. A Diagnosis Method for Rotation Machinery Faults Based on Dimensionless Indexes Combined with K-Nearest Neighbor Algorithm

    Directory of Open Access Journals (Sweden)

    Jianbin Xiong

    2015-01-01

    Full Text Available It is difficult to well distinguish the dimensionless indexes between normal petrochemical rotating machinery equipment and those with complex faults. When the conflict of evidence is too big, it will result in uncertainty of diagnosis. This paper presents a diagnosis method for rotation machinery fault based on dimensionless indexes combined with K-nearest neighbor (KNN algorithm. This method uses a KNN algorithm and an evidence fusion theoretical formula to process fuzzy data, incomplete data, and accurate data. This method can transfer the signals from the petrochemical rotating machinery sensors to the reliability manners using dimensionless indexes and KNN algorithm. The input information is further integrated by an evidence synthesis formula to get the final data. The type of fault will be decided based on these data. The experimental results show that the proposed method can integrate data to provide a more reliable and reasonable result, thereby reducing the decision risk.

  9. A Fault-Tolerant Filtering Algorithm for SINS/DVL/MCP Integrated Navigation System

    Directory of Open Access Journals (Sweden)

    Xiaosu Xu

    2015-01-01

    Full Text Available The Kalman filter (KF, which recursively generates a relatively optimal estimate of underlying system state based upon a series of observed measurements, has been widely used in integrated navigation system. Due to its dependence on the accuracy of system model and reliability of observation data, the precision of KF will degrade or even diverge, when using inaccurate model or trustless data set. In this paper, a fault-tolerant adaptive Kalman filter (FTAKF algorithm for the integrated navigation system composed of a strapdown inertial navigation system (SINS, a Doppler velocity log (DVL, and a magnetic compass (MCP is proposed. The evolutionary artificial neural networks (EANN are used in self-learning and training of the intelligent data fusion algorithm. The proposed algorithm can significantly outperform the traditional KF in providing estimation continuously with higher accuracy and smoothing the KF outputs when observation data are inaccurate or unavailable for a short period. The experiments of the prototype verify the effectiveness of the proposed method.

  10. Multidistribution Center Location Based on Real-Parameter Quantum Evolutionary Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Huaixiao Wang

    2014-01-01

    Full Text Available To determine the multidistribution center location and the distribution scope of the distribution center with high efficiency, the real-parameter quantum-inspired evolutionary clustering algorithm (RQECA is proposed. RQECA is applied to choose multidistribution center location on the basis of the conventional fuzzy C-means clustering algorithm (FCM. The combination of the real-parameter quantum-inspired evolutionary algorithm (RQIEA and FCM can overcome the local search defect of FCM and make the optimization result independent of the choice of initial values. The comparison of FCM, clustering based on simulated annealing genetic algorithm (CSAGA, and RQECA indicates that RQECA has the same good convergence as CSAGA, but the search efficiency of RQECA is better than that of CSAGA. Therefore, RQECA is more efficient to solve the multidistribution center location problem.

  11. Location and Size of Distributed Generation Using a Modified Water Cycle Algorithm

    Directory of Open Access Journals (Sweden)

    John Edwin Candelo Becerra

    2015-06-01

    Full Text Available This paper presents a modified water cycle algorithm (WCA adapted to the problem of finding the location and size of distributed generation (DG. Power losses minimization was used as an objective function to compare the proposed algorithm with particle swarm optimization (PSO, the batinspired Algorithm (BA, and harmony search (HS. The test scenarios consisted of locating five to seven generators with a maximum real and reactive power in the 33-node and 69-node radial distribution networks. The experiment was designed to start iterations from the same initial population to identify the algorithms’ performance when searching for the best solutions. The results demonstrate that the modified WCA found the minimum power losses after locating and sizing distributed generators for most of the test scenarios. The algorithm converged quickly to the best solution and the solutions for all repetitions tested were close to the best for each case simulated.

  12. An approximation algorithm for a facility location problem with stochastic demands

    NARCIS (Netherlands)

    Bumb, A.F.; van Ommeren, Jan C.W.

    2004-01-01

    In this article we propose, for any $\\epsilon>0$, a $2(1+\\epsilon)$-approximation algorithm for a facility location problem with stochastic demands. This problem can be described as follows. There are a number of locations, where facilities may be opened and a number of demand points, where requests

  13. An approximation algorithm for a facility location problem with stochastic demands

    NARCIS (Netherlands)

    Bumb, A.F.; Ommeren, van J.C.W.

    2004-01-01

    In this article we propose, for any $\\epsilon>0$, a $2(1+\\epsilon)$-approximation algorithm for a facility location problem with stochastic demands. This problem can be described as follows. There are a number of locations, where facilities may be opened and a number of demand points, where requests

  14. One-End Data Method for Fault Position Estimate of Two-Parallel Transmission Lines

    Institute of Scientific and Technical Information of China (English)

    张庆超; 刘飞; 武永峰; 宋文南

    2003-01-01

    An accurate numerical algorithm for three-line fault involving different phases from each of two-parallel lines is presented. It is based on one-terminal voltage and current data. The loop and nodel equations comparing faulted phase to non-faulted phase of two-parallel lines are introduced in the fault location estimation modal, in which the faulted impedance of remote end is not involved. The effect of load flow and fault resistance on the accuracy of fault location are effectively eliminated, therefore an accurate algorithm of locating fault is derived. The algorithm is demonstrated by digital computer simulations and the results show that errors in locating fault are less than 1%.

  15. A Comparative Study of Genetic Algorithm Parameters for the Inverse Problem-based Fault Diagnosis of Liquid Rocket Propulsion Systems

    Institute of Scientific and Technical Information of China (English)

    Erfu Yang; Hongjun Xiang; Dongbing Gu; Zhenpeng Zhang

    2007-01-01

    Fault diagnosis of liquid rocket propulsion systems (LRPSs) is a very important issue in space launch activities particularly when manned space missions are accompanied, since the safety and reliability can be significantly enhanced by exploiting an efficient fault diagnosis system. Currently, inverse problem-based diagnosis has attracted a great deal of research attention in fault diagnosis domain. This methodology provides a new strategy to model-based fault diagnosis for monitoring the health of propulsion systems. To solve the inverse problems arising from the fault diagnosis of LRPSs, GAs have been adopted in recent years as the first and effective choice of available numerical optimization tools. However, the GA has many control parameters to be chosen in advance and there still lack sound theoretical tools to analyze the effects of these parameters on diagnostic performance analytically. In this paper a comparative study of the influence of GA parameters on diagnostic results is conducted by performing a series of numerical experiments. The objective of this study is to investigate the contribution of individual algorithm parameter to final diagnostic result and provide reasonable estimates for choosing GA parameters in the inverse problem-based fault diagnosis of LRPSs. Some constructive remarks are made in conclusion and will be helpful for the implementation of GA to the fault diagnosis practice of LRPSs in the future.

  16. Low complexity algorithms to independently and jointly estimate the location and range of targets using FMCW

    KAUST Repository

    Ahmed, Sajid

    2017-05-12

    The estimation of angular-location and range of a target is a joint optimization problem. In this work, to estimate these parameters, by meticulously evaluating the phase of the received samples, low complexity sequential and joint estimation algorithms are proposed. We use a single-input and multiple-output (SIMO) system and transmit frequency-modulated continuous-wave signal. In the proposed algorithm, it is shown that by ignoring very small value terms in the phase of the received samples, fast-Fourier-transform (FFT) and two-dimensional FFT can be exploited to estimate these parameters. Sequential estimation algorithm uses FFT and requires only one received snapshot to estimate the angular-location. Joint estimation algorithm uses two-dimensional FFT to estimate the angular-location and range of the target. Simulation results show that joint estimation algorithm yields better mean-squared-error (MSE) for the estimation of angular-location and much lower run-time compared to conventional MUltiple SIgnal Classification (MUSIC) algorithm.

  17. Accurate location estimation of moving object with energy constraint & adaptive update algorithms to save data

    CERN Document Server

    Semwal, Vijay Bhaskar; Bhaskar, Vinay S; Sati, Meenakshi

    2011-01-01

    In research paper "Accurate estimation of the target location of object with energy constraint & Adaptive Update Algorithms to Save Data" one of the central issues in sensor networks is track the location, of moving object which have overhead of saving data, an accurate estimation of the target location of object with energy constraint .We do not have any mechanism which control and maintain data .The wireless communication bandwidth is also very limited. Some field which is using this technique are flood and typhoon detection, forest fire detection, temperature and humidity and ones we have these information use these information back to a central air conditioning and ventilation system. In this research paper, we propose protocol based on the prediction and adaptive based algorithm which is using less sensor node reduced by an accurate estimation of the target location. we are using minimum three sensor node to get the accurate position .We can extend it upto four or five to find more accurate location ...

  18. Fault Detection of Roller-Bearings Using Signal Processing and Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Dae-Ho Kwak

    2013-12-01

    Full Text Available This study presents a fault detection of roller bearings through signal processing and optimization techniques. After the occurrence of scratch-type defects on the inner race of bearings, variations of kurtosis values are investigated in terms of two different data processing techniques: minimum entropy deconvolution (MED, and the Teager-Kaiser Energy Operator (TKEO. MED and the TKEO are employed to qualitatively enhance the discrimination of defect-induced repeating peaks on bearing vibration data with measurement noise. Given the perspective of the execution sequence of MED and the TKEO, the study found that the kurtosis sensitivity towards a defect on bearings could be highly improved. Also, the vibration signal from both healthy and damaged bearings is decomposed into multiple intrinsic mode functions (IMFs, through empirical mode decomposition (EMD. The weight vectors of IMFs become design variables for a genetic algorithm (GA. The weights of each IMF can be optimized through the genetic algorithm, to enhance the sensitivity of kurtosis on damaged bearing signals. Experimental results show that the EMD-GA approach successfully improved the resolution of detectability between a roller bearing with defect, and an intact system.

  19. FAULT-TOLERANCE AWARE MULTI OBJECTIVE SCHEDULING ALGORITHM FOR TASK SCHEDULING IN COMPUTATIONAL GRID

    Directory of Open Access Journals (Sweden)

    Dinesh Prasad Sahu

    2015-07-01

    Full Text Available Computational Grid (CG creates a large heterogeneous and distributed paradigm to manage and execute the applications which are computationally intensive. In grid scheduling tasks are assigned to the proper processors in the grid system to for its execution by considering the execution policy and the optimization objectives. In this paper, makespan and the faulttolerance of the computational nodes of the grid which are the two important parameters for the task execution, are considered and tried to optimize it. As the grid scheduling is considered to be NP-Hard, so a meta-heuristics evolutionary based techniques are often used to find a solution for this. We have proposed a NSGA II for this purpose. The performance estimation of the proposed Fault tolerance Aware NSGA II (FTNSGA II has been done by writing program in Matlab. The simulation results evaluates the performance of the all proposed algorithm and the results of proposed model is compared with existing model Min-Min and Max-Min algorithm which proves effectiveness of the model.

  20. Robust Optimization Model and Algorithm for Railway Freight Center Location Problem in Uncertain Environment

    Directory of Open Access Journals (Sweden)

    Xing-cai Liu

    2014-01-01

    Full Text Available Railway freight center location problem is an important issue in railway freight transport programming. This paper focuses on the railway freight center location problem in uncertain environment. Seeing that the expected value model ignores the negative influence of disadvantageous scenarios, a robust optimization model was proposed. The robust optimization model takes expected cost and deviation value of the scenarios as the objective. A cloud adaptive clonal selection algorithm (C-ACSA was presented. It combines adaptive clonal selection algorithm with Cloud Model which can improve the convergence rate. Design of the code and progress of the algorithm were proposed. Result of the example demonstrates the model and algorithm are effective. Compared with the expected value cases, the amount of disadvantageous scenarios in robust model reduces from 163 to 21, which prove the result of robust model is more reliable.

  1. ANÁLISIS EN EL PLANO R-X PARA LOCALIZAR FALLAS DE ALTA IMPEDANCIA R-X AXIS ANALYSIS TO LOCATE HIGH IMPEDANCE FAULTS

    Directory of Open Access Journals (Sweden)

    Germán Andrés Morales-España

    2009-08-01

    Full Text Available Este artículo propone una herramienta de análisis en el plano R-X de un sistema en falla para resolver el problema de localización de fallas en sistemas de potencia. La herramienta permite localizar todo tipo de fallas incluidas las de alta impedancia y fallas en sistemas con sobrecarga. Metodológicamente, se analiza el plano R-X de la impedancia aparente de las fases involucradas en la falla, y utilizando interpolación bidimensional se logra la ubicación de la falla a partir de curvas de distancia previamente obtenidas del sistema mediante simulación. Como resultados se presentan pruebas en un sistema de referencia sometido a los cuatro tipos de falla con diversas resistencias localizadas en diferentes sitios dentro del sistema, resaltándose la obtención de errores inferiores al 3% para fallas monofásicas y resistencia de falla hasta 1000[Ω].This paper proposes an analysis tool using the R-X axis of a faulted system to solve the fault location problem in power systems. The proposed approach allows locating all types of faults including high impedance ones and faults on overload systems. Methodologically, the apparent impedance R-X axis of faulted phases is analyzed and the fault is located from distance curves, previously obtained from the power system, by using two-dimensional interpolation. As results, tests of a reference system with four types of faults and different fault resistances located on different places on the system are presented. Errors are kept lower than 3% for single phase faults and fault resistances up to 1000[Ω].

  2. Fault Detection and Location by Static Switches in Microgrids Using Wavelet Transform and Adaptive Network-Based Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Ying-Yi Hong

    2014-04-01

    Full Text Available Microgrids are a highly efficient means of embedding distributed generation sources in a power system. However, if a fault occurs inside or outside the microgrid, the microgrid should be immediately disconnected from the main grid using a static switch installed at the secondary side of the main transformer near the point of common coupling (PCC. The static switch should have a reliable module implemented in a chip to detect/locate the fault and activate the breaker to open the circuit immediately. This paper proposes a novel approach to design this module in a static switch using the discrete wavelet transform (DWT and adaptive network-based fuzzy inference system (ANFIS. The wavelet coefficient of the fault voltage and the inference results of ANFIS with the wavelet energy of the fault current at the secondary side of the main transformer determine the control action (open or close of a static switch. The ANFIS identifies the faulty zones inside or outside the microgrid. The proposed method is applied to the first outdoor microgrid test bed in Taiwan, with a generation capacity of 360.5 kW. This microgrid test bed is studied using the real-time simulator eMegaSim developed by Opal-RT Technology Inc. (Montreal, QC, Canada. The proposed method based on DWT and ANFIS is implemented in a field programmable gate array (FPGA by using the Xilinx System Generator. Simulation results reveal that the proposed method is efficient and applicable in the real-time control environment of a power system.

  3. Sparse Representation of Transients Based on Wavelet Basis and Majorization-Minimization Algorithm for Machinery Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2014-01-01

    Full Text Available Vibration signals captured from faulty mechanical components are often associated with transients which are significant for machinery fault diagnosis. However, the existence of strong background noise makes the detection of transients a basis pursuit denoising (BPD problem, which is hard to be solved in explicit form. With sparse representation theory, this paper proposes a novel method for machinery fault diagnosis by combining the wavelet basis and majorization-minimization (MM algorithm. This method converts transients hidden in the noisy signal into sparse coefficients; thus the transients can be detected sparsely. Simulated study concerning cyclic transient signals with different signal-to-noise ratio (SNR shows that the effectiveness of this method. The comparison in the simulated study shows that the proposed method outperforms the method based on split augmented Lagrangian shrinkage algorithm (SALSA in convergence and detection effect. Application in defective gearbox fault diagnosis shows the fault feature of gearbox can be sparsely and effectively detected. A further comparison between this method and the method based on SALSA shows the superiority of the proposed method in machinery fault diagnosis.

  4. Locating non-volcanic tremor along the San Andreas Fault using a multiple array source imaging technique

    Science.gov (United States)

    Ryberg, T.; Haberland, C.H.; Fuis, G.S.; Ellsworth, W.L.; Shelly, D.R.

    2010-01-01

    Non-volcanic tremor (NVT) has been observed at several subduction zones and at the San Andreas Fault (SAF). Tremor locations are commonly derived by cross-correlating envelope-transformed seismic traces in combination with source-scanning techniques. Recently, they have also been located by using relative relocations with master events, that is low-frequency earthquakes that are part of the tremor; locations are derived by conventional traveltime-based methods. Here we present a method to locate the sources of NVT using an imaging approach for multiple array data. The performance of the method is checked with synthetic tests and the relocation of earthquakes. We also applied the method to tremor occurring near Cholame, California. A set of small-aperture arrays (i.e. an array consisting of arrays) installed around Cholame provided the data set for this study. We observed several tremor episodes and located tremor sources in the vicinity of SAF. During individual tremor episodes, we observed a systematic change of source location, indicating rapid migration of the tremor source along SAF. ?? 2010 The Authors Geophysical Journal International ?? 2010 RAS.

  5. Coverage of communication-based sensor nodes deployed location and energy efficient clustering algorithm in WSN

    Institute of Scientific and Technical Information of China (English)

    Xiang Gao; Yintang Yang; Duan Zhou

    2010-01-01

    An effective algorithm based on signal coverage of effective communication and local energy-consumption saving strategy is proposed for the application in wireless sensor networks.This algorithm consists of two sub-algorithms.One is the multi-hop partition subspaces clustering algorithm for ensuring local energybalanced consumption ascribed to the deployment from another algorithm of distributed locating deployment based on efficient communication coverage probability(DLD-ECCP).DLD-ECCP makes use of the characteristics of Markov chain and probabilistic optimization to obtain the optimum topology and number of sensor nodes.Through simulation,the relative data demonstrate the advantages of the proposed approaches on saving hardware resources and energy consumption of networks.

  6. A firefly algorithm for solving competitive location-design problem: a case study

    Science.gov (United States)

    Sadjadi, Seyed Jafar; Ashtiani, Milad Gorji; Ramezanian, Reza; Makui, Ahmad

    2016-07-01

    This paper aims at determining the optimal number of new facilities besides specifying both the optimal location and design level of them under the budget constraint in a competitive environment by a novel hybrid continuous and discrete firefly algorithm. A real-world application of locating new chain stores in the city of Tehran, Iran, is used and the results are analyzed. In addition, several examples have been solved to evaluate the efficiency of the proposed model and algorithm. The results demonstrate that the performed method provides good-quality results for the test problems.

  7. An Endosymbiotic Evolutionary Algorithm for the Hub Location-Routing Problem

    Directory of Open Access Journals (Sweden)

    Ji Ung Sun

    2015-01-01

    Full Text Available We consider a capacitated hub location-routing problem (HLRP which combines the hub location problem and multihub vehicle routing decisions. The HLRP not only determines the locations of the capacitated p-hubs within a set of potential hubs but also deals with the routes of the vehicles to meet the demands of customers. This problem is formulated as a 0-1 mixed integer programming model with the objective of the minimum total cost including routing cost, fixed hub cost, and fixed vehicle cost. As the HLRP has impractically demanding for the large sized problems, we develop a solution method based on the endosymbiotic evolutionary algorithm (EEA which solves hub location and vehicle routing problem simultaneously. The performance of the proposed algorithm is examined through a comparative study. The experimental results show that the proposed EEA can be a viable solution method for the supply chain network planning.

  8. Synthetic Optimization Model and Algorithm for Railway Freight Center Station Location and Wagon Flow Organization Problem

    Directory of Open Access Journals (Sweden)

    Xing-cai Liu

    2014-01-01

    Full Text Available The railway freight center stations location and wagon flow organization in railway transport are interconnected, and each of them is complicated in a large-scale rail network. In this paper, a two-stage method is proposed to optimize railway freight center stations location and wagon flow organization together. The location model is present with the objective to minimize the operation cost and fixed construction cost. Then, the second model of wagon flow organization is proposed to decide the optimal train service between different freight center stations. The location of the stations is the output of the first model. A heuristic algorithm that combined tabu search (TS with adaptive clonal selection algorithm (ACSA is proposed to solve those two models. The numerical results show the proposed solution method is effective.

  9. MABC: Power-Based Location Planning with a Modified ABC Algorithm for 5G Networks

    Directory of Open Access Journals (Sweden)

    Ruchi Sachan

    2017-01-01

    Full Text Available The modernization of smart devices has emerged in exponential growth in data traffic for a high-capacity wireless network. 5G networks must be capable of handling the excessive stress associated with resource allocation methods for its successful deployment. We also need to take care of the problem of causing energy consumption during the dense deployment process. The dense deployment results in severe power consumption because of fulfilling the demands of the increasing traffic load accommodated by base stations. This paper proposes an improved Artificial Bee Colony (ABC algorithm which uses the set of variables such as the transmission power and location of each base station (BS to improve the accuracy of localization of a user equipment (UE for the efficient energy consumption at BSes. To estimate the optimal configuration of BSes and reduce the power requirement of connected UEs, we enhanced the ABC algorithm, which is named a Modified ABC (MABC algorithm, and compared it with the latest work on Real-Coded Genetic Algorithm (RCGA and Differential Evolution (DE algorithm. The proposed algorithm not only determines the optimal coverage of underutilized BSes but also optimizes the power utilization considering the green networks. The performance comparisons of the modified algorithms were conducted to show that the proposed approach has better effectiveness than the legacy algorithms, ABC, RCGA, and DE.

  10. A global harmony search algorithm for finding optimal capacitor location and size in distribution networks

    Institute of Scientific and Technical Information of China (English)

    Reza Sirjani; Melkamu Gamene Bade

    2015-01-01

    Shunt capacitors are broadly applied in distribution systems to scale down power losses, improve voltage profile and boost system capacity. The amount of capacitors added and location of deployment in the system highly determine the advantage of compensation. A novel global harmony search (GHS) algorithm in parallel with the backward/ forward sweep power flow technique and radial harmonic power flow was used to investigate the optimal placement and sizing of capacitors in radial distribution networks for minimizing power loss and total cost by taking account load unbalancing, mutual coupling and harmonics. The optimal capacitor placement outcomes show that the GHS algorithm can reduce total power losses up to 60 kW and leads to more than 18% of cost saving. The results also demonstrate that the GHS algorithm is more effective in minimization of power loss and total costs compared with genetic algorithm (GA), particle swarm optimization (PSO) and harmony search (HS) algorithm. Moreover, the proposed algorithm converges within 800 iterations and is faster in terms of computational time and gives better performance in finding optimal capacitor location and size compared with other optimization techniques.

  11. A simple dual ascent algorithm for the multilevel facility location problem

    NARCIS (Netherlands)

    Bumb, Adriana; Kern, Walter; Goemans, Michel; Jansen, Klaus; Rolim, José D.P.; Trevisan, Luca

    2001-01-01

    We present a simple dual ascent method for the multilevel facility location problem which finds a solution within 6 times the optimum for the uncapacitated case and within 12 times the optimum for the capacitated one. The algorithm is deterministic and based on the primal-dual technique.

  12. An approximation algorithm for a facility location problem with inventories and stochastic demands

    NARCIS (Netherlands)

    Bumb, A.F.; van Ommeren, Jan C.W.; Megiddo, N.; Xu, Y.; Zhu, B.

    2005-01-01

    In this article we propose, for any $\\varepsilon$ > 0, a 2(1 + $\\varepsilon$)-approximation algorithm for a facility location problem with stochastic demands. At open facilities, inventory is kept such that arriving requests find a zero inventory with (at most) some pre-specified probability. The

  13. Optimal Location of Plate Damped Parts by Use of a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    J.-L. Marcelin

    1994-01-01

    Full Text Available Optimal damping of plates (or beams partially covered by viscoelastic constrained layers is presented. The design variables are the locations and the sizes of the damped parts. The objective function is a linear combination of the first modal damping factors calculated from a specific finite element analysis. The discrete design variable optimization problem is solved using a genetic algorithm.

  14. An Optimal Algorithm towards Successive Location Privacy in Sensor Networks with Dynamic Programming

    Science.gov (United States)

    Zhao, Baokang; Wang, Dan; Shao, Zili; Cao, Jiannong; Chan, Keith C. C.; Su, Jinshu

    In wireless sensor networks, preserving location privacy under successive inference attacks is extremely critical. Although this problem is NP-complete in general cases, we propose a dynamic programming based algorithm and prove it is optimal in special cases where the correlation only exists between p immediate adjacent observations.

  15. Location-Based Self-Adaptive Routing Algorithm for Wireless Sensor Networks in Home Automation

    Directory of Open Access Journals (Sweden)

    Hong SeungHo

    2011-01-01

    Full Text Available The use of wireless sensor networks in home automation (WSNHA is attractive due to their characteristics of self-organization, high sensing fidelity, low cost, and potential for rapid deployment. Although the AODVjr routing algorithm in IEEE 802.15.4/ZigBee and other routing algorithms have been designed for wireless sensor networks, not all are suitable for WSNHA. In this paper, we propose a location-based self-adaptive routing algorithm for WSNHA called WSNHA-LBAR. It confines route discovery flooding to a cylindrical request zone, which reduces the routing overhead and decreases broadcast storm problems in the MAC layer. It also automatically adjusts the size of the request zone using a self-adaptive algorithm based on Bayes' theorem. This makes WSNHA-LBAR more adaptable to the changes of the network state and easier to implement. Simulation results show improved network reliability as well as reduced routing overhead.

  16. Fault Diagnosis of Plunger Pump in Truck Crane Based on Relevance Vector Machine with Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Wenliao Du

    2013-01-01

    Full Text Available Promptly and accurately dealing with the equipment breakdown is very important in terms of enhancing reliability and decreasing downtime. A novel fault diagnosis method PSO-RVM based on relevance vector machines (RVM with particle swarm optimization (PSO algorithm for plunger pump in truck crane is proposed. The particle swarm optimization algorithm is utilized to determine the kernel width parameter of the kernel function in RVM, and the five two-class RVMs with binary tree architecture are trained to recognize the condition of mechanism. The proposed method is employed in the diagnosis of plunger pump in truck crane. The six states, including normal state, bearing inner race fault, bearing roller fault, plunger wear fault, thrust plate wear fault, and swash plate wear fault, are used to test the classification performance of the proposed PSO-RVM model, which compared with the classical models, such as back-propagation artificial neural network (BP-ANN, ant colony optimization artificial neural network (ANT-ANN, RVM, and support vectors, machines with particle swarm optimization (PSO-SVM, respectively. The experimental results show that the PSO-RVM is superior to the first three classical models, and has a comparative performance to the PSO-SVM, the corresponding diagnostic accuracy achieving as high as 99.17% and 99.58%, respectively. But the number of relevance vectors is far fewer than that of support vector, and the former is about 1/12–1/3 of the latter, which indicates that the proposed PSO-RVM model is more suitable for applications that require low complexity and real-time monitoring.

  17. Logistics Distribution Center Location Evaluation Based on Genetic Algorithm and Fuzzy Neural Network

    Science.gov (United States)

    Shao, Yuxiang; Chen, Qing; Wei, Zhenhua

    Logistics distribution center location evaluation is a dynamic, fuzzy, open and complicated nonlinear system, which makes it difficult to evaluate the distribution center location by the traditional analysis method. The paper proposes a distribution center location evaluation system which uses the fuzzy neural network combined with the genetic algorithm. In this model, the neural network is adopted to construct the fuzzy system. By using the genetic algorithm, the parameters of the neural network are optimized and trained so as to improve the fuzzy system’s abilities of self-study and self-adaptation. At last, the sampled data are trained and tested by Matlab software. The simulation results indicate that the proposed identification model has very small errors.

  18. Generation Approach of Error Locating Arrays to Locate One Interaction Fault%可定位单个错误的错误定位表的生成方法

    Institute of Scientific and Technical Information of China (English)

    周吴杰; 张德平

    2012-01-01

    Combinatorial testing is a practical approach to detect the faulty interactions among parameters or components in the system. Error locating arrays(ELAs) were defined by Mart'lnez C et al to detect and locate the faulty interactions in a system. We studied the structure of error locating arrays(ELAs) ,and proposed the new method to construct the special ELAs of locating one t -way fault interaction among the components. The special EL As cover every t -way interaction and any two interactions appear in different rows. So the covering strength of the special ELAs is in the range of t and t+1. We proposed the AETG-like algorithm to generate the special ELAS. Experiments results show the size of the special ELAs is less than the size of t+l-way covering arrays that may be the ELAs.%研究了组合测试错误定位表的结构.针对t维组合测试情形,在假设待测系统中只有一个强度小于等于t维的错误交互时,提出了一种新的构造这种特殊情形的错误定位表的方法.这种方法构造的错误定位表覆盖了所有的t维交互并且对任意两个t维交互,表中包含这两个t维交互的行的集合互不相同.最后提出了生成这种错误定位表的AETG-like算法.实验表明,用该方法构造出的错误定位表比用t+1维覆盖表构造的错误定位表其行数要少得多.

  19. Target Tracking Approximation Algorithms with Particle Filter Optimization and Fault-Tolerant Analysis in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    2012-05-01

    Full Text Available In order to process target tracking approximation with unknown motion state models beforehand in a two-dimensional field of binary proximity sensors, the algorithms based on cost functions of particle filters and near-linear curve simple optimization are proposed in this paper. Through moving target across detecting intersecting fields of sensor nodes sequentially, cost functions are introduced to solve target tracking approximation and velocity estimation which is not similar to traditional particle filters that rely on probabilistic assumptions about the motion states. Then a near-linear curve geometric approach is used to simplify and easily describe target trajectories that are below a certain error measure. Because there maybe some sensor nodes invalid in practice, so a fault-tolerant detection is applied to avoid the nodes’ reporting fault and also improve accuracy of tracking at the same time. The validity of our algorithms is demonstrated through simulation results.

  20. A Survey of Algorithms and Systems for Expert Location in Social Networks

    Science.gov (United States)

    Lappas, Theodoros; Liu, Kun; Terzi, Evimaria

    Given a particular task and a set of candidates, one often wants to identify the right expert (or set of experts) that can perform the given task. We call this problem the expert-location problem and we survey its different aspects as they arise in practice. For example, given the activities of candidates within a context (e.g., authoring a document, answering a question), we first describe methods for evaluating the level of expertise for each of them. Often, experts are organized in networks that correspond to social networks or organizational structures of companies. We next devote part of the chapter for describing algorithms that compute the expertise level of individuals by taking into account their position in such a network. Finally, complex tasks often require the collective expertise of more than one experts. In such cases, it is more realistic to require a team of experts that can collaborate towards a common goal. We describe algorithms that identify effective expert teams within a network of experts. The chapter is a survey of different algorithms for expertise evaluation and team identification. We highlight the basic algorithmic problems and give some indicative algorithms that have been developed in the literature. We conclude the chapter by providing a comprehensive overview of real-life systems for expert location.

  1. Comparative investigation of vibration and current monitoring for prediction of mechanical and electrical faults in induction motor based on multiclass-support vector machine algorithms

    Science.gov (United States)

    Gangsar, Purushottam; Tiwari, Rajiv

    2017-09-01

    This paper presents an investigation of vibration and current monitoring for effective fault prediction in induction motor (IM) by using multiclass support vector machine (MSVM) algorithms. Failures of IM may occur due to propagation of a mechanical or electrical fault. Hence, for timely detection of these faults, the vibration as well as current signals was acquired after multiple experiments of varying speeds and external torques from an experimental test rig. Here, total ten different fault conditions that frequently encountered in IM (four mechanical fault, five electrical fault conditions and one no defect condition) have been considered. In the case of stator winding fault, and phase unbalance and single phasing fault, different level of severity were also considered for the prediction. In this study, the identification has been performed of the mechanical and electrical faults, individually and collectively. Fault predictions have been performed using vibration signal alone, current signal alone and vibration-current signal concurrently. The one-versus-one MSVM has been trained at various operating conditions of IM using the radial basis function (RBF) kernel and tested for same conditions, which gives the result in the form of percentage fault prediction. The prediction performance is investigated for the wide range of RBF kernel parameter, i.e. gamma, and selected the best result for one optimal value of gamma for each case. Fault predictions has been performed and investigated for the wide range of operational speeds of the IM as well as external torques on the IM.

  2. An improved fault detection classification and location scheme based on wavelet transform and artificial neural network for six phase transmission line using single end data only.

    Science.gov (United States)

    Koley, Ebha; Verma, Khushaboo; Ghosh, Subhojit

    2015-01-01

    Restrictions on right of way and increasing power demand has boosted development of six phase transmission. It offers a viable alternative for transmitting more power, without major modification in existing structure of three phase double circuit transmission system. Inspite of the advantages, low acceptance of six phase system is attributed to the unavailability of a proper protection scheme. The complexity arising from large number of possible faults in six phase lines makes the protection quite challenging. The proposed work presents a hybrid wavelet transform and modular artificial neural network based fault detector, classifier and locator for six phase lines using single end data only. The standard deviation of the approximate coefficients of voltage and current signals obtained using discrete wavelet transform are applied as input to the modular artificial neural network for fault classification and location. The proposed scheme has been tested for all 120 types of shunt faults with variation in location, fault resistance, fault inception angles. The variation in power system parameters viz. short circuit capacity of the source and its X/R ratio, voltage, frequency and CT saturation has also been investigated. The result confirms the effectiveness and reliability of the proposed protection scheme which makes it ideal for real time implementation.

  3. Faults detection approach using PCA and SOM algorithm in PMSG-WT system

    Directory of Open Access Journals (Sweden)

    Mohamed Lamine FADDA

    2016-07-01

    Full Text Available In this paper, a new approach for faults detection in observable data system wind turbine - permanent magnet synchronous generator (WT-PMSG, the studying objective, illustrate the combination (SOM-PCA to build Multi-local-PCA models faults detection in system (WT-PMSG, the performance of the method suggested to faults detection in system data, finding good results in simulation experiment.

  4. Study on the model of single cable fault location based on zero sequence DC%基于零序直流原理的单分支故障电缆测距模型的研究

    Institute of Scientific and Technical Information of China (English)

    夏伟伟; 袁振海; 黄锋; 饶日嵩; 徐铮

    2011-01-01

    The conclusion that the linear relationship between the ratio of detective currents and the location of fault cable is drawn by studying the model of single fault cable location based on zero sequence DC, thereby the effect of the power grid voltage fluctuation and fault resistance on the detective current is eliminated. Considering that value of current is small and easy to be disturbed by external signals, a series of measures such as reducing earthing resistance and changing detective resistance are taken to improve the detective accuracy by the method of partial derivative of current ratio with respect to fault location. Based on this, the theory mentioned above is confirmed by simulations and experiments, which indicate the relations between the detective currents and various parameters of model of fault location cable and lay the foundation for further constructing algorithm of single cable fault location.%对近期提出的基于零序直流原理的单分支故障电缆测距模型做了理论分析,提出检测电流的比值与故障电缆距离之间的线性关系,从而消除了电网电压波动和故障电阻对检测电流的影响.考虑到检测电流值很小且容易受外部信号的干扰,进一步将电流比值对故障距离求偏导,指出了减小接地电阻和改变检测电阻值等提高检测精度的措施.在此基础上通过仿真和实验验证了上述理论,揭示了检测电流与故障电缆测距模型中各个参数之间的关系,为进一步构造单分支故障电缆测距算法奠定了基础.

  5. Actuator Location and Voltages Optimization for Shape Control of Smart Beams Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Georgios E. Stavroulakis

    2013-10-01

    Full Text Available This paper presents a numerical study on optimal voltages and optimal placement of piezoelectric actuators for shape control of beam structures. A finite element model, based on Timoshenko beam theory, is developed to characterize the behavior of the structure and the actuators. This model accounted for the electromechanical coupling in the entire beam structure, due to the fact that the piezoelectric layers are treated as constituent parts of the entire structural system. A hybrid scheme is presented based on great deluge and genetic algorithm. The hybrid algorithm is implemented to calculate the optimal locations and optimal values of voltages, applied to the piezoelectric actuators glued in the structure, which minimize the error between the achieved and the desired shape. Results from numerical simulations demonstrate the capabilities and efficiency of the developed optimization algorithm in both clamped−free and clamped−clamped beam problems are presented.

  6. Optimal Facility Location Model Based on Genetic Simulated Annealing Algorithm for Siting Urban Refueling Stations

    Directory of Open Access Journals (Sweden)

    Dawei Chen

    2015-01-01

    Full Text Available This paper analyzes the impact factors and principles of siting urban refueling stations and proposes a three-stage method. The main objective of the method is to minimize refueling vehicles’ detour time. The first stage aims at identifying the most frequently traveled road segments for siting refueling stations. The second stage focuses on adding additional refueling stations to serve vehicles whose demands are not directly satisfied by the refueling stations identified in the first stage. The last stage further adjusts and optimizes the refueling station plan generated by the first two stages. A genetic simulated annealing algorithm is proposed to solve the optimization problem in the second stage and the results are compared to those from the genetic algorithm. A case study is also conducted to demonstrate the effectiveness of the proposed method and algorithm. The results indicate the proposed method can provide practical and effective solutions that help planners and government agencies make informed refueling station location decisions.

  7. Fault Analysis of Analog Electronic Systems: Algorithms Based on Fuzzy Sets

    Science.gov (United States)

    1979-06-01

    Listing of the Input to the NOPAL 98 Fig. 4.1 Fault Isolation using a Fuzzy Measure 113 * Fig. 4.2 Simplified Diagram of Fault Isolation 123 Method...regions with the highest fuzzy memberships are added into the test data. A partial listing of the input to the NOPAL is given in Fig. 3.6.4. This program is

  8. A Genetic Algorithm for Locating the Multiscale Critical Slip Surface in Jointed Rock Mass Slopes

    Directory of Open Access Journals (Sweden)

    Qiang Xu

    2014-01-01

    Full Text Available The joints have great influence on the strength of jointed rock mass and lead to the multiscale, nonhomogeneous, and anisotropic characteristics. In order to consider these effects, a new model based on a genetic algorithm is proposed for locating the critical slip surface (CSS in jointed rock mass slope (JRMS from its stress field. A finite element method (FEM was employed to analyze the stress field. A method of calculating the mechanical persistence ratio (MPR was used. The calculated multiscale and anisotropic characteristics of the MPR were used in the fitness function of genetic algorithm (GA to calculate the factor of safety. The GA was used to solve optimization problems of JRMS stability. Some numerical examples were given. The results show that the multiscale and anisotropic characteristics of the MPR played an important role in locating the CSS in JRMS. The proposed model calculated the CSS and the factor of safety of the slope with satisfactory precision.

  9. Optimal Location and Sizing of UPQC in Distribution Networks Using Differential Evolution Algorithm

    Directory of Open Access Journals (Sweden)

    Seyed Abbas Taher

    2012-01-01

    Full Text Available Differential evolution (DE algorithm is used to determine optimal location of unified power quality conditioner (UPQC considering its size in the radial distribution systems. The problem is formulated to find the optimum location of UPQC based on an objective function (OF defined for improving of voltage and current profiles, reducing power loss and minimizing the investment costs considering the OF's weighting factors. Hence, a steady-state model of UPQC is derived to set in forward/backward sweep load flow. Studies are performed on two IEEE 33-bus and 69-bus standard distribution networks. Accuracy was evaluated by reapplying the procedures using both genetic (GA and immune algorithms (IA. Comparative results indicate that DE is capable of offering a nearer global optimal in minimizing the OF and reaching all the desired conditions than GA and IA.

  10. Toward a probabilistic acoustic emission source location algorithm: A Bayesian approach

    Science.gov (United States)

    Schumacher, Thomas; Straub, Daniel; Higgins, Christopher

    2012-09-01

    Acoustic emissions (AE) are stress waves initiated by sudden strain releases within a solid body. These can be caused by internal mechanisms such as crack opening or propagation, crushing, or rubbing of crack surfaces. One application for the AE technique in the field of Structural Engineering is Structural Health Monitoring (SHM). With piezo-electric sensors mounted to the surface of the structure, stress waves can be detected, recorded, and stored for later analysis. An important step in quantitative AE analysis is the estimation of the stress wave source locations. Commonly, source location results are presented in a rather deterministic manner as spatial and temporal points, excluding information about uncertainties and errors. Due to variability in the material properties and uncertainty in the mathematical model, measures of uncertainty are needed beyond best-fit point solutions for source locations. This paper introduces a novel holistic framework for the development of a probabilistic source location algorithm. Bayesian analysis methods with Markov Chain Monte Carlo (MCMC) simulation are employed where all source location parameters are described with posterior probability density functions (PDFs). The proposed methodology is applied to an example employing data collected from a realistic section of a reinforced concrete bridge column. The selected approach is general and has the advantage that it can be extended and refined efficiently. Results are discussed and future steps to improve the algorithm are suggested.

  11. A multi-objective imperialist competitive algorithm for a capacitated hub covering location problem

    Directory of Open Access Journals (Sweden)

    M. Mohammadi

    2011-01-01

    Full Text Available The hub location problem appears in a variety of applications, including airline systems, cargo delivery systems and telecommunication network design. Hub location problems deal with finding the location of hub facilities and the allocation of demand nodes to these located hub facilities. In this paper, a new model for the capacitated single allocation hub covering location problem is presented. Instead of using capacity constraints to limit the amount of flow received by the hubs, the second objective function is introduced to minimize service times in the hubs. The service time in the hubs includes the waiting time of received flows in a queue and the time to get services. Due to the NP-hardness of the problem, a new weight-based multi-objective imperialist competitive algorithm (MOICA is designed to find near-optimal solutions. To validate the performance of the proposed algorithm, the solutions obtained by the MOICA are compared by the exact solutions of the mathematical programming model.

  12. Model and algorithm for optimization of rescue center location of emergent catastrophe

    Institute of Scientific and Technical Information of China (English)

    WANG Ding-wei; ZHANG Guo-xiang

    2006-01-01

    The location of rescue centers is a key problem in optimal resource allocation and logistics in emergency response.We propose a mathematical model for rescue center location with the considerations of emergency occurrence probability,catastrophe diffusion function and rescue function.Because the catastrophe diffusion and rescue functions are both nonlinear and time-variable,it cannot be solved by common mathematical programming methods.We develop a heuristic embedded genetic algorithm for the special model solution.The computation based on a large number of examples with practical data has shown us satisfactory results.

  13. Indoor Location Algorithm Based on the Measurement of the Received Signal Strength

    Institute of Scientific and Technical Information of China (English)

    NI Wei; WANG Zong-xin

    2006-01-01

    The "distance-loss" model is amended by inserting a random distance-estimation variable.The estimation error is very small; thus,it does not change the log-normal distribution of the shadowing factor in the model.Then,an iterative method is introduced to reduce the influence of shadowing,and the location estimation based on the received signal strength will be improved.Simulations show that this algorithm is effective.

  14. Identifying Active Faults by Improving Earthquake Locations with InSAR Data and Bayesian Estimation: The 2004 Tabuk (Saudi Arabia) Earthquake Sequence

    KAUST Repository

    Xu, Wenbin

    2015-02-03

    A sequence of shallow earthquakes of magnitudes ≤5.1 took place in 2004 on the eastern flank of the Red Sea rift, near the city of Tabuk in northwestern Saudi Arabia. The earthquakes could not be well located due to the sparse distribution of seismic stations in the region, making it difficult to associate the activity with one of the many mapped faults in the area and thus to improve the assessment of seismic hazard in the region. We used Interferometric Synthetic Aperture Radar (InSAR) data from the European Space Agency’s Envisat and ERS‐2 satellites to improve the location and source parameters of the largest event of the sequence (Mw 5.1), which occurred on 22 June 2004. The mainshock caused a small but distinct ∼2.7  cm displacement signal in the InSAR data, which reveals where the earthquake took place and shows that seismic reports mislocated it by 3–16 km. With Bayesian estimation, we modeled the InSAR data using a finite‐fault model in a homogeneous elastic half‐space and found the mainshock activated a normal fault, roughly 70 km southeast of the city of Tabuk. The southwest‐dipping fault has a strike that is roughly parallel to the Red Sea rift, and we estimate the centroid depth of the earthquake to be ∼3.2  km. Projection of the fault model uncertainties to the surface indicates that one of the west‐dipping normal faults located in the area and oriented parallel to the Red Sea is a likely source for the mainshock. The results demonstrate how InSAR can be used to improve locations of moderate‐size earthquakes and thus to identify currently active faults.

  15. A Survey of Wireless Fair Queuing Algorithms with Location-Dependent Channel Errors

    Directory of Open Access Journals (Sweden)

    Anca VARGATU

    2011-01-01

    Full Text Available The rapid development of wireless networks has brought more and more attention to topics related to fair allocation of resources, creation of suitable algorithms, taking into account the special characteristics of wireless environment and insurance fair access to the transmission channel, with delay bound and throughput guaranteed. Fair allocation of resources in wireless networks requires significant challenges, because of errors that occur only in these networks, such as location-dependent and bursty channel errors. In wireless networks, frequently happens, because interference of radio waves, that a user experiencing bad radio conditions during a period of time, not to receive resources in that period. This paper analyzes some resource allocation algorithms for wireless networks with location dependent errors, specifying the base idea for each algorithm and the way how it works. The analyzed fair queuing algorithms differ by the way they treat the following aspects: how to select the flows which should receive additional services, how to allocate these resources, which is the proportion received by error free flows and how the flows affected by errors are compensated.

  16. Metaheuristic Algorithm for Solving Biobjective Possibility Planning Model of Location-Allocation in Disaster Relief Logistics

    Directory of Open Access Journals (Sweden)

    Farnaz Barzinpour

    2014-01-01

    Full Text Available Thousands of victims and millions of affected people are hurt by natural disasters every year. Therefore, it is essential to prepare proper response programs that consider early activities of disaster management. In this paper, a multiobjective model for distribution centers which are located and allocated periodically to the damaged areas in order to distribute relief commodities is offered. The main objectives of this model are minimizing the total costs and maximizing the least rate of the satisfaction in the sense of being fair while distributing the items. The model simultaneously determines the location of relief distribution centers and the allocation of affected areas to relief distribution centers. Furthermore, an efficient solution approach based on genetic algorithm has been developed in order to solve the proposed mathematical model. The results of genetic algorithm are compared with the results provided by simulated annealing algorithm and LINGO software. The computational results show that the proposed genetic algorithm provides relatively good solutions in a reasonable time.

  17. Using genetic algorithms to optimise current and future health planning - the example of ambulance locations

    Science.gov (United States)

    2010-01-01

    Background Ambulance response time is a crucial factor in patient survival. The number of emergency cases (EMS cases) requiring an ambulance is increasing due to changes in population demographics. This is decreasing ambulance response times to the emergency scene. This paper predicts EMS cases for 5-year intervals from 2020, to 2050 by correlating current EMS cases with demographic factors at the level of the census area and predicted population changes. It then applies a modified grouping genetic algorithm to compare current and future optimal locations and numbers of ambulances. Sets of potential locations were evaluated in terms of the (current and predicted) EMS case distances to those locations. Results Future EMS demands were predicted to increase by 2030 using the model (R2 = 0.71). The optimal locations of ambulances based on future EMS cases were compared with current locations and with optimal locations modelled on current EMS case data. Optimising the location of ambulance stations locations reduced the average response times by 57 seconds. Current and predicted future EMS demand at modelled locations were calculated and compared. Conclusions The reallocation of ambulances to optimal locations improved response times and could contribute to higher survival rates from life-threatening medical events. Modelling EMS case 'demand' over census areas allows the data to be correlated to population characteristics and optimal 'supply' locations to be identified. Comparing current and future optimal scenarios allows more nuanced planning decisions to be made. This is a generic methodology that could be used to provide evidence in support of public health planning and decision making. PMID:20109172

  18. Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Mariela Cerrada

    2015-09-01

    Full Text Available There are growing demands for condition-based monitoring of gearboxes, and techniques to improve the reliability, effectiveness and accuracy for fault diagnosis are considered valuable contributions. Feature selection is still an important aspect in machine learning-based diagnosis in order to reach good performance in the diagnosis system. The main aim of this research is to propose a multi-stage feature selection mechanism for selecting the best set of condition parameters on the time, frequency and time-frequency domains, which are extracted from vibration signals for fault diagnosis purposes in gearboxes. The selection is based on genetic algorithms, proposing in each stage a new subset of the best features regarding the classifier performance in a supervised environment. The selected features are augmented at each stage and used as input for a neural network classifier in the next step, while a new subset of feature candidates is treated by the selection process. As a result, the inherent exploration and exploitation of the genetic algorithms for finding the best solutions of the selection problem are locally focused. The Sensors 2015, 15 23904 approach is tested on a dataset from a real test bed with several fault classes under different running conditions of load and velocity. The model performance for diagnosis is over 98%.

  19. Hybrid Genetic Algorithm with Fuzzy Logic Controller for Obstacle Location-Allocation Problem

    Science.gov (United States)

    Taniguchi, Jyunichi; Wang, Xiaodong; Gen, Mitsuo; Yokota, Takao

    Location-allocation problem is known as one of the important problems faced in Industrial Engineering/Operations Research fields. One of important logistic tasks is transfer of manufactured products from plants to customers. If there is a need to supply products to large number of customers in a wide area, it is disadvantageous to deliver products from the only central distribution center or direct from plants. It is suitable to build up local distribution centers. In literature, different location models have been used according to characteristics of a distribution area. However, most of them related the location problem without obstacle. In this paper, an extended location-allocation problem with obstacles is considered. Since this problem is very complex and with many infeasible solutions, no direct method is effective to solve it, we propose a hybrid Genetic Algorithm (hGA) for effectively solving this problem. The proposed hGA combines two efficient methods based on Lagrangian relaxation and Dijkstra’s shortest path algorithm. To improve the performance of the proposed hGA, a Fuzzy Logic Controller (FLC) approach is also adopted to auto-tune the GA parameters.

  20. Quantification and assessment of fault uncertainty and risk using stochastic conditional simulations

    Institute of Scientific and Technical Information of China (English)

    LI Shuxing; Roussos Dimitrakopoulos

    2002-01-01

    The effect of geological uncertainty on the development and mining of underground coal deposits is a key issue for longwall mining, as the presence of faults generates substantial monetary losses. This paper develops a method for the conditional simulation of fault systems and uses the method to quantify and assess fault uncertainty. The method is based on the statistical modelling of fault attributes and the simulation of the locations of the centres of the fault traces. Fault locations are generated from the thinning of a Poisson process using a spatially correlated probability field. The proposed algorithm for simulating fault traces takes into account soft data such as geological interpretations and geomechanical data. The simulations generate realisations of fault populations that reproduce observed faults, honour the statistics of the fault attributes, and respect the constraints of soft data, providing the means to thereby model and assess the related fault uncertainty.

  1. High-precision differential earthquake location in 3-D models: evidence for a rheological barrier controlling the microseismicity at the Irpinia fault zone in southern Apennines

    Science.gov (United States)

    De Landro, Grazia; Amoroso, Ortensia; Stabile, Tony Alfredo; Matrullo, Emanuela; Lomax, Antony; Zollo, Aldo

    2015-12-01

    A non-linear, global-search, probabilistic, double-difference earthquake location technique is illustrated. The main advantages of this method are the determination of comprehensive and complete solutions through the probability density function (PDF), the use of differential arrival times as data and the possibility to use a 3-D velocity model both for absolute and double-difference locations, all of which help to obtain accurate differential locations in structurally complex geological media. The joint use of this methodology and an accurate differential time data set allowed us to carry out a high-resolution, earthquake location analysis, which helps to characterize the active fault geometries in the studied region. We investigated the recent microseismicity occurring at the Campanian-Lucanian Apennines in the crustal volume embedding the fault system that generated the 1980 MS 6.9 earthquake in Irpinia. In order to obtain highly accurate seismicity locations, we applied the method to the P and S arrival time data set from 1312 events (ML models optimized for the area under study. Both manually refined and cross-correlation refined absolute arrival times have been used. The refined seismicity locations show that the events occur in a volume delimited by the faults activated during the 1980 MS 6.9 Irpinia earthquake on subparallel, predominantly normal faults. We find an abrupt interruption of the seismicity across an SW-NE oriented structural discontinuity corresponding to a contact zone between different rheology rock formations (carbonate platform and basin residuals). This `barrier' appears to be located in the area bounded by the fault segments activated during the first (0 s) and the second (18 s) rupture episodes of the 1980s Irpinia earthquake. We hypothesize that this geometrical barrier could have played a key role during the 1980 Irpinia event, and possibly controlled the delayed times of activation of the two rupture segments.

  2. A hybrid algorithm for stochastic single-source capacitated facility location problem with service level requirements

    Directory of Open Access Journals (Sweden)

    Hosseinali Salemi

    2016-04-01

    Full Text Available Facility location models are observed in many diverse areas such as communication networks, transportation, and distribution systems planning. They play significant role in supply chain and operations management and are one of the main well-known topics in strategic agenda of contemporary manufacturing and service companies accompanied by long-lasting effects. We define a new approach for solving stochastic single source capacitated facility location problem (SSSCFLP. Customers with stochastic demand are assigned to set of capacitated facilities that are selected to serve them. It is demonstrated that problem can be transformed to deterministic Single Source Capacitated Facility Location Problem (SSCFLP for Poisson demand distribution. A hybrid algorithm which combines Lagrangian heuristic with adjusted mixture of Ant colony and Genetic optimization is proposed to find lower and upper bounds for this problem. Computational results of various instances with distinct properties indicate that proposed solving approach is efficient.

  3. A multi-objective location routing problem using imperialist competitive algorithm

    Directory of Open Access Journals (Sweden)

    Amir Mohammad Golmohammadi

    2016-06-01

    Full Text Available Nowadays, most manufacturing units try to locate their requirements and the depot vehicle routing in order to transport the goods at optimum cost. Needless to mention that the locations of the required warehouses influence on the performance of vehicle routing. In this paper, a mathematical programming model to optimize the storage location and vehicle routing are presented. The first objective function of the model minimizes the total cost associated with the transportation and storage, and the second objective function minimizes the difference distance traveled by vehicles. The study uses Imperialist Competitive Algorithm (ICA to solve the resulted problems in different sizes. The preliminary results have indicated that the proposed study has performed better than NSGA-II and PAES methods in terms of Quality metric and Spacing metric.

  4. The Location Algorithm of the Inclined License Plates Based on Mathematical Morphology and Orientation Field

    Institute of Scientific and Technical Information of China (English)

    LIANGDong; GAOJun; CAOWei; FUQizhong; ZHAOJing

    2003-01-01

    The license plate recognition (LPR), as an important measure of traffic controlling and information management, is being paid more and more attention. The location and detection of the inclined license plate is an important problem in the License Plate Recognition Sys-tem. But now most of the proposed location algorithms are based on the condition of the horizontal license. These methods don't work well on inclined license plate. At the same time, the method based on Hough Transform is pro-posed to detect the inclined angle of the license plate, but it has many limitations. In order to solve this problem,we propose a new method to locate the inclined plate region using Mathematical Morphology and Orientation Field. The algorithm consists of preprocessing, inclined an-gel detecting and license plate location modules. Firstly,we adopt the gray extension method to improve the ob-serving quality of the images and study the intrinsic char-acteristic of texture and shape of vehicle license, such as the size, space and height of characters, then we construct the morphologic operator to make a series of morphologicoperations and locate the plate region roughly in the pre-processed image; secondly we make the horizontal and ver-tical projection, get the coordinate of the down left corner and top right corner in the license plate, and detect the inclined angle of the license plate with Orientation Field;lastly, the results of projecting and Orientation Field cal-culating are used to locate the license plate precisely. We practise our method on images under different illumination condition, and the experimental results show that the accu-racy of inclined angel detection and license plate extraction based on Mathematical Morphology and Orientation Field is significant.

  5. Location algorithm for seal imprints on Chinese bank-checks based on region growing

    Institute of Scientific and Technical Information of China (English)

    CHEN Li-jiang; LIU Tie-gen; CHEN Jia-jia; ZHU Jun-chao; DENG Ji-jie; MA She-xiang

    2006-01-01

    The paper focuses on location of seal imprints on Chinese bank-checks based on region growing.Region growing method can be applied to searching and locating connection region in an image.A seal imprint,however,is generally composed of various connection regions which are unconnected to each other.In order to locate the seal imprint,these connection regions must be fused together.In the paper,an algorithm for locating seal imprints on Chinese bankchecks based on region growing is proposed, of which a fusion criterion for connection regions in a seal imprint is put forth based on the image feature of Chinese bankcheck,and a center-rays model is proposed to find the topological relationship between connection regions,for which externally-tangent rectangle of region is used as the mark of location of region.The location experiment is achieved with a false-acceptance rate of 7.1% and a false-rejection rate of 0% on Chinese bankcheck.

  6. A Low-Frequency Tone Sweep Method for in-Service Fault Location in Sub-Carrier Multiplexed Optical Fiber Networks

    CERN Document Server

    Amaral, Gustavo C; Baldivieso, Andrea; Garcia, Joaquim Dias; Leibel, Renata G; Herrera, Luis E Y; Urban, Patryk J; von der Weid, Jean Pierre

    2016-01-01

    We demonstrate an optical fiber fault location method based on the frequency response of the modulated fiber optical backscattered signal in a steady state low-frequency step regime. Careful calibration and measurement allows for the reconstruction of the fiber transfer function, which, associated to its mathematical model, is capable of extracting the fiber characteristics. The technique is capable of identifying non-reflective fault events in an optical fiber link and is perfectly compatible with previous methods that focus on the reflective events. The fact that the recuperation of the complex signal is performed in the frequency domain and not via a Fourier Transform enables the measurements to overcome the spatial resolution limitation of Fourier Transform incoherent-OFDR measurements even with frequency sweep ranges down to 100-100000 Hz. This result is backed up by a less than 10 meters difference in fault location when compared to standard OTDR measurements.

  7. Fault Diagnosis System of Induction Motors Based on Neural Network and Genetic Algorithm Using Stator Current Signals

    Directory of Open Access Journals (Sweden)

    Tian Han

    2006-01-01

    Full Text Available This paper proposes an online fault diagnosis system for induction motors through the combination of discrete wavelet transform (DWT, feature extraction, genetic algorithm (GA, and neural network (ANN techniques. The wavelet transform improves the signal-to-noise ratio during a preprocessing. Features are extracted from motor stator current, while reducing data transfers and making online application available. GA is used to select the most significant features from the whole feature database and optimize the ANN structure parameter. Optimized ANN is trained and tested by the selected features of the measurement data of stator current. The combination of advanced techniques reduces the learning time and increases the diagnosis accuracy. The efficiency of the proposed system is demonstrated through motor faults of electrical and mechanical origins on the induction motors. The results of the test indicate that the proposed system is promising for the real-time application.

  8. Fused Empirical Mode Decomposition and MUSIC Algorithms for Detecting Multiple Combined Faults in Induction Motors

    Directory of Open Access Journals (Sweden)

    D. Camarena-Martinez

    2015-02-01

    Full Text Available Detection of failures in induction motors is one of the most important concerns in industry. An unexpected fault in the induction motors can cause a loss of financial resources and waste of time that most companies cannot afford. The contribution of this paper is a fusion of the Empirical Mode Decomposition (EMD and Multiple Signal Classification (MUSIC methodologies for detection of multiple combined faults which provides an accurate and effective strategy for the motor condition diagnosis.

  9. Distributed and Location-Based Multicast Routing Algorithms for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hakki Bagci

    2009-01-01

    Full Text Available Multicast routing protocols in wireless sensor networks are required for sending the same message to multiple different destinations. In this paper, we propose two different distributed algorithms for multicast routing in wireless sensor networks which make use of location information of sensor nodes. Our first algorithm groups the destination nodes according to their angular positions and forwards the multicast message toward each group in order to reduce the number of total branches in multicast tree which also reduces the number of messages transmitted. Our second algorithm calculates an Euclidean minimum spanning tree at the source node by using the positions of the destination nodes. The multicast message is forwarded to destination nodes according to the calculated MST. This helps in reducing the total energy consumed for delivering the message to all destinations by decreasing the number of total transmissions. Evaluation results show that the algorithms we propose are scalable and energy efficient, so they are good candidates to be used for multicasting in wireless sensor networks.

  10. 混合线路故障测距新方法的研究%Study on New Method of Fault Location for Hybrid Transmission Lines

    Institute of Scientific and Technical Information of China (English)

    邱宇青

    2015-01-01

    It is dififcult to accurately extract main components of natural frequencies when the method based on natural frequencies used. This paper proposed to use the ensemble empirical mode decomposition (EEMD) method to realize fault location, decomposing the signals in EEMD, analyzing the spectra of the related components, extracting the main components and carrying out fault location calculation. The simulation analysis shows that the method could well solve the spectra aliasing problem in fault location, realizing fault location in high precision.%为解决应用固有频率测距法存在难以准确提取固有频率主成分的问题。提出了利用聚类经验模型分解(EEMD)来实现故障测距的方法,利用EEMD进行信号分解,对相关分量进行频谱分析和主成分提取,进行故障测距计算。仿真分析表明,该方法可较好地解决混合线路故障测距时存在的频谱混叠问题,实现较高精度的故障定位。

  11. Methodology for locating faults in the Eastern distribution system PDVSA, Punta de Mata and Furrial Divisions; Metodologia para la localizacion de fallas en el sistema de distribucion de PDVSA Oriente, Divisiones Punta de Mata y Furrial

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, F [Universidad Nacional Experimental Politecnica, Antonio Jose de Sucre, Guayana, Bolivar (Venezuela)]. E-mail: fco_martinez@outlook.com; Vasquez, C [Petroleos de Venezuela S.A., Maturin, Monagas (Venezuela)]. E-mail: vasquezcp@pdvsa.com

    2013-03-15

    Fault location in distribution systems has received a lot of attention in recent years in order to increase the availability of electricity supply. Due to the characteristics of distribution networks, fault location is a complicated task, so methods have been developed based on the variation of current and voltage values measured at the source substation, in normal operating condition and under the occurrence of short circuits. This article presents the implementation in MATLAB of a fault location algorithm applied to distribution systems, based on graphical analysis of the fault reactance which is determined by the minimum value of the reactance, using serial impedance matrix and fault/prefault voltage and current metering. Developed Tool Accuracy was verified by comparing the results obtained through it with actual recorded event data (Multilin SR 760) and distance to a known failure point. Additionally the method was applied to an experimental case that was compared with network fault simulation using ETAP Software. For both evaluated cases, the absolute error did not exceed 7%. [Spanish] La localizacion de fallas en sistemas de distribucion ha recibido atencion en los ultimos anos con el fin de aumentar la disponibilidad del suministro de energia electrica. Debido a las caracteristicas propias de las redes de distribucion, la ubicacion de fallas resulta una tarea complicada, por lo que se han desarrollado metodos basados en la variacion de los valores de corriente y voltaje medidos en la subestacion fuente, en condicion normal de operacion y ante la ocurrencia de cortocircuitos. Este articulo presenta la implementacion en MATLAB de un algoritmo de localizacion de fallas en sistemas de distribucion que se fundamenta en el analisis grafico de la reactancia de falla, mediante el cual se determina el minimo valor de la reactancia, utilizando la matriz de impedancia serie y la medicion de los voltajes y corrientes de prefalla y falla. Se verifico la precision de la

  12. Robust Face Location and Tracking Using Optical Flow and Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    WANG Yanjiang; YUAN Baozong

    2001-01-01

    This paper presents a new and robustapproach to the detection, localization and tracking ofa human face in image sequences. First, a fast algo-rithm based on the neighbor-point-reliability is pro-posed to calculate the optical flow, which is used toextract the motion region. Then the hair and thehead knowledges are used to locate the face area. Forface tracking, a new genetic algorithms-based dynamictemplate-matching method is applied to search thenew position of the face in each new video frame. Ex-perimental results show that the proposed face track-ing method is fast and robust to illumination, faceposes, facial expressions and image distractors suchas facial occlusion by hands.

  13. Location Model and Optimization of Seaborne Petroleum Logistics Distribution Center Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Chu-Liangyong

    2013-06-01

    Full Text Available The network of Chinese Waterborne Petroleum Logistics (CWPL is so complex that reasonably disposing and choosing Chinese Waterborne Petroleum Logistics Distribution Center (CWPLDC take on the important theory value and the practical significance. In the study, the network construct of CWPL distribution is provided and the corresponding mathematical model for locating CWPLDC is established, which is a nonlinear mixed interger model. In view of the nonlinerar programming characteristic of model, the genetic algorithm as the solution strategy is put forward here, the strategies of hybrid coding, constraint elimination , fitness function and genetic operator are given followed the algorithm. The result indicates that this model is effective and reliable. This method could also be applicable for other types of large-scale logistics distribution center optimization.

  14. High Resistant Sand Injected Marl and Low Resistant Damaged Marl to Locate and Characterize the Thénia Fault Zone in Boumerdes City (North-Central Algeria)

    Science.gov (United States)

    Moulouel, Hakim; Bensalem, Rabah; Machane, Djamel; Bendaoud, Abderrahmane; Gharbi, Sofiane; Oubaiche, El-Hadi; Ousalem, Hassane; Skendri, Walid

    2016-09-01

    The purpose of this study was to locate and characterize the Thénia Fault Zone (TFZ) in the urban area of Boumerdes city; geological and electrical resistivity tomography surveys have targeted the Plaisancian marl and its Quaternary cover. As a whole, data indicate a complex near-vertical fault zone with an asymmetric and zoned internal structure of at least 150 m wide and with a straight N120° overall trending. The fault zone is traversed with two elongated parallel fault branches (FB1 and FB2), generally, 70 m distant from each other. These fault branches locate two intense damage zones (IDZs) of 10-15 m thick each, situated at the margin of two damage zones each having a thickness of several tens of meters. Downward sand injections into IDZs during Pleistocene epoch, possible pulverization of Plaisancian marl rocks, systematic deflection of actual stream channels, and vertical displacement of at least 30 m affecting Quaternary alluvial deposits show that the area would have undergone active tectonic driven by the TFZ.

  15. High Resistant Sand Injected Marl and Low Resistant Damaged Marl to Locate and Characterize the Thénia Fault Zone in Boumerdes City (North-Central Algeria)

    Science.gov (United States)

    Moulouel, Hakim; Bensalem, Rabah; Machane, Djamel; Bendaoud, Abderrahmane; Gharbi, Sofiane; Oubaiche, El-Hadi; Ousalem, Hassane; Skendri, Walid

    2017-01-01

    The purpose of this study was to locate and characterize the Thénia Fault Zone (TFZ) in the urban area of Boumerdes city; geological and electrical resistivity tomography surveys have targeted the Plaisancian marl and its Quaternary cover. As a whole, data indicate a complex near-vertical fault zone with an asymmetric and zoned internal structure of at least 150 m wide and with a straight N120° overall trending. The fault zone is traversed with two elongated parallel fault branches (FB1 and FB2), generally, 70 m distant from each other. These fault branches locate two intense damage zones (IDZs) of 10-15 m thick each, situated at the margin of two damage zones each having a thickness of several tens of meters. Downward sand injections into IDZs during Pleistocene epoch, possible pulverization of Plaisancian marl rocks, systematic deflection of actual stream channels, and vertical displacement of at least 30 m affecting Quaternary alluvial deposits show that the area would have undergone active tectonic driven by the TFZ.

  16. Testable Subsystems Generation for Fault Detection and Isolation Using a Structural Matching Rank Algorithm Testability of an Electrical Circuit

    Directory of Open Access Journals (Sweden)

    Benazzouz Djamel

    2013-05-01

    Full Text Available In this study, an advanced way of dealing with testable subsystems and residual generation for fault detection and isolation based on structural analysis is presented. The developed technique considers execution issues; therefore, it has a more realistic point of view compared to classical structural approaches available in the literature. First, theoretical aspects of structural analysis are considered and introduced. Then the way of incorporating them to test the structural proprieties is explained. Finally, we show how the proposed (upgraded matching rank algorithm can be used in order to choose the most suited matching that leads to computational sequences and detection tests. The method is demonstrated using an electrical circuit.

  17. A rapid place name locating algorithm based on ontology qualitative retrieval, ranking and recommendation

    Science.gov (United States)

    Fan, Hong; Zhu, Anfeng; Zhang, Weixia

    2015-12-01

    In order to meet the rapid positioning of 12315 complaints, aiming at the natural language expression of telephone complaints, a semantic retrieval framework is proposed which is based on natural language parsing and geographical names ontology reasoning. Among them, a search result ranking and recommended algorithms is proposed which is regarding both geo-name conceptual similarity and spatial geometry relation similarity. The experiments show that this method can assist the operator to quickly find location of 12,315 complaints, increased industry and commerce customer satisfaction.

  18. Solving the Bilevel Facility Location Problem under Preferences by a Stackelberg-Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    José-Fernando Camacho-Vallejo

    2014-01-01

    Full Text Available This research highlights the use of game theory to solve the classical problem of the uncapacitated facility location optimization model with customer order preferences through a bilevel approach. The bilevel model provided herein consists of the classical facility location problem and an optimization of the customer preferences, which are the upper and lower level problems, respectively. Also, two reformulations of the bilevel model are presented, reducing it into a mixed-integer single-level problem. An evolutionary algorithm based on the equilibrium in a Stackelberg’s game is proposed to solve the bilevel model. Numerical experimentation is performed in this study and the results are compared to benchmarks from the existing literature on the subject in order to emphasize the benefits of the proposed approach in terms of solution quality and estimation time.

  19. Method of Fault Area & Section Location for Non-solidly Earthed Distribution System%配网自动化系统中小电流接地故障区段定位方法

    Institute of Scientific and Technical Information of China (English)

    郑顾平; 姜超; 李刚; 齐郑; 杨以涵

    2012-01-01

    中国中压配电网以架空线为主,多为小电流系统,单相接地故障占到电网故障总数的80%以上,但中国配网自动化系统基本上没有小电流接地故障定位功能,使配网自动化系统在提高可靠性的作用上大打折扣。给出一种小电流接地故障区段定位新方法,在线路上配置广域相量测量固定测点,获取小电流电网单相接地故障特征信息。基于测点相邻矩阵区段起始测点标识向量和故障路径标识向量概念,提出确定故障区间边界节点算法。物理模拟实验和挂网测试表明:该故障分区分段定位方法能够在线求解小电流接地故障段边界节点,缩小线路维护巡视范围。确定故障区间边界节点算法还可用于确定故障区相关负荷开关,为线路维护和馈线自动化提供依据。%Medium voltage distributions in China use overhead line mainly, and most of them are small current neutral grounding system, single-phase-to-earth faults account for over 80% of the total fault, but most of our country's distribution automation systems do not have the function of locating the small-current-to-earth faults, so that the distribution automation system's efficiency in improving the reliability of power-up has been reduced drastically. The new method of locating the small-current-to-earth faults was studied. First of all a lot of measurement nodes must be fixed on the line to get the feature information of small-current-to-earth fault. And then the algorithm to find fault area boundary nodes (AFFABN) was put forward based on the matrix of adjacent point, the vector of section-starting-point identification and the logo vector of fault path. The physical simulation and practical tests show that the theory of area & section location can locate the fault to a section of the line, to narrow the range of lines' maintenance. The AFFABN can also be used to determine the related load switches in a

  20. Application of particle swarm optimization blind source separation technology in fault diagnosis of gearbox

    Institute of Scientific and Technical Information of China (English)

    黄晋英; 潘宏侠; 毕世华; 杨喜旺

    2008-01-01

    Blind source separation (BBS) technology was applied to vibration signal processing of gearbox for separating different fault vibration sources and enhancing fault information. An improved BSS algorithm based on particle swarm optimization (PSO) was proposed. It can change the traditional fault-enhancing thought based on de-noising. And it can also solve the practical difficult problem of fault location and low fault diagnosis rate in early stage. It was applied to the vibration signal of gearbox under three working states. The result proves that the BSS greatly enhances fault information and supplies technological method for diagnosis of weak fault.

  1. Trace Ratio Criterion-Based Kernel Discriminant Analysis for Fault Diagnosis of Rolling Element Bearings Using Binary Immune Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Wen-An Yang

    2016-01-01

    Full Text Available The rolling element bearing is a core component of many systems such as aircraft, train, steamboat, and machine tool, and their failure can lead to reduced capability, downtime, and even catastrophic breakdowns. Due to misoperation, manufacturing deficiencies, or the lack of monitoring and maintenance, it is often found to be the most unreliable component within these systems. Therefore, effective and efficient fault diagnosis of rolling element bearings has an important role in ensuring the continued safe and reliable operation of their host systems. This study presents a trace ratio criterion-based kernel discriminant analysis (TR-KDA for fault diagnosis of rolling element bearings. The binary immune genetic algorithm (BIGA is employed to solve the trace ratio problem in TR-KDA. The numerical results obtained using extensive simulation indicate that the proposed TR-KDA using BIGA (called TR-KDA-BIGA can effectively and efficiently classify different classes of rolling element bearing data, while also providing the capability of real-time visualization that is very useful for the practitioners to monitor the health status of rolling element bearings. Empirical comparisons show that the proposed TR-KDA-BIGA performs better than existing methods in classifying different classes of rolling element bearing data. The proposed TR-KDA-BIGA may be a promising tool for fault diagnosis of rolling element bearings.

  2. LEA: An Algorithm to Estimate the Level of Location Exposure in Infrastructure-Based Wireless Networks

    Directory of Open Access Journals (Sweden)

    Francisco Garcia

    2017-01-01

    Full Text Available Location privacy in wireless networks is nowadays a major concern. This is due to the fact that the mere fact of transmitting may allow a network to pinpoint a mobile node. We consider that a first step to protect a mobile node in this situation is to provide it with the means to quantify how accurately a network establishes its position. To achieve this end, we introduce the location-exposure algorithm (LEA, which runs on the mobile terminal only and whose operation consists of two steps. In the first step, LEA discovers the positions of nearby network nodes and uses this information to emulate how they estimate the position of the mobile node. In the second step, it quantifies the level of exposure by computing the distance between the position estimated in the first step and its true position. We refer to these steps as a location-exposure problem. We tested our proposal with simulations and testbed experiments. These results show the ability of LEA to reproduce the location of the mobile node, as seen by the network, and to quantify the level of exposure. This knowledge can help the mobile user decide which actions should be performed before transmitting.

  3. Genetic algorithm based on optimization of neural network structure for fault diagnosis of the clutch retainer mechanism of MF 285 tractor

    Directory of Open Access Journals (Sweden)

    S. F Mousavi

    2016-09-01

    Full Text Available Introduction The diagnosis of agricultural machinery faults must be performed at an opportune time, in order to fulfill the agricultural operations in a timely manner and to optimize the accuracy and the integrity of a system, proper monitoring and fault diagnosis of the rotating parts is required. With development of fault diagnosis methods of rotating equipment, especially bearing failure, the security, performance and availability of machines has been increasing. In general, fault detection is conducted through a specific procedure which starts with data acquisition and continues with features extraction, and subsequently failure of the machine would be detected. Several practical methods have been introduced for fault detection in rotating parts of machineries. The review of the literature shows that both Artificial Neural Networks (ANN and Support Vector Machines (SVM have been used for this purpose. However, the results show that SVM is more effective than Artificial Neural Networks in fault detection of such machineries. In some smart detection systems, incorporating an optimized method such as Genetic Algorithm in the Neural Network model, could improve the fault detection procedure. Consequently, the fault detection performance of neural networks may also be improved by combining with the Genetic Algorithm and hence will be comparable with the performance of the Support Vector Machine. In this study, the so called Genetic Algorithm (GA method was used to optimize the structure of the Artificial Neural Networks (ANN for fault detection of the clutch retainer mechanism of Massey Ferguson 285 tractor. Materials and Methods The test rig consists of some electro mechanical parts including the clutch retainer mechanism of Massey Ferguson 285 tractor, a supporting shaft, a single-phase electric motor, a loading mechanism to model the load of the tractor clutch and the corresponding power train gears. The data acquisition section consists of a

  4. Locating hazardous gas leaks in the atmosphere via modified genetic, MCMC and particle swarm optimization algorithms

    Science.gov (United States)

    Wang, Ji; Zhang, Ru; Yan, Yuting; Dong, Xiaoqiang; Li, Jun Ming

    2017-05-01

    Hazardous gas leaks in the atmosphere can cause significant economic losses in addition to environmental hazards, such as fires and explosions. A three-stage hazardous gas leak source localization method was developed that uses movable and stationary gas concentration sensors. The method calculates a preliminary source inversion with a modified genetic algorithm (MGA) and has the potential to crossover with eliminated individuals from the population, following the selection of the best candidate. The method then determines a search zone using Markov Chain Monte Carlo (MCMC) sampling, utilizing a partial evaluation strategy. The leak source is then accurately localized using a modified guaranteed convergence particle swarm optimization algorithm with several bad-performing individuals, following selection of the most successful individual with dynamic updates. The first two stages are based on data collected by motionless sensors, and the last stage is based on data from movable robots with sensors. The measurement error adaptability and the effect of the leak source location were analyzed. The test results showed that this three-stage localization process can localize a leak source within 1.0 m of the source for different leak source locations, with measurement error standard deviation smaller than 2.0.

  5. Parallel Critical Path Tracing—— A Fault Simulation Algorithm for Combinational Circuits

    Institute of Scientific and Technical Information of China (English)

    魏道政

    1990-01-01

    Critical path tracing,a fault simulation method for gate-level combinational circuits,is extended to the parallel critical path tracing for functional block-level combinational circuits.If the word length of the host computer is m,then the parallel critical path tracing will be approximately m times faster than the original one.

  6. An Immune Cooperative Particle Swarm Optimization Algorithm for Fault-Tolerant Routing Optimization in Heterogeneous Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yifan Hu

    2012-01-01

    Full Text Available The fault-tolerant routing problem is important consideration in the design of heterogeneous wireless sensor networks (H-WSNs applications, and has recently been attracting growing research interests. In order to maintain k disjoint communication paths from source sensors to the macronodes, we present a hybrid routing scheme and model, in which multiple paths are calculated and maintained in advance, and alternate paths are created once the previous routing is broken. Then, we propose an immune cooperative particle swarm optimization algorithm (ICPSOA in the model to provide the fast routing recovery and reconstruct the network topology for path failure in H-WSNs. In the ICPSOA, mutation direction of the particle is determined by multi-swarm evolution equation, and its diversity is improved by immune mechanism, which can enhance the capacity of global search and improve the converging rate of the algorithm. Then we validate this theoretical model with simulation results. The results indicate that the ICPSOA-based fault-tolerant routing protocol outperforms several other protocols due to its capability of fast routing recovery mechanism, reliable communications, and prolonging the lifetime of WSNs.

  7. Solution and simulation algorithm of microseismic events location to three-dimensional model by comprehensive location method based on Matlab

    Institute of Scientific and Technical Information of China (English)

    XIA Yuan-yuan; SHAO He-song; LI Shi-xiong; LU Jing-yu

    2012-01-01

    The essential for microseismic monitoring is fast and accurate calculation of seismic wave source location.The precision of most traditional microseismic monitoring processes of mines,using TDOA location method in two-dimensional space to position the microseismic events,as well as the accuracy of positioning microseismic events,may be reduced by the two-dimensional model and simple method,and ill-conditioned equations produced by TDOA location method will increase the positioning error.This article,based on inversion theory,studies the mathematical model of TDOA location method,polarization analysis location method,and comprehensive difference location method of adding angle factor in the traditional TDOA location method.The feasibility of three methods is verified by numerical simulation and analysis of the positioning error of them.The results show that the comprehensive location method of adding angle difference has strong positioning stability and high positioning accuracy,and it may reduce the impact effectively about ill-conditioned equations to positioning results.Comprehensive location method with the data of actual measure may get better positioning results.

  8. A novel algorithm for discrimination between inrush current and internal faults in power transformer differential protection based on discrete wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Eldin, A.A. Hossam; Refaey, M.A. [Electrical Engineering Department, Alexandria University, Alexandria (Egypt)

    2011-01-15

    This paper proposes a novel methodology for transformer differential protection, based on wave shape recognition of the discriminating criterion extracted of the instantaneous differential currents. Discrete wavelet transform has been applied to the differential currents due to internal fault and inrush currents. The diagnosis criterion is based on median absolute deviation (MAD) of wavelet coefficients over a specified frequency band. The proposed algorithm is examined using various simulated inrush and internal fault current cases on a power transformer that has been modeled using electromagnetic transients program EMTDC software. Results of evaluation study show that, proposed wavelet based differential protection scheme can discriminate internal faults from inrush currents. (author)

  9. An Improved Genetic Algorithm for Optimal Stationary Energy Storage System Locating and Sizing

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2014-10-01

    Full Text Available The application of a stationary ultra-capacitor energy storage system (ESS in urban rail transit allows for the recuperation of vehicle braking energy for increasing energy savings as well as for a better vehicle voltage profile. This paper aims to obtain the best energy savings and voltage profile by optimizing the location and size of ultra-capacitors. This paper firstly raises the optimization objective functions from the perspectives of energy savings, regenerative braking cancellation and installation cost, respectively. Then, proper mathematical models of the DC (direct current traction power supply system are established to simulate the electrical load-flow of the traction supply network, and the optimization objections are evaluated in the example of a Chinese metro line. Ultimately, a methodology for optimal ultra-capacitor energy storage system locating and sizing is put forward based on the improved genetic algorithm. The optimized result shows that certain preferable and compromised schemes of ESSs’ location and size can be obtained, acting as a compromise between satisfying better energy savings, voltage profile and lower installation cost.

  10. Autonomous Image Processing Algorithms Locate Region-of-Interests: The Mars Rover Application

    Science.gov (United States)

    Privitera, Claudio; Azzariti, Michela; Stark, Lawrence W.

    1998-01-01

    In this report, we demonstrate that bottom-up IPA's, image-processing algorithms, can perform a new visual task to select and locate Regions-Of-Interests (ROIs). This task has been defined on the basis of a theory of top-down human vision, the scanpath theory. Further, using measures, Sp and Ss, the similarity of location and ordering, respectively, developed over the years in studying human perception and the active looking role of eye movements, we could quantify the efficient and efficacious manner that IPAs can imitate human vision in located ROIS. The means to quantitatively evaluate IPA performance has been an important part of our study. In fact, these measures were essential in choosing from the initial wide variety of IPAS, that particular one that best serves for a type of picture and for a required task. It should be emphasized that the selection of efficient IPAs has depended upon their correlation with actual human chosen ROIs for the same type of picture and for the same required task accomplishment.

  11. Determination of the fault plane and rupture size of the 2013 Santa Cruz earthquake, Bolivia, 5.2 Mw, by relative location of the aftershocks

    Science.gov (United States)

    Rivadeneyra-Vera, C.; Assumpção, M.; Minaya, E.; Aliaga, P.; Avila, G.

    2016-11-01

    The Central Andes of southern Bolivia is a highly seismic region with many active faults, that could generate earthquakes up to 8.9 Mw. In 2013, an earthquake of 5.2 Mw occurred in Santa Cruz de la Sierra, in the sub-Andean belt, close to the Mandeyapecua fault, one of the most important reverse faults in Bolivia. Five larger aftershocks were reported by the International Seismological Centre (ISC) and 33 smaller aftershocks were recorded by the San Calixto Observatory (OSC) in the two months after the mainshock. Distances between epicenters of the events were up to 36 km, which is larger than expected for an earthquake of this magnitude. Using data from South American regional stations and the relative location technique with Rayleigh waves, the epicenters of the five larger aftershocks of the Santa Cruz series were determined in relation to the mainshock. This method enabled to achieve epicentral locations with uncertainties smaller than 1 km. Additionally, using data of three Bolivian stations (MOC, SIV and LPAZ) eight smaller aftershocks, recorded by the OSC, were relocated through correlation of P and S waves. The results show a NNW-SSE trend of epicenters and suggest an E dipping plane. The maximum distance between the aftershocks is 14 km, which is not consistent with the expected subsurface rupture length, in accordance with the magnitude of the mainshock. The events are located away from the Mandeyapecua fault and show an opposite dip, demonstrating that these events were generated by another fault in the area, that had not been well studied yet.

  12. Implementing a C++ Version of the Joint Seismic-Geodetic Algorithm for Finite-Fault Detection and Slip Inversion for Earthquake Early Warning

    Science.gov (United States)

    Smith, D. E.; Felizardo, C.; Minson, S. E.; Boese, M.; Langbein, J. O.; Guillemot, C.; Murray, J. R.

    2015-12-01

    The earthquake early warning (EEW) systems in California and elsewhere can greatly benefit from algorithms that generate estimates of finite-fault parameters. These estimates could significantly improve real-time shaking calculations and yield important information for immediate disaster response. Minson et al. (2015) determined that combining FinDer's seismic-based algorithm (Böse et al., 2012) with BEFORES' geodetic-based algorithm (Minson et al., 2014) yields a more robust and informative joint solution than using either algorithm alone. FinDer examines the distribution of peak ground accelerations from seismic stations and determines the best finite-fault extent and strike from template matching. BEFORES employs a Bayesian framework to search for the best slip inversion over all possible fault geometries in terms of strike and dip. Using FinDer and BEFORES together generates estimates of finite-fault extent, strike, dip, preferred slip, and magnitude. To yield the quickest, most flexible, and open-source version of the joint algorithm, we translated BEFORES and FinDer from Matlab into C++. We are now developing a C++ Application Protocol Interface for these two algorithms to be connected to the seismic and geodetic data flowing from the EEW system. The interface that is being developed will also enable communication between the two algorithms to generate the joint solution of finite-fault parameters. Once this interface is developed and implemented, the next step will be to run test seismic and geodetic data through the system via the Earthworm module, Tank Player. This will allow us to examine algorithm performance on simulated data and past real events.

  13. Geometry and earthquake potential of the shoreline fault, central California

    Science.gov (United States)

    Hardebeck, Jeanne L.

    2013-01-01

    The Shoreline fault is a vertical strike‐slip fault running along the coastline near San Luis Obispo, California. Much is unknown about the Shoreline fault, including its slip rate and the details of its geometry. Here, I study the geometry of the Shoreline fault at seismogenic depth, as well as the adjacent section of the offshore Hosgri fault, using seismicity relocations and earthquake focal mechanisms. The Optimal Anisotropic Dynamic Clustering (OADC) algorithm (Ouillon et al., 2008) is used to objectively identify the simplest planar fault geometry that fits all of the earthquakes to within their location uncertainty. The OADC results show that the Shoreline fault is a single continuous structure that connects to the Hosgri fault. Discontinuities smaller than about 1 km may be undetected, but would be too small to be barriers to earthquake rupture. The Hosgri fault dips steeply to the east, while the Shoreline fault is essentially vertical, so the Hosgri fault dips towards and under the Shoreline fault as the two faults approach their intersection. The focal mechanisms generally agree with pure right‐lateral strike‐slip on the OADC planes, but suggest a non‐planar Hosgri fault or another structure underlying the northern Shoreline fault. The Shoreline fault most likely transfers strike‐slip motion between the Hosgri fault and other faults of the Pacific–North America plate boundary system to the east. A hypothetical earthquake rupturing the entire known length of the Shoreline fault would have a moment magnitude of 6.4–6.8. A hypothetical earthquake rupturing the Shoreline fault and the section of the Hosgri fault north of the Hosgri–Shoreline junction would have a moment magnitude of 7.2–7.5.

  14. A novel vibration-based fault diagnostic algorithm for gearboxes under speed fluctuations without rotational speed measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh; Sheng, Shuangwen; Tan, Yuegang; Zhou, Zude

    2017-02-27

    The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is often unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. The results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.

  15. A novel vibration-based fault diagnostic algorithm for gearboxes under speed fluctuations without rotational speed measurement

    Science.gov (United States)

    Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh; Sheng, Shuangwen; Tan, Yuegang; Zhou, Zude

    2017-09-01

    The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is often unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. The results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.

  16. A heuristic algorithm for a multi-product four-layer capacitated location-routing problem

    Directory of Open Access Journals (Sweden)

    Mohsen Hamidi

    2014-01-01

    Full Text Available The purpose of this study is to solve a complex multi-product four-layer capacitated location-routing problem (LRP in which two specific constraints are taken into account: 1 plants have limited production capacity, and 2 central depots have limited capacity for storing and transshipping products. The LRP represents a multi-product four-layer distribution network that consists of plants, central depots, regional depots, and customers. A heuristic algorithm is developed to solve the four-layer LRP. The heuristic uses GRASP (Greedy Randomized Adaptive Search Procedure and two probabilistic tabu search strategies of intensification and diversification to tackle the problem. Results show that the heuristic solves the problem effectively.

  17. Identify Structural Flaw Location and Type with an Inverse Algorithm of Resonance Inspection

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei; Lai, Canhai; Sun, Xin

    2015-10-20

    To evaluate the fitness-for-service of a structural component and to quantify its remaining useful life, aging and service-induced structural flaws must be quantitatively determined in service or during scheduled maintenance shutdowns. Resonance inspection (RI), a non-destructive evaluation (NDE) technique, distinguishes the anomalous parts from the good parts based on changes in the natural frequency spectra. Known for its numerous advantages, i.e., low inspection cost, high testing speed, and broad applicability to complex structures, RI has been widely used in the automobile industry for quality inspection. However, compared to other contemporary direct visualization-based NDE methods, a more widespread application of RI faces a fundamental challenge because such technology is unable to quantify the flaw details, e.g. location, dimensions, and types. In this study, the applicability of a maximum correlation-based inverse RI algorithm developed by the authors is further studied for various flaw cases. It is demonstrated that a variety of common structural flaws, i.e. stiffness degradation, voids, and cracks, can be accurately retrieved by this algorithm even when multiple different types of flaws coexist. The quantitative relations between the damage identification results and the flaw characteristics are also developed to assist the evaluation of the actual state of health of the engineering structures.

  18. A Genetic Algorithm with Location Intelligence Method for Energy Optimization in 5G Wireless Networks

    Directory of Open Access Journals (Sweden)

    Ruchi Sachan

    2016-01-01

    Full Text Available The exponential growth in data traffic due to the modernization of smart devices has resulted in the need for a high-capacity wireless network in the future. To successfully deploy 5G network, it must be capable of handling the growth in the data traffic. The increasing amount of traffic volume puts excessive stress on the important factors of the resource allocation methods such as scalability and throughput. In this paper, we define a network planning as an optimization problem with the decision variables such as transmission power and transmitter (BS location in 5G networks. The decision variables lent themselves to interesting implementation using several heuristic approaches, such as differential evolution (DE algorithm and Real-coded Genetic Algorithm (RGA. The key contribution of this paper is that we modified RGA-based method to find the optimal configuration of BSs not only by just offering an optimal coverage of underutilized BSs but also by optimizing the amounts of power consumption. A comparison is also carried out to evaluate the performance of the conventional approach of DE and standard RGA with our modified RGA approach. The experimental results showed that our modified RGA can find the optimal configuration of 5G/LTE network planning problems, which is better performed than DE and standard RGA.

  19. Summary on Algorithms for Mining Spatial Co-location Patterns%空间 co-location 模式挖掘算法研究综述

    Institute of Scientific and Technical Information of China (English)

    余翠兰

    2014-01-01

    Spatial co-location patterns are traditionally defined as the subsets of features whose instances are frequently located together in geographic space .It is an important research direction for spatial data mining .Firstly ,the concepts of co-location patterns are reviewed .Then ,many popular algorithms based on different data fields are described ,which highlights the processes and dominant features of different co-location algorithms .Finally ,the future work on co-location patterns min-ing algorithms are discussed .%空间co-location模式代表的是一组空间特征的子集,它们的实例在空间中频繁的关联。它是空间数据挖掘的一个重要研究方向。首先给出co-location模式的基本概念;然后描述了针对不同数据领域提出的各种算法,并重点分析了算法提出的思路及主要特点;最后对Co-location模式挖掘未来的研究方向作了探讨。

  20. An Aircraft Navigation System Fault Diagnosis Method Based on Optimized Neural Network Algorithm

    Institute of Scientific and Technical Information of China (English)

    Jean-dedieu Weyepe

    2014-01-01

    Air data and inertial reference system (ADIRS) is one of the complex sub-system in the aircraft navigation system and it plays an important role into the flight safety of the aircraft. This paper propose an optimize neural network algorithm which is a combination of neural network and ant colony algorithm to improve efficiency of maintenance engineer job task.

  1. An Improved Particle Swarm Optimization Algorithm with Harmony Strategy for the Location of Critical Slip Surface of Slopes

    Institute of Scientific and Technical Information of China (English)

    LI Liang; CHU Xue-song

    2011-01-01

    The determination of optimal values for three parameters required in the original particle swarm optimization algorithm is very difficult. It is proposed that two new parameters simulating the harmony search strategy can be adopted instead of the three parameters which are required in the original particle swarm optimization algorithm to update the positions of all the particles. The improved particle swarm optimization is used in the location of the critical slip surface of soil slope, and it is found that the improved particle swarm optimization algorithm is insensitive to the two parameters while the original particle swarm optimization algorithm can be sensitive to its three parameters.

  2. Design of TV Fault Repair Model Based on Decision Tree Algorithm%基于决策树算法的电视机故障维修模型设计

    Institute of Scientific and Technical Information of China (English)

    武彤; 程辉

    2014-01-01

    Before a television set comes into market,it is required to undergo a series of examination to guarantee its quality. Once a flaw is found,it will go to back shop to be doubly checked and repaired. The fault reason and fault component located are usually determined by their own working experience. It places very strict requirements on the workers,and cannot improve the repair efficiency. TV produc-tion line fault repair model based on the decision tree algorithm is researched which is able to accurately and quickly find out the relation-ship among the fault type,fault reason and product type. So it saves the time of looking for the fault reason and type,considerably eleva-ting the productivity of repairing.%在电视机生产线中,有许多产品质量控制检查点。产品在某个检查点查出存在质量问题,将进入返修线进行修理。在返修点由修理工人凭经验来确定故障原因及定位故障元器件类型,这样就对修理工有很高的要求,而且不能有效地提高维修工作效率。文中研究的基于决策树算法的电视机生产线故障维修模型,能够通过模型找出产品类型、故障现象与故障原因之间的关系,从而快速地确定故障类型,这样节省了查找故障原因及类型的时间,提高了维修效率。

  3. 基于Prony算法的固有频率法输电线路故障定位%Fault Location of High Voltage Power Transmission Lines Using Travelling Wave Natural Frequency Based on Prony Method

    Institute of Scientific and Technical Information of China (English)

    徐俊明; 魏文伟; 夏沛

    2011-01-01

    When a short circuit fault of transmission lines happened, it will produce transient state travelling waves.The frequency spectra of the travelling waves is a fundamental characteristic frequency, called natural frequencies. Accurate extracting the natural frequencies, which contains informations of position of fault,is able to realize fault location.As a traditional method, Fast Fourier Transform algorithm has not a high frequency resolution and cannot extract the natural frequencies precisely. In allusion to this problem, the paper brings forward applying the Prony Method, which has high precision of fitting, to extract the natural frequencies. The results of simulations by PSCAD and MATLAB show that Prony method can accurate extract the natural frequencies, and the location result is more accurate than Fast Fourier Transform method.%输电线路发生短路故障时,将会产生故障暂态行波.行波在频域上表现为一定的谐波形式,称为行波的固有频率.固有频率包含故障点位置信息,准确提取固有频率能实现输电线路的故障定位.针对传统的FFT算法频域分辨率不高,不能准确提取行波固有频率的问题,提出利用拟合精度较高的Prony算法提取固有频率.EMTDC联合MATLAB仿真结果表明,Prony算法能准确提取固有频率,较FFT方法有更高的定位精度.

  4. Geographic Location of a Computer Node Examining a Time-to-Location Algorithm and Multiple Autonomous System Networks

    Science.gov (United States)

    2004-03-01

    network problems is identified. 2.3.7 Skitter A CAIDA topology probing tool is similar to traceroute and ping, except it has increased timestamp...Characterization (Extended Version), CAIDA Technical Report, 2002. [Car03] Carr C., Reverse Geographic Location of a Computer Node, Thesis Air Force

  5. Implementation of a Fractional Model-Based Fault Detection Algorithm into a PLC Controller

    Science.gov (United States)

    Kopka, Ryszard

    2014-12-01

    This paper presents results related to the implementation of model-based fault detection and diagnosis procedures into a typical PLC controller. To construct the mathematical model and to implement the PID regulator, a non-integer order differential/integral calculation was used. Such an approach allows for more exact control of the process and more precise modelling. This is very crucial in model-based diagnostic methods. The theoretical results were verified on a real object in the form of a supercapacitor connected to a PLC controller by a dedicated electronic circuit controlled directly from the PLC outputs.

  6. Model-based fault diagnosis techniques design schemes, algorithms, and tools

    CERN Document Server

    Ding, Steven

    2008-01-01

    The objective of this book is to introduce basic model-based FDI schemes, advanced analysis and design algorithms, and the needed mathematical and control theory tools at a level for graduate students and researchers as well as for engineers. This is a textbook with extensive examples and references. Most methods are given in the form of an algorithm that enables a direct implementation in a programme. Comparisons among different methods are included when possible.

  7. Detection of arcing ground fault location on a distribution network connected PV system; Hikarihatsuden renkei haidensen ni okeru koko chiryaku kukan no kenshutsuho

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Iwaya, K.; Morooka, Y. [Hachinohe Institute of Technology, Aomori (Japan)

    1996-10-27

    In the near future, it is supposed that a great number of small-scale distributed power sources, such as photovoltaic power generation for general houses, will be interconnected with the ungrounded neutral distribution system in Japan. When ground fault of commercial frequency once occurs, great damage is easily guessed. This paper discusses the effect of the ground fault on the ground phase current using a 6.6 kV high-voltage model system by considering the non-linear self-inductance in the line, and by considering the non-linear relation of arcing ground fault current frequency. In the present method, the remarkable difference of series resonance frequency determined by the inductance and earth capacity between the source side and load side is utilized for the detection of high-voltage arcing ground fault location. In this method, there are some cases in which the non-linear effect obtained by measuring the inductance of sound phase including the secondary winding of transformer can not be neglected. Especially, for the actual high-voltage system, it was shown that the frequency characteristics of transformer inductance for distribution should be theoretically derived in the frequency range between 2 kHz and 6 kHz. 2 refs., 5 figs., 1 tab.

  8. 新型配电网数字故障指示器及定位系统%A New Distribution Network Digital Fault Indicator and Locating System

    Institute of Scientific and Technical Information of China (English)

    胡日亮; 刘访; 甘向锋; 伍浩洋; 黄庆铿; 叶盛尧; 王伟平

    2014-01-01

    Based on the demand of electricity,by summarizing the existed distribution network fault location and theoretical practices,a new system is Proposed,which is able to locate and instruct to its point of failure quickly-the network fault indicator of Utility digital distribution,The fault indicator based on the characteris-tics of the distribution network,combined with fault location model and the general failure of judgment basis, through the designment of the Lightning AC filter circuit、DC rectifier filter circuit、Power conversion module circuit、Monitoring circuit and Master screen monitoring system,achieve a rapid positioning of the online distri-bution of failure,So that the distribution network is running more secure、reliable、high-quality and efficient economy.%通过总结配电网故障定位已有的实践方法和理论,提出了能够快速对其故障点进行定位与指示的新系统---新型配电网数字故障指示器。该故障指示器根据配电网的特点,结合故障定位模式及一般故障的判断依据,通过对防雷交流滤波电路、整流直流滤波电路、电源转换模块电路、监测电路部分电路以及主控屏监测系统进行设计,在功能上实现了对配电网上故障的快速定位,使配电网运行更为安全可靠。

  9. 基于小波变换的电力电缆故障测距研究%Research of Power Cable Fault Location Based on Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    廖晓辉; 梁恒娜; 丁倩

    2013-01-01

    With wide application of power cable in transmission and distribution systems,the demand for cable fault location accuracy is improved.In order to locate cable fault accurately,the wavelet transform is applied in detecting the traveling wave signal of power cable.According to the principle of singularity detection of signals,the traveling wave starting pulse and reflection pulse time point is determined by searching modulus maximum,and then locating by single terminal traveling wave method for the online fault location.The experimen tal results show that the traveling wave singularity point can be detected by using localized time-frequencycharacteristic of wavelet transform,thereby the accurate time of pulse arrival is obtained.This method is not affected by fault type and the range error is small,which can achieve a higher fault location accuracy.%随着电力电缆的广泛应用,对电缆故障测距的精确度要求也日益提高.为了实现电缆故障的精确定位,引入小波变换的方法对电缆故障行波信号进行检测和分析,根据信号的奇异性检测原理,采用搜索模极大值的方法确定行波信号起始脉冲和反射脉冲时间点,应用单端行波在线故障测距方法进行测距,实验结果表明,利用小波变换的时频局部化特性可有效聚焦到电缆行波信号的奇异点,从而得到精确的脉冲到达时刻.该方法不受电缆故障类型的影响,测距误差小,可获得较高的故障定位精度.

  10. Study on RFID Location Algorithm Based on Hierarchical Location Model%基于分层定位模型的RFID定位算法研究

    Institute of Scientific and Technical Information of China (English)

    宋英娟; 杨恒新; 陆音; 陈德媛

    2014-01-01

    Identification and location provides critical information for modern intelligent parking system. The indoor location-sensing sys-tem LANDMARC based on RFID is used commonly. In this paper,analyze the classical LANDMARC algorithm with low cost and high accuracy,and propose a new indoor location algorithm D-LANDMARC based on two layer location model to avoid the error caused by using only the Euclidian distance of RSSI to select nodes for location computing. This algorithm is mainly composed of two parts,prelimi-nary locating and precise locating. Preliminary location filters out the reference label,and then based on the formula of "distance-loss"which uses tags signal strength difference for precise positioning. Compared with LANDMARC algorithm,the simulation result show that the method enhances the precision of indoor localization and has more balanced distribution of location error.%识别和定位为智能停车场等服务领域提供关键信息,基于RFID的LANDMARC算法为常见的室内定位方法。文中对低成本、高精度的经典室内定位算法LANDMARC进行分析,针对其在定位过程中单纯根据信号强度的欧几里得距离选择节点进行定位计算的不足,提出基于双层定位模型的算法D-LANDMRAC。该算法主要由初步定位和精确定位两部分组成,初步定位过滤掉问题参考标签,再基于“距离-损耗冶公式利用标签之间信号强度差进行精确定位。仿真结果表明,相比LANDMARC算法,D-LANDMRAC算法定位精度有了明显的提高,并且定位误差的分布更加均衡。

  11. 一种光缆故障定位方法研究%Study on the method of fault location for a fiber optic cable

    Institute of Scientific and Technical Information of China (English)

    马小平; 朱杰

    2015-01-01

    With mobile transmission network becomes more and more huge, maintenance, network security is particularly important, this paper from the specific maintenance technical point of view proposed a practical cable fault location method, to solve the problem of resource model and the fiber core monitoring data exchange technology convergence, effectively improve the fault handling efficiency.%随着移动传输网络的日趋庞大,维护网络安全尤其重要,本文从具体维护技术角度,提出了一种实用的光缆故障定位方法,解决了资源模型和纤芯监测数据互通技术中衔接的问题,有效提高了故障处理效率.

  12. A 3-D velocity model for earthquake location from combined geological and geophysical data: a case study from the TABOO near fault observatory (Northern Apennines, Italy)

    Science.gov (United States)

    Latorre, Diana; Lupattelli, Andrea; Mirabella, Francesco; Trippetta, Fabio; Valoroso, Luisa; Lomax, Anthony; Di Stefano, Raffaele; Collettini, Cristiano; Chiaraluce, Lauro

    2014-05-01

    Accurate hypocenter location at the crustal scale strongly depends on our knowledge of the 3D velocity structure. The integration of geological and geophysical data, when available, should contribute to a reliable seismic velocity model in order to guarantee high quality earthquake locations as well as their consistency with the geological structure. Here we present a 3D, P- and S-wave velocity model of the Upper Tiber valley region (Northern Apennines) retrieved by combining an extremely robust dataset of surface and sub-surface geological data (seismic reflection profiles and boreholes), in situ and laboratory velocity measurements, and earthquake data. The study area is a portion of the Apennine belt undergoing active extension where a set of high-angle normal faults is detached on the Altotiberina low-angle normal fault (ATF). From 2010, this area hosts a scientific infrastructure (the Alto Tiberina Near Fault Observatory, TABOO; http://taboo.rm.ingv.it/), consisting of a dense array of multi-sensor stations, devoted to studying the earthquakes preparatory phase and the deformation processes along the ATF fault system. The proposed 3D velocity model is a layered model in which irregular shaped surfaces limit the boundaries between main lithological units. The model has been constructed by interpolating depth converted seismic horizons interpreted along 40 seismic reflection profiles (down to 4s two way travel times) that have been calibrated with 6 deep boreholes (down to 5 km depth) and constrained by detailed geological maps and structural surveys data. The layers of the model are characterized by similar rock types and seismic velocity properties. The P- and S-waves velocities for each layer have been derived from velocity measurements coming from both boreholes (sonic logs) and laboratory, where measurements have been performed on analogue natural samples increasing confining pressure in order to simulate crustal conditions. In order to test the 3D velocity

  13. Fault Diagnosis of Simulation Circuit Based on Negative Selection Algorithm%基于否定选择算法的模拟电路故障诊断

    Institute of Scientific and Technical Information of China (English)

    王玉珏; 漆德宁

    2015-01-01

    针对传统智能诊断技术受限于先验知识、模拟电路故障多样性等不足,对基于否定选择算法的模拟电路故障诊断进行研究。分析人工免疫系统中的否定选择算法原理及应用,介绍实值否定选择算法的产生机制,提出与自体耐受和Monte Carlo相结合的优化算法,通过Fish’s Iris数据仿真显示,并将优化算法运用于电阻电路的8种软故障诊断。结果表明:优化算法的总体检测率达90%,能降低成熟检测器冗余,节省计算空间。%Research the fault diagnosis of simulation circuit based on negative selection algorithm to deal with traditional intelligent diagnosis technology shortages such as prior knowledge limit and simulation circuit fault variety and so on. Analyze principle and application of negative selection algorithm in artificial immune system. Introduce the mechanism of the real-valued negative selection algorithm, proposes optimized algorithm which combines Monte Carlo with self tolerance. By means of Fish’s Iris simulation result, use optimized algorithm in the redundancy of detections and saves space of computer. Use optimized algorithm in the fault diagnosis of resistance circuit which has eight soft fault kinds. The results show that the total detection rate of optimized algorithm reaches 90%, it can reduce redundancy of mature detector, and save computation space.

  14. 基于智能故障指示器的故障定位系统研究%Research on Fault Location System Based on Intelligent Fault Indicator

    Institute of Scientific and Technical Information of China (English)

    张珩

    2015-01-01

    文章面向城乡配电网,通过低廉的成本实现配电网的故障信号采集、故障区段定位,降低配电网线路的故障查找时间和查找成本,研究为供电企业提供的一套以故障定位为核心功能的配电自动化系统设计,加快供电恢复,从而提高供电可靠性。%The distribution network for urban and rural areas, to achieve fault signal acquisition,fault section locating distribution network through low costs,lower distribution network line troubleshooting time and ifnd the cost of research for the power companies to provide a set of fault positioned as a core function of distribution automation system design and accelerate the power is restored,thus improving reliability.

  15. Design of isolated buildings with S-FBI system subjected to near-fault earthquakes using NSGA-II algorithm

    Science.gov (United States)

    Ozbulut, O. E.; Silwal, B.

    2014-04-01

    This study investigates the optimum design parameters of a superelastic friction base isolator (S-FBI) system through a multi-objective genetic algorithm and performance-based evaluation approach. The S-FBI system consists of a flat steel- PTFE sliding bearing and a superelastic NiTi shape memory alloy (SMA) device. Sliding bearing limits the transfer of shear across the isolation interface and provides damping from sliding friction. SMA device provides restoring force capability to the isolation system together with additional damping characteristics. A three-story building is modeled with S-FBI isolation system. Multiple-objective numerical optimization that simultaneously minimizes isolation-level displacements and superstructure response is carried out with a genetic algorithm (GA) in order to optimize S-FBI system. Nonlinear time history analyses of the building with S-FBI system are performed. A set of 20 near-field ground motion records are used in numerical simulations. Results show that S-FBI system successfully control response of the buildings against near-fault earthquakes without sacrificing in isolation efficacy and producing large isolation-level deformations.

  16. A Gradient-Simulated Annealing Algorithm of Pre-location-Based Best Fitting of Blank to Complex Surfaces Machining

    Institute of Scientific and Technical Information of China (English)

    MALi-ming; JIANGHong; WANGXiao-chun

    2004-01-01

    The algorithm is divided into two steps. The first step pre-locates the blank by aligning its centre of gravity and approximate normal vector with those of destination surfaces, with largest overlap of projections of two objects on a plane perpendicular to the normal vector. The second step is optimizing an objective function by means of gradient-simulated annealing algorithm to get the best matching of a set of distributed points on the blank and destination surfaces. An example for machining hydroelectric turbine blades is given to verify the effectiveness of algorithm.

  17. Design & Evaluation of a Protection Algorithm for a Wind Turbine Generator based on the fault-generated Symmetrical Components

    DEFF Research Database (Denmark)

    Zheng, T. Y.; Cha, Seung-Tae; Lee, B. E.

    2011-01-01

    A protection relay for a wind turbine generator (WTG) based on the fault-generated symmetrical components is proposed in the paper. At stage 1, the relay uses the magnitude of the positive-sequence component in the fault current to distinguish faults on a parallel WTG, connected to the same feeder...... the relationships of the fault-generated symmetrical components. Then, the magnitude of the positive-sequence component in the fault current is used again to decide on either instantaneous or delayed operation. The operating performance of the relay is then verified using various fault scenarios modelled using...

  18. A Heuristic Algorithm for Constrained Multi-Source Location Problem with Closest Distance under Gauge: The Variational Inequality Approach

    Directory of Open Access Journals (Sweden)

    Jian-Lin Jiang

    2013-01-01

    Full Text Available This paper considers the locations of multiple facilities in the space , with the aim of minimizing the sum of weighted distances between facilities and regional customers, where the proximity between a facility and a regional customer is evaluated by the closest distance. Due to the fact that facilities are usually allowed to be sited in certain restricted areas, some locational constraints are imposed to the facilities of our problem. In addition, since the symmetry of distances is sometimes violated in practical situations, the gauge is employed in this paper instead of the frequently used norms for measuring both the symmetric and asymmetric distances. In the spirit of the Cooper algorithm (Cooper, 1964, a new location-allocation heuristic algorithm is proposed to solve this problem. In the location phase, the single-source subproblem with regional demands is reformulated into an equivalent linear variational inequality (LVI, and then, a projection-contraction (PC method is adopted to find the optimal locations of facilities, whereas in the allocation phase, the regional customers are allocated to facilities according to the nearest center reclassification (NCR. The convergence of the proposed algorithm is proved under mild assumptions. Some preliminary numerical results are reported to show the effectiveness of the new algorithm.

  19. 基于拜占庭容错的前摄恢复算法%Proactive Recovery Algorithm Based on Byzantine Fault Tolerance

    Institute of Scientific and Technical Information of China (English)

    陈柳; 周伟

    2013-01-01

    针对现有拜占庭容错中的恢复算法不适用于主动复制品的这一问题,提出支持有状态复制品的前摄恢复算法。每个复制品维护一个恢复队列。当到达一个检查点后,使用该前摄恢复算法复制品检查恢复队列,在服务复制品发生错误前,提前将复制品恢复成正确的状态。如果复制品已经出错,该算法也适用。实验分析结果显示算法的有效性。%To solve the problem that the existing recovery algorithms for Byzantine fault tolerance are not suitable to proactive rep -lica, a proactive recovery algorithm supporting stateful replica was proposed .The recovery queue is maintained by each replica . When it comes to a checkpoint , the replica recovery queue is checked by the proactive algorithm .The replica is recovered true state before the replica occurring faults .If the replica has made faults , the algorithm is also work .The experimental results show the effective of the algorithm .

  20. A Distributed Fault Tolerance Global Coordinator Election Algorithm in Unreliable High Traffic Distributed Systems

    Directory of Open Access Journals (Sweden)

    Danial Rahdari

    2015-02-01

    Full Text Available Distributed systems consist of several management sites which have different resource sharing levels. Resources can be shared among inner site and outer site processes at first and second level respectively. Global coordinator should exist in order to coordinate access to multi site’s shared resources. Moreover; some other coordinators should manage access to inner site’s shared resources so that exerting appropriate coordinator election algorithms in each level is crucial to achieve most efficient system. In this paper a hierarchical distributed election algorithm is proposed which eliminates single point of failure of election launcher. Meanwhile traffic is applied to network at different times and the number of election messages is extremely decreased as well which applies more efficiency especially in high traffic networks. A standby system between coordinators and their first alternative is considered to induct less wait time to processes which want to communicate with coordinator

  1. Enhancing fault management performance of two-step QoS routing algorithms in GMPLS networks

    OpenAIRE

    Calle Ortega, Eusebi; Marzo i Lázaro, Josep Lluís; Urra i Fàbregas, Anna; Fàbrega i Soler, Lluís

    2004-01-01

    In this paper a novel methodology aimed at minimizing the probability of network failure and the failure impact (in terms of QoS degradation) while optimizing the resource consumption is introduced. A detailed study of MPLS recovery techniques and their GMPLS extensions are also presented. In this scenario, some features for reducing the failure impact and offering minimum failure probabilities at the same time are also analyzed. Novel two-step routing algorithms using this methodology are pr...

  2. Scalable fault tolerant algorithms for linear-scaling coupled-cluster electronic structure methods.

    Energy Technology Data Exchange (ETDEWEB)

    Leininger, Matthew L.; Nielsen, Ida Marie B.; Janssen, Curtis L.

    2004-10-01

    By means of coupled-cluster theory, molecular properties can be computed with an accuracy often exceeding that of experiment. The high-degree polynomial scaling of the coupled-cluster method, however, remains a major obstacle in the accurate theoretical treatment of mainstream chemical problems, despite tremendous progress in computer architectures. Although it has long been recognized that this super-linear scaling is non-physical, the development of efficient reduced-scaling algorithms for massively parallel computers has not been realized. We here present a locally correlated, reduced-scaling, massively parallel coupled-cluster algorithm. A sparse data representation for handling distributed, sparse multidimensional arrays has been implemented along with a set of generalized contraction routines capable of handling such arrays. The parallel implementation entails a coarse-grained parallelization, reducing interprocessor communication and distributing the largest data arrays but replicating as many arrays as possible without introducing memory bottlenecks. The performance of the algorithm is illustrated by several series of runs for glycine chains using a Linux cluster with an InfiniBand interconnect.

  3. Application of fault factor method to fault detection and diagnosis for space shuttle main engine

    Science.gov (United States)

    Cha, Jihyoung; Ha, Chulsu; Ko, Sangho; Koo, Jaye

    2016-09-01

    This paper deals with an application of the multiple linear regression algorithm to fault detection and diagnosis for the space shuttle main engine (SSME) during a steady state. In order to develop the algorithm, the energy balance equations, which balances the relation among pressure, mass flow rate and power at various locations within the SSME, are obtained. Then using the measurement data of some important parameters of the engine, fault factors which reflects the deviation of each equation from the normal state are estimated. The probable location of each fault and the levels of severity can be obtained from the estimated fault factors. This process is numerically demonstrated for the SSME at 104% Rated Propulsion Level (RPL) by using the simulated measurement data from the mathematical models of the engine. The result of the current study is particularly important considering that the recently developed reusable Liquid Rocket Engines (LREs) have staged-combustion cycles similarly to the SSME.

  4. The complex architecture of the 2009 MW 6.1 L'Aquila normal fault system (Central Italy) as imaged by 64,000 high-resolution aftershock locations

    Science.gov (United States)

    Valoroso, L.; Chiaraluce, L.; Di Stefano, R.; Piccinini, D.; Schaff, D. P.; Waldhauser, F.

    2011-12-01

    On April 6th 2009, a MW 6.1 normal faulting earthquake struck the axial area of the Abruzzo region in Central Italy. We present high-precision hypocenter locations of an extraordinary dataset composed by 64,000 earthquakes recorded at a very dense seismic network of 60 stations operating for 9 months after the main event. Events span in magnitude (ML) between -0.9 to 5.9, reaching a completeness magnitude of 0.7. The dataset has been processed by integrating an accurate automatic picking procedure together with cross-correlation and double-difference relative location methods. The combined use of these procedures results in earthquake relative location uncertainties in the range of a few meters to tens of meters, comparable/lower than the spatial dimension of the earthquakes themselves). This data set allows us to image the complex inner geometry of individual faults from the kilometre to meter scale. The aftershock distribution illuminates the anatomy of the en-echelon fault system composed of two major faults. The mainshock breaks the entire upper crust from 10 km depth to the surface along a 14-km long normal fault. A second segment, located north of the normal fault and activated by two Mw>5 events, shows a striking listric geometry completely blind. We focus on the analysis of about 300 clusters of co-located events to characterize the mechanical behavior of the different portions of the fault system. The number of events in each cluster ranges from 4 to 24 events and they exhibit strongly correlated seismograms at common stations. They mostly occur where secondary structures join the main fault planes and along unfavorably oriented segments. Moreover, larger clusters nucleate on secondary faults located in the overlapping area between the two main segments, where the rate of earthquake production is very high with a long-lasting seismic decay.

  5. Seismotectonic setting at the North Anatolian Fault Zone after the 1999 Mw=7.4 Izmit earthquake based on high-resolution aftershock locations

    Directory of Open Access Journals (Sweden)

    M. Bohnhoff

    2008-01-01

    Full Text Available The most recent devastating earthquakes that occurred along the North Anatolian Fault Zone (NAFZ in northwestern Turkey were the 1999 Izmit (Mw=7.4 and Düzce (Mw=7.1 events. In this study we present a catalog of Izmit aftershock hypocenters that was deduced from a network covering the entire 140 km long rupture of the mainshock. 7348 events with a location accuracy better than 5 km are analysed. Aftershocks were observed along the entire ruptured segment along a 20 km wide band of activity. Events are clustered in distinct regions and dominantly occur at 5 to 15 km depth. The eastern termination of the Izmit rupture is characterized by a sharp and steeply dipping boundary exactly where the Düzce mainshock initiated 87 days after the Izmit event. Relocation of the events using double-difference technology results in 4696 high-resolution hypocenters that allow resolving the internal structure of the seismically active areas with a resolution of 300 m (horizontal and 400m (vertical. Below the Akyazi Plain, representing a small pull-apart structure at a triple junction of the NAFZ, we identify planes of activity that can be correlated with nodal planes of EW extensional normal faulting aftershocks. Along the easternmost Karadere-Düzce segment we identify the down-dip extension of the Karadere fault that hosted about 1 m of right-lateral coseismic slip. At the easternmost rupture we correlate a cloud-type distribution of seismic activity with the largest aftershocks in this area, a subevent of the Izmit mainshock and the Düzce mainshock that all have an almost identical focal mechanism. This part of the NAFZ is interpreted as a classical example of a seismic barrier along the fault.

  6. Methodology for the location diagnosis of electrical faults in electric power systems; Metodologia para el diagnostico de ubicacion de fallas en sistema electricos de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Rosas Molina, Ricardo

    2008-08-15

    The constant growth of the Electric Power Systems derived from the increase in the world-wide demand of energy, has brought as a consequence a greater complexity in the operation and control of the power nets. One of the most affected tasks by this situation is the operation of electrical systems against the presence of faults, where the first task to realize is, on the part of the operational personnel of the network, the rapid fault site location within the system. In the present paper the problem of the diagnose location of electrical faults in power systems is approached, from the point of view of the operators of the energy control centers of an electric company. The objective of this thesis work is to describe a methodology of operational analysis of protections, as a bases for the development of a system of diagnosis systems for faults location, that allows to consider the possible fault sites within the system as well as a justification of the operation of protections in face of a disturbance as a support to the operators of the Energy Control centers. The methodology is designed to use different information types, discreet, continuous and controls. Nevertheless, in the development of the present stage of the proposed methodology use is made exclusively of the discreet information of the conditions of breakers and operation of relays, as well as of the connectivity of the network elements. The analysis methodology consists in determining the network elements where the fault could have occurred, using the protections coverage areas associated to the operated circuit breakers. Later, these fault alternatives become ordained in descendent form of possibility using classification indexes and analyses based on fuzzy logic. [Spanish] El constante crecimiento de los Sistemas Electricos de Potencia derivado del incremento en la demanda energetica mundial, ha traido como consecuencia una mayor complejidad en la operacion y control de las redes electricas. Una de las

  7. 3D Buried Utility Location Using A Marching-Cross-Section Algorithm for Multi-Sensor Data Fusion

    Directory of Open Access Journals (Sweden)

    Qingxu Dou

    2016-11-01

    Full Text Available We address the problem of accurately locating buried utility segments by fusing data from multiple sensors using a novel Marching-Cross-Section (MCS algorithm. Five types of sensors are used in this work: Ground Penetrating Radar (GPR, Passive Magnetic Fields (PMF, Magnetic Gradiometer (MG, Low Frequency Electromagnetic Fields (LFEM and Vibro-Acoustics (VA. As part of the MCS algorithm, a novel formulation of the extended Kalman Filter (EKF is proposed for marching existing utility tracks from a scan cross-section (scs to the next one; novel rules for initializing utilities based on hypothesized detections on the first scs and for associating predicted utility tracks with hypothesized detections in the following scss are introduced. Algorithms are proposed for generating virtual scan lines based on given hypothesized detections when different sensors do not share common scan lines, or when only the coordinates of the hypothesized detections are provided without any information of the actual survey scan lines. The performance of the proposed system is evaluated with both synthetic data and real data. The experimental results in this work demonstrate that the proposed MCS algorithm can locate multiple buried utility segments simultaneously, including both straight and curved utilities, and can separate intersecting segments. By using the probabilities of a hypothesized detection being a pipe or a cable together with its 3D coordinates, the MCS algorithm is able to discriminate a pipe and a cable close to each other. The MCS algorithm can be used for both post- and on-site processing. When it is used on site, the detected tracks on the current scs can help to determine the location and direction of the next scan line. The proposed “multi-utility multi-sensor” system has no limit to the number of buried utilities or the number of sensors, and the more sensor data used, the more buried utility segments can be detected with more accurate location

  8. QUADRI-THRESHOLD ALGORITHM OF CO-LOCATED RADAR-TO-ESM CORRELATION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A quadri-threshold radar-to-ESM correlation algorithm is presented and the corresponding four thresholds (high threshold, middle threshold, low threshold, and threshold margin) are given. The proposed algorithm is especially suited for the scenarios where each radar track is specified by different numbers of measurements. Using a simple and effective discriminant function based on the fuzzy synthesis function, the proposed quadri-threshold radar-to-ESM correlation algorithm first selects the two most likely radar tracks and then makes the soft decision based on the selected two tracks. The introduction of the threshold margin in the presented algorithm can further reduce mis-classification errors. Simulation results show the feasibility of the algorithm.

  9. Fault Node Accurately Mining Algorithm Based on Traffic Channel Carrier Balance%正交通信信道载波均衡故障节点准确挖掘算法

    Institute of Scientific and Technical Information of China (English)

    张海霞

    2015-01-01

    Construction of accurate positioning and detection of cloud server fault fast mining model of fault node in large-scale cloud computing is important. In the traditional method, using the protocol stack of constraint and management of node, achieve the fault node fast mining purposes, the algorithm is deployed in the position of the Sink node is not properly considered, it is easy to neighboring nodes overlap between channels in the transmission spectrum of main lobe, and fault node mining is not good. Aiming at this problem, a method to calculate the Federation server fault is the traffic channel car⁃rier equilibrium cloud is proposed based on fast mining algorithm, a node fault information fusion model is obtained, the characteristic analysis of the information is taken, the fusion process is taken, the new cloud computing server receiving end and the transmitting end fault localization training sequence mining, the equivalent baseband model of fault node based on OFDM system is constructed, the communication channel carrier is balanced in fast mining cloud server failure node. The simulation results show that, the algorithm can realize the accurate location of fault node, mining performance is good, probability of detection is increased, it is superior to the traditional model.%大型云计算联合服务器中故障节点的快速挖掘模型构建可以实现对云服务器故障的准确定位和检测。传统方法中采用协议堆栈对节点进行约束与管理,达到故障节点快速挖掘的目的,然而该算法在Sink节点位置部署考虑欠好,在通信传输中很容易相邻节点信道间频谱主瓣重叠,故障节点挖掘性能不好。针对这一问题,提出一种基于正交通信信道载波均衡的云计算联合服务器故障节点快速挖掘算法,建立故障节点信息融合模型,进行特征分析,在信息融合过程中,组成新的云计算联合服务器接收端和发射端故障节点定位训练

  10. An improved contour symmetry axes extraction algorithm and its application in the location of picking points of apples

    Directory of Open Access Journals (Sweden)

    Dandan Wang

    2015-03-01

    Full Text Available The key problem for picking robots is to locate the picking points of fruit. A method based on the moment of inertia and symmetry of apples is proposed in this paper to locate the picking points of apples. Image pre-processing procedures, which are crucial to improving the accuracy of the location, were carried out to remove noise and smooth the edges of apples. The moment of inertia method has the disadvantage of high computational complexity, which should be solved, so convex hull was used to improve this problem. To verify the validity of this algorithm, a test was conducted using four types of apple images containing 107 apple targets. These images were single and unblocked apple images, single and blocked apple images, images containing adjacent apples, and apples in panoramas. The root mean square error values of these four types of apple images were 6.3, 15.0, 21.6 and 18.4, respectively, and the average location errors were 4.9°, 10.2°, 16.3° and 13.8°, respectively. Furthermore, the improved algorithm was effective in terms of average runtime, with 3.7 ms and 9.2 ms for single and unblocked and single and blocked apple images, respectively. For the other two types of apple images, the runtime was determined by the number of apples and blocked apples contained in the images. The results showed that the improved algorithm could extract symmetry axes and locate the picking points of apples more efficiently. In conclusion, the improved algorithm is feasible for extracting symmetry axes and locating the picking points of apples.

  11. An improved contour symmetry axes extraction algorithm and its application in the location of picking points of apples

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.; Song, H.; Yu, X.; Zhang, W.; Qu, W.; Xu, Y.

    2015-07-01

    The key problem for picking robots is to locate the picking points of fruit. A method based on the moment of inertia and symmetry of apples is proposed in this paper to locate the picking points of apples. Image pre-processing procedures, which are crucial to improving the accuracy of the location, were carried out to remove noise and smooth the edges of apples. The moment of inertia method has the disadvantage of high computational complexity, which should be solved, so convex hull was used to improve this problem. To verify the validity of this algorithm, a test was conducted using four types of apple images containing 107 apple targets. These images were single and unblocked apple images, single and blocked apple images, images containing adjacent apples, and apples in panoramas. The root mean square error values of these four types of apple images were 6.3, 15.0, 21.6 and 18.4, respectively, and the average location errors were 4.9°, 10.2°, 16.3° and 13.8°, respectively. Furthermore, the improved algorithm was effective in terms of average runtime, with 3.7 ms and 9.2 ms for single and unblocked and single and blocked apple images, respectively. For the other two types of apple images, the runtime was determined by the number of apples and blocked apples contained in the images. The results showed that the improved algorithm could extract symmetry axes and locate the picking points of apples more efficiently. In conclusion, the improved algorithm is feasible for extracting symmetry axes and locating the picking points of apples. (Author)

  12. Iowa Bedrock Faults

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This fault coverage locates and identifies all currently known/interpreted fault zones in Iowa, that demonstrate offset of geologic units in exposure or subsurface...

  13. 基于人工蜂群算法的电网故障诊断%Fault Diagnosis of Power Network Based on Artificial Bee Colony Algorithm

    Institute of Scientific and Technical Information of China (English)

    韦晓广; 陈奎

    2012-01-01

    In order to solve 0-1 programming problem in fault diagnosis of power network, the paper proposed optimization methods of artificial bee colony algorithm from aspects of algebra and geometry. The simulation results show that the artificial bee colony algorithm is feasible and reasonable, and the overall performance is significantly superior to traditional genetic algorithms; artificial bee colony algorithm based on geometric has better stability and search capabilities than the algorithm based on algebraic, and is more suitable for occasions with high stability and accuracy requirements. Fault diagnosis of power network, artificial bee colony algorithm, algebra method,%针对电网故障诊断中的0-1规划问题,从代数和几何角度优化了人工蜂群算法.仿真结果表明,人工蜂群算法具有可行性和合理性,并且综合性能显著优于传统的遗传算法 ;在两种人工蜂群算法中,基于几何思想的人工蜂群算法具有更好的稳定性和搜索能力,更加适用于对稳定性和精准度要求很高的场合.

  14. Classification of fault location and the degree of performance degradation of a rolling bearing based on an improved hyper-sphere-structured multi-class support vector machine

    Science.gov (United States)

    Wang, Yujing; Kang, Shouqiang; Jiang, Yicheng; Yang, Guangxue; Song, Lixin; Mikulovich, V. I.

    2012-05-01

    Effective classification of a rolling bearing fault location and especially its degree of performance degradation provides an important basis for appropriate fault judgment and processing. Two methods are introduced to extract features of the rolling bearing vibration signal—one combining empirical mode decomposition (EMD) with the autoregressive model, whose model parameters and variances of the remnant can be obtained using the Yule-Walker or Ulrych-Clayton method, and the other combining EMD with singular value decomposition. Feature vector matrices obtained are then regarded as the input of the improved hyper-sphere-structured multi-class support vector machine (HSSMC-SVM) for classification. Thereby, multi-status intelligent diagnosis of normal rolling bearings and faulty rolling bearings at different locations and the degrees of performance degradation of the faulty rolling bearings can be achieved simultaneously. Experimental results show that EMD combined with singular value decomposition and the improved HSSMC-SVM intelligent method requires less time and has a higher recognition rate.

  15. 配电网下基于PMU量测的混合故障测距法%Research of hybrid fault location method based on PMU for distribution networks

    Institute of Scientific and Technical Information of China (English)

    刘永军; 刘敏

    2016-01-01

    精确的故障定位是节省巡线人力和物力的关键,对于提高供电可靠性,减小持续停电造成的损失具有重要意义。针对目前输电网故障测距技术比较成熟,而配电网精确故障测距尚待深入研究的实际情况,提出了配电网故障测距策略,其包括两个步骤:首先基于故障指示器( FI)实现故障区段或故障分支定位,然后利用所提的混合故障测距法,实现带分支辐射型配电网的精确故障测距。最后通过MATLAB仿真验证了所提故障测距策略的有效性,实验结果表现出了较高的故障测距精度。%Accurate fault location is the key to save the manpower and material resources , which has important signifi-cance for improving the reliability of power supply and reducing the loss of continuous power supply .Aiming at the current fault location technologies of transmission networks are relatively mature , and the exact fault location of distri-bution networks are still to be further studied , the fault location strategy for distribution network was proposed , which consisted of two steps:the fault section or fault branch was realized based on fault indicator ( FI) .Secondly , the ac-curate fault location of the radial distribution network with the branch was realized by using the hybrid fault location method.Finally, the effectiveness of the proposed fault location method was verified by MATLAB simulation .The ex-perimental results show the high accuracy of fault location .

  16. Granular reduction algorithm in SDG fault diagnosis%SDG故障诊断决策表的粒约简算法

    Institute of Scientific and Technical Information of China (English)

    张志军; 谢刚

    2012-01-01

    In this paper, Bit Granular Matrix-based granular reduction algorithm is introduced to the SDG model based fault diagnosis. With centrifugal pumps and liquid level system as an example, first, the element of SDG fault diagnosis model is described by granular language, a decision table which reflects the causality of faults and signs is established. Redundant attributes and attribute values are reduced by knowledge discovery algorithm of granular computing. The diagnosis rules of SDG model are reduced by the method which improves the fault diagnosis effectiveness.%为了减少故障特征集的维数,降低流程系统故障诊断知识库的复杂程度,本文将基于二进制粒矩阵的粒约简算法引入到基于SDG模型的故障诊断中.以离心泵与液位系统为例,用粒语言来描述和表达SDG故障诊断模型中的元素,建立反映故障-征兆因果关系的决策表,进而对冗余属性及属性值进行约简,有效地约简了SDG诊断规则,提高了故障诊断的效率.

  17. Differential evolution algorithm for multi-commodity and multi-level of service hub covering location problem

    Directory of Open Access Journals (Sweden)

    M. Setak

    2013-01-01

    Full Text Available The hub location problem involves a network of origins and destinations over which transportation takes place. There are many studies associated with finding the location of hub nodes and the allocation of demand nodes to these located hub nodes to transfer the only one kind of commodity under one level of service. However, in this study, carrying different commodity types from origin to destination under various levels of services (e.g. price, punctuality, reliability or transit time is studied. Quality of services experienced by users such as speed, convenience, comfort and security of transportation facilities and services is considered as the level of service. In each system, different kinds of commodities with various levels of services can be transmitted. The appropriate level of service that a commodity can be transmitted through is chosen by customer preferences and the specification of the commodity. So, a mixed integer programming formulation for single allocation hub covering location problem, which is based on the idea of transferring multi commodity flows under multi levels of service is presented. These two are applied concepts, multi-commodity and multi-level of service, which make the model's assumptions closer to the real world problems. In addition, a differential evolution algorithm is designed to find near-optimal solutions. The obtained solutions using differential evolution (DE algorithm (upper bound, where its parameters are tuned by response surface methodology, are compared with exact solutions and computed lower bounds by linear relaxation technique to prove the efficiency of proposed DE algorithm.

  18. Assessment of earthquake locations in 3-D deterministic velocity models: A case study from the Altotiberina Near Fault Observatory (Italy)

    Science.gov (United States)

    Latorre, D.; Mirabella, F.; Chiaraluce, L.; Trippetta, F.; Lomax, A.

    2016-11-01

    The accuracy of earthquake locations and their correspondence with subsurface geology depends strongly on the accuracy of the available seismic velocity model. Most modern methods to construct a velocity model for earthquake location are based on the inversion of passive source seismological data. Another approach is the integration of high-resolution geological and geophysical data to construct deterministic velocity models in which earthquake locations can be directly correlated to the geological structures. Such models have to be kinematically consistent with independent seismological data in order to provide precise hypocenter solutions. We present the Altotiberina (AT) seismic model, a three-dimensional velocity model for the Upper Tiber Valley region (Northern Apennines, Italy), constructed by combining 300 km of seismic reflection profiles, six deep boreholes (down to 5 km depth), detailed data from geological surveys and direct measurements of P and S wave velocities performed in situ and in laboratory. We assess the robustness of the AT seismic model by locating 11,713 earthquakes with a nonlinear, global-search inversion method and comparing the probabilistic hypocenter solutions to those calculated in three previously published velocity models, constructed by inverting passive seismological data only. Our results demonstrate that the AT seismic model is able to provide higher-quality hypocenter locations than the previous velocity models. Earthquake locations are consistent with the subsurface geological structures and show a high degree of spatial correlation with specific lithostratigraphic units, suggesting a lithological control on the seismic activity evolution.

  19. An Undersea Mining Microseism Source Location Algorithm Considering Wave Velocity Probability Distribution

    OpenAIRE

    2014-01-01

    The traditional mine microseism locating methods are mainly based on the assumption that the wave velocity is uniform through the space, which leads to some errors for the assumption goes against the laws of nature. In this paper, the wave velocity is regarded as a random variable, and the probability distribution information of the wave velocity is fused into the traditional locating method. This paper puts forwards the microseism source location method for the undersea mining on condition o...

  20. Probabilistic Analysis of Fault Tolerant Broadcast Routing Algorithms on Mesh Networks%Mesh网络容错广播路由算法的概率分析

    Institute of Scientific and Technical Information of China (English)

    王高才; 陈建二; 王国军; 陈松乔

    2003-01-01

    One-to-all or broadcast communication is one of the most important communication patterns and occurs in many important applications in parallel computing. This paper proposes a fault tolerant, local-irdormation-based, and distributed broadcast routing algorithm based on the concept of k-submesh-cormectivity in all-port mesh networks.The paper analyzes the fault tolerance of the algorithm in terms of node failure probability. Suppose that every nodehas independent failure probability, and deduce the success probability of the broadcast routing, which successfully routes a message from a source node to all non-faulty nodes in the networks. The paper strictly proves that the broadcast routing algorithm with the success probability of 99% to route among all non-faulty nodes on mesh networks with forty thousand nodes, in case that the node failure probability is controlled within 0.12% Simulation results show that the algorithm is practically efficient and effective, and the time steps of the algorithm are very closeto the optimum.

  1. A Modified Plane—to—Plane Phase Retrieval Algorithm for Nonideal—Located Near—Field Measurements

    Institute of Scientific and Technical Information of China (English)

    HUHongfei; GAOXue; FUDemin

    2003-01-01

    A modified plane-to-plane phase retrieval algorithm is applied to near-field antenna measurements that relax the restriction on probe locations at plane-rectangular grids. The modifications involve enforcement of the constraint on the aperture of the antenna under test,alignment of the beam center-of-gravity and proper choice of an initial estimate. Based on actual near-field measure-ments of a prototype antenna, four nonideal-located mea-surement cases are simulated. The obtained results with excellent accuracy confirm that this algorithm allows effi-cient processing of the amplitude-only data, shows less sus-ceptivity to the variations of the amplitude data resulted from the position errors, and more importantly, requires no knowledge of the actual probe positions.

  2. Research of LLOP Location Algorithm Based on MIMO%一种基于MIMO的LLOP定位算法

    Institute of Scientific and Technical Information of China (English)

    滕飞; 钟子发; 张圣钧

    2015-01-01

    In order to solve the problem that location accuracy of LTE moblie station is low in the NLOS environment,based on the traditional LLOP algorithm,this paper offers a new algorithm which based on the technology of MIMO.This algorithm uses the character of multiple antenna transmission technology in MIMO to built a concentric circle positioning model,then averaging the positioning array. It can improve the location accuracy by reducing the NLOS error.Numerical simulations show that this new algorithm can get a more accurate results than LLOP in the NLOS error.%针对LTE终端在非可视距传播(NLOS)环境下定位精度较低的问题,在原有LLOP定位算法的基础上,提出一种基于MIMO技术的定位算法。该算法利用MIMO技术多天线传输的特性,构造同心圆定位模型,并对多定位点阵列求均值,从而达到消除NLOS误差提升定位精度的目的。仿真结果表明,提出的算法在NLOS环境下定位精度要高于传统LLOP定位算法。

  3. Location Assisted Vertical Handover Algorithm for QoS Optimization in End-to-End Connections

    DEFF Research Database (Denmark)

    Dam, Martin S.; Christensen, Steffen R.; Mikkelsen, Lars M.

    2012-01-01

    implementation on Android based tablets. The simulations cover a wide range of scenarios for two mobile users in an urban area with ubiquitous cellular coverage, and shows our algorithm leads to increased throughput, with fewer handovers, when considering the end-to-end connection than to other handover schemes...

  4. A Novel Hierarchical Model to Locate Health Care Facilities with Fuzzy Demand Solved by Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Mehdi Alinaghian

    2014-08-01

    Full Text Available In the field of health losses resulting from failure to establish the facilities in a suitable location and the required number, beyond the cost and quality of service will result in an increase in mortality and the spread of diseases. So the facility location models have special importance in this area. In this paper, a successively inclusive hierarchical model for location of health centers in term of the transfer of patients from a lower level to a higher level of health centers has been developed. Since determination the exact number of demand for health care in the future is difficult and in order to make the model close to the real conditions of demand uncertainty, a fuzzy programming model based on credibility theory is considered. To evaluate the proposed model, several numerical examples are solved in small size. In order to solve large scale problems, a meta-heuristic algorithm based on harmony search algorithm was developed in conjunction with the GAMS software which indicants the performance of the proposed algorithm.

  5. ENHANCEMENT OF VOLTAGE STABILITY AND REDUCTION OF POWER LOSS USING GENETIC ALGORITHM THROUGH OPTIMAL LOCATION OF SVC, TCSC AND UPFC

    Directory of Open Access Journals (Sweden)

    R.KALAIVANI

    2016-10-01

    Full Text Available Due to huge increase in power demand, power system network will lead to major problems such as voltage instability and voltage collapse in the power system. To overcome these problems, Flexible AC Transmission System (FACTS devices have been implemented in power system. By placing these devices in suitable locations, the power system can be operated far away from the instability point. In this paper, the optimal location and the ratings of FACTS devices such as Thyristor Controlled Series Capacitor (TCSC, Static VAR Compensator (SVC and Unified Power Flow Controller (UPFC are determined using Genetic Algorithm (GA. A multi objective optimization problem is formulated with the consideration of minimizing voltage stability index, real power loss and generator cost. Evolutionary algorithm such as GA is a population based search method is used for solving multi objective optimization problem that is capable of searching for multiple solutions concurrently in a single run and provide an optimal solution. It is observed from the results that the voltages stability index, real power loss and generator cost are reduced by optimally locating the FACTS devices in the power system. IEEE 14 bus and IEEE 57 bus systems are used to demonstrate the effectiveness of the proposed algorithm.

  6. Diagnosis method of an open-switch fault for a grid-connected T-type three-level inverter system

    DEFF Research Database (Denmark)

    Choi, U. M.; Lee, K. B.; Blaabjerg, Frede

    2012-01-01

    This paper proposes a diagnosis method of an open-switch fault and fault-tolerant control algorithm for a grid-connected T-type three-level inverter. The location of the faulty switch is identified by using the changes of average phase current and the neutral-point voltage. The fault-tolerant con......This paper proposes a diagnosis method of an open-switch fault and fault-tolerant control algorithm for a grid-connected T-type three-level inverter. The location of the faulty switch is identified by using the changes of average phase current and the neutral-point voltage. The fault......-tolerant control algorithm can be used when the open switch fault occurs in the middle switches. It is achieved by simply modifying the conventional SVM method. The proposed methods are advantageous as they do not require additional sensors and they do not involve complex calculations. Therefore, this method...

  7. Fault Detection in Complex Distribution Network Based on Hilbert-Huang Transform

    Directory of Open Access Journals (Sweden)

    Zhongjian Kang

    2013-01-01

    Full Text Available Traditional distribution network fault location methods often cannot be effectively applied for the structure of the branch in complex distribution network. A new accurate fault location for the single-phase-ground fault in complex distribution network with structure of the branch based on Hilbert-Huang transform was proposed in this paper. First, the distribution network was modeled. The faults on each branch were simulated. The energy characteristics under the branch in a particular frequency band were identified by HHT. Then these energy characteristics were used to train artificial neural networks (ANN.When the energy characteristics of actual fault are inputted, the trained neural network can output the malfunction branch. When the fault branch was determined, using the online fault feature matching method, combined with the genetic algorithm, the precise determination of the distance to fault location in the fault branch can be completed. With combinations of signal processing-Hilbert-Huang transform, artificial neural network and genetic algorithm, the entirely new method was proposed to deal with the problem of fault location in distribution network in this article. The results showed that the method has a good precision and apply to the small current grounding system.

  8. Solving a multi-objective location routing problem for infectious waste disposal using hybrid goal programming and hybrid genetic algorithm

    Directory of Open Access Journals (Sweden)

    Narong Wichapa

    2018-01-01

    Full Text Available Infectious waste disposal remains one of the most serious problems in the medical, social and environmental domains of almost every country. Selection of new suitable locations and finding the optimal set of transport routes for a fleet of vehicles to transport infectious waste material, location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Determining locations for infectious waste disposal is a difficult and complex process, because it requires combining both intangible and tangible factors. Additionally, it depends on several criteria and various regulations. This facility location problem for infectious waste disposal is complicated, and it cannot be addressed using any stand-alone technique. Based on a case study, 107 hospitals and 6 candidate municipalities in Upper-Northeastern Thailand, we considered criteria such as infrastructure, geology and social & environmental criteria, evaluating global priority weights using the fuzzy analytical hierarchy process (Fuzzy AHP. After that, a new multi-objective facility location problem model which hybridizes fuzzy AHP and goal programming (GP, namely the HGP model, was tested. Finally, the vehicle routing problem (VRP for a case study was formulated, and it was tested using a hybrid genetic algorithm (HGA which hybridizes the push forward insertion heuristic (PFIH, genetic algorithm (GA and three local searches including 2-opt, insertion-move and interexchange-move. The results show that both the HGP and HGA can lead to select new suitable locations and to find the optimal set of transport routes for vehicles delivering infectious waste material. The novelty of the proposed methodologies, HGP, is the simultaneous combination of relevant factors that are difficult to interpret and cost factors in order to determine new suitable locations, and HGA can be applied to determine the transport routes which provide a minimum number of vehicles

  9. MECH: Algorithms and Tools for Automated Assessment of Potential Attack Locations (Software User Guide)

    Science.gov (United States)

    2015-10-02

    a Halo,” or MECH, is an analytical abstraction to model the locational relationships between a target and its attackers (around the route) in...line) A range for M/C points to see the target continuously move along the route to the attack engagement location E. Device Triggering Range (yellow...Behaviors in Tactical Planning (Views 3,4 of Figure 2.5) Attackers go through formal or informal optimization (i.e., prioritization , trade off choices) of

  10. Re-evaluation Of The Shallow Seismicity On Mt Etna Applying Probabilistic Earthquake Location Algorithms.

    Science.gov (United States)

    Tuve, T.; Mostaccio, A.; Langer, H. K.; di Grazia, G.

    2005-12-01

    A recent research project carried out together with the Italian Civil Protection concerns the study of amplitude decay laws in various areas on the Italian territory, including Mt Etna. A particular feature of seismic activity is the presence of moderate magnitude earthquakes causing frequently considerable damage in the epicentre areas. These earthquakes are supposed to occur at rather shallow depth, no more than 5 km. Given the geological context, however, these shallow earthquakes would origin in rather weak sedimentary material. In this study we check the reliability of standard earthquake location, in particular with respect to the calculated focal depth, using standard location methods as well as more advanced approaches such as the NONLINLOC software proposed by Lomax et al. (2000) using it with its various options (i.e., Grid Search, Metropolis-Gibbs and Oct-Tree) and 3D velocity model (Cocina et al., 2005). All three options of NONLINLOC gave comparable results with respect to hypocenter locations and quality. Compared to standard locations we note a significant improve of location quality and, in particular a considerable difference of focal depths (in the order of 1.5 - 2 km). However, we cannot find a clear bias towards greater or lower depth. Further analyses concern the assessment of the stability of locations. For this purpose we carry out various Monte Carlo experiments perturbing travel time reading randomly. Further investigations are devoted to possible biases which may arise from the use of an unsuitable velocity model.

  11. JAVA algorithm of Boyer-Moore string locating%Boyer-Moore串查找JAVA算法

    Institute of Scientific and Technical Information of China (English)

    秦殿英; 焦庆争

    2001-01-01

    针对JAVA虚拟机运行代码效率低的特点,提出了实现JAVA字符串快速搜索的改进算法,运用有限状态自动机(FSM)控制实现Boyer-Moore串查找JAVA方法,详细描述了算法的机理及其实现的JAVA源程序。%Being aimed at the low efficiency of operation code in JAVA virtual computer, proposes improved algorithm in realizing quick JAVA character-string search.Finite status automation (FSM)is used to control the method of realizing Boyer-Moore string search.The algorithm mechanism and realizing JAVA source program are described in detail.

  12. A greedy heuristic algorithm for solving the capacitated planar multi-facility location-allocation problem

    Science.gov (United States)

    Luis, Martino; Ramli, Mohammad Fadzli; Lin, Abdullah

    2016-10-01

    This study investigates the capacitated planar multi-facility location-allocation problem by considering various capacity constraints. The problem is also known as the capacitated multi-source Weber problem, where the number of facilities to be located is specified and each of which has a capacity constraint. An efficient greedy randomised adaptive search procedure (GRASP) is proposed to deal with the problem. A scheme that applies the furthest distance rule (FDR) and self-adjusted threshold parameters to generate initial facility locations that are situated sparsely within GRASP framework is also presented. The construction of the restricted candidate list (RCL) within GRASP is also guided by applying a concept of restricted regions that prevents new facility locations to be sited too close to the previous selected facility locations. The performance of the proposed GRASP heuristics is tested using benchmark data sets from literature. The computational experiments show that the proposed methods provide encouraging solutions when compared to recently published papers. Some future research avenues on the subject are also briefly highlighted.

  13. Numerical modelling of the mechanical and fluid flow properties of fault zones - Implications for fault seal analysis

    NARCIS (Netherlands)

    Heege, J.H. ter; Wassing, B.B.T.; Giger, S.B.; Clennell, M.B.

    2009-01-01

    Existing fault seal algorithms are based on fault zone composition and fault slip (e.g., shale gouge ratio), or on fault orientations within the contemporary stress field (e.g., slip tendency). In this study, we aim to develop improved fault seal algorithms that account for differences in fault zone

  14. Location and moment tensor inversion of small earthquakes using 3D Green's functions in models with rugged topography: application to the Longmenshan fault zone

    Science.gov (United States)

    Zhou, Li; Zhang, Wei; Shen, Yang; Chen, Xiaofei; Zhang, Jie

    2016-06-01

    With dense seismic arrays and advanced imaging methods, regional three-dimensional (3D) Earth models have become more accurate. It is now increasingly feasible and advantageous to use a 3D Earth model to better locate earthquakes and invert their source mechanisms by fitting synthetics to observed waveforms. In this study, we develop an approach to determine both the earthquake location and source mechanism from waveform information. The observed waveforms are filtered in different frequency bands and separated into windows for the individual phases. Instead of picking the arrival times, the traveltime differences are measured by cross-correlation between synthetic waveforms based on the 3D Earth model and observed waveforms. The earthquake location is determined by minimizing the cross-correlation traveltime differences. We then fix the horizontal location of the earthquake and perform a grid search in depth to determine the source mechanism at each point by fitting the synthetic and observed waveforms. This new method is verified by a synthetic test with noise added to the synthetic waveforms and a realistic station distribution. We apply this method to a series of M W3.4-5.6 earthquakes in the Longmenshan fault (LMSF) zone, a region with rugged topography between the eastern margin of the Tibetan plateau and the western part of the Sichuan basin. The results show that our solutions result in improved waveform fits compared to the source parameters from the catalogs we used and the location can be better constrained than the amplitude-only approach. Furthermore, the source solutions with realistic topography provide a better fit to the observed waveforms than those without the topography, indicating the need to take the topography into account in regions with rugged topography.

  15. A Vehicle Management End-to-End Testing and Analysis Platform for Validation of Mission and Fault Management Algorithms to Reduce Risk for NASA's Space Launch System

    Science.gov (United States)

    Trevino, Luis; Johnson, Stephen B.; Patterson, Jonathan; Teare, David

    2015-01-01

    The development of the Space Launch System (SLS) launch vehicle requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The characteristics of these systems must be matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large complex systems engineering challenge being addressed in part by focusing on the specific subsystems handling of off-nominal mission and fault tolerance. Using traditional model based system and software engineering design principles from the Unified Modeling Language (UML), the Mission and Fault Management (M&FM) algorithms are crafted and vetted in specialized Integrated Development Teams composed of multiple development disciplines. NASA also has formed an M&FM team for addressing fault management early in the development lifecycle. This team has developed a dedicated Vehicle Management End-to-End Testbed (VMET) that integrates specific M&FM algorithms, specialized nominal and off-nominal test cases, and vendor-supplied physics-based launch vehicle subsystem models. The flexibility of VMET enables thorough testing of the M&FM algorithms by providing configurable suites of both nominal and off-nominal test cases to validate the algorithms utilizing actual subsystem models. The intent is to validate the algorithms and substantiate them with performance baselines for each of the vehicle subsystems in an independent platform exterior to flight software test processes. In any software development process there is inherent risk in the interpretation and implementation of concepts into software through requirements and test processes. Risk reduction is addressed by working with other organizations such as S

  16. Algorithmic strategies for adapting to environmental changes in 802.11 location fingerprinting

    DEFF Research Database (Denmark)

    Hansen, Rene; Wind, Rico; Jensen, Christian S.

    2010-01-01

    Ubiquitous and accurate indoor positioning represents a key capability of an infrastructure that enables indoor location-based services. At the same time, such positioning has yet to be achieved. Much research uses commercial, off-the-shelf 802.11 (Wi-Fi) hardware for indoor positioning. In parti......Ubiquitous and accurate indoor positioning represents a key capability of an infrastructure that enables indoor location-based services. At the same time, such positioning has yet to be achieved. Much research uses commercial, off-the-shelf 802.11 (Wi-Fi) hardware for indoor positioning...

  17. A simple but usually fast branch-and-bound algorithm for the capacitated facility location problem

    DEFF Research Database (Denmark)

    Görtz, Simon; Klose, Andreas

    2012-01-01

    This paper presents a simple branch-and-bound method based on Lagrangean relaxation and subgradient optimization for solving large instances of the capacitated facility location problem (CFLP) to optimality. To guess a primal solution to the Lagrangean dual, we average solutions to the Lagrangean...

  18. A spectral clustering search algorithm for predicting shallow landslide size and location

    Science.gov (United States)

    Dino Bellugi; David G. Milledge; William E. Dietrich; Jim A. McKean; J. Taylor Perron; Erik B. Sudderth; Brian Kazian

    2015-01-01

    The potential hazard and geomorphic significance of shallow landslides depend on their location and size. Commonly applied one-dimensional stability models do not include lateral resistances and cannot predict landslide size. Multi-dimensional models must be applied to specific geometries, which are not known a priori, and testing all possible geometries is...

  19. A subgradient-based branch-and-bound algorithm for the capacitated facility location problem

    DEFF Research Database (Denmark)

    Görtz, Simon; Klose, Andreas

    This paper presents a simple branch-and-bound method based on Lagrangean relaxation and subgradient optimization for solving large instances of the capacitated facility location problem (CFLP) to optimality. In order to guess a primal solution to the Lagrangean dual, we average solutions...

  20. A subgradient-based branch-and-bound algorithm for the capacitated facility location problem

    DEFF Research Database (Denmark)

    Görtz, Simon; Klose, Andreas

    This paper presents a simple branch-and-bound method based on Lagrangean relaxation and subgradient optimization for solving large instances of the capacitated facility location problem (CFLP) to optimality. In order to guess a primal solution to the Lagrangean dual, we average solutions...

  1. Planetary Gearbox Fault Detection Using Vibration Separation Techniques

    Science.gov (United States)

    Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.

  2. 基于粒子群优化的神经网络容错控制算法%Fault-Tolerant Control Algorithm of Neural Network Based on Particle Swarm Optimization

    Institute of Scientific and Technical Information of China (English)

    周立群; 张晓琴; 李书臣; 苏成利; 翟春艳

    2011-01-01

    针对一类非线性系统的传感器故障,将故障诊断与容错控制方法相结合,提出了一种容错控制方法。用BP网络建立传感器故障模型,并用粒子群算法来训练BP网络的参数,在线估计系统的状态和故障参数。然后将故障参数与修正的Bayes分类算法相结合,对传感器故障在线检测、分离和估计,通过补偿算法,实现容错控制。对连续搅拌釜式反应器(CSTR)的仿真结果表明,该方法收敛性好,对传感器故障具有很强的容错能力。%A fault-tolerant control method combining fault diagnosis and fault - tolerant control was proposed for sensor faults of a class of nonlinear system. A BP neural network based on particle swarm optimization algorithm was used to estimate system states and fault parameters of the constructed model for sensor faults. The estimated fault parameters were processed by the modified Bayes classification algorithm to achieve sensor faults detection, separation and estimation online, and fault - tolerant control was realized by compensation algorithm. Simulation results for continuous stirred tank reactor (CSTR) show good convergence of the approach and strong fault-tolerant ability for sensor faults.

  3. MUSIC algorithm DoA estimation for cooperative node location in mobile ad hoc networks

    Science.gov (United States)

    Warty, Chirag; Yu, Richard Wai; ElMahgoub, Khaled; Spinsante, Susanna

    In recent years the technological development has encouraged several applications based on distributed communications network without any fixed infrastructure. The problem of providing a collaborative early warning system for multiple mobile nodes against a fast moving object. The solution is provided subject to system level constraints: motion of nodes, antenna sensitivity and Doppler effect at 2.4 GHz and 5.8 GHz. This approach consists of three stages. The first phase consists of detecting the incoming object using a highly directive two element antenna at 5.0 GHz band. The second phase consists of broadcasting the warning message using a low directivity broad antenna beam using 2× 2 antenna array which then in third phase will be detected by receiving nodes by using direction of arrival (DOA) estimation technique. The DOA estimation technique is used to estimate the range and bearing of the incoming nodes. The position of fast arriving object can be estimated using the MUSIC algorithm for warning beam DOA estimation. This paper is mainly intended to demonstrate the feasibility of early detection and warning system using a collaborative node to node communication links. The simulation is performed to show the behavior of detecting and broadcasting antennas as well as performance of the detection algorithm. The idea can be further expanded to implement commercial grade detection and warning system

  4. Enhancement of Voltage Stability by Optimal Location of Static Var Compensator Using Genetic Algorithm and Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    R. Kalaivani

    2012-01-01

    Full Text Available Problem statement: Voltage instability and voltage collapse have been considered as a major threat to present power system networks due to their stressed operation. It is very important to do the power system analysis with respect to voltage stability. Approach: Flexible AC Transmission System (FACTS is an alternating current transmission system incorporating power electronic-based and other static controllers to enhance controllability and increase power transfer capability. A FACTS device in a power system improves the voltage stability, reduces the power loss and also improves the load ability of the system. Results: This study investigates the application of Particle Swarm Optimization (PSO and Genetic Algorithm (GA to find optimal location and rated value of Static Var Compensator (SVC device to minimize the voltage stability index, total power loss, load voltage deviation, cost of generation and cost of FACTS devices to improve voltage stability in the power system. Optimal location and rated value of SVC device have been found in different loading scenario (115%, 125% and 150% of normal loading using PSO and GA. Conclusion/Recommendations: It is observed from the results that the voltage stability margin is improved, the voltage profile of the power system is increased, load voltage deviation is reduced and real power losses also reduced by optimally locating SVC device in the power system. The proposed algorithm is verified with the IEEE 14 bus, IEEE 30 bus and IEEE 57 bus.

  5. Does the Location of Bruch's Membrane Opening Change Over Time? Longitudinal Analysis Using San Diego Automated Layer Segmentation Algorithm (SALSA).

    Science.gov (United States)

    Belghith, Akram; Bowd, Christopher; Medeiros, Felipe A; Hammel, Naama; Yang, Zhiyong; Weinreb, Robert N; Zangwill, Linda M

    2016-02-01

    We determined if the Bruch's membrane opening (BMO) location changes over time in healthy eyes and eyes with progressing glaucoma, and validated an automated segmentation algorithm for identifying the BMO in Cirrus high-definition coherence tomography (HD-OCT) images. We followed 95 eyes (35 progressing glaucoma and 60 healthy) for an average of 3.7 ± 1.1 years. A stable group of 50 eyes had repeated tests over a short period. In each B-scan of the stable group, the BMO points were delineated manually and automatically to assess the reproducibility of both segmentation methods. Moreover, the BMO location variation over time was assessed longitudinally on the aligned images in 3D space point by point in x, y, and z directions. Mean visual field mean deviation at baseline of the progressing glaucoma group was -7.7 dB. Mixed-effects models revealed small nonsignificant changes in BMO location over time for all directions in healthy eyes (the smallest P value was 0.39) and in the progressing glaucoma eyes (the smallest P value was 0.30). In the stable group, the overall intervisit-intraclass correlation coefficient (ICC) and coefficient of variation (CV) were 98.4% and 2.1%, respectively, for the manual segmentation and 98.1% and 1.9%, respectively, for the automated algorithm. Bruch's membrane opening location was stable in normal and progressing glaucoma eyes with follow-up between 3 and 4 years indicating that it can be used as reference point in monitoring glaucoma progression. The BMO location estimation with Cirrus HD-OCT using manual and automated segmentation showed excellent reproducibility.

  6. Fault Diagnosis System of Induction Motors Based on Multiscale Entropy and Support Vector Machine with Mutual Information Algorithm

    Directory of Open Access Journals (Sweden)

    Shuang Pan

    2016-01-01

    Full Text Available An effective fault diagnosis method for induction motors is proposed in this paper to improve the reliability of motors using a combination of entropy feature extraction, mutual information, and support vector machine. Sample entropy and multiscale entropy are used to extract the desired entropy features from motor vibration signals. Sample entropy is used to estimate the complexity of the original time series while multiscale entropy is employed to measure the complexity of time series in different scales. The entropy features are directly extracted from the nonlinear, nonstationary induction motor vibration signals which are then sorted by using mutual information so that the elements in the feature vector are ranked according to their importance and relevant to the faults. The first five most important features are selected from the feature vectors and classified using support vector machine. The proposed method is then employed to analyze the vibration data acquired from a motor fault simulator test rig. The classification results confirm that the proposed method can effectively diagnose various motor faults with reasonable good accuracy. It is also shown that the proposed method can provide an effective and accurate fault diagnosis for various induction motor faults using only vibration data.

  7. Study on Practical Application of Turboprop Engine Condition Monitoring and Fault Diagnostic System Using Fuzzy-Neuro Algorithms

    Science.gov (United States)

    Kong, Changduk; Lim, Semyeong; Kim, Keunwoo

    2013-03-01

    The Neural Networks is mostly used to engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measuring performance data, and proposes a fault diagnostic system using the base performance model and artificial intelligent methods such as Fuzzy and Neural Networks. Each real engine performance model, which is named as the base performance model that can simulate a new engine performance, is inversely made using its performance test data. Therefore the condition monitoring of each engine can be more precisely carried out through comparison with measuring performance data. The proposed diagnostic system identifies firstly the faulted components using Fuzzy Logic, and then quantifies faults of the identified components using Neural Networks leaned by fault learning data base obtained from the developed base performance model. In leaning the measuring performance data of the faulted components, the FFBP (Feed Forward Back Propagation) is used. In order to user's friendly purpose, the proposed diagnostic program is coded by the GUI type using MATLAB.

  8. An Improved Genetic Algorithm for Optimal Stationary Energy Storage System Locating and Sizing

    OpenAIRE

    Bin Wang(Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China); Zhongping Yang; Fei Lin; Wei Zhao

    2014-01-01

    The application of a stationary ultra-capacitor energy storage system (ESS) in urban rail transit allows for the recuperation of vehicle braking energy for increasing energy savings as well as for a better vehicle voltage profile. This paper aims to obtain the best energy savings and voltage profile by optimizing the location and size of ultra-capacitors. This paper firstly raises the optimization objective functions from the perspectives of energy savings, regenerative braking cancellation a...

  9. Studies on Application of Mining Association Rules algorithm in Storage Location Configuration

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    How to reduce in and out motion distance and improve work efficiency is not only the key question of logistics storage & distribution center, but also a primary factor in improving competitive power of enterprise . In view of this question, the method of using mining association rules to resolve the problem of storage location configuration was put forward in this article with the purpose of improving work efficiency.

  10. Determining fault geometries from surface displacements

    Science.gov (United States)

    Volkov, D.; Voisin, C.; Ionescu, I. R.

    2016-12-01

    We study in this paper a half space linear elasticity model for surface displacements caused by slip along underground faults. We prove uniqueness of the fault location and (piecewise planar) geometry and of the slip field for a given surface displacement field.We then introduce a reconstruction algorithm for the realistic case where only a finite number of surface measurements are available.After showing how this algorithm performs on simulated data and assessing the effect of noise, we apply it to measured data. The data was recorded during slow slip events in Guerrero, Mexico. Since this is a well studied subduction zone, it is possible to compareour inferred fault geometry to other reconstructions (obtained using different techniques), found in the literature.

  11. An Algorithm to Identify and Localize Suitable Dock Locations from 3-D LiDAR Scans

    Science.gov (United States)

    2013-05-10

    Survey. Map data ©2013 Google 9 Data Collecting Process 5.3.2 In order to collect data, the LiDAR would be placed on a cart and a MATLAB ...program was used to collect data of one scan, or one 360 degree rotation, of the LiDAR . These scans were saved as MATLAB figures for visual reference...Locations from 3-D LiDAR Scans 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Graves, Mitchell Robert 5d. PROJECT NUMBER

  12. 一种配电网故障阶段式恢复方法%A phased fault restoration algorithm for distribution system

    Institute of Scientific and Technical Information of China (English)

    刘蓓; 汪沨; 陈春; 黄纯; 曹一家; 张飞; 董旭柱

    2014-01-01

    为快速确定配电网故障恢复的最优方案,提出了一种将启发式规则与优化算法相结合的故障阶段式恢复方法。各个阶段通过指标判定是否执行,不同故障的恢复阶段不同。第一阶段采用启发式搜索方法恢复网络连通性;第二阶段利用和声算法以电压不越限及线路不过载为目标进行重构;第三阶段基于深度优先搜索法及负荷优先级切负荷;第四阶段利用和声算法进行网损优化重构。为快速分析配电网的拓扑结构,提出单联络回路的概念,不仅可用于快速恢复故障后网络的连通性,而且可为优化算法避免拓扑不可行解编码提供理论基础,有效提高了运算效率。通过仿真验证了所提方法的可行性。%In order to get the optimal fault restoration scheme for distribution network rapidly, this paper proposes a phased distribution network fault restoration method which integrates the heuristic search algorithm with optimization algorithm. Each stage is determined to operate or not through indexes. The restoration scheme of different faults is different. In the first stage, the heuristic search algorithm is adopted to restore connectedness of network;in the second stage, the harmony search algorithm is adopted to restore stability with the objective of voltage and line capacity being within limits;in the third stage, the overload is rejected based on the depth-first search and priority level of load; in the fourth stage, the harmony search algorithm is adopted to reconfigure for minimizing active power loss. For rapid analysis of the distribution network topology structure, this paper proposes single interconnection loop which can be used to restore connectedness of network quickly as well as provide theory foundation of avoiding infeasible solution coding for optimization algorithm, which improves the operation efficiency effectively. The simulation verifies the feasibility of the proposed

  13. A Vehicle Management End-to-End Testing and Analysis Platform for Validation of Mission and Fault Management Algorithms to Reduce Risk for NASAs Space Launch System

    Science.gov (United States)

    Trevino, Luis; Johnson, Stephen B.; Patterson, Jonathan; Teare, David

    2015-01-01

    The engineering development of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS) requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The nominal and off-nominal characteristics of SLS's elements and subsystems must be understood and matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large and complex systems engineering challenge, which is being addressed in part by focusing on the specific subsystems involved in the handling of off-nominal mission and fault tolerance with response management. Using traditional model-based system and software engineering design principles from the Unified Modeling Language (UML) and Systems Modeling Language (SysML), the Mission and Fault Management (M&FM) algorithms for the vehicle are crafted and vetted in Integrated Development Teams (IDTs) composed of multiple development disciplines such as Systems Engineering (SE), Flight Software (FSW), Safety and Mission Assurance (S&MA) and the major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GNC), Thrust Vector Control (TVC), and liquid engines. These model-based algorithms and their development lifecycle from inception through FSW certification are an important focus of SLS's development effort to further ensure reliable detection and response to off-nominal vehicle states during all phases of vehicle operation from pre-launch through end of flight. To test and validate these M&FM algorithms a dedicated test-bed was developed for full Vehicle Management End-to-End Testing (VMET). For addressing fault management (FM

  14. A branch-and-price algorithm for the capacitated facility location problem

    DEFF Research Database (Denmark)

    Klose, Andreas; Görtz, Simon

    2007-01-01

    to compute optimal solutions to large or difficult problem instances by means of a branch-and-bound procedure information about such a primal fractional solution can be advantageous. In this paper, a (stabilized) column generation method is, therefore, employed in order to solve a corresponding master......The capacitated facility location problem (CFLP) is a well-known combinatorial optimization problem with applications in distribution and production planning. It consists in selecting plant sites from a finite set of potential sites and in allocating customer demands in such a way as to minimize...... operating and transportation costs. A number of solution approaches based on Lagrangean relaxation and subgradient optimization has been proposed for this problem. Subgradient optimization does not provide a primal (fractional) optimal solution to the corresponding master problem. However, in order...

  15. Optimal Energy Management, Location and Size for Stationary Energy Storage System in a Metro Line Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Huan Xia

    2015-10-01

    Full Text Available The installation of stationary super-capacitor energy storage system (ESS in metro systems can recycle the vehicle braking energy and improve the pantograph voltage profile. This paper aims to optimize the energy management, location, and size of stationary super-capacitor ESSes simultaneously and obtain the best economic efficiency and voltage profile of metro systems. Firstly, the simulation platform of an urban rail power supply system, which includes trains and super-capacitor energy storage systems, is established. Then, two evaluation functions from the perspectives of economic efficiency and voltage drop compensation are put forward. Ultimately, a novel optimization method that combines genetic algorithms and a simulation platform of urban rail power supply system is proposed, which can obtain the best energy management strategy, location, and size for ESSes simultaneously. With actual parameters of a Chinese metro line applied in the simulation comparison, certain optimal scheme of ESSes’ energy management strategy, location, and size obtained by a novel optimization method can achieve much better performance of metro systems from the perspectives of two evaluation functions. The simulation result shows that with the increase of weight coefficient, the optimal energy management strategy, locations and size of ESSes appear certain regularities, and the best compromise between economic efficiency and voltage drop compensation can be obtained by a novel optimization method, which can provide a valuable reference to subway company.

  16. An algorithm to locate optimal bond breaking points on a potential energy surface for applications in mechanochemistry and catalysis

    Science.gov (United States)

    Bofill, Josep Maria; Ribas-Ariño, Jordi; García, Sergio Pablo; Quapp, Wolfgang

    2017-10-01

    The reaction path of a mechanically induced chemical transformation changes under stress. It is well established that the force-induced structural changes of minima and saddle points, i.e., the movement of the stationary points on the original or stress-free potential energy surface, can be described by a Newton Trajectory (NT). Given a reactive molecular system, a well-fitted pulling direction, and a sufficiently large value of the force, the minimum configuration of the reactant and the saddle point configuration of a transition state collapse at a point on the corresponding NT trajectory. This point is called barrier breakdown point or bond breaking point (BBP). The Hessian matrix at the BBP has a zero eigenvector which coincides with the gradient. It indicates which force (both in magnitude and direction) should be applied to the system to induce the reaction in a barrierless process. Within the manifold of BBPs, there exist optimal BBPs which indicate what is the optimal pulling direction and what is the minimal magnitude of the force to be applied for a given mechanochemical transformation. Since these special points are very important in the context of mechanochemistry and catalysis, it is crucial to develop efficient algorithms for their location. Here, we propose a Gauss-Newton algorithm that is based on the minimization of a positively defined function (the so-called σ -function). The behavior and efficiency of the new algorithm are shown for 2D test functions and for a real chemical example.

  17. Using a Combined Platform of Swarm Intelligence Algorithms and GIS to Provide Land Suitability Maps for Locating Cardiac Rehabilitation Defibrillators

    Directory of Open Access Journals (Sweden)

    Neda KAFFASH-CHARANDABI

    2015-10-01

    Full Text Available Background: Cardiac arrest is a condition in which the heart is completely stopped and is not pumping any blood. Although most cardiac arrest cases are reported from homes or hospitals, about 20% occur in public areas. Therefore, these areas need to be investigated in terms of cardiac arrest incidence so that places of high incidence can be identi-fied and cardiac rehabilitation defibrillators installed there.Methods: In order to investigate a study area in Petersburg, Pennsylvania State, and to determine appropriate places for installing defibrillators with 5-year period data, swarm intelligence algorithms were used. Moreover, the location of the defibrillators was determined based on the following five evaluation criteria: land use, altitude of the area, econom-ic conditions, distance from hospitals and approximate areas of reported cases of cardiac arrest for public places that were created in geospatial information system (GIS.Results: The A-P HADEL algorithm results were more precise about 27.36%. The validation results indicated a wider coverage of real values and the verification results confirmed the faster and more exact optimization of the cost func-tion in the PSO method.Conclusion: The study findings emphasize the necessity of applying optimal optimization methods along with GIS and precise selection of criteria in the selection of optimal locations for installing medical facilities because the selected algorithm and criteria dramatically affect the final responses. Meanwhile, providing land suitability maps for installing facilities across hot and risky spots has the potential to save many lives.

  18. Research on Power Cable Fault Location Based on Traveling Wave Method and Wavelet Transform%基于小波变换和行波法的电缆故障测距方法研究

    Institute of Scientific and Technical Information of China (English)

    于泽; 费明

    2011-01-01

    To find out the singularity of the high coefficients of fault signal, the method of searching modulus maxima is adopted and realized the precise rangefinder fault. Through the simulation platform of MATLAB, the power cable fault system simulation model is established and obtaind the cable faults fluctuations in the end. The relative error of different locations of the different faults simulation data is less than 4% , that shows that this method is feasible and accuracy.. At the same time a kind range finder formula is put forward and developed that doesn' t include wave velocity v. That makes the calculation of the fault distance to dispense the affect from wave velocity theoretically.%采用搜索模极大值的方法,进而实现故障的精确测距.通过MATLAB仿真平台,建立了电力电缆故障系统的仿真模型,得出电缆故障波形图.不同位置的不同故障的仿真数据相对误差均小于4%,验证了该方法的可行性和准确性.同时提出并推导一种不包含波速v的测距公式,使得在计算故障距离从理论上摆脱了波速对测距结果的影响.

  19. Fault Detection of the Absolute Locating Sensor on Maglev Train%磁浮列车绝对定位传感器的故障检测方法研究

    Institute of Scientific and Technical Information of China (English)

    薛松; 张军歌; 陈特放

    2012-01-01

    The basic principle of absolute locating sensor (ALS) on Maglev train is presented in the paper, and the common fault mode of ALS is analyzed in detail. A detection method is designed in order to realize the function of self- test, the actual fault mode is simulated by the fault -injection method to verify the detection result. The result shows that the fault self - test system alarms in time when a fault occurs, so it can satisfy the practicable application of the fault detection system of ALS on Maglev Train.%介绍了磁浮列车绝对定位传感器的基本原理,详细分析了绝对定位传感器的常见故障形式,以故障检测功能为目的设计了相应的检测方法,并采用故障注入方式模拟实际中的故障情形,验证设计的故障检测方法.试验结果表明:故障检测系统能够及时对输入故障报警,满足磁浮列车绝对定位传感器故障检测系统的实际应用要求.

  20. Large-scale right-slip displacement on the East San Francisco Bay Region fault system, California: Implications for location of late Miocene to Pliocene Pacific plate boundary

    Science.gov (United States)

    McLaughlin, R.J.; Sliter, W.V.; Sorg, D.H.; Russell, P.C.; Sarna-Wojcicki, A. M.

    1996-01-01

    A belt of northwardly younging Neogene and Quaternary volcanic rocks and hydrothermal vein systems, together with a distinctive Cretaceous terrane of the Franciscan Complex (the Permanente terrane), exhibits about 160 to 170 km of cumulative dextral offset across faults of the East San Francisco Bay Region (ESFBR) fault system. The offset hydrothermal veins and volcanic rocks range in age from .01 Ma at the northwest end to about 17.6 Ma at the southeast end. In the fault block between the San Andreas and ESFBR fault systems, where volcanic rocks are scarce, hydrothermal vein system ages clearly indicate that the northward younging thermal overprint affected these rocks beginning about 18 Ma. The age progression of these volcanic rocks and hydrothermal vein systems is consistent with previously proposed models that relate northward propagation of the San Andreas transform to the opening of an asthenospheric window beneath the North American plate margin in the wake of subducting lithosphere. The similarity in the amount of offset of the Permanente terrane across the ESFBR fault system to that derived by restoring continuity in the northward younging age progression of volcanic rocks and hydrothermal veins suggests a model in which 80-110 km of offset are taken up 8 to 6 Ma on a fault aligned with the Bloomfield-Tolay-Franklin-Concord-Sunol-Calaveras faults. An additional 50-70 km of cumulative slip are taken up ??? 6 Ma by the Rogers Creek-Hayward and Concord-Franklin-Sunol-Calaveras faults. An alternative model in which the Permanente terrane is offset about 80 km by pre-Miocene faults does not adequately restore the distribution of 8-12 Ma volcanic rocks and hydrothermal veins to a single northwardly younging age trend. If 80-110 km of slip was taken up by the ESFBR fault system between 8 and 6 Ma, dextral slip rates were 40-55 mm/yr. Such high rates might occur if the ESFBR fault system rather than the San Andreas fault acted as the transform margin at this time

  1. A HEURISTIC MOVING VEHICLE LOCATION PREDICTION TECHNIQUE VIA OPTIMAL PATHS SELECTION WITH AID OF GENETIC ALGORITHM AND FEED FORWARD BACK PROPAGATION NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    K. Duraiswamy

    2012-01-01

    Full Text Available The moving object or vehicle location prediction based on their spatial and temporal information is an important task in many applications. Different methods were utilized for performing the vehicle movement detection and prediction process. In such works, there is a lack of analysis in predicting the vehicles location in current as well as in future. Moreover, such methods compute the vehicles movement by finding the topological relationships among trajectories and locations, whereas the representative GPS points are determined by the 30 m circular window. Due to this process, the performance of the method is degraded because such 30 m circular window is selected by calculating the error range in the given input image and such error range may vary from image to image. To reduce the drawback presented in the existing method, in this study a heuristic moving vehicle location prediction algorithm is proposed. The proposed heuristic algorithm mainly comprises two techniques namely, optimization GA algorithm and FFBNN. In this proposed technique, initially the vehicles frequent paths are collected by monitoring all the vehicles movement in a specific period. Among the frequent paths, the vehicles optimal paths are computed by the GA algorithm. The selected optimal paths for each vehicle are utilized to train the FFBNN. The well trained FFBNN is then utilized to find the vehicle movement from the current location. By combining the proposed heuristic algorithm with GA and FFBNN, the vehicles location is predicted efficiently. The implementation result shows the effectiveness of the proposed heuristic algorithm in predicting the vehicles future location from the current location. The performance of the heuristic algorithm is evaluated by comparing the result with the RBF classifier. The comparison result shows our proposed technique acquires an accurate vehicle location prediction ratio than the RBF prediction ratio, in terms of accuracy.

  2. A Kind of Fault Location Method for Multi-terminal Power Distribution Network not Affected by Wave Speed%一种不受波速影响的多端配电网故障定位方法

    Institute of Scientific and Technical Information of China (English)

    方伟明; 程汉湘; 李勇; 阳海彪; 彭洁锋; 钟榜

    2016-01-01

    A kind of fault location method for travelling wave is proposed aiming at the power distribution network with tree shape structure which uses basic theory of double terminal ranging of B typed travelling wave location method and further expands to multi-terminal travelling wave location method.By measuring arrival moment of the initial travelling wave from the fault point to each end of the power distribution network line,a kind of calculating method for ranging not affected by wave speed is derived.Taking each end as the starting point,multiple location points are worked out,and taking the branch point nearest to the fault point or other points as the original point,the average value of distance from each location point to the original point is worked out.It is able to improve precision of fault location by using this average value to locate the fault point.MATLAB software is used for emulation proof and the result indicates that this method is able to rapidly and correctly locate the fault point.%对于树形结构的配电网,提出了一种行波故障定位方法。该方法利用 B 型行波定位法的双端测距基础理论,进而扩展到多端行波故障定位。通过测量故障点到配电网线路各末端的初始行波到达时刻,推导出一种不受波速影响的测距计算方法。同时以各末端为起点计算出多个定位点,取故障点最近的分支点或者其他点作为原点,计算各个定位点到原点距离的平均值,由该平均值定位故障点,提高了故障点定位的精确度。最后通过MATLAB仿真软件进行仿真验证,结果表明此定位方法能够快速准确地定位故障点。

  3. Location, location, location

    NARCIS (Netherlands)

    Anderson, S.P.; Goeree, J.K.; Ramer, R.

    1997-01-01

    We analyze the canonical location-then-price duopoly game with general log- concave consumer densities. A unique pure-strategy equilibrium to the two-stage game exists if the density is not "too asymmetric" and not "too concave." These criteria are satisfied by many commonly used densities. Equilibr

  4. LOCATING TAXI SIGN BASED ON OPTIMISED DAUGMAN ALGORITHM%基于优化Daugman算法的出租车标志定位

    Institute of Scientific and Technical Information of China (English)

    段虎成

    2011-01-01

    When locating round target,traditional Hough transform algorithm is liable to interference and has poor effect,results in big location deviations. In light of this problem, we propose an optimised Daugman algorithm-based location method to realise the location of the taxi signs. This algorithm introduces an optimised Daugman operator and uses the experienced threshold value to improve the accuracy of taxi sign estimation and location. Experiments show that this algorithm can judge and locate the taxi sign accurately and have good robusmess. The experiment also shows that the optimised Daugman algorithm can locate the taxi sign effectively.%针对传统的Hough变换算法定位圆状目标时易受到干扰,效果不佳,导致定位出现较大偏差的问题,提出了一种基于优化的Daugman算法的定位方法来实现对于出租车标志定位.该算法引进一种优化的Daugnum算子并使用阈值经验以提高出租车标志判断与定位的精确度.实验表明,使用该算法判断与定位出租车标志准确且抗干扰性强,从而能有效地定位出租车标志.

  5. Probability-based location anonymity algorithm%利用概率的位置匿名算法

    Institute of Scientific and Technical Information of China (English)

    闫玉双; 谭示崇; 赵大为

    2015-01-01

    k匿名模型是一种有效的位置隐私保护技术,通过构造包含需要保护的用户在内的 k 个正在发送请求的用户的匿名区域,达到保护用户位置的目的。但是现有的 k匿名模型仅能利用当前正在发送请求的用户,当同时发送请求用户较少时,就会导致匿名区域过大。为此,提出一种利用概率的位置匿名算法来保护路网中的移动用户的位置,利用当前时刻的不活跃用户的历史位置轨迹,计算出进入匿名路段的概率,可明显减小匿名路段长度。实验结果证明,基于概率的位置匿名算法与一般的 k 匿名模型相比较,提高了匿名效率。%As one of the most effective location privacy preservation technologies , the k‐anonymity model provides safeguards for location privacy of the mobile client against vulnerabilities for abuse by constructing an anonymous area of k users including the protected one . However , most existing k‐anonymity models only utilize the users who are sending requests at recent time . If there are not enough requesting users , the generated anonymous area of the k‐anonymity model will be larger than expected . In this paper , a Probability‐based Location Anonymity ( PLA ) algorithm is proposed for protecting location privacy of the mobile users in a road network . The PLA model takes advantage of the historical path track of the users who are not sending the request currently , and then computes the probability into the anonymous section so that it can greatly reduce the size of the anonymous area . Experimental results show that the PLA algorithm is superior to the k‐anonymity and it increases its anonymous efficiency enormously .

  6. DPHM: A FAULT DETECTION PROTOCOL BASED ON HEARTBEAT OF MULTIPLE MASTER-NODES

    Institute of Scientific and Technical Information of China (English)

    Dong Jian; Zuo Decheng; Liu Hongwei; Yang Xiaozong

    2007-01-01

    In most of fault detection algorithms of distributed system, fault model is restricted to fault of process, and link failure is simply masked, or modeled by process failure. Both methods can soon use up system resource and potentially reduce the availability of system. A fault Detection Protocol based on Heartbeat of multiple Master-nodes (DPHM) is proposed, which can immediately and accurately detect and locate faulty links by adopting voting and electing mechanism among master-nodes. Thus,DPHM can effectively improve availability of system. In addition, in contrast with other detection protocols, DPHM reduces greatly the detection cost due to the structure of master-nodes.

  7. Fault Diagnosis of Power System Based on Improved Genetic Optimized BP-NN

    Directory of Open Access Journals (Sweden)

    Yuan Pu

    2015-01-01

    Full Text Available BP neural network (Back-Propagation Neural Network, BP-NN is one of the most widely neural network models and is applied to fault diagnosis of power system currently. BP neural network has good self-learning and adaptive ability and generalization ability, but the operation process is easy to fall into local minima. Genetic algorithm has global optimization features, and crossover is the most important operation of the Genetic Algorithm. In this paper, we can modify the crossover of traditional Genetic Algorithm, using improved genetic algorithm optimized BP neural network training initial weights and thresholds, to avoid the problem of BP neural network fall into local minima. The results of analysis by an example, the method can efficiently diagnose network fault location, and improve fault-tolerance and grid fault diagnosis effect.

  8. 一种基于事件驱动的SOA故障疑似集选择算法%FAULT SUSPECTED-SET SELECTION ALGORITHM TO SERVICE-ORIENTED ARCHITECTURE BASED ON EVENT-DRIVEN

    Institute of Scientific and Technical Information of China (English)

    李晶; 朱敏

    2011-01-01

    The flexibility and dynamic property of service-oriented architecture (SOA) make services behaviours at runtime of monitoring and managing critical to the performance assurance. This paper proposes an event-driven based fault suspected-set selection (FSS) algorithm of SOA according to Bayesian fault diagnosis network. The algorithm integrates the sensitivity analysis technology in Bayesian Network theory and the k-median model, then adds the fault identifying set, selects the corresponding fault suspected-set according to the specific fault event.Simulation results show that the algorithm has higher fault suspected-set search completeness rate. The added fault identifying set is also conductive to the future predictive analysis.%面向服务体系架构(SOA)的灵活性和动态性,使得监测和管理运行时服务行为成为性能保证的关键所在.依据贝叶斯故障诊断网络提出了一种基于事件驱动的SOA故障疑似集选择FSS(Fault Suspected-set Selection)算法,该算法综合贝叶斯敏感性分析技术以及k-median模型,并加入故障标识集,根据具体的故障事件选择对应的故障疑似集合.仿真实验表明,该算法具有较高的故障疑似集查找完整率.增加的故障标识集也有利于以后的预测性分析.

  9. Fault Monitooring and Fault Recovery Control for Position Moored Tanker

    DEFF Research Database (Denmark)

    Fang, Shaoji; Blanke, Mogens

    2009-01-01

    This paper addresses fault tolerant control for position mooring of a shuttle tanker operating in the North Sea. A complete framework for fault diagnosis is presented but the loss of a sub-sea mooring line buoyancy element is given particular attention, since this fault could lead to line breakage...... algorithm is proposed to accommodate buoyancy element failure and keep the mooring system in a safe state. Detection properties and fault-tolerant control are demonstrated by high delity simulations...

  10. Region Fuzzy Search Algorithm Based on OnStar Source Location of Network Privacy Protection%OnStar源位置网络隐私保护的区域模糊搜索算法

    Institute of Scientific and Technical Information of China (English)

    李瑞俊; 高霞

    2015-01-01

    Onstar系统广泛应用在导航和卫星定位等系统中,基于Onstar系统的空间区域模糊搜索算法是解决网络隐私保护和源位置挖掘等关键问题的基础。传统方法采用决策树构建算法DiffP-C4.5的网络隐私保护机制,性能不好。提出一种基于OnStar源位置网络隐私保护的空间区域模糊搜索算法,研究OnStar系统路由协议模型,设计路由转发及隐私保护容错机制,对每层的最小竞争窗口值的调节系数设计为定值,得到每轮消耗的隐私保护预取值。计算OnStar源位置加密信息系统传输的通信量,进行OnStar源位置网络隐私保护的空间区域模糊搜索算法改进。实验分析得到,该算法能报确保Onstar原位置网络用户的空间区域隐私性,对空间区域的模糊搜索精度较高。%The Onstar system is widely used in navigation and positioning system, the regional space fuzzy search algorithm is the basis to solve the key problems of network privacy protection and source location. Traditional methods use decision tree construction algorithm of DiffP-C4.5, the performance is not good. The regional spatial OnStar source location fuzzy search algorithm is proposed for network privacy protection, OnStar routing protocol is researched. The routing forwarding and privacy protection of fault-tolerant mechanism is designed, the minimum contention window value adjustment factor is set to the value in each round of the pre consumption privacy protection value. Traffic of OnStar encryption transmission source location information system is calculated, regional spatial OnStar source location of network privacy protection im⁃proved fuzzy search algorithm. Experimental analysis shows that this algorithm can ensure the privacy of the Onstar newspa⁃per space area of original position of users in the network, fuzzy regions of space search precision is high.

  11. SubChlo: predicting protein subchloroplast locations with pseudo-amino acid composition and the evidence-theoretic K-nearest neighbor (ET-KNN) algorithm.

    Science.gov (United States)

    Du, Pufeng; Cao, Shengjiao; Li, Yanda

    2009-11-21

    The chloroplast is a type of plant specific subcellular organelle. It is of central importance in several biological processes like photosynthesis and amino acid biosynthesis. Thus, understanding the function of chloroplast proteins is of significant value. Since the function of chloroplast proteins correlates with their subchloroplast locations, the knowledge of their subchloroplast locations can be very helpful in understanding their role in the biological processes. In the current paper, by introducing the evidence-theoretic K-nearest neighbor (ET-KNN) algorithm, we developed a method for predicting the protein subchloroplast locations. This is the first algorithm for predicting the protein subchloroplast locations. We have implemented our algorithm as an online service, SubChlo (http://bioinfo.au.tsinghua.edu.cn/subchlo). This service may be useful to the chloroplast proteome research.

  12. 电网行波故障定位信息主站系统的组网应用%Traveling wave fault locating information master station application in EHV networking

    Institute of Scientific and Technical Information of China (English)

    谭劲; 游鑫

    2011-01-01

    Through summarizing the existing problems of transmission lines fault search and fault locating application in Guiyang EHV company, according to the demand of practical application, a set of the traveling wave fault locating information master station was estab- lished. The system took the jurisdiction transmission lines of Guiyang EHV company as supervised object,rock the dispatch of unified connection substation and the operation maintenance department of transmission lines as service object,obtain directly from related station data, increasing the efficiency of transmission lines fault search and the level of operation and maintenance.%通过总结超高压公司贵阳局在输电线路故障查找和故障定位系统应用中存在的问题,根据现场实际应用需求,实施建立一套电网行波故障定位信息主站系统。该系统以超高压贵阳局所管辖线路为监测对象,以调度统一联系的变电站和输电线路运行维护部门为服务对象,直接从电力数据网获取相关站点数据,从而有效提高输电线路故障查找效率和运行维护水平。

  13. Immune cultural algorithm and its applications in fault diagnosis of ethylene cracking furnace%免疫文化算法及其在乙烯裂解炉故障诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    宋辰; 黄海燕

    2012-01-01

    A new immune cultural algorithm (ICA) based on immune clone selection was proposed. In ICA,immune clone machine was used for training and testing sampling data from SRT-III furnace. One selection was taken as population space of cultural algorithm. In belief space,the knowledge extraction,expression,storage,update methods were proposed according to their evolutionary characteristics. Communication function was improved at the same time which in turn improved the capacity of algorithm evolution. The test results showed that compared with genetic algorithm ( GA) and chemotactic differential evolution algorithm (CDEA),immune cultural algorithm had much improvement in search precision and convergence speed. The algorithm was applied to the support vector machine parameter optimization for solving fault diagnosis of ethylene cracking furnace. Multi-class classifier was made by support vector machine. Compared with fault classification using the parameters optimized by genetic algorithm,the simulation results showed that the proposed algorithm achieved good result in classification accuracy,20 percentage points higher than the method without using immune cultural algorithms.

  14. A Vehicle Management End-to-End Testing and Analysis Platform for Validation of Mission and Fault Management Algorithms to Reduce Risk for NASA's Space Launch System

    Science.gov (United States)

    Trevino, Luis; Patterson, Jonathan; Teare, David; Johnson, Stephen

    2015-01-01

    The engineering development of the new Space Launch System (SLS) launch vehicle requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The characteristics of these spacecraft systems must be matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large and complex system engineering challenge, which is being addressed in part by focusing on the specific subsystems involved in the handling of off-nominal mission and fault tolerance with response management. Using traditional model based system and software engineering design principles from the Unified Modeling Language (UML) and Systems Modeling Language (SysML), the Mission and Fault Management (M&FM) algorithms for the vehicle are crafted and vetted in specialized Integrated Development Teams (IDTs) composed of multiple development disciplines such as Systems Engineering (SE), Flight Software (FSW), Safety and Mission Assurance (S&MA) and the major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GNC), Thrust Vector Control (TVC), and liquid engines. These model based algorithms and their development lifecycle from inception through Flight Software certification are an important focus of this development effort to further insure reliable detection and response to off-nominal vehicle states during all phases of vehicle operation from pre-launch through end of flight. NASA formed a dedicated M&FM team for addressing fault management early in the development lifecycle for the SLS initiative. As part of the development of the M&FM capabilities, this team has developed a dedicated testbed that

  15. 云闪定位算法及误差分析%Location algorithm and error analysis of cloud flashes

    Institute of Scientific and Technical Information of China (English)

    李云敏; 孙秀斌; 杨崧令; 肖坤峰; 张广元

    2012-01-01

    In order to reduce the damage of space craft caused by cloud flashes, while redounding to a more comprehensive study of thunderstorm activity and providing a technical support to the ground lightning detection and warning, it is worth studying a method of cloud flashes detection. According to the information of VHF signal's direction and time-difference detected by cloud flashes detector, this paper studies a location algorithm and its position accuracy of four detection stations with radio direction finding and time-difference techniques. The position accuracy map under the conditions of different way and distance of arrangement from a simulation of algorithm and error precision are gotten by Matlab, which can provide a support to the station's arrangement.%为了降低云闪对空间飞行器的危害,同时能够更全面地研究雷暴活动,并为地闪的探测预警提供技术支持,开展云闪定位方法的研究具有重要的价值.本文根据现场云闪探测仪采集到的VHF辐射源入射方向信息和达到探测站的时间差信息,结合无线电测向时差定位技术,研究了VHF云闪的四站定位算法及其误差精度分析.在对该算法和误差精度进行matlab仿真的基础上,得到了不同布站方式和基线距离情况下定位误差分布图,为探测站的布站选址提供了理论支撑.

  16. Probabilistic fault localization with sliding windows

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cheng; LIAO JianXin; LI TongHong; ZHU XiaoMin

    2012-01-01

    Fault localization is a central element in network fault management.This paper takes a weighted bipartite graph as a fault propagation model and presents a heuristic fault localization algorithm based on the idea of incremental coverage,which is resilient to inaccurate fault propagation model and the noisy environment.Furthermore,a sliding window mechanism is proposed to tackle the inaccuracy of this algorithm in the presence of improper time windows.As shown in the simulation study,our scheme achieves higher detection rate and lower false positive rate in the noisy environment as well as in the presence of inaccurate windows,than current fault localization algorithms.

  17. Earthquake fault superhighways

    Science.gov (United States)

    Robinson, D. P.; Das, S.; Searle, M. P.

    2010-10-01

    Motivated by the observation that the rare earthquakes which propagated for significant distances at supershear speeds occurred on very long straight segments of faults, we examine every known major active strike-slip fault system on land worldwide and identify those with long (> 100 km) straight portions capable not only of sustained supershear rupture speeds but having the potential to reach compressional wave speeds over significant distances, and call them "fault superhighways". The criteria used for identifying these are discussed. These superhighways include portions of the 1000 km long Red River fault in China and Vietnam passing through Hanoi, the 1050 km long San Andreas fault in California passing close to Los Angeles, Santa Barbara and San Francisco, the 1100 km long Chaman fault system in Pakistan north of Karachi, the 700 km long Sagaing fault connecting the first and second cities of Burma, Rangoon and Mandalay, the 1600 km Great Sumatra fault, and the 1000 km Dead Sea fault. Of the 11 faults so classified, nine are in Asia and two in North America, with seven located near areas of very dense populations. Based on the current population distribution within 50 km of each fault superhighway, we find that more than 60 million people today have increased seismic hazards due to them.

  18. An efficient algorithm for double-difference tomography and location in heterogeneous media, with an application to the Kilauea volcano

    Science.gov (United States)

    Monteiller, V.; Got, J.-L.; Virieux, J.; Okubo, P.

    2005-01-01

    Improving our understanding of crustal processes requires a better knowledge of the geometry and the position of geological bodies. In this study we have designed a method based upon double-difference relocation and tomography to image, as accurately as possible, a heterogeneous medium containing seismogenic objects. Our approach consisted not only of incorporating double difference in tomography but also partly in revisiting tomographic schemes for choosing accurate and stable numerical strategies, adapted to the use of cross-spectral time delays. We used a finite difference solution to the eikonal equation for travel time computation and a Tarantola-Valette approach for both the classical and double-difference three-dimensional tomographic inversion to find accurate earthquake locations and seismic velocity estimates. We estimated efficiently the square root of the inverse model's covariance matrix in the case of a Gaussian correlation function. It allows the use of correlation length and a priori model variance criteria to determine the optimal solution. Double-difference relocation of similar earthquakes is performed in the optimal velocity model, making absolute and relative locations less biased by the velocity model. Double-difference tomography is achieved by using high-accuracy time delay measurements. These algorithms have been applied to earthquake data recorded in the vicinity of Kilauea and Mauna Loa volcanoes for imaging the volcanic structures. Stable and detailed velocity models are obtained: the regional tomography unambiguously highlights the structure of the island of Hawaii and the double-difference tomography shows a detailed image of the southern Kilauea caldera-upper east rift zone magmatic complex. Copyright 2005 by the American Geophysical Union.

  19. Genetic Algorithm for Solving Location Problem in a Supply Chain Network with Inbound and Outbound Product Flows

    Directory of Open Access Journals (Sweden)

    Suprayogi Suprayogi

    2016-12-01

    Full Text Available This paper considers a location problem in a supply chain network. The problem addressed in this paper is motivated by an initiative to develop an efficient supply chain network for supporting the agricultural activities. The supply chain network consists of regions, warehouses, distribution centers, plants, and markets. The products include a set of inbound products and a set of outbound products. In this paper, definitions of the inbound and outbound products are seen from the region’s point of view.  The inbound product is the product demanded by regions and produced by plants which flows on a sequence of the following entities: plants, distribution centers, warehouses, and regions. The outbound product is the product demanded by markets and produced by regions and it flows on a sequence of the following entities: regions, warehouses, and markets. The problem deals with determining locations of the warehouses and the distribution centers to be opened and shipment quantities associated with all links on the network that minimizes the total cost. The problem can be considered as a strategic supply chain network problem. A solution approach based on genetic algorithm (GA is proposed. The proposed GA is examined using hypothetical instances and its results are compared to the solution obtained by solving the mixed integer linear programming (MILP model. The comparison shows that there is a small gap (0.23%, on average between the proposed GA and MILP model in terms of the total cost. The proposed GA consistently provides solutions with least total cost. In terms of total cost, based on the experiment, it is demonstrated that coefficients of variation are closed to 0.

  20. 一种基于CPS的多源配电网故障定位与隔离方案%A Scheme Based on CPS for Multi-Source Distribution Network Fault Location and Isolation

    Institute of Scientific and Technical Information of China (English)

    郭文花; 张学军

    2016-01-01

    自愈是智能电网的主要特征,故障定位和隔离是实现自愈的基础。分布式电源接入使配电网的结构、潮流和故障电流都发生了很大的变化,故障定位和隔离问题变的更加复杂。基于信息物理融合系统通讯、计算和控制高度融合的理念,提出了一种多源配电网故障定位与隔离的CPS方案。方案以集传感、计算、通信、控制和开关功能能为一体的CPS单元为基本组成,借助CPS单元间的通讯获得必要的信息,经CPS单元的分布计算快速判断故障位置,发出控制指令切除和隔离故障。与传统电流保护相比,有自适应能力强、动作速度快的特点。%Self-healing is one of the main features of the smart grid, fault location and isolation are the basis of implementing it. In the distribution network with distributed generation (DG), network structure and fault current are greatly changed. The problem of fault location and isolation become more complicated. Based on the Cyber-Physical System(CPS) concept and its characteristics of close integration of computational and physical elements, ascheme for multi-source distribution network fault location and isolation is proposed. Each switch is integrated a CPS unit which is consist of sensing, computing, communication and control functions . It obtains necessary information through the communication among the CPS units, fault location in real-time through each CPS unit distribution calculation is judged quickly, it sends instruction signals and isolates faults. Compared with the traditional current protection, the protection scheme has the characteristics of stronger adaptive ability and quicker response.

  1. DELTA: A Distal Enhancer Locating Tool Based on AdaBoost Algorithm and Shape Features of Chromatin Modifications.

    Directory of Open Access Journals (Sweden)

    Yiming Lu

    Full Text Available Accurate identification of DNA regulatory elements becomes an urgent need in the post-genomic era. Recent genome-wide chromatin states mapping efforts revealed that DNA elements are associated with characteristic chromatin modification signatures, based on which several approaches have been developed to predict transcriptional enhancers. However, their practical application is limited by incomplete extraction of chromatin features and model inconsistency for predicting enhancers across different cell types. To address these issues, we define a set of non-redundant shape features of histone modifications, which shows high consistency across cell types and can greatly reduce the dimensionality of feature vectors. Integrating shape features with a machine-learning algorithm AdaBoost, we developed an enhancer predicting method, DELTA (Distal Enhancer Locating Tool based on AdaBoost. We show that DELTA significantly outperforms current enhancer prediction methods in prediction accuracy on different datasets and can predict enhancers in one cell type using models trained in other cell types without loss of accuracy. Overall, our study presents a novel framework for accurately identifying enhancers from epigenetic data across multiple cell types.

  2. Groundwater Contamination Due to Activities of an Intensive Hog Farming Operation Located on a Geologic Fault in East Mediterranean: A Study on COD, BOD₅ and Microbial Load.

    Science.gov (United States)

    Michalopoulos, Charalampos; Tzamtzis, Nikolaos; Liodakis, Stylianos

    2016-02-01

    The application of treated animal wastewater produced in intensive fog farming operations (IHFOs) on surface soil, leads to groundwater contamination. In this study, the contamination of a Mediterranean aquifer caused by long-term application of treated wastewater, produced by an IHFO, on a plot with a geologic fault within the IHFO boundaries, was investigated. Groundwater samples were taken from monitoring wells close to the IHFO. A significant increase of chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total viable count (TVC) and total coliform (TC) concentrations was found in wells, compared to control monitoring well, which were mainly affected by the subsurface flow of contaminated water, due to the presence of the geologic fault. During the winter, significant increases in concentrations of COD, BOD5, TVC and TC were noted and attributed to increased precipitation, which assisted in the accelerated transport of organic compounds and microbial load, through geologic fault, to groundwater.

  3. Fault isolatability conditions for linear systems

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Henrik

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...... the faults have occurred. The last step is a fault isolation (FI) of the faults occurring in a specific fault set, i.e. equivalent with the standard FI step. A simple example demonstrates how to turn the algebraic necessary and sufficient conditions into explicit algorithms for designing filter banks, which...

  4. 限制设施选址问题的近似算法%Approximation algorithm for limited facility location problem

    Institute of Scientific and Technical Information of China (English)

    刘玉堂; 方奇志

    2013-01-01

    提出了设施选址问题的一个新变体—限制设施选址问题,给出了一个基于随机线性规划舍入的近似算法,并分析了算法的近似度.%The paper presented an approximation algorithm for the Limited Facility Location problem (LFL), which is a new variant of the classical Uncapacitated Facility Location problem(UFL). The algorithm is based on randomized LP rounding, and its approximation ratio was analyzed.

  5. 故障行波信息理论在大型发电机故障检测中的应用研究——继电保护与故障定位%Theoretical analysis and application research of fault traveling waves in huge electrical generators-for relay protection and fault location

    Institute of Scientific and Technical Information of China (English)

    党晓强; 邰能灵; 刘继春

    2013-01-01

    New detection technology based on transient fault travelling waves for electrical equipments in power system is an essential technology in the future, and at the same time it is the important research and development direction at present. Relay protection and fault location based on fault travelling waves for large generators are the important parts in this coverage. This paper presents the survey and some comments of the research work and developments in this area. Firstly, from the view of the application scope of the detection of the travelling waves of the large generator's faults, the basis and the feasibility of its research of the fault travelling waves are briefly investigated , and then the principle and its concept and features of the propagation of the fault travelling waves are briefly introduced in combination with the single phase ground faults of the large generators. Thereafter, the principle and the analysis of the examples of the relay protection and the fault location of the single phase ground fault of the large generators are mentioned profoundly based on the information theory of the fault travelling waves. Lastly, summary and the works in future of the fault travelling waves for the relay protection and fault location in large generator's research are given.%基于暂态故障行波的故障检测技术是未来电力系统不可或缺的技术手段和重要发展方向.基于故障行波信息对大型发电机进行继电保护和故障定位是其包括的重要内容,该文对该领域所涉及的理论研究做了综述性的分析.首先从大型发电机故障行波检测的应用空间探讨了对其故障行波研究的依据和可行性,接下来主要结合大型发电机定子的单相接地对故障行波传播的基本原理以及概念和特征做了简要介绍;随后对基于故障行波信息理论的大型发电机定子单相接地的继电保护和故障定位的原理与例证分析做了较深入的阐述;最后

  6. Automatic software fault localization based on ar tificial bee colony

    Institute of Scientific and Technical Information of China (English)

    Linzhi Huang∗; Jun Ai

    2015-01-01

    Software debugging accounts for a vast majority of the financial and time costs in software developing and maintenance. Thus, approaches of software fault localization that can help au-tomate the debugging process have become a hot topic in the field of software engineering. Given the great demand for software fault localization, an approach based on the artificial bee colony (ABC) algorithm is proposed to be integrated with other related techniques. In this process, the source program is initial y instru-mented after analyzing the dependence information. The test case sets are then compiled and run on the instrumented program, and execution results are input to the ABC algorithm. The algorithm can determine the largest fitness value and best food source by calculating the average fitness of the employed bees in the iter-ative process. The program unit with the highest suspicion score corresponding to the best test case set is regarded as the final fault localization. Experiments are conducted with the TCAS program in the Siemens suite. Results demonstrate that the proposed fault localization method is effective and efficient. The ABC algorithm can efficiently avoid the local optimum, and ensure the validity of the fault location to a larger extent.

  7. Quaternary Fault Lines

    Data.gov (United States)

    Department of Homeland Security — This data set contains locations and information on faults and associated folds in the United States that are believed to be sources of M>6 earthquakes during the...

  8. Fault Location Method of Underground Cable Based on Wavelet Analysis and Neural Network%基于小波分析和神经网络的井下电缆故障测距方法

    Institute of Scientific and Technical Information of China (English)

    田书; 赵敏

    2012-01-01

    In order to solve problems of poor reliability and accuracy of existing fault location methods of underground cable, the paper introduced a fault location method of underground cable based on wavelet analysis and neural network, and compared performance of BP neural network and RBF neural network used in the method. The method uses 3B-spline semi-orthogonal wavelet to do wavelet transformation for transient-state zero-sequence current so as to get modulus maxima of transient-state zero-sequence current in specific frequency bands. The modulus maxima is taken as inputting signals of neural network, and realizes fault location according to mapping relationship between the modulus maxima and position of fault point. The simulation results showed that the method can realize fault location of underground cable, and the method with RBP neural network is better than BF neural network in location error and network training.%针对现有的井下电缆故障测距方法存在可靠性差、精度低的问题,介绍了一种基于小波分析理论和神经网络的井下电缆故障测距方法,并比较了BP神经网络和RBF神经网络用于该方法的测距性能.该故障测距方法采用3次B样条半正交小波对暂态零序电流信号进行小波变换,得到特定频带内的暂态零序电流模极大值,并将该模极大值作为神经网络的输入信号,根据模极大值与故障点位置的映射关系实现故障定位.仿真结果表明,该故障测距方法能够较好地进行井下电缆故障测距,且RBF神经网络的测距误差及训练速度均优于BP神经网络.

  9. Modeling in the State Flow Environment to Support Launch Vehicle Verification Testing for Mission and Fault Management Algorithms in the NASA Space Launch System

    Science.gov (United States)

    Trevino, Luis; Berg, Peter; England, Dwight; Johnson, Stephen B.

    2016-01-01

    Analysis methods and testing processes are essential activities in the engineering development and verification of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS). Central to mission success is reliable verification of the Mission and Fault Management (M&FM) algorithms for the SLS launch vehicle (LV) flight software. This is particularly difficult because M&FM algorithms integrate and operate LV subsystems, which consist of diverse forms of hardware and software themselves, with equally diverse integration from the engineering disciplines of LV subsystems. M&FM operation of SLS requires a changing mix of LV automation. During pre-launch the LV is primarily operated by the Kennedy Space Center (KSC) Ground Systems Development and Operations (GSDO) organization with some LV automation of time-critical functions, and much more autonomous LV operations during ascent that have crucial interactions with the Orion crew capsule, its astronauts, and with mission controllers at the Johnson Space Center. M&FM algorithms must perform all nominal mission commanding via the flight computer to control LV states from pre-launch through disposal and also address failure conditions by initiating autonomous or commanded aborts (crew capsule escape from the failing LV), redundancy management of failing subsystems and components, and safing actions to reduce or prevent threats to ground systems and crew. To address the criticality of the verification testing of these algorithms, the NASA M&FM team has utilized the State Flow environment6 (SFE) with its existing Vehicle Management End-to-End Testbed (VMET) platform which also hosts vendor-supplied physics-based LV subsystem models. The human-derived M&FM algorithms are designed and vetted in Integrated Development Teams composed of design and development disciplines such as Systems Engineering, Flight Software (FSW), Safety and Mission Assurance (S&MA) and major subsystems and vehicle elements

  10. Application of ACO-BP Algorithm to Fault Diagnosis in Chemical Process%ACO-BP算法在化工过程故障诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    陈剑雪

    2012-01-01

    将蚁群算法和BP神经网络相结合,利用蚁群优化算法与误差反向传播算法结合而构成的混合算法(ACO-BP)训练神经网络的权值和阈值,给出ACO-BP算法训练神经网络的基本原理和方法步骤,并将该算法应用于连续搅拌釜式反应器的故障诊断.仿真结果表明:ACO-BP算法具有较高的诊断精度,能够及时、有效地检测连续搅拌釜式反应器中存在的故障.%ACO-BP algorithm which combining ant colony optimization (ACO) algorithm with back-propagation (BP) algorithm was proposed to train neural network weights and thresholds; and both basic theory and steps of ACO-BP algorithm were given and the ACO-BP algorithm was applied to fault diagnosis of the continuous stirred-tank reactor (CSTR). Experimental results show that the ACO-BP neural network with high precision in fault diagnosis can detect the fault in CSTR promptly and effectively.

  11. Synchronous Measurement Based Transient High Resistance Earth Fault Location in Resonant Grounding System%基于同步量测的谐振接地系统高阻接地故障区段暂态定位

    Institute of Scientific and Technical Information of China (English)

    陈筱薷; 薛永端; 王超; 徐丙垠; 黄仁乐; 程林

    2016-01-01

    谐振接地系统高阻接地故障发生概率较大,检测难度高,现有暂态分析及暂态区段定位方法不适合用于高阻接地故障。利用消弧线圈与系统对地电容间并联谐振的独特作用,分析了谐振接地系统高阻接地故障暂态零序电流与暂态零序电压的变化规律。研究发现,故障点下游各检测点暂态电流与暂态电压近似正交,而故障点上游检测点暂态电流还包含了与暂态电压成正比例的故障点暂态电流。利用同步量测单元采集的故障信息,计算各检测点暂态电流在暂态电压上的投影,若相邻检测点暂态电流投影分量之差超过一预设门槛,则该区段为故障区段,否则最末检测点下游区段为故障区段。所述方法完善了小电流接地故障暂态分析与暂态区段定位技术,数字仿真验证了该方法的可行性。%High resistant earth fault occurs frequently in resonant grounding systems,and is difficult to detect.The existing transient analysis and transient faulty section location method is not suitable for high resistance earth fault.The unique role of parallel resonance between Peterson coil and system capacitance to ground is used.The variation laws of zero-sequence current, zero-sequence voltage and their transient components are analyzed in under-damping and over-damping resonant processes.The facts can be observed in this study that the transient currents of downstream fault points of detecting point are approximately orthogonal to the transient zero-sequence voltage,and the transient currents of upstream fault points of detecting point include transient current at the fault point proportional to the magnitude of the transient voltage.The fault information collected by the synchronous measurement unit is used to calculate the proj ection components of transient current on transient voltage in every detecting point.If the difference in current proj ection magnitudes between

  12. Fiber Bragg Grating Sensor for Fault Detection in Radial and Network Transmission Lines

    Directory of Open Access Journals (Sweden)

    Mehdi Shadaram

    2010-10-01

    Full Text Available In this paper, a fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by Fiber Bragg Grating (FBG. The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signal. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system.

  13. 基于萤火虫群算法优化最小二乘支持向量回归机的滚动轴承故障诊断%Fault diagnosis of rolling bearings using least square support vector regression based on glowworm swarm optimization algorithm

    Institute of Scientific and Technical Information of China (English)

    徐强; 刘永前; 田德; 张晋华; 龙泉

    2014-01-01

    滚动轴承故障诊断是提高设备利用率、降低运行及维护成本关键。最小二乘支持向量回归机为有效的故障诊断方法,为解决其参数选取受限于主观经验问题,将萤火虫群算法用于惩罚系数C与核参数σ寻优,提出基于萤火虫群算法优化最小二乘支持向量回归机的滚动轴承故障诊断方法。实验结果表明,该方法能对滚动轴承故障位置及程度进行准确诊断,与常规最小二乘支持向量回归机、BP神经网络相比精度更高,由此验证该方法的可靠性。%Fault diagnosis of rolling bearings is the key to improve equipment availability and reduce operation and maintenance cost.Least square support vector regression (LSSVR)is an effective method for fault diagnosis.Here,the glowworm swarm optimization (GSO)algorithm was applied to search the optimal combination of penalty and kernel parameters often restricted by subjective experience in LSSVR.A rolling bearing fault diagnosis method using LSSVR based on GSO was proposed.Tests showed that the presented method can be used to precisely diagnose both fault location and fault severity of rolling bearings,it has a higher accuracy compared with the normal LSSVR and BP neural network, so the reliability of the proposed method is verified.

  14. Complex Fault Interaction in the Yuha Desert

    Science.gov (United States)

    Kroll, K.; Cochran, E. S.; Richards-Dinger, K. B.; Sumy, D. F.

    2012-12-01

    We determine precise hypocentral locations for over 3,600 aftershocks that occurred in the Yuha Desert (YD) region following the 4 April 2010 Mw 7.2 El Mayor-Cucapah (EMC) earthquake until 14 June 2010 originally located by the Southern California Seismic Network (SCSN). To calculate precise hypocenters we used manually identified phase arrivals and cross-correlation delay times in a series of absolute and relative relocation procedures with algorithms including hypoinverse, velest and hypoDD. We used velest to simultaneously invert for station corrections and the best-fitting velocity model for the event and station distribution. Location errors were reduced with this process to ~20 m horizontally and ~80 m vertically. The locations reveal a complex pattern of faulting with en echelon fault segments trending toward the northwest, approximately parallel to the North American-Pacific plate boundary and en echelon, conjugate features trending to the northeast. The relocated seismicity is highly correlated with the mapped faults that show triggered surface slip in response to the EMC mainshock. Aftershocks are located between depths of 2 km and 11 km, consistent with previous studies of seismogenic thickness in the region. Three-dimensional analysis reveals individual and intersecting fault planes between 5 km and 10 km in the along-strike and along-dip directions. These fault planes remain distinct structures at depth, indicative of conjugate faulting, and do not appear to coalesce onto a through-going fault segment. We observe a complex spatiotemporal migration of aftershocks with individual fault strands that are often active for relatively short time periods. In addition, events relocated by Hauksson et al., (2012) that occur in the two-year period following the 15 June 2010 M5.7 Ocotillo earthquake show majority of seismicity occurred along the Laguna Salada-West branch. At the same time, seismicity along the Laguna Salada-East and other faults in the Yuha Desert

  15. One-Terminal Fault Location for VSC-HVDC Transmission Lines Based on Principles of Parameter Identification%基于参数识别原理的VSC-HVDC输电线路单端故障定位

    Institute of Scientific and Technical Information of China (English)

    宋国兵; 李德坤; 褚旭; 饶菁; 蔡新雷

    2012-01-01

    为保障电压源换流器型直流输电(voltage source converter HVDC,VSC-HVDC)系统的可靠运行,提出一种基于参数识别原理的VSC-HVDC输电线路单端故障定位方法.由于VSC-HVDC输电线路两端并联大电容,识别故障距离的时候,在0模分量网络中可以把两端的换流站系统等效为电容,通过参数识别的原理列写出包含故障距离和过渡电阻2个未知参数的故障定位时域微分方程,通过最小二乘法优化求解该方程即可得到故障距离和过渡电阻,从而实现故障定位.PSCAD下的仿真结果表明,该方法能够实现VSC-HVDC输电线路的准确故障定位,最大测距误差不超过1%.该方法仅需要单端电气量就能实现准确故障定位,对采样频率的要求不高,理论上不受过渡电阻的影响,可以满足VSC-HVDC输电线路故障测距的要求.%To ensure reliable operation of voltage source converter HVDC (VSC-HVDC) transmission system, a one-terminal fault location method for VSC-HVDC transmission line is proposed. Because high-capacity capacitors are connected to both ends of VSC-HVDC transmission line, so during the fault location the converter station systems at both ends of VSC-HVDC transmission line can be equivalent to capacitors in the network of zero-mode component, and by means of the principle of parameter identification the differential equations in time-domain, which contains two unknown parameters of fault distance and transition resistance, can be listed, and solving this equation by least square optimization both fault distance and transition resistance can be attained, thus the fault location is implemented. The proposed method only needs single end electric quantities and is undemanding to sampling frequency, besides, theoretically this method is not affected by transition resistance, so it can meet the demand on fault location for VSC-HVDC transmission lines. Results of PSCAD simulation show that the proposed method can implement

  16. A Two-Stage Algorithm for the Closed-Loop Location-Inventory Problem Model Considering Returns in E-Commerce

    Directory of Open Access Journals (Sweden)

    Yanhui Li

    2014-01-01

    Full Text Available Facility location and inventory control are critical and highly related problems in the design of logistics system for e-commerce. Meanwhile, the return ratio in Internet sales was significantly higher than in the traditional business. Focusing on the existing problem in e-commerce logistics system, we formulate a closed-loop location-inventory problem model considering returned merchandise to minimize the total cost which is produced in both forward and reverse logistics networks. To solve this nonlinear mixed programming model, an effective two-stage heuristic algorithm named LRCAC is designed by combining Lagrangian relaxation with ant colony algorithm (AC. Results of numerical examples show that LRCAC outperforms ant colony algorithm (AC on optimal solution and computing stability. The proposed model is able to help managers make the right decisions under e-commerce environment.

  17. A fault diagnosis system for PV power station based on global partitioned gradually approximation method

    Science.gov (United States)

    Wang, S.; Zhang, X. N.; Gao, D. D.; Liu, H. X.; Ye, J.; Li, L. R.

    2016-08-01

    As the solar photovoltaic (PV) power is applied extensively, more attentions are paid to the maintenance and fault diagnosis of PV power plants. Based on analysis of the structure of PV power station, the global partitioned gradually approximation method is proposed as a fault diagnosis algorithm to determine and locate the fault of PV panels. The PV array is divided into 16x16 blocks and numbered. On the basis of modularly processing of the PV array, the current values of each block are analyzed. The mean current value of each block is used for calculating the fault weigh factor. The fault threshold is defined to determine the fault, and the shade is considered to reduce the probability of misjudgments. A fault diagnosis system is designed and implemented with LabVIEW. And it has some functions including the data realtime display, online check, statistics, real-time prediction and fault diagnosis. Through the data from PV plants, the algorithm is verified. The results show that the fault diagnosis results are accurate, and the system works well. The validity and the possibility of the system are verified by the results as well. The developed system will be benefit for the maintenance and management of large scale PV array.

  18. 基于随机子空间法和固有频率法的线路故障定位%Fault Location of Transmission Lines Based on Stochastic Subspace Identification Method and Travelling Wave Natural Frequency

    Institute of Scientific and Technical Information of China (English)

    张凯

    2015-01-01

    输电线路发生故障后,进行准确快速的故障距离判断在实际生产运行中具有很大的意义。线路故障后,将产生一系列的故障暂态行波,且从频域的角度看,行波可看作为谐波形式。提出基于随机子空间法和行波固有频率法相结合的方法进行线路故障定位。首先通过相模变换得到输电线路中的模电流分量,然后基于随机子空间算法进行辨识得到行波固有频率,进而计算此频率下的行波波速和模阻抗导纳矩阵,最后可求得故障距离。在PSCAD中搭建两端系统仿真模型,经过仿真验证表明,此方法可有效进行线路故障定位,且准确度较高。%The question of how to judge fault distance accurately and rapidly has great significance in the actual production run when a short circuit fault of transmission lines happens.When faults happen they produce transient state travelling waves.The frequency spectra of travelling waves are a fundamental characteristic frequency.This paper research on fault location is based on stochastic subspace identification and the natural frequency of traveling waves.Firstly, we use module current component based on phase-mode transformation, secondly we identify the natural frequency of traveling waves based on stochastic subspace identification.Then we calculate the wave veloci-ty and module impedance admittance matrix at the natural frequency.Finally, we arrive at the distance to fault. Building the two-terminal system using PSCAD program, the simulation’ s result show the way to find fault location with high accuracy.

  19. Fault section location based on fuzzy information fusion for NES%谐振接地系统故障区段模糊信息融合定位方法

    Institute of Scientific and Technical Information of China (English)

    郭谋发; 黄建业; 杨耿杰

    2012-01-01

    After analyzing the distribution rule of zero-sequence current on NES (neutral earthing via arc extinguishing coil system), two new methods for fault section locating are proposed. One method is based on section zero-sequence current ratio; the other method is based on parallel medium resistance. The former method uses the ratio of two sections zero-sequence current RMS after fault occurring as its criterion, and the latter method uses the changes of section zero-sequence current which is rectified to the same zero-sequence voltage before and after fault occurring as its criterion. Because of existing fault section locating blind zones and misjudgements when using single criterion, this paper constructs membership functions and weight functions for two methods based on fuzzy theory, and uses weighting factor method to realize the fusion of two methods. Results of extensive simulation to different line forms, different fault resistances and different fault positions show the effectiveness of the method which is simple and without blind zones.%分析谐振接地系统零序电流的分布规律,提出两种单相接地故障区段定位方法:区段零序电流比值法及并联中电阻法.区段零序电流比值法采用故障后相邻两区段稳态零序电流有效值的比值作为判据;并联中电阻法采用归算到同一零序电压下中电阻投入前后的区段零序电流变化量作为判据.采用单一判据存在故障区段定位盲区及误判的情况,应用模糊理论,分别构造两种方法的隶属函数及加权系数,采用加权系数法实现两种判据融合.对不同线路形式、不同过渡电阻及不同接地点位置情况下所做大量仿真的结果表明该方法的有效性,算法简单且不存在盲区.

  20. Fault Analysis in Cryptography

    CERN Document Server

    Joye, Marc

    2012-01-01

    In the 1970s researchers noticed that radioactive particles produced by elements naturally present in packaging material could cause bits to flip in sensitive areas of electronic chips. Research into the effect of cosmic rays on semiconductors, an area of particular interest in the aerospace industry, led to methods of hardening electronic devices designed for harsh environments. Ultimately various mechanisms for fault creation and propagation were discovered, and in particular it was noted that many cryptographic algorithms succumb to so-called fault attacks. Preventing fault attacks without

  1. The Fault Location for Power System Traveling Wave With Wavelet Transform%小波变换奇异性在电力系统行波故障测距中的应用

    Institute of Scientific and Technical Information of China (English)

    王先明; 陶时伟; 陶冶; 蔡德礼

    2001-01-01

    输电线路行波双端故障测距具有很高的精度,但需要高速A/D采集、大量的数据存储、复杂的行波波头辨识,对近距离故障测量存在困难。提出利用小波变换的时频分析特性,结合行波传输的特点,对行波信号利用小波变换提取故障时行波的故障信息。利用GPS作为同步时钟,测量波头到达测量端的时刻,构成输电线路的行波测量网络,通过调度通信进行故障测距,可以提高测距的可靠性和精度。%The double-end fault location for transmission lines with high precision requires data collection with high speed A/D element,data storage in large quantities and complex identification of the traveling wave crest,so it is difficult to measure a fault in a short distance.This paper shows that the information of fault in the traveling wave signal can be found by the time-frequency analysis characteristics of the wavelet transform and the characteristics of the traveling wave transmission.The time that wave crest reaches the measured-end can be measured by using GPS as a synchronized clock.A network for measuring traveling wave can be formed through dispatch and communications to improve reliability and precision of the fault location.

  2. Identification of Transient and Permanent Faults

    Institute of Scientific and Technical Information of China (English)

    李幼仪; 董新洲; 孙元章

    2003-01-01

    A new algorithm was developed for arcing fault detection based on high-frequency current transients analyzed with wavelet transforms to avoid automatic reclosing on permanent faults. The characteristics of arc currents during transient faults were investigated. The current curves of transient and permanent faults are quite similar since current variation from the fault arc is much less than the voltage variation. However, the fault current details are quite different because of the arc extinguishing and reigniting. Dyadic wavelet transforms were used to identify the current variation since wavelet transform has time-frequency localization ability. Many electric magnetic transient program (EMTP) simulations have verified the feasibility of the algorithm.

  3. Reconstruction of faults in elastic half space from surface measurements

    Science.gov (United States)

    Volkov, Darko; Voisin, Christophe; Ionescu, Ioan R.

    2017-05-01

    We study in this paper a half-space linear elasticity model for surface displacements caused by slip along underground faults. We prove uniqueness of the fault location and (piecewise-planar) geometry and of the slip field for a given surface displacement field. We then introduce a reconstruction algorithm for the realistic case where only a finite number of surface measurements are available. After showing how this algorithm performs on simulated data and assessing the effect of noise, we apply it to measured data. The data were recorded during slow slip events in Guerrero, Mexico. Since this is a well studied subduction zone, it is possible to compare our inferred fault geometry to other reconstructions (obtained using different techniques) found in the literature.

  4. 改进的LANDMARC定位算法在库位管理中的应用%Improved LANDMARC localization algorithm in inventory location management

    Institute of Scientific and Technical Information of China (English)

    顾李晶; 顾小杰

    2014-01-01

    Aiming at the problem of Location Identification based on dynamic active RFID calibration ( LANDMARC ) location algorithm on the choice of reference tags and loss of signal error, which is commonly used in inventory management, this paper put forward an improved LANDMARC location algorithm, which found the nearest undetermined reference tags wihtout increasing the number of reference tags, and got the precise location calculation method by the distance-loss formula. The result shows that the improved algorithm can improve the location precision and convergence speed.%针对库位管理中常用的LANDMARC定位算法在参考标签的选择和信号损耗误差方面存在的问题,提出了改进的LANDMARC定位算法,在不增加参考标签数量的前提下,找到与待定位标签距离最近的参考标签,并通过“距离-损耗”公式,得到精确定位计算的方法。结果表明该改进算法提高了定位的精度和收敛速度。

  5. Algorithms to Generate Location Privacy Area Based on Location Privacy Protection with Spatial Cloaking%基于空间混淆位置隐私保护的位置隐私区域生成算法

    Institute of Scientific and Technical Information of China (English)

    徐红云; 许隽; 龚羽菁; 徐梦真

    2014-01-01

    为提高位置隐私区域的切换成功率,实现个性化位置隐私保护,基于空间混淆位置隐私保护方法提出了两种位置隐私区域生成算法,即初级形心偏移法和高级形心偏移法。初级形心偏移法通过将切换后的位置隐私区域的形心相对切换前的位置隐私区域发生一定的偏移来实现,偏移幅度由用户周围其他用户的分布决定。高级形心偏移法将切换前位置隐私区域的形心偏移至切换后位置隐私区域的外部,再根据用户周围其他用户的分布生成与切换前位置隐私区域无重叠的新的位置隐私区域。实验结果表明:在中心点攻击下,初级形心偏移法的切换成功率保持在90%以上,高级形心偏移法的切换成功率亦接近100%;在无差别攻击下,高级形心偏移法的切换成功率亦接近100%。%In order to improve the switching success rate of location privacy area and thus realize personalized loca-tion privacy protection,two new algorithms to generate location privacy area,namely the primary centroid-offset al-gorithm and the advanced centroid-offset algorithm,are proposed based on the location privacy protection with spa-tial cloaking.The primary centroid-offset algorithm generates the switched location privacy area through offsetting the centroid of location privacy area before switching,with an offset amplitude being determined by the distribution of neighbor users.The advanced centroid-offset algorithm moves the centroid of switched location privacy area out of the one before switching,and,according to the distribution of neighbor users,it generates the switched location privacy area without overlapping the one before switching.Experimental results show that,under center attacks, the switching success rate of the primary centroid-offset algorithm is more than 90%,while that of the advanced centroid-offset algorithm is close to 100%;and that,under indiscriminate attacks

  6. Engine fault diagnosis method based on PSO-RVM algorithm%基于P SO-RVM算法的发动机故障诊断

    Institute of Scientific and Technical Information of China (English)

    毕晓君; 柳长源; 卢迪

    2014-01-01

    针对汽车发动机失火故障问题,提出一种新的智能诊断方法。建立了汽车尾气中各气体的体积分数与失火故障原因的映射关系,对归一化处理的数据进行机器训练,将训练好的相关向量机模型应用于故障分类诊断。算法中的惩罚因子和径向基核函数参数对分类准确率有着很大的影响,利用粒子群算法对超参数进行了优化。将优化训练后的相关向量机模型与目前较成熟的遗传优化的神经网络及支持向量机方法进行了对比,实验结果表明新方法比传统方法在诊断精度和鲁棒性方面均有一定的提高。%To solve the problems of the misfiring errors of an automobile engine, the authors, put forward a new in-telligent fault diagnosis method. A mapping relation is established the volume fraction of gases in the exhaust of the automobile and the cause of the misfire. Machine training is applied to normalized data and the trained relevance vector machine model is applied to the fault classification and diagnosis. The penalty factor and the RBF kernel pa-rameters in the algorithm greatly affect the classification accuracy. The particle swarm algorithm is used to optimize the super-parameters;in addition, the relevance vector machine model having experienced optimization training is compared with the presently mature genetic optimized neural network and support vector machine method. The ex-perimental results show that the new method improves the diagnosis accuracy and robustness.

  7. Research on Weighted Centroid Location Algorithm for Wireless Sensor Network%无线传感器网络加权质心定位算法研究

    Institute of Scientific and Technical Information of China (English)

    李文辰; 张雷

    2013-01-01

    针对距离权重的改进质心定位精度受所选反演模型影响,并且正确距离反演模型不容易确定的问题,提出了采用接收信号强度的改进质心定位算法,可将接收信号强度(RSS)作为质心定位算法的权重,直接将权重代入到质心定位算法从而估算出未知节点坐标,取消了距离反演过程,避免了反演误差的引入,提高了算法的定位精度、鲁棒性和实用性,同时还降低了计算复杂度.通过MATLAB平台进行仿真分析得出,改进算法定位性能优于距离权重的改进质心定位算法,符合无线传感器网络定位需求,具有较好的应用价值.%As the positioning precision of the improved weighted centroid location algorithm based on the distance is affected by the selected inversion model and the correct inversion model of distance is not easy to be found, an improved weighted centroid location algorithm based on the received signal strength was introduced in the paper. The received signal strength (RSS) is regarded as the weight of the improved centroid location algorithm. As the inversion process of the distance was cancelled and the inversion errors were avoided, the positioning precision, robustness and availability of the algorithm was improved. At the same time, the computational complexity was reduced. The algorithm simulation results based on MATLAB show that the performance of the improved algorithm is superior to that of the improved weighted centroid location algorithm based on the distance. The improved algorithm can meet the location demands of the wireless sensor network and has good application value.

  8. Diagnosis Method for Analog Circuit Hard fault and Soft Fault

    Directory of Open Access Journals (Sweden)

    Baoru Han

    2013-09-01

    Full Text Available Because the traditional BP neural network slow convergence speed, easily falling in local minimum and the learning process will appear oscillation phenomena. This paper introduces a tolerance analog circuit hard fault and soft fault diagnosis method based on adaptive learning rate and the additional momentum algorithm BP neural network. Firstly, tolerance analog circuit is simulated by OrCAD / Pspice circuit simulation software, accurately extracts fault waveform data by matlab program automatically. Secondly, using the adaptive learning rate and momentum BP algorithm to train neural network, and then applies it to analog circuit hard fault and soft fault diagnosis. With shorter training time, high precision and global convergence effectively reduces the misjudgment, missing, it can improve the accuracy of fault diagnosis and fast.  

  9. The Algorithm Judging Well Location Ownership Fast in the Process of the Digitized Management of Reservoirs%油田数字化管理过程中快速判定井位归属问题的算法

    Institute of Scientific and Technical Information of China (English)

    刘吉余; 尤海丽; 华正秋

    2011-01-01

    In the modern oilfield management, all the parameters of the oilfield have been digitized. The well location becomes the hub linking of various parameters in the database. With the increasing of a great amount of dato every year,the fast judgement about the relationship between well location and scope block ( such as the developed area, sedimentary facies, fault block, etc. ) , and fast searching the well location name in the scope block can not only greatly improve the efficiency, but also improve the accuracy of reservoirs. In order to solve the problem, the mathematical model has been found for the judgement about the location relationship between position and polygon. On the basis of analyzing the advantage and disadvantage, the improved Q type algorithm, the pre-decision of point to be sentenced, the decision of special point to be sentenced and the general point decision fast judge the ownership of well location by using the improved Q type algorithm. It is widely used in the process of the reservoirs of digital management in the Jinlin oilfield.%现代化油田管理中,油田的各项参数已经全部数字化;其中井位成为数据库中各项参数的链接枢纽.对于每年新增的大量数据,数据库中井位与范围区块(如开发区块、含油面积范围、沉积相范围、断块等)的归属关系快速判定,以及快速查询出某一范围区块中的井位名称,不仅可以大大提高地质工作人员的工作效率,而且还可以提高油藏描述的精度.解决该问题的相应的数学模型为判定点与多边形的位置关系.在分析所有算法优缺点的基础上,利用了改进的Q型算法,通过待判点的预判定、特殊性待判点的判定;以及一般性点的判定来快速判定井位的归属问题.根据此算法进行编程,在吉林油田的数字化管理的过程中得到了广泛的应用.

  10. Application of Dynamic Weighted Fuzzy Clustering Algorithm to Fault Diagnosis of Transformer%动态加权模糊聚类在变压器故障诊断中的应用研究

    Institute of Scientific and Technical Information of China (English)

    刘太洪; 赵永雷

    2016-01-01

    为提高变压器故障诊断准确率,提出了一种基于遗传算法的动态加权模糊C均值聚类算法。该算法使用把聚类中心作为染色体的浮点数的编码方式,染色体长度可变,不同的长度对应于不同的故障聚类数;并使用权值区别不同样本点对故障划分的影响程度。将该算法应用于电力变压器油中溶解气体分析(DGA)数据分析,实现了变压器的故障诊断。经过大量实例分析,并将结果与其他算法进行对比,表明该算法具有较高的诊断精度。%ABSTRACT:In order to improve the correct rate of fault diagnosis of transformer, this paper investigates a dynamic weighted fuzzy c-means clustering algorithm based on genetic algorithm. The algorithm adopts a kind of cluster-center-based floating point encoding mode, in which the variable length chromosomes express cluster prototypes and different length of chromosomes corresponding to different numbers of cluster prototypes;besides,The algorithm utilizes the weights to express the relative degree of the importance of various data in fault partitioning. The algorithm is applied to DGA data analysis, which can accomplish fault diagnosis of the transformer. Examples analysis and comparison results show that the preci-sion of fault diagnosis can be evidently improved.

  11. An effective hybrid self-adapting differential evolution algorithm for the joint replenishment and location-inventory problem in a three-level supply chain.

    Science.gov (United States)

    Wang, Lin; Qu, Hui; Chen, Tao; Yan, Fang-Ping

    2013-01-01

    The integration with different decisions in the supply chain is a trend, since it can avoid the suboptimal decisions. In this paper, we provide an effective intelligent algorithm for a modified joint replenishment and location-inventory problem (JR-LIP). The problem of the JR-LIP is to determine the reasonable number and location of distribution centers (DCs), the assignment policy of customers, and the replenishment policy of DCs such that the overall cost is minimized. However, due to the JR-LIP's difficult mathematical properties, simple and effective solutions for this NP-hard problem have eluded researchers. To find an effective approach for the JR-LIP, a hybrid self-adapting differential evolution algorithm (HSDE) is designed. To verify the effectiveness of the HSDE, two intelligent algorithms that have been proven to be effective algorithms for the similar problems named genetic algorithm (GA) and hybrid DE (HDE) are chosen to compare with it. Comparative results of benchmark functions and randomly generated JR-LIPs show that HSDE outperforms GA and HDE. Moreover, a sensitive analysis of cost parameters reveals the useful managerial insight. All comparative results show that HSDE is more stable and robust in handling this complex problem especially for the large-scale problem.

  12. An Effective Hybrid Self-Adapting Differential Evolution Algorithm for the Joint Replenishment and Location-Inventory Problem in a Three-Level Supply Chain

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2013-01-01

    Full Text Available The integration with different decisions in the supply chain is a trend, since it can avoid the suboptimal decisions. In this paper, we provide an effective intelligent algorithm for a modified joint replenishment and location-inventory problem (JR-LIP. The problem of the JR-LIP is to determine the reasonable number and location of distribution centers (DCs, the assignment policy of customers, and the replenishment policy of DCs such that the overall cost is minimized. However, due to the JR-LIP’s difficult mathematical properties, simple and effective solutions for this NP-hard problem have eluded researchers. To find an effective approach for the JR-LIP, a hybrid self-adapting differential evolution algorithm (HSDE is designed. To verify the effectiveness of the HSDE, two intelligent algorithms that have been proven to be effective algorithms for the similar problems named genetic algorithm (GA and hybrid DE (HDE are chosen to compare with it. Comparative results of benchmark functions and randomly generated JR-LIPs show that HSDE outperforms GA and HDE. Moreover, a sensitive analysis of cost parameters reveals the useful managerial insight. All comparative results show that HSDE is more stable and robust in handling this complex problem especially for the large-scale problem.

  13. A Hybrid Approach Using an Artificial Bee Algorithm with Mixed Integer Programming Applied to a Large-Scale Capacitated Facility Location Problem

    Directory of Open Access Journals (Sweden)

    Guillermo Cabrera G.

    2012-01-01

    Full Text Available We present a hybridization of two different approaches applied to the well-known Capacitated Facility Location Problem (CFLP. The Artificial Bee algorithm (BA is used to select a promising subset of locations (warehouses which are solely included in the Mixed Integer Programming (MIP model. Next, the algorithm solves the subproblem by considering the entire set of customers. The hybrid implementation allows us to bypass certain inherited weaknesses of each algorithm, which means that we are able to find an optimal solution in an acceptable computational time. In this paper we demonstrate that BA can be significantly improved by use of the MIP algorithm. At the same time, our hybrid implementation allows the MIP algorithm to reach the optimal solution in a considerably shorter time than is needed to solve the model using the entire dataset directly within the model. Our hybrid approach outperforms the results obtained by each technique separately. It is able to find the optimal solution in a shorter time than each technique on its own, and the results are highly competitive with the state-of-the-art in large-scale optimization. Furthermore, according to our results, combining the BA with a mathematical programming approach appears to be an interesting research area in combinatorial optimization.

  14. Artificial Glowworm Swarm Optimization Algorithm for Location Problem%平面选址问题的萤火虫算法

    Institute of Scientific and Technical Information of China (English)

    程魁; 马良

    2013-01-01

    平面选址问题是工程设计、线路布置、项目选址等工作中经常碰到的典型组合优化难题,根据群集智能优化原理,给出一种基于人工萤火虫群优化算法的求解方法,并针对平面选址问题进行求解.为避免算法陷入局部极值,将一种邻域搜索的局部搜索方法引入萤火虫算法中.通过对典型平面选址问题的仿真实验和与其它算法的比较,表明算法可行有效,且具良好的全局优化能力.%The location problem is a typical combinatorial optimization problem in the work of engineering design,line routing,project location,etc.According to the principle of swarm intelligence,a new optimization algorithm based on the idea of glowworms-the glowworm swarm algorithm was presented to solve the location problem.To avoid getting stuck into local optima,a neighborhood search strategy was introduced into the artificial glowworm swarm optimization algorithm.Simulated tests of the location problem and comparisons with other algorithms show that the algorithm is feasible and effective and has strong global optimization ability.

  15. 一种多媒体传感器网络容错分簇算法%Fault Tolerant Clustering Algorithm for Multimedia Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    曹健; 庞娜; 张泽梁; 张哲

    2012-01-01

    在无线多媒体传感器网络分簇算法设计中,针对如何满足QoS需求并尽可能提高能量效率问题,提出了一种容错分簇算法.根据节点的剩余能量和质心选举簇头,采用容错机制和能量有效策略组织成簇,并动态调整数据包在簇头间的传输速率.仿真实验结果表明该分簇算法满足多媒体数据传输的可靠性和实时性需求,能有效延长网络的生命周期.%In the design of clustering algorithm for wireless multimedia sensor networks, aiming at how to meets the requirement of QoS in real-time and reliability domains as well as to improve the energy efficiency at the same time, an efficient clustering algorithm called Cluster-based Real-time Fauk Tolerant Algorithra(CRF) was proposed, A node, according to its residual energy and the baryeenter, independently makes its decision to compete for becom a cluster head. CRF automatically adjusts data packets transmission rate dynamically and features an energy-balance fault tolerant clustering policy. Simulation results show that CRF meets the requirement of QoS in real-time and reliability domains and can prolong the network life cycle.

  16. Research on the Technique of Fault Diagnosis Based on Adaptive Genetic Algorithm and BP Neural Network%基于AGA-BP算法的智能故障诊断技术研究

    Institute of Scientific and Technical Information of China (English)

    焦爱红; 袁力哲; 陈燕生

    2011-01-01

    Fault diagnosis algorithm based on adaptive genetic algorithm and BP neural network (AGA-BP) was presented to avoid the defect of tradition BP neural networks. The adaptive genetic algorithm was used to optimize initial weights and thresholds of the BP neural network in earlier stage of iterative calculation, and the error hack propagation algorithm with self study speed was used to improve the network problems of slow convergence speed in the later stage. The AGA-BP algorithm was used to diagnose grinding bum fault. The result was compared with that of the general network algorithm. It testifies the method is correct and valid.%针对传统BP神经网络的不足,提出基于自适应遗传算法的BP神经网络故障诊断算法.在迭代计算前期,采用自适应遗传算法对神经网络的权值和阈值进行全局优化;在迭代计算后期,利用改进的BP算法在近似最优解附近进行局部寻优.将该算法用于磨削烧伤的故障诊断之中,并将结果与基于改进BP网络的诊断结果进行比较,证明该方法的正确性和有效性.

  17. Solving a Closed-Loop Location-Inventory-Routing Problem with Mixed Quality Defects Returns in E-Commerce by Hybrid Ant Colony Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Shuai Deng

    2016-01-01

    Full Text Available This paper presents a closed-loop location-inventory-routing problem model considering both quality defect returns and nondefect returns in e-commerce supply chain system. The objective is to minimize the total cost produced in both forward and reverse logistics networks. We propose a combined optimization algorithm named hybrid ant colony optimization algorithm (HACO to address this model that is an NP-hard problem. Our experimental results show that the proposed HACO is considerably efficient and effective in solving this model.

  18. Application of Hybrid HS and Tabu Search Algorithm for Optimal Location of FACTS Devices to Reduce Power Losses in Power Systems

    Directory of Open Access Journals (Sweden)

    Z. Masomi Zohrabad

    2016-12-01

    Full Text Available Power networks continue to grow following the annual growth of energy demand. As constructing new energy generation facilities bears a high cost, minimizing power grid losses becomes essential to permit low cost energy transmission in larger distances and additional areas. This study aims to model an optimization problem for an IEEE 30-bus power grid using a Tabu search algorithm based on an improved hybrid Harmony Search (HS method to reduce overall grid losses. The proposed algorithm is applied to find the best location for the installation of a Unified Power Flow Controller (UPFC. The results obtained from installation of the UPFC in the grid are presented by displaying outputs.

  19. 珠海发电厂01启备变内部故障定位分析%Fault Location Analysis of No. 1 Standby Transformer of Zhuhai Power Plant

    Institute of Scientific and Technical Information of China (English)

    孔永科

    2014-01-01

    针对启备变在受电过程中发生的故障,从故障录波图形着手,采用频谱分析的方法,判断出了故障发生的原因,准确而及时地定位了故障点,为事故抢修和及时送电争取了时间,提高了电厂厂用电系统供电的可靠性。%Aiming at the fault occurred in the charging process of the standby transformer,starting from the fault recorder graphics,and by the method of frequency spectrum analysis,this paper found the reason for the failure, timely and accurately located the fault point. This saves time for emergency repair and timely transmission,and im-proves the reliability of power system of power plant.

  20. FAULT RESTORATION OF DISTRIBUTION NETWORK BASED ON GENETIC ALGORITHM%基于遗传算法的地区电网停电恢复

    Institute of Scientific and Technical Information of China (English)

    盛四清; 梁志瑞; 张文勤; 杨以涵

    2001-01-01

    Genetic algorithm (GA) is applied to the fault restoration in distribution network in this paper. The network reconfiguration of a blackout area is carried out with GA, which means that each blackout area is divided into several sub-areas provided electricity through different power sources. As a result, the restoration scheme is formed ultimately. Through tested on practical power network, not only can optimal solution be obtained, but also several sub-optimal solutions, which can provide operators with more reference information.%提出将遗传算法应用于地区电网停电恢复,由遗传算法对停电区域进行网络重构,将其划分成若干个子区域,分别由不同的供电路径供电,由此形成恢复方案。通过对实际电网的测试分析表明,将遗传算法应用于地区电网停电恢复,不仅能得到最优解,而且能得到若干次优解,可为运行人员提供更多的参考信息。

  1. Boundary Virtual Reference Tags Location Algorithm Based on RFID%基于RFID的边界虚拟参考标签定位算法

    Institute of Scientific and Technical Information of China (English)

    俱莹; 刘开华; 史伟光; 闫格

    2011-01-01

    介绍VIRE室内定位算法的原理,针对VIRE算法对边界标签定位准确度低的问题,提出边界虚拟参考标签定位算法BVIRE.该算法通过建立线性回归方程,在边界处加入边界虚拟参考标签.仿真结果表明,在不额外增加参考标签且不增大射频干扰的前提下,BVIRE算法较原算法使靠近边界处待定位标签的定位准确度得到较大提高.%This paper introduces the principle of VIRE algorithm for indoor location. For the positioning accuracy of boundary tags in VIRE positioning algorithm is low, BVIRE algorithm is proposed by using boundary virtual reference tags. BVIRE algorithm inserts some virtual reference tags on the boundary of the indoor environment by establishing a linear regression equation. Simulation results show that, BVIRE algorithm improves the positioning accuracy of boundary tags significantly without adding extra reference tags and radio frequency interference compared with VIRE algorithm.

  2. Fault Localization Analysis Based on Deep Neural Network

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    2016-01-01

    Full Text Available With software’s increasing scale and complexity, software failure is inevitable. To date, although many kinds of software fault localization methods have been proposed and have had respective achievements, they also have limitations. In particular, for fault localization techniques based on machine learning, the models available in literatures are all shallow architecture algorithms. Having shortcomings like the restricted ability to express complex functions under limited amount of sample data and restricted generalization ability for intricate problems, the faults cannot be analyzed accurately via those methods. To that end, we propose a fault localization method based on deep neural network (DNN. This approach is capable of achieving the complex function approximation and attaining distributed representation for input data by learning a deep nonlinear network structure. It also shows a strong capability of learning representation from a small sized training dataset. Our DNN-based model is trained utilizing the coverage data and the results of test cases as input and we further locate the faults by testing the trained model using the virtual test suite. This paper conducts experiments on the Siemens suite and Space program. The results demonstrate that our DNN-based fault localization technique outperforms other fault localization methods like BPNN, Tarantula, and so forth.

  3. Fault Estimation

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2002-01-01

    This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis prob-lems are reformulated in the so-called standard problem setup introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis pr...... problems can be solved by standard optimization tech-niques. The proposed methods include: (1) fault diagnosis (fault estimation, (FE)) for systems with model uncertainties; (2) FE for systems with parametric faults, and (3) FE for a class of nonlinear systems.......This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis prob-lems are reformulated in the so-called standard problem setup introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis...

  4. Wavelet neural network and its application in fault diagnosis of rolling bearing

    Science.gov (United States)

    Wang, Guo-Feng; Wang, Tai-Yong

    2005-12-01

    In order to realize diagnosis of rolling bearing of rotating machines, the wavelet neural network was proposed. This kind of artificial neural network takes wavelet function as neuron of hidden layer so as to realize nonlinear mapping between fault and symptoms. A algorithm based on minimum mean square error was given to obtain the weight value of network, dilation and translation parameter of wavelet function. To testify the correctness of wavelet neural network, it was adopted in diagnosing the fault type and location of rolling bearing. The final result shows that it can recognize the fault of outer race, inner race and roller accurately.

  5. A genetic algorithm to solve a three-echelon capacitated location problem for a distribution center within a solid waste management system in the northern region of Veracruz, Mexico

    National Research Council Canada - National Science Library

    María del Rosario Pérez-Salazar; Nicolás Francisco Mateo-Díaz; Rogelio García-Rodríguez; Carlos Eusebio Mar-Orozco; Lidilia Cruz-Rivero

    2015-01-01

    .... The decision regarding facility location is the central issue in solid waste management. A mixed integer linear programming model of the capacitated facility location problem is proposed and then a genetic algorithm is designed to optimize the model...

  6. 基于量子遗传改进支持向量机理论的变压器故障诊断%The Fault Diagnosis of Transformers with Support Vector Machine Theory Improved by Quantum Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    于虹; 孙鹏

    2011-01-01

    提出了基于量子遗传改进支持向量机理论的变压器故障诊断方法.该算法首先利用粗糙集技术时变压器知识进行属性约简,通过属性表获得变压器故障的最简决策表以作为支持向量机的输入,并利用量子遗传算法获得支持向量机的最优参数设置.实验结果表明,该诊断方法分类性能良好、可靠性高且有效可行.%A new fault diagnosis method is proposed for transformers, which is based on support vector machine theory improved by quantum genetic algorithm. Firstly. The algorithm is as follows: to do attribute reduction to the transformers knowledge with the technologies of rough set, to get the simple decision table for faults and imput the table into the support vector machine, and to achieve the optimum parameters setting of the support vector machine with the quantum genetic algorithm. The experimental results demonstrate that the proposed method works well in the fault classification and is reliable, effective and feasible.

  7. 基于遗传算法异步电动机转子故障诊断研究%The Study on the Fault Diagnosis for the Rotor of Induction Motor Based on the Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    白洁

    2011-01-01

    In order to perform fault diagnosis for the rotor of induction motor effectively, the application of the genetic algorithm on the fault diagnosis for the rotor of the induction motor was studied in depth. Firstly, the traditional genetic algorithm was advanced. And then the neutral network based on the genetic algorithm for the rotor of the induction motor was designed. Finally,the actual fault diagnosis for the rotor of the induction motor was carried out, and the verifying results showed that this new method had advantages of correctness and simple.%为了能够有效地对异步电动机转子进行故障诊断,深入地研究遗传算法在异步电动机转子故障诊断中的应用.首先,对传统的遗传算法进行了改进.其次设计了基于遗传算法的异步电动机转子故障诊断的神经网络.最后,进行实际的异步电动机转子的故障诊断,验证结果表明该方法具有准确、便捷的优点.

  8. Diagnosis and Tolerant Strategy of an Open-Switch Fault for T-type Three-Level Inverter Systems

    DEFF Research Database (Denmark)

    Choi, Uimin; Lee, Kyo Beum; Blaabjerg, Frede

    2014-01-01

    This paper proposes a new diagnosis method of an open-switch fault and fault-tolerant control strategy for T-type three-level inverter systems. The location of faulty switch can be identified by the average of normalized phase current and the change of the neutral-point voltage. The proposed fault......-tolerant strategy is explained by dividing into two cases: the faulty condition of half-bridge switches and the neutral-point switches. The performance of the T-type inverter system improves considerably by the proposed fault tolerant algorithm when a switch fails. The roposed method does not require additional...... components and complex calculations. Simulation and experimental results verify the feasibility of the proposed fault diagnosis and fault-tolerant control strategy....

  9. Application of LCD-SVD Technique and CRO-SVM Method to Fault Diagnosis for Roller Bearing

    Directory of Open Access Journals (Sweden)

    Songrong Luo

    2015-01-01

    Full Text Available Targeting the nonlinear and nonstationary characteristics of vibration signal from fault roller bearing and scarcity of fault samples, a novel method is presented and applied to roller bearing fault diagnosis in this paper. Firstly, the nonlinear and nonstationary vibration signal produced by local faults of roller bearing is decomposed into intrinsic scale components (ISCs by using local characteristic-scale decomposition (LCD method and initial feature vector matrices are obtained. Secondly, fault feature values are extracted by singular value decomposition (SVD techniques to obtain singular values, while avoiding the selection of reconstruction parameters. Thirdly, a support vector machine (SVM classifier based on Chemical Reaction Optimization (CRO algorithm, called CRO-SVM method, is designed for classification of fault location. Lastly, the proposed method is validated by two experimental datasets. Experimental results show that the proposed method based LCD-SVD technique and CRO-SVM method have higher classification accuracy and shorter cost time than the comparative methods.

  10. 基于量子遗传算法的TDOA定位技术研究%Research on the Technology of TDOA Location Based on Quantum Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    王迅; 吴涛

    2011-01-01

    To resolve the nonlinear optimization problem of TDOA Location,a hybrid method that employs a quantum genetic algorithm and a Chan algorithm were proposed.Individuals was updated by using binary-quantum-coding and quantum rotate gate,the optimal coordinate search was made.The simulation results show that the algorithm is steady and get the global optimal solution.It has a higher accuracy than the Chan algorithm and a faster convergence speed than the genetic algorithm.%为了解决TDOA定位估计中遇到的非线性最优化问题,提出了一种联合使用Chan算法和量子遗传算法的混合定位算法,采用二进制量子编码和量子旋转门更新个体,针对TDOA方式进行最佳坐标搜索。仿真结果表明,该算法性能稳定,能找到全局最优的解,相对于Chan算法精度更高,相对于遗传算法有更快的收敛速度。

  11. The property of fault zone and fault activity of Shionohira Fault, Fukushima, Japan

    Science.gov (United States)

    Seshimo, K.; Aoki, K.; Tanaka, Y.; Niwa, M.; Kametaka, M.; Sakai, T.; Tanaka, Y.

    2015-12-01

    The April 11, 2011 Fukushima-ken Hamadori Earthquake (hereafter the 4.11 earthquake) formed co-seismic surface ruptures trending in the NNW-SSE direction in Iwaki City, Fukushima Prefecture, which were newly named as the Shionohira Fault by Ishiyama et al. (2011). This earthquake was characterized by a westward dipping normal slip faulting, with a maximum displacement of about 2 m (e.g., Kurosawa et al., 2012). To the south of the area, the same trending lineaments were recognized to exist even though no surface ruptures occurred by the earthquake. In an attempt to elucidate the differences of active and non-active segments of the fault, this report discusses the results of observation of fault outcrops along the Shionohira Fault as well as the Coulomb stress calculations. Only a few outcrops have basement rocks of both the hanging-wall and foot-wall of the fault plane. Three of these outcrops (Kyodo-gawa, Shionohira and Betto) were selected for investigation. In addition, a fault outcrop (Nameishi-minami) located about 300 m south of the southern tip of the surface ruptures was investigated. The authors carried out observations of outcrops, polished slabs and thin sections, and performed X-ray diffraction (XRD) to fault materials. As a result, the fault zones originating from schists were investigated at Kyodo-gawa and Betto. A thick fault gouge was cut by a fault plane of the 4.11 earthquake in each outcrop. The fault materials originating from schists were fault bounded with (possibly Neogene) weakly deformed sandstone at Shionohira. A thin fault gouge was found along the fault plane of 4.11 earthquake. A small-scale fault zone with thin fault gouge was observed in Nameishi-minami. According to XRD analysis, smectite was detected in the gouges from Kyodo-gawa, Shionohira and Betto, while not in the gouge from Nameishi-minami.

  12. 面向路网限制的位置隐私保护算法%An algorithm for protecting location privacy in road network

    Institute of Scientific and Technical Information of China (English)

    孙岚; 罗钊; 吴英杰; 王一蕾

    2012-01-01

    Recently, the privacy preserving location-based services has been a hot topic in data privacy preserving re- search fields. The existed researches on location privacy preserving mainly focused on Euclidean space. However, many location-based services were under road-network environment, whose distribution of users was possibly unbalanced, which could make the traditional location privacy models and methods under Euclidean space unusable. A location pri- vacy protection algorithm was proposed to prevent the inferring attack caused by the unbalanced distribution of users in road-network. The key idea of the proposed algorithm was that the cloaked segment set was constructed by sorting edges with edge weight and taking the geographical position distribution of users into consideration. Experimental analysis was designed by comparing the proposed algorithm and the traditional algorithm on the feasibility and effectiveness. Experimental results showed that the proposed algorithm was effective and feasible.%目前关于位置服务中的位置隐私保护研究大多是面向欧式空间,其相关模型及算法无法直接用于解决路网环境下位置服务中可能存在的隐私泄露问题。本研究针对公路网络下用户分布不均可能导致的推断攻击,设计出一种面向路网限制的位置隐私保护算法。本算法通过对公路网络的边权进行排序,并结合路段地理位置分布,进行隐匿边集的构造,以达到降低边权不均引起推断攻击的风险。通过实验对本算法的可行性及有效性与同类算法进行了比较分析。实验结果表明,本算法是有效可行的。

  13. A Real-Time Location-Based Services System Using WiFi Fingerprinting Algorithm for Safety Risk Assessment of Workers in Tunnels

    Directory of Open Access Journals (Sweden)

    Peng Lin

    2014-01-01

    Full Text Available This paper investigates the feasibility of a real-time tunnel location-based services (LBS system to provide workers’ safety protection and various services in concrete dam site. In this study, received signal strength- (RSS- based location using fingerprinting algorithm and artificial neural network (ANN risk assessment is employed for position analysis. This tunnel LBS system achieves an online, real-time, intelligent tracking identification feature, and the on-site running system has many functions such as worker emergency call, track history, and location query. Based on ANN with a strong nonlinear mapping, and large-scale parallel processing capabilities, proposed LBS system is effective to evaluate the risk management on worker safety. The field implementation shows that the proposed location algorithm is reliable and accurate (3 to 5 meters enough for providing real-time positioning service. The proposed LBS system is demonstrated and firstly applied to the second largest hydropower project in the world, to track workers on tunnel site and assure their safety. The results show that the system is simple and easily deployed.

  14. 基于PF算法的移动机器人定位研究%Research on Mobile Robot Location Based on PF Algorithm

    Institute of Scientific and Technical Information of China (English)

    韩同辉; 沈超; 沈静; 顿向明

    2012-01-01

    针对移动机器人的智能化要求,提出了一种应用粒子滤波(PF)进行机器人定位的方法.通过分析激光雷达的识别观测模型和履带式机器人本体的运动特点,建立基于最优贝叶斯估计的PF位姿估计算法框架,避免了传统EKF定位算法在菲线性系统应用中需要近似线性化、求取复杂雅克比矩阵等问题.在搭建的室内平台上进行了现场定位实验,结果表明该算法定位准确、稳定,具有更广泛的适应性.%For the intelligent requirements of mobile robots, a location method utilizing panicle filter is proposed. Through analyzing the laser radar observation model and the motion information of crawler robot, a PF position estimation algorithm based on the optimal Bayesian estimation thesis is built, which avoids the problems existing in traditional EKF location algorithm, such as approximate linearization, complex Jacobi Matrix solving etc. The on-site location experiments based on the indoor platform prove that this location method is accurate and stable and has a wider range of adaptability.

  15. Efficient algorithm for locating and sizing series compensation devices in large power transmission grids: II. Solutions and applications

    Science.gov (United States)

    Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha

    2014-10-01

    In a companion manuscript (Frolov et al 2014 New J. Phys. 16 art. no.) , we developed a novel optimization method for the placement, sizing, and operation of flexible alternating current transmission system (FACTS) devices to relieve transmission network congestion. Specifically, we addressed FACTS that provide series compensation (SC) via modification of line inductance. In this sequel manuscript, this heuristic algorithm and its solutions are explored on a number of test cases: a 30-bus test network and a realistically-sized model of the Polish grid (˜2700 nodes and ˜3300 lines). The results from the 30-bus network are used to study the general properties of the solutions, including nonlocality and sparsity. The Polish grid is used to demonstrate the computational efficiency of the heuristics that leverage sequential linearization of power flow constraints, and cutting plane methods that take advantage of the sparse nature of the SC placement solutions. Using these approaches, we can use the algorithm to solve a Polish transmission grid in tens of seconds. We explore the utility of the algorithm by analyzing transmission networks congested by (i) uniform load growth, (ii) multiple overloaded configurations, and (iii) sequential generator retirements.

  16. Efficient Algorithm for Locating and Sizing Series Compensation Devices in Large Transmission Grids: Solutions and Applications (PART II)

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, Vladimir [Moscow Inst. of Physics and Technology (MIPT), Moscow (Russian Federation); Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    In a companion manuscript, we developed a novel optimization method for placement, sizing, and operation of Flexible Alternating Current Transmission System (FACTS) devices to relieve transmission network congestion. Specifically, we addressed FACTS that provide Series Compensation (SC) via modification of line inductance. In this manuscript, this heuristic algorithm and its solutions are explored on a number of test cases: a 30-bus test network and a realistically-sized model of the Polish grid (~2700 nodes and ~3300 lines). The results on the 30-bus network are used to study the general properties of the solutions including non-locality and sparsity. The Polish grid is used as a demonstration of the computational efficiency of the heuristics that leverages sequential linearization of power flow constraints and cutting plane methods that take advantage of the sparse nature of the SC placement solutions. Using these approaches, the algorithm is able to solve an instance of Polish grid in tens of seconds. We explore the utility of the algorithm by analyzing transmission networks congested by (a) uniform load growth, (b) multiple overloaded configurations, and (c) sequential generator retirements

  17. Application of Particle Swarm Optimization Algorithm on Logistics Location%微粒群算法在物流选址中的应用

    Institute of Scientific and Technical Information of China (English)

    郝武伟

    2015-01-01

    物流运营成本是企业利润来源的一个重要方面,降低物流运营成本是现代企业获取利润的一个重要途径。而物流选址在物流成本控制中作用十分关键,通过优化算法,对物流选址进行优化就显得十分必要。微粒群优化算法由于其特有的优点,在解决优化问题中有比较好的效果,在物流选址中引入微粒群优化算法,可以为合理选择物流配送中心地址提供可靠的决策依据。本文在对微粒群优化算法进行介绍的基础上,就其在物流选址中的实际应用进行简要的论述。%Logistics operation cost is an important source of corporate profit, Reduce logistics operation cost is an important way of modern enterprise profit. Location and logistics in the logistics cost control is very important, It is necessary to optimize the logistics location. Through the optimization algorithm. Particle swarm optimization algorithm due to its unique advantages, Have good effects in solving optimization problems, Particle swarm optimization algorithm is introduced in the logistics location, can provide reliable decision basis for the rational selection of logistics distribution center , Based on particle swarm optimization algorithm is introduced on the basis of, give a briefly discussed. On its practical application in selecting position of logistics.

  18. Study on RFID-oriented Location Privacy Protection Algorithm%面向 RFID 的位置隐私保护算法研究

    Institute of Scientific and Technical Information of China (English)

    吴婷婷; 李玲娟

    2013-01-01

    With the development of mobile wireless technology and the Internet of Things,users can achieve location information of indi-viduals and goods in anywhere and anytime. Location-based privacy protection has become an important issue in today's society. In order to enhance the privacy protection capability and the efficiency of location-based services,it studies the privacy protection issues in RFID tracking system,analyzes the existing location privacy protection method,and designs a higher efficient location privacy protection algo-rithm by improving the existing algorithm. The improved algorithm is not dependent on reliable service. It encrypts the ID information with hash encryption method and stores time information and location information in separate physical space with vertical data partitioning method. The theoretical analysis and test results show that the algorithm has the higher efficiency while protecting user privacy.%  随着移动无线技术和物联网的发展,随时随地获得个人或物品的位置信息成为可能,基于位置的隐私保护已成为当今社会中的重要问题。文中以提高隐私保护能力和位置服务效率为目标,对 RFID 追踪系统中的隐私保护问题进行研究,分析了现有的位置隐私保护方法,通过对已有算法加以改进,设计了一种高效的不依赖于可信服务器的 RFID 位置隐私保护算法。该算法用 hash 加密的方法对 ID 信息进行加密,利用垂直数据划分把时间和位置信息分别存储在不同的物理空间。理论分析和测试实验表明,所设计的算法在保护用户隐私的同时,执行效率更高。

  19. Optimal installation locations for automated external defibrillators in Taipei 7-Eleven stores: using GIS and a genetic algorithm with a new stirring operator.

    Science.gov (United States)

    Huang, Chung-Yuan; Wen, Tzai-Hung

    2014-01-01

    Immediate treatment with an automated external defibrillator (AED) increases out-of-hospital cardiac arrest (OHCA) patient survival potential. While considerable attention has been given to determining optimal public AED locations, spatial and temporal factors such as time of day and distance from emergency medical services (EMSs) are understudied. Here we describe a geocomputational genetic algorithm with a new stirring operator (GANSO) that considers spatial and temporal cardiac arrest occurrence factors when assessing the feasibility of using Taipei 7-Eleven stores as installation locations for AEDs. Our model is based on two AED conveyance modes, walking/running and driving, involving service distances of 100 and 300 meters, respectively. Our results suggest different AED allocation strategies involving convenience stores in urban settings. In commercial areas, such installations can compensate for temporal gaps in EMS locations when responding to nighttime OHCA incidents. In residential areas, store installations can compensate for long distances from fire stations, where AEDs are currently held in Taipei.

  20. A Method for Aileron Actuator Fault Diagnosis Based on PCA and PGC-SVM

    Directory of Open Access Journals (Sweden)

    Wei-Li Qin

    2016-01-01

    Full Text Available Aileron actuators are pivotal components for aircraft flight control system. Thus, the fault diagnosis of aileron actuators is vital in the enhancement of the reliability and fault tolerant capability. This paper presents an aileron actuator fault diagnosis approach combining principal component analysis (PCA, grid search (GS, 10-fold cross validation (CV, and one-versus-one support vector machine (SVM. This method is referred to as PGC-SVM and utilizes the direct drive valve input, force motor current, and displacement feedback signal to realize fault detection and location. First, several common faults of aileron actuators, which include force motor coil break, sensor coil break, cylinder leakage, and amplifier gain reduction, are extracted from the fault quadrantal diagram; the corresponding fault mechanisms are analyzed. Second, the data feature extraction is performed with dimension reduction using PCA. Finally, the GS and CV algorithms are employed to train a one-versus-one SVM for fault classification, thus obtaining the optimal model parameters and assuring the generalization of the trained SVM, respectively. To verify the effectiveness of the proposed approach, four types of faults are introduced into the simulation model established by AMESim and Simulink. The results demonstrate its desirable diagnostic performance which outperforms that of the traditional SVM by comparison.