WorldWideScience

Sample records for fatty acid consumption

  1. Consumption and health effects of trans fatty acids: a review.

    Science.gov (United States)

    Teegala, Shyam Mohan; Willett, Walter C; Mozaffarian, Dariush

    2009-01-01

    Consumption of industrially produced trans fatty acids (TFA) remains high in many populations, particularly in developing nations where partially hydrogenated vegetable oils are frequently used for home cooking and among individuals in developed countries having high intakes of bakery or processed foods. Well-controlled observational studies and randomized trials indicate that TFA consumption adversely affects multiple risk factors for chronic diseases, including numerous blood lipids and lipoproteins, systemic inflammation, endothelial dysfunction, and possibly insulin resistance, diabetes, and adiposity. Growing evidence for the latter effects is particularly concerning given the worldwide obesity pandemic and high contents of industrially produced TFA in many foods marketed toward children. Consistent evidence from prospective observational studies of habitual TFA consumption and retrospective observational studies using TFA biomarkers indicates that TFA consumption increases risk of clinical coronary heart disease (CHD). Based on the adverse effects of risk factors and consistent relationships with clinical endpoints, the evidence that TFA consumption increases CHD risk is convincing. Some evidence suggests that TFA consumption may also increase other disease outcomes, but further investigation is needed to confirm the presence and magnitude of such effects. More research is also needed to understand how specific TFA isomers of varying chain length and double bond location may affect different biologic pathways of disease. Both individual- and policy-level initiatives to decrease TFA consumption should continue, particularly in population subgroups and in developing nations with high consumption of partially hydrogenated vegetable oils.

  2. Fish consumption, not fatty acid status, is related to quality of life in a healthy population

    OpenAIRE

    Schiepers, Olga; de Groot, Renate; Jolles, Jelle; VAN BOXTEL Martin

    2010-01-01

    Schiepers, O. J., De Groot, R. H. M., Jolles, J., & Van Boxtel, M. P. J. (2010). Fish consumption, not fatty acid status, is related to quality of life in a healthy population. Prostaglandins Leukot Essent Fatty Acids, 83(1), 31-35.

  3. The Structure of Fats and Fatty Acid Consumption in Elderly People with Cardiovascular System Diseases.

    Science.gov (United States)

    Skop-Lewandowska, Agata; Kolarzyk, Emilia; Zając, Joanna; Jaworska, Jagoda; Załęska-Żyłka, Izabela

    2016-01-01

    Patients with cardiovascular system diseases having their origin in arteriosclerosis require special dietetic treatment. Among many nutritional components, fats in the diet (both their quantity and quality) play a very important role in primary and secondary prevention of these diseases. The aim of the study was the estimation of total fats participation (saturated fatty acids, mono- and polyunsaturated fatty acids and cholesterol) in the Daily Nutritional Ration (DNR) of elderly people with cardiovascular system diseases. The study included 128 persons (66 women and 62 men, mean age 73.2 ± 6.9) hospitalized in the 1st Clinic of Cardiology and Hypertension, UJCM in Kraków. Daily intakes of energy were estimated using the 24-h nutritional recall and Food Frequency Questionnaire. A higher consumption of fats and fatty acids was observed in men's diet than in women's diet. The percentage of energy from saturated fatty acids (10.6% M and W) was higher than dietary recommendations. The consumption of monounsaturated fatty acids was in accordance with nutritional recommendations. The participation in the diet of polyunsaturated fatty acids was insufficient versus the newest nutritional recommendations and was determined as 4.6% of energy in DNR in men and 4.1% of energy of DNR in women. The excessive amount of saturated fatty acids together with the insufficient amount of polyunsaturated fatty acids in the diet are the result of the excessive consumption of products which are a source of animal fat and insufficient consumption of plant fat, fish and seafood.

  4. Brain and liver fatty acid composition changes upon consumption of Lactobacillus rhamnosus LA68.

    Science.gov (United States)

    Ivanovic, Nevena; Minic, Rajna; Djuricic, Ivana; Dimitrijevic, Ljiljana; Sobajic, Sladjana; Zivkovic, Irena; Djordjevic, Brizita

    2015-02-01

    Recent reports suggest that the metabolic activity of the enteric microbiota may influence the fatty acid composition of the host tissue. There are many studies dealing with the influence of lactobacilli on various pathological conditions, and some of the effects are strain-specific. This study was designed to test the effects of a particular Lactobacillus strain, Lactobacillus rhamnosus LA68 on fatty acid composition of the liver and the brain of C57BL/6 mice in the absence of an underlying pathological condition. Female mice were supplemented with live L. rhamnosus LA68 bacteria for the duration of 1 month. Serum biochemistry was analyzed and liver and brain fatty acid composition was assessed by gas-liquid chromatography. Significant changes in liver and brain fatty acid composition were detected. In the liver tissue we detected an increase in palmitoleic acid (p = 0.038), while in the brain compartment we found an increase in palmitic (p = 0.042), stearic (p = 0.017), arachidonic acid (p = 0.009) and docosahexaenoic acid (p = 0.004) for control versus experimental group. These results show discrete changes caused by LA68 strain consumption. Even short duration of administration of LA68 influences the fatty acid composition of the host which adds to the existing knowledge about Lactobacillus host interaction, and adds to the growing knowledge of metabolic intervention possibilities.

  5. MyPyramid-omega-3 fatty acid nutrition education intervention may improve food groups and omega-3 fatty acid consumption in university middle-aged women.

    Science.gov (United States)

    Yen, Wan-Ju J; Lewis, Nancy M

    2013-02-01

    This study was conducted to assess the impact of a nutrition education intervention on food groups and omega-3 (n-3) fatty acid consumption in middle-aged women. We hypothesized that participants who received educational materials about n-3 fatty acids would have a higher consumption of foods rich in n-3 fatty acids than the MyPyramid group. The first phase of this study used the qualitative method to identify the beliefs and interests of middle-aged women about the topic of nutrition. Data were collected using semistructured individual interviews. Phase 2 was a quantitative study to assess the effectiveness of MyPyramid to improve dietary intake and self-efficacy after a 6-week online nutrition education intervention using a blog for university middle-aged female staff. The impact of n-3 fatty acid education on food consumption and self-efficacy was also assessed. Eight female staff (aged 45-65 years) in a Midwestern university participated in the interviews. Data were coded, and 3 themes emerged: "health," "lifestyle," and "availability." Eighty-eight middle-aged women participated in the intervention study and were randomized into either an intervention group or a control group. The overall consumption of the food groups was lower than the MyPyramid recommendation, except in the meat and beans group. There was a trend that participants were less certain to include n-3 fatty acids than whole grains in their diets. Using MyPyramid and supplementary information about n-3 fatty acids did not significantly affect participants' dietary consumption or self-efficacy to increase consumption from the food groups or to increase n-3 fatty acid consumption. Blog-based nutrition education is acceptable for this target population.

  6. Peanut consumption increases levels of plasma very long chain fatty acids in humans.

    Science.gov (United States)

    Lam, Christina; Wong, Derek; Cederbaum, Stephen; Lim, Bennie; Qu, Yong

    2012-11-01

    Peanut consumption has been suspected of raising plasma very long chain fatty acid (VLCFA) levels in humans. The effect of peanut consumption on VLCFAs was studied in six human subjects. After 3 to 4h of peanut butter ingestion, plasma C26:0 and C26:0/C22:0 were found to be significantly elevated to levels seen in patients with peroxisomal disorders. These levels returned to normal within 12h. Peanut consumption needs to be accounted for when interpreting VLCFAs.

  7. Oral sensitivity to fatty acids, food consumption and BMI in human subjects.

    Science.gov (United States)

    Stewart, Jessica E; Feinle-Bisset, Christine; Golding, Matthew; Delahunty, Conor; Clifton, Peter M; Keast, Russell S J

    2010-07-01

    Fatty acids are the chemical moieties that are thought to stimulate oral nutrient sensors, which detect the fat content of foods. In animals, oral hypersensitivity to fatty acids is associated with decreased fat intake and body weight. The aims of the present study were to investigate oral fatty acid sensitivity, food selection and BMI in human subjects. The study included two parts; study 1 established in thirty-one subjects (29 (sem 1.4) years, 22.8 (sem 0.5) kg/m2) taste thresholds using 3-AFC (3-Alternate Forced Choice Methodology) for oleic, linoleic and lauric acids, and quantified oral lipase activity. During study 2, fifty-four subjects (20 (sem 0.3) years, 21.5 (sem 0.4) kg/m2) were screened for oral fatty acid sensitivity using oleic acid (1.4 mm), and they were defined as hypo- or hypersensitive via triplicate triangle tests. Habitual energy and macronutrient intakes were quantified from 2 d diet records, and BMI was calculated from height and weight. Subjects also completed a fat ranking task using custard containing varying amounts (0, 2, 6 and 10 %) of fat. Study 1 reported median lipase activity as 2 mumol fatty acids/min per l, and detection thresholds for oleic, linoleic and lauric acids were 2.2 (sem 0.1), 1.5 (sem 0.1) and 2.6 (sem 0.3) mm. Study 2 identified twelve hypersensitive subjects, and hypersensitivity was associated with lower energy and fat intakes, lower BMI (P acid was correlated to performance in the fat ranking task (r 0.4, P fatty acid hypersensitivity is associated with lower energy and fat intakes and BMI, and it may serve as a factor that influences fat consumption in human subjects.

  8. RBC and WBC fatty acid composition following consumption of an omega 3 supplement: Lessons for future clinical trials

    Directory of Open Access Journals (Sweden)

    Ballester Oscar F

    2010-03-01

    Full Text Available Abstract Background Results from increasing numbers of in vitro and in vivo studies have demonstrated that omega 3 fatty acids incorporated in cell culture media or in the diet of the animals can suppress the growth of cancers. When human clinical trials are initiated to determine the ability of omega 3 fatty acids to alter growth or response to chemotherapeutic interventions of cancers, it will be essential to determine the omega 3 intake of individuals in the trial to determine compliance with consumption of the supplement and to correlate with endpoints of efficacy. We wondered if the fatty acid composition of RBCs might accurately indicate incorporation of omega 3 fatty acids in the WBCs. In this report we determine and compare the changes in fatty acid compositions of red blood cells and white blood cells in response to consumption of three doses of an omega 3 fatty acid supplement. Results We found that the fraction of omega 3 fatty acids in both red blood cells and white blood cells increased following consumption of the supplement. There was a linear, dose responsive increase in the fraction of omega 3 fatty acids in red blood cells but the increase in omega 3 in white blood cells was not linear. The magnitude of increase in omega 3 fatty acids was different between the two cell types. Conclusions Fatty acid analysis of red blood cells is a good measure of compliance with supplement consumption. However, fatty acid analysis of white blood cells is needed to correlate changes in fatty acid composition of white blood cells with other biochemical changes in the white blood cells. Trial Registration ClinicalTrials.gov NCT00899353.

  9. Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction.

    Science.gov (United States)

    Lopez-Garcia, Esther; Schulze, Matthias B; Meigs, James B; Manson, JoAnn E; Rifai, Nader; Stampfer, Meir J; Willett, Walter C; Hu, Frank B

    2005-03-01

    Trans fatty acid intake has been associated with a higher risk of cardiovascular disease. The relation is explained only partially by the adverse effect of these fatty acids on the lipid profile. We examined whether trans fatty acid intake could also affect biomarkers of inflammation and endothelial dysfunction including C-reactive protein (CRP), interleukin-6 (IL-6), soluble tumor necrosis factor receptor 2 (sTNFR-2), E-selectin, and soluble cell adhesion molecules (sICAM-1 and sVCAM-1). We conducted a cross-sectional study of 730 women from the Nurses' Health Study I cohort, aged 43-69 y, free of cardiovascular disease, cancer, and diabetes at time of blood draw (1989-1990). Dietary intake was assessed by a validated FFQ in 1986 and 1990. CRP levels were 73% higher among those in the highest quintile of trans fat intake, compared with the lowest quintile. IL-6 levels were 17% higher, sTNFR-2 5%, E-selectin 20%, sICAM-1 10%, and sVCAM-1 levels 10% higher. Trans fatty acid intake was positively related to plasma concentration of CRP (P = 0.009), sTNFR-2 (P = 0.002), E-selectin (P = 0.003), sICAM-1 (P = 0.007), and sVCAM-1 (P = 0.001) in linear regression models after controlling for age, BMI, physical activity, smoking status, alcohol consumption, intake of monounsaturated, polyunsaturated, and saturated fatty acids, and postmenopausal hormone therapy. In conclusion, this study suggests that higher intake of trans fatty acids could adversely affect endothelial function, which might partially explain why the positive relation between trans fat and cardiovascular risk is greater than one would predict based solely on its adverse effects on lipids.

  10. Cost implications of alternative sources of (n-3) fatty acid consumption in the United States.

    Science.gov (United States)

    Kennedy, Eileen T; Luo, Hanqi; Ausman, Lynne M

    2012-03-01

    The Dietary Guidelines for Americans 2010 provides authoritative advice on what Americans should eat to stay healthy. These guidelines provide a quantitative recommendation to consume 250 mg/d of (n-3) fatty acids (also known as omega-3 fatty acids). To achieve this goal, Americans would need to more than triple the amount of EPA and DHA currently consumed. This paper assessed the cost implications of increased levels of EPA and DHA from marine and nonmarine food sources using data from the 2007-2008 NHANES, USDA nutrient data base, and the USDA Center for the Nutrition Policy and Promotion food price data. Stearidonic acid (SDA)-enhanced soybean oil is a lower cost alternative to commonly consumed marine food as a source of EPA. In addition, given that SDA-enhanced soybean oil is intended to be used as an ingredient in a variety of products, this may enable consumers to increase consumption of EPA through commonly consumed foods.

  11. Fatty acids - trans fatty acids

    Science.gov (United States)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  12. Evaluation the rate of trans fatty acids isomers in ghee and tail sheep consumption in Lorestan

    Directory of Open Access Journals (Sweden)

    Roshanak Hedayatifar

    2017-10-01

    Conclusion: Ghee and tail sheep contains high percentage of saturated fatty acids including trans and saturated fatty acids. Therefore, people who consume these foods may put themselves at elevated risk of cardiovascular disease.

  13. Polychlorinated biphenyls and omega-3 fatty acid exposure from fish consumption, and thyroid cancer among New York anglers.

    Science.gov (United States)

    Haslam, Alyson; Robb, Sara Wagner; Bonner, Matthew R; Lindblad, William; Allegra, Joey; Shen, Ye; Vena, John E

    2016-03-01

    Fish from the Great Lakes contain polychlorinated biphenyls (PCBs) which have been shown to disrupt endocrine function and mimic thyroid hormones, but they also contain beneficial omega-3 fatty acids that may offer protection against endocrine cancers. The purpose of this study was to examine the effects of Lake Ontario fish consumption and the estimated consumption of PCBs and omega-3 fatty acids on the risk of thyroid cancer in a group of sport fishermen. Anglers from the New York State Angler Cohort Study were followed for cancer incidence from 1991-2008. Twenty-seven cases of incident thyroid cancer and 108 controls were included in the analyses. Total estimated fish consumption, estimated omega-3 fatty acid consumption, and estimated PCB consumption from Lake Ontario fish were examined for an association with the incidence of thyroid cancer, while matching on sex, and controlling for age and smoking status. Results from logistic regression indicate no significant associations between fish consumption, short-term estimated omega-3 fatty acids, or estimated PCB consumption from Great Lakes fish and the development of thyroid cancer, but it was suggested that long-term omega-3 fatty acid from Great Lakes fish may be protective of the development of thyroid cancer. In conclusion, fish consumption, with the possible concomitant PCBs, from the Great Lakes does not appear to increase the risk of thyroid cancer in New York anglers. Further research is needed in order to separate the individual health effects of PCBs from omega-3 fatty acids contained within the fish.

  14. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans.

    Directory of Open Access Journals (Sweden)

    Marc R Van Gilst

    2005-02-01

    Full Text Available Mammalian nuclear hormone receptors (NHRs, such as liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs, precisely control energy metabolism. Consequently, these receptors are important targets for the treatment of metabolic diseases, including diabetes and obesity. A thorough understanding of NHR fat regulatory networks has been limited, however, by a lack of genetically tractable experimental systems. Here we show that deletion of the Caenorhabditis elegans NHR gene nhr-49 yielded worms with elevated fat content and shortened life span. Employing a quantitative RT-PCR screen, we found that nhr-49 influenced the expression of 13 genes involved in energy metabolism. Indeed, nhr-49 served as a key regulator of fat usage, modulating pathways that control the consumption of fat and maintain a normal balance of fatty acid saturation. We found that the two phenotypes of the nhr-49 knockout were linked to distinct pathways and were separable: The high-fat phenotype was due to reduced expression of enzymes in fatty acid beta-oxidation, and the shortened adult life span resulted from impaired expression of a stearoyl-CoA desaturase. Despite its sequence relationship with the mammalian hepatocyte nuclear factor 4 receptor, the biological activities of nhr-49 were most similar to those of the mammalian PPARs, implying an evolutionarily conserved role for NHRs in modulating fat consumption and composition. Our findings in C. elegans provide novel insights into how NHR regulatory networks are coordinated to govern fat metabolism.

  15. Dose-dependent consumption of farmed Atlantic salmon (Salmo salar) increases plasma phospholipid n-3 fatty acids differentially.

    Science.gov (United States)

    Raatz, Susan K; Rosenberger, Thad A; Johnson, LuAnn K; Wolters, William W; Burr, Gary S; Picklo, Matthew J

    2013-02-01

    Enhanced n-3 fatty acid intake benefits cardiovascular disease (CVD) risk reduction. Increasing consumption at a population level may be better addressed by diet than through supplementation. However, limited data are available on the effect of the dose response to fish intake on plasma levels of n-3 fatty acids. To compare the effects of different doses of farmed Atlantic salmon on plasma phospholipid fatty acid proportions and CVD risk biomarkers (eg, glucose, insulin, homeostasis model of assessment-insulin resistance, high-sensitivity C-reactive protein, and interleukin-6) in healthy subjects we performed a randomized three-period crossover-designed trial (4-week treatment, 4- to 8-week washout) to compare the effects of twice per week consumption of farmed Atlantic salmon at doses of 90, 180, and 270 g in 19 apparently healthy men and women (mean age 40 to 65 years) and a body mass index between 25 and 34.9. All study visits were conducted at the US Department of Agriculture Agricultural Research Service Grand Forks Human Nutrition Research Center. Eicosapentaenoic acid and total n-3 concentrations were increased (Pacid did not change in response to treatment, whereas arachidonic acid (Pfatty acids decreased dose dependently (fatty acid proportions of n-3 and n-6 in a level associated with decreased risk for CVD.

  16. Effect of almond consumption on the serum fatty acid profile: a dose-response study.

    Science.gov (United States)

    Nishi, Stephanie; Kendall, Cyril W C; Gascoyne, Ana-Maria; Bazinet, Richard P; Bashyam, Balachandran; Lapsley, Karen G; Augustin, Livia S A; Sievenpiper, John L; Jenkins, David J A

    2014-10-14

    Consumption of almonds has been shown to be associated with a decreased risk of CHD, which may be related to their fatty acid (FA) composition. However, the effect of almond consumption on the serum FA composition is not known. Therefore, in the present study, we investigated whether almond consumption would alter the serum FA profile and risk of CHD, as calculated using Framingham's 10-year risk score, in a dose-dependent manner in hyperlipidaemic individuals when compared with a higher-carbohydrate control group using dietary interventions incorporating almonds. A total of twenty-seven hyperlipidaemic individuals consumed three isoenergetic (mean 1770 kJ/d) supplements during three 1-month dietary phases: (1) full-dose almonds (50-100 g/d); (2) half-dose almonds with half-dose muffins; (3) full-dose muffins. Fasting blood samples were obtained at weeks 0 and 4 for the determination of FA concentrations. Almond intake (g/d) was found to be inversely associated with the estimated Framingham 10-year CHD risk score (P= 0·026). In both the half-dose and full-dose almond groups, the proportions of oleic acid (OA) and MUFA in the TAG fraction (half-almond: OA P= 0·003; MUFA P= 0·004; full-almond: OA PFramingham 10-year CHD risk score was inversely associated with the percentage change of OA (P= 0·011) and MUFA (P= 0·016) content in the TAG fraction. The proportions of MUFA in the TAG and NEFA fractions were positively associated with changes in HDL-cholesterol concentrations. Similarly, the estimated Framingham 10-year CHD risk score was inversely associated with the percentage change of OA (P= 0·069) and MUFA content in the NEFA fraction (P= 0·009). In conclusion, the results of the present study indicate that almond consumption increases OA and MUFA content in serum TAG and NEFA fractions, which are inversely associated with CHD lipid risk factors and overall estimated 10-year CHD risk.

  17. Trans Fatty Acids

    Science.gov (United States)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  18. The association between polyunsaturated fatty acid consumption and the transition to psychosis in ultra-high risk individuals.

    Science.gov (United States)

    Pawełczyk, T; Trafalska, E; Kotlicka-Antczak, M; Pawełczyk, A

    2016-05-01

    PUFA deficiencies in cellular membranes have been observed in ultra-high risk (HR) individuals and in early schizophrenia. It is uncertain whether dietary PUFA consumption can be associated with the risk of transition to psychosis in HR individuals. The aim of the study was to assess PUFA consumption and confirm whether dietary habits are related to the risk of transition to full-threshold psychosis in HR individuals during a 12-month follow-up. PUFA consumption during the previous year was analyzed in 62 h individuals and 33 healthy controls (HC) at the beginning of the follow-up period using a validated Food-Frequency Questionnaire and the Polish Food Composition Tables. Fifteen HR individuals converted into psychosis (C-HR) during the 12-month follow-up. C-HR individuals reported significantly higher consumption of n-6 fatty acids (linoleic acid, LA and arachidonic acid, AA) in comparison with individuals who did not develop psychosis (NC-HR). The C-HR group reported a significantly higher AA/(EPA+DHA) consumption ratio than the NC-HR group. HC reported significantly higher consumption of most n-3 PUFA and lower consumption of all n-6 PUFA than both groups of HR individuals. The results suggest that dietary patterns of PUFA consumption may play a role in the conversion to psychosis of HR individuals.

  19. Fish consumption and omega-3 polyunsaturated fatty acids in relation to depressive episodes: a cross-sectional analysis.

    Science.gov (United States)

    Suominen-Taipale, Anna Liisa; Partonen, Timo; Turunen, Anu W; Männistö, Satu; Jula, Antti; Verkasalo, Pia K

    2010-05-07

    High fish consumption and omega-3 polyunsaturated fatty acid (PUFA) intake are suggested to benefit mental well-being but the current evidence is conflicting. Our aim was to evaluate whether a higher level of fish consumption, a higher intake of omega-3 PUFAs, and a higher serum concentration of omega-3 PUFAs link to a lower 12-month prevalence of depressive episodes.We used data from the nationwide Health 2000 Survey (n = 5492) and the Fishermen Study on Finnish professional fishermen and their family members (n = 1265). Data were based on questionnaires, interviews, health examinations, and blood samples. Depressive episodes were assessed with the M-CIDI (the Munich version of the Composite International Diagnostic Interview) and a self-report of two CIDI probe questions, respectively. Fish consumption was measured by a food frequency questionnaire (g/day) and independent frequency questions (times/month). Dietary intake (g/day) and serum concentrations (% from fatty acids) of PUFAs were determined. Fish consumption was associated with prevalence of depressive episodes in men but not in women. The prevalence of depressive episodes decreased from 9% to 5% across the quartiles of fish consumption (g/day) in men of the Health 2000 Survey (p for linear trend = 0.01), and from17% to 3% across the quartiles of fish consumption (times/month) in men of the Fishermen Study (p for linear trend = 0.05). This association was modified by lifestyle; in the Health 2000 Survey a higher level of fish consumption was related to a lower prevalence of depressive episodes in men who consumed the most alcohol, were occasional or former smokers, or had intermediate physical activity. The associations between depressive episodes and the intake or serum concentrations of omega-3 PUFAs were not consistent.In men, fish consumption appears as a surrogate for underlying but unidentified lifestyle factors that protect against depression.

  20. Fish consumption and omega-3 polyunsaturated fatty acids in relation to depressive episodes: a cross-sectional analysis.

    Directory of Open Access Journals (Sweden)

    Anna Liisa Suominen-Taipale

    Full Text Available High fish consumption and omega-3 polyunsaturated fatty acid (PUFA intake are suggested to benefit mental well-being but the current evidence is conflicting. Our aim was to evaluate whether a higher level of fish consumption, a higher intake of omega-3 PUFAs, and a higher serum concentration of omega-3 PUFAs link to a lower 12-month prevalence of depressive episodes.We used data from the nationwide Health 2000 Survey (n = 5492 and the Fishermen Study on Finnish professional fishermen and their family members (n = 1265. Data were based on questionnaires, interviews, health examinations, and blood samples. Depressive episodes were assessed with the M-CIDI (the Munich version of the Composite International Diagnostic Interview and a self-report of two CIDI probe questions, respectively. Fish consumption was measured by a food frequency questionnaire (g/day and independent frequency questions (times/month. Dietary intake (g/day and serum concentrations (% from fatty acids of PUFAs were determined. Fish consumption was associated with prevalence of depressive episodes in men but not in women. The prevalence of depressive episodes decreased from 9% to 5% across the quartiles of fish consumption (g/day in men of the Health 2000 Survey (p for linear trend = 0.01, and from17% to 3% across the quartiles of fish consumption (times/month in men of the Fishermen Study (p for linear trend = 0.05. This association was modified by lifestyle; in the Health 2000 Survey a higher level of fish consumption was related to a lower prevalence of depressive episodes in men who consumed the most alcohol, were occasional or former smokers, or had intermediate physical activity. The associations between depressive episodes and the intake or serum concentrations of omega-3 PUFAs were not consistent.In men, fish consumption appears as a surrogate for underlying but unidentified lifestyle factors that protect against depression.

  1. Trans fatty acids consumption in type 1 diabetic patients: evaluation by dietary records and measurement in serum phospholipids.

    Science.gov (United States)

    Vitale, M; Luongo, D; Naviglio, D; Bozzetto, L; Mirabella, M; Rivieccio, A M; Giacco, A; Rivellese, A A

    2013-08-01

    The consumption of foods containing trans fatty acids (TFA), especially those produced by food industries, induces pleiotropic negative effects on health. Therefore, it is important to assess the amount of TFA consumed, especially in age groups more exposed to the consumption of TFA-containing foods. The present pilot study evaluates TFA intake in 54 young people with and without type 1 diabetes (29 young subjects with type 1 diabetes and 25 healthy subjects) through both dietary records (7-day food record) and the measurement of TFA levels in serum phospholipids, a possibly more objective marker of TFA intake. The comparison between the two groups was made by the student t test for independent samples. The intake of synthetic TFA was low in both groups (type 1 diabetic patients: 0.25 ± 0.25 g/day; healthy subjects 0.48 ± 0.37 g/day), but significantly lower in diabetic patients vs controls (P fatty acids. These data indicate that the intake of trans fatty acids is relatively low in our population, i.e.,<1% of total calories in the diet, in line with what recommended by the World Health Organization.

  2. Salmon consumption during pregnancy alters fatty acid composition and secretory IgA concentration in human breast milk.

    Science.gov (United States)

    Urwin, Heidi J; Miles, Elizabeth A; Noakes, Paul S; Kremmyda, Lefkothea-Stella; Vlachava, Maria; Diaper, Norma D; Pérez-Cano, Francisco J; Godfrey, Keith M; Calder, Philip C; Yaqoob, Parveen

    2012-08-01

    Fish oil supplementation during pregnancy alters breast milk composition, but there is little information about the impact of oily fish consumption. We determined whether increased salmon consumption during pregnancy alters breast milk fatty acid composition and immune factors. Women (n = 123) who rarely ate oily fish were randomly assigned to consume their habitual diet or to consume 2 portions of farmed salmon per week from 20 wk of pregnancy until delivery. The salmon provided 3.45 g long-chain (LC) (n-3) PUFA/wk. Breast milk fatty acid composition and immune factors [soluble CD14, transforming growth factor-β (TGFβ)1, TGFβ2, and secretory IgA] were analyzed at 1, 5, 14, and 28 d postpartum (PP). Breast milk from the salmon group had higher proportions of EPA (80%), docosapentaenoic acid (30%), and DHA (90%) on d 5 PP compared with controls (P < 0.01). The LC (n-6) PUFA:LC (n-3) PUFA ratio was lower for the salmon group on all days of PP sampling (P ≤ 0.004), although individual (n-6) PUFA proportions, including arachidonic acid, did not differ. All breast milk immune factors decreased between d 1 and 28 PP (P < 0.001). Breast milk secretory IgA (sIgA) was lower in the salmon group (d 1-28 PP; P = 0.006). Salmon consumption during pregnancy, at the current recommended intakes, increases the LC (n-3) PUFA concentration of breast milk in early lactation, thus improving the supply of these important fatty acids to the breast-fed neonate. The consequence of the lower breast milk concentration of sIgA in the salmon group is not clear.

  3. Cross-sectional associations of food consumption with plasma fatty acid composition and estimated desaturase activities in Finnish children.

    Science.gov (United States)

    Venäläinen, Taisa; Schwab, Ursula; Ågren, Jyrki; de Mello, Vanessa; Lindi, Virpi; Eloranta, Aino-Maija; Kiiskinen, Sanna; Laaksonen, David; Lakka, Timo A

    2014-05-01

    Plasma fatty acid (FA) composition is known to be an indicator of dietary fat quality, but the associations of other dietary factors with plasma FA composition remain unknown in children. We investigated the cross-sectional associations of food consumption with the proportions of FA and estimated desaturase activities in plasma cholesteryl esters (CE) and phospholipids (PL) among children. The subjects were a population sample of 423 children aged 6–8 years examined at baseline of The Physical Activity and Nutrition in Children (PANIC) Study. We assessed food consumption by food records and plasma FA composition by gas chromatography. We used linear regression models adjusted for age, sex, physical activity and total energy intake to analyze the associations. A higher consumption of vegetable oil-based margarine (fat 60–80 %) was associated with a higher proportion of linoleic and α-linolenic acids in plasma CE and PL. A higher consumption of high-fiber grain products was related to a lower proportion of oleic acid in CE and PL. The consumption of candy was directly associated with the proportion of palmitoleic and oleic acid in plasma CE. The consumption of vegetable oil-based margarine was inversely associated with estimated stearoyl-CoA-desaturase activity in plasma CE and PL and the consumption of candy was directly related to it in plasma CE. The results of our study suggest that plasma FA composition is not only a biomarker for dietary fat quality but also reflects the consumption of high-fiber grain products and foods high in sugar among children.

  4. Associations between omega fatty acid consumption and depressive symptoms among individuals seeking behavioural weight loss treatment

    OpenAIRE

    Luke, Anna K.; Evans, E. Whitney; Bond, Dale S; Thomas, J. Graham

    2016-01-01

    Summary Objective The typical Western diet is deficient in omega‐3 and high in omega‐6 fatty acids (FAs). These FAs may play a role in depressive symptoms via inflammatory processes, especially in the context of obesity, a pro‐inflammatory state. This study investigated associations between omega‐3 and omega‐6 FA intake and depressive symptoms in adults seeking behavioural weight loss treatment (BWLT). Methods One hundred eighty‐eight persons with overweight or obesity (83.50% women, 93.10% W...

  5. Consumption of industrial and ruminant trans fatty acids and risk of coronary heart disease

    DEFF Research Database (Denmark)

    Bendsen, Nathalie Tommerup; Christensen, R.; Bartels, Else Marie

    2011-01-01

    The aim of this systematic review and meta-analysis was to summarize the evidence from observational studies assessing the association between intake of trans fatty acids (TFA) and the risk of coronary heart disease (CHD), with a specific emphasis on distinguishing between TFA of industrial...... and ruminant origin. By searching five bibliographic databases, analyses from six published and two unpublished prospective cohort studies, assessing the association of intake of TFA with fatal and/or non-fatal CHD, were identified. Four and three studies reported separate associations for intake of ruminant...

  6. Fish consumption, n-3 fatty acids, and subsequent 5-y cognitive decline in elderly men: the Zutphen Elderly Study 1-4

    NARCIS (Netherlands)

    Gelder, van B.M.; Tijhuis, M.J.; Kalmijn, S.; Kromhout, D.

    2007-01-01

    Background: Indications have been seen of a protective effect of fish consumption and the intake of n¿3 fatty acids on cognitive decline. However, studies are scarce and results inconsistent. Objective: The objective of the study was to examine the associations between fish consumption, the intake o

  7. Gender-specific Associations of Marine n-3 Fatty Acids and Fish Consumption with 10-year Incidence of Stroke

    NARCIS (Netherlands)

    Goede, de J.; Verschuren, W.M.M.; Boer, J.M.A.; Kromhout, D.; Geleijnse, J.M.

    2012-01-01

    Background There is some evidence that the association of fish and marine fatty acids with stroke risk differs between men and women. We investigated the gender-specific associations of habitual intake of the marine fatty acids eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) and fish on

  8. Consumption of a solid fat rich in lauric acid results in a more favorable serum lipid profile in healthy men and women than consumption of a solid fat rich in trans-fatty acids.

    Science.gov (United States)

    de Roos, N; Schouten, E; Katan, M

    2001-02-01

    Solid fats are used in food manufacturing to provide texture and firmness to foods. Such fats are rich in either saturated or trans-fatty acids, both of which increase the risk of coronary heart disease. Epidemiological and experimental studies suggest that trans-fatty acids increase risk more than do saturates because they lower serum high density lipoprotein (HDL) cholesterol. However, there appear to be differences between saturates in their effect on HDL cholesterol. We investigated whether the consumption of a solid fat rich in lauric acid (C12:0) would result in a more favorable blood lipid profile than the consumption of a solid fat rich in trans-fatty acids. We fed 32 healthy men and women two controlled diets in a 2 x 4-wk randomized crossover design. The diets consisted of a background diet supplemented with margarines. In the trans-diet, 9.2% of energy was provided by trans-fatty acids and 12.9% by saturated fatty acids. In the Sat-diet, energy intake was 0% from trans-fatty acids and 22.9% from saturated fatty acids. Lauric acid composed one third of all saturates in the Sat-diet. Serum HDL cholesterol was 0.36 mmol/L lower at the end of the trans-diet than at the end of the Sat-diet (95% confidence interval, -0.46 to -0.26), whereas serum low density lipoprotein cholesterol and triglyceride concentrations remained stable. Serum total cholesterol was 0.31 mmol/L (95% confidence interval, -0.48 to -0.14) lower at the end of the trans-diet than at the end of the Sat-diet. Consumption of a solid fat rich in lauric acid gives a more favorable serum lipoprotein pattern than consumption of partially hydrogenated soybean oil rich in trans-fatty acids. Thus, solid fats rich in lauric acids, such as tropical fats, appear to be preferable to trans-fats in food manufacturing, where hard fats are indispensable.

  9. Balancing the benefits of n-3 polyunsaturated fatty acids and the risks of methylmercury exposure from fish consumption

    DEFF Research Database (Denmark)

    Mahaffey, K. R.; Sunderland, E. M.; Chan, H. M.;

    2011-01-01

    risks of certain forms of heart disease in adults. However, fish and shellfish can also be a major source of methylmercury (MeHg), a known neurotoxicant that is particularly harmful to fetal brain development. This review documents the latest knowledge on the risks and benefits of seafood consumption......Fish and shellfish are widely available foods that provide important nutrients, particularly n-3 polyunsaturated fatty acids (n-3 PUFAs), to many populations globally. These nutrients, especially docosahexaenoic acid, confer benefits to brain and visual system development in infants and reduce...... for perinatal development of infants. It is possible to choose fish species that are both high in n-3 PUFAs and low in MeHg. A framework for providing dietary advice for women of childbearing age on how to maximize the dietary intake of n-3 PUFAs while minimizing MeHg exposures is suggested. (C) 2011...

  10. Consumption of different sources of omega-3 polyunsaturated fatty acids by growing female rats affects long bone mass and microarchitecture.

    Science.gov (United States)

    Lukas, Robin; Gigliotti, Joseph C; Smith, Brenda J; Altman, Stephanie; Tou, Janet C

    2011-09-01

    Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) consumption has been reported to improve bone health. However, sources of ω-3 PUFAs differ in the type of fatty acids and structural form. The study objective was to determine the effect of various ω-3 PUFAs sources on bone during growth. Young (age 28d) female Sprague-Dawley rats were randomly assigned (n=10/group) to a high fat 12% (wt) diet consisting of either corn oil (CO) or ω-3 PUFA rich, flaxseed (FO), krill (KO), menhaden (MO), salmon (SO) or tuna (TO) for 8 weeks. Bone mass was assessed by dual-energy X-ray absorptiometry (DXA) and bone microarchitecture by micro-computed tomography (μCT). Bone turnover markers were measured by enzyme immunoassay. Lipid peroxidation was measured by calorimetric assays. Results showed that rats fed TO, rich in docosahexaenoic acid (DHA, 22:6ω-3) had higher (Pacid (ALA, 18:3ω-3), improved bone microarchitecture compared to rats fed CO or SO. Serum osteocalcin was higher (P=0.03) in rats fed FO compared to rats fed SO. Serum osteocalcin was associated with improved trabecular bone microarchitecture. The animal study results suggest consuming a variety of ω-3 PUFA sources to promote bone health during the growth stage.

  11. Long-term effects of varying consumption of ω3 fatty acids in ear, nose and throat cancer patients: assessment 1 year after radiotherapy.

    Science.gov (United States)

    Roca-Rodríguez, María Del Mar; García-Almeida, Jose Manuel; Ruiz-Nava, Josefina; Alcaide, Juan; Lupiañez-Pérez, Yolanda; Rico-Pérez, Jose Manuel; Toledo-Serrano, María Dolores; Cardona, Fernando; Medina-Carmona, Jose Antonio; Tinahones, Francisco J

    2015-02-01

    A prospective 1-year follow-up study in ear, nose, and throat (ENT) cancer patients was carried out one year after radiotherapy to assess the effect of varying consumption of ω3 fatty acid according to whether they consumed more or less than the 50th percentile of ω3 fatty acids. Clinical, analytical, inflammatory (CRP and IL-6), and oxidative variables (TAC, GPx, GST, and SOD) were evaluated. The study comprised 31 patients (87.1% men), with a mean age of 61.3 ± 9.1 years. Hematological variables showed significant differences in the patients with a lower consumption of ω3 fatty acids. A lower mortality and longer survival were found in the group with ω3 fatty acid consumption ≥50th percentile but the differences were not significant. No significant difference was reached in toxicity, inflammation, and oxidative stress markers. The group with ω3 fatty acid consumption <50th percentile significantly experienced more hematological and immune changes.

  12. Cognitive performance in older adults is inversely associated with fish consumption but not erythrocyte membrane n-3 fatty acids.

    Science.gov (United States)

    Danthiir, Vanessa; Hosking, Diane; Burns, Nicholas R; Wilson, Carlene; Nettelbeck, Ted; Calvaresi, Eva; Clifton, Peter; Wittert, Gary A

    2014-03-01

    Higher n-3 (ω-3) polyunsaturated fatty acids (PUFAs) and fish intake may help maintain cognitive function in older age. However, evidence is inconsistent; few studies have examined the relation in cognitively healthy individuals across numerous cognitive domains, and none to our knowledge have considered lifetime fish intake. We examined associations between multiple domains of cognition and erythrocyte membrane n-3 PUFA proportions and historical and contemporary fish intake in 390 normal older adults, analyzing baseline data from the Older People, Omega-3, and Cognitive Health trial. We measured n-3 PUFA in erythrocyte membranes, and we assessed historical and contemporary fish intake by food-frequency questionnaires. We assessed cognitive performance on reasoning, working memory, short-term memory, retrieval fluency, perceptual speed, simple/choice reaction time, speed of memory-scanning, reasoning speed, inhibition, and psychomotor speed. Cognitive outcomes for each construct were factor scores from confirmatory factor analysis. Multiple linear regression models controlled for a number of potential confounding factors, including age, education, sex, apolipoprotein E-ε 4 allele, physical activity, smoking, alcohol intake, socioeconomic variables, and other health-related variables. Higher erythrocyte membrane eicosapaentonoic acid proportions predicted slower perceptual and reasoning speed in females, which was attenuated once current fish intake was controlled. No other associations were present between n-3 PUFA proportions and cognitive performance. Higher current fish consumption predicted worse performance on several cognitive speed constructs. Greater fish consumption in childhood predicted slower perceptual speed and simple/choice reaction time. We found no evidence to support the hypothesis that higher proportions of long-chain n-3 fatty acids or fish intake benefits cognitive performance in normal older adults.

  13. [Usefulness and controversial issues of middle-chain fatty acids consumption on lipid-protein metabolism and obesity].

    Science.gov (United States)

    Sáyago-Ayerdi, S G; Vaquero, M P; Schultz-Moreira, A; Bastida, S; Sánchez-Muniz, F J

    2008-01-01

    Middle-chain fatty acids (MCFA) contain 6-12 carbon atoms and are digested, absorbed and metabolized differently than long-chain fatty acids (LCFA). This work reviews some of the potential and real utilities of MCFA and their role on health. For this reason, they are used in enteral and parenteral nutrition because of their good absorption, and in premature-feeding milk-based formulas in order to improve calcium absorption. MCFA have become particularly important because of their possible role in treating and preventing obesity. Since they are more water soluble, they are taken-up by chylomicrons, and it is believed that they do not directly participate in lipogenesis. They are able to increase the thermogenic effect of foods, and its metabolism increases the production of ketonic agents with the subsequent anorexigenic effect. However, high doses of MCFA are required to obtain significant effects on weight reduction. The effects on lipid-protein metabolism are controversial. So, although they seem to reduce the post-prandial triglyceridemic response, the results their effects are not uniform regarding triglyceridemia and cholesterolemia. In spite of this, more and more products are being designed incorporating MCFA to treat obesity and overweight, having been considered as "GRAS" (Generally Recommended as Safe") components by the ADA. Further long-term studies are needed to warrant the usefulness of consumption of these compounds, particularly in the treatment and prevention of obesity.

  14. Recommendations of the Spanish Menopause Society on the consumption of omega-3 polyunsaturated fatty acids by postmenopausal women.

    Science.gov (United States)

    Sánchez-Borrego, Rafael; von Schacky, Clemens; Osorio, María José Alonso; Llaneza, Plácido; Pinto, Xavier; Losa, Fernando; Navarro, Mª Concepción; Lubián, Daniel; Mendoza, Nicolás

    2017-09-01

    The consumption of long-chain omega-3 polyunsaturated fatty acids (LCO3-PUFAs) has shown a great variety of beneficial effects, including cardiovascular, metabolic and inflammatory effects, which make them interesting for the postmenopausal woman. Because LCO3-PUFAs could be effective and safe during this period, a panel of experts from the Spanish Menopause Society met to establish a set of recommendations for their use in postmenopausal women based on the best available evidence. The decrease in triglycerides is the most consistent effect observed with LCO3-PUFAs (at doses greater than 3g/day). In addition, LCO3-PUFAs have antiarrhythmic effects, reduce blood pressure, improve depressive and psychotic symptoms, and do not increase the risk of cancer. However, further studies are needed to confirm the benefit of LCO3-PUFAs in the relief of menopause symptoms and osteoporosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Relationships between n-3 polyunsaturated fatty acid intake, serum 25 hydroxyvitamin D, food consumption, and nutritional status among adolescents.

    Science.gov (United States)

    Lopes, Mariana P; Giudici, Kelly V; Marchioni, Dirce M; Fisberg, Regina M; Martini, Lígia A

    2015-08-01

    We have hypothesized that higher n-3 polyunsaturated fatty acid (PUFA) intake is associated with better lipid profile, higher 25 hydroxyvitamin D (25(OH)D) serum concentrations, and healthy food consumption and nutritional status. Thus, this study aimed to evaluate the relationships between n-3 PUFA intake, serum 25(OH)D, lipid profile, nutritional status, and food consumption among adolescents. A total of 198 Brazilian adolescents (51% male), with mean age of 16.3 ± 1.4 years, were enrolled in this cross-sectional study. Blood was collected for 25(OH)D and lipid profile serum measurement. Weight and height were measured, and food consumption was accessed by a 24-hour food record (n = 69). Analysis of variance, the Student t test, and Pearson correlation were performed using SPSS software (SPSS, Chicago, IL, USA). The prevalence of vitamin D inadequacy (25(OH)D, nutritional status and favorable lipid profile. Food groups usually found in Brazilian traditional meals (characterized by rice, beans, meat, and vegetables) were associated with higher n-3 PUFA intake, which may contribute to prevent the development of noncommunicable diseases in adolescence and adulthood.

  16. Omega-3 Fatty Acids

    Science.gov (United States)

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the ... the blood in people with very high triglycerides. Omega-3 fatty acids are in a class of ...

  17. Omega-6 Fatty Acids

    Science.gov (United States)

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant ...

  18. Immunoglobulin and fatty acids

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising 0.1-10 w/w % immunoglobulin (Ig), 4-14 w/w % saturated fatty acids, 4-14 w/w % mono-unsaturated fatty acids and 0-5 w/w % poly-unsaturated fatty acids, wherein the weight percentages are based on the content of dry matter in the composition...

  19. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: Systematic review and meta-analysis

    NARCIS (Netherlands)

    R. Chowdhury (Rajiv); S. Stevens (Sarah); D. Gorman (Donal); A. Pan (An); S. Warnakula (Samantha); S. Chowdhury (Susmita); H. Ward (Heather); L.A. Johnson (Laura); F. Crowe (Francesca); F.B. Hu (Frank); O.H. Franco (Oscar)

    2012-01-01

    textabstractObjective: To clarify associations of fish consumption and long chain omega 3 fatty acids with risk of cerebrovascular disease for primary and secondary prevention. Design: Systematic review and meta-analysis. Data sources: Studies published before September 2012 identified through

  20. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: Systematic review and meta-analysis

    NARCIS (Netherlands)

    R. Chowdhury (Rajiv); S. Stevens (Sarah); D. Gorman (Donal); A. Pan (An); S. Warnakula (Samantha); S. Chowdhury (Susmita); H. Ward (Heather); L.A. Johnson (Laura); F. Crowe (Francesca); F.B. Hu (Frank); O.H. Franco (Oscar)

    2012-01-01

    textabstractObjective: To clarify associations of fish consumption and long chain omega 3 fatty acids with risk of cerebrovascular disease for primary and secondary prevention. Design: Systematic review and meta-analysis. Data sources: Studies published before September 2012 identified through elect

  1. Consumo de ácidos grasos trans y riesgo cardiovascular Consumption of trans fatty acids and cardiovascular risk

    Directory of Open Access Journals (Sweden)

    Fernando Manzur J

    2009-06-01

    , especially in regard to risk of cardiovascular disease, which is why it is important to reduce its consumption. Given the evidence obtained from research on alterations of metabolism produced by trans fatty acids, it is possible to raise a logical precaution for the consumption of diets rich in these acids. Its deleterious effects would be even worse in those populations that consume low amounts of essential fatty acids. Hence the importance of prompt sanitary policies directed to the control of atherosclerosis in our country. They must be based necessarily on an in-depth knowledge of the characteristics or particular conditions to whiwhich our our population is subjected. Only thus, can initiate an effective intervention questioned about our eating habits.

  2. Consumption of omega-3 fatty acids and the risk of skin cancers: a systematic review and meta-analysis.

    Science.gov (United States)

    Noel, Sophie E; Stoneham, Adam C S; Olsen, Catherine M; Rhodes, Lesley E; Green, Adele C

    2014-07-01

    Skin cancers have a higher incidence than all other cancers combined and are a major cause of morbidity worldwide. Laboratory data suggest certain dietary constituents, notably omega-3 polyunsaturated fatty acids (n-3 PUFAs), could potentially protect against skin malignancy, although no large-scale review has been conducted in humans. The objective of this review and meta-analysis was to determine the relationship between dietary n-3 PUFAs and skin cancer incidence. It considered all published randomized controlled trials and observational studies up to March 2013. Five studies (two case-control and three cohort) were identified pertaining to oral n-3 PUFA consumption and incidence of basal cell carcinoma (BCC), squamous cell carcinoma (SCC), melanoma (or a combination) and were included in a random-effects meta-analysis. A further six studies considering nondietary n-3 PUFA exposure (e.g., by tissue analysis) and/or recognized biological markers of skin cancer risk (e.g., p53 expression) were analyzed qualitatively. Dietary n-3 PUFAs were not associated with BCC (pooled OR 1.05, 95% CIs 0.86-1.28). Consumption of high levels of n-3 PUFAs were inversely associated with melanoma, although with only one estimate available (OR 0.52, 95% CI 0.34-0.78), and SCC, although nonsignificantly (pooled OR 0.86, 95% CIs 0.59-1.23). Available evidence is suggestive, but currently inadequate, to support the hypothesis that n-3 PUFAs protect against skin malignancy.

  3. The consumption of omega-3 polyunsaturated fatty acids improves clinical outcomes and prognosis in pancreatic cancer patients: a systematic evaluation.

    Science.gov (United States)

    Ma, Ying-Jie; Yu, Jing; Xiao, Jing; Cao, Bang-Wei

    2015-01-01

    This study was aimed to systematically evaluate results of trials examining the effects of omega-3 polyunsaturated fatty acid (n-3 PUFA) consumption on body weight, lean body mass, resting energy expenditure, and overall survival in pancreatic cancer patients. We searched Medline, Pubmed, Embase, and Cochrane databases. We selected randomized controlled trials of n-3 PUFA vs. conventional nutrition in unresectable pancreatic cancer patients. We analyzed our data using the Cochrane statistical package RevMan 5.1. Eleven trials met our inclusion criteria. There was a significant increase in body weight [weighted mean difference (WMD) = 0.62; 95% confidence interval (CI), 0.54-0.69, P < 0.00001) and lean body mass (WMD = 0.96; 95% CI, 0.86-1.06, P < 0.00001), a significant decrease in resting energy expenditure (WMD = -29.74; 95% CI, -55.89-3.59, P = 0.03), and an increase in overall survival (130-259 days vs. 63-130 days) in unresectable pancreatic cancer patients who consumed an oral nutrition supplement enriched with n-3 PUFAs compared to those who consumed conventional nutrition. This preliminary study suggests that n-3 PUFAs are safe and have a positive effect on clinical outcomes and survival in pancreatic cancer patients.

  4. Luminescence spectroscopy of singlet oxygen enables monitoring of oxygen consumption in biological systems consisting of fatty acids.

    Science.gov (United States)

    Gollmer, Anita; Regensburger, Johannes; Maisch, Tim; Bäumler, Wolfgang

    2013-07-21

    The interaction of singlet oxygen ((1)O2) generated in a photosensitized process with well-known reference photosensitizers Perinaphthenone (PN) and TMPyP is investigated in a model system consisting of fatty acids and the respective exogenous photosensitizer (PS) in solution by direct detection of the luminescence photons of (1)O2 at 1270 nm. Such a model system is a first approach to mimic the complex environment of (1)O2 in a biological cell which consists mainly of water, proteins, sugars and lipids. Firstly, the important issue of oxygen consumption is evaluated which has to be considered during luminescence detection of (1)O2. It is known that the luminescence signal of (1)O2 is dependent on the oxygen concentration of the environment. Cellular components such as lipids represent oxygen consumers due to peroxidation of their unsaturated double bonds. Secondly, the experimental conditions for this model system regarding oxygen consumption are optimized to estimate the rates and rate constants of the coupled system. Thirdly, the triplet decay of the PS can provide more precise information about the actual oxygen concentration close to the PS and can be used, therefore, as a more precise method to determine the oxygen concentration in more complex systems such as a biological cell. The aim is to get a better understanding of photosensitized reactions of (1)O2 with cellular components to further improve methodologies, in particular at a cellular level using luminescence spectroscopy. In conclusion, luminescence detection might be a helpful tool to monitor precisely and promptly changes in oxygen concentration in a complex environment.

  5. Maternal consumption of trans-fatty acids during the first half of gestation are metabolically available to suckled newborn rats.

    Science.gov (United States)

    Amusquivar, Encarnacíón; Sánchez-Blanco, Clara; Clayton, Jaime; Cammarata, Giulia; Herrera, Emilio

    2014-03-01

    Dietary trans-fatty acids (t-FA) during pregnancy have adverse effects on growth and development. To determine the effect of dietary t-FA during just the first half of pregnancy, rats were given a diet containing 8 % hydrogenated peanut oil and 2 % olive oil (PO) and compared to rats given a diet containing 10 % olive oil (OO). After 12 days all rats were fed standard diet and were studied at days 12 or 20 of pregnancy or days 1 or 6 postpartum. At day 12 of pregnancy there were small differences in the plasma and lumbar adipose tissue fatty acid profiles and elaidic acid [18:1(n-9)t] was present in the PO group. From day 12 to 20 of pregnancy, plasma non-esterified fatty acids, glycerol, triacylglycerols (TAG) and most individual fatty acids increased more in PO than in OO. At day 20 of pregnancy in the PO group most plasma elaidic acid appeared as plasma TAG and was also present in the mammary gland, to decline in both sites at day 1 postpartum. Elaidic acid concentration was low in the plasma of 20-day fetuses, increased in 1-day newborns declining at day 6. Thus t-FA, eaten during early pregnancy, accumulated in maternal adipose tissue and were released during late pregnancy to be taken up by the mammary gland becoming available to the newborns during suckling.

  6. Fats and fatty acids

    Science.gov (United States)

    The absolute fat requirement of the human species is the amount of essential fatty acids needed to maintain optimal fatty acid composition of all tissues and normal eicosanoid synthesis. At most, this requirement is no more than about 5% of an adequate energy intake. However, fat accounts for appro...

  7. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Wesén, Clas; Sundin, Peter

    1997-01-01

    Chlorinated fatty acids have been found to be major contributors to organohalogen compounds in fish, bivalves, jellyfish, and lobster, and they have been indicated to contribute considerably to organohalogens in marine mammals. Brominated fatty acids have been found in marine sponges. Also......, chlorinated lipids have been found in meat exposed to hypochlorite disinfected water, and in chlorine-treated flour and in products made from such flour. Following exposure to chlorine bleached pulp mill effluents, aquatic organisms may have elevated concentrations of chlorinated fatty acids in their lipids....... However, a natural production of halogenated fatty acids is also possible. In this paper we summarize the present knowledge of the occurrence of halogenated fatty acids in lipids and suggested ways of their formation. In Part II (Trends Anal. Chem. 16 (1997) 274) we deal with methods...

  8. [Recommendations concerning the rational consumption of fats. I. Population and clinical studies on the role of monounsaturated fatty acids].

    Science.gov (United States)

    Okolska, G; Ziemlański, S

    1989-01-01

    On the basis of world literature a review is presented of the achievements of the science and practice of the principles of rational nutrition concerning fats. A particular attention was paid to the amount of fat in the diet of healthy and ill people and the role of monounsaturated fatty acids. These acids present in high amounts in olive oil and repeseed oil may be very useful in replacing saturated fatty acids for decreasing the serum cholesterol level. In accordance with the results of recent investigations (Ziemlański et al.) no-erucic acid repeseed oil shows a strong antiatheromatous action, and, similarly as sunflower oil, it reduces the serum level of cholesterol.

  9. Mechanisms of gene regulation by fatty acids

    NARCIS (Netherlands)

    Georgiadi, A.; Kersten, A.H.

    2012-01-01

    Consumption of specific dietary fatty acids has been shown to influence risk and progression of several chronic diseases, such as cardiovascular disease, obesity, cancer, and arthritis. In recent years, insights into the mechanisms underlying the biological effects of fatty acids have improved consi

  10. Effect of Coleus tuberosus Flour High Resistant Starch Consumption in Glucose, Lipid, Digest and Short Chain Fatty Acid Profile in Normal Rats

    Directory of Open Access Journals (Sweden)

    Mutiara Nugraheni

    2015-07-01

    Full Text Available This research was conducted to study the effect of processing methods on the resistant starch content of Coleus tuberosus and the influence of consumption of Coleus tuberosus flour toward profiles of glucose, lipids (total cholesterol, triglycerides, LDL, HDL, digest and Short Chain Fatty Acids (SCFA in normal rats. Processing method affects the levels of resistant starch in the Coleus tuberosus starch. The results showed the levels of resistant starch of Coleus tuberosus with different processing are steaming-cooling: 9.5291±0.0724%; boiling-cooling: 9.1235±0.3680% and oven-cooling: 9.0306±0.9570%; raw Coleus tuberosus : 7.5243±0.2054%. Effect of Coleus tuberosus flour consumption with steaming-cooling process controlling glucose and lipid profile in normal rats compared to the other treatment processes. Short-chain fatty acid profiles in all processes showed the greatest proportion of acetic acid, followed by acid propionate and the last is butyric acid. This study shows that Coleus tuberosus Coleus tuberosus flour that produced by heating and followed by cooling process can increase the levels of resistant starch and physiological benefits to the management profile of glucose, lipids, digest and SCFA in normal rats.

  11. Fatty Acid Biosynthesis IX

    DEFF Research Database (Denmark)

    Carey, E. M.; Hansen, Heinz Johs. Max; Dils, R.

    1972-01-01

    # 1. I. [I-14C]Acetate was covalently bound to rabbit mammary gland fatty acid synthetase by enzymic transacylation from [I-14C]acetyl-CoA. Per mole of enzyme 2 moles of acetate were bound to thiol groups and up to I mole of acetate was bound to non-thiol groups. # 2. 2. The acetyl-fatty acid...... synthetase complex was isolated free from acetyl-CoA. It was rapidly hydrolysed at 30°C, but hydrolysis was greatly diminished at o°C and triacetic lactone synthesis occurred. In the presence of malonyl-CoA and NADPH, all the acetate bound to fatty acid synthetase was incorporated into long-chain fatty acids....... Hydrolysis of bound acetate and incorporation of bound acetate into fatty acids were inhibited to the same extent by guanidine hydrochloride. # 3. 3. Acetate was also covalently bound to fatty acid synthetase by chemical acetylation with [I-14C]acetic anhydride in the absence of CoASH. A total of 60 moles...

  12. THE COMPETITION BETWEEN METHYLMERCURY RISKS AND OMEGA-3 POLYUNSATURATED FATTY ACID BENEFITS: A REVIEW OF CONFLICTING EVIDENCE ON FISH CONSUMPTION AND CARDIOVASCULAR HEALTH.

    Energy Technology Data Exchange (ETDEWEB)

    LIPFERT, F.W.; SULLIVAN, T.M.

    2006-10-31

    The health concerns of methylmercury (MeHg) contamination of seafood have recently been extended to include cardiovascular effects, especially premature mortality. Although the fatty acids (fish oils) found in most species are thought to confer a wide range of health benefits, especially to the cardiovascular system, some epidemiological studies have suggested that such benefits may be offset by adverse effects of MeHg. This comprehensive review is based on searches of the NIH MEDLINE database and compares and contrasts 145 published studies involving cardiovascular effects and exposures to mercury and other fish contaminants, intake of fatty acids including dietary supplements of fish oils, and rates of seafood consumption. Since few of these studies include adequate simultaneous measurements of all of these potential predictor variables, we summarized their effects separately, across the available studies of each, and then drew conclusions based on the aggregated findings. It is important to realize that studies of seafood consumption encompass the net effects of all of these predictor variables, but that seafood intake studies are rarely supported by human biomarker measurements that reflect the actual uptake of harmful as well as beneficial fish ingredients. As a result, exposure measurement error is an issue when comparing studies and predictor variables. It is also possible that the observed benefits of eating fish may relate more to the characteristics of the consumers than to those of the fish. We found the evidence for adverse cardiovascular effects of MeHg to be sparse and unconvincing. Studies of cardiovascular mortality show net benefits, and the findings of adverse effects are mainly limited to studies Finland at high mercury exposure levels. By contrast, a very consistent picture of beneficial effects is seen for fatty acids, after recognizing the effects of exposure uncertainties and the presence of threshold effects. Studies based on measured

  13. Benefits and risks of fish consumption Part I. A quantitative analysis of the intake of omega-3 fatty acids and chemical contaminants.

    Science.gov (United States)

    Domingo, José L; Bocio, Ana; Falcó, Gemma; Llobet, Juan M

    2007-02-12

    In recent years, and based on the importance of fish as a part of a healthy diet, there has been a notable promotion of fish consumption. However, the balance between health benefits and risks, due to the intake of chemical contaminants, is not well characterized. In the present study, edible samples of 14 marine species were analyzed for the concentrations of omega-3 fatty acids, as well as a number of metals and organic pollutants. Daily intakes were specifically determined for a standard adult of 70kg, and compared with the tolerable/admissible intakes of the pollutants, if available. Salmon, mackerel, and red mullet were the species showing the highest content of omega-3 fatty acids. The daily intakes of cadmium, lead, and mercury through fish consumption were 1.1, 2.0, and 9.9microg, respectively. Dioxins and furans plus dioxin-like polychlorinated biphenyls (PCBs) intake was 38.0pg WHO-TEQ/day, whereas those of polybrominated diphenyl ethers (PBDEs), polychlorinated diphenyl ethers (PCDEs), polychlorinated naphthalenes (PCNs) and hexachlorobenzene (HCB) were 20.8, 39.4, 1.53, and 1.50ng/day, respectively. In turn, the total intake of 16 analyzed polycyclic aromatic hydrocarbons (PAHs) was 268ng/day. The monthly fish consumption limits for human health endpoints based on the intake of these chemical contaminants were calculated for a 70 years exposure. In general terms, most marine species here analyzed should not mean adverse health effects for the consumers. However, the type of fish, the frequency of consumption, and the meal size are essential issues for the balance of the health benefits and risks of regular fish consumption.

  14. Consumption of a solid fat rich in lauric acid results in a more favorable serum lipid profile in healthy men and women than consumption of a solid fat rich in trans-fatty acids

    NARCIS (Netherlands)

    Roos, de N.M.; Schouten, E.G.; Katan, M.B.

    2001-01-01

    Solid fats are used in food manufacturing to provide texture and firmness to foods. Such fats are rich in either saturated or trans-fatty acids, both of which increase the risk of coronary heart disease. Epidemiological and experimental studies suggest that trans-fatty acids increase risk more than

  15. Consumption of a solid fat rich in lauric acid results in a more favorable serum lipid profile in healthy men and women than consumption of a solid fat rich in trans-fatty acids

    NARCIS (Netherlands)

    Roos, de N.M.; Schouten, E.G.; Katan, M.B.

    2001-01-01

    Solid fats are used in food manufacturing to provide texture and firmness to foods. Such fats are rich in either saturated or trans-fatty acids, both of which increase the risk of coronary heart disease. Epidemiological and experimental studies suggest that trans-fatty acids increase risk more than

  16. High dietary consumption of trans fatty acids decreases brain docosahexaenoic acid but does not alter amyloid-beta and tau pathologies in the 3xTg-AD model of Alzheimer's disease.

    Science.gov (United States)

    Phivilay, A; Julien, C; Tremblay, C; Berthiaume, L; Julien, P; Giguère, Y; Calon, F

    2009-03-03

    Dietary consumption of trans fatty acids (TFA) has increased during the 20th century and is a suspected risk factor for cardiovascular diseases. More recently, high TFA intake has been associated with a higher risk of developing Alzheimer's disease (AD). To investigate the impact of TFA on an animal model genetically programmed to express amyloid-beta (Abeta) and tau pathological markers of AD, we have fed 3xTg-AD mice with either control (0% TFA/total fatty acid), high TFA (16% TFA) or very high TFA (43% TFA) isocaloric diets from 2 to 16 months of age. Effects of TFA on plasma hepatic enzymes, glucose and lipid profile were minimal but very high TFA intake decreased visceral fat of non-transgenic mice. Importantly, dietary TFA increased brain TFA concentrations in a dose-related manner. Very high TFA consumption substantially modified the brain fatty acid profile by increasing mono-unsaturated fatty acids and decreasing polyunsaturated fatty acids (PUFA). Very high TFA intake induced a shift from docosahexaenoic acid (DHA, 22:6n-3) toward n-6 docosapentaenoic acid (DPA, 22:5n-6) without altering the n-3:n-6 PUFA ratio in the cortex of both control and 3xTg-AD mice. Changes in levels of Abeta(40), Abeta(42), tau protein, phosphorylated tau protein and synaptic markers were not statistically significant in the three groups of 3xTg-AD mice, despite a trend toward decreased insoluble tau in very high TFA-fed 3xTg-AD animals. In summary, TFA intake modulated brain fatty acid profiles but had no significant effect on major brain neuropathological hallmarks of AD in an animal model.

  17. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Sundin, Peter; Wesén, Clas

    1997-01-01

    Halogenated fatty acids are the major contributors to organohalogen compounds in lipids of marine mammals, fish, and bivalves. For the initial characterization of these recently noticed compounds, a determination of the halogen concentration has usually been combined with some lipid isolation...... and separation method. This review covers separation by solid phase chromatography, gel permeation chromatography, and liquid-liquid extraction, followed by halogen determination. All studies performed according to this outline have indicated that the major organohalogen compounds are chlorinated fatty acids...... bound in different lipids. For the detection and identification of individual, halogenated fatty acid methyl esters (FAMEs) liberated from the lipids, gas chromatography (GC) has been employed together with detection methods such as electron capture detection, electrolytic conductivity detection (ELCD...

  18. A Comparative Assessment of Arsenic Risks and the Nutritional Benefits of Fish Consumption in Kuwait: Arsenic Versus Omega 3-Fatty Acids.

    Science.gov (United States)

    Husain, Adnan; Kannan, Kurunthachalam; Chan, Hing Man; Laird, Brian; Al-Amiri, Hanan; Dashti, Basma; Sultan, Anwar; Al-Othman, Amani; Mandekar, Bedraya

    2017-01-01

    Inorganic and organic forms of arsenic (As), as well as omega-3 fatty acids were measured in 578 fish/seafood samples that belong to 15 species of commonly consumed seafood in Kuwait. Arsenic speciation data, with the toxicological profile of inorganic arsenic (iAs) and fish consumption rates were applied in a probabilistic risk assessment to estimate the risk from exposure to iAs. The nutritional benefits of omega-3-fatty acid levels in various species of fish were taken into consideration. Results showed that the mean daily intake of iAs through fish consumption among the Kuwaiti population was 0.058 µg/kg/day, and the 95th percentile was 0.15 µg/kg/day. Although the mean intake level did not exceed the incremental lifetime cancer risk (ILCR) at 1 × 10(-4), the 95th percentile of iAs intake showed an ILCR of 2.7 × 10(-4). Kuwaiti children (aged 6-12 years) were found to have a higher mean intake of iAs at 0.10 µg/kg/day with 68% of children in this category, exceeding the risk specific dose associated with an ILCR of 1 × 10(-4). The fish species, hammor (grouper; Epinephelus coioides), is the top contributor to iAs intake, and tuna is the major source of omega 3-fatty acids for the Kuwaiti population.

  19. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Science.gov (United States)

    2010-04-01

    ... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids....

  20. Risk–Benefit Assessment of Monomethylmercury and Omega-3 Fatty Acid Intake for Ringed Seal Consumption with Particular Emphasis on Vulnerable Populations in the Western Canadian Arctic

    Directory of Open Access Journals (Sweden)

    Lena Gmelch

    2017-07-01

    Full Text Available Many northern Inuit communities rely on traditional food as major source of nourishment. An essential part of the traditional Arctic diet is marine mammals such as ringed seals or beluga. Being top predators, these animals are often highly contaminated with various toxins. In contrast, some tissues of marine mammals are also characterized by high amounts of n3-PUFAs (omega-3 polyunsaturated fatty acids. Here, we try to balance the risks associated with the consumption of different tissue types of ringed seals in terms of the neurotoxin monomethylmercury (MMHg with the benefits of consumption due to high n3-PUFA concentrations. Fetuses are at the highest risk of neurological impairments because MMHg can easily cross the placental barrier. Therefore, women of childbearing age served as an indicator population for especially susceptible subpopulations. We calculated maximal weekly maternal portions sizes if mutual consumption of muscle and blubber tissue or liver and blubber tissue was assumed. Those weekly portion sizes resulted in an estimated overall IQ point gain of infants of 0, whereas the consumption of liver or muscle tissue without blubber could lead to an IQ loss. In contrast to former studies, our data do not generally prohibit the consumption of liver tissue. Instead, our results suggest that a maximal weekly consumption of 125 g liver tissue together with 1 g of blubber tissue is acceptable and does not lead to neurological damages in the long term. Similarly, the consumption of maximal 172 g muscle tissue can be balanced by the mutual consumption of 1 g blubber tissue.

  1. Fatty acids of Thiobacillus thiooxidans.

    Science.gov (United States)

    Levin, R A

    1971-12-01

    Fatty acid spectra were made on Thiobacillus thiooxidans cultures both in the presence and absence of organic compounds. Small additions of glucose or acetate had no significant effect either on growth or fatty acid content. The addition of biotin had no stimulatory effect but did result in slight quantitative changes in the fatty acid spectrum. The predominant fatty acid was a C(19) cyclopropane acid.

  2. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyglycerol esters of fatty acids. 172.854 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids. Polyglycerol esters of fatty acids, up to and including the decaglycerol esters, may be safely used in food in...

  3. Omega-3 fatty acids (image)

    Science.gov (United States)

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  4. Distinct fatty acid profile of ten brown macroalgae

    OpenAIRE

    Graça Silva; Pereira, Renato B.; Patrícia Valentão; Andrade, Paula B.; Carla Sousa

    2013-01-01

    It is widely accepted that the consumption of ω-3 polyunsaturated fatty acids has beneficial effects on human health. In this work, ten brown macroalgae species collected along the Portuguese west coast were studied for their fatty acids composition by GC-MS after alkaline hydrolysis and derivatization. The results of this survey showed that different macroalgae from the same region display distinct fatty acids profile. Concerning ω-3 polyunsaturated fatty acids, eicosapentaenoic ac...

  5. CCAAT/enhancer-binding protein CEBP-2 controls fat consumption and fatty acid desaturation in Caenorhabditis elegans.

    Science.gov (United States)

    Xu, Xiao-Ying; Hu, Jian-Ping; Wu, Meng-Meng; Wang, Li-Shun; Fang, Ning-Yuan

    Mammalian CCAAT/enhancer-binding proteins (C/EBPs) are generally known as regulators in adipocyte differentiation. However, more understanding of the role of C/EBPs in lipid and glucose metabolism remains to be discovered. In this study, we verified the effect of CEBP-2, the homolog of CEBPs, on fat storage in Caenorhabditis elegans. Expressions of 85 genes that encode the major enzymes in energy metabolic pathways were then screened in cebp-2-deficient worms using a quantitative real-time polymerase chain reaction (QRT-PCR). Our data implied that loss of function of CEBP-2 displayed a low-fat phenotype in C. elegans owing to increased expression of ech-1.1 and decreased expression of fat-5. Our findings indicated that cebp-2 controls total body fat content by governing fatty acid mitochondrial β-oxidation and desaturation in C. elegans. These data provide insights into how C/EBPs may affect lipid metabolism in mammals in addition to regulating adipocyte differentiation.

  6. Replacement of dietary saturated fatty acids by trans fatty acids lowers serum HDL cholesterol and impairs endothelial function in healthy men and women

    NARCIS (Netherlands)

    Roos, de N.M.; Bots, M.L.; Katan, M.B.

    2001-01-01

    We tested whether trans fatty acids and saturated fatty acids had different effects on flow-mediated vasodilation (FMD), a risk marker of coronary heart disease (CHD). Consumption of trans fatty acids is related to increased risk of CHD, probably through effects on lipoproteins. Trans fatty acids di

  7. Omega-3 fatty acids and cardiovascular disease.

    Science.gov (United States)

    Jain, A P; Aggarwal, K K; Zhang, P-Y

    2015-01-01

    Cardioceuticals are nutritional supplements that contain all the essential nutrients including vitamins, minerals, omega-3-fatty acids and other antioxidants like a-lipoic acid and coenzyme Q10 in the right proportion that provide all round protection to the heart by reducing the most common risks associated with the cardiovascular disease including high low-density lipoprotein cholesterol and triglyceride levels and factors that contribute to coagulation of blood. Omega-3 fatty acids have been shown to significantly reduce the risk for sudden death caused by cardiac arrhythmias and all-cause mortality in patients with known coronary heart disease. Omega-3 fatty acids are also used to treat hyperlipidemia and hypertension. There are no significant drug interactions with omega-3 fatty acids. The American Heart Association recommends consumption of two servings of fish per week for persons with no history of coronary heart disease and at least one serving of fish daily for those with known coronary heart disease. Approximately 1 g/day of eicosapentaenoic acid plus docosahexaenoic acid is recommended for cardio protection. Higher dosages of omega-3 fatty acids are required to reduce elevated triglyceride levels (2-4 g/day). Modest decreases in blood pressure occur with significantly higher dosages of omega-3 fatty acids.

  8. Pattern of omega-3 polyunsaturated fatty acid intake and fish consumption and retinal vascular caliber in children and adolescents: A cohort study

    Science.gov (United States)

    Moshtaghian, Hanieh; Flood, Victoria M.; Louie, Jimmy C. Y.; Liew, Gerald; Burlutsky, George; Mitchell, Paul

    2017-01-01

    We aimed to investigate whether fish and long chain omega-3 polyunsaturated fatty acid (LCn-3 PUFA) consumption changed appreciably during adolescence. We also assessed whether these dietary variables are associated with retinal microvascular signs (possible markers of future cardiovascular disease risk). 633 children had dietary data at ages 12 and 17. Fish and LCn-3 PUFA [eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA)] intake was assessed by a food frequency questionnaire. Retinal vessel caliber was quantified from digital photographs using computer software. Mean energy-adjusted intakes (mg/day) of total LCn-3 PUFA, EPA, and DHA at age 12 were 297.1±261.1; 102.5±106.9; and 129.7±137.7, respectively; and this increased significantly at age 17 to: 347.0±324.0 (p<0.0001); 122.5±132.7 (p = 0.0001); and 160.3±171.4 (p <0.0001), respectively. Increasing quartiles of LCn-3PUFA intake were associated with widening of mean retinal arteriolar caliber among 17-year old girls ~3.9 μm (multivariable-adjusted P-trend = 0.001). Girls who consumed ≥2 serves of fish/week versus those who did not had ~2.1 μm wider retinal arterioles (p = 0.03). No associations were observed among boys or with retinal venules. Mean dietary intakes of LCn-3 PUFA increased during adolescence, but are still below recommended levels of consumption. These results suggest that LCn-3 PUFA and fish intake might have a beneficial influence. PMID:28192538

  9. Association between fish consumption, dietary omega-3 fatty acids and persistent organic pollutants intake, and type 2 diabetes in 18 First Nations in Ontario, Canada.

    Science.gov (United States)

    Marushka, Lesya; Batal, Malek; David, William; Schwartz, Harold; Ing, Amy; Fediuk, Karen; Sharp, Donald; Black, Andrew; Tikhonov, Constantine; Chan, Hing Man

    2017-07-01

    First Nations (FNs) populations in Canada experience a disproportionally higher rate of obesity and type 2 diabetes (T2D) compared to the general population. Recent data suggest that a high consumption of fish may help prevent T2D. On the other hand, fish might also be a potential source of environmental contaminants which could potentially be a risk factor for T2D. To investigate the potential associations between self-reported T2D and consumption of locally-harvested fish, dietary long-chain omega-3 fatty acids (n-3FAs) and persistent organic pollutants intake among adult FNs living on reserve in Ontario. Data from the First Nations Food Nutrition and Environment Study, which included a cross-sectional study of 1429 Ontario FNs adults living in 18 communities across 4 ecozones in 2012 were analyzed. Social and lifestyle data were collected using household interviews. The consumption of locally-harvested fish was estimated using a traditional food frequency questionnaire along with portion size information obtained from 24hr recalls. Fish samples were analyzed for the presence of contaminants including dichlorodiphenyldichloroethylene (DDE) and polychlorinated biphenyls (PCBs). Dietary intakes of DDE and PCBs were estimated using community-specific levels of DDE/PCBs in fish species. Multiple logistic regression models adjusted for potential covariates including age, gender, body mass index, physical activity, total energy intake, smoking, and education were developed. The prevalence of T2D in Ontario FNs was 24.4%. A significant positive association between fish consumption of one portion per week and more and T2D compared to no fish consumption was found (OR=2.5 (95% CI: 1.38-4.58). Dietary DDE and PCBs intake was positively associated with T2D (OR=1.09 (95%CI: 1.05-1.75) for DDE and OR=1.07 (95%CI: 1.004-1.27) for PCBs) per unit increase in DDE/PCBs while n-3-FAs intake, adjusted for DDE/PCBs intake, showed an inverse effect against T2D among older individuals

  10. Effect of tomato juice consumption on the plasmatic lipid profile, hepatic HMGCR activity, and fecal short chain fatty acid content of rats.

    Science.gov (United States)

    Periago, María Jesús; Martín-Pozuelo, Gala; González-Barrio, Rocío; Santaella, Marina; Gómez, Victoria; Vázquez, Nuria; Navarro-González, Inmaculada; García-Alonso, Javier

    2016-10-12

    The aims of the present study were to ascertain, indirectly, the prebiotic role of tomato juice, by analyzing its effect on the content of short chain fatty acids (SCFA) in feces of rats, and to determine the plausible mechanisms related to the hypocholesterolemic effects of tomato juice and lycopene, evaluating the activity of hepatic HMGCR and the formation of propionic acid. Two commercially available tomato juices with differing contents of lycopene (low and high lycopene contents: Llyc and Hlyc tomato juices) were used. Sprague-Dawley male rats were randomly divided into three experimental groups (n = 8): control group, normal diet and water; group 1, normal diet and Llyc tomato juice; and group 2, normal diet and Hlyc tomato juice, which were fed ad libitum for three weeks. Feces were collected at the beginning and the end of the study to determine SCFA, and blood and liver were obtained (after sacrificing the animals) to analyze the lipid plasmatic parameters and the HMGCR activity and total cholesterol, respectively. No significant differences were observed in the plasmatic parameters, except that HDL-cholesterol increased significantly after consumption of both tomato juices. Lycopene was accumulated in the liver in proportion to the amount ingested, and was observed to have an inhibitory effect on the HMGCR enzyme, according to the amount of lycopene in the liver. In relation to the SCFA in feces, no differences were observed in acetate and propionate after the consumption of tomato juice, but a significant increase in butyrate was observed in group 2 after the intake of Hlyc tomato juice. The content of this carboxylic acid together with excreted lycopene in feces could have a beneficial effect on colonic cells.

  11. Regular dark chocolate consumption's reduction of oxidative stress and increase of free-fatty-acid mobilization in response to prolonged cycling.

    Science.gov (United States)

    Allgrove, Judith; Farrell, Emily; Gleeson, Michael; Williamson, Gary; Cooper, Karen

    2011-04-01

    This study investigated the effects of regular consumption of dark chocolate (DC), rich in cocoa polyphenols, on plasma metabolites, hormones, and markers of oxidative stress after prolonged exhaustive exercise. Twenty active men cycled at 60% maximal oxygen uptake (VO2max) for 1.5 hr, with the intensity increased to 90% VO2max for a 30-s period every 10 min, followed by a ride to exhaustion at 90% VO2max. In the 2 wk before exercise participants consumed 40 g of DC or an isocarbohydrate-fat control cocoa liquor-free chocolate (CON) twice daily and once 2 hr before exercise in a randomized, counterbalanced, crossover design. Venous blood samples were taken immediately before exercise, postexercise (fixed duration), postexhaustion, and after 1 hr of recovery. F2-isoprostanes were significantly lower (post hoc tests: p < .001) at exhaustion and after 1 hr of recovery with DC. Oxidized low-density lipoproteins were significantly lower with DC (p < .001) both before and after exercise and at exhaustion. DC was also associated with ~21% greater rises in free fatty acids during exercise (main effect: p < .05). Changes in circulating glucose, insulin, glucagon, cortisol, and interleukin (IL)-6, IL-10, and IL-1ra were unaffected by treatment. Time to exhaustion at 90% VO2max was not significantly different between trials (398 ± 204 and 374 ± 194 s for DC and CON, respectively). These results suggest that regular DC intake is associated with reduced oxidative-stress markers and increased mobilization of free fatty acids after exercise but has no observed effect on exercise performance.

  12. Fatty acid composition of human milk and infant formulas

    Directory of Open Access Journals (Sweden)

    Ivančica Delaš

    2005-04-01

    Full Text Available The appropriate fatty acid composition of membrane lipids is necessary for structure and function of the developing nervous system. Rapid synthesis of brain tissue occurs during the last trimester of pregnancy and the early postnatal weeks. This synthesis of brain structure involves the formation of complex lipids, many of which contain significant quantities of essential fatty acids and their higher homologs. This study was undertaken to elucidate how fatty acid compositions of available diets for infants meet the requirements for essential fatty acids. Samples of infant formulas, present on the market, as well as milk samples obtained from breast feeding mothers, were extracted by chloroform : methanol mixtures in order to obtain total lipids. Fatty acid methyl esters were prepared and fatty acid composition was revealed by gas chromatography. Special interest was directed to the content of long chain polyunsaturated fatty acids. The results have shown that infant formulas, designed to substitute mothers’ breast milk, contain medium chain fatty acids (C 10:0, C 12:0, along with the other saturated fatty acids, in the amounts acceptable for infants’ energy consumption. Although linoleic acid (C18:2, n-6 was present at the level expected to cover needs for essential fatty acids, most of the tested products did not contain sufficient amounts of long chain polyunsaturated fatty acids, despite the fact that these fatty acids are necessary for undisturbed brain development, ignoring the strong recommendations that they should be used as a supplement in infants’ food.

  13. Trans fatty acids and cardiovascular risk.

    Science.gov (United States)

    Wilson, T A; McIntyre, M; Nicolosi, R J

    2001-01-01

    Trans fatty acids are found in partially hydrogenated vegetable oil, in meats, and in dairy products. Their effect on blood cholesterol concentrations was examined decades ago, but recently there has been renewed interest in understanding how trans fatty acids affect blood lipids and lipoprotein cholesterol concentrations. Current advice to reduce cardiovascular disease (CVD) risk includes decreasing the consumption of saturated and total fat to help manage blood cholesterol concentrations. Saturated fat contributes significantly to total fat intake and markedly raises blood cholesterol concentrations. Trans fatty acids, which are consumed in much smaller quantities, have been shown to be modestly hypercholesterolemic in studies that have substituted hydrogenated vegetable oils for unhydrogenated oils. In contrast, when partially hydrogenated vegetable oils containing trans fatty acids are substituted for cholesterol-raising saturated fats, blood cholesterol levels are reduced. Partially hydrogenated vegetable oils are used in place of saturated fat in many food products. These foods can help consumers lower their saturated fat intake to achieve dietary recommendations. The following review critically examines the role of hydrogenated fats in the food supply, the metabolism of trans fatty acids, and the scientific literature surrounding the effects of partially hydrogenated vegetable oils and trans fatty acids on blood cholesterol concentrations and cardiovascular disease risk.

  14. Omega-3 Fatty Acids during Pregnancy

    Science.gov (United States)

    OMEGA-3 FATTY ACIDS DURING PREGNANCY S HARE W ITH W OMEN OMEGA-3 FATTY ACIDS DURING PREGNANCY During pregnancy, your ... the foods you eat and vitamins you take. Omega-3 fatty acids (omega-3s) are an important ...

  15. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances.

    Science.gov (United States)

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-04

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism.

  16. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    Directory of Open Access Journals (Sweden)

    Je Min Lee

    2016-01-01

    Full Text Available Polyunsaturated fatty acids (PUFAs are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism.

  17. Role of bioactive fatty acids in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Juárez-Hernández, Eva; Chávez-Tapia, Norberto C; Uribe, Misael; Barbero-Becerra, Varenka J

    2016-08-02

    Nonalcoholic fatty liver disease (NAFLD) is characterized by fat deposition in hepatocytes, and a strong association with nutritional factors. Dietary fatty acids are classified according to their biochemical properties, which confer their bioactive roles. Monounsaturated fatty acids have a dual role in various human and murine models. In contrast, polyunsaturated fatty acids exhibit antiobesity, anti steatosic and anti-inflammatory effects. The combination of these forms of fatty acids-according to dietary type, daily intake and the proportion of n-6 to n-3 fats-can compromise hepatic lipid metabolism. A chemosensory rather than a nutritional role makes bioactive fatty acids possible biomarkers for NAFLD. Bioactive fatty acids provide health benefits through modification of fatty acid composition and modulating the activity of liver cells during liver fibrosis. More and better evidence is necessary to elucidate the role of bioactive fatty acids in nutritional and clinical treatment strategies for patients with NAFLD.

  18. Dietary Fatty Acids and Predementia Syndromes

    Directory of Open Access Journals (Sweden)

    Vincenzo Solfrizzi

    2009-01-01

    Full Text Available An increasing body of epidemiological evidence suggests that elevated saturated fatty acids (SFA could have negative effects on age-related cognitive decline (ARCD. Furthermore, a reduction of risk for cognitive decline and mild cognitive impairment (MCI has been found in population samples with elevated fish consumption, and high intake of monounsaturated fatty acids (MUFA and polyunsaturated fatty acids (PUFA, particularly n-3 PUFA. However, recent findings from clinical trials with n-3 PUFA supplementation showed efficacy on depressive symptoms in non–Vapolipoprotein E (APOE ε4 carriers, and on cognitive symptoms only in very mild Alzheimer's disease (AD subgroups, MCI patients, and cognitively unimpaired non-APOE ε4 carriers. These data, together with epidemiological evidence, support the idea that n-3 PUFA may play a role in maintaining adequate cognitive functioning in predementia syndromes, but not when the AD process has already taken over. Therefore, at present, no definitive dietary recommendations on fish and unsaturated fatty acids consumption, or lower intake of saturated fat, in relation to the risk for dementia and cognitive decline are possible.

  19. Dietary omega-3 fatty acid intake and cardiovascular risk.

    Science.gov (United States)

    Psota, Tricia L; Gebauer, Sarah K; Kris-Etherton, Penny

    2006-08-21

    Dietary omega-3 fatty acids decrease the risk of cardiovascular disease (CVD). Both epidemiologic and interventional studies have demonstrated beneficial effects of omega-3 fatty acids on many CVD end points, including all CVD (defined as all coronary artery disease [CAD], fatal and nonfatal myocardial infarction [MI], and stroke combined), all CAD, fatal and nonfatal MI, stroke, sudden cardiac death, and all-cause mortality. Much of the evidence comes from studies with fish oil and fish; to a lesser extent, data relate to plant-derived omega-3 fatty acids. Cardioprotective benefits have been observed with daily consumption of as little as 25 to 57 g (approximately 1 to 2 oz) of fish high in omega-3 fatty acids, an intake equivalent to >or=1 fish meal weekly or even monthly, with greater intakes decreasing risk further in a dose-dependent manner, up to about 5 servings per week. Fish, including farm-raised fish and their wild counterparts, are the major dietary sources of the longer-chain omega-3 fatty acids. Sources of plant-derived omega-3 fatty acids include flaxseed, flaxseed oil, walnuts, canola oil, and soybean oil. Because of the remarkable cardioprotective effects of omega-3 fatty acids, consumption of food sources that provide omega-3 fatty acids--especially the longer-chain fatty acids (>or=20 carbons) from marine sources--should be increased in the diet to decrease CVD risk significantly.

  20. Effect of consumption of fatty acids, calcium, vitamin D and boron with regular physical activity on bone mechanical properties and corresponding metabolic hormones in rats.

    Science.gov (United States)

    Naghii, M R; Ebrahimpour, Y; Darvishi, P; Ghanizadeh, G; Mofid, M; Torkaman, G; Asgari, A R; Hedayati, M

    2012-03-01

    The consumption of fatty acids, nutrients, and regular physical activity, individually influence bone mechanical properties in rats. To investigate their effects in combination, male rats were divided into the seven groups: G1: regular food and drinking water; G2: same as Gr.1 + physical activity (Whole body vibration; WBV); G3: same as Gr.2 + Calcium, Vit. D, Boron; G4: same as Gr.3 + canola oil; G5: same as Gr.3 + sunflower oil; G6: same as Gr.3 + mix of sunflower oil and canola oil; and G7: same as Gr.3 + coconut oil; and treated for 8 weeks. Analysis between the control with the groups 2 and 3 revealed that vibration in the G2 increased the body weight (P = 0.04), with no other major difference in plasma and bone indices. Comparison between the control with the G4-G7 (the oil groups) revealed that the rats in the G5 had a lower body weight (15 % less) and a significant increase in plasma levels of Estradiol in the G7 was noted. In addition, levels of Testosterone in the G4 and G7, and Free Testosterone in the G7 had a remarkable increase. Similar trend was observed for plasma levels of Vit. D in the G4 and G5. The stiffness and the breaking strength of the femur in the G7, and the breaking strength of the lumbar in the G7 compared to the control and the G4 and G5 was significantly higher and tended to increase in comparison to the G6. Better and stronger measurements observed for coconut oil is warranted to further study its effect on biomechanical properties of bones.

  1. Increasing serum pre-adipocyte factor-1 (Pref-1) correlates with decreased body fat, increased free fatty acids, and level of recent alcohol consumption in excessive alcohol drinkers.

    Science.gov (United States)

    Liangpunsakul, Suthat; Bennett, Rachel; Westerhold, Chi; Ross, Ruth A; Crabb, David W; Lai, Xianyin; Witzmann, Frank A

    2014-12-01

    Patients with alcoholic liver disease have been reported to have a significantly lower percentage of body fat (%BF) than controls. The mechanism for the reduction in %BF in heavy alcohol users has not been elucidated. In adipose tissue, Pref-1 is specifically expressed in pre-adipocytes but not in adipocytes. Pref-1 inhibits adipogenesis and elevated levels are associated with reduced adipose tissue mass. We investigated the association between serum Pref-1 and %BF, alcohol consumption, and serum free fatty acids (FFA) in a well-characterized cohort of heavy alcohol users compared to controls. One hundred forty-eight subjects were prospectively recruited. The Time Line Follow-Back (TLFB) questionnaire was used to quantify the amount of alcohol consumed over the 30-day period before their enrollment. Anthropometric measurements were performed to calculate %BF. Serum Pref-1 and FFA were measured. Fifty-one subjects (mean age 32 ± 9 years, 88% men) were non-excessive drinkers whereas 97 were excessive drinkers (mean age 41 ± 18 years, 69% men). Compared to non-excessive drinkers, individuals with excessive drinking had significantly higher levels of Pref-1 (p<0.01), FFA (p < 0.001), and lower %BF (p = 0.03). Serum levels of Pref-1 were associated with the amount of alcohol consumed during the previous 30 days. Serum Pref-1 was negatively correlated with %BF, but positively associated with serum FFA. Our data suggest that elevated Pref-1 levels in excessive drinkers might inhibit the expansion of adipose tissue, decreasing %BF in alcoholics. Further work is needed to validate these findings and to better understand the role of Pref-1 and its clinical significance in subjects with heavy alcohol use.

  2. 21 CFR 172.852 - Glyceryl-lacto esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glyceryl-lacto esters of fatty acids. 172.852... HUMAN CONSUMPTION Multipurpose Additives § 172.852 Glyceryl-lacto esters of fatty acids. Glyceryl-lacto esters of fatty acids (the lactic acid esters of mono- and diglycerides) may be safely used in food in...

  3. Soft drinks consumption and nonalcoholic fatty liver disease.

    Science.gov (United States)

    Nseir, William; Nassar, Fares; Assy, Nimer

    2010-06-07

    Nonalcoholic fatty liver disease (NAFLD) is a common clinical condition which is associated with metabolic syndrome in 70% of cases. Inappropriate dietary fat intake, excessive intake of soft drinks, insulin resistance and increased oxidative stress combine to increase free fatty acid delivery to the liver, and increased hepatic triglyceride accumulation contributes to fatty liver. Regular soft drinks have high fructose corn syrup which contains basic sugar building blocks, fructose 55% and glucose 45%. Soft drinks are the leading source of added sugar worldwide, and have been linked to obesity, diabetes, and metabolic syndrome. The consumption of soft drinks can increase the prevalence of NAFLD independently of metabolic syndrome. During regular soft drinks consumption, fat accumulates in the liver by the primary effect of fructose which increases lipogenesis, and in the case of diet soft drinks, by the additional contribution of aspartame sweetener and caramel colorant which are rich in advanced glycation end products that potentially increase insulin resistance and inflammation. This review emphasizes some hard facts about soft drinks, reviews fructose metabolism, and explains how fructose contributes to the development of obesity, diabetes, metabolic syndrome, and NAFLD.

  4. Mercury, Fatty Acids Content and Lipid Quality Indexes in Muscles of Freshwater and Marine Fish on the Polish Market. Risk Assessment of Fish Consumption

    Directory of Open Access Journals (Sweden)

    Joanna Łuczyńska

    2017-09-01

    Full Text Available Mercury content and fatty acids in muscles of Perca fluviatilis L. (European perch, Leuciscus idus L. (ide, Cyprinus carpio L. (European or common carp, Oncorhynchus mykiss Walb. (rainbow trout, Platichthys flesus L. (European flounder. and Clupea harengus L. (bream from the Polish market were investigated. The total mercury was processed with AAS. The fatty acids were analyzed by gas chromatography. The concentration of mercury in muscles varied from 0.006 to 0.138 mg/kg and decreased as follows: perch ≈ ide > flounder > herring ≈ bream ≈ rainbow trout > carp (p ≤ 0.05. There were only significant positive correlations between body weight and mercury content in muscle tissue of carp (r = 0.878, flounder (r = 0.925 and herring (r = 0.982 (p ≤ 0.05. The atherogenic index (AI, thrombogenicity index (TI and flesh-lipid quality index (FLQ were calculated as follows 0.33–0.70 (IA, 0.16–0.31 (IT and 13.01–33.22 (FLQ. Hypocholesterolemic (OFA and hypercholesterolemic fatty acids (DFA in muscles of fish ranged from 18.26 to 23.01 and from 73.91 to 78.46, respectively. In most cases, there were not significant correlations between size (body weight and total length and fatty acids in the muscles of the examined fish (p > 0.05. The Target Hazard Quotient (THQ values were below 1, which shows that there is no non-carcinogenic health risk to the consumer by consuming the examined fish.

  5. Fatty acids in cardiovascular health and disease: a comprehensive update

    Science.gov (United States)

    Research dating back to the 1950s reported an association between the consumption of saturated fatty acids (SFAs) and risk of coronary heart disease. Recent epidemiological evidence, however, challenges these findings. It is well accepted that the consumption of SFAs increases low-density lipoprotei...

  6. Commercially available avian and mammalian whole prey diet items targeted for consumption by managed exotic and domestic pet felines: macronutrient, mineral, and long-chain fatty acid composition.

    Science.gov (United States)

    Kerr, Katherine R; Kappen, Kelly L; Garner, Lindsay M; Swanson, Kelly S

    2014-01-01

    Whole prey diets encourage species-typical behaviors making them popular in the zoo and home setting for captive exotic and domestic felids, respectively. We evaluated macronutrient, mineral, and long-chain fatty acid composition of 20 whole prey items: mice (1-2, 10-13, 21-25, 30-40, and 150-180 days of age); rats (1-4, 10-13, 21-25, 33-42, and >60 days of age); rabbits (still born, 30-45 days, >65 days with skin, and >65 days of age with skin removed); chicken (1-3 days of age, ground adult); duck (ground adult); and quail (1-3, 21-40, and >60 days of age). Composition of whole prey was highly variable (15-40% DM, 34-75% CP, 10-60% fat, and 8-18% ash). A majority of whole prey samples (15/20) had at least one mineral or fatty acid below AAFCO [] or NRC [] minimum recommended concentrations for domestic cats (K, Na, Cl, Mg, Cu, Mn, and/or Zn; total fat, linolenic acid, arachidonic acid and/or EPA and DHA). These data identify potential nutrient deficiencies allowing for alterations in dietary formulation prior to long-term feeding.

  7. The consumption of n-3 polyunsaturated fatty acids differentially modulates gene expression of peroxisome proliferator-activated receptor alpha and gamma and hypoxia-inducible factor 1 alpha in subcutaneous adipose tissue of obese adolescents.

    Science.gov (United States)

    Mejía-Barradas, César M; Del-Río-Navarro, Blanca E; Domínguez-López, Aarón; Campos-Rodríguez, Rafael; Martínez-Godínez, María de-Los-Á; Rojas-Hernández, Saúl; Lara-Padilla, Eleazar; Abarca-Rojano, Edgar; Miliar-García, Ángel

    2014-02-01

    The aim of this study was to evaluate the effect of long-chain omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation on metabolic state and gene expression in subcutaneous adipose tissues of obese adolescents. Obese adolescents (n = 26, 10 girls and 16 boys) aged 12.4 ± 2.1 years were assigned to a 12-week regimen of n-3 PUFA intake. Five times per day, subjects received a food supplement consisting of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (3 g per day, 944 mg EPA, and 2,088 mg DHA). Blood parameters were measured, and subcutaneous adipose tissue biopsies were analyzed to determine gene expression at baseline and after 12 weeks. Student's t test and the Wilcoxon signed-rank test were used to estimate differences in arithmetic means of pre- and post-dietary supplementation for various anthropometric, biochemical, clinical, and gene expression parameters. After 12 weeks, n-3 PUFA consumption was associated with decreased body mass index (29.7 ± 4.6 vs. 27.8 ± 4.4 kg/m(2); P Fatty acid supplementation/n3 PUFA supplementation was associated with a downregulated expression of the genes encoding PPARγ and PGC-1α (P consumption and dietary restriction improved the anthropometric parameters and decreased the triglycerides levels of the adolescents, suggesting a reduction in hypoxia in subcutaneous adipose tissue.

  8. Trans-fatty acids and cardiovascular risk: does origin matter?

    Science.gov (United States)

    Dawczynski, Christine; Lorkowski, Stefan

    2016-09-01

    Several studies have aimed to unravel the contribution of different types of dietary fatty acids to human health and disease. Investigations have consistently shown that high consumption of industrially produced trans-fatty acids from partially hydrogenated vegetable oils is harmful to human health, in particular cardiovascular health. Therefore, the U.S. Food and Drug Administration announced that partially hydrogenated oils are no longer 'generally recognized as safe', and trans-fatty acids are not permitted in the U.S. food supply. On the other hand, recent studies analyzing the association between circulating trans-fatty acids and disease have revealed that some ruminant-specific trans-fatty acids are associated with a reduction in incidence of disease. In this special report, we highlight recent findings and point out perspectives for future studies on this topic.

  9. Consumption of argan oil (Morocco) with its unique profile of fatty acids, tocopherols, squalene, sterols and phenolic compounds should confer valuable cancer chemopreventive effects.

    Science.gov (United States)

    Khallouki, F; Younos, C; Soulimani, R; Oster, T; Charrouf, Z; Spiegelhalder, B; Bartsch, H; Owen, R W

    2003-02-01

    The aim of this study was to evaluate the fatty acids, tocopherols, squalene, sterols and phenolic antioxidants in three types of argan oil (Moroccan food, Moroccan aesthetic and a French commercial variety) along with a basic comparison with extra virgin olive and sunflower oil. The fatty acid profiles in the argan oils were very similar, with oleic acid (43%) and linoleic acid (36%) and their respective monoacylglycerols predominating. The major vitamer identified was -tocopherol with a mean of 483+/-11 mg/kg, in contrast to -tocopherol, which is the major vitamer in olive (190+/-1 mg/kg) and sunflower oil (532+/-6 mg/kg). The squalene content of the argan oils was very similar with a mean of 313+/-4 mg/100 g, which is lower than that of the olive oil (499 mg/100 g) but significantly higher than in the sunflower oil (6 mg/100 g). In contrast to olive and sunflower oils in which -sitosterol is predominant, the major sterols detected in the argan oils were schottenol (mean 147+/-10 mg/kg) and spinasterol (mean 122+/-10 mg/kg). The only phenolic compounds other than the tocopherol vitamers which could be readily detected and quantitated were vanillic, syringic and ferulic (probably conjugated to glucose) acids along with tyrosol. In contrast to the extra virgin olive oil (793 mg/kg), the concentration of total phenolic compounds is extremely low (argan oil with its high content of the vitamer -tocopherol, squalene and oleic acid is likely to enhance the cancer prevention effects of the Moroccan diet.

  10. N-3 fatty acids in the Mediterranean diet.

    Science.gov (United States)

    Galli, C; Marangoni, F

    2006-09-01

    Fats in the diet of countries in the Mediterranean basin are typically represented by olive oil, but the high consumptions of vegetables and to some extent also of fish result in appreciable intakes of n-3 fatty acids. In fact, various plant foods are relatively rich in the 18 carbon n-3 fatty acid, alpha linolenic acid, ALA, while the generally moderate consumption of fish, except for certain communities living close to the sea, contributes to the intake of the long-chain n-3. Although the amounts of fats in ALA-containing plant foods are low, the relatively high concentrations of this fatty acid and the large size of the portions consumed allow to reach appreciable doses of ALA, an n-3 fatty acid that has been shown to exert favourable effects on various relevant factors in cardiovascular protection. In addition, consumption of relatively small amounts of certain typical dry fruit components of the diet such as walnuts, provides a sizable supply of ALA that is also rather efficiently converted to the ALA derivative eicosapentaenoic acid (EPA). Additional rather typical wild food components of the diet in certain countries, i.e. snails and frogs, are also appreciable sources of ALA. It appears thus that the consumption of typical Mediterranean foods provides relevant intakes of n-3 fatty acids, especially ALA, that appears to be efficiently absorbed and also transformed at least to the long-chain derivative EPA.

  11. Fatty Acid Oxidation Disorders

    Science.gov (United States)

    ... acid oxidation disorders are tested for in newborn screening? The March of Dimes recommends that all babies ... in behavior Diarrhea, nausea (feeling sick to your stomach) and throwing up Drowsiness Fever Fussiness Little appetite ...

  12. Fatty acids in cardiovascular health and disease: a comprehensive update.

    Science.gov (United States)

    Baum, Seth J; Kris-Etherton, Penny M; Willett, Walter C; Lichtenstein, Alice H; Rudel, Lawrence L; Maki, Kevin C; Whelan, Jay; Ramsden, Christopher E; Block, Robert C

    2012-01-01

    Research dating back to the 1950s reported an association between the consumption of saturated fatty acids (SFAs) and risk of coronary heart disease. Recent epidemiological evidence, however, challenges these findings. It is well accepted that the consumption of SFAs increases low-density lipoprotein cholesterol (LDL-C), whereas carbohydrates, monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs) do not. High-density lipoprotein (HDL)-C increases with SFA intake. Among individuals who are insulin resistant, a low-fat, high-carbohydrate diet typically has an adverse effect on lipid profiles (in addition to decreasing HDL-C, it also increases triglyceride and LDL particle concentrations). Consequently, a moderate fat diet in which unsaturated fatty acids replace SFAs and carbohydrates are not augmented is advised to lower LDL-C; compared with a low-fat diet, a moderate-fat diet will lower triglycerides and increase HDL-C. Now, there is some new evidence that is questioning the health benefits of even MUFAs and PUFAs. In addition, in a few recent studies investigators have also failed to demonstrate expected cardiovascular benefits of marine-derived omega-3 fatty acids. To clarify the clinical pros and cons of dietary fats, the National Lipid Association held a fatty acid symposium at the 2011 National Lipid Association Scientific Sessions. During these sessions, the science regarding the effects of different fatty acid classes on coronary heart disease risk was reviewed.

  13. Maastricht essential fatty acid birth cohort

    NARCIS (Netherlands)

    Van der Wurff, Inge; De Groot, Renate; Stratakis, Nikos; Gielen, Marij; Hornstra, Gerard; Zeegers, Maurice

    2016-01-01

    The Maastricht Essential Fatty Acid Birth cohort (MEFAB) was established in 1989 to study the changes in fatty acid concentration during pregnancy and how this related to the fatty acid concentrations of the neonate. The original sample contains data of 1203 subjects. Some participants whom particip

  14. Postprandial lipid responses do not differ following consumption of butter or vegetable oil when consumed with omega-3 polyunsaturated fatty acids.

    Science.gov (United States)

    Dias, Cintia B; Phang, Melinda; Wood, Lisa G; Garg, Manohar L

    2015-04-01

    Dietary saturated fat (SFA) intake has been associated with elevated blood lipid levels and increased risk for the development of chronic diseases. However, some animal studies have demonstrated that dietary SFA may not raise blood lipid levels when the diet is sufficient in omega-3 polyunsaturated fatty acids (n-3PUFA). Therefore, in a randomised cross-over design, we investigated the postprandial effects of feeding meals rich in either SFA (butter) or vegetable oil rich in omega-6 polyunsaturated fatty acids (n-6PUFA), in conjunction with n-3PUFA, on blood lipid profiles [total cholesterol, low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) and triacylglycerol (TAG)] and n-3PUFA incorporation into plasma lipids over a 6-h period. The incremental area under the curve for plasma cholesterol, LDL-C, HDL-C, TAG and n-3PUFA levels over 6 h was similar in the n-6PUFA compared to SFA group. The postprandial lipemic response to saturated fat is comparable to that of n-6PUFA when consumed with n-3PUFA; however, sex-differences in response to dietary fat type are worthy of further attention.

  15. Spatial variability of mercury and polyunsaturated fatty acids in the European perch (Perca fluviatilis) - Implications for risk-benefit analyses of fish consumption.

    Science.gov (United States)

    Strandberg, Ursula; Palviainen, Marjo; Eronen, Aslak; Piirainen, Sirpa; Laurén, Ari; Akkanen, Jarkko; Kankaala, Paula

    2016-12-01

    This study evaluated the spatial variability of risks and benefits of consuming fish from humic and clear lakes. Mercury in fish is a potential risk for human health, but risk assessment may be confounded by selenium, which has been suggested to counterbalance mercury toxicity. In addition to the risks, fish are also rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are known to be beneficial for cardiovascular health and brain cognitive function in humans. We found that the concentrations of EPA + DHA and mercury in European perch (Perca fluviatilis) vary spatially and are connected with lake water chemistry and catchment characteristics. The highest mercury concentrations and the lowest EPA + DHA concentrations were found in perch from humic lakes with high proportion of peatland (30-50%) in the catchment. In addition, the ratio of selenium to mercury in perch muscle was ≥1 suggesting that selenium may counterbalance mercury toxicity. The observed variation in mercury and EPA + DHA content in perch from different lakes indicate that the risks and benefits of fish consumption vary spatially, and are connected with lake water chemistry and catchment characteristics. In general, consumption of perch from humic lakes exposed humans to greater risks (higher concentrations of mercury), but provided less benefits (lower concentrations of EPA + DHA) than consumption of perch from clear lakes.

  16. Benefits and risks of fish consumption Part II. RIBEPEIX, a computer program to optimize the balance between the intake of omega-3 fatty acids and chemical contaminants.

    Science.gov (United States)

    Domingo, José L; Bocio, Ana; Martí-Cid, Roser; Llobet, Juan M

    2007-02-12

    In recent years, and based on the importance of fish as a part of a healthy diet, there has been a notable promotion of fish and seafood consumption. However, a number of recent studies have shown that fish may be a potential source of exposure to chemical pollutants, some of them with well known adverse effects on human health. Recently, we determined in 14 edible marine species the concentrations of eicosapentaenoic acid (EPA) and docosohexaenoic acid (DHA), as well as those of a number of chemical contaminants: Cd, Hg, Pb, polychlorinated dibenzo-p-dioxins and furans, polychlorinated biphenyls, hexachlorobenzene, polycyclic aromatic hydrocarbons, polychlorinated naphthalenes, polybrominated diphenylethers and polychlorinated diphenylethers. To quantitative establish the intake of these pollutants (risks) versus that of EPA+DHA (benefits), we designed a simple computer program, RIBEPEIX. The concentrations of EPA, DHA, and the chemical pollutants were introduced into the program. We here present how RIBEPEIX may be used as an easy tool to optimize fish consumption: most suitable species, frequency of consumption, and size of meals. RIBEPEIX can be useful not only for professionals (cardiologists, general physicians, nutritionists, toxicologists, etc.), but also for the general population. It is available at: .

  17. Polyunsaturated fatty acids and epilepsy.

    Science.gov (United States)

    Taha, Ameer Y; Burnham, W McIntyre; Auvin, Stéphane

    2010-08-01

    Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are dietary fatty acids that are involved in a myriad of physiologic processes in the brain. There is some evidence suggesting that PUFAs-and particularly omega-3 PUFAs-may have anticonvulsant effects, both in humans and in animals. In the present review, we assess the evidence related to the antiseizure properties of the n-3 PUFAs, discuss their possible mechanism(s) of action, and make recommendations for future clinical trials. In general, the available data from cell cultures and whole animal studies support the idea that the n-3 PUFAs have antiseizure properties. Future clinical trials involving the n-3 PUFAs should involve higher doses and longer periods of administration in order to definitively assess their possible antiseizure effects.

  18. Fatty acid composition and possible health effects of coconut constituents.

    Science.gov (United States)

    Pehowich, D J; Gomes, A V; Barnes, J A

    2000-06-01

    The link between excessive consumption of dietary saturated fats and coronary heart disease (CHD) is now well established. Because of its high content of saturated fatty acids, the consumption of foods containing coconut oil may therefore be a risk factor for CHD. While the fatty acid composition of coconut oil is well established, relatively little is known about the other constituents of coconut: the milk, water, cream and meat fractions. In this study, we show that while the water fraction is low in lipid content, the milk contains about 24% of the fat content of oil and the cream and meat fractions about 34%. The other coconut constituents contain significant amounts of medium-chain triglycerides that are formed from fatty acids of chain length 8:0 to 14:0. It is these fatty acids, primarily 14:0, that are thought to be atherogenic. On the other hand, medium-chain triglycerides may be advantageous under some circumstances in that they are absorbed intact and do not undergo degradation and re-esterification processes. As a result, medium-chain triglycerides provide a ready source of energy and may be useful in baby foods or in diet therapy. Nevertheless, the possible negative effects of the saturated fatty acids and the absence of the essential fatty acid linolenic acid from all coconut constituents suggest that the coconut milk, oil and cream should not be used on a regular basis in adults.

  19. Molten fatty acid based microemulsions.

    Science.gov (United States)

    Noirjean, Cecile; Testard, Fabienne; Dejugnat, Christophe; Jestin, Jacques; Carriere, David

    2016-06-21

    We show that ternary mixtures of water (polar phase), myristic acid (MA, apolar phase) and cetyltrimethylammonium bromide (CTAB, cationic surfactant) studied above the melting point of myristic acid allow the preparation of microemulsions without adding a salt or a co-surfactant. The combination of SANS, SAXS/WAXS, DSC, and phase diagram determination allows a complete characterization of the structures and interactions between components in the molten fatty acid based microemulsions. For the different structures characterized (microemulsion, lamellar or hexagonal phases), a similar thermal behaviour is observed for all ternary MA/CTAB/water monophasic samples and for binary MA/CTAB mixtures without water: crystalline myristic acid melts at 52 °C, and a thermal transition at 70 °C is assigned to the breaking of hydrogen bounds inside the mixed myristic acid/CTAB complex (being the surfactant film in the ternary system). Water determines the film curvature, hence the structures observed at high temperature, but does not influence the thermal behaviour of the ternary system. Myristic acid is partitioned in two "species" that behave independently: pure myristic acid and myristic acid associated with CTAB to form an equimolar complex that plays the role of the surfactant film. We therefore show that myristic acid plays the role of a solvent (oil) and a co-surfactant allowing the fine tuning of the structure of oil and water mixtures. This solvosurfactant behaviour of long chain fatty acid opens the way for new formulations with a complex structure without the addition of any extra compound.

  20. Omega 3 fatty acids in psychiatry

    Directory of Open Access Journals (Sweden)

    Pavlović D.M.

    2013-01-01

    Full Text Available Omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFAs are thought to be important for normal dopaminergic, glutamatergic and serotonergic neurotransmission. Depression is less prevalent in societies with high fish consumption, and depressed patients have significantly lower red blood cell ω-3 levels. Studies with ω-3 supplementation have led to controversial results. A significantly longer remission of bipolar symptomatology has been confirmed from a high-dose DHA and EPA mixture. Greater seafood consumption per capita has been connected with a lower prevalence of bipolar spectrum disorders. Reduced levels of ω-6 and ω-3 PUFAs were found in patients with schizophrenia. [Projekat Ministarstva nauke Republike Srbije, br. 175033 i br. 175022

  1. Variability in coconut (Cocos nucifera L.) germplasm and hybrids for fatty acid profile of oil.

    Science.gov (United States)

    Kumar, S Naresh

    2011-12-28

    Coconut oil, the main product of coconut fruit, is the richest source of glycerol and lauric acid and hence is called lauric oil. This paper reports the fatty acid profile of oil from 60 Talls, 14 Dwarfs, and 34 hybrids. These include collections from 13 countries covering a large coconut-growing area of the world, apart from the indigenous ones. Capillary gas chromatography analysis of oil indicated a wider variation for the fatty acid profile than earlier reported. Apart from this, for the first time other fatty acids such as behenic and lignoceric acids were detected. Oil from cultivars and hybrids of coconut has significantly differed, particularly for commercially important fatty acids such as lauric acid and unsaturated fatty acids. However, coconut oil seems to have a conserved fatty acid profile, mainly because of low unsaturated fatty acids, indicating the possibility of grouping cultivars on the basis of their fatty acid profiles. The cluster analysis based on fatty acid profile indicated grouping together of geographically and typically closely related cultivars. Cultivars with high concentrations of specific fatty acids can be of potential use for industrial exploitation, whereas those with high concentrations of short- and medium-chain fatty acids and unsaturated fatty acids are more suitable for human consumption. Cultivars and hybrids with high and low values for each of the fatty acids are also identified.

  2. Fatty acid composition of selected prosthecate bacteria.

    Science.gov (United States)

    Carter, R N; Schmidt, J M

    1976-10-11

    The cellular fatty acid composition of 14 strains of Caulobacter speices and types, two species of Prosthecomicrobium, and two species of Asticcacaulis was determined by gas-liquid chromatography. In most of these bacteria, the major fatty acids were octadecenoic acid (C18:1), hexadecenoic acid (C16:1) and hexadecanoic acid (C16:0). Some cyclopropane and branched chain fatty acids were detected in addition to the straight chained acids. Hydroxytetradecanoic acid was an important component of P.enhydrum but significant amounts of hydroxy acids were not detected in other prosthecate bacteria examined.

  3. Aspirin increases mitochondrial fatty acid oxidation.

    Science.gov (United States)

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E; Bharathi, Sivakama S; Zhang, Yuxun; Stolz, Donna B; Goetzman, Eric S

    2017-01-08

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Association of Fish Consumption-Derived Ratio of Serum n-3 to n-6 Polyunsaturated Fatty Acids and Cardiovascular Risk With the Prevalence of Coronary Artery Disease.

    Science.gov (United States)

    Tani, Shigemasa; Takahashi, Atsuhiko; Nagao, Ken; Hirayama, Atsushi

    2015-05-13

    We investigated the relationships between the ratio of serum n-3 polyunsaturated fatty acids (n-3PUFAs: eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) to n-6PUFA (arachidonic acid [AA]) and the prevalence of coronary artery disease (CAD), and assessed the association of the ratio of serum n-3 to n-6 PUFAs with atherosclerosis-related markers.This study was designed as a hospital-based cross-sectional study of 649 consecutive outpatients who had undergone regular examinations between April 2009 and October 2009. We divided the patients into 5 groups based on the quintiles of the EPA/AA ratio or quintiles of the DHA/AA ratio to determine independent factors for the prevalence of CAD.In multivariate logistic regression analyses after adjustment for coronary risk factors and serum n-3PUFAs levels to minimize confounding factors to the extent possible because the serum levels of EPA and DHA showed a strong correlation (r = 0.812, P < 0.0001), the group with the highest EPA/AA ratio had a lower probability of CAD prevalence (odds ratio: 0.328, 95% confidence interval: 0.113 to 0.956, P = 0.041), but this was not true for the DHA/AA ratio. Multivariate analysis showed an increase in the EPA/AA ratio, but not in the DHA/AA ratio, was associated with effects on atherosclerosis-related markers, especially triglyceride-rich lipoproteins, high-density lipoprotein cholesterol (HDL-C) containing apolipoprotein A-1, and leukocyte count in an anti-atherogenic direction.The results suggest a higher EPA/AA ratio, but not a higher DHA/AA ratio, might be associated with a lower prevalence of CAD and improvements of triglyceride metabolism and HDL metabolism, and systemic inflammation.

  5. Associations of Dietary Long-Chain ω-3 Polyunsaturated Fatty Acids and Fish Consumption With Endometrial Cancer Risk in the Black Women's Health Study.

    Science.gov (United States)

    Brasky, Theodore M; Sponholtz, Todd R; Palmer, Julie R; Rosenberg, Lynn; Ruiz-Narváez, Edward A; Wise, Lauren A

    2016-02-01

    Dietary long-chain (LC) ω-3 polyunsaturated fatty acids (PUFAs), which derive primarily from intakes of fatty fish, are thought to inhibit inflammation and de novo estrogen synthesis. This study prospectively examined the associations of dietary LC ω-3 PUFAs and fish with endometrial cancer risk in 47,602 African-American women living in the United States, aged 21-69 years at baseline in 1995, and followed them until 2013 (n = 282 cases). Multivariable-adjusted Cox regression models estimated hazard ratios and 95% confidence intervals for associations of LC ω-3 PUFA (quintiled) and fish (quartiled) intake with endometrial cancer risk, overall and by body mass index (BMI; weight (kg)/height (m)(2)). The hazard ratio for quintile 5 of total dietary LC ω-3 PUFAs versus quintile 1 was 0.79 (95% confidence interval (CI): 0.51, 1.24); there was no linear trend. Hazard ratios for the association were smaller among normal-weight women (BMI <25: hazard ratio (HR) = 0.53, 95% CI: 0.18, 1.58) than among overweight/obese women (BMI ≥ 25: HR = 0.88, 95% CI: 0.54, 1.43), but these differences were not statistically significant. Fish intake was also not associated with risk (quartile 4 vs. quartile 1: HR = 0.86, 95% CI: 0.56, 1.31). Again hazard ratios were smaller among normal-weight women (HR = 0.65) than among overweight/obese women (HR = 0.94). While compatible with no association, the hazard ratios observed among leaner African-American women are similar to those from recent prospective studies conducted in predominantly white populations.

  6. N-3 polyunsaturated fatty acid consumption produces neurobiological effects associated with prevention of depression in rats after the forced swimming test.

    Science.gov (United States)

    Park, Yongsoon; Moon, Hyoun-Jung; Kim, Seok-Hyeon

    2012-08-01

    Epidemiological data and clinical trials suggest that n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have preventive and therapeutic effects on depression; however, the underlying mechanism remains elusive. The present study aimed to examine the behavioral effects and antidepressant mechanism of n-3 PUFA using a forced swimming test. Eleven-week-old male Sprague-Dawley rats were fed an American Institute of Nutrition-93M diet containing 0%, 0.5% or 1% EPA and DHA relative to the total energy intake in their diet for 12 weeks (n=8 per group). Total dietary intake, body weight and hippocampus weights were not significantly different among groups. The groups administered 0.5% and 1% EPA+DHA diets had significantly higher levels of n-3 PUFA in their brain phospholipids compared to those in the control group. The immobility time was significantly decreased and the climbing time was significantly increased in the 0.5% and 1% EPA+DHA groups compared with those in the 0% EPA+DHA group. Plasma serotonin concentration and hippocampus c-AMP response element binding protein (CREB) expression were significantly increased in the 0.5% and 1% EPA+DHA groups compared with those in the 0% EPA+DHA group. Conversely, interleukin (IL)-6 expression was significantly reduced in the 0.5% and 1% EPA+DHA groups compared with that in the 0% EPA+DHA group. However, there were no dose-dependent effects of n-3 PUFA and no significant differences in expressions of IL-1β, tumor necrosis factor-α, brain-derived neurotrophic factor or phosphorylated CREB. In conclusion, long-term intake of EPA+DHA induced antidepressant-like effects in rats and overexpression of CREB via decreased IL-6 expression.

  7. Exploring newer cardioprotective strategies: ω-3 fatty acids in perspective.

    Science.gov (United States)

    Di Minno, Matteo Nicola Dario; Tremoli, Elena; Tufano, Antonella; Russolillo, Anna; Lupoli, Roberta; Di Minno, Giovanni

    2010-10-01

    In the 1980s, observational retrospective studies showed an inverse relation between coronary heart disease (CHD) and consumption of fish containing fatty acids that belong to the omega (ω)-3 family. Large case-control studies and prospective intervention trials consistently showed that ω-3 fatty acids supplementation lowers fatal myocardial infarction (MI) and sudden cardiac death. By analysing the strengths of the results of individual studies and how the meta-analyses agree with them, putting together relevant backgrounds, and identifying open questions, the following findings/directions emerge. (i) Dietary and non-dietary intake of ω-3 fatty acids reduces overall mortality, mortality due to MI, and sudden death in patients with CHD; (ii) Fish oil consumption directly or indirectly affects cardiac electrophysiology. Fish oil reduces heart rate, a major risk factor for sudden death; (iii) Among patients with implantable cardioverter defibrillators, ω-3 fatty acids do not reduce the risk of ventricular tachycardia/ventricular fibrillation and may actually be pro-arrhythmic; (iv) The consumption of ω-3 fatty acids leads to a 10-33% net decrease of triglyceride levels. The effect is dose-dependent, larger in studies with higher mean baseline triglyceride levels, and consistent in different populations (healthy people, people with dyslipidaemia, diabetes, or known cardiovascular risk factors); (v) Outcomes for which a small beneficial effect ω-3 fatty acids is found include blood pressure (about 2 mmHg reduction), re-stenosis rates after coronary angioplasty (14% reduction), and exercise tolerance testing. Major experimental data provide strength (biological plausibility) for these findings, and define directions for newer clinical trials with ω-3 fatty acids.

  8. Electrogenicity of hepatocellular fatty acid uptake.

    Science.gov (United States)

    Elsing, C; Kassner, A; Gajdzik, L; Graf, J; Stremmel, W

    1998-08-18

    Sensitivity of cellular fatty acids uptake to the membrane potential difference is still a matter of controversy. For direct evaluation of potential sensitivity the effect of changing membrane potential on uptake of a fluorescent long chain fatty acid derivative, 12-NBD-stearate, in isolated rat hepatocytes, was examined. Changes in membrane potential were achieved by patch clamp procedures. Fatty acid influx was simultaneously determined by recording of cell fluorescence. Hyperpolarization from -30 to -70 mV accelerated fatty acid influx whereas depolarization to +50 mV reduced uptake. After obtaining equilibrium hyperpolarization increased cell fluorescence, whereas depolarization pushed NBD-stearate out of cells. Potential sensitivity of uptake was dependent on the fatty acid concentrations in the medium with most prominent effects at low unbound concentrations. These data show that, at low fatty acid concentrations, uptake is, in part, driven by an intracellular negative electric membrane potential.

  9. Soft drinks consumption and nonalcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    William; Nseir; Fares; Nassar; Nimer; Assy

    2010-01-01

    Nonalcoholic fatty liver disease(NAFLD) is a common clinical condition which is associated with metabolic syndrome in 70% of cases.Inappropriate dietary fat intake,excessive intake of soft drinks,insulin resistance and increased oxidative stress combine to increase free fatty acid delivery to the liver,and increased hepatic triglyceride accumulation contributes to fatty liver.Regular soft drinks have high fructose corn syrup which contains basic sugar building blocks,fructose 55% and glucose 45%.Soft drinks...

  10. gamma-linolenic acid does not augment long-chain polyunsaturated fatty acid omega-3 status

    NARCIS (Netherlands)

    Brouwer, DAJ; Hettema, Y; van Doormaal, JJ; Muskiet, FAJ

    1998-01-01

    Augmentation of long chain polyunsaturated omega 3 fatty acid (LCPUFA omega 3) status can be reached by consumption of fish oil or by improvement of the conversion of a-linolenic acid (ALA) to LCPUFA omega 3. Since gamma-linolenic acid (GLA) might activate the rate-limiting Delta-6 desaturation, we

  11. gamma-linolenic acid does not augment long-chain polyunsaturated fatty acid omega-3 status

    NARCIS (Netherlands)

    Brouwer, DAJ; Hettema, Y; van Doormaal, JJ; Muskiet, FAJ

    1998-01-01

    Augmentation of long chain polyunsaturated omega 3 fatty acid (LCPUFA omega 3) status can be reached by consumption of fish oil or by improvement of the conversion of a-linolenic acid (ALA) to LCPUFA omega 3. Since gamma-linolenic acid (GLA) might activate the rate-limiting Delta-6 desaturation, we

  12. Fatty acid content of selected seed oils.

    Science.gov (United States)

    Orhan, Ilkay; Sener, Bilge

    2002-01-01

    Fatty acid content of selected seed oils from world-wide edible fruits, Ceratonia ciliqua (carob) from Caesalpiniaceae family, Diospyros kaki (persimmon) from Ebenaceae family, Zizyphus jujuba (jujube) from Rhamnaceae family, and Persea gratissima (avocado pear) from Lauraceae family, were determined by capillary gas chromatography- mass spectrometry (GC-MS) to find new natural sources for essential fatty acids. Among the seed oils analyzed, Ceratonia ciliqua has been found to have the highest essential fatty acid content.

  13. Fatty Acids in Veterinary Medicine and Research

    OpenAIRE

    Rutland, Catrin S.; Mostyn, Alison; Simpson, Siobhan

    2017-01-01

    Fatty acid regulation is an essential process for all animals. A number of studies have shown that diet affects the levels/availability of fatty acids in the body but increasingly evidence shows that disease states can alter the amounts within the body too. Fatty acid levels and availability have been altered by a number of diseases, disorders and reactions including inflammatory responses, heart disease and heart failure and wound repair. They are also essential during the growth and develop...

  14. Fatty acids composition of Spanish black (Morus nigra L.) and white (Morus alba L.) mulberries.

    Science.gov (United States)

    Sánchez-Salcedo, Eva M; Sendra, Esther; Carbonell-Barrachina, Ángel A; Martínez, Juan José; Hernández, Francisca

    2016-01-01

    This research has determined qualitatively and quantitatively the fatty acids composition of white (Morus alba) and black (Morus nigra) fruits grown in Spain, in 2013 and 2014. Four clones of each species were studied. Fourteen fatty acids were identified and quantified in mulberry fruits. The most abundant fatty acids were linoleic (C18:2), palmitic (C16:0), oleic (C18:1), and stearic (C18:0) acids in both species. The main fatty acid in all clones was linoleic (C18:2), that ranged from 69.66% (MN2) to 78.02% (MA1) of the total fatty acid content; consequently Spanish mulberry fruits were found to be rich in linoleic acid, which is an essential fatty acid. The fatty acid composition of mulberries highlights the nutritional and health benefits of their consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect of hair care and hair cosmetics on the concentrations of fatty acid ethyl esters in hair as markers of chronically elevated alcohol consumption.

    Science.gov (United States)

    Hartwig, Sven; Auwärter, Volker; Pragst, Fritz

    2003-01-28

    Fatty acid ethyl esters (FAEE) can be used as alcohol markers in hair. It was investigated in this study whether this diagnostic method is disturbed by hair care and hair cosmetics. Traces of ethyl myristate, ethyl palmitate, ethyl oleate and ethyl stearate were detected in all of 49 frequently applied hair care products by headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The highest concentration was 0.003% in a hair wax. From experiments with separated hair samples of alcoholics as well as from the evaluation of the FAEE concentrations and the data about hair care of 75 volunteers (alcoholics, social drinkers and teetotalers) follows that usual shampooing, permanent wave, dyeing, bleaching or shading are of minor importance as compared to the drinking amount and other individual features. However, false positive results were found after daily treatment with a hair lotion containing 62.5% ethanol, with a deodorant and with a hair spray. As an explanation, it is assumed that FAEE are formed in the sebum glands also after regular topical application of products with a higher ethanol content.

  16. Veal fatty acid composition of different breeds

    Directory of Open Access Journals (Sweden)

    Ivica Kos

    2010-01-01

    Full Text Available Veal fatty acid composition in M. Longissimus thoracis was investigated in different calf breeds (Simmental, Holstein, Simmental x Holstein. Calves were reared on the same farm under identical feeding and handling conditions. Simmental calves had higher polyunsaturated fatty acid (PUFA but lower saturated fatty acid (SFA and monounsaturated fatty acid (MUFA values than Holstein and crossbreed calves (P<0,05. The PUFA/SFA ratio was the highest in Simmental calves and the lowest in Holstein calves. Simmental calves also had the highest n-6/n-3 ratio while the crossbreed calves had the lowest n-6/n-3 ratio.

  17. Polyunsaturated fatty acid content of mother's milk is associated with childhood body composition

    DEFF Research Database (Denmark)

    Pedersen, Louise; Lauritzen, Lotte; Brasholt, Martin;

    2012-01-01

    The consumption of polyunsaturated fatty acids has changed, and the prevalence of adiposity has increased over the past 30 y. A decrease of n-3 polyunsaturated fatty acid content in breast milk has been suggested to be a contributing factor. The objective of this study was to investigate...... the relationship between docosahexaenoic acid (DHA) content and n-6/n-3 polyunsaturated fatty acid ratio in breast milk, body composition, and timing of adiposity rebound in children....

  18. Associations between omega-3 poly-unsaturated fatty acids from fish consumption and severity of depressive symptoms: an analysis of the 2005-2008 National Health and Nutrition Examination Survey.

    Science.gov (United States)

    Hoffmire, Claire A; Block, Robert C; Thevenet-Morrison, Kelly; van Wijngaarden, Edwin

    2012-04-01

    Fish is the primary source of dietary omega-3 poly-unsaturated fatty acids EPA and DHA, which have been reported to reduce depressive symptoms in clinical trials. We assessed the association between fish consumption and depressive symptoms in a nationally representative sample of 10,480 adults from the 2005-2008 National Health and Nutrition Examination Survey. Depressive symptoms were classified by severity using the Patient Health Questionnaire. Fish meal consumption reported in 30-day food frequency questionnaires, and EPA+DHA intake computed from 24-h dietary recalls were evaluated in relation to depressive symptoms using multivariable ordinal logistic regression. Consumption of breaded fish showed an increased risk of greater depressive symptom severity, while all fish, non-breaded fish, and shell fish were not associated. Any EPA+DHA intake was significantly associated with fewer depressive symptoms. Exposure-response analyses revealed no clear patterns for any intake measures. Inconsistent patterns of associations in our study may be partially explained by exposure misclassification.

  19. Study of Thiosemicarbazone Derivative of Essential Fatty Acid

    OpenAIRE

    2014-01-01

    Essential fatty acids results in numerous health benefits. Only two fatty acids are known to be essential for human alpha-linolenic acid (an omega-3 fatty acid) and linoleic acid (an omega-6 fatty acid).The importance of omega-3 fatty acids for physical well-being has been recognised for several decades . Omega-3 fatty acids have anti-inflammatory, antithrombotic, antiarrhythmic and hypolipidaemic effects. Cannabis sativa (Hemp) is an angiosperm belonging to the cannabaceae family and cannabi...

  20. Intake of fatty acids in Western Europe with emphasis on trans fatty acids: The TRANSFAIR study

    NARCIS (Netherlands)

    Hulshof, K.F.A.M; Erp van - Baart, M.A.; Anttolainen, M.; Becker, W.; Church, S.M.; Couet, C.; Hermann-Kunz, E.; Kesteloot, H.; Leth, T.; Martins, I.; Moreiras, O.; Moschandreas, J.; Pizzoferrato, L.; Rimestad, A.H.; Thorgeirsdottir, H.; Amelsvoort, J.M.M. van; Aro, A.; Kafatos, A.G.; Lanzmann-Petithory, D.; Poppel, G. van

    1999-01-01

    Objective: To assess the intake of trans fatty acids (TFA) and other fatty acids in 14 Western European countries. Design and subjects: A maximum of 100 foods per country were sampled and centrally analysed. Each country calculated the intake of individual trans and other fatty acids, clusters of fa

  1. Intake of fatty acids in Western Europe with emphasis on trans fatty acids: The TRANSFAIR study

    NARCIS (Netherlands)

    Hulshof, K.F.A.M; Erp van - Baart, M.A.; Anttolainen, M.; Becker, W.; Church, S.M.; Couet, C.; Hermann-Kunz, E.; Kesteloot, H.; Leth, T.; Martins, I.; Moreiras, O.; Moschandreas, J.; Pizzoferrato, L.; Rimestad, A.H.; Thorgeirsdottir, H.; Amelsvoort, J.M.M. van; Aro, A.; Kafatos, A.G.; Lanzmann-Petithory, D.; Poppel, G. van

    1999-01-01

    Objective: To assess the intake of trans fatty acids (TFA) and other fatty acids in 14 Western European countries. Design and subjects: A maximum of 100 foods per country were sampled and centrally analysed. Each country calculated the intake of individual trans and other fatty acids, clusters of

  2. Effect of fatty acids on leukocyte function

    Directory of Open Access Journals (Sweden)

    Pompéia C.

    2000-01-01

    Full Text Available Fatty acids have various effects on immune and inflammatory responses, acting as intracellular and intercellular mediators. Polyunsaturated fatty acids (PUFAs of the omega-3 family have overall suppressive effects, inhibiting lymphocyte proliferation, antibody and cytokine production, adhesion molecule expression, natural killer cell activity and triggering cell death. The omega-6 PUFAs have both inhibitory and stimulatory effects. The most studied of these is arachidonic acid that can be oxidized to eicosanoids, such as prostaglandins, leukotrienes and thromboxanes, all of which are potent mediators of inflammation. Nevertheless, it has been found that many of the effects of PUFA on immune and inflammatory responses are not dependent on eicosanoid generation. Fatty acids have also been found to modulate phagocytosis, reactive oxygen species production, cytokine production and leukocyte migration, also interfering with antigen presentation by macrophages. The importance of fatty acids in immune function has been corroborated by many clinical trials in which patients show improvement when submitted to fatty acid supplementation. Several mechanisms have been proposed to explain fatty acid modulation of immune response, such as changes in membrane fluidity and signal transduction pathways, regulation of gene transcription, protein acylation, and calcium release. In this review, evidence is presented to support the proposition that changes in cell metabolism also play an important role in the effect of fatty acids on leukocyte functioning, as fatty acids regulate glucose and glutamine metabolism and mitochondrial depolarization.

  3. Dietary monounsaturated fatty acids intake and risk of skin photoaging.

    Directory of Open Access Journals (Sweden)

    Julie Latreille

    Full Text Available BACKGROUND: Intake of monounsaturated fatty acids has been reported to reduce oxidative stress, insulin resistance and related inflammatory processes and may thus protect from skin photoaging. The objective of this study was to investigate the association between the risk of photoaging, monounsaturated fatty acids intake and the sources of monounsaturated fatty acids. METHODOLOGY/PRINCIPAL FINDINGS: A cross sectional study was conducted within the framework of the SUVIMAX cohort. The survey included 1264 women and 1655 men aged between 45 and 60 years old. Dietary monounsaturated fatty acids intakes were estimated by dietary source through at least ten 24-h diet records completed during the first 2.5 years of the follow-up period. Severity of facial skin photoaging was graded by trained investigators at baseline during a clinical examination using a 6-grade scale illustrated by photographs. A lower risk of severe photoaging was associated with higher intakes of monounsaturated fatty acids from olive oil in both sexes. Strikingly, no association was found with intake of monounsaturated fatty acids from animal sources whether from dairy products, meat or processed meat. CONCLUSION/SIGNIFICANCE: These findings support the beneficial effect of dietary olive oil or healthy diet habits associated with olive oil consumption on the severity of facial photoaging.

  4. Consumption of industrial and ruminant trans fatty acids and risk of coronary heart disease: a systematic review and meta-analysis of cohort studies.

    Science.gov (United States)

    Bendsen, N T; Christensen, R; Bartels, E M; Astrup, A

    2011-07-01

    The aim of this systematic review and meta-analysis was to summarize the evidence from observational studies assessing the association between intake of trans fatty acids (TFA) and the risk of coronary heart disease (CHD), with a specific emphasis on distinguishing between TFA of industrial and ruminant origin. By searching five bibliographic databases, analyses from six published and two unpublished prospective cohort studies, assessing the association of intake of TFA with fatal and/or non-fatal CHD, were identified. Four and three studies reported separate associations for intake of ruminant or industrial-TFA, respectively. The pooled relative risk estimates for comparison of extreme quintiles of total-TFA intake (corresponding to intake increments ranging from 2.8 to ∼10 g/day) were 1.22 (95% confidence interval: 1.08-1.38; P=0.002) for CHD events and 1.24 (1.07-1.43; P=0.003) for fatal CHD. Ruminant-TFA intake (increments ranging from 0.5 to 1.9 g/day) was not significantly associated with risk of CHD (risk ratio (RR)=0.92 (0.76-1.11); P=0.36), and neither was industrial-TFA intake, although there was a trend towards a positive association (RR=1.21 (0.97-1.50); P=0.09). In conclusion, our analysis suggests that industrial-TFA may be positively related to CHD, whereas ruminant-TFA is not, but the limited number of available studies prohibits any firm conclusions concerning whether the source of TFA is important. The null association of ruminant-TFA with CHD risk may be due to lower intake levels.

  5. Incorporated fish oil fatty acids prevent action potential shortening induced by circulating fish oil fatty acids

    Directory of Open Access Journals (Sweden)

    Hester M Den Ruijter

    2010-11-01

    Full Text Available Increased consumption of fatty fish, rich in omega-3 polyunsaturated fatty acids (3-PUFAs reduces the severity and number of arrhythmias. Long term 3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating 3-PUFAs in the bloodstream and incorporated 3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating 3-PUFAs in the bloodstream enhance or diminish the effects of incorporated 3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (3 or sunflower oil (9, as control for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch clamp technique in the absence and presence of acutely administered 3-PUFAs. Plasma of 3 fed rabbits contained more free eicosapentaenoic acid (EPA and isolated myocytes of 3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA in their sarcolemma compared to control. In the absence of acutely administered fatty acids, 3 myocytes had a shorter action potential with a more negative plateau than 9 myocytes. In the 9 myocytes, but not in the 3 myocytes, acute administration of a mixture of EPA+DHA shortened the action potential significantly. From these data we conclude that incorporated 3-PUFAs into the sarcolemma and acutely administered 3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac 3-PUFA status will probably not benefit from short term 3 supplementation as an antiarrhythmic therapy.

  6. Omega-3 Fatty Acids and Inflammatory Processes

    Directory of Open Access Journals (Sweden)

    Philip C. Calder

    2010-03-01

    Full Text Available Long chain fatty acids influence inflammation through a variety of mechanisms; many of these are mediated by, or at least associated with, changes in fatty acid composition of cell membranes. Changes in these compositions can modify membrane fluidity, cell signaling leading to altered gene expression, and the pattern of lipid mediator production. Cell involved in the inflammatory response are typically rich in the n-6 fatty acid arachidonic acid, but the contents of arachidonic acid and of the n-3 fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA can be altered through oral administration of EPA and DHA. Eicosanoids produced from arachidonic acid have roles in inflammation. EPA also gives rise to eicosanoids and these often have differing properties from those of arachidonic acid-derived eicosanoids. EPA and DHA give rise to newly discovered resolvins which are anti-inflammatory and inflammation resolving. Increased membrane content of EPA and DHA (and decreased arachidonic acid content results in a changed pattern of production of eicosanoids and resolvins. Changing the fatty acid composition of cells involved in the inflammatory response also affects production of peptide mediators of inflammation (adhesion molecules, cytokines etc.. Thus, the fatty acid composition of cells involved in the inflammatory response influences their function; the contents of arachidonic acid, EPA and DHA appear to be especially important. The anti-inflammatory effects of marine n-3 PUFAs suggest that they may be useful as therapeutic agents in disorders with an inflammatory component.

  7. Different impacts of short-chain fatty acids on saturated and polyunsaturated fatty acid biosynthesis in Aurantiochytrium sp. SD116.

    Science.gov (United States)

    Song, Xiaojin; Tan, Yanzhen; Liu, Yajun; Zhang, Jingtao; Liu, Guanglei; Feng, Yingang; Cui, Qiu

    2013-10-16

    Aurantiochytrium is an important docosahexaenoic acid (DHA) producer containing two kinds of fatty acid synthesis pathways, that is, the fatty acid synthase pathway (FAS) for saturated fatty acid synthesis and the polyketide synthase pathway (PKS) for polyunsaturated fatty acid synthesis. To understand the regulation mechanism between the two pathways, the impacts of six short-chain fatty acids on the fatty acid synthesis of Aurantiochytrium sp. SD116 were studied. All short-chain fatty acids showed little effect on the cell growth, but some of them significantly affected lipid accumulation and fatty acid composition. Pentanoic acid and isovaleric acid greatly inhibited the synthesis of saturated fatty acids, whereas the polyunsaturated fatty acid synthesis was not affected. Analysis of malic enzyme activity, which supplied NADPH for saturated fatty acids biosynthesis, indicated that the two fatty acid synthesis pathways can utilize different substrates and possess independent sources of NADPH.

  8. Fatty Acid Composition of Agaricus bisporus (Lange) Sing.

    OpenAIRE

    Aktümsek, Abdurrahman; ÖZTÜRK, Celâleddin; KAŞIK, Giyasettin

    1998-01-01

    Fatty acid compositions of fruit body, stem, lamellae and total of Agaricus bisporus were seperately analysed by GLC. In the all fatty acid compositions of A. bisporus, linoleic acid were predominant. Percentages of linoleic acid were varied between 53.45 - 68.78%. It was showed that the other major fatty acids were palmitic, oleic and stearic acid in the fatty acid compositions.

  9. Phylogenomic reconstruction of archaeal fatty acid metabolism

    Science.gov (United States)

    Dibrova, Daria V.; Galperin, Michael Y.; Mulkidjanian, Armen Y.

    2014-01-01

    While certain archaea appear to synthesize and/or metabolize fatty acids, the respective pathways still remain obscure. By analyzing the genomic distribution of the key lipid-related enzymes, we were able to identify the likely components of the archaeal pathway of fatty acid metabolism, namely, a combination of the enzymes of bacterial-type β-oxidation of fatty acids (acyl-CoA-dehydrogenase, enoyl-CoA hydratase, and 3-hydroxyacyl-CoA dehydrogenase) with paralogs of the archaeal acetyl-CoA C-acetyltransferase, an enzyme of the mevalonate biosynthesis pathway. These three β-oxidation enzymes working in the reverse direction could potentially catalyze biosynthesis of fatty acids, with paralogs of acetyl-CoA C-acetyltransferase performing addition of C2 fragments. The presence in archaea of the genes for energy-transducing membrane enzyme complexes, such as cytochrome bc complex, cytochrome c oxidase, and diverse rhodopsins, was found to correlate with the presence of the proposed system of fatty acid biosynthesis. We speculate that because these membrane complexes functionally depend on fatty acid chains, their genes could have been acquired via lateral gene transfer from bacteria only by those archaea that already possessed a system of fatty acid biosynthesis. The proposed pathway of archaeal fatty acid metabolism operates in extreme conditions and therefore might be of interest in the context of biofuel production and other industrial applications. PMID:24818264

  10. Polyunsaturated fatty acids for multiple sclerosis treatment

    Directory of Open Access Journals (Sweden)

    Monserrat Kong-González

    2015-01-01

    Full Text Available INTRODUCTION Fatty acids have an important role in structure and function of the nervous system. Recently, epidemiologic studies on neurodegenerative disorders have evaluated the usefulness of polyunsaturated fatty acids on multiple sclerosis. OBJECTIVE To examine recent studies, clinical trials, and reviews on the therapeutic effect of polyunsaturated fatty acids in multiple sclerosis. METHODS We conducted a search in MEDLINE/PubMed and Cochrane Library with the terms "fatty acids", "omega-3" and "omega-6" in combination with "multiple sclerosis". Articles were selected according to their relevance on the topic. RESULTS Epidemiologic studies have shown benefits of dietary supplementation with polyunsaturated fatty acids -especially omega-3- in relation to inflammatory, autoimmune and neurodegenerative disorders. In contrast, the studies do not show a beneficial effect of polyunsaturated fatty acids in multiple sclerosis. However, there are limitations related to design and sample issues in these studies CONCLUSIONS There is some evidence of a protective effect of polyunsaturated fatty acids on the risk of multiple sclerosis. Despite this, to date controlled trials have not produced definite results on the benefits of supplementation with polyunsaturated fatty acids in patients with multiple sclerosis. Any potential benefit will have to be confirmed in the long term.

  11. Fatty acids in an estuarine mangrove ecosystem.

    Science.gov (United States)

    Alikunhi, Nabeel M; Narayanasamy, Rajendran; Kandasamy, Kathiresan

    2010-06-01

    Fatty acids have been successfully used to trace the transfer of organic matter in coastal and estuarine food webs. To delineate these web connections, fatty acid profiles were analyzed in species of microbes (Azotobacter vinelandii, and Lactobacillus xylosus), prawns (Metapenaeus monoceros and Macrobrachium rosenbergii) and finfish (Mugil cephalus), that are associated with decomposing leaves of two mangrove species, Rhizophora apiculata and Avicennia marina. The fatty acids, except long chain fatty acids, exhibit changes during decomposition of mangrove leaves with a reduction of saturated fatty acids and an increase of monounsaturated fatty acids. The branched fatty acids are absent in undecomposed mangrove leaves, but present significantly in the decomposed leaves and in prawns and finfish, representing an important source for them. This revealed that the microbes are dominant producers that contribute significantly to the fishes and prawns in the mangrove ecosystem. This work has proved the fatty acid biomarkers as an effective tool for identifying the trophic interactions among dominant producers and consumers in this mangrove.

  12. Dioxygenation of polyunsaturated fatty acids in fungi

    NARCIS (Netherlands)

    Wadman, M.W.

    2007-01-01

    Polyunsaturated fatty acids play a central role in all biological systems. They are constituents of the plasma membrane and serve as precursors to signaling molecules generated in response to external events. The conversion of polyunsaturated fatty acids into signaling molecules starts by the hydrol

  13. Nickel inhibits mitochondrial fatty acid oxidation.

    Science.gov (United States)

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-07

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis.

  14. Historical perspectives on fatty acid chemistry

    Science.gov (United States)

    Fatty acids are basic renewable chemical building blocks that can be used as intermediates for a multitude of products. Today the global value of fatty acids exceeds 18 billion dollars and is expected to increase to nearly 26 billion over the period from 2014-2019. From it auspicious beginnings, the...

  15. Incorporation of extracellular fatty acids by a fatty acid kinase-dependent pathway in Staphylococcus aureus.

    Science.gov (United States)

    Parsons, Joshua B; Frank, Matthew W; Jackson, Pamela; Subramanian, Chitra; Rock, Charles O

    2014-04-01

    Acyl-CoA and acyl-acyl carrier protein (ACP) synthetases activate exogenous fatty acids for incorporation into phospholipids in Gram-negative bacteria. However, Gram-positive bacteria utilize an acyltransferase pathway for the biogenesis of phosphatidic acid that begins with the acylation of sn-glycerol-3-phosphate by PlsY using an acyl-phosphate (acyl-PO4 ) intermediate. PlsX generates acyl-PO4 from the acyl-ACP end-products of fatty acid synthesis. The plsX gene of Staphylococcus aureus was inactivated and the resulting strain was both a fatty acid auxotroph and required de novo fatty acid synthesis for growth. Exogenous fatty acids were only incorporated into the 1-position and endogenous acyl groups were channeled into the 2-position of the phospholipids in strain PDJ39 (ΔplsX). Extracellular fatty acids were not elongated. Removal of the exogenous fatty acid supplement led to the rapid accumulation of intracellular acyl-ACP and the abrupt cessation of fatty acid synthesis. Extracts from the ΔplsX strain exhibited an ATP-dependent fatty acid kinase activity, and the acyl-PO4 was converted to acyl-ACP when purified PlsX is added. These data reveal the existence of a novel fatty acid kinase pathway for the incorporation of exogenous fatty acids into S. aureus phospholipids.

  16. Solution Structure and Backbone Dynamics of Human Liver Fatty Acid Binding Protein: Fatty Acid Binding Revisited

    OpenAIRE

    Cai, Jun; Lücke, Christian; Chen, Zhongjing; Qiao, Ye; Klimtchuk, Elena; Hamilton, James A.

    2012-01-01

    Liver fatty acid binding protein (L-FABP), a cytosolic protein most abundant in liver, is associated with intracellular transport of fatty acids, nuclear signaling, and regulation of intracellular lipolysis. Among the members of the intracellular lipid binding protein family, L-FABP is of particular interest as it can i), bind two fatty acid molecules simultaneously and ii), accommodate a variety of bulkier physiological ligands such as bilirubin and fatty acyl CoA. To better understand the p...

  17. Propylenated fatty acids as emulsifiers

    Directory of Open Access Journals (Sweden)

    El-Shattory, Y.

    1999-08-01

    Full Text Available Hydroxy propylenyl stéarate, palmitate, laurate, oléate and linoleate were prepared by reaction of propylene oxide with fatty acid at 160 °C for five hours stirring in presence of potassium hydroxide as a catalyst. Physico-chemical properties of the five products, regarding their use as emulsifiers, were determined.

    Se prepararon estearato, palmitato, laurato, oleato y linoleato de hidroxipropilenilos mediante reacción de oxido de propileno con ácido graso a 160 °C durante cinco horas de agitación en presencia de hidróxido potásico como catalizador. Se determinaron las propiedades físico-químicas de los cinco productos, en cuanto a su uso como emulsionantes.

  18. Enzymes for fatty acid-based hydrocarbon biosynthesis.

    Science.gov (United States)

    Herman, Nicolaus A; Zhang, Wenjun

    2016-12-01

    Surging energy consumption and environmental concerns have stimulated interest in the production of chemicals and fuels through sustainable and renewable approaches. Fatty acid-based hydrocarbons, such as alkanes and alkenes, are of particular interest to directly replace fossil fuels. Towards this effort, understanding of hydrocarbon-producing enzymes is the first indispensable step to bio-production of hydrocarbons. Here, we review recent advances in the discovery and mechanistic study of enzymes capable of converting fatty acid precursors into hydrocarbons, and provide perspectives on the future of this rapidly growing field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. MERCURY-CONTAMINATED FISH AND ESSENTIAL FATTY ACIDS: PROBLEMS AND SOLUTIONS

    OpenAIRE

    Cropotova Janna; Popel Svetlana

    2012-01-01

    Fish consumption is an important part of human diet due to essential omega-3 fatty acids found naturally in this product. Many researchers from all over the world found that high mercury concentrations in the body reduced the heart-protective effects of the fatty acids in fish oils. People shouldn't be constrained by choosing between the health hazards related to toxins caused by industrial pollution and the nutritional benefits provided by consummation of essential fatty acids contained in o...

  20. Changes of cellular fatty acids of soil Actinobacteria producing antibiotics

    OpenAIRE

    LIPENSKÁ, Ivana

    2010-01-01

    Changes of cellular fatty acids in membrane of Actinobacteria. Changes of fatty acids are significant biomarkers of changing conditions of surroundings. This can also indicate production of antibiotics along with production of atypical fatty acids.

  1. Composition of amino acids, fatty acids and dietary fibre monomers ...

    African Journals Online (AJOL)

    Composition of amino acids, fatty acids and dietary fibre monomers in kernels of ... Nuts are rich in protein and essential amino acids, and have a high energy value ... of protein, especially when combined with foods with high lysine content.

  2. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Propylene glycol mono- and diesters of fats and... DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.856 Propylene glycol mono- and diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be...

  3. Trans Fatty Acids, HDL-cholesterol, and Cardiovascular Disease. Effects of Dietary Changes on Vascular Reactivity

    NARCIS (Netherlands)

    Roos, de N.M.; Schouten, E.G.; Katan, M.B.

    2003-01-01

    A high consumption of trans fatty acids increases the risk of cardiovascular disease (CVD). We investigeted whether this increase in risk was due to the decrease in serum HDL-cholesterol by trans fatty acids, because low concentrations of serum HDL-cholesterol also increase risk of CVD. Flow-mediate

  4. Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice

    Directory of Open Access Journals (Sweden)

    Carlos Rodriguez-Navas

    2016-08-01

    Conclusions: Our data suggest male and female brains, and not plasma, differ in their fatty acid profile. This is the first time, to our knowledge, lipidomic analyses has been used to directly test the hypothesis there is a sexual dimorphism in brain and plasma fatty acid composition following consumption of the chow diet, as well as following exposure to the WD.

  5. Position of the academy of nutrition and dietetics: dietary fatty acids for healthy adults.

    Science.gov (United States)

    Vannice, Gretchen; Rasmussen, Heather

    2014-01-01

    It is the position of the Academy of Nutrition and Dietetics (the Academy) that dietary fat for the healthy adult population should provide 20% to 35% of energy, with an increased consumption of n-3 polyunsaturated fatty acids and limited intake of saturated and trans fats. The Academy recommends a food-based approach through a diet that includes regular consumption of fatty fish, nuts and seeds, lean meats and poultry, low-fat dairy products, vegetables, fruits, whole grains, and legumes. These recommendations are made within the context of rapidly evolving science delineating the influence of dietary fat and specific fatty acids on human health. In addition to fat as a valuable and calorically dense macronutrient with a central role in supplying essential nutrition and supporting healthy body weight, evidence on individual fatty acids and fatty acid groups is emerging as a key factor in nutrition and health. Small variations in the structure of fatty acids within broader categories of fatty acids, such as polyunsaturated and saturated, appear to elicit different physiological functions. The Academy recognizes that scientific knowledge about the effects of dietary fats on human health is young and takes a prudent approach in recommending an increase in fatty acids that benefit health and a reduction in fatty acids shown to increase risk of disease. Registered dietitian nutritionists are uniquely positioned to translate fat and fatty acid research into practical and effective dietary recommendations. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  6. Comparative effects of n-3, n-6 and n-9 unsaturated fatty acid-rich diet consumption on lupus nephritis, autoantibody production and CD4+ T cell-related gene responses in the autoimmune NZBWF1 mouse.

    Science.gov (United States)

    Pestka, James J; Vines, Laura L; Bates, Melissa A; He, Kaiyu; Langohr, Ingeborg

    2014-01-01

    Mortality from systemic lupus erythematosus (SLE), a prototypical autoimmune disease, correlates with the onset and severity of kidney glomerulonephritis. There are both preclinical and clinical evidence that SLE patients may benefit from consumption of n-3 polyunsaturated fatty acids (PUFA) found in fish oil, but the mechanisms remain unclear. Here we employed the NZBWF1 SLE mouse model to compare the effects of dietary lipids on the onset and severity of autoimmune glomerulonephritis after consuming: 1) n-3 PUFA-rich diet containing docosahexaenoic acid-enriched fish oil (DFO), 2) n-6 PUFA-rich Western-type diet containing corn oil (CRN) or 3) n-9 monounsaturated fatty acid (MUFA)-rich Mediterranean-type diet containing high oleic safflower oil (HOS). Elevated plasma autoantibodies, proteinuria and glomerulonephritis were evident in mice fed either the n-6 PUFA or n-9 MUFA diets, however, all three endpoints were markedly attenuated in mice that consumed the n-3 PUFA diet until 34 wk of age. A focused PCR array was used to relate these findings to the expression of 84 genes associated with CD4+ T cell function in the spleen and kidney both prior to and after the onset of the autoimmune nephritis. n-3 PUFA suppression of autoimmunity in NZBWF1 mice was found to co-occur with a generalized downregulation of CD4+ T cell-related genes in kidney and/or spleen at wk 34. These genes were associated with the inflammatory response, antigen presentation, T cell activation, B cell activation/differentiation and leukocyte recruitment. Quantitative RT-PCR of representative affected genes confirmed that n-3 PUFA consumption was associated with reduced expression of CD80, CTLA-4, IL-10, IL-18, CCL-5, CXCR3, IL-6, TNF-α and osteopontin mRNAs in kidney and/or spleens as compared to mice fed n-6 PUFA or n-9 MUFA diets. Remarkably, many of the genes identified in this study are currently under consideration as biomarkers and/or biotherapeutic targets for SLE and other autoimmune

  7. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly.

    Science.gov (United States)

    Bates, Philip D; Johnson, Sean R; Cao, Xia; Li, Jia; Nam, Jeong-Won; Jaworski, Jan G; Ohlrogge, John B; Browse, John

    2014-01-21

    Degradation of unusual fatty acids through β-oxidation within transgenic plants has long been hypothesized as a major factor limiting the production of industrially useful unusual fatty acids in seed oils. Arabidopsis seeds expressing the castor fatty acid hydroxylase accumulate hydroxylated fatty acids up to 17% of total fatty acids in seed triacylglycerols; however, total seed oil is also reduced up to 50%. Investigations into the cause of the reduced oil phenotype through in vivo [(14)C]acetate and [(3)H]2O metabolic labeling of developing seeds surprisingly revealed that the rate of de novo fatty acid synthesis within the transgenic seeds was approximately half that of control seeds. RNAseq analysis indicated no changes in expression of fatty acid synthesis genes in hydroxylase-expressing plants. However, differential [(14)C]acetate and [(14)C]malonate metabolic labeling of hydroxylase-expressing seeds indicated the in vivo acetyl-CoA carboxylase activity was reduced to approximately half that of control seeds. Therefore, the reduction of oil content in the transgenic seeds is consistent with reduced de novo fatty acid synthesis in the plastid rather than fatty acid degradation. Intriguingly, the coexpression of triacylglycerol synthesis isozymes from castor along with the fatty acid hydroxylase alleviated the reduced acetyl-CoA carboxylase activity, restored the rate of fatty acid synthesis, and the accumulation of seed oil was substantially recovered. Together these results suggest a previously unidentified mechanism that detects inefficient utilization of unusual fatty acids within the endoplasmic reticulum and activates an endogenous pathway for posttranslational reduction of fatty acid synthesis within the plastid.

  8. Omega-3 fatty acid supplementation in horses

    OpenAIRE

    Tanja Hess; Trinette Ross-Jones

    2014-01-01

    Polyunsaturated omega-3 fatty acids (n-3 PUFA) are a family of essential fatty acids with many biological activities. These fatty acids are incorporated into cell membranes, changing their structural and functional characteristics. N-3 PUFA can act by modulating inflammatory responses at different levels. Omega-3 PUFA can be converted in the body to longer-chain n-3 PUFA at a limited rate and are differently converted in body systems. It appears that when specific longer-chain n-3 PUFA are de...

  9. Egg fatty acid composition from lake trout fed two Lake Michigan prey fish species.

    Science.gov (United States)

    Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.; Brown, S.B.

    2009-01-01

    We previously demonstrated that there were significant differences in the egg thiamine content in lake trout Salvelinus namaycush fed two Lake Michigan prey fish (alewife Alosa pseudoharengus and bloater Coregonus hoyi). Lake trout fed alewives produced eggs low in thiamine, but it was unknown whether the consumption of alewives affected other nutritionally important components. In this study we investigated the fatty acid composition of lake trout eggs when females were fed diets that resulted in different egg thiamine concentrations. For 2 years, adult lake trout were fed diets consisting of four combinations of captured alewives and bloaters (100% alewives; 65% alewives, 35% bloaters; 35% alewives, 65% bloaters; and 100% bloaters). The alewife fatty acid profile had higher concentrations of arachidonic acid and total omega-6 fatty acids than the bloater profile. The concentrations of four fatty acids (cis-13, 16-docosadienoic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were higher in bloaters than in alewives. Although six fatty acid components were higher in lake trout eggs in 2001 than in 2000 and eight fatty acids were lower, diet had no effect on any fatty acid concentration measured in lake trout eggs in this study. Based on these results, it appears that egg fatty acid concentrations differ between years but that the egg fatty acid profile does not reflect the alewife-bloater mix in the diet of adults. The essential fatty acid content of lake trout eggs from females fed alewives and bloaters appears to be physiologically regulated and adequate to meet the requirements of developing embryos.

  10. Egg fatty acid composition from lake trout fed two Lake Michigan prey fish species.

    Science.gov (United States)

    Honeyfield, Dale C; Fitzsimons, John D; Tillitt, Donald E; Brown, Scott B

    2009-12-01

    We previously demonstrated that there were significant differences in the egg thiamine content in lake trout Salvelinus namaycush fed two Lake Michigan prey fish (alewife Alosa pseudoharengus and bloater Coregonus hoyi). Lake trout fed alewives produced eggs low in thiamine, but it was unknown whether the consumption of alewives affected other nutritionally important components. In this study we investigated the fatty acid composition of lake trout eggs when females were fed diets that resulted in different egg thiamine concentrations. For 2 years, adult lake trout were fed diets consisting of four combinations of captured alewives and bloaters (100% alewives; 65% alewives, 35% bloaters; 35% alewives, 65% bloaters; and 100% bloaters). The alewife fatty acid profile had higher concentrations of arachidonic acid and total omega-6 fatty acids than the bloater profile. The concentrations of four fatty acids (cis-13, 16-docosadienoic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were higher in bloaters than in alewives. Although six fatty acid components were higher in lake trout eggs in 2001 than in 2000 and eight fatty acids were lower, diet had no effect on any fatty acid concentration measured in lake trout eggs in this study. Based on these results, it appears that egg fatty acid concentrations differ between years but that the egg fatty acid profile does not reflect the alewife-bloater mix in the diet of adults. The essential fatty acid content of lake trout eggs from females fed alewives and bloaters appears to be physiologically regulated and adequate to meet the requirements of developing embryos.

  11. Antiatherogenic effects of n-3 fatty acids - evidence and mechanisms

    Directory of Open Access Journals (Sweden)

    Antonella Zampolli

    2006-12-01

    Full Text Available N-3 (omega-3 (polyunsaturated fatty acids are thought to display a variety of beneficial effects for human health. Clues to the occurrence of cardiovascular protective effects have been, however, the spur for the first biomedical interest in these compounds, and are the best documented. Historically, the epidemiologic association between dietary consumption of n-3 fatty acids and cardiovascular protection was first suggested by Bang and Dyerberg, who identified the high consumption of fish, and therefore, of fish oil-derived n-3 fatty acids, as the likely explanation for the strikingly low rate of coronary heart disease events reported in the Inuit population. Since their initial reports, research has proceeded in parallel to provide further evidence for their cardioprotection and to understand underlying mechanisms. Decreased atherogenesis is currently thought to be a part of the cardiovascular protection by n-3 fatty acids. This article summarizes the evidence for such a claim and the mechanisms putatively involved. (Heart International 2006; 3-4: 141-54

  12. [Trans-fatty acids--effects on coronary heart disease].

    Science.gov (United States)

    Karbowska, Joanna; Kochan, Zdzisław

    2011-07-01

    Trans-fatty acids (TFA) are formed during the industrial process of hydrogenation of vegetable oils. The consumption of hydrogenated fats has increased significantly over the last few decades. In Poland, the average daily intake of TFA for adults was estimated to be 2.8 to 6.9 g; which greatly exceeds the recommended daily maximum of 2 g/day (less than 1% of total energy intake). Increasing trans-fatty acid intake has detrimental effects on the lipid profile: TFA raise total cholesterol, LDL-cholesterol and triglyceride concentrations, and decrease HDL-cholesterol levels. Moreover, dietary trans-fatty acids may increase plasma levels of lipoprotein (a) and biomarkers of inflammation and endothelial dysfunction. Several studies have demonstrated that a high intake of TFA is associated with an increased risk of coronary heart disease. In addition, TFA consumption has been implicated as an independent risk factor for sudden cardiac arrest. It is therefore necessary to reduce the intake of hydrogenated fats rich in trans-fatty acids in order to minimize the adverse effects of TFA on health.

  13. Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes.

    Science.gov (United States)

    Kim, Kyoung-Rok; Oh, Deok-Kun

    2013-12-01

    Hydroxy fatty acids are widely used in chemical, food, and cosmetic industries as starting materials for the synthesis of polymers and as additives for the manufacture of lubricants, emulsifiers, and stabilizers. They have antibiotic, anti-inflammatory, and anticancer activities and therefore can be applied for medicinal uses. Microbial fatty acid-hydroxylation enzymes, including P450, lipoxygenase, hydratase, 12-hydroxylase, and diol synthase, synthesize regio-specific hydroxy fatty acids. In this article, microbial fatty acid-hydroxylation enzymes, with a focus on region-specificity and diversity, are summarized and the production of mono-, di-, and tri-hydroxy fatty acids is introduced. Finally, the production methods of regio-specific and diverse hydroxy fatty acids, such as gene screening, protein engineering, metabolic engineering, and combinatory biosynthesis, are suggested. © 2013.

  14. Fatty Acid Composition of Meat from Ruminants, with Special Emphasis on trans Fatty Acids

    DEFF Research Database (Denmark)

    Leth, Torben; Ovesen, L.; Hansen, K.

    1998-01-01

    The fatty acid composition was determined in 39 samples of beef, 20 samples of veal, and 34 samples of lamb, representative of the supply of ruminant meat in Denmark. Five cuts of beef and veal and three cuts of lamb with increasing fat content were selected, and analysis of the fatty acid methyl...... esters was performed by gas-liquid chromatography (GLC) on a polar 50-m capillary column CP Sil 88 with flame-ionization detection. Lamb had the highest content of saturated fatty acids (52.8 +/- 1.8 g/100 g fatty acids), higher than beef and veal (45.3 +/- 3.1 and 45.4 +/- 0.8 g/100 g fatty acids...... of trans fatty acids from ruminant meat is estimated at 0.2 g/d....

  15. Omega-3 fatty acids: a novel resort against gastrointestinal injury.

    Science.gov (United States)

    Ianiro, G; Franceschi, F; Bibbò, S; Gasbarrini, A

    2014-10-01

    The integrity of gastric barrier derives from the balance between defending and damaging factors. In particular, prostaglandins play a relevant role in the maintenance of gastric homeostasis and prevention of peptic disease, at different levels. Omega-3 fatty acids, particularly eicosapentanoic acid, are the precursors of the third series of prostaglandins (with anti-inflammatory properties), also reducing the formation of the second series of prostaglandins (pro-inflammatory ones). Such a pathophysiological rationale brought to the experimental application, both in animal models and, more recently, in humans, of omega-3 fatty acids against gastrointestinal damage. Omega-3 fatty acids have shown interesting results in preventing different types of gastric damage in mouse models. A large retrospective case-control study on patients taking both anti-thrombotic therapy and eicosapentanoic acid showed (although only at unadjusted analysis) an inverse correlation between consumption of eicosapentanoic acid and gastrointestinal injury. Prospective, well-designed, comparative studies are warranted to clarify if omega-3 fatty acids may represent, or not, a novel resort against gastrointestinal injury.

  16. Olive oil consumption and non-alcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    Nimer Assy; Faris Nassar; Gattas Nasser; Maria Grosovski

    2009-01-01

    The clinical implications of non-alcoholic fatty liver diseases (NAFLD) derive from their potential to progress to fibrosis and cirrhosis. Inappropriate dietary fat intake, excessive intake of soft drinks, insulin resistance and increased oxidative stress results in increased free fatty acid delivery to the liver and increased hepatic triglyceride (TG) accumulation. An olive oil-rich diet decreases accumulation of TGs in the liver, improves postprandial TGs, glucose and glucagonlike peptide-1 responses in insulin-resistant subjects, and upregulates glucose transporter-2 expression in the liver. The principal mechanisms include: decreased nuclear factor-kappaB activation, decreased lowdensity lipoprotein oxidation, and improved insulin resistance by reduced production of inflammatory cytokines (tumor necrosis factor, interleukin-6) and improvement of jun N-terminal kinase-mediated phosphorylation of insulin receptor substrate-1. The beneficial effect of the Mediterranean diet is derived from monounsaturated fatty acids, mainly from olive oil. In this review, we describe the dietary sources of the monounsaturated fatty acids, the composition of olive oil, dietary fats and their relationship to insulin resistance and postprandial lipid and glucose responses in non-alcoholic steatohepatitis, clinical and experimental studies that assess the relationship between olive oil and NAFLD, and the mechanism by which olive oil ameliorates fatty liver, and we discuss future perspectives.

  17. Antisense technologies targeting fatty acid synthetic enzymes.

    Science.gov (United States)

    Lin, Jinshun; Liu, Feng; Jiang, Yuyang

    2012-05-01

    Fatty acid synthesis is a coordinated process involving multiple enzymes. Overexpression of some of these enzymes plays important roles in tumor growth and development. Therefore, these enzymes are attractive targets for cancer therapies. Antisense agents provide highly specific inhibition of the expression of target genes and thus have served as powerful tools for gene functional studies and potential therapeutic agents for cancers. This article reviews different types of antisense agents and their applications in the modulation of fatty acid synthesis. Patents of antisense agents targeting fatty acid synthetic enzymes are introduced. In addition, miR-122 has been shown to regulate the expression of fatty acid synthetic enzymes, and thus antisense agent patents that inhibit miR-122 expression are also discussed.

  18. Introduction to fatty acids and lipids.

    Science.gov (United States)

    Burdge, Graham C; Calder, Philip C

    2015-01-01

    The purpose of this article is to describe the structure, function and metabolism of fatty acids and lipids that are of particular importance in the context of parenteral nutrition. Lipids are a heterogeneous group of molecules that share the common property of hydrophobicity. Lipids range in structure from simple short hydrocarbon chains to more complex molecules, including triacylglycerols, phospholipids and sterols and their esters. Lipids within each class may differ structurally. Fatty acids are common components of complex lipids, and these differ according to chain length and the presence, number and position of double bonds in the hydrocarbon chain. Structural variation among complex lipids and among fatty acids gives rise to functional differences that result in different impacts upon metabolism and upon cell and tissue responses. Fatty acids and complex lipids exhibit a variety of structural variations that influence their metabolism and their functional effects.

  19. Fatty Acid Composition of Meat from Ruminants, with Special Emphasis on trans Fatty Acids

    DEFF Research Database (Denmark)

    Leth, Torben; Ovesen, L.; Hansen, K.

    1998-01-01

    esters was performed by gas-liquid chromatography (GLC) on a polar 50-m capillary column CP Sil 88 with flame-ionization detection. Lamb had the highest content of saturated fatty acids (52.8 +/- 1.8 g/100 g fatty acids), higher than beef and veal (45.3 +/- 3.1 and 45.4 +/- 0.8 g/100 g fatty acids...

  20. Dietary omega-3 fatty acids for women.

    Science.gov (United States)

    Bourre, Jean-Marie

    2007-01-01

    This review details the specific needs of women for omega-3 fatty acids, including alpha linoleic acid (ALA) and the very long chain fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Omega-3 fatty acid (dietary or in capsules) ensures that a woman's adipose tissue contains a reserve of these fatty acids for the developing fetus and the breast-fed newborn infant. This ensures the optimal cerebral and cognitive development of the infant. The presence of large quantities of EPA and DHA in the diet slightly lengthens pregnancy, and improves its quality. Human milk contains both ALA and DHA, unlike that of other mammals. Conditions such as diabetes can alter the fatty acid profile of mother's milk, while certain diets, like those of vegetarians, vegans, or even macrobiotic diets, can have the same effect, if they do not include seafood. ALA, DHA and EPA, are important for preventing ischemic cardiovascular disease in women of all ages. Omega-3 fatty acids can help to prevent the development of certain cancers, particularly those of the breast and colon, and possibly of the uterus and the skin, and are likely to reduce the risk of postpartum depression, manic-depressive psychosis, dementias (Alzheimer's disease and others), hypertension, toxemia, diabetes and, to a certain extend, age-related macular degeneration. Omega-3 fatty acids could play a positive role in the prevention of menstrual syndrome and postmenopausal hot flushes. The normal western diet contains little ALA (less than 50% of the RDA). The only adequate sources are rapeseed oil (canola), walnuts and so-called "omega-3" eggs (similar to wild-type or Cretan eggs). The amounts of EPA and DHA in the diet vary greatly from person to person. The only good sources are fish and seafood, together with "omega-3" eggs.

  1. [Elimination of all trans fatty acids].

    Science.gov (United States)

    Katan, M B

    2008-02-09

    At the start of the 20th century, the production of trans fatty acids was originally largely driven by the increasing demand for margarine. The two Dutch margarine firms Van den Bergh and Jurgens played an important role in this early development. In the early 1990s it was shown that trans fatty acids increase the risk of heart disease. Unilever, the successor to Van den Bergh and Jurgens, then took the lead in eliminating trans fatty acids from retail foods worldwide. As a result, intake in The Netherlands fell from 15 g per day in 1980 to 3 g per day in 2003. Dairy products and meat are now the major source of trans fatty acids. The effects on health of these ruminant trans fatty acids are unclear. There are three lessons to be learned from the rise and fall of trans fatty acids. First, a history of safe use does not guarantee safety of food components, because routine surveillance will fail to detect adverse effects on common illnesses with long incubation periods. Second, it shows that it is more effective and easier to change the composition of foods than to change consumer behaviour. And third, governments can have a major impact on consumers' health by mandating the use of healthier food ingredients.

  2. Fatty acid oxidation and ketogenesis in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Auestad, N.

    1988-01-01

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO{sub 2} in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO{sub 2} and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and {omega}-terminal carbons, indicating that fatty acids were oxidized by {beta}-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the {omega}-terminal 4-carbon unit of the fatty acids bypassed the {beta}-ketothiolase step of the {beta}-oxidation pathway. The ({sup 14}C)acetoacetate formed from the (1-{sup 14}C)labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the ({sup 14}C)acetoacetate formed from the ({omega}-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1.

  3. Analysis of Fatty Acid Content and Composition in Microalgae

    NARCIS (Netherlands)

    Breuer, G.; Evers, W.A.C.; Vree, de J.H.; Kleinegris, D.M.M.; Martens, D.E.; Wijffels, R.H.; Lamers, P.P.

    2013-01-01

    A method to determine the content and composition of total fatty acids present in microalgae is described. Fatty acids are a major constituent of microalgal biomass. These fatty acids can be present in different acyl-lipid classes. Especially the fatty acids present in triacylglycerol (TAG) are of c

  4. [Biology of essential fatty acids (EFA)].

    Science.gov (United States)

    Dobryniewski, Jacek; Szajda, Sławomir Dariusz; Waszkiewicz, Napoleon; Zwierz, Krzysztof

    2007-01-01

    Essential Fatty Acids (EFA), are unsaturated fatty acids not produced by human being, but essential for proper functioning of the human body. To EFA-s belongs: linoleic acid (LA) (18:2,cis detla(9,12), omega6)--precursor o f gamma-linolenic acid (GLA), gamma-linolenic acid (GLA) (18:3,cisA6,9,12, )6) and alpha-linolenic acid (ALA)(18:3,cisdelta(9, 12, 15), omega3)--product of dehydrogenation of linoleic acid (LA). Most important EFA is gamma-linolenic acid (GLA)--18 carbons, one-carboxylic, non-branched fatty acid with 3 double cis-bonds (the last is situated by 6-th carbon from methylic end). The diet devoided of EFA leads to decreased growth, skin and kidney injury and infertility. Modern research of GLA and others EFA's is concerned mainly on therapeutic impact on the inflammatory process. The biogenic amines, cytokines, prostaglandins, tromboxanes and leukotrienes are the main inflammatory mediators. The last three are described with the common name eicosanoides (eico-twenty). Eicosanoides are synthesized from 20-carbon unsaturated fatty acids: dihomo-gamma-linoleic (DGLA) (20:3, cis delta(8,11,14), omega6), arachidonic acid (AA-20:4, cis delta(5,8,11,14), omega6), and eicosapentaenoic acid (EPA-20:5, cis delta(5,8,11,14,17, omega3). Derivatives of gamma and gamma-linolenic acids regulate the inflammatory process, through their opposed activity. PG2, leucotrien C4 and tromboxan A2 have the strongest proinflammatory action. Derivatives of alpha-linolenic acid 15-HETE and prostaglandin E1 (PGE1) have weak pro-inflammatory action, or even anti-inflammatory (PGE1), and additionally, they inhibit the transformation of arachidonic acid (AA) to leukotriens. delta6-desaturase (transformes linolenic acid into gamma-linolenic acid by making additional double bond) is the slowest step of the fatty acid metabolism. It's activity is impaired by many physiological and pathologic factors and leads to gamma-linolenic acid (GLA) deficiency. The gamma-linolenic acid

  5. Histone Deacetylase Inhibition and Dietary Short-Chain Fatty Acids

    OpenAIRE

    Licciardi, Paul V.; Ververis, Katherine; Karagiannis, Tom C.

    2011-01-01

    Changes in diet can also have dramatic effects on the composition of gut microbiota. Commensal bacteria of the gastrointestinal tract are critical regulators of health and disease by protecting against pathogen encounter whilst also maintaining immune tolerance to certain allergens. Moreover, consumption of fibre and vegetables typical of a non-Western diet generates substantial quantities of short-chain fatty acids (SCFAs) which have potent anti-inflammatory properties. Dietary interventions...

  6. Omega 3 fatty acids and the eye.

    Science.gov (United States)

    Cakiner-Egilmez, Tulay

    2008-01-01

    The health benefits of fish oil have been known for decades. Most of the health benefits of fish oil can be attributed to the presence of omega-3 essential fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Clinical studies have suggested that DHA and EPA lower triglycerides; slow the buildup of atherosclerotic plaques; lower blood pressure slightly; as well as reduce the risk of death, heart attack, and arrhythmias. Studies have also shown that omega-3 fatty acids may slow the progression of vision loss from AMD and reverse the signs of dry eye syndrome.

  7. Expression of fatty acid synthase in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Dorn, Christoph; Riener, Marc-Oliver; Kirovski, Georgi; Saugspier, Michael; Steib, Kathrin; Weiss, Thomas S; Gäbele, Erwin; Kristiansen, Glen; Hartmann, Arndt; Hellerbrand, Claus

    2010-03-25

    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD.

  8. Palladium Catalysts for Fatty Acid Deoxygenation: Influence of the Support and Fatty Acid Chain Length on Decarboxylation Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Ford, JP; Immer, JG; Lamb, HH

    2012-03-29

    Supported metal catalysts containing 5 wt% Pd on silica, alumina, and activated carbon were evaluated for liquid-phase deoxygenation of stearic (octadecanoic), lauric (dodecanoic), and capric (decanoic) acids under 5 % H-2 at 300 A degrees C and 15 atm. On-line quadrupole mass spectrometry (QMS) was used to measure CO + CO2 yield, CO2 selectivity, H-2 consumption, and initial decarboxylation rate. Post-reaction analysis of liquid products by gas chromatography was used to determine n-alkane yields. The Pd/C catalyst was highly active and selective for stearic acid (SA) decarboxylation under these conditions. In contrast, SA deoxygenation over Pd/SiO2 occurred primarily via decarbonylation and at a much slower rate. Pd/Al2O3 exhibited high initial SA decarboxylation activity but deactivated under the test conditions. Similar CO2 selectivity patterns among the catalysts were observed for deoxygenation of lauric and capric acids; however, the initial decarboxylation rates tended to be lower for these substrates. The influence of alkyl chain length on deoxygenation kinetics was investigated for a homologous series of C-10-C-18 fatty acids using the Pd/C catalyst. As fatty acid carbon number decreases, reaction time and H-2 consumption increase, and CO2 selectivity and initial decarboxylation rate decrease. The increase in initial decarboxylation rates for longer chain fatty acids is attributed to their greater propensity for adsorption on the activated carbon support.

  9. [Omega-3 fatty acids in psychiatry].

    Science.gov (United States)

    Bourre, Jean-Marie

    2005-02-01

    The brain is one of the organs with the highest level of lipids (fats). Brain lipids, formed of fatty acids, participate in the structure of membranes, for instance 50 % fatty acids are polyunsaturated in the gray matter, 1/3 are of the omega-3 family, and are thus of dietary origin. The omega-3 fatty acids (mainly alpha-linolenic acid, ALA) participated in one of the first experimental demonstration of the effect of dietary substances (nutrients) on the structure and function of the brain. Experiments were first of all carried out on ex vivo cultured brain cells, then on in vivo brain cells (neurons, astrocytes and oligodendrocytes) from animals fed ALA deficient diet, finally on physicochemical (membrane fluidity), biochemical, physiological, neurosensory (vision an auditory responses), and behavioural or learning parameters. These findings indicated that the nature of polyunsaturated fatty acids (in particular omega-3) present in formula milks for human infants determines to a certain extend the visual, neurological, and intellectual abilities. Thus, in view of these results and of the high polyunsaturated fatty acid content of the brain, it is normal to consider that they could be involved in psychiatric diseases and in the cognitive decline of ageing. Omega-3 fatty acids appear effective in the prevention of stress, however their role as regulator of mood is a matter for discussion. Indeed, they play a role in the prevention of some disorders including depression (especially post partum), as well as in dementia, particularly Alzheimer's disease. Their role in major depression and bipolar disorder (manic-depressive disease), only poorly documented, is not clearly demonstrated. The intervention of omega-3 in dyslexia, autism, and schizophrenia has been suggested, but it does not necessarily infer a nutritional problems. The respective importance of the vascular system (where the omega-3 are actually active) and the cerebral parenchyma itself, remain to be

  10. Production of unusual fatty acids in rapeseed

    Directory of Open Access Journals (Sweden)

    Roscoe Thomas

    2002-01-01

    Full Text Available Vegetable-derived oils are of interest for industrial applications partly because of the chemical similarity of plant oils to mineral oils but also because of the economic need to reduce overproduction of seed oils for nutritional use. Complex oils can be produced in seeds as a low cost agricultural product based on renewable solar energy that requires less refining and is biodegradable and thus produces less adverse effects on the environment. In addition, biotechnologies have accelerated selection programmes and increased the genetic diversity available for the development of new varieties of oilseeds with specific fatty acid compositions. In the developing oilseed, energy and carbon are stored as lipid under the form of triacylglycerol, that is, a glycerol molecule to which three fatty acids are esterified. Fatty acids comprise a linear chain of carbon atoms, the first of which carries an organic acid group. The chain length and the presence of double bonds determine the properties of the fatty acid which in turn determine the physical and chemical properties of the oil of storage lipids and hence their economic value. In addition to the common C16- and C18-saturated and unsaturated fatty acids of membrane lipids, the seed storage lipids of many plant species contain unusual fatty acids (UFAs which can vary in chain length, in the degree of unsaturation, possess double bonds in unusual positions, or can contain additional functional groups such as hydroxy, epoxy, cyclic and acetylenic groups [1]. These unusual fatty acids are of value as industrial feedstocks and their uses include the production of fuels and lubricants, soap and detergents, paints and varnishes, adhesives and plastics (Figure 1.

  11. Digestion and absorption of fatty acids in the ruminant

    OpenAIRE

    Cuvelier, Christine; Cabaraux, Jean-François; Dufrasne, Isabelle; Istasse, Louis; Hornick, Jean-Luc

    2005-01-01

    From a biochemical point of view, in ruminants, there are two major groups of fatty acids. They are firstly the volatile fatty acids from the rumen metabolism of dietary carbohydrates, and secondly the fatty acids from the rumen metabolism of lipids. This second group is made of the fatty acids synthesized by the microorganisms of the rumen and the fatty acids originating from the hydrolysis of dietary triacylglycerols, which are mostly hydrogenated by microorganisms in the rumen before intes...

  12. Amino and fatty acids in carbonaceous meteorites

    Science.gov (United States)

    Kvenvolden, K. A.

    1974-01-01

    Analyses of two carbonaceous meteorites have provided much of the latest evidence which seems to support Oparin's theory on the origin of life. The meteorites involved are the Murray meteorite, which fell in 1950, and the Murchison meteorite, which fell in 1969. The amino acids in the two meteorites are similar in composition. Eight of the twenty amino acids found belong to amino acids present in proteins. A number of monocarboxylic and dicarboxylic fatty acids were also found in the meteorites.

  13. Proportions of rumen volatile fatty acids in relation to milk fatty acid profiles

    NARCIS (Netherlands)

    Vlaeminck, B.; Fievez, V.; Dhanoa, M.S.; Vuuren, van A.M.; Dewhurst, R.J.

    2003-01-01

    Three experiments were conducted in order to develop and validate principal component (PC) regressions for predicting rumen volatile fatty acid (VFA) proportions, based on a combination of milk odd and branched chain fatty acids (MOBCFA). Grass- or legume silage and concentrate-based diets were fed

  14. Towards sustainable sources for omega-3 fatty acids production.

    Science.gov (United States)

    Adarme-Vega, T Catalina; Thomas-Hall, Skye R; Schenk, Peer M

    2014-04-01

    Omega-3 fatty acids eicosapentaenoic acid (EPA) and docohexaenoic acid (DHA), provide significant health benefits for brain function/development and cardiovascular conditions. However, most EPA and DHA for human consumption is sourced from small fatty fish caught in coastal waters and, with depleting global fish stocks, recent research has been directed towards more sustainable sources. These include aquaculture with plant-based feeds, krill, marine microalgae, microalgae-like protists and genetically-modified plants. To meet the increasing demand for EPA and DHA, further developments are needed towards land-based sources. In particular large-scale cultivation of microalgae and plants is likely to become a reality with expected reductions in production costs, yield increasese and the adequate addressing of genetically modified food acceptance issues.

  15. Molar extinction coefficients of some fatty acids

    Science.gov (United States)

    Sandhu, G. K.; Singh, Kulwant; Lark, B. S.; Gerward, L.

    2002-10-01

    The attenuation of gamma rays in some fatty acids, viz. formic acid (CH 2O 2), acetic acid (C 2H 4O 2), propionic acid (C 3H 6O 2), butyric acid (C 4H 8O 2), n-hexanoic acid (C 6H 12O 2), n-caprylic acid (C 8H 16O 2), lauric acid (C 12H 24O 2), myristic acid (C 14H 28O 2), palmitic acid (C 16H 32O 2), oleic acid (C 18H 34O 2) and stearic acid (C 18H 36O 2), has been measured at the photon energies 81, 356, 511, 662, 1173 and 1332 keV. Experimental values for the molar extinction coefficient, the effective atomic number and the electron density have been derived and compared with theoretical calculations. There is good agreement between experiment and theory.

  16. [Fatty acids composition of the marine snails Phyllonotus pomum and Chicoreus brevifrons (Muricidae)].

    Science.gov (United States)

    D'Armas, Haydelba; Yáñez, Dayanis; Reyes, Dilia; Salazar, Gabriel

    2010-06-01

    Muricid species of P. pomum and C. brevifrons are of economic importance in the Caribbean. This study includes a comparative evaluation of fatty acid content in the total lipid composition of Phyllonotus pomum and Chicoreus brevifrons. Snail samples were collected during the rainy, dry and transition seasons, in Punta Arena, Sucre (Venezuela). Total lipids were extracted and the specific fatty acid contents were analyzed by gas chromatography. Lipid concentrations varied between 0.87 and 1.85%, with minimum and maximum values corresponding to C. brevifrons collected during rainy and dry seasons, respectively. In the case of total lipids, a high concentration of unsaturated fatty acids (57.21-70.05%) was observed followed by saturated fatty acids (20.33-31.94%), during all seasons. The polyunsaturated occurred in higher proportion among the unsaturated fatty acids, except for P. pomum which showed higher proportion of monounsaturated fatty acids (38.95%) during the transition season. The prevailing fatty acids were: C14:0, C16:0, C18:0, C20:1, C22:1 omega-11, C22:1 omega-9, C18:3 omega-3, C20:5 omega-3 and C22:6 omega-3, among which docosahexaenoic acid was the predominant polyunsaturated fatty acid, showing values between 4.62 and 33.11%. The presence of high concentrations of polyunsaturated fatty acids found in P. Pomum and C. brevifrons allow their recommendation for human consumption with appropriate resource utilization.

  17. Production of hydroxylated fatty acids in genetically modified plants

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, Chris (Portola Valley, CA); Broun, Pierre (Burlingame, CA); van de Loo, Frank (Weston, AU); Boddupalli, Sekhar S. (Manchester, MI)

    2011-08-23

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  18. Dietary trans-fatty acids and metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Zdzisław Kochan

    2010-12-01

    Full Text Available Trans-fatty acids (TFAs, products of partial hydrogenation of vegetable oils, have become more prevalent in our diet since the 1960s, when they replaced animal fats. TFAs also occur naturally in meat and dairy products from ruminants. There is growing evidence that dietary trans-fatty acids may increase the risk of metabolic syndrome. Several studies have demonstrated adverse effects of TFAs on plasma lipids and lipoproteins. In dietary trials, trans-fatty acids have been shown to raise the total cholesterol/HDL cholesterol ratio and Lp(a levels in blood. Moreover, a high intake of TFAs has been associated with an increased risk of coronary heart disease. Prospective cohort studies have shown that dietary trans-fatty acids promote abdominal obesity and weight gain. In addition, it appears that TFA consumption may be associated with the development of insulin resistance and type 2 diabetes. The documented adverse health effects of TFAs emphasise the importance of efforts to reduce the content of partially hydrogenated vegetable oils in foods.

  19. Original Research: Effect of various dietary fats on fatty acid profile in duck liver: Efficient conversion of short-chain to long-chain omega-3 fatty acids.

    Science.gov (United States)

    Chen, Xi; Du, Xue; Shen, Jianliang; Lu, Lizhi; Wang, Weiqun

    2017-01-01

    Omega-3 fatty acids, especially long-chain omega-3 fatty acids, have been associated with potential health benefits for chronic disease prevention. Our previous studies found that dietary omega-3 fatty acids could accumulate in the meat and eggs in a duck model. This study was to reveal the effects of various dietary fats on fatty acid profile and conversion of omega-3 fatty acids in duck liver. Female Shan Partridge Ducks were randomly assigned to five dietary treatments, each consisting of 6 replicates of 30 birds. The experimental diets substituted the basal diet by 2% of flaxseed oil, rapeseed oil, beef tallow, or fish oil, respectively. In addition, a dose response study was further conducted for flaxseed and fish oil diets at 0.5%, 1%, and 2%, respectively. At the end of the five-week treatment, fatty acids were extracted from the liver samples and analyzed by GC-FID. As expected, the total omega-3 fatty acids and the ratio of total omega-3/omega-6 significantly increased in both flaxseed and fish oil groups when compared with the control diet. No significant change of total saturated fatty acids or omega-3 fatty acids was found in both rapeseed and beef tallow groups. The dose response study further indicated that 59-81% of the short-chain omega-3 ALA in flaxseed oil-fed group was efficiently converted to long-chain DHA in the duck liver, whereas 1% of dietary flaxseed oil could produce an equivalent level of DHA as 0.5% of dietary fish oil. The more omega-3 fatty acids, the less omega-6 fatty acids in the duck liver. Taken together, this study showed the fatty acid profiling in the duck liver after various dietary fat consumption, provided insight into a dose response change of omega-3 fatty acids, indicated an efficient conversion of short- to long-chain omega-3 fatty acid, and suggested alternative long-chain omega-3 fatty acid-enriched duck products for human health benefits.

  20. Therapeutic Benefits Of ?-3 Fatty Acids from Fish

    OpenAIRE

    Samanta S Khora

    2013-01-01

    Fatty acids play important roles in human nutrition and disease management. Fish are rich in Omega-3 Long Chain Polyunsaturated Fatty Acids (LC- PUFAs). Marine fish are the best source of these fatty acids. They typically include eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The major health maintenance and prevention of diseases recognized in EPA and DHA. These forms of fatty acids have excellent body usability com...

  1. Unusual fatty acid substitution in lipids and lipopolysaccharides of Helicobacter pylori.

    OpenAIRE

    Geis, G; Leying, H; Suerbaum, S; Opferkuch, W

    1990-01-01

    Cellular fatty acids, phospholipid fatty acids, and lipopolysaccharide fatty acids of four strains of Helicobacter pylori were analyzed by gas-liquid chromatography. The presence of myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, 19-carbon cyclopropane fatty acid, beta-hydroxypalmitic acid, and beta-hydroxystearic acid was confirmed. In phospholipids, myristic acid and 19-carbon cyclopropane fatty acid were the major fatty acids. Hydroxy fatty acids and unsaturated fatt...

  2. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    Science.gov (United States)

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-01

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  3. Hepatic Fasting-Induced PPARα Activity Does Not Depend on Essential Fatty Acids.

    Science.gov (United States)

    Polizzi, Arnaud; Fouché, Edwin; Ducheix, Simon; Lasserre, Frédéric; Marmugi, Alice P; Mselli-Lakhal, Laila; Loiseau, Nicolas; Wahli, Walter; Guillou, Hervé; Montagner, Alexandra

    2016-09-24

    The liver plays a central role in the regulation of fatty acid metabolism, which is highly sensitive to transcriptional responses to nutrients and hormones. Transcription factors involved in this process include nuclear hormone receptors. One such receptor, PPARα, which is highly expressed in the liver and activated by a variety of fatty acids, is a critical regulator of hepatic fatty acid catabolism during fasting. The present study compared the influence of dietary fatty acids and fasting on hepatic PPARα-dependent responses. Pparα(-/-) male mice and their wild-type controls were fed diets containing different fatty acids for 10 weeks prior to being subjected to fasting or normal feeding. In line with the role of PPARα in sensing dietary fatty acids, changes in chronic dietary fat consumption influenced liver damage during fasting. The changes were particularly marked in mice fed diets lacking essential fatty acids. However, fasting, rather than specific dietary fatty acids, induced acute PPARα activity in the liver. Taken together, the data imply that the potent signalling involved in triggering PPARα activity during fasting does not rely on essential fatty acid-derived ligand.

  4. Prevalent mutations in fatty acid oxidation disorders

    DEFF Research Database (Denmark)

    Gregersen, N; Andresen, B S; Bross, P

    2000-01-01

    UNLABELLED: The mutational spectrum in a given disease-associated gene is often comprised of a large number of different mutations, of which a single or a few are present in a large proportion of diseased individuals. Such prevalent mutations are known in four genes of the fatty acid oxidation: t...... of the disease in question and determination of the carrier frequency in the general population may help in elucidating the penetrance of the genotype. This is exemplified in disorders of mitochondrial fatty acid oxidation....

  5. Fatty acids, eicosanoids and PPAR gamma.

    Science.gov (United States)

    Marion-Letellier, Rachel; Savoye, Guillaume; Ghosh, Subrata

    2016-08-15

    Peroxisome proliferator-activated receptor γ (PPARγ) belongs to the family of nuclear nuclear receptors and is mainly expressed in adipose tissue, hematopoietic cells and the large intestine. Contrary to other nuclear receptors that mainly bind a single specific ligand, there are numerous natural PPARγ ligands, in particular fatty acids or their derivatives called eicosanoids. PPARγ have pleiotropic functions: (i) glucose and lipid metabolism regulation, (ii) anti-inflammatory properties, (iii) oxidative stress inhibition, (iv) improvement of endothelial function. Its role has been mainly studied by the use synthetic agonists. In this review, we will focus on the effects of PPARγ mediated through fatty acids and how these have beneficial health properties.

  6. SLC27 fatty acid transport proteins.

    Science.gov (United States)

    Anderson, Courtney M; Stahl, Andreas

    2013-01-01

    The uptake and metabolism of long chain fatty acids (LCFA) are critical to many physiological and cellular processes. Aberrant accumulation or depletion of LCFA underlie the pathology of numerous metabolic diseases. Protein-mediated transport of LCFA has been proposed as the major mode of LCFA uptake and activation. Several proteins have been identified to be involved in LCFA uptake. This review focuses on the SLC27 family of fatty acid transport proteins, also known as FATPs, with an emphasis on the gain- and loss-of-function animal models that elucidate the functions of FATPs in vivo and how these transport proteins play a role in physiological and pathological situations.

  7. Fatty acid composition of forage herb species

    DEFF Research Database (Denmark)

    Warner, D.; Jensen, Søren Krogh; Cone, J.W.

    2010-01-01

    The use of alternative forage species in grasslands for intensive livestock production is receiving renewed attention. Data on fatty acid composition of herbs are scarce, so four herbs (Plantago lanceolata, Achillea millefolium, Cichorium intybus, Pastinaca sativa) and one grass species (timothy......, Phleum pratense) were sown in a cutting trial. The chemical composition and concentration of fatty acids (FA) of individual species were determined during the growing season. Concentrations of crude protein and FA were generally higher in the herbs than in timothy. C. intybus had the highest nutritive...

  8. Fatty acids and coronary heart disease

    OpenAIRE

    Woodside, J.V.; Kromhout, D

    2005-01-01

    During the last century much evidence has accumulated to suggest that from a public health perspective the type of fat is more important than the amount of fat. Saturated and trans-fatty acids increase and both n-6 and n-3 PUFA decrease the risk of CHD. Most of the knowledge about the effects of dietary fatty acids on CHD risk is based on observational studies and controlled dietary experiments with intermediate end points (e.g. blood lipoprotein fractions). Information from high-quality rand...

  9. Effect of lipid supplementation on milk fatty acid focus on rumenic acid.

    Directory of Open Access Journals (Sweden)

    Esperanza Prieto-Manrique

    2016-06-01

    Full Text Available The aim of this study was to review the effect of the lipid supplementation on the concentration of conjugated linoleic acid (CLA-c9t11 or rumenic acid and other unsaturated fatty acids in bovine milk. The study addressed the concept and origin of the CLA-c9t11 in ruminants. There is an international trend to improve nutrition quality , which implies an increase in consumption of animal protein, including the healthy and rich in CLA-c9t11 dairy products. CLA-c9t11 has proved to have anticancer effects in animal models. CLA-c9t11 in the bovine milk results from the consumption of unsaturated fatty acids and from the extent of rumen biohydrogenation. Supplementation with unsaturated fatty acids of vegetable origin allows to increase the concentration of CLA-c9t11 and to decrease the proportion of saturated fatty acids in milk, but the response varies depending on the source of fat used, its level, and its interaction with basal diet

  10. Technological Aspects of Chemoenzymatic Epoxidation of Fatty Acids, Fatty Acid Esters and Vegetable Oils: A Review

    Directory of Open Access Journals (Sweden)

    Eugeniusz Milchert

    2015-12-01

    Full Text Available The general subject of the review is analysis of the effect of technological parameters on the chemoenzymatic epoxidation processes of vegetable oils, fatty acids and alkyl esters of fatty acids. The technological parameters considered include temperature, concentration, amount of hydrogen peroxide relative to the number of unsaturated bonds, the amounts of enzyme catalysts, presence of solvent and amount of free fatty acids. Also chemical reactions accompanying the technological processes are discussed together with different technological options and significance of the products obtained.

  11. Bioengineered Plants Can Be a Useful Source of Omega-3 Fatty Acids

    Directory of Open Access Journals (Sweden)

    Waleed Amjad Khan

    2017-01-01

    Full Text Available Omega-3 fatty acids have proven to be very essential for human health due to their multiple health benefits. These essential fatty acids (EFAs need to be uptaken through diet because they are unable to be produced by the human body. These are important for skin and hair growth as well as for proper visual, neural, and reproductive functions of the body. These fatty acids are proven to be extremely vital for normal tissue development during pregnancy and infancy. Omega-3 fatty acids can be obtained mainly from two dietary sources: marine and plant oils. Eicosapentaenoic acid (EPA; C20:5 n-3 and docosahexaenoic acid (DHA; C22:6 n-3 are the primary marine-derived omega-3 fatty acids. Marine fishes are high in omega-3 fatty acids, yet high consumption of those fishes will cause a shortage of fish stocks existing naturally in the oceans. An alternative source to achieve the recommended daily intake of EFAs is the demand of today. In this review article, an attempt has, therefore, been made to discuss the importance of omega-3 fatty acids and the recent developments in order to produce these fatty acids by the genetic modifications of the plants.

  12. Saturated fatty acids are not off the hook.

    Science.gov (United States)

    Dawczynski, C; Kleber, M E; März, W; Jahreis, G; Lorkowski, S

    2015-12-01

    A recent meta-analysis by Chowdhury et al. (2014) has disclaimed the association between coronary artery diseases and either circulating blood levels or the intake of total saturated fatty acids (SFA). Scrutiny revealed that two of the eight studies included in the meta-analysis focused on the proportion of pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) and their impact on cardiovascular disease (CVD) risk. These odd-chain fatty acids are markers for milk or ruminant fat intake. Both studies indicated inverse associations between milk-fat intake and first-ever myocardial infarction. Neither of the two studies described the association between total circulating blood SFA on coronary outcomes. In contrast to the cardioprotective effects of dairy consumption, we expected that an elevated intake of palmitic acid (C16:0) and stearic acid (C18:0) de novo may raise CVD risk. Thus, it is of particular importance to differentiate the effects of individual circulating SFA on cardiovascular outcomes. Excluding the studies that evaluated the association of fatty acids from milk fat and cardiovascular outcomes revealed a positive association of total SFA blood levels and coronary outcome (RR 1.21, CI 1.04-1.40). Therefore, results obtained from studies of C15:0 and C17:0 cannot be mixed with results from studies of other SFA because of the opposite physiological effects of regular consumption of foods rich in C16:0 and C18:0 compared to high intake of milk or ruminant fat. In our opinion, it is vital to analyze the impact of individual SFA on CVD incidence in order to draw prudent conclusions. Copyright © 2015 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  13. Fatty Acids as Surfactants on Aerosol Particles

    Science.gov (United States)

    Tervahattu, H.; Juhanoja, J.; Niemi, J.

    2003-12-01

    Fatty acids (n-alcanoic acids) are common compounds in numerous anthropogenic and natural emissions. According to Rogge et al. (1993), catalyst-equipped automobiles emitted more than 600 μg km-1 of fatty acids which was over 50% of all identified organics in fine aerosol emissions. Coal burning produces fatty acids ranging from about 1700 mg kg-1 for bituminous coal to over 10000 mg kg-1 for lignite (Oros and Simoneit, 2000). Similarly, biomass burning is an important source for aerosol fatty acids. They are the major identified compound group in deciduous tree smoke, their total emission factor being measured as 1589 mg kg-1 which was 56% of all identified organic compounds (Oros and Simoneit, 2001a). Large amounts of fatty acid are also emitted from burning of conifer trees and grass (Oros and Simoneit, 2001a; Simoneit, 2002). Fatty acids have been reported to be major constituents of marine aerosols in many investigations (Barger and Garrett, 1976; Gagosian et. al, 1981; Sicre et al., 1990; Stephanou, 1992). It has been suggested that as the marine aerosol particles form, they acquire a coating of organic surfactants (Blanchard, 1964; Gill et al., 1983; Middlebrook et al., 1998; Ellison et al., 1999). Amphiphilic molecules, including lipids, can be assembled as monomolecular layers at air/water interfaces as well as transported to a solid support. Recently, we could show by time-of-flight secondary ion mass spectrometry that fatty acids are important ingredients of the outermost surface layer of the sea-salt aerosol particles (Tervahattu et al., 2002). In their TOF-SIMS studies on the surface composition of atmospheric aerosols, Peterson and Tyler (2002) found fatty acids on the surface of Montana forest fire particles. In this work we have studied by TOF-SIMS the surface chemical composition of aerosol particles emitted from field fires in the Baltic and other East European countries and transported to Finland as well as aerosol particles transported from

  14. Effect of variations in the fatty acid chain on functional properties of oligofructose fatty acid esters

    NARCIS (Netherlands)

    Kempen, van S.E.H.J.; Schols, H.A.; Linden, van der E.; Sagis, L.M.C.

    2014-01-01

    Oligofructose fatty acid esters are surfactants that considerably lower the surface tension of an air/water interface, provide the interface with a high dilatational modulus and lead to a high foam stability. In this study, we investigate the effect of the molecular structure of oligofructose fatty

  15. MERCURY-CONTAMINATED FISH AND ESSENTIAL FATTY ACIDS: PROBLEMS AND SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Cropotova Janna

    2012-06-01

    Full Text Available Fish consumption is an important part of human diet due to essential omega-3 fatty acids found naturally in this product. Many researchers from all over the world found that high mercury concentrations in the body reduced the heart-protective effects of the fatty acids in fish oils. People shouldn't be constrained by choosing between the health hazards related to toxins caused by industrial pollution and the nutritional benefits provided by consummation of essential fatty acids contained in oily fish. It is very important to find an alternative natural source of essential omega-3 fatty acids EPA and DHA to restore an optimal ratio between omega-6 and omega-3 fatty acids in the human diet.

  16. Essential fatty acids and human brain.

    Science.gov (United States)

    Chang, Chia-Yu; Ke, Der-Shin; Chen, Jen-Yin

    2009-12-01

    The human brain is nearly 60 percent fat. We've learned in recent years that fatty acids are among the most crucial molecules that determine your brain's integrity and ability to perform. Essential fatty acids (EFAs) are required for maintenance of optimal health but they can not synthesized by the body and must be obtained from dietary sources. Clinical observation studies has related imbalance dietary intake of fatty acids to impaired brain performance and diseases. Most of the brain growth is completed by 5-6 years of age. The EFAs, particularly the omega-3 fatty acids, are important for brain development during both the fetal and postnatal period. Dietary decosahexaenoic acid (DHA) is needed for the optimum functional maturation of the retina and visual cortex, with visual acuity and mental development seemingly improved by extra DHA. Beyond their important role in building the brain structure, EFAs, as messengers, are involved in the synthesis and functions of brain neurotransmitters, and in the molecules of the immune system. Neuronal membranes contain phospholipid pools that are the reservoirs for the synthesis of specific lipid messengers on neuronal stimulation or injury. These messengers in turn participate in signaling cascades that can either promote neuronal injury or neuroprotection. The goal of this review is to give a new understanding of how EFAs determine our brain's integrity and performance, and to recall the neuropsychiatric disorders that may be influenced by them. As we further unlock the mystery of how fatty acids affect the brain and better understand the brain's critical dependence on specific EFAs, correct intake of the appropriate diet or supplements becomes one of the tasks we undertake in pursuit of optimal wellness.

  17. A computational search for lipases that can preferentially hydrolyze long-chain omega-3 fatty acids from fish oil triacylglycerols.

    Science.gov (United States)

    Kamal, Md Zahid; Barrow, Colin J; Rao, Nalam Madhusudhana

    2015-04-15

    Consumption of long-chain omega-3 fatty acids is known to decrease the risk of major cardiovascular events. Lipases, a class of triacylglycerol hydrolases, have been extensively tested to concentrate omega-3 fatty acids from fish oils, under mild enzymatic conditions. However, no lipases with preference for omega-3 fatty acids selectivity have yet been discovered or developed. In this study we performed an exhaustive computational study of substrate-lipase interactions by docking, both covalent and non-covalent, for 38 lipases with a large number of structured triacylglycerols containing omega-3 fatty acids. We identified some lipases that have potential to preferentially hydrolyze omega-3 fatty acids from structured triacylglycerols. However omega-3 fatty acid preferences were found to be modest. Our study provides an explanation for absence of reports of lipases with omega-3 fatty acid hydrolyzing ability and suggests methods for developing these selective lipases.

  18. Fatty acids and coronary heart disease

    NARCIS (Netherlands)

    Woodside, J.V.; Kromhout, D.

    2005-01-01

    During the last century much evidence has accumulated to suggest that from a public health perspective the type of fat is more important than the amount of fat. Saturated and trans-fatty acids increase and both n-6 and n-3 PUFA decrease the risk of CHD. Most of the knowledge about the effects of

  19. Trans Fatty Acids and Cardiovascular Disease

    NARCIS (Netherlands)

    Mozaffarian, D.; Katan, M.B.; Ascherio, A.; Stampfer, M.J.; Willett, W.C.

    2006-01-01

    Trans fats, unsaturated fatty acids with at least one double bond in the trans configuration (Figure 1), are formed during the partial hydrogenation of vegetable oils, a process that converts vegetable oils into semisolid fats for use in margarines, commercial cooking, and manufacturing processes. F

  20. Trans Fatty Acids and Cardiovascular Disease

    NARCIS (Netherlands)

    Mozaffarian, D.; Katan, M.B.; Ascherio, A.; Stampfer, M.J.; Willett, W.C.

    2006-01-01

    Trans fats, unsaturated fatty acids with at least one double bond in the trans configuration (Figure 1), are formed during the partial hydrogenation of vegetable oils, a process that converts vegetable oils into semisolid fats for use in margarines, commercial cooking, and manufacturing processes. F

  1. Fatty acids and coronary heart disease

    NARCIS (Netherlands)

    Woodside, J.V.; Kromhout, D.

    2005-01-01

    During the last century much evidence has accumulated to suggest that from a public health perspective the type of fat is more important than the amount of fat. Saturated and trans-fatty acids increase and both n-6 and n-3 PUFA decrease the risk of CHD. Most of the knowledge about the effects of die

  2. Omega-3 fatty acid supplementation in horses

    Directory of Open Access Journals (Sweden)

    Tanja Hess

    2014-12-01

    Full Text Available Polyunsaturated omega-3 fatty acids (n-3 PUFA are a family of essential fatty acids with many biological activities. These fatty acids are incorporated into cell membranes, changing their structural and functional characteristics. N-3 PUFA can act by modulating inflammatory responses at different levels. Omega-3 PUFA can be converted in the body to longer-chain n-3 PUFA at a limited rate and are differently converted in body systems. It appears that when specific longer-chain n-3 PUFA are desired these need to be supplemented directly in the diet. In different species some evidence indicates a potential effect on improving insulin sensitivity. Recently, a novel class of n-3 PUFA-derived anti-inflammatory mediators have been recognized, termed E-series and D-series resolvins, formed from EPA and DHA, respectively. N-3 PUFA derived resolvins and protectins are heavily involved in the resolution of inflammation. Supplementation with n-3 fatty acids in horses may help manage chronic inflammatory conditions such as osteoarthritis, equine metabolic syndrome, laminitis, and thereby help to improve longevity of sport horse.

  3. Fatty Acid Content of Indonesian Aquatic Microalgae

    Directory of Open Access Journals (Sweden)

    TRI PRARTONO

    2010-12-01

    Full Text Available High utilization of fossil fuel increases the level of carbon dioxide in the atmosphere and results in global warming phenomenon. These things establish the world’s thought to look for the other alternative energy that can reduce the use of fossil fuel even to be replaced by the substitute. Recently, Indonesia has been doing the research of microalgae as a feedstock of an alternative biofuel. Fatty acid content that microalgae have is also high to produce biofuel. The steps used in this research is a 7 days cultivation, harvesting, extraction using hexane, and fatty acid identification using Gas Chromatography of microalgae species. Fatty acid component in some species such as Chlorella sp., Scenedesmus sp., Nannochloropsis sp., and Isochrysis sp. is between 0.21-29.5%; 0.11-25.16%; 0.30-42.32%; 2.06-37.63%, respectively, based on dry weight calculation. The high content of fatty acid in some species of microalgae showed the potential to be the feedstock of producing biofuel in overcoming the limited utilization from petroleum (fossil fuel presently.

  4. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  5. Fatty Acid Biosynthesis Revisited: Structure Elucidation and Metabolic Engineering

    Science.gov (United States)

    Beld, Joris; Lee, D. John

    2014-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases’ many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  6. Short communication Fatty acid and cholesterol content, chemical ...

    African Journals Online (AJOL)

    user

    This study aimed to determine the fatty acid and chemical composition and ... ground in a knife mill, homogenized and frozen at -18 ºC pending analysis in triplicate. .... 2008), the qualitative and quantitative fatty acid composition were different,.

  7. Determination of Fatty Acid in Asparagus by Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Zehra HAJRULAI-MUSLIU

    2016-05-01

    Full Text Available Asparagus contain a lot of macronutrients and micronutrients including folate, dietary fibre (soluble and insoluble and phenolic compounds. Also asparagus is a good source of unsaturated linoleic and linolenic fatty acids which are precursors for Eicosapentanoic acid (EPA and Docosahexanoic acid (DHA. Unsaturated fatty acids have important biological effects and they have important role in human health. The objective of this study was to analyze fatty acid composition of asparagus as a potential source of linoleic and linolenic acid - a precursor for EPA and DHA. For this reason we analyzed fifty seven samples of asparagus collected from the local market. We used AOAC 996.06 method and analyses were performed with gas chromatograph with flame-ionization detector (GC-FID. The highest concentration of fatty acid in the asparagus was linoleic acid (C18:2n6 which content in asparagus is 25.620±1.0%. Also, asparagus is good source of -linolenic fatty acid (C18:3n3 and content of this fatty acid in asparagus is 8.840±0.3%. The omega-6 to omega-3 (n6/n3 ratio in asparagus was 3.19. Polyunsaturated fatty acids (PUFAs were higher than monounsaturated fatty acids (MUFAs, and from saturated fatty acids, palmitic acid was most frequent with 24.324±1.0%. From our study we can conclude that asparagus is very good source of unsaturated fatty acids, especially linoleic and linolenic fatty acids.

  8. 21 CFR 172.863 - Salts of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic...

  9. Trans Fatty Acids: Their Chemical Structures, Formation and Dietary Intake

    OpenAIRE

    O. Daglioglu; Tasan, M.

    2005-01-01

    Trans fatty acids are unsaturated fatty acids with at least a double bond in trans configuration or geometry.The double-bond angle of the trans fatty acids is smaller than the cis isomeric configuration and the acylchain is more linear, resulting in a more rigid molecule with different physical properties such as a highermelting point and greater thermodynamic stability. These appear in dairy fat because of ruminal activity, andin hydrogenated oils. Trans unsaturated fatty acids are solid fat...

  10. Fatty acid composition and some physicochemical characteristics of Sterculia apetala seed oils

    OpenAIRE

    Herrera-Meza, S.; Martínez, A. J.; Sánchez-Otero, M. G.; Mendoza-López, M. R.; García-Barradas, O.; Ortiz-Viveros, G. R.; Oliart-Ros, R. M.

    2014-01-01

    In the tropical rain forests of southeastern Mexico, the use of Sterculia mexicana and Sterculia apetala seed oils for human and animal nutrition is common. However, the seeds contain cyclopropene fatty acids, whose consumption is related with beneficial as well as detrimental physiological effects. The aim of this study was to determine the fatty acid profile and the physicochemical characteristics of S. apetala seed oil and to evaluate the effect of roasting on both aspects. Cyclopropenoic ...

  11. Micronutrients, omega-3 fatty acids and cognitive performance in Indian schoolchildren

    OpenAIRE

    Eilander, J.H.C.

    2009-01-01

    In developing countries, approximately 30-40% of school-age children suffer from iodine and iron deficiencies. Poverty and consumption of monotonous diets are underlying causes of inadequate intakes of micronutrients and omega-3 fatty acids and may have severe consequences for children’s cognitive development. Multiple micronutrient interventions have shown to benefit mental performance of children, but a systematic evaluation of the evidence is currently lacking. The omega-3 fatty acid, -li...

  12. Productivity and Composition of Fatty Acids in Chicks fed with Azadirachta indica A. Juss

    OpenAIRE

    Imna Trigueros V; Miguel Ramón C; José Vázquez O; Juan Aguirre M; Carlos Garcia C; Jaime Martínez T

    2015-01-01

    ABSTRACTObjective. Evaluate the productivity and composition of fatty acids in chicks fed diets enriched with neem Azadirachta indica A. Juss seed flour. Materials and methods. 80 mixed broiler chicks of Arbor Acres stock and levels 0, 1, 3 and 5% neem seed flour added to a commercial diet were evaluated. 20 experimental units were included in each treatment for five weeks. The consumption and weight gain were recorded, as well as the composition of fatty acids in the fat by means of alkaline...

  13. N-3 vs. saturated fatty acids: effects on the arterial wall.

    Science.gov (United States)

    Sudheendran, S; Chang, C C; Deckelbaum, R J

    2010-01-01

    Cardiovascular disease is a leading cause of death worldwide. Atherosclerosis and unstable plaques are underlying causes for cardiovascular diseases. Cardiovascular disease is associated with consumption of diets high in saturated fats. In contrast there is increasing evidence that higher intakes of dietary n-3 fatty acids decrease risk for cardiovascular disease. Recent studies are beginning to clarify how n-3 compared with saturated fatty acids influence cardiovascular disease risk via pathways in the arterial wall. In this paper we will review studies that report on mechanisms whereby dietary fatty acids affect atherosclerosis through modulation of arterial wall lipid deposition, inflammation, cell proliferation, and plaque vulnerability.

  14. Utilidad y controversias del consumo de ácidos grasos de cadena media sobre el metabolismo lipoproteico y obesidad Usefulness and controversial issues of middle-chain fatty acids consumption on lipid-protein metabolism and obesity

    Directory of Open Access Journals (Sweden)

    S. G. Sáyago-Ayerdi

    2008-06-01

    Full Text Available Los ácidos grasos de cadena media (AGCM contienen entre 6 y 12 átomos de carbono y son digeridos, absorbidos y metabolizados de manera distinta que los ácidos grasos de cadena larga (AGCL. En este trabajo se revisan algunas de las utilidades potenciales y reales de los AGCM y su papel en la salud. Por ello, se utilizan en nutrición enteral y parenteral debido a la buena absorción que presentan; y en fórmulas lácteas en niños prematuros para mejorar la absorción de calcio. AGMC han cobrado un gran interés especialmente por su posible papel en el tratamiento y prevención de la obesidad. Al ser más hidrosolubles, no se incorporan a los quilomicrones y se acepta que no participan directamente en la lipogénesis. Son capaces de incrementar el efecto termogénico de los alimentos y en su metabolización elevan la formación de cuerpos cetónicos con el consiguiente efecto anorexígeno. No obstante, se requiere ingerir cantidades elevadas de AGCM para obtener efectos significativos en la reducción de peso. Los efectos sobre el metabolismo lipoproteico son controvertidos. Así, aunque parecen disminuir la respuesta trigliceridémica postprandial, los resultados no son uniformes respecto a sus efectos sobre la trigliceridemia y colesterolemia. A pesar de ello, se diseñan cada vez más productos en los que se incorporan grasas con AGCM para el tratamiento de la obesidad y sobrepeso, habiendo sido considerados por la ADA como componentes "GRAS" (Generally Recommended As Safe. Son necesarios estudios a más largo plazo para garantizar la utilidad del consumo de estos compuestos, particularmente en el tratamiento y prevención de obesidad.Middle-chain fatty acids (MCFA contain 6-12 carbon atoms and are digested, absorbed and metabolized differently than long-chain fatty acids (LCFA. This work reviews some of the potential and real utilities of MCFA and their role on health. For this reason, they are used in enteral and parenteral nutrition

  15. Epistatic interactions associated with fatty acid concentrations of beef from angus sired beef cattle.

    Science.gov (United States)

    Kramer, L M; Ghaffar, M A Abdel; Koltes, J E; Fritz-Waters, E R; Mayes, M S; Sewell, A D; Weeks, N T; Garrick, D J; Fernando, R L; Ma, L; Reecy, J M

    2016-11-08

    Consumers are becoming increasingly conscientious about the nutritional value of their food. Consumption of some fatty acids has been associated with human health traits such as blood pressure and cardiovascular disease. Therefore, it is important to investigate genetic variation in content of fatty acids present in meat. Previously publications reported regions of the cattle genome that are additively associated with variation in fatty acid content. This study evaluated epistatic interactions, which could account for additional genetic variation in fatty acid content. Epistatic interactions for 44 fatty acid traits in a population of Angus beef cattle were evaluated with EpiSNPmpi. False discovery rate (FDR) was controlled at 5 % and was limited to well-represented genotypic combinations. Epistatic interactions were detected for 37 triacylglyceride (TAG), 36 phospholipid (PL) fatty acid traits, and three weight traits. A total of 6,181, 7,168, and 0 significant epistatic interactions (FDR < 0.05, 50-animals per genotype combination) were associated with Triacylglyceride fatty acids, Phospholipid fatty acids, and weight traits respectively and most were additive-by-additive interactions. A large number of interactions occurred in potential regions of regulatory control along the chromosomes where genes related to fatty acid metabolism reside. Many fatty acids were associated with epistatic interactions. Despite a large number of significant interactions, there are a limited number of genomic locations that harbored these interactions. While larger population sizes are needed to accurately validate and quantify these epistatic interactions, the current findings point towards additional genetic variance that can be accounted for within these fatty acid traits.

  16. A comparative study of fatty acid profiles of fat in commercial Spanish suckling kids and lambs

    Directory of Open Access Journals (Sweden)

    Alberto Horcada

    2014-04-01

    Full Text Available Fatty acid profiles are a major contributor to meat quality in small ruminants. Nevertheless, while fatty acid profiles from suckling lambs have been extensively studied they are virtually unknown in suckling kids. Fatty acid profiles of intramuscular and kidney knob fat depots of suckling kids were compared with fatty acid profiles of lambs with a quality label in the Spanish market. Forty suckling kids from Blanca Celtibérica (BC, Moncaína (Mo, Negra Serrana (NS and Murciano Granadina (MG breeds and 20 Churra male suckling lambs labelled with ‘Lechazo de Castilla y León’ Protected Geographic Indication were slaughtered at commercial live weights (12 kg. In both depots differences in the unsaturated fatty acid profile were observed between breeds. The most pronounced differences were observed between meat goat breeds (BC, Mo and NS and lambs, whilst a greater similarity in the fatty acid profile was observed between kids from dairy goat breeds (MG and lambs. The lowest polyunsaturated fatty acid content was observed in meat goat breeds (approximately 21 to 22% of total fatty acids detected in the intramuscular fat. No significant differences in atherogenic index and desirable fatty acid content (range 68 to 70% of total fatty acids detected were observed. However, a more favourable (lower than 8.07 n-6/n-3 ratio was observed in meat goat breeds. The use of fatty acid profiles from intramuscular and kidney knob fat could be proposed as a tool to differentiate goat kids and lambs. The fact that intramuscular fat from suckling kids and lambs shows appropriate lipid nutritional indices and their low carcass fatness indicate that moderate consumption of suckling kid and lamb meat may contribute to an overall balanced diet for humans.

  17. 21 CFR 573.914 - Salts of volatile fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a... contains ammonium or calcium salts of volatile fatty acids and shall conform to the...

  18. 75 FR 71556 - Polyoxyalkylated Glycerol Fatty Acid Esters; Tolerance Exemption

    Science.gov (United States)

    2010-11-24

    ... AGENCY 40 CFR Part 180 Polyoxyalkylated Glycerol Fatty Acid Esters; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of polyoxyalkylated glycerol fatty acid esters; the... ethylene oxide or propylene oxide, also known as polyoxyalkylated glycerol fatty acid esters, when used as...

  19. A Review of the Metabolic Origins of Milk Fatty Acids

    Directory of Open Access Journals (Sweden)

    Anamaria COZMA

    2013-08-01

    Full Text Available Milk fat and its fatty acid profile are important determinants of the technological, sensorial, and nutritional properties of milk and dairy products. The two major processes contributing to the presence of fatty acids in ruminant milk are the mammary lipogenesis and the lipid metabolism in the rumen. Among fatty acids, 4:0 to 12:0, almost all 14:0 and about a half of 16:0 in milk fat derive from de novo synthesis within the mammary gland. De novo synthesis utilizes as precursors acetate and butyrate produced through carbohydrates ruminal fermentation and involves acetyl-CoA carboxylase and fatty acid synthetase as key enzymes. The rest of 16:0 and all of the long-chain fatty acids derive from mammary uptake of circulating lipoproteins and nonesterified fatty acids that originate from digestive absorption of lipids and body fat mobilization. Further, long-chain fatty acids as well as medium-chain fatty acids entering the mammary gland can be desaturated via Δ-9 desaturase, an enzyme that acts by adding a cis-9-double bond on the fatty acid chain. Moreover, ruminal biohydrogenation of dietary unsaturated fatty acids results in the formation of numerous fatty acids available for incorporation into milk fat. Ruminal biohydrogenation is performed by rumen microbial population as a means of protection against the toxic effects of polyunsaturated fatty acids. Within the rumen microorganisms, bacteria are principally responsible for ruminal biohydrogenation when compared to protozoa and anaerobic fungi.

  20. Naturally occurring fatty acids: source, chemistry and uses

    Science.gov (United States)

    Natural occurring fatty acids are a large and complex class of compounds found in plants and animals. Fatty acids are abundant and of interest because of their renewability, biodegradability, biocompatibility, low cost, and fascinating chemistry. Of the many fatty acids, only 20-25 of them are widel...

  1. Trans fatty acids and cardiovascular health: research completed?

    NARCIS (Netherlands)

    Brouwer, I.A.; Wanders, A.J.; Katan, M.B.

    2013-01-01

    This review asks the question if further research on trans fatty acids and cardiovascular health is needed. We therefore review the evidence from human studies on trans fatty acids and cardiovascular health, and provide a quantitative review of effects of trans fatty acid intake on lipoproteins. The

  2. Relationship between fatty acids and the endocrine and neuroendocrine system.

    Science.gov (United States)

    Bhathena, Sam J

    2006-01-01

    Significant interactions exist between fatty acids and the endocrine system. Dietary fatty acids alter both hormone and neuropeptide concentrations and also their receptors. In addition, hormones affect the metabolism of fatty acids and the fatty acid composition of tissue lipids. The principal hormones involved in lipid metabolism are insulin, glucagon, catecholamines, cortisol and growth hormone. The concentrations of these hormones are altered in chronic degenerative conditions such as diabetes and cardiovascular disease, which in turn leads to alterations in tissue lipids. Lipogenesis and lipolysis, which modulate fatty acid concentrations in plasma and tissues, are under hormonal control. Neuropeptides are also involved in lipid metabolism in brain and other tissues. Polyunsaturated fatty acids are also precursors for eicosanoids including prostaglandins, leucotrienes, and thromboxanes, which have hormone-like activities. Fatty acids in turn affect the endocrine system. Saturated and trans fatty acids decrease insulin concentration leading to insulin resistance. In contrast, polyunsaturated fatty acids increase plasma insulin concentration and decrease insulin resistance. In humans, omega3 polyunsaturated fatty acids alter the levels of opioid peptides in plasma. Free fatty acids have been reported to inhibit glucagon release. Fatty acids also affect receptors for hormones and neuropeptides.

  3. Fatty acid supply of growing pigs in Central Vietnam

    NARCIS (Netherlands)

    Nguyen, Linh Quang

    2002-01-01

    This thesis concerns the influence of essential dietary fatty acids on the fatty acid composition of adipose tissue and growth performance of growing pigs kept on samll holdings in Central Vietnam. Essential fatty acids cannot be synthesized by the body and have to be ingested with the feed. There a

  4. Oxidation of nonplasma fatty acids during exercise is increased in women with abdominal obesity.

    Science.gov (United States)

    Horowitz, J F; Klein, S

    2000-12-01

    We evaluated plasma fatty acid availability and plasma and whole body fatty acid oxidation during exercise in five lean and five abdominally obese women (body mass index = 21 +/- 1 vs. 38 +/- 1 kg/m(2)), who were matched on aerobic fitness, to test the hypothesis that obesity alters the relative contribution of plasma and nonplasma fatty acids to total energy production during exercise. Subjects exercised on a recumbent cycle ergometer for 90 min at 54% of their peak oxygen consumption. Stable isotope tracer methods ([(13)C]palmitate) were used to measure fatty acid rate of appearance in plasma and the rate of plasma fatty acid oxidation, and indirect calorimetry was used to measure whole body substrate oxidation. During exercise, palmitate rate of appearance increased progressively and was similar in obese and lean groups between 60 and 90 min of exercise [3.9 +/- 0.4 vs. 4.0 +/- 0.3 micromol. kg fat free mass (FFM)(-1). min(-1)]. The rate of plasma fatty acid oxidation was also similar in obese and lean subjects (12.8 +/- 1.7 vs. 14.5 +/- 1.8 micromol. kg FFM(-1). min(-1); P = not significant). However, whole body fatty acid oxidation during exercise was 25% greater in obese than in lean subjects (21.9 +/- 1.2 vs. 17.5 +/- 1.6 micromol. kg FFM(-1). min(-1); P obese women, women with abdominal obesity use more fat as a fuel by oxidizing more nonplasma fatty acids.

  5. Marine lipids and the bioavailability of omega-3 fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Müllertz, Anette

    2015-01-01

    Marine lipids are enriched with omega-3 fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Omega-3 fatty acids are important membrane lipids and have many recognized health benefits, the bioavailability of these fatty acids can therefore be important for achieving...... of omega-3 fatty acids has been reported to be affected by several factors; among the important factors were the digestion and absorption processes of omega-3 containing lipids in the gastrointestinal tract. Both lipid structures and food structures can affect the bioavailability of omega-3 fatty acids....... Human studies have shown that the relative bioavailability of omega-3 fatty acids from fish oil (triglyceride formulation) was similar to that from fish, whereas lower relative bioavailability was observed from fatty acid ethyl ester (FAEE) formulation in comparison with other lipid formulations...

  6. Fatty acid facts, Part I. Essential fatty acids as treatment for depression, or food for mood?

    Science.gov (United States)

    Pawels, E K J; Volterrani, D

    2008-10-01

    The epidemic character of depressive disorders has prompted further research into dietary habits that could make an etiological contribution. One clear change in the diet of the population in developed countries has been the replacement of omega-3 polyunsaturated fatty acids by saturated fats and trans-fats as well as by omega-6 polyunsaturated fatty acids. Omega-3 and omega-6 fatty acids are essential fatty acids, and the members of the -3 and -6 series are crucial for human health. In biochemical processes there is a competition between these two series. A higher dietary intake of omega-6 results in the excessive incorporation of these molecules in the cell membrane with numerous pathological consequences, presumably due to the formation of proinflammatory eicosanoids. Members of the omega-3 family and their derivatives modulate the inflammatory action. Essential fatty acids play a major role in brain development and brain functioning. The omega-3 series members docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) provide fluidity to the cell membrane, facilitating certain processes including neurotransmission and ion channel flow. It is thought that omega-3 deficiency during the fetal and postnatal period may have a long-term effect at various levels. Epidemiological studies have demonstrated a positive association between omega-3 deficits and mood disorders. As for treatment, there is convincing evidence that add-on omega-3 fatty acids to standard antidepressant pharmacotherapy results in improved mood. There is no evidence that fatty acid monotherapy has a mood-elevating effect, with a possible exception for childhood depression. There are indications that omega-3 has a prophylactic effect on perinatal depression and has a negative effect on natural killer cell activity and T-lymphocyte function. These observations need further study in view of the popularity of self-medication. Copyright 2008 Prous Science, S.A.U. or its licensors. All rights reserved.

  7. Human placenta metabolizes fatty acids: implications for fetal fatty acid oxidation disorders and maternal liver diseases.

    Science.gov (United States)

    Shekhawat, Prem; Bennett, Michael J; Sadovsky, Yoel; Nelson, D Michael; Rakheja, Dinesh; Strauss, Arnold W

    2003-06-01

    The role of fat metabolism during human pregnancy and in placental growth and function is poorly understood. Mitochondrial fatty acid oxidation disorders in an affected fetus are associated with maternal diseases of pregnancy, including preeclampsia, acute fatty liver of pregnancy, and the hemolysis, elevated liver enzymes, and low platelets syndrome called HELLP. We have investigated the developmental expression and activity of six fatty acid beta-oxidation enzymes at various gestational-age human placentas. Placental specimens exhibited abundant expression of all six enzymes, as assessed by immunohistochemical and immunoblot analyses, with greater staining in syncytiotrophoblasts compared with other placental cell types. beta-Oxidation enzyme activities in placental tissues were higher early in gestation and lower near term. Trophoblast cells in culture oxidized tritium-labeled palmitate and myristate in substantial amounts, indicating that the human placenta utilizes fatty acids as a significant metabolic fuel. Thus human placenta derives energy from fatty acid oxidation, providing a potential explanation for the association of fetal fatty acid oxidation disorders with maternal liver diseases in pregnancy.

  8. Fatty acid composition of Mediterranean buffalo milk fat

    Directory of Open Access Journals (Sweden)

    V. Proto

    2010-04-01

    Full Text Available The purpose of this research was to investigate the variation in fatty acid composition of milk fat from four buffalo (Bubalus bubalis herds under different feeding management and ration composition. Changes in milk fatty acid composition were monitored on a weekly basis. Saturated fatty acids (65.5% predominated in buffalo milk fat; monounsaturated and polyunsaturated fatty acids were 27.0% and 4.5%, respectively. Of saturated fatty acids, the content of palmitic acid was the highest (30.6% followed by stearic acid (12.0% and myristic acid (10.7%. Of the unsaturated fatty acids the content of oleic acid was the highest (26.6%. The average content of conjugated linoleic acid (0.76±0.33 was higher than the maximal values generally reported for dairy cow.

  9. [Protective effect of monounsaturated and polyunsaturated fatty acids on the development of cardiovascular disease].

    Science.gov (United States)

    Aguilera, C M; Ramírez-Tortosa, M C; Mesa, M D; Gil, A

    2001-01-01

    Cardiovascular disease has a multifactorial aetiology, as is illustrated by the existence of numerous risk indicators, many of which can be influenced by dietary means. In this article, the effects of unsaturated fatty acids on cardiovascular disease are reviewed, with special emphasis on the modifications of the lipoprotein profile and the mechanism by which fatty acids may affect the immune response on the development of the atherosclerotic lesion. Atherosclerosis occurs fundamentally in three stages: dysfunction of the vascular endothelium, fatty streak and fibrous cap formation. Each of the three stages is regulated by the action of vasoactive molecules, growth factors and cytokines, mediators of the immune response. Dietary lipid quality can affect the lipoprotein metabolism, altering their concentrations in the blood, permitting a greater or lesser recruitment of them in the artery wall. The replacement of dietary saturated fat by mono- or polyunsaturated fats significantly lowers the plasma-cholesterol and LDL-cholesterol levels. Likewise, an enriched monounsaturated fatty acid diet prevents LDL oxidative modifications more than an enriched polyunsaturated diet, and the oxidation of LDL in patients with peripheral vascular disease mediated by n-3 fatty acids can be reduced by the simultaneous consumption of olive oil. However, strong controversy surrounds the effect of the different unsaturated fatty acids. The type of dietary fat can directly or indirectly influence some of the mediating factors of the immune response; n-3 fatty acids have powerful antiinflammatory properties. Dietary fatty acids strongly determine the susceptibility of lipoproteins to oxidation, which also has an impact on the activation of molecules of adhesion and other inflammatory factors. Moreover, several works have demonstrated a direct effect of fatty acids on the genetic expression of many of those factors. Finally, certain aspects of blood platelet function, blood coagulability

  10. Chemical composition and fatty acid contents in farmed freshwater prawns

    Directory of Open Access Journals (Sweden)

    Carolina de Gasperi Portella

    2013-08-01

    Full Text Available The objective of this work was to evaluate the chemical composition and fatty acid contents of Amazonian and giant river prawns. After four-month farming, with the same diet for both species, palmitic and stearic acids were the main saturated fatty acids. Oleic acid was the main monounsatured fatty acid, and the eicosapentaenoic and docosahexaenoic acids were the most abundant polyunsaturated acids. Amazonian prawn has higher levels of protein and polyunsaturated fatty acids than those of the giant river prawn, which shows its potential for aquaculture.

  11. Influence of goats feeding on the fatty acids content in milk

    Directory of Open Access Journals (Sweden)

    Željka Klir

    2012-12-01

    Full Text Available Numerous studies have demonstrated the possibility of modeling the content of fatty acids of milk fat, in order to increase the contents of desirable n-3 unsaturated fatty acids and decrease saturated fatty acid with adequate nutrition of goats. Previous studies showed that the milk of goats on pasture increased content of caproic (C6:0, caprylic (C8:0, conjugated linoleic acid (CLA, rumenic acid, cis-9, trans-11 C18:2, linolenic (C18:3, eicosapentaenoic (C20:5 and docosahexaenoic (C22:6 and total content of polyunsaturated fatty acids (PUFA. In the same group of goats lower content of palmitoleic (C16:1, linoleic (C18:2 and total n-6 unsaturated fatty acids was found, as well as lower n-6/n-3 ratio compared with group of goats kept indoors and fed with alfalfa hay. In milk of goats fed with diets supplemented with safflower oil, content of CLA significantly increased, while goats fed with diets supplement with linseed oil had significantly higher content of C18:3 in milk, compared with group of goats fed without addition of these oils. Goats fed with addition of protected fish oil had significant transfer of eicosapentaenoic-EPA and docosahexaenoic-DHA fatty acids in milk. Protected fish oil reduced the negative impact of long chain fatty acids on the activity of ruminal microorganisms, consumption and digestibility of fiber, as well as inhibition of synthesis of fatty acids in milk gland. When adding unprotected fish oil, increase of stearic (C18:0 and oleic (C18:1 fatty acids occurred, because of the biohydrogenation of polyunsaturated fatty acids in rumen.

  12. Omega-3 polyunsaturated fatty acid biomarkers and coronary heart disease: Pooling project of 19 cohort studies

    Science.gov (United States)

    The role of omega-3 polyunsaturated fatty acids for primary prevention of coronary heart disease (CHD) remains controversial. Most prior longitudinal studies evaluated self-reported consumption rather than biomarkers. This study sought to evaluate biomarkers of seafood-derived eicosapentaenoic acid ...

  13. Adipose tissue Fatty Acid patterns and changes in antrhropometry

    DEFF Research Database (Denmark)

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre

    2011-01-01

    in adipose tissue fatty acids and changes in anthropometry. Methods 34 fatty acid species from adipose tissue biopsies were determined in a random sample of 1100 men and women from a Danish cohort study. We used sex-specific principal component analysis and multiple linear regression to investigate......Introduction Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns...

  14. Omega-3 fatty acids (ῳ-3 fatty acids) in epilepsy: animal models and human clinical trials.

    Science.gov (United States)

    DeGiorgio, Christopher M; Taha, Ameer Y

    2016-10-01

    There is growing interest in alternative and nutritional therapies for drug resistant epilepsy. ῳ-3 fatty acids such as fish or krill oil are widely available supplements used to lower triglycerides and enhance cardiovascular health. ῳ-3 fatty acids have been studied extensively in animal models of epilepsy. Yet, evidence from randomized controlled clinical trials in epilepsy is at an early stage. This report focuses on the key ῳ-3 fatty acids DHA and EPA, their incorporation into the lipid bilayer, modulation of ion channels, and mechanisms of action in reducing excitability within the central nervous system. This paper presents pre-clinical evidence from mouse, rat, and canine models, and reports the efficacy of n-3 fatty acids in randomized controlled clinical trials. An English language search of PubMed and Google scholar for the years 1981-2016 was performed for animal studies and human randomized controlled clinical trials. Expert commentary: Basic science and animal models provide a cogent rationale and substantial evidence for a role of ῳ-3 fatty acids in reducing seizures. Results in humans are limited. Recent Phase II RCT evidence suggests that low to moderate dose of ῳ-3 fatty acids reduce seizures; however, larger multicenter randomized trials are needed to confirm or refute the evidence. The safety, health effects, low cost and ease of use make ῳ-3 fatty acids an intriguing alternative therapy for drug resistant epilepsy. Though safety of profile is excellent, the human data is not yet sufficient to support efficacy in drug resistant epilepsy at this time.

  15. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids

    DEFF Research Database (Denmark)

    Mourtzakis, Marina; Saltin, B.; Graham, T.;

    2006-01-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline...... in pyruvate production could affect tricarboxycylic acid cycle flux as well as gluconeogenesis. To enhance our understanding of these interactions, we studied the time course of changes in substrate utilization in six men who cycled at 44 ± 1% peak oxygen consumption (mean ± SE) until exhaustion (exhaustion...... peaked at 2 h of exercise, whereas pyruvate production peaked at 1 h of exercise and was reduced ( 30%) thereafter, suggesting that pyruvate availability primarily accounted for reduced carbohydrate oxidation. Increased free fatty acid uptake (P

  16. Essential fatty acid requirements of cats: pathology of essential fatty acid deficiency.

    Science.gov (United States)

    MacDonald, M L; Anderson, B C; Rogers, Q R; Buffington, C A; Morris, J G

    1984-07-01

    The pathologic changes of essential fatty acid (EFA) deficiency were studied in specific-pathogen-free, domestic shorthair cats which were fed purified diets for 1.5 to 2.5 years. Cats fed an EFA-deficient diet exhibited signs of deficiency: severe fatty degeneration of the liver, excessive fat in the kidneys, dystrophic mineralization of the adrenal glands, degeneration of the testes, and hyperkeratosis of the skin. Minor clinical pathologic changes were consistent with liver damage. Fatty acid analyses of plasma lipids revealed low concentrations of linoleate and other n6-fatty acids, and high concentrations of n7- and n9-fatty acids, consistent with EFA deficiency. These signs of deficiency were prevented by including safflower seed oil in the diet at a concentration to supply linoleate at 6.7% of dietary energy. Therefore, linoleate is an EFA for the cat, despite negligible conversion of linoleate to arachidonate in cat liver. However, in cats fed a diet containing linoleate, but lacking arachidonate, there was mild mineralization of the kidneys, and the neutral fat content of the liver was slightly higher than that of cats fed a diet containing arachidonate and other long-chain polyunsaturated fatty acids. Also, 2 of the 19 cats fed arachidonate-deficient diets developed unusual inflammatory skin lesions. In cats fed a diet containing hydrogenated coconut oil, safflower seed oil, and chicken fat, fatty livers developed despite the presence of high levels of linoleate. The fatty livers appeared to result from a specific deleterious effect of the medium-chain triglycerides in hydrogenated coconut oil. Most of the organ pathologic changes of EFA deficiency in the cat can be prevented by feeding dietary linoleate. Linoleate meets the EFA requirement for functions which depend on proper membrane structure: growth, lipid transport, normal skin and coat condition, and maintenance of the epidermal permeability barrier. However, dietary arachidonate is required by the

  17. Fatty acid analysis of Iranian junk food, dairy, and bakery products: Special attention to trans-fats

    National Research Council Canada - National Science Library

    Nazari, Bahar; Asgary, Sedigheh; Azadbakht, Leila

    2012-01-01

    Low attention to dairy product consumptions and high intake of junk foods and bakery products might be related to high prevalence of chronic diseases because of their fat content and fatty acid composition...

  18. Polyunsaturated fatty acid metabolism in prostate cancer.

    Science.gov (United States)

    Berquin, Isabelle M; Edwards, Iris J; Kridel, Steven J; Chen, Yong Q

    2011-12-01

    Polyunsaturated fatty acids (PUFA) play important roles in the normal physiology and in pathological states including inflammation and cancer. While much is known about the biosynthesis and biological activities of eicosanoids derived from ω6 PUFA, our understanding of the corresponding ω3 series lipid mediators is still rudimentary. The purpose of this review is not to offer a comprehensive summary of the literature on fatty acids in prostate cancer but rather to highlight some of the areas where key questions remain to be addressed. These include substrate preference and polymorphic variants of enzymes involved in the metabolism of PUFA, the relationship between de novo lipid synthesis and dietary lipid metabolism pathways, the contribution of cyclooxygenases and lipoxygenases as well as terminal synthases and prostanoid receptors in prostate cancer, and the potential role of PUFA in angiogenesis and cell surface receptor signaling.

  19. Laser signals' nonlinear change in fatty acids

    CERN Document Server

    Ghelmez-Dumitru, M; Piscureanu, M; Sterian, A

    2003-01-01

    Previous works showed that thin layers of fatty acids and fatty acid-cholesterol mixtures behaved as optical liquid crystals, even at low incident laser power. The paper presents an experimental and computer study of laser signals, emergent from such samples, in presence of fluctuations. The optical emergent laser beams' features at different incident parameters were experimentally determined for different type (c.w. and pulsed) lasers, as for example helium-neon and Nd sup 3 sup + glass lasers. The results were correlated with the amount of cholesterol in mixtures and with their response in external electric field. These measurements are in all cases affected by fluctuations. We developed some computer-based procedures, by using the TableCurve3D from Jandel Scientific software and equations Runge-Kutta in MATLAB for taking into account these fluctuations.

  20. Fatty acids composition of 10 microalgal species

    Directory of Open Access Journals (Sweden)

    Thidarat Noiraksar

    2005-11-01

    Full Text Available Fatty acids composition of 10 species of microalgae was determined at the exponential phase and the stationary phase. The microalgae consist of two species of diatoms, Bacillariophyceae, (Nitzschia cf. ovalis, Thalassiosira sp. five species of green microalgae, Prasinophyceae (Tetraselmis sp. and Chlorophyceae, (Dictyosphaerium pulchellum, Stichococcus sp., Chlorella sp., Scenedesmus falcatus and three species of blue green microalgae, Cyanophyceae (Anacystis sp., Synechococcus sp., Synechocystis sp..Medium for culture diatoms and green microalgae was F/2, and BG-11 media was used for Cyanophyceae. The microalgae were cultured beneath light intensity 143 μEm-2s-1, light: dark illustration 12:12 hrs., temperature 28ºC, and salinities 8-30 psu. The microalgae were harvested for analyzing fatty acid by centrivugal machine at 3500 rpm. for 5 min. at temperature 20ºC and stored at -80ºC prior to analysis.Fatty acids composition of microalgae differed from species to species. The majority fatty acids composition of diatoms at the exponential phase and the stationary phase were C16:1n-7 (17.12-31.47% and 28.22-42.02%, C16:0 (13.25-19.61% and 18.83-20.67%, C20:5 n-3 (16.65-26.67% and 11.32-23.68% respectively. The principle fatty acids composition of green microalgae, Prasinophyceae, Tetraselmis sp. were C18:3n-3 (16.17-16.67%, C16:0 (15.33-17.45%, C18:1n-9 (12.25-15.43%, C18:2n-6 (9.66-19.97%. The fatty acids composition of green microalgae, Chlorophyceae, were C18:3 n-3 (20.02-26.49% and 15.35- 30.63%, C16:0 (5.76-17.61% and 11.41-20.03%, C18:2n-6 (4.67-17.54% and 7.48-20.61% respectively. The major amounts of fatty acids content of blue green microalgae were C16:1n-7 (9.28-34.91% and 34.48- 35.04%, C14:0 (13.34-25.96% and 26.69-28.24%, C16:0 (5.89-29.15% and 5.70-16.81% except for Anacystis sp.which had a high amount of C18:3 n-3 (23.18-27.98% but low amount of C14:0 (3.66-4.98%.Bacillariophyceae contained the highest amount of highly unsaturated

  1. Effect of stearidonic acid-enriched soybean oil on fatty acid profile and metabolic parameters in lean and obese Zucker rats

    OpenAIRE

    Casey, John M; Banz, William J.; Krul, Elaine S; Butteiger, Dustie N; Goldstein, Daniel A.; Davis, Jeremy E.

    2013-01-01

    Background Consumption of marine-based oils high in omega-3 polyunsaturated fatty acids (n3PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is known to protect against obesity-related pathologies. It is less clear whether traditional vegetable oils with high omega-6 polyunsaturated fatty acid (n6PUFA) content exhibit similar therapeutic benefits. As such, this study examined the metabolic effects of a plant-based n3PUFA, stearidonic acid (SDA), in polygenic obese rodents. Me...

  2. Synthesis and structural analysis of 13C-fatty acids

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The 13C-labeled fatty acids octanoic-1-13C acid and palmitic-l-13C acid were synthetically prepared from Ba 13CO3. The yield of the former was more than 90% and that of the latter was above 85%. MS, IR, 1H-NMR and 13NMR were performed to analyze the structures of the two 13C-fatty acids, compared with their unlabeled fatty acids.

  3. Succinct synthesis of saturated hydroxy fatty acids and

    DEFF Research Database (Denmark)

    Kaspersen, Mads Holmgaard; Jenkins, Laura; Dunlop, Julia

    2017-01-01

    Saturated hydroxy fatty acids make up a class of underexplored lipids with potentially interesting biological activities. We report a succinct and general synthetic route to saturated hydroxy fatty acids hydroxylated at position 6 or higher, and exemplify this with the synthesis of hydroxylauric...... acids. All regioisomers of hydroxylauric acids were tested on free fatty acid receptors FFA1, FFA4 and GPR84. The results show that the introduction of a hydroxy group and its position have a high impact on receptor activity....

  4. Fatty acid and sn-2 fatty acid composition in human milk from Granada (Spain) and in infant formulas.

    Science.gov (United States)

    López-López, A; López-Sabater, M C; Campoy-Folgoso, C; Rivero-Urgell, M; Castellote-Bargalló, A I

    2002-12-01

    To investigate differences in fatty acid and sn-2 fatty acid composition in colostrum, transitional and mature human milk, and in term infant formulas. Departament de Nutrició i Bromatologia, University of Barcelona, Spain and University Hospital of Granada, Spain. One-hundred and twenty mothers and 11 available types of infant formulas for term infants. We analysed the fatty acid composition of colostrum (n=40), transitional milk (n=40), mature milk (n=40) and 11 infant formulas. We also analysed the fatty acid composition at sn-2 position in colostrum (n=12), transitional milk (n=12), mature milk (n=12), and the 11 infant formulas. Human milk in Spain had low saturated fatty acids, high monounsaturated fatty acids and high linolenic acid. Infant formulas and mature human milk had similar fatty acid composition. In mature milk, palmitic acid was preferentially esterified at the sn-2 position (86.25%), and oleic and linoleic acids were predominantly esterified at the sn-1,3 positions (12.22 and 22.27%, respectively, in the sn-2 position). In infant formulas, palmitic acid was preferentially esterified at the sn-1,3 positions and oleic and linoleic acids had higher percentages at the sn-2 position than they do in human milk. Fatty acid composition of human milk in Spain seems to reflect the Mediterranean dietary habits of mothers. Infant formulas resemble the fatty acid profile of human milk, but the distribution of fatty acids at the sn-2 position is markedly different.

  5. Adipose tissue Fatty Acid patterns and changes in antrhropometry

    DEFF Research Database (Denmark)

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre

    2011-01-01

    Introduction Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns...... in adipose tissue fatty acids and changes in anthropometry. Methods 34 fatty acid species from adipose tissue biopsies were determined in a random sample of 1100 men and women from a Danish cohort study. We used sex-specific principal component analysis and multiple linear regression to investigate...... the associations of adipose tissue fatty acid patterns with changes in weight, waist circumference (WC), and WC controlled for changes in body mass index (WCBMI), adjusting for confounders. Results 7 principal components were extracted for each sex, explaining 77.6% and 78.3% of fatty acid variation in men...

  6. Essential fatty acids and lipid mediators. Endocannabinoids

    Directory of Open Access Journals (Sweden)

    G. Caramia

    2012-03-01

    Full Text Available In 1929 Burr and Burr discovered the essential fatty acids omega-6 and omega-3. Since then, researchers have shown a growing interest in polyunsaturated fatty acids (PUFA as precursors of “lipid mediator” molecules, often with opposing effects, prostaglandins, prostacyclins, thromboxanes, leukotrienes, lipossines, resolvines, protectines, maresins that regulate immunity, platelet aggregation, inflammation, etc. They showed that the balance between omega-3 and omega-6 acids has a profound influence on all the body’s inflammatory responses and a raised level of PUFA omega-3 in tissue correlate with a reduced incidence of degenerative cardiovascular disease, some mental illnesses such as depression, and neuro-degenerative diseases such as Alzheimer’s. The CYP-catalyzed epoxidation and hydroxylation of arachidonic acid (AA were established recently as the so-called third branch of AGE cascade. Cytochrome P450 (CYP epoxygenases convert AA to four epoxyeicosatrienoic acid (EET regioisomers, that produce vascular relaxation anti-inflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and brain. Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are accessible to CYP enzymes in the same way as AA. Metabolites derived from EPA include epoxyeicosatetraenoic acids (EETR and hydroxyeicosapentaenoic acids (19- and 20-HEPE, whereas DHA include epoxydocosapentaenoic acids (EDPs hydroxydocosahexaenoic acids (21- and 22-HDoHE. For many of the CYP isoforms, the n-3 PUFAs are the preferred substrates and the available data suggest that some of the vasculo- and cardioprotective effects attributed to dietary n-3 PUFAs may be mediated by CYP-dependent metabolites of EPA and DHA. From AA derives also endocannabinoids like anandamide (N-arachidonoylethanolamine and 2-arachidonoylglycerol, capable of mimicking the pharmacological actions of the active principle of Cannabis sativa preparations such as

  7. Fatty acids intake and immune parameters in the elderly

    Directory of Open Access Journals (Sweden)

    Sonia González

    2013-04-01

    Full Text Available Introduction: The rapid increase on life-expectancy represents a major challenge and economic burden for modern societies. Several studies have focused on the effects of polyunsaturated fatty acids (PUFA upon the immune system; however less attention has been paid to the effects of monounsaturated fatty acids (MUFA. In this work we investigated the relationship of habitual consumption of different types of fatty acids with different immune parameters in the elderly. Subjects and methods: 40 institutionalized elderly (76-95 y and 35 home-living middle-age subjects (57-65 y were recruited. Dietary intakes of macronutrients, fiber and fatty acids, as well as immune parameters such as serum cytokines levels (IL-10, TNF-α, IL-8, IL-17, TGF-β and IL-12, phagocytic activity and cytotoxic NK activity, were determined. Results: Elderly subjects had a lower intake of total lipids. MUFA intake was significantly lower in the elderly group than in middle-age adults whilst the contrary was true for PUFA. MUFA intake in the elderly was found to be positively associated with IL-12 (β = 0.879 and TNF-α (β = 0.789 serum concentrations, whilst PUFA intake was inversely related to levels of IL-12 (β = -0.534. These associations were not observed in the middle-age group. Conclusion: MUFA intake may contribute to the pro-inflammatory status present in the elderly. It may be advisable to develop future nutrient recommendations specific for elderly taking into account immune parameters.

  8. Unsaturated fatty acids, desaturases, and human health.

    Science.gov (United States)

    Lee, Hyungjae; Park, Woo Jung

    2014-02-01

    With the increasing concern for health and nutrition, dietary fat has attracted considerable attention. The composition of fatty acids in a diet is important since they are associated with major diseases, such as cancers, diabetes, and cardiovascular disease. The biosynthesis of unsaturated fatty acids (UFA) requires the expression of dietary fat-associated genes, such as SCD, FADS1, FADS2, and FADS3, which encode a variety of desaturases, to catalyze the addition of a double bond in a fatty acid chain. Recent studies using new molecular techniques and genomics, as well as clinical trials have shown that these genes and UFA are closely related to physiological conditions and chronic diseases; it was found that the existence of alternative transcripts of the desaturase genes and desaturase isoforms might affect human health and lipid metabolism in different ways. In this review, we provide an overview of UFA and desaturases associated with human health and nutrition. Moreover, recent findings of UFA, desaturases, and their associated genes in human systems are discussed. Consequently, this review may help elucidate the complicated physiology of UFA in human health and diseases.

  9. Fatty acid profile of biscuits and salty snacks consumed by Brazilian college students.

    Science.gov (United States)

    Dias, Flávia da Silva Lima; Passos, Maria Eliza Assis; do Carmo, Maria das Graças Tavares; Lopes, Maria Lúcia Mendes; Valente Mesquita, Vera Lúcia

    2015-03-15

    High levels of biscuit and salty snack consumption have an effect on human health. This aim of this study was to determine the fatty acid (FA) composition of 19 different biscuits and 10 types of salty snacks by gas chromatography. Palmitic acid was predominant in 79% of biscuits and represented more than 55% of the total saturated fatty acids (SFAs) in salty snacks. Low concentrations of trans fatty acids were observed in biscuits (0.86% of total FAs), and the highest values were observed in salty snacks (7.94% of total FAs). The results indicate a high daily intake of SFAs and trans fatty acids, which may have an unfavourable effect on health. Changes in dietary habits and appropriate food choices by students are strongly recommended to prevent the risk of chronic disease. Furthermore, knowledge of the FA profile of food can help to establish health programs targeted to this population.

  10. Productivity and Composition of Fatty Acids in Chicks fed with Azadirachta indica A. Juss

    Directory of Open Access Journals (Sweden)

    Imna Trigueros V

    2015-05-01

    Full Text Available ABSTRACT Objective. Evaluate the productivity and composition of fatty acids in chicks fed diets enriched with neem Azadirachta indica A. Juss seed flour. Materials and methods. 80 mixed broiler chicks of Arbor Acres stock and levels 0, 1, 3 and 5% neem seed flour added to a commercial diet were evaluated. 20 experimental units were included in each treatment for five weeks. The consumption and weight gain were recorded, as well as the composition of fatty acids in the fat by means of alkaline transesterification. Data was statistically analyzed by a completely random procedure and the measurements were compared with the Tukey test(p≤0.05. Results. The greatest weight gain, consumption and best feed conversion were found in the treatment that contains 1% neem seed flour. It also produced the increase in the proportion of polyunsaturated fatty acids, especially linoleic acid (C18:2 Omega-6 and eicosapentaenoic acid (C20:5 omega-3, and the proportion of palmitic acid (C16:0. The consumption of feed diminished when 5% of neem flour was added. Conclusions. It was demonstrated that incorporating 1% neem seed flour in the diet of broiler chicks modifies the consumption of fatty acids without harming its productive behavior.

  11. Role of Polyunsaturated Fatty Acids in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Mohammad Asif

    2015-10-01

    Full Text Available Polyunsaturated fatty acids (PUFAs particularly ω-3 PUFAs showed great assure in prevention of cardiovascular diseases (CVD. The evidence for CV benefits of PUFA comes from eicosapentaenoic acid (EPA with or without docosahexaenoic acid (DHA in primary prevention, after myocardial infarction (MI, with heart failure (HF. The epidemiologic studies and trials showing the benefits of PUFA, specifically EPA and DHA, in CV prevention and provide potential mechanisms. The target EPA and DHA consumption should be at least 500 mg/day for individuals without basic evident CV disease and at least 800 to 1,000 mg/day for individuals with known coronary heart disease (CHD and heart failure (HF and optimal dosing and relative ratio of DHA and EPA ω-3 PUFA that provides maximum cardio-protection at risk of CVD as well in treatment of atherosclerotic, arrhythmic, and primary myocardial disorders.

  12. Fish Lipids as a Valuable Source of Polyunsaturated Fatty Acids

    Science.gov (United States)

    Merdzhanova, Albena; Ivanov, Ivaylo; Dobreva, Diana A.; Makedonski, Lyubomir

    2017-03-01

    This article presents information about omega-3 (h-3) and omega-6 (n-6) polyunsaturated fatty acid (PUFA) contents in a broad range of commercially important fish species available on Bulgarian fish markets. The aim is to raise consumers' awareness and encourage them to eat fish. Fish species from the Black Sea coast have relatively high proportion of n-3 PUFAs, of which more than 80% is by EPf (eicosapentaenoic acid, C 20:5 n-3) and DHA (docosahexaenoic acid, C 22:6 n-3). Extensive epidemiological studies show that fish consumption is inversely associated with the incidence of cardiovascular diseases (CVD), stroke and the functioning of the brain. About 0.5 g of omega-3 (EPA+DHA) a day or two savings of oily fish a week are required to reduce the risk of death from CVD. PUFAs needs should be satisfied not only with food additives but with fish lipids containing food.

  13. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production

    Directory of Open Access Journals (Sweden)

    Adarme-Vega T

    2012-07-01

    Full Text Available Abstract Omega-3 fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA provide significant health benefits and this has led to an increased consumption as dietary supplements. Omega-3 fatty acids EPA and DHA are found in animals, transgenic plants, fungi and many microorganisms but are typically extracted from fatty fish, putting additional pressures on global fish stocks. As primary producers, many marine microalgae are rich in EPA (C20:5 and DHA (C22:6 and present a promising source of omega-3 fatty acids. Several heterotrophic microalgae have been used as biofactories for omega-3 fatty acids commercially, but a strong interest in autotrophic microalgae has emerged in recent years as microalgae are being developed as biofuel crops. This paper provides an overview of microalgal biotechnology and production platforms for the development of omega-3 fatty acids EPA and DHA. It refers to implications in current biotechnological uses of microalgae as aquaculture feed and future biofuel crops and explores potential applications of metabolic engineering and selective breeding to accumulate large amounts of omega-3 fatty acids in autotrophic microalgae.

  14. Fatty acid composition of freshwater wild fish in subalpine lakes: a comparative study.

    Science.gov (United States)

    Vasconi, Mauro; Caprino, Fabio; Bellagamba, Federica; Busetto, Maria Letizia; Bernardi, Cristian; Puzzi, Cesare; Moretti, Vittorio Maria

    2015-03-01

    In this study, the proximate and fatty acid compositions of the muscle tissue of 186 samples of fish belonging to fifteen species of freshwater fish harvested in subalpine lakes (bleak, shad, crucian carp, whitefish, common carp, pike, black bullhead, burbot, perch, Italian roach, roach, rudd, wels catfish, chub and tench) were investigated. Most of the fish demonstrated a lipid content in the fillet lower than 2.0 g 100 g(-1) wet weight (range 0.6-9.7). A strong relationship between feeding behavior and fatty acid composition of the muscle lipids was observed. Planktivorous fish showed the lowest amounts of n-3 fatty acids (p < 0.05), but the highest monounsaturated fatty acid (MUFA) contents, in particular 18:1n-9. Conversely, carnivorous fish showed the highest amounts of saturated fatty acids and n-3 fatty acids (p < 0.05), but the lowest MUFA contents. Omnivorous fish showed substantial proportions of n-3 fatty acids and the highest contents of n-6 fatty acids. Principal component analysis showed a distinct separation between fish species according to their feeding habits and demonstrated that the most contributing trophic markers were 18:1n-9, 18:3n-3, 22:6n-3 and 20:4n-6. The quantitative amounts n-3 polyunsaturated fatty acid in muscle tissues varied depending on the fish species, the lipid content and the feeding habits. Some species were very lean, and therefore would be poor choices for human consumption to meet dietary n-3 fatty acid requirements. Nevertheless, the more frequently consumed and appreciated fish, shad and whitefish, had EPA and DHA contents in the range 900-1,000 mg 100 g(-1) fresh fillet.

  15. A study of petroleum fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, I.V.; Kulachenko, V.I.

    1980-01-01

    The results of a study conducted through a method of gas liquid chromatography of n-fatty acids, separated from the oils of a number of deposits of Western Siberia, are discussed. In particular, the molecular mass distribution of n-acids and paraffins, as well as the free acids and the thermodestruction acids in the oil of the Fedorovsk deposit, were studied. The existence of a predominance of acids of even structure in the range of C/sub 16/-C/sub 20/ is common for the free and bound acids. At the same time, it is noted that for the time being, it is difficult to provide an unambiguous explanation for the obtained results. But one fact is certain: the free, in the form of complex ethers, as well as the form of the compounds which liberate the acids after precise thermal action. The individual composition of the acids of all three forms is different. A specific regularity is traced in the distribution of the n-acids in the oil fractions. It is explained that the molecular mass distribution of the acids in the fractions and in the initial oil is identical.

  16. Omega-3 fatty acids and antioxidants in edible wild plants.

    Science.gov (United States)

    Simopoulos, Artemis P

    2004-01-01

    Human beings evolved on a diet that was balanced in the omega-6 and omega-3 polyunsaturated fatty acids (PUFA), and was high in antioxidants. Edible wild plants provide alpha-linolenic acid (ALA) and higher amounts of vitamin E and vitamin C than cultivated plants. In addition to the antioxidant vitamins, edible wild plants are rich in phenols and other compounds that increase their antioxidant capacity. It is therefore important to systematically analyze the total antioxidant capacity of wild plants and promote their commercialization in both developed and developing countries. The diets of Western countries have contained increasingly larger amounts of linoleic acid (LA), which has been promoted for its cholesterol-lowering effect. It is now recognized that dietary LA favors oxidative modification of low density lipoprotein (LDL) cholesterol and increases platelet response to aggregation. In contrast, ALA intake is associated with inhibitory effects on the clotting activity of platelets, on their response to thrombin, and on the regulation of arachidonic acid (AA) metabolism. In clinical studies, ALA contributed to lowering of blood pressure, and a prospective epidemiological study showed that ALA is inversely related to the risk of coronary heart disease in men. Dietary amounts of LA as well as the ratio of LA to ALA appear to be important for the metabolism of ALA to longer-chain omega-3 PUFAs. Relatively large reserves of LA in body fat. as are found in vegans or in the diet of omnivores in Western societies, would tend to slow down the formation of long-chain omega-3 fatty acids from ALA. Therefore, the role of ALA in human nutrition becomes important in terms of long-term dietary intake. One advantage of the consumption of ALA over omega-3 fatty acids from fish is that the problem of insufficient vitamin E intake does not exist with high intake of ALA from plant sources.

  17. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway.

    Science.gov (United States)

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product.

  18. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    Science.gov (United States)

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  19. Separation of cis-fatty acids from saturated and trans-fatty acids by nanoporous polydicyclopentadiene membranes.

    Science.gov (United States)

    Gupta, Abhinaba; Bowden, Ned B

    2013-02-01

    This article describes the separation of mixtures of fatty acid salts using a new organic solvent nanofiltration membrane based on polydicyclopentadiene (PDCPD). Mixtures of free fatty acids could not be separated by the membranes because they permeated at similar rates. When triisobutylamine was added to the fatty acids, the cis-fatty acid salts (oleic, petroselinic, vaccenic, linoleic, and linolenic acid) had slower permeation though the membranes than saturated (stearic acid) and trans-fatty acid (elaidic acid) salts. The reason for the difference in permeation was due to the formation of stable salt pairs between the amine and fatty acids that increased their cross-sectional areas. The fatty acid salts derived from saturated and trans-fatty acids were smaller than the critical area cutoff for the PDCPD membranes, so they readily permeated. In contrast, the fatty acid salts derived from the cis-fatty acids had critical areas larger than critical area cutoff of the PDPCD membranes and had slowed permeation. The partitioning coefficients of fatty acids and fatty acid salts were investigated to demonstrate that they were not responsible for the difference in permeation. The use of pressure was investigated to greatly accelerate the permeation through the membranes. For a solvent mixture of 35/65 (v/v) toluene/hexanes, the permeation of solvent was approximately 39 L m(-2) h(-1). This value is similar to values reported for permeation through membranes used in industry. The separation of a mixture of fatty acids based on the composition of soybean oil was investigated using pressure. The saturated fatty acid salts were almost completely removed from the cis-fatty acid salts when iBu(3)N was used as the amine to form the salt pairs. The separation of the cis-fatty acids found in soybean oil was investigated with Pr(3)N as the amine. The oleic acid salt (oleic acid has one cis double bond) preferentially permeated the membrane while the linoleic (two cis double bonds

  20. Nitro-fatty acids: novel anti-inflammatory lipid mediators

    Directory of Open Access Journals (Sweden)

    H. Rubbo

    2013-09-01

    Full Text Available Nitro-fatty acids are formed and detected in human plasma, cell membranes, and tissue, modulating metabolic as well as inflammatory signaling pathways. Here we discuss the mechanisms of nitro-fatty acid formation as well as their key chemical and biochemical properties. The electrophilic properties of nitro-fatty acids to activate anti-inflammatory signaling pathways are discussed in detail. A critical issue is the influence of nitroarachidonic acid on prostaglandin endoperoxide H synthases, redirecting arachidonic acid metabolism and signaling. We also analyze in vivo data supporting nitro-fatty acids as promising pharmacological tools to prevent inflammatory diseases.

  1. Bioavailability of long-chain omega-3 fatty acids.

    Science.gov (United States)

    Schuchardt, Jan Philipp; Hahn, Andreas

    2013-07-01

    Supplements have reached a prominent role in improving the supply of long-chain omega-3 fatty acids, such as Eicosapentaenoic acid (EPA 20:5n-3) and Docosahexaenoic acid (DHA 22:6n-3). Similar to other nutrients, the availability of omega-3 fatty acids is highly variable and determined by numerous factors. However, the question of omega-3 fatty acids bioavailability has long been disregarded, which may have contributed to the neutral or negative results concerning their effects in several studies. This review provides an overview of the influence of chemical binding form (free fatty acids bound in ethylesters, triacylglycerides or phospholipids), matrix effects (capsule ingestion with concomitant intake of food, fat content in food) or galenic form (i.e. microencapsulation, emulsification) on the bioavailability of omega-3 fatty acids. There is a need to systematically investigate the bioavailability of omega-3 fatty acids formulations, which might be a key to designing more effective studies in the future.

  2. Trans fatty acids and cardiovascular health: research completed?

    Science.gov (United States)

    Brouwer, I A; Wanders, A J; Katan, M B

    2013-05-01

    This review asks the question if further research on trans fatty acids and cardiovascular health is needed. We therefore review the evidence from human studies on trans fatty acids and cardiovascular health, and provide a quantitative review of effects of trans fatty acid intake on lipoproteins. The results show that the effect of industrially produced trans fatty acids on heart health seen in observational studies is larger than predicted from changes in lipoprotein concentrations. There is debate on the effect of ruminant trans fatty acids and cardiovascular disease. Of special interest is conjugated linoleic acid (CLA), which is produced industrially for sale as supplements. Observational studies do not show higher risks of cardiovascular disease with higher intakes of ruminant trans fatty acids. However, CLA, industrial and ruminant trans fatty acids all raise plasma low-density lipoprotein and the total to high-density lipoprotein ratio. Gram for gram, all trans fatty acids have largely the same effect on blood lipoproteins. In conclusion, the detrimental effects of industrial trans fatty acids on heart health are beyond dispute. The exact size of effect will remain hard to determine. Further research is warranted on the effects of ruminant trans fatty acids and CLA on cardiovascular disease and its risk factors.

  3. ANALYSIS OF FATTY ACID CONTENT OF RAW MIANALYSIS OF FATTY ACID CONTENT OF RAW MILK

    Directory of Open Access Journals (Sweden)

    Juraj Čuboň

    2013-02-01

    Full Text Available In this work was analysedquality of raw cow’s milkof dairy cows which was fed with winter food ration of feed. Milk was observed in terms of the composition of milk fat and fatty acids during the months of August, October, December and February. The proportion of saturated fatty acids in milk fat was 63.22 % and it was found the highest proportion of palmitic acid 34.85%myristic acid accounted for 11.44 % and 10.86 % stearic acid. Linoleic acid, which is given special attention in view of the favourable effect on cholesterol, consisted of 3.48 % milk fat. The average proportion of unsaturated fatty acids in milk fat was 36.76 % of which 32.77 % were monounsaturated and polyunsaturated 4.0 %. A high proportion of milk fat formed monounsaturated oleic acid 30.92 %. The proportion of linoleic acid in milk fat was 3.48 % and 0.31 % linoleic acid.

  4. Optimization of creamy vegetable spreads for fatty acid composition

    Directory of Open Access Journals (Sweden)

    A. N. Ostrikov

    2012-01-01

    Full Text Available Cream-plant spreads optimization method by fatty acid content is developed. Product organoleptic properties analysis is carried out, its microstructure and fatty acid content is evaluated, acid and peroxide numbers are defined. Milk plasma active acidity alteration is examined and rational shelf life is determined.

  5. Caveolar fatty acids and acylation of caveolin-1.

    Directory of Open Access Journals (Sweden)

    Qian Cai

    Full Text Available PURPOSE: Caveolae are cholesterol and sphingolipids rich subcellular domains on plasma membrane. Caveolae contain a variety of signaling proteins which provide platforms for signaling transduction. In addition to enriched with cholesterol and sphingolipids, caveolae also contain a variety of fatty acids. It has been well-established that acylation of protein plays a pivotal role in subcellular location including targeting to caveolae. However, the fatty acid compositions of caveolae and the type of acylation of caveolar proteins remain largely unknown. In this study, we investigated the fatty acids in caveolae and caveolin-1 bound fatty acids. METHODS: Caveolae were isolated from Chinese hamster ovary (CHO cells. The caveolar fatty acids were extracted with Folch reagent, methyl esterificated with BF3, and analyzed by gas chromatograph-mass spectrometer (GC/MS. The caveolin-1 bound fatty acids were immunoprecipitated by anti-caveolin-1 IgG and analyzed with GC/MS. RESULTS: In contrast to the whole CHO cell lysate which contained a variety of fatty acids, caveolae mainly contained three types of fatty acids, 0.48 µg palmitic acid, 0.61 µg stearic acid and 0.83 µg oleic acid/caveolae preparation/5 × 10(7 cells. Unexpectedly, GC/MS analysis indicated that caveolin-1 was not acylated by myristic acid; instead, it was acylated by palmitic acid and stearic acid. CONCLUSION: Caveolae contained a special set of fatty acids, highly enriched with saturated fatty acids, and caveolin-1 was acylated by palmitic acid and stearic acid. The unique fatty acid compositions of caveolae and acylation of caveolin-1 may be important for caveolae formation and for maintaining the function of caveolae.

  6. TECHNOLOGY FOR OIL ENRICHED BY POLYUNSATURATED FATTY ACIDS

    Directory of Open Access Journals (Sweden)

    K. Leshukov

    2012-03-01

    Full Text Available The technology of butter with the "OmegaTrin" complex with the balanced content of polynonsaturated fat acids is developed. Studied the fatty acid composition of milk - raw materials, optimal amount of insertion of polyunsaturated fatty acids, organoleptic characteristics of enriched butter; studied physico-chemical properties and biological value (biological effectiveness of the final product, fatty acid composition of a new product, set the shelf life and developed an oil recipe.

  7. Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants.

    Science.gov (United States)

    Rogalski, Marcelo; Carrer, Helaine

    2011-06-01

    The ability to manipulate plant fatty acid biosynthesis by using new biotechnological approaches has allowed the production of transgenic plants with unusual fatty acid profile and increased oil content. This review focuses on the production of very long chain polyunsaturated fatty acids (VLCPUFAs) and the increase in oil content in plants using molecular biology tools. Evidences suggest that regular consumption of food rich in VLCPUFAs has multiple positive health benefits. Alternative sources of these nutritional fatty acids are found in cold-water fishes. However, fish stocks are in severe decline because of decades of overfishing, and also fish oils can be contaminated by the accumulation of toxic compounds. Recently, there is also an increase in oilseed use for the production of biofuels. This tendency is partly associated with the rapidly rising costs of petroleum, increased concern about the environmental impact of fossil oil and the attractive need to develop renewable sources of fuel. In contrast to this scenario, oil derived from crop plants is normally contaminant free and less environmentally aggressive. Genetic engineering of the plastid genome (plastome) offers a number of attractive advantages, including high-level foreign protein expression, marker-gene excision and transgene containment because of maternal inheritance of plastid genome in most crops. Here, we describe the possibility to improve fatty acid biosynthesis in plastids, production of new fatty acids and increase their content in plants by genetic engineering of plastid fatty acid biosynthesis via plastid transformation.

  8. Omega-3 polyunsaturated fatty acids for cardiovascular diseases: present, past and future.

    Science.gov (United States)

    Watanabe, Yasuhiro; Tatsuno, Ichiro

    2017-08-01

    Large-scale epidemiological studies on Greenlandic, Canadian and Alaskan Eskimos have examined the health benefits of omega-3 fatty acids consumed as part of the diet, and found statistically significant relative reduction in cardiovascular risk in people consuming omega-3 fatty acids. Areas covered: This article reviews studies on omega-3 fatty acids during the last 50 years, and identifies issues relevant to future studies on cardiovascular (CV) risk. Expert commentary: Although a meta-analysis of large-scale prospective cohort studies and randomized studies reported that fish and fish oil consumption reduced coronary heart disease-related mortality and sudden cardiac death, omega-3 fatty acids have not yet been shown to be effective in secondary prevention trials on patients with multiple cardiovascular disease (CVD) risk factors. The ongoing long-term CV interventional outcome studies investigate high-dose, prescription-strength omega-3 fatty acids. The results are expected to clarify the potential role of omega-3 fatty acids in reducing CV risk. The anti-inflammatory properties of omega-3 fatty acids are also important. Future clinical trials should also focus on the role of these anti-inflammatory mediators in human arteriosclerotic diseases as well as inflammatory diseases.

  9. Targets for modulation of fatty acid oxidation in the heart.

    Science.gov (United States)

    Lopaschuk, Gary D

    2004-03-01

    Fatty acids are a major source of fuel used by the heart to provide large amounts of energy necessary to sustain contractile function. In the healthy heart, a balance between fatty acid and carbohydrate use ensures that energy supply to the heart matches demand. However, myocardial ischemia causes profound changes in metabolism, including alterations in glucose and fatty acid metabolism that can lead to excessive myocardial fatty acid oxidation, which occurs at the expense of glucose oxidation. This contributes to cellular acidosis, a decrease in cardiac efficiency and contractile dysfunction in the ischemic heart. Inhibition of fatty acid oxidation has recently emerged as a promising approach to the prevention of these adverse effects of fatty acids. As a result, a number of key enzymes involved in the metabolism of fatty acids are potential targets for therapeutic intervention in myocardial ischemia. This includes inhibition of fatty acid uptake into the myocyte, inhibition of mitochondrial fatty acid uptake and direct inhibition of fatty acid beta-oxidation. This review describes these potential targets for modulation of energy metabolism in the heart.

  10. Dietary supplementation of polyunsaturated fatty acids in Caenorhabditis elegans.

    Science.gov (United States)

    Deline, Marshall L; Vrablik, Tracy L; Watts, Jennifer L

    2013-11-29

    Fatty acids are essential for numerous cellular functions. They serve as efficient energy storage molecules, make up the hydrophobic core of membranes, and participate in various signaling pathways. Caenorhabditis elegans synthesizes all of the enzymes necessary to produce a range of omega-6 and omega-3 fatty acids. This, combined with the simple anatomy and range of available genetic tools, make it an attractive model to study fatty acid function. In order to investigate the genetic pathways that mediate the physiological effects of dietary fatty acids, we have developed a method to supplement the C. elegans diet with unsaturated fatty acids. Supplementation is an effective means to alter the fatty acid composition of worms and can also be used to rescue defects in fatty acid-deficient mutants. Our method uses nematode growth medium agar (NGM) supplemented with fatty acid sodium salts. The fatty acids in the supplemented plates become incorporated into the membranes of the bacterial food source, which is then taken up by the C. elegans that feed on the supplemented bacteria. We also describe a gas chromatography protocol to monitor the changes in fatty acid composition that occur in supplemented worms. This is an efficient way to supplement the diets of both large and small populations of C. elegans, allowing for a range of applications for this method.

  11. Analysis of fatty acid content and composition in microalgae.

    Science.gov (United States)

    Breuer, Guido; Evers, Wendy A C; de Vree, Jeroen H; Kleinegris, Dorinde M M; Martens, Dirk E; Wijffels, René H; Lamers, Packo P

    2013-10-01

    A method to determine the content and composition of total fatty acids present in microalgae is described. Fatty acids are a major constituent of microalgal biomass. These fatty acids can be present in different acyl-lipid classes. Especially the fatty acids present in triacylglycerol (TAG) are of commercial interest, because they can be used for production of transportation fuels, bulk chemicals, nutraceuticals (ω-3 fatty acids), and food commodities. To develop commercial applications, reliable analytical methods for quantification of fatty acid content and composition are needed. Microalgae are single cells surrounded by a rigid cell wall. A fatty acid analysis method should provide sufficient cell disruption to liberate all acyl lipids and the extraction procedure used should be able to extract all acyl lipid classes. With the method presented here all fatty acids present in microalgae can be accurately and reproducibly identified and quantified using small amounts of sample (5 mg) independent of their chain length, degree of unsaturation, or the lipid class they are part of. This method does not provide information about the relative abundance of different lipid classes, but can be extended to separate lipid classes from each other. The method is based on a sequence of mechanical cell disruption, solvent based lipid extraction, transesterification of fatty acids to fatty acid methyl esters (FAMEs), and quantification and identification of FAMEs using gas chromatography (GC-FID). A TAG internal standard (tripentadecanoin) is added prior to the analytical procedure to correct for losses during extraction and incomplete transesterification.

  12. Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids.

    Science.gov (United States)

    Akagi, Sosuke; Kono, Nozomu; Ariyama, Hiroyuki; Shindou, Hideo; Shimizu, Takao; Arai, Hiroyuki

    2016-05-01

    The degree of fatty acid unsaturation in membrane phospholipids affects many membrane-associated functions and can be influenced by dietary consumption of fatty acids such as saturated fatty acids and polyunsaturated fatty acids (PUFAs). Cells must adapt to changes in composition of membrane fatty acids by regulating lipid-metabolizing enzymes. In this study, we investigated how cells respond to loading with excess PUFAs, such as arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid. A lipidomics analysis revealed that dipalmitoylphosphatidylcholine (DPPC) was increased after the production of PUFA-containing phospholipids in cells loaded with PUFAs. An RNA interference screen of lipid-metabolizing enzymes revealed that lysophosphatidylcholine acyltransferase 1 (LPCAT1) was involved in the DPPC production. Moreover, LPCAT1 knockdown markedly enhanced the cytotoxicity induced by excess PUFAs. PUFA-induced cytotoxicity was dependent on caspase and unfolded protein response (UPR) sensor proteins inositol requiring 1α and protein kinase R-like endoplasmic reticulum kinase, suggesting that excess PUFAs trigger UPR-mediated apoptosis. In murine retina, in which PUFAs are highly enriched, DPPC was produced along with increase of PUFA-containing phospholipids. In LPCAT1 knockout mice, DPPC level was reduced and UPR was activated in the retina. Our results provide insight into understanding of the retinal degeneration seen in rd11 mice that lack LPCAT1.-Akagi, S., Kono, N., Ariyama, H., Shindou, H., Shimizu, T., Arai, H. Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids.

  13. Rye polyphenols and the metabolism of n-3 fatty acids in rats: a dose dependent fatty fish-like effect

    Science.gov (United States)

    Ounnas, Fayçal; de Lorgeril, Michel; Salen, Patricia; Laporte, François; Calani, Luca; Mena, Pedro; Brighenti, Furio; Del Rio, Daniele; Demeilliers, Christine

    2017-01-01

    As long-chain fatty acids (LCFA) of the n-3 series are critically important for human health, fish consumption has considerably increased in recent decades, resulting in overfishing to respond to the worldwide demand, to an extent that is not sustainable for consumers’ health, fisheries economy, and marine ecology. In a recent study, it has been shown that whole rye (WR) consumption improves blood and liver n-3 LCFA levels and gut microbiota composition in rats compared to refined rye. The present work demonstrates that specific colonic polyphenol metabolites may dose dependently stimulate the synthesis of n-3 LCFA, possibly through their microbial and hepatic metabolites in rats. The intake of plant n-3 alpha-linolenic acid and WR results in a sort of fatty fish-like effect, demonstrating that the n-3 LCFA levels in blood and tissues could be increased without eating marine foods, and therefore without promoting unsustainable overfishing, and without damaging marine ecology. PMID:28071699

  14. Metabolomics of dietary fatty acid restriction in patients with phenylketonuria.

    Directory of Open Access Journals (Sweden)

    Ulrike Mütze

    Full Text Available BACKGROUND: Patients with phenylketonuria (PKU have to follow a lifelong phenylalanine restricted diet. This type of diet markedly reduces the intake of saturated and unsaturated fatty acids especially long chain polyunsaturated fatty acids (LC-PUFA. Long-chain saturated fatty acids are substrates of mitochondrial fatty acid oxidation for acetyl-CoA production. LC-PUFA are discussed to affect inflammatory and haemostaseological processes in health and disease. The influence of the long term PKU diet on fatty acid metabolism with a special focus on platelet eicosanoid metabolism has been investigated in the study presented here. METHODOLOGY/PRINCIPAL FINDINGS: 12 children with PKU under good metabolic control and 8 healthy controls were included. Activated fatty acids (acylcarnitines C6-C18 in dried blood and the cholesterol metabolism in serum were analyzed by liquid chromatographic tandem mass spectrometry (LC-MS/MS. Fatty acid composition of plasma glycerophospholipids was determined by gas chromatography. LC-PUFA metabolites were analyzed in supernatants by LC-MS/MS before and after platelet activation and aggregation using a standardized protocol. Patients with PKU had significantly lower free carnitine and lower activated fatty acids in dried blood compared to controls. Phytosterols as marker of cholesterol (re- absorption were not influenced by the dietary fatty acid restriction. Fatty acid composition in glycerophospholipids was comparable to that of healthy controls. However, patients with PKU showed significantly increased concentrations of y-linolenic acid (C18:3n-6 a precursor of arachidonic acid. In the PKU patients significantly higher platelet counts were observed. After activation with collagen platelet aggregation and thromboxane B(2 and thromboxane B(3 release did not differ from that of healthy controls. CONCLUSION/SIGNIFICANCE: Long-term dietary fatty acid restriction influenced the intermediates of mitochondrial beta

  15. Potential Production of Polyunsaturated Fatty Acids from Microalgae

    Directory of Open Access Journals (Sweden)

    Noer Abyor Handayani

    2011-07-01

    Full Text Available Currently, public awareness of healthcare importance increase. Polyunsaturated fatty acid is an essential nutrition for us, such arachidonic acid, docosahexaenoic acid and eicosapentaenoic acid. The need of Polyunsaturated fatty acid generally derived from fish oil, but fish oil has a high risk chemical contamination. Microalgae are single cell microorganism, one of Phaeodactylum tricornutum which have relatively high content of eicosapentaenoic acid (29,8%. Biotechnology market of Polyunsaturated fatty acid is very promising for both foods and feeds, because the availability of abundant raw materials and suitable to develop in the tropics. This literature review discusses about the content of Polyunsaturated fatty acid in microalgae, omega-3, omega-6, Polyunsaturated fatty acid production processes, and applications in public health

  16. Hyperinsulinemia and skeletal muscle fatty acid trafficking.

    Science.gov (United States)

    Kanaley, Jill A; Shadid, Samyah; Sheehan, Michael T; Guo, ZengKui; Jensen, Michael D

    2013-08-15

    We hypothesized that insulin alters plasma free fatty acid (FFA) trafficking into intramyocellular (im) long-chain acylcarnitines (imLCAC) and triglycerides (imTG). Overnight-fasted adults (n = 41) received intravenous infusions of [U-¹³C]palmitate (0400-0900 h) and [U-¹³C]oleate (0800-1400 h) to label imTG and imLCAC. A euglycemic-hyperinsulinemic (1.0 mU·kg fat-free mass⁻¹·min⁻¹) clamp (0800-1400 h) and two muscle biopsies (0900 h, 1400 h) were performed. The patterns of [U-¹³C]palmitate incorporation into imTG-palmitate and palmitoylcarnitine were similar to those we reported in overnight postabsorptive adults (saline control); the intramyocellular palmitoylcarnitine enrichment was not different from and correlated with imTG-palmitate enrichment for both the morning (r = 0.38, P = 0.02) and afternoon (r = 0.44, P = 0.006) biopsy samples. Plasma FFA concentrations, flux, and the incorporation of plasma oleate into imTG-oleate during hyperinsulinemia were ~1/10th of that observed in the previous saline control studies (P women than men, suggesting that sex differences in intramyocellular palmitate trafficking may occur under hyperinsulinemic conditions. We conclude that plasma FFA trafficking into imTG during hyperinsulinemia is markedly suppressed, and these newly incorporated FFA fatty acids do not readily enter the LCAC preoxidative pools. Hyperinsulinemia does not seem to inhibit the entry of fatty acids from imTG pools that were labeled under fasting conditions, possibly reflecting the presence of two distinct imTG pools that are differentially regulated by insulin.

  17. Lipase catalyzed synthesis of epoxy-fatty acids

    Institute of Scientific and Technical Information of China (English)

    CHEN, Qian; LI, Zu-Yi

    2000-01-01

    Lipase catalyzed synthesis of epoxy-fatty acidas from unsaturated carboxylic acids was investigated.Under mild conditions unsaturated arboxylic acids were convcveed to peroxide,then the unsaturated peroxycarboxylic acids epoxidised the C=C bond of themselves

  18. Identification of characteristic fatty acids to quantify triacylglycerols in microalgae

    Directory of Open Access Journals (Sweden)

    Peili eShen

    2016-02-01

    Full Text Available The fatty acid profiles of lipids from microalgae are unique. Polyunsaturated fatty acids are generally enriched in polar lipids, whereas saturated and monounsaturated fatty acids constitute the majority of fatty acids in triacylglycerols (TAG. Each species has characteristic fatty acids, and their content is positively or negatively correlated with TAGs. The marine oleaginous diatom Phaeodactylum tricornutum was used as the paradigm to determine the quantitative relationship between TAG and characteristic fatty acid content. Fatty acid profiles and TAG content of Phaeodactylum tricornutum were determined in a time course. C16:0/C16:1 and eicosapentaenoic acid (EPA, C20:5n3 were identified as characteristic fatty acids in TAGs and polar lipids, respectively. The percentage of those characteristic fatty acids in total fatty acids had a significant linear relationship with TAG content and thus the correlation coefficient presenting r2 were 0.96, 0.94 and 0.97 respectively. The fatty acid-based method for TAG quantification could also be applied to other microalgae such as Nannochloropsis oceanica in which the r2 of C16:0, EPA were 0.94, 0.97 respectively and Chlorella pyrenoidosa, whose r2 value correspondingly between C18:1, C18:3 and TAG content were 0.91, 0.99 as well. This characteristic fatty acid-based method provided a distinct way to quantify TAGs in microalgae, by which TAGs could be measured precisely by immediate transesterification from wet biomass rather than using conventional methods. This procedure simplified the operation and required smaller samples than conventional methods.

  19. Enhancement of neutrophil-mediated killing of Plasmodium falciparum asexual blood forms by fatty acids: importance of fatty acid structure.

    Science.gov (United States)

    Kumaratilake, L M; Ferrante, A; Robinson, B S; Jaeger, T; Poulos, A

    1997-10-01

    Effects of fatty acids on human neutrophil-mediated killing of Plasmodium falciparum asexual blood forms were investigated by using a quantitative radiometric assay. The results showed that the antiparasitic activity of neutrophils can be greatly increased (>threefold) by short-term treatment with fatty acids with 20 to 24 carbon atoms and at least three double bonds. In particular, the n-3 polyenoic fatty acids, eicosapentaenoic and docosahexaenoic acids, and the n-6 fatty acid, arachidonic acid, significantly enhanced neutrophil antiparasitic activity. This effect was >1.5-fold higher than that induced by an optical concentration of the known agonist cytokine tumor necrosis factor alpha (TNF-alpha). At suboptimal concentrations, the combination of arachidonic acid and TNF-alpha caused a synergistic increase in neutrophil-mediated parasite killing. The fatty acid-induced effect was independent of the availability of serum opsonins but dependent on the structure of the fatty acids. The length of the carbon chain, degree of unsaturation, and availability of a free carboxyl group were important determinants of fatty acid activity. The fatty acids which increased neutrophil-mediated killing primed the enhanced superoxide radical generation of neutrophils in response to P. falciparum as detected by chemiluminescence. Scavengers of oxygen radicals significantly reduced the fatty acid-enhanced parasite killing, but cyclooxygenase and lipoxygenase inhibitors had no effect. These findings have identified a new class of immunoenhancers that could be exploited to increase resistance against Plasmodium species.

  20. Hyperinsulinemia and skeletal muscle fatty acid trafficking

    Science.gov (United States)

    Kanaley, Jill A.; Shadid, Samyah; Sheehan, Michael T.; Guo, ZengKui

    2013-01-01

    We hypothesized that insulin alters plasma free fatty acid (FFA) trafficking into intramyocellular (im) long-chain acylcarnitines (imLCAC) and triglycerides (imTG). Overnight-fasted adults (n = 41) received intravenous infusions of [U-13C]palmitate (0400–0900 h) and [U-13C]oleate (0800–1400 h) to label imTG and imLCAC. A euglycemic-hyperinsulinemic (1.0 mU·kg fat-free mass−1·min−1) clamp (0800–1400 h) and two muscle biopsies (0900 h, 1400 h) were performed. The patterns of [U-13C]palmitate incorporation into imTG-palmitate and palmitoylcarnitine were similar to those we reported in overnight postabsorptive adults (saline control); the intramyocellular palmitoylcarnitine enrichment was not different from and correlated with imTG-palmitate enrichment for both the morning (r = 0.38, P = 0.02) and afternoon (r = 0.44, P = 0.006) biopsy samples. Plasma FFA concentrations, flux, and the incorporation of plasma oleate into imTG-oleate during hyperinsulinemia were ∼1/10th of that observed in the previous saline control studies (P < 0.001). At the time of the second biopsy, the enrichment in oleoylcarnitine was <25% of that in imTG-oleate and was not correlated with imTG-oleate enrichment. The intramyocellular nonesterified fatty acid-palmitate-to-imTG-palmitate enrichment ratio was greater (P < 0.05) in women than men, suggesting that sex differences in intramyocellular palmitate trafficking may occur under hyperinsulinemic conditions. We conclude that plasma FFA trafficking into imTG during hyperinsulinemia is markedly suppressed, and these newly incorporated FFA fatty acids do not readily enter the LCAC preoxidative pools. Hyperinsulinemia does not seem to inhibit the entry of fatty acids from imTG pools that were labeled under fasting conditions, possibly reflecting the presence of two distinct imTG pools that are differentially regulated by insulin. PMID:23820622

  1. Hyperinsulinemia and skeletal muscle fatty acid trafficking

    OpenAIRE

    Kanaley, Jill A.; Shadid, Samyah; Sheehan, Michael T.; Guo, ZengKui; Jensen, Michael D

    2013-01-01

    We hypothesized that insulin alters plasma free fatty acid (FFA) trafficking into intramyocellular (im) long-chain acylcarnitines (imLCAC) and triglycerides (imTG). Overnight-fasted adults (n = 41) received intravenous infusions of [U-13C]palmitate (0400–0900 h) and [U-13C]oleate (0800–1400 h) to label imTG and imLCAC. A euglycemic-hyperinsulinemic (1.0 mU·kg fat-free mass−1·min−1) clamp (0800–1400 h) and two muscle biopsies (0900 h, 1400 h) were performed. The patterns of [U-13C]palmitate in...

  2. The Danish trans-fatty acids ban

    DEFF Research Database (Denmark)

    Vallgårda, Signild

    2017-01-01

    In 2003 an executive order was issued banning industrially produced trans-fatty acids above a low level in food items in Denmark. To date, only a few other countries have followed Denmark’s example. The way health consequences of trans fats were translated by the different actors enabled...... the creation of alliances between researchers, politicians, administration and industry. Danish researchers interpreted the research in a way to suit their ‘mental maps’ and to support their initially set goal to reduce industrially produced trans fats. The process displayed a ‘co-production’ where research...

  3. Feedlot lamb meat fatty acids profile characterization employing gas chromatography

    Directory of Open Access Journals (Sweden)

    M.I. Cruz-Gonzalez

    2014-06-01

    Full Text Available Fat is an important constituent in diet, not only as an energy source, but for its essential fatty acids associated to fats in foods, considering that some polyunsaturated fatty acids like linoleic, linolenic and arachidonic cannot be synthesized by superior animals like humans. Scientific evidence show that the fatty acids ingest can affect the thrombotic tendency, cardiac rhythm, endothelial function systematic inflammation, insulin sensibility and oxidative stress. Samples from 21 ovine crossbreds from Pelibuey, Blackbelly, Dorper and Katahadin (40 kg average weight feed with corn based balanced diets were taken from loin area 18 h after refrigeration. Saturated and polyunsaturated fatty acids levels were analyzed by gas chromatography. Results in this work showed that the healthy fatty acids levels are higher as compared to saturated fatty acids levels, indicating that this meat can influence consumer’s buying choice decision regarded to their health.

  4. Fatty acids, inflammation and intestinal health in pigs.

    Science.gov (United States)

    Liu, Yulan

    2015-01-01

    The intestine is not only critical for nutrient digestion and absorption, but also is the largest immune organ in the body. However, in pig production, inflammation induced by numerous factors, such as pathogen infection and stresses (e.g., weaning), results in intestinal mucosal injury and dysfunction, and consequently results in poor growth of pigs. Dietary fatty acids not only play critical roles in energy homeostasis and cellular membrane composition, but also exert potent effects on intestinal development, immune function, and inflammatory response. Recent studies support potential therapeutic roles for specific fatty acids (short chain and medium chain fatty acids and long chain polyunsaturated fatty acids) in intestinal inflammation of pigs. Results of these new lines of work indicate trophic and cytoprotective effects of fatty acids on intestinal integrity in pigs. In this article, we review the effect of inflammation on intestinal structure and function, and the role of specific fatty acids on intestinal health of pigs, especially under inflammatory conditions.

  5. Enzymatic synthesis and application of fatty acid ascorbyl esters

    Directory of Open Access Journals (Sweden)

    Stojanović Marija M.

    2013-01-01

    Full Text Available Fatty acid ascorbyl esters are liposoluble substances that possess good antioxidative properties. These compounds could be synthesized by using various acyl donors for acylation of vitamin C in reaction catalyzed by chemical means or lipases. Enzymatic process is preferred since it is regioselective, performed under mild reaction conditions, with the obtained product being environmentally friendly. Polar organic solvents, ionic liquids, and supercritical fluids has been successfully used as a reaction medium, since commonly used solvents with high Log P values are inapplicable due to ascorbic acid high polarity. Acylation of vitamin C using fatty acids, their methyl-, ethyl-, and vinyl esters, as well as triglycerides has been performed, whereas application of the activated acyl donors enabled higher molar conversions. In each case, majority of authors reported that using excessive amount of the acyl donor had positive effect on yield of product. Furthermore, several strategies have been employed for shifting the equilibrium towards the product by water content control. These include adjusting the initial water activity by pre-equilibration of reaction mixture, enzyme preparation with water vapor of saturated salt solutions, and the removal of formed water by the addition of molecular sieves or salt hydrate pairs. The aim of this article is to provide a brief overview of the procedures described so far for the lipase-catalyzed synthesis of fatty acid ascorbyl esters with emphasis on the potential application in food, cosmetics, and pharmaceutics. Furthermore, it has been pointed out that the main obstacles for process commercialization are long reaction times, lack of adequate purification methods, and high costs of lipases. Thus, future challenges in this area are testing new catalysts, developing continuous processes for esters production, finding cheaper acyl donors and reaction mediums, as well as identifying standard procedures for

  6. Emerging roles for specific fatty acids in developmental processes

    OpenAIRE

    Vrablik, Tracy L.; Watts, Jennifer L.

    2012-01-01

    Animals synthesize a vast range of fatty acids serving diverse cellular functions. The roles of specific fatty acids in early development are just beginning to be characterized. In this Perspective, a study by Kniazeva et al. (in the March 15, 2012, issue) that describes the particular combination of a branched chain fatty acid and an acyl-CoA synthetase required for critical cellular processes during early embryogenesis in C. elegans is discussed.

  7. Dietary Supplementation of Polyunsaturated Fatty Acids in Caenorhabditis elegans

    OpenAIRE

    Deline, Marshall L.; Vrablik, Tracy L.; Watts, Jennifer L.

    2013-01-01

    Fatty acids are essential for numerous cellular functions. They serve as efficient energy storage molecules, make up the hydrophobic core of membranes, and participate in various signaling pathways. Caenorhabditis elegans synthesizes all of the enzymes necessary to produce a range of omega-6 and omega-3 fatty acids. This, combined with the simple anatomy and range of available genetic tools, make it an attractive model to study fatty acid function. In order to investigate the genetic pathways...

  8. Important bioactive properties of omega-3 fatty acids

    OpenAIRE

    Rui Xu

    2015-01-01

    Good health has been linked with healthy diet. N-3 fatty acids are required for proper functioning of many physiological systems. There is a large body of evidence documenting the effects of polyunsaturated fatty acids with the first double bond at the third position from methyl-terminal on health benefits. Scientific evidence is accumulating to substantiate the role omega-3 fatty acids play in conditions such as cardiovascular disease, certain cancers and other diseases. The availability of ...

  9. Fatty acid biosynthesis in novel ufa mutants of Neurospora crassa.

    Science.gov (United States)

    Goodrich-Tanrikulu, M; Stafford, A E; Lin, J T; Makapugay, M I; Fuller, G; McKeon, T A

    1994-10-01

    New mutants of Neurospora crassa having the ufa phenotype have been isolated. Two of these mutants, like previously identified ufa mutants, require an unsaturated fatty acid for growth and are almost completely blocked in the de novo synthesis of unsaturated fatty acids. The new mutations map to a different chromosomal location than previously characterized ufa mutations. This implies that at least one additional genetic locus controls the synthesis of unsaturated fatty acids in Neurospora.

  10. Intestinal absorption of essential fatty acids under physiological and essential fatty acid-deficient conditions

    NARCIS (Netherlands)

    Minich, DM; Vonk, RJ; Verkade, HJ

    The adequate supply of essential fatty acids (EFA) to the body depends upon sufficient dietary intake and subsequent efficient intestinal absorption. Lipid malabsorption is not only a leading cause of EFA deficiency (EFAD), but also occurs secondarily to EFAD. Understanding the relationship between

  11. Ruminal fatty acid metabolism : altering rumen biohydrolgenation to improve milk fatty acid profile of dairy cows

    NARCIS (Netherlands)

    Sterk, A.R.

    2011-01-01

    Nutritional guidelines promote a reduced intake of saturated fatty acids (FA) and increased intake of unsaturated FA by humans. Milk and dairy products contain a high proportion of saturated FA caused by extensive alterations of dietary lipids in the rumen through the processes of lipolysis and

  12. Intake of fatty acids in Western Europe with emphasis on trans fatty acids: The TRANSFAIR study

    DEFF Research Database (Denmark)

    Hulshof, K. F. A. M.; Erp-Baart, M. A. van; Anttolainen, M.;

    1999-01-01

    and from clusters of fatty acids was less. Only in Finland, Italy, Norway and Portugal total fat did provide on average less than 35% of energy intake. Saturated fatty acids (SFA) provided on average between 10% and 19% of total energy intake, with the lowest contribution in most Mediterranean countries....... TFA intake ranged from 0.5% (Greece, Italy) to 2.1% (Iceland) of energy intake among men and from 0.8% (Greece) to 1.9% among women (Iceland) (1.2-6.7 g/d and 1.7-4.1 g/d, respectively). The TFA intake was lowest in Mediterranean countries (0.5-0.8 en%) but was also below 1% of energy in Finland...... and Germany. Moderate intakes were seen in Belgium, The Netherlands, Norway and UK and highest intake in Iceland. Trans isomers of C-18:1 were the most TFA in the diet. Monounsaturated fatty acids contributed 9-12% of mean daily energy intake (except for Greece, nearly 18%) and polyunsaturated fatty acids 3...

  13. Update on marine omega-3 fatty acids: management of dyslipidemia and current omega-3 treatment options.

    Science.gov (United States)

    Weintraub, Howard

    2013-10-01

    Low-density lipoprotein cholesterol (LDL-C) is currently the primary target in the management of dyslipidemia, and statins are first-line pharmacologic interventions. Adjunct therapy such as niacins, fibrates, bile acid sequestrants, or cholesterol absorption inhibitors may be considered to help reduce cardiovascular risk. This review discusses the need for alternative adjunct treatment options and the potential place for omega-3 fatty acids as such. The cardiovascular benefits of fish consumption are attributed to the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and a variety of omega-3 fatty acid products are available with varied amounts of EPA and DHA. The product types include prescription drugs, food supplements, and medical foods sourced from fish, krill, algal and plant oils or purified from these oils. Two prescription omega-3 fatty acids are currently available, omega-3 fatty acid ethyl esters (contains both EPA and DHA ethyl esters), and icosapent ethyl (IPE; contains high-purity EPA ethyl ester). A pharmaceutical containing free fatty acid forms of omega-3 is currently in development. Omega-3 fatty acid formulations containing EPA and DHA have been shown to increase LDL-C levels while IPE has been shown to lower triglyceride levels without raising LDL-C levels, alone or in combination with statin therapy. In addition, recent studies have not been able to demonstrate reduced cardiovascular risk following treatment with fibrates, niacins, cholesterol absorption inhibitors, or omega-3 fatty acid formulations containing both EPA and DHA in statin-treated patients; thus, there remains a need for further cardiovascular outcomes studies for adjunct therapy.

  14. Influência da ingestão de sardinha nos níveis de ácidos graxos poliinsaturados da série ômega3 no leite materno The influence of sardine consumption on the omega-3 fatty acid content of mature human milk

    Directory of Open Access Journals (Sweden)

    Rose V. Patin

    2006-02-01

    Full Text Available OBJETIVOS: A proposta deste trabalho foi verificar a influência da ingestão de sardinha, alimento rico em ácidos graxos poliinsaturados da série ômega3, na composição do leite materno. MÉTODOS: Estudo prospectivo avaliou 31 nutrizes acompanhadas no Hospital Guilherme Álvaro, as quais receberam 2 kg de sardinha fresca por duas vezes, em intervalos de 15 dias. Nos tempos 0, 15 e 30 dias, realizou-se inquérito alimentar de 24 horas e coleta de leite. Determinaram-se os ácidos graxos do leite materno por cromatografia a gás. Para análise estatística dos resultados, utilizaram-se testes não paramétricos, com nível de significância p OBJECTIVES: The purpose of this study was to investigate what effect the intake of sardines, rich in omega-3 series polyunsaturated fatty acids, has on the composition of breastmilk. METHODS: This was a prospective study of 31 nursing mothers under observation at the Hospital Guilherme Álvaro. Each was given 2 kg of fresh sardines twice with a 15-day interval. Milk was sampled and a 24-hour dietary recall questionnaire was applied on days 0, 15 and 30. Milk was assayed for fatty acid content by gas chromatography. Statistical analysis of the results was performed using nonparametric tests with significance set at p < 0.05. RESULTS: The results demonstrate that the nutritional intake of the nursing mothers was adequate at all three sample points. With regard to the omega-3 series fatty acid content of the breastmilk, it was observed that regular consumption and shorter intervals between intake and milk collection resulted in higher concentrations of docosapentaenoic acid and docosahexaenoic acid at 15 and 30 days into the study. Fatty acids from the omega-3 and omega-6 series exhibited a significant correlation, r² was 0.58 and 0.59 at 15 and 30 days, respectively. CONCLUSION: These results suggest that incorporating fish into the diets of nursing mother during lactation, in the form of 100 g of

  15. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    Science.gov (United States)

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes.

  16. Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals

    DEFF Research Database (Denmark)

    Yu, Tao; Zhou, Yongjin J.; Wenning, Leonie

    2017-01-01

    Production of chemicals and biofuels through microbial fermentation is an economical and sustainable alternative for traditional chemical synthesis. Here we present the construction of a Saccharomyces cerevisiae platform strain for high-level production of very-long-chain fatty acid (VLCFA......)-derived chemicals. Through rewiring the native fatty acid elongation system and implementing a heterologous Mycobacteria FAS I system, we establish an increased biosynthesis of VLCFAs in S. cerevisiae. VLCFAs can be selectively modified towards the fatty alcohol docosanol (C22H46O) by expressing a specific fatty...... acid reductase. Expression of this enzyme is shown to impair cell growth due to consumption of VLCFA-CoAs. We therefore implement a dynamic control strategy for separating cell growth from docosanol production. We successfully establish high-level and selective docosanol production of 83.5 mg l-1 in...

  17. Micronutrients, omega-3 fatty acids and cognitive performance in Indian schoolchildren

    NARCIS (Netherlands)

    Eilander, J.H.C.

    2009-01-01

    In developing countries, approximately 30-40% of school-age children suffer from iodine and iron deficiencies. Poverty and consumption of monotonous diets are underlying causes of inadequate intakes of micronutrients and omega-3 fatty acids and may have severe consequences for children’s cognitive d

  18. Micronutrients, omega-3 fatty acids and cognitive performance in Indian schoolchildren

    NARCIS (Netherlands)

    Eilander, J.H.C.

    2009-01-01

    In developing countries, approximately 30-40% of school-age children suffer from iodine and iron deficiencies. Poverty and consumption of monotonous diets are underlying causes of inadequate intakes of micronutrients and omega-3 fatty acids and may have severe consequences for children’s cognitive

  19. Effect of trans fatty acid intake on LC-MS and NMR plasma profiles

    DEFF Research Database (Denmark)

    Gürdeniz, Gözde; Rago, Daniela; Bendsen, Nathalie Tommerup

    2013-01-01

    The consumption of high levels of industrial trans fatty acids (TFA) has been related to cardiovascular disease, diabetes and sudden cardiac death but the causal mechanisms are not well known. In this study, NMR and LC-MS untargeted metabolomics has been used as an approach to explore the impact ...... of TFA intake on plasma metabolites....

  20. Quantitative milk genomics: estimation of variance components and prediction of fatty acids in bovine milk

    DEFF Research Database (Denmark)

    Krag, Kristian

    The composition of bovine milk fat, used for human consumption, is far from the recommendations for human fat nutrition. The aim of this PhD was to describe the variance components and prediction probabilities of individual fatty acids (FA) in bovine milk, and to evaluate the possibilities...

  1. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803

    Directory of Open Access Journals (Sweden)

    Gao Qianqian

    2012-03-01

    Full Text Available Abstract Background Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria. Results Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS, have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Conclusions Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene.

  2. Fatty acids profiling reveals potential candidate markers of semen quality.

    Science.gov (United States)

    Zerbinati, C; Caponecchia, L; Rago, R; Leoncini, E; Bottaccioli, A G; Ciacciarelli, M; Pacelli, A; Salacone, P; Sebastianelli, A; Pastore, A; Palleschi, G; Boccia, S; Carbone, A; Iuliano, L

    2016-11-01

    Previous reports showed altered fatty acid content in subjects with altered sperm parameters compared to normozoospermic individuals. However, these studies focused on a limited number of fatty acids, included a short number of subjects and results varied widely. We conducted a case-control study involving 155 patients allocated into four groups, including normozoospermia (n = 33), oligoasthenoteratozoospermia (n = 32), asthenozoospermia (n = 25), and varicocoele (n = 44). Fatty acid profiling, including 30 species, was analyzed by a validated gas chromatography (GC) method on the whole seminal fluid sample. Multinomial logistic regression modeling was used to identify the associations between fatty acids and the four groups. Specimens from 15 normozoospermic subjects were also analyzed for fatty acids content in the seminal plasma and spermatozoa to study the distribution in the two compartments. Fatty acids lipidome varied markedly between the four groups. Multinomial logistic regression modeling revealed that high levels of palmitic acid, behenic acid, oleic acid, and docosahexaenoic acid (DHA) confer a low risk to stay out of the normozoospermic group. In the whole population, seminal fluid stearic acid was negatively correlated (r = -0.53), and DHA was positively correlated (r = 0.65) with sperm motility. Some fatty acids were preferentially accumulated in spermatozoa and the highest difference was observed for DHA, which was 6.2 times higher in spermatozoa than in seminal plasma. The results of this study highlight complete fatty acids profile in patients with different semen parameters. Given the easy-to-follow and rapid method of analysis, fatty acid profiling by GC method can be used for therapeutic purposes and to measure compliance in infertility trials using fatty acids supplements. © 2016 American Society of Andrology and European Academy of Andrology.

  3. PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid -Hydroxylase (CYP4 Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    James P. Hardwick

    2009-01-01

    Full Text Available Fatty liver disease is a common lipid metabolism disorder influenced by the combination of individual genetic makeup, drug exposure, and life-style choices that are frequently associated with metabolic syndrome, which encompasses obesity, dyslipidemia, hypertension, hypertriglyceridemia, and insulin resistant diabetes. Common to obesity related dyslipidemia is the excessive storage of hepatic fatty acids (steatosis, due to a decrease in mitochondria -oxidation with an increase in both peroxisomal -oxidation, and microsomal -oxidation of fatty acids through peroxisome proliferator activated receptors (PPARs. How steatosis increases PPAR activated gene expression of fatty acid transport proteins, peroxisomal and mitochondrial fatty acid -oxidation and -oxidation of fatty acids genes regardless of whether dietary fatty acids are polyunsaturated (PUFA, monounsaturated (MUFA, or saturated (SFA may be determined by the interplay of PPARs and HNF4 with the fatty acid transport proteins L-FABP and ACBP. In hepatic steatosis and steatohepatitis, the -oxidation cytochrome P450 CYP4A gene expression is increased even with reduced hepatic levels of PPAR. Although numerous studies have suggested the role ethanol-inducible CYP2E1 in contributing to increased oxidative stress, Cyp2e1-null mice still develop steatohepatitis with a dramatic increase in CYP4A gene expression. This strongly implies that CYP4A fatty acid -hydroxylase P450s may play an important role in the development of steatohepatitis. In this review and tutorial, we briefly describe how fatty acids are partitioned by fatty acid transport proteins to either anabolic or catabolic pathways regulated by PPARs, and we explore how medium-chain fatty acid (MCFA CYP4A and long-chain fatty acid (LCFA CYP4F -hydroxylase genes are regulated in fatty liver. We finally propose a hypothesis that increased CYP4A expression with a decrease in CYP4F genes may promote the progression of steatosis to

  4. [Raman spectrometry of several saturated fatty acids and their salts].

    Science.gov (United States)

    Luo, Man; Guan, Ping; Liu, Wen-hui; Liu, Yan

    2006-11-01

    Saturated fatty acids and their salts widely exist in the nature, and they are well known as important chemical materials. Their infrared spectra have been studied in detail. Nevertheless, few works on the Raman spectra characteristics of saturated fatty acids and their salts have been published before. Man-made crystals of acetic acid, stearic acid, calcium acetate, magnesium acetate, calcium stearate and magnesium stearate were investigated by means of Fourier transform Raman spectrometry for purpose of realizing their Raman spectra. Positive ions can cause the distinctions between the spectra of saturated fatty acids and their salts. The differences in mass and configuration between Ca2+ and Mg2+ result in the Raman spectra's diversity between calcium and magnesium salts of saturated fatty acids. Meanwhile, it is considered that the long carbon chain weakened the influence of different positive ions on the salts of saturated fatty acids.

  5. Marine lipids and the bioavailability of omega-3 fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Müllertz, Anette

    2015-01-01

    Marine lipids are enriched with omega-3 fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Omega-3 fatty acids are important membrane lipids and have many recognized health benefits, the bioavailability of these fatty acids can therefore be important for achieving...... the beneficial healthy effects. As important membrane lipids, the incorporation and depletion kinetics of EPA and DHA in biological membranes have been found to be different, DHA was depleted slowly from both erythrocyte and plasma membranes due to the slow re-synthesis of DHA in the body. The bioavailability...... of omega-3 fatty acids has been reported to be affected by several factors; among the important factors were the digestion and absorption processes of omega-3 containing lipids in the gastrointestinal tract. Both lipid structures and food structures can affect the bioavailability of omega-3 fatty acids...

  6. Antineoplastic unsaturated fatty acids from Fijian macroalgae.

    Science.gov (United States)

    Jiang, Ren-Wang; Hay, Mark E; Fairchild, Craig R; Prudhomme, Jacques; Roch, Karine Le; Aalbersberg, William; Kubanek, Julia

    2008-10-01

    Phytochemical analysis of Fijian populations of the green alga Tydemania expeditionis led to the isolation of two unsaturated fatty acids, 3(zeta)-hydroxy-octadeca-4(E),6(Z),15(Z)-trienoic acid (1) and 3(zeta)-hydroxy-hexadeca-4(E),6(Z)-dienoic acid (2), along with the known 3(zeta)-hydroxy-octadeca-4(E),6(Z)-dienoic acid (4). Investigations of the red alga Hydrolithon reinboldii led to identification of a glycolipid, lithonoside (3), and five known compounds, 15-tricosenoic acid, hexacosa-5,9-dienoic methyl ester, beta-sitosterol, 10(S)-hydroxypheophytin A, and 10(R)-hydroxypheophytin A. The structures of 1-3 were elucidated by spectroscopic methods (1D and 2D NMR spectroscopy and ESI-MS). Compounds 1, 2, and 4, containing conjugated double bonds, demonstrated moderate inhibitory activity against a panel of tumor cell lines (including breast, colon, lung, prostate and ovarian cells) with IC(50) values ranging from 1.3 to 14.4 microM. The similar cell selectivity patterns of these three compounds suggest that they might act by a common, but unknown, mechanism of action.

  7. Effect of liver fatty acid binding protein on fatty acid movement between liposomes and rat liver microsomes.

    Science.gov (United States)

    McCormack, M; Brecher, P

    1987-01-01

    Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes. PMID:3446187

  8. Resolution and quantification of isomeric fatty acids by silver ion HPLC: fatty acid composition of aniseed oil (Pimpinella anisum, Apiaceae).

    Science.gov (United States)

    Denev, Roumen V; Kuzmanova, Ivalina S; Momchilova, Svetlana M; Nikolova-Damyanova, Boryana M

    2011-01-01

    A silver ion HPLC procedure is described that is suitable to determine the fatty acid composition of plant seed oils. After conversion of fatty acids to p-methoxyphenacyl derivatives, it was possible to achieve baseline resolution of all fatty acid components with 0 to 3 double bonds, including the positionally isomeric 18:1 fatty acids oleic acid (cis 9-18:1), petroselinic acid (cis 6-18:1), and cis-vaccenic acid (cis 11-18:1), in aniseed oil (Pimpinella anisum, Apiaceae) by a single gradient run on a single cation exchange column laboratory converted to the silver ion form. The UV detector response (280 nm) was linearly related to the fatty acid concentration in the range 0.01 to 3.5 mg/mL.

  9. Overproduction of fatty acids in engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Li, Xiaowei; Guo, Daoyi; Cheng, Yongbo; Zhu, Fayin; Deng, Zixin; Liu, Tiangang

    2014-09-01

    The long hydrocarbon fatty acyl chain is energy rich, making it an ideal precursor for liquid transportation fuels and high-value oleo chemicals. As Saccharomyces cerevisiae has many advantages for industrial production compared to Escherichia coli. Here, we attempted to engineer Saccharomyces cerevisiae for overproduction of fatty acids. First, disruption of the beta-oxidation pathway, elimination of the acyl-CoA synthetases, overexpression of different thioesterases and acetyl-CoA carboxylase ACC1, and engineering the supply of precursor acetyl-CoA. The engineered strain XL122 produced more than 120 mg/L of fatty acids. In parallel, we inactivated ADH1, the dominant gene for ethanol production, to redirect the metabolic flux to fatty acids synthesis. The engineered strain DG005 produced about 140 mg/L fatty acids. Additionally, Acetyl-CoA carboxylase was identified as a critical bottleneck of fatty acids synthesis in S. cerevisiae with a cell-free system. However, overexpression of ACC1 has little effect on fatty acids biosynthesis. As it has been reported that phosphorylation of ACC1 may influent its activity, so phosphorylation sites of ACC1 were further identified. Although the regulatory mechanisms remain unclear, our results provide rationale for future studies to target this critical step. All these efforts, particularly the discovery of the limiting step are critical for developing a "cell factory" for the overproduction of fatty acids by using type I fatty acids synthase in yeast or other fungi.

  10. Stearic acid: a possible substitute for trans fatty acids from industrial origin

    Directory of Open Access Journals (Sweden)

    Tavella, Marcelo

    2011-06-01

    Full Text Available Trans isomers, contained in partially hydrogenated oils, which are used in the food industry, have been questioned and nowadays trends are heading towards reducing their consumption. The food industry is facing a dilemma, since in order to remove trans fatty acids, hydrogenated fats should be eliminated and replaced by fats rich in saturated fatty acids. Scientific research has shown that saturated fatty acids have negative effects on the lipid profile and its consumption is associated with a higher cardiovascular risk. Therefore it is recommended to avoid their consumption. Nevertheless, not all fatty acids behave in the same way, with stearic acid (18:0 the exception. Stearic acid has a low level of intestinal absorption and its intake does not negatively modify the lipid profile. For this reason, it is considered a “neutral” fatty acid with regard to cardiovascular health. B-100 apolipoprotein, whose levels determine plasma VLDL and LDL concentration (triglycerides and cholesterol carriers, respectively, is not modified by diets which provide up to 7% of the energy as stearic acid. Markers of cardiovascular risk, such as activation of platelet aggregation factors or C-reactive protein levels, are not modified by diets providing stearic acid, as occurs with other saturated fatty acids. The confirmation of the “neutral” effect of stearic acid represents a perspective for the development of fats with high contents of this fatty acid to replace hydrogenated fats containing trans isomers. The present review discusses these aspects.Los isómeros trans que contienen los aceites parcialmente hidrogenados de origen industrial, han sido cuestionados y la recomendación es reducir su consumo. La industria de alimentos se enfrenta a un dilema, ya que para disminuir los isómeros trans debe reducir los aceites parcialmente hidrogenados y reemplazarlos por grasas ricas en ácidos grasos saturados. La investigación ha demostrado que los

  11. Pseudo catalytic transformation of volatile fatty acids into fatty acid methyl esters.

    Science.gov (United States)

    Jung, Jong-Min; Cho, Jinwoo; Kim, Ki-Hyun; Kwon, Eilhann E

    2016-03-01

    Instead of anaerobic digestion of biodegradable wastes for producing methane, this work introduced the transformation of acidogenesis products (VFAs) into fatty acid methyl esters (FAMEs) to validate the feasible production of short-chained fatty alcohols via hydrogenation of FAMEs. In particular, among VFAs, this work mainly described the mechanistic explanations for transforming butyric acid into butyric acid methyl ester as a case study. Unlike the conventional esterification process (conversion efficiency of ∼94%), the newly introduced esterification under the presence of porous materials via the thermo-chemical process reached up to ∼99.5%. Furthermore, the newly introduced esterification via the thermo-chemical pathway in this work showed extremely high tolerance of impurities: the conversion efficiency under the presence of impurities reached up to ∼99±0.3%; thus, the inhibition behaviors attributed from the impurities used for the experimental work were negligible.

  12. Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Teixeira, Paulo Goncalves; Ferreira, Raphael; Zhou, Yongjin J.

    2017-01-01

    faa4 Delta strain constitutively expressing a carboxylic acid reductase from Mycobacterium marinum (MmCAR) and an endogenous alcohol dehydrogenase (Adh5) for in vivo production of fatty alcohols from FFAs. We observed production of fatty acids and fatty alcohols with different rates leading to high...... loss of precursors that compromises the process yield. In the present study, we aimed for dynamic expression of the fatty acyl-CoA synthetase gene FAA1 to regulate FFA and acyl-CoA pools in order to improve fatty alcohol production yields. Results: We analyzed the metabolite dynamics of a faa1 Delta...... levels of FFAs not being converted to the final product. To address the issue, we expressed the MmCAR + Adh5 pathway together with a fatty acyl-CoA reductase from Marinobacter aquaeolei to enable fatty alcohol production simultaneously from FFA and acyl-CoA, respectively. Then, we expressed FAA1 under...

  13. Fatty acids composition in fruits of wild rose species

    Directory of Open Access Journals (Sweden)

    Renata Nowak

    2011-01-01

    Full Text Available The oil content and fatty acids profile of a number of Polish wild species of rose fruits were examined by GC. The total fatty acid contents ranged from 6.5% to 12.9% of dry mass in fruits. The composition of oils was similar in the investigated species. 17 components were identified. An average composition was estimated as follows: linoleic acid (44.4-55.7%, a-linolenic acid (18.6-31.4%, oleic acid (13.5-20.3%, palmitic acid (2.3-3.3%, stearic acid (1-2.5%, octadecenoic acid (0.38-0.72%, eicosenoic acid (0.3-0.7%, eicosadienoic acid (0-0.16%, erucic acid (0.03-0.17% and minor fatty acids. The results indicate that rose fruits are a rich source of unsaturated fatty acids, especially in R. rubiginosa, R. rugosa and R. dumalis. There were statistically significant (p<0.05 differences in fatty acid compositions of some species. Fatty acids were suggested to have a potential chemotaxonomic value in this genus.

  14. N-3 Polyunsaturated Fatty Acids, Lipid Microclusters, and Vitamin E.

    Science.gov (United States)

    Shaikh, Saame Raza; Wassall, Stephen R; Brown, David A; Kosaraju, Rasagna

    2015-01-01

    Increased consumption of long-chain marine n-3 polyunsaturated fatty acids (PUFA) has potential health benefits for the general population and for select clinical populations. However, several key limitations remain in making adequate dietary recommendations on n-3 PUFAs in addition to translating the fatty acids into clinical trials for select diseases. One major constraint is an incomplete understanding of the underlying mechanisms of action of n-3 PUFAs. In this review, we highlight studies to show n-3 PUFA acyl chains reorganize the molecular architecture of plasma membrane sphingolipid-cholesterol-enriched lipid rafts and potentially sphingolipid-rich cholesterol-free domains and cardiolipin-protein scaffolds in the inner mitochondrial membrane. We also discuss the possibility that the effects of n-3 PUFAs on membrane organization could be regulated by the presence of vitamin E (α-tocopherol), which is necessary to protect highly unsaturated acyl chains from oxidation. Finally, we propose the integrated hypothesis, based predominately on studies in lymphocytes, cancer cells, and model membranes, that the mechanism by which n-3 PUFAs disrupt signaling microclusters is highly dependent on the type of lipid species that incorporate n-3 PUFA acyl chains. The current evidence suggests that n-3 PUFA acyl chains disrupt lipid raft formation by incorporating primarily into phosphatidylethanolamines but can also incorporate into other lipid species of the lipidome.

  15. Protective effect of alcohol consumption for fatty liver but not metabolic syndrome

    Institute of Scientific and Technical Information of China (English)

    Masahide Hamaguchi; Takao Kojima; Akihiro Ohbora; Noriyuki Takeda; Michiaki Fukui; Takahiro Kato

    2012-01-01

    AIM: To investigate the effect of alcohol on the metabolic syndrome (MS) and fatty liver in Japanese men and women. METHODS: A cross-sectional study was conducted in a medical health checkup program at a general hospital. This study involved 18 571 Japanese men and women, 18-88 years of age, with a mean body mass index of 22.6 kg/m2. A standardized questionnaire was administered. The total amount of alcohol consumed per week was calculated, and categorized into four grades. Fatty liver was examined by ultrasound modified criteria of the revised National Cholesterol Education Program Adult Treatment Panel Ⅲ and the new International Diabetes Federation. RESULTS: The prevalence of fatty liver decreased in men and women with light to moderate alcohol consumption, whereas the prevalence of MS was not so changed. The prevalence of fatty liver of any grade in men was lower than that in those with no or minimal alcohol consumption. In women with light to moderate alcohol consumption, prevalence of fatty liver was lower than that in women with no or minimal alcohol consumption. By logistic regression analysis, the odds ratio (OR) for MS in women with light alcohol consumption was decreased to < 1.0, but this change was not clear in men. The OR for fatty liver was clearly < 1.0 in men with any level of alcohol consumption and in women with light to moderate consumption. CONCLUSION: Light to moderate alcohol consumption has a favorable effect for fatty liver, but not for MS in Japanese men and women.

  16. Increased Brain Fatty Acid Uptake in Metabolic Syndrome

    Science.gov (United States)

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti; Hirvonen, Jussi; Fielding, Barbara A.; Virtanen, Kirsi; Oikonen, Vesa; Kemppainen, Jukka; Viljanen, Tapio; Guiducci, Letizia; Haaparanta-Solin, Merja; Någren, Kjell; Solin, Olof; Nuutila, Pirjo

    2010-01-01

    OBJECTIVE To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it. RESEARCH DESIGN AND METHODS We measured brain fatty acid uptake in a group of 23 patients with MS and 7 age-matched healthy control subjects during fasting conditions using positron emission tomography (PET) with [11C]-palmitate and [18F]fluoro-6-thia-heptadecanoic acid ([18F]-FTHA). Sixteen MS subjects were restudied after 6 weeks of very low calorie diet intervention. RESULTS At baseline, brain global fatty acid uptake derived from [18F]-FTHA was 50% higher in patients with MS compared with control subjects. The mean percentage increment was 130% in the white matter, 47% in the gray matter, and uniform across brain regions. In the MS group, the nonoxidized fraction measured using [11C]-palmitate was 86% higher. Brain fatty acid uptake measured with [18F]-FTHA-PET was associated with age, fasting serum insulin, and homeostasis model assessment (HOMA) index. Both total and nonoxidized fractions of fatty acid uptake were associated with BMI. Rapid weight reduction decreased brain fatty acid uptake by 17%. CONCLUSIONS To our knowledge, this is the first study on humans to observe enhanced brain fatty acid uptake in patients with MS. Both fatty acid uptake and accumulation appear to be increased in MS patients and reversed by weight reduction. PMID:20566663

  17. Omega 3 Fatty Acids: Novel Neurotherapeutic Targets for Cognitive Dysfunction in Mood Disorders and Schizophrenia?

    Science.gov (United States)

    Knöchel, Christian; Voss, Martin; Grüter, Florian; Alves, Gilberto S; Matura, Silke; Sepanski, Beate; Stäblein, Michael; Wenzler, Sofia; Prvulovic, David; Carvalho, André F; Oertel-Knöchel, Viola

    2015-01-01

    An increasing body of evidences from preclinical as well as epidemiological and clinical studies suggest a potential beneficial role of dietary intake of omega-3 fatty acids for cognitive functioning. In this narrative review, we will summarize and discuss recent findings from epidemiological, interventional and experimental studies linking dietary consumption of omega-3 fatty acids to cognitive function in healthy adults. Furthermore, affective disorders and schizophrenia (SZ) are characterized by cognitive dysfunction encompassing several domains. Cognitive dysfunction is closely related to impaired functioning and quality of life across these conditions. Therefore, the current review focues on the potential influence of omega-3 fatty acids on cognition in SZ and affective disorders. In sum, current data predominantly from mechanistic models and animal studies suggest that adjunctive omega-3 fatty acid supplementation could lead to improved cognitive functioning in SZ and affective disorders. However, besides its translational promise, evidence for clinical benefits in humans has been mixed. Notwithstanding evidences indicate that adjunctive omega-3 fatty acids may have benefit for affective symptoms in both unipolar and bipolar depression, to date no randomized controlled trial had evaluated omega-3 as cognitive enhancer for mood disorders, while a single published controlled trial suggested no therapeutic benefit for cognitive improvement in SZ. Considering the pleiotropic mechanisms of action of omega-3 fatty acids, the design of well-designed controlled trials of omega-3 supplementation as a novel, domain-specific, target for cognitive impairment in SZ and affective disorders is warranted.

  18. Effect of the fatty acid composition of acclimated oenological Lactobacillus plantarum on the resistance to ethanol.

    Science.gov (United States)

    Bravo-Ferrada, B M; Gómez-Zavaglia, A; Semorile, L; Tymczyszyn, E E

    2015-02-01

    The aim of this work was to evaluate the changes due to acclimation to ethanol on the fatty acid composition of three oenological Lactobacillus plantarum strains and their effect on the resistance to ethanol and malic acid consumption (MAC). Lactobacillus plantarum UNQLp 133, UNQLp 65.3 and UNQLp 155 were acclimated in the presence of 6 or 10% v/v ethanol, for 48 h at 28°C. Lipids were extracted to obtain fatty acid methyl esters and analysed by gas chromatography interfaced with mass spectroscopy. The influence of change in fatty acid composition on the viability and MAC in synthetic wine was analysed by determining the Pearson correlation coefficient. Acclimated strains showed a significant change in the fatty composition with regard to the nonacclimated strains. Adaptation to ethanol led to a decrease in the unsaturated/saturated ratio, mainly resulting from an increase in the contribution of short-length fatty acid C12:0 and a decrease of C18:1. The content of C12:0 was related to a higher viability after inoculation of synthetic wine. The MAC increased at higher contents in saturated fatty acid, but its efficiency was strain dependent.

  19. Polyunsaturated fatty acids and inflammatory diseases.

    Science.gov (United States)

    Gil, A

    2002-10-01

    Inflammation is overall a protective response, whose main goal is to liberate the human being of cellular lesions caused by micro-organisms, toxins, allergens, etc., as well as its consequences, and of death cells and necrotic tissues. Chronic inflammation, which is detrimental to tissues, is the basic pathogenic mechanism of hypersensitivity reactions against xenobiotics. Other frequent pathologies, for instance atherosclerosis, chronic hepatitis, inflammatory bowel disease (IBD), liver cirrhosis, lung fibrosis, psoriasis, and rheumatoid arthritis are also chronic inflammatory diseases. Chemical mediators of inflammation are derived from blood plasma or different cell-type activity. Biogenic amines, eicosanoids and cytokines are within the most important mediators of inflammatory processes. The different activities of eicosanoids derived from arachidonic acid (20:4 n-6) versus those derived from eicosapentaenoic acid (20:5 n-3) are one of the most important mechanisms to explain why n-3, or omega-3, polyunsaturated fatty acids (PUFA) exhibit anti-inflammatory properties in many inflammatory diseases. Dietary supplements ranging 1-8 g per day of n-3 PUFA have been reportedly beneficial in the treatment of IBD, eczema, psoriasis and rheumatoid arthritis. In addition, recent experimental studies in rats with experimental ulcerative colitis, induced by intrarectal injection of trinitrobenzene sulphonic acid, have documented that treatment with n-3 long-chain PUFA reduces mucosal damage as assessed by biochemical and histological markers of inflammation. Moreover, the defence antioxidant system in this model is enhanced in treated animals, provided that the n-3 PUFA supply is adequately preserved from oxidation.

  20. Genetic variability of fatty acids in bovine milk

    Directory of Open Access Journals (Sweden)

    Soyeurt H.

    2008-01-01

    Full Text Available Fatty acids composition of bovine milk influences the technological properties of butterfat and also presents some potential benefits for human health. Impact of feeding on fat composition is well described in the literature; less information is available about the impact of genetics. Based on few studies, essentially conducted to isolate some feeding effect, the breed seemed to influence the fatty acids composition. The variation in the activity of δ-9 desaturase, key enzyme in the production of monounsaturated fatty acids and conjugated linoleic acids in milk, could explain these differences. Very few studies have been focussing on the estimation of genetic parameters of fatty acids composition. However, the moderate heritability estimates observed by these studies for the major fatty acids could suggest a potential genetic effect.

  1. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    DEFF Research Database (Denmark)

    Refsgaard, Hanne; Tsai, Lin; Stadtman, Earl

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(lll)/O-2] depends on the degree of unsaturation of the fatty acid. The fatty acid......-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate fatty acids were oxidized in the presence...... in the formation of protein carbonyls, These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (alpha,beta-unsaturated aldehydes) with lysine residues...

  2. [Possible route for thiamine participation in fatty acid synthesis].

    Science.gov (United States)

    Buko, V U; Larin, F S

    1976-01-01

    The possibility of thiamine partaking in the synthesis of fatty acids through the functions unrelated to the catalytic properties of thiamine-diphosphate was studied. Rats kept on a fat-free ration devoid of thiamine were given thiamine of thiochrome with no vitaminic properties. The total fatty acids content in different tissues and incorporation therein of tagged acetate and pyruvate was determined, while the fatty acids composition of the liver was investigated by using gas chromatography. Thiamine and thiochrome produced a similar effect on a number of the study factors, i.e. they forced down the total acids level in the spleen, intensified incorporation of tagged acetate and pyruvate in fatty acids of the heart and uniformly changed the fatty acids composition in the liver. It is suggested that the unindirectional effects of thiamine and thiochrome is due to the oxidative transformation of thiamine into thiochrome.

  3. Dietary Omega-3 Polyunsaturated Fatty Acids Alter Fatty Acid Composition of Lipids and CYP2E1 Expression in Rat Liver Tissue.

    Science.gov (United States)

    Maksymchuk, Oksana; Shysh, Angela; Chashchyn, Mykola; Moibenko, Olexyi

    2016-07-21

    Omega-3 polyunsaturated fatty acids (PUFAs) are used for the treatment and prevention of numerous pathologies in humans. As recently found, PUFAs play significantly protective roles in liver, cardiovascular system and kidney. They also are widely used in total parenteral nutrition. We evaluated the effect of omega-3 PUFA consumption on liver fatty acid composition and the expression of CYP2E1, one of the key enzymes in detoxification and prooxidant systems of liver cells. To estimate the oxidative stress in liver tissue, the antioxidant status and the level of lipid peroxidation were determined in a rodent model. Animals were divided into two groups: control (n = 10) and experimental (n = 10). Epadol-containing omega-3 PUFA fish oil capsules were administered to Wistar rats within 4 weeks (0.1 mL/100 g b.w./day). The consumption of omega-3 PUFAs resulted in changes of fatty acid composition of liver tissue. A significant increase was detected in the α-linolenic, eicosapentaenoic and docosahexaenoic acid content (5.1-, 16-, and 1.3-fold, respectively, p omega-3:omega-6 ratio. Consumption of omega-3 PUFAs led to a 3-fold (p < 0.05) increase in CYP2E1 content, which could entail enhanced Nrf2 expression levels and increases in the HO-1 content in rat liver. The alteration in CYP2E1 expression did not have an impact on the level of lipid peroxidation and on the prooxidant/antioxidant balance.

  4. Sex Steroid Modulation of Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    Science.gov (United States)

    Ockner, Robert K.; Lysenko, Nina; Manning, Joan A.; Monroe, Scott E.; Burnett, David A.

    1980-01-01

    The mechanism by which sex steroids influence very low density hepatic lipoprotein triglyceride production has not been fully elucidated. In previous studies we showed that [14C]oleate utilization and incorporation into triglycerides were greater in hepatocyte suspensions from adult female rats than from males. The sex differences were not related to activities of the enzymes of triglyceride biosynthesis, whereas fatty acid binding protein (FABP) concentration in liver cytosol was greater in females. These findings suggested that sex differences in lipoprotein could reflect a sex steroid influence on the availability of fatty acids for hepatocellular triglyceride biosynthesis. In the present studies, sex steroid effects on hepatocyte [14C]oleate utilization and FABP concentration were investigated directly. Hepatocytes from immature (30-d-old) rats exhibited no sex differences in [14C]oleate utilization. With maturation, total [14C]oleate utilization and triglyceride biosynthesis increased moderately in female cells and decreased markedly in male cells; the profound sex differences in adults were maximal by age 60 d. Fatty acid oxidation was little affected. Rats were castrated at age 30 d, and received estradiol, testosterone, or no hormone until age 60 d, when hepatocyte [14C]oleate utilization was studied. Castration virtually eliminated maturational changes and blunted the sex differences in adults. Estradiol or testosterone largely reproduced the appropriate adult pattern of [14C]oleate utilization regardless of the genotypic sex of the treated animal. In immature females and males, total cytosolic FABP concentrations were similar. In 60-d-old animals, there was a striking correlation among all groups (females, males, castrates, and hormone-treated) between mean cytosolic FABP concentration on the one hand, and mean total [14C]oleate utilization (r = 0.91) and incorporation into triglycerides (r = 0.94) on the other. In 30-d-old animals rates of [14C

  5. Omega-3 Fatty Acids in the Management of Epilepsy.

    Science.gov (United States)

    Tejada, Silvia; Martorell, Miquel; Capó, Xavier; Tur, Josep A; Pons, Antoni; Sureda, Antoni

    2016-01-01

    Omega-3 and omega-6 fatty acids are polyunsaturated fatty acids (PUFAs) with multiple double bonds. Linolenic and alpha-linolenic acids are omega-6 and omega-3 PUFAs, precursors for the synthesis of long-chain PUFAs (LC-PUFAs), such as arachidonic acid (omega-6 PUFA), and eicosapentaenoic and docosahexaenoic acids (omega-3 PUFAs). The three most important omega-3 fatty acids are alpha-linolenic, eicosapentaenoic and docosahexaenoic acids, which cannot be synthesized in enough amounts by the body, and therefore they must be supplied by the diet. Omega-3 fatty acids are essential for the correct functioning of the organism and participate in many physiological processes in the brain. Epilepsy is a common and heterogeneous chronic brain disorder characterized by recurrent epileptic seizures leading to neuropsychiatric disabilities. The prevalence of epilepsy is high achieving about 1% of the general population. There is evidence suggesting that omega-3 fatty acids may have neuroprotective and anticonvulsant effects and, accordingly, may have a potential use in the treatment of epilepsy. In the present review, the potential use of omega-3 fatty acids in the treatment of epilepsy, and the possible proposed mechanisms of action are discussed. The present article summarizes the recent knowledge of the potential protective role of dietary omega-3 fatty acids in epilepsy.

  6. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.

    Science.gov (United States)

    Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine

    2016-04-01

    The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.

  7. Pentadecanoic and Heptadecanoic Acids: Multifaceted Odd-Chain Fatty Acids.

    Science.gov (United States)

    Pfeuffer, Maria; Jaudszus, Anke

    2016-07-01

    The odd-chain fatty acids (OCFAs) pentadecanoic acid (15:0) and heptadecanoic acid (17:0), which account for only a small proportion of total saturated fatty acids in milk fat and ruminant meat, are accepted biomarkers of dairy fat intake. However, they can also be synthesized endogenously, for example, from gut-derived propionic acid (3:0). A number of studies have shown an inverse association between OCFA concentrations in human plasma phospholipids or RBCs and risk of type 2 diabetes and cardiovascular disease. We propose a possible involvement in metabolic regulation from the assumption that there is a link between 15:0 and 17:0 and the metabolism of other short-chain, medium-chain, and longer-chain OCFAs. The OCFAs 15:0 and 17:0 can be elongated to very-long-chain FAs (VLCFAs) such as tricosanoic acid (23:0) and pentacosanoic acid (25:0) in glycosphingolipids, particularly found in brain tissue, or can be derived from these VLCFAs. Their chains can be shortened, yielding propionyl-coenzyme A (CoA). Propionyl-CoA, by succinyl-CoA, can replenish the citric acid cycle (CAC) with anaplerotic intermediates and, thus, improve mitochondrial energy metabolism. Mitochondrial function is compromised in a number of disorders and may be impaired with increasing age. Optimizing anaplerotic intermediate availability for the CAC may help to cope with demands in times of increased metabolic stress and with aging. OCFAs may serve as substrates for synthesis of both odd-numbered VLCFAs and propionyl-CoA or store away excess propionic acid.

  8. Fatty acid-amino acid conjugates diversification in lepidopteran caterpillars.

    Science.gov (United States)

    Yoshinaga, Naoko; Alborn, Hans T; Nakanishi, Tomoaki; Suckling, David M; Nishida, Ritsuo; Tumlinson, James H; Mori, Naoki

    2010-03-01

    Fatty acid amino acid conjugates (FACs) have been found in noctuid as well as sphingid caterpillar oral secretions; in particular, volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants. These induced volatiles, in turn, attract natural enemies of the caterpillars. In a previous study, we showed that N-linolenoyl-L-glutamine in larval Spodoptera litura plays an important role in nitrogen assimilation which might be an explanation for caterpillars synthesizing FACs despite an increased risk of attracting natural enemies. However, the presence of FACs in lepidopteran species outside these families of agricultural interest is not well known. We conducted FAC screening of 29 lepidopteran species, and found them in 19 of these species. Thus, FACs are commonly synthesized through a broad range of lepidopteran caterpillars. Since all FAC-containing species had N-linolenoyl-L-glutamine and/or N-linoleoyl-L-glutamine in common, and the evolutionarily earliest species among them had only these two FACs, these glutamine conjugates might be the evolutionarily older FACs. Furthermore, some species had glutamic acid conjugates, and some had hydroxylated FACs. Comparing the diversity of FACs with lepidopteran phylogeny indicates that glutamic acid conjugates can be synthesized by relatively primitive species, while hydroxylation of fatty acids is limited mostly to larger and more developed macrolepidopteran species.

  9. Modulating fatty acid oxidation in heart failure.

    Science.gov (United States)

    Lionetti, Vincenzo; Stanley, William C; Recchia, Fabio A

    2011-05-01

    In the advanced stages of heart failure, many key enzymes involved in myocardial energy substrate metabolism display various degrees of down-regulation. The net effect of the altered metabolic phenotype consists of reduced cardiac fatty oxidation, increased glycolysis and glucose oxidation, and rigidity of the metabolic response to changes in workload. Is this metabolic shift an adaptive mechanism that protects the heart or a maladaptive process that accelerates structural and functional derangement? The question remains open; however, the metabolic remodelling of the failing heart has induced a number of investigators to test the hypothesis that pharmacological modulation of myocardial substrate utilization might prove therapeutically advantageous. The present review addresses the effects of indirect and direct modulators of fatty acid (FA) oxidation, which are the best pharmacological agents available to date for 'metabolic therapy' of failing hearts. Evidence for the efficacy of therapeutic strategies based on modulators of FA metabolism is mixed, pointing to the possibility that the molecular/biochemical alterations induced by these pharmacological agents are more complex than originally thought. Much remains to be understood; however, the beneficial effects of molecules such as perhexiline and trimetazidine in small clinical trials indicate that this promising therapeutic strategy is worthy of further pursuit.

  10. Fatty acid-induced mitochondrial uncoupling in adipocytes is not a promising target for treatment of insulin resistance unless adipocyte oxidative capacity is increased.

    Science.gov (United States)

    Frayn, K N; Langin, D; Karpe, F

    2008-03-01

    The release of fatty acids from white adipose tissue is regulated at several levels. We have examined the suggestion that fatty acid release might be diminished by upregulation of mitochondrial fatty acid oxidation in the adipocyte, through increasing mitochondrial uncoupling. The intrinsic oxidative capacity of white adipose tissue is low, and older studies suggest that there is little fatty acid oxidation in white adipocytes, human or rodent. We have examined data on fatty acid metabolism and O(2) consumption in human white adipose tissue in vivo, and conclude that increasing fatty acid oxidation within the oxidative capacity of the tissue would produce only small changes (a few percent) in fatty acid release. The major locus of control of fatty acid release beyond the stimulation of lipolysis is the pathway of fatty acid esterification, already probably targeted by the thiazolidinedione insulin-sensitising agents. An alternative approach would be to upregulate the mitochondrial capacity of the adipocyte. We review proof-of-concept studies in which the phenotype of the white adipocyte has been changed to resemble that of the brown adipocyte by expression of peroxisome proliferator-activated receptor coactivator-1alpha. This increases oxidative capacity and also leads to fatty acid retention through upregulation of glycerol-3-phosphate production, and hence increased fatty acid re-esterification. We conclude that prevention or treatment of insulin resistance through alteration of adipocyte fatty acid handling will require more than a simple alteration of the activity of mitochondrial beta-oxidation within normal limits.

  11. Syntrophic degradation of fatty acids by methanogenic communities

    NARCIS (Netherlands)

    Stams, A.J.M.; Worm, P.; Sousa, D.Z.; Alves, M.M.; Plugge, C.M.

    2012-01-01

    In methanogenic environments degradation of fatty acids is a key process in the conversion of organic matter to methane and carbon dioxide. For degradation of fatty acids with three or more carbon atoms syntrophic communities are required. This chapter describes the general features of syntrophic de

  12. Interaction between fatty acid and the elastin network

    NARCIS (Netherlands)

    Vreeswijk, van J.

    1995-01-01

    The aim of the present study was to investigate the interaction between salts of fatty acids (FAS) and elastin. Absorption of fatty acids in elastin may affect the elasticity of elastin-containing tissue. Such phenomena could, for instance, be of relevance for the understanding of the

  13. 40 CFR 721.3629 - Triethanolamine salts of fatty acids.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Triethanolamine salts of fatty acids... Substances § 721.3629 Triethanolamine salts of fatty acids. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as triethanolamine salts of...

  14. Why do polyunsaturated fatty acids lower serum cholesterol?

    NARCIS (Netherlands)

    Beynen, A.C.; Katan, M.B.

    1985-01-01

    Replacement of saturated by polyunsaturated fatty acids in the diet may lower serum very low-density and low-density lipoprotein concentrations because the liver preferentially converts polyunsaturated fatty acids into ketone bodies instead of into very low-density lipoprotein triglycerides. Thus un

  15. Polyunsaturated fatty acid status of Dutch vegans and omnivores

    NARCIS (Netherlands)

    Fokkema, M R; Brouwer, D A; Hasperhoven, M B; Hettema, Y; Bemelmans, W J; Muskiet, F A

    2000-01-01

    We compared the polyunsaturated fatty acid (PUFA) status of Dutch vegans and omnivores to investigate whether disparities can be explained by different diets and long chain PUFA (LCP) synthesis rates. Dietary intakes and fatty acid compositions of erythrocytes (RBC), platelets (PLT), plasma choleste

  16. Distillation of natural fatty acids and their chemical derivatives

    Science.gov (United States)

    Well over 1,000 different fatty acids are known which are natural components of fats, oils (triacylglycerols), and other related compounds. These fatty acids can have different alkyl chain lengths, 0-6 carbon-carbon double bonds possessing cis- or trans-geometry, and can contain a variety of functio...

  17. Volatile fatty acids production in ruminants and the role of ...

    African Journals Online (AJOL)

    Yomi

    organic volatile fatty acids (VFAs) and microbial protein then become available to the ... short-chain fatty acids and lactate (Ritzhaupt et al.,. 1998a,b; Muller et al., 2002; .... staining for MCT4 was visualized in strata spinosum and basale. In the ...

  18. DETERGENCY OF THE 12 TO 18 CARBON SATURATED FATTY ACIDS

    Science.gov (United States)

    saturated fatty acids ) were explored to determine the relationship of the detergencies of such systems to the physico-chemical nature (HLB, hydrophile...suggested that in such systems the chief action is van der Waals adsorption between hydr oxide mole ratio adducts of tridecyl alcohol are poor detergents of the saturated fatty acids .

  19. Lipase-mediated resolution of branched chain fatty acids

    NARCIS (Netherlands)

    Heinsman, N.W.J.T.; Franssen, M.C.R.; Padt, A. van der; Boom, R.M.; Riet, K. van 't; Groot, A.E. de

    2002-01-01

    Branched chain fatty acids (BCFAs) are fatty acids substituted with alkyl groups. Many of them are chiral and therefore occur in two enantiomeric forms. This review describes their occurrence in Nature, their biosynthesis, their properties as flavours, and their enzymatic kinetic resolution. Many li

  20. Interaction between fatty acid salts and the elastin network.

    NARCIS (Netherlands)

    Vreeswijk, van J.

    1995-01-01

    The aim of the present study was to investigate the interaction between salts of fatty acids (FAS) and elastin. Absorption of fatty acids in elastin may affect the elasticity of elastin-containing tissue. Such phenomena could, for instance, be of relevance for the understanding of the formation of a

  1. An overview of the properties of fatty acid alkyl esters

    Science.gov (United States)

    Fatty acid alkyl esters of plant oils, especially in the form of methyl esters, have numerous applications with fuel use having received the most attention in recent times due to the potential high volume. Various properties imparted by neat fatty acid alkyl esters have been shown to influence fuel ...

  2. Chemical Sciences A comparative study of triglyceride and fatty acid ...

    African Journals Online (AJOL)

    Log in or Register to get access to full text downloads. ... Triglyceride and fatty acid composition were determined for palm oils from three different ... Much of the variations occurred in triglycerides with two or more unsaturated fatty acids in their ...

  3. Increased brain fatty acid uptake in metabolic syndrome

    DEFF Research Database (Denmark)

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti

    2010-01-01

    To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it.......To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it....

  4. Alternative origins for omega-3 fatty acids in the diet

    NARCIS (Netherlands)

    Lenihan-Geels, Georgia; Bishop, Karen S.

    2016-01-01

    Fish and seafood are important sources for LC PUFAs, EPA and DHA. These fatty acids may be synthesised in the body from short-chain fatty acids, including ALA; however, the enzymes involved in this pathway are considered inefficient. This means direct EPA and DHA sources are an important part of

  5. Fatty acid profile of 25 alternative lipid feedstocks

    Science.gov (United States)

    This study reports the fatty acid profiles of 25 alternative lipid feedstocks for the production of bio-based fuels and chemicals. Lipids were extracted using hexane from oil-bearing seeds using a standard Soxhlet apparatus. Fatty acid profiles were measured using gas chromatography-flame ionization...

  6. Polyunsaturated fatty acid status of Dutch vegans and omnivores

    NARCIS (Netherlands)

    Fokkema, M R; Brouwer, D A; Hasperhoven, M B; Hettema, Y; Bemelmans, W J; Muskiet, F A

    2000-01-01

    We compared the polyunsaturated fatty acid (PUFA) status of Dutch vegans and omnivores to investigate whether disparities can be explained by different diets and long chain PUFA (LCP) synthesis rates. Dietary intakes and fatty acid compositions of erythrocytes (RBC), platelets (PLT), plasma

  7. Polyunsaturated fatty acid status of Dutch vegans and omnivores

    NARCIS (Netherlands)

    Fokkema, M R; Brouwer, D A; Hasperhoven, M B; Hettema, Y; Bemelmans, W J; Muskiet, F A

    2000-01-01

    We compared the polyunsaturated fatty acid (PUFA) status of Dutch vegans and omnivores to investigate whether disparities can be explained by different diets and long chain PUFA (LCP) synthesis rates. Dietary intakes and fatty acid compositions of erythrocytes (RBC), platelets (PLT), plasma choleste

  8. Lipase-mediated resolution of branched chain fatty acids

    NARCIS (Netherlands)

    Heinsman, N.W.J.T.; Franssen, M.C.R.; Padt, A. van der; Boom, R.M.; Riet, K. van 't; Groot, A.E. de

    2002-01-01

    Branched chain fatty acids (BCFAs) are fatty acids substituted with alkyl groups. Many of them are chiral and therefore occur in two enantiomeric forms. This review describes their occurrence in Nature, their biosynthesis, their properties as flavours, and their enzymatic kinetic resolution. Many li

  9. New phenstatin-fatty acid conjugates: synthesis and evaluation.

    Science.gov (United States)

    Chen, Jinhui; Brown, David P; Wang, Yi-Jun; Chen, Zhe-Sheng

    2013-09-15

    New phenstatin-fatty acid conjugates have been synthesized and tested against the KB-3-1, H460, MCF-7 and HEK293 cell lines, with an increase in anti-proliferative activity being observed at the micro-molar level paralleling an increase in un-saturation in the fatty acid component.

  10. Seasonal changes on total fatty acid composition of carp (Cyprinus ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... the melting temperatures of ω3 fatty acids are lower than ω6 fatty acids ... caught, they were transported on ice to the laboratories, filleted and frozen. .... is essential in the diet to help prevent coronary heart disease by reducing ...

  11. Synthesis of fatty acid starch esters in supercritical carbon dioxide

    NARCIS (Netherlands)

    Muljana, Henky; van der Knoop, Sjoerd; Keijzer, Danielle; Picchioni, Francesco; Janssen, Leon P. B. M.; Heeres, Hero J.

    2010-01-01

    This manuscript describes an exploratory study on the synthesis of fatty acid/potato starch esters using supercritical carbon dioxide (scCO(2)) as the solvent. The effects of process variables such as pressure (6-25 MPa), temperature (120-150 degrees C) and various basic catalysts and fatty acid der

  12. Analysis of fatty acid composition in human bone marrow aspirates.

    Science.gov (United States)

    Deshimaru, Ryota; Ishitani, Ken; Makita, Kazuya; Horiguchi, Fumi; Nozawa, Shiro

    2005-09-01

    In the present study, the fatty acid composition of bone marrow aspirates and serum phospholipids in nine patients with hematologic diseases was investigated, and the effect of fatty acids on osteoblast differentiation in ST2 cells was examined. The concentrations of oleic acid and palmitic acid were significantly higher in bone marrow aspirates than in serum phospholipids, but the concentrations of other fatty acids did not differ. The rate of alkaline phosphatase positive ST2 cells induced by BMP2 was significantly increased by oleic acid, but was unaffected by the presence or absence of palmitic acid. We conclude that the fatty acid composition of bone marrow aspirates differs from that of serum phospholipids. This difference may affect osteoblast differentiation in the bone marrow microenvironment.

  13. Effect of dietary selenium and omega-3 fatty acids on muscle composition and quality in broilers

    Directory of Open Access Journals (Sweden)

    Hetland Harald

    2007-10-01

    Full Text Available Abstract Background Human health may be improved if dietary intakes of selenium and omega-3 fatty acids are increased. Consumption of broiler meat is increasing, and the meat content of selenium and omega-3 fatty acids are affected by the composition of broiler feed. A two-way analyses of variance was used to study the effect of feed containing omega-3 rich plant oils and selenium enriched yeast on broiler meat composition, antioxidation- and sensory parameters. Four different wheat-based dietary treatments supplemented with 5% rapeseed oil or 4% rapeseed oil plus 1% linseed oil, and either 0.50 mg selenium or 0.84 mg selenium (organic form per kg diet was fed to newly hatched broilers for 22 days. Results The different dietary treatments gave distinct different concentrations of selenium and fatty acids in thigh muscle; one percent linseed oil in the diet increased the concentration of the omega-3 fatty acids 18:3, 20:5 and 22:5, and 0.84 mg selenium per kg diet gave muscle selenium concentration at the same level as is in fish muscle (0.39 mg/kg muscle. The high selenium intake also resulted in increased concentration of the long-chain omega-3 fatty acids EPA (20:5, DPA (22:5 and DHA (22:6, thus it may be speculated if high dietary selenium might have a role in increasing the concentration of EPA, DPA and DHA in tissues after intake of plant oils contning omega-3 fatty acids. Conclusion Moderate modifications of broiler feed may give a healthier broiler meat, having increased content of selenium and omega-3 fatty acids. High intakes of selenium (organic form may increase the concentration of very long-chain omega-3 fatty acids in muscle.

  14. Obesogenic diets enriched in oleic acid vs saturated fatty acids differentially modify polyunsaturated fatty acid composition in liver and visceral adipose

    Science.gov (United States)

    Emerging evidence indicates that the fatty acid composition of obesogenic diets impacts physiologic outcomes. Much attention is focused on the biologic effects of consuming monounsaturated fatty acids (MUFA) vs saturated fatty acids (SFA). We investigated the extent to which an obesogenic diet high ...

  15. Complex Pharmacology of Free Fatty Acid Receptors

    DEFF Research Database (Denmark)

    Milligan, Graeme; Shimpukade, Bharat; Ulven, Trond

    2017-01-01

    G protein-coupled receptors (GPCRs) are historically the most successful family of drug targets. In recent times it has become clear that the pharmacology of these receptors is far more complex than previously imagined. Understanding of the pharmacological regulation of GPCRs now extends beyond...... pharmacology have shaped understanding of the complex pharmacology of receptors that recognize and are activated by nonesterified or "free" fatty acids (FFAs). The FFA family of receptors is a recently deorphanized set of GPCRs, the members of which are now receiving substantial interest as novel targets...... for the treatment of metabolic and inflammatory diseases. Further understanding of the complex pharmacology of these receptors will be critical to unlocking their ultimate therapeutic potential....

  16. Polyunsaturated fatty acids and prostate cancer risk

    DEFF Research Database (Denmark)

    Khankari, Nikhil K; Murff, Harvey J; Zeng, Chenjie

    2016-01-01

    BACKGROUND: Prostate cancer is a common cancer worldwide with no established modifiable lifestyle factors to guide prevention. The associations between polyunsaturated fatty acids (PUFAs) and prostate cancer risk have been inconsistent. Using Mendelian randomisation, we evaluated associations...... between PUFAs and prostate cancer risk. METHODS: We used individual-level data from a consortium of 22 721 cases and 23 034 controls of European ancestry. Externally-weighted PUFA-specific polygenic risk scores (wPRSs), with explanatory variation ranging from 0.65 to 33.07%, were constructed and used...... to evaluate associations with prostate cancer risk per one standard deviation (s.d.) increase in genetically-predicted plasma PUFA levels using multivariable-adjusted unconditional logistic regression. RESULTS: No overall association was observed between the genetically-predicted PUFAs evaluated in this study...

  17. Determination of free fatty acids in beer.

    Science.gov (United States)

    Bravi, Elisabetta; Marconi, Ombretta; Sileoni, Valeria; Perretti, Giuseppe

    2017-01-15

    Free fatty acids (FFA) content of beer affects the ability to form a stable head of foam and plays an important role in beer staling. Moreover, the presence of saturated FAs is related sometimes to gushing problems in beer. The aim of this research was to validate an analytical method for the determination of FFAs in beer. The extraction of FFAs in beer was achieved via Liquid-Liquid Cartridge Extraction (LLCE), the FFAs extract was purified by Solid Phase Extraction (SPE), methylated by boron trifluoride in methanol, and injected into GC-FID system. The performance criteria demonstrate that this method is suitable for the analysis of medium and long chain FFAs in beer. The proposed method was tested on four experimental beers.

  18. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    Energy Technology Data Exchange (ETDEWEB)

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.; Culley, David E.; Deng, Shuang; Collett, James R.; Umemura, Myco; Koike, Hideaki; Baker, Scott E.; Machida, Masa

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes we successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.

  19. Important bioactive properties of omega-3 fatty acids

    Directory of Open Access Journals (Sweden)

    Rui Xu

    2015-06-01

    Full Text Available Good health has been linked with healthy diet. N-3 fatty acids are required for proper functioning of many physiological systems. There is a large body of evidence documenting the effects of polyunsaturated fatty acids with the first double bond at the third position from methyl-terminal on health benefits. Scientific evidence is accumulating to substantiate the role omega-3 fatty acids play in conditions such as cardiovascular disease, certain cancers and other diseases. The availability of n-3 fatty acids to various tissues is of major importance to health and depends on dietary intake for both normal development and in the prevention and management of chronic diseases.In this review we will summarize the biological properties of omega-3 fatty acids.

  20. Heterogeneity in limb fatty acid kinetics in type 2 diabetes

    DEFF Research Database (Denmark)

    Sacchetti, M; Olsen, D B; Saltin, B

    2005-01-01

    AIMS/HYPOTHESIS: In order to test the hypothesis that disturbances in skeletal muscle fatty acid metabolism with type 2 diabetes are not equally present in the upper and lower limbs, we studied fatty acid kinetics simultaneously across the arm and leg of type 2 diabetic patients (n=6) and matched...... control subjects (n=7) for 5 h under baseline conditions and during a 4-h hyperinsulinaemic-euglycaemic clamp. METHODS: Limb fatty acid kinetics was determined by means of continuous [U-(13)C]palmitate infusion and measurement of arteriovenous differences. RESULTS: The systemic palmitate rate...... in the dysregulation of skeletal muscle fatty acid metabolism, with only the leg, but not the arm, showing an impairment of fatty acid kinetics at baseline and during a hyperinsulinaemic-euglycaemic clamp causing a physiological increase in insulin concentration....

  1. Essential fatty acids as functional components of foods- a review.

    Science.gov (United States)

    Kaur, Narinder; Chugh, Vishal; Gupta, Anil K

    2014-10-01

    During the recent decades, awareness towards the role of essential fatty acids in human health and disease prevention has been unremittingly increasing among people. Fish, fish oils and some vegetable oils are rich sources of essential fatty acids. Many studies have positively correlated essential fatty acids with reduction of cardiovascular morbidity and mortality, infant development, cancer prevention, optimal brain and vision functioning, arthritis, hypertension, diabetes mellitus and neurological/neuropsychiatric disorders. Beneficial effects may be mediated through several different mechanisms, including alteration in cell membrane composition, gene expression or eicosanoid production. However, the mechanisms whereby essential fatty acids affect gene expression are complex and involve multiple processes. Further understanding of the molecular aspects of essential fatty acids will be the key to devising novel approaches to the treatment and prevention of many diseases.

  2. Fatty acids as modulators of neutrophil recruitment, function and survival.

    Science.gov (United States)

    Rodrigues, Hosana G; Takeo Sato, Fabio; Curi, Rui; Vinolo, Marco A R

    2016-08-15

    Neutrophils are well-known to act in the destruction of invading microorganisms. They have also been implicated in the activation of other immune cells including B- and T-lymphocytes and in the resolution of inflammation and tissue regeneration. Neutrophils are produced in the bone marrow and released into the circulation from where they migrate to tissues to perform their effector functions. Neutrophils are in constant contact with fatty acids that can modulate their function, activation and fate (survival or cell death) through different mechanisms. In this review, the effects of fatty acids pertaining to five classes, namely, long-chain saturated fatty acids (LCSFAs), short-chain fatty acids (SCFAs), and omega-3 (n-3), omega-6 (n-6) and omega-9 (n-9) unsaturated fatty acids, on neutrophils and the relevance of these effects for disease development are discussed.

  3. Nature of the elements transporting long-chain fatty acids through the red cell membrane

    DEFF Research Database (Denmark)

    Bojesen, Inge Norby; Bojesen, Eigil

    1998-01-01

    Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport......Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport...

  4. Profile of Fatty Acids, Amino Acids, Carotenoid Total, and α-Tocopherol from Flying Fish Eggs

    Directory of Open Access Journals (Sweden)

    Aulia Azka

    2015-12-01

    Full Text Available Flying fish are found in waters of eastern Indonesia, which until now is still limited information about nutritional content. The purpose of this research was determine the composition of fatty acids, amino acids, total carotenoids, α-tocopherol flying fish eggs (Hyrundicthys sp.. The composition of fatty acid was measured by gas chromatography (GC, while amino acids, total carotenoids, α-tocopherol was measured by High performanced Liquid Chromatography (HPLC. Egg contained 22 fatty acids such as saturated fatty acid 29.71%, monounsaturated fatty acid 7.86%, and polysaturated fatty acid 13.64%. The result showed that eggs flying fish contained 17 amino acids, such as essential amino acid 14.96% and non-essential amino acids 20.27%. Eggs contained a total carotenoid of 245.37 ppm. α-tocopherol content of flying fish eggs by 1.06 ppm.

  5. Influence of selected fatty acids upon plaque formation and caries in the rat.

    Science.gov (United States)

    Williams, K A; Schemehorn, B R; McDonald, J L; Stookey, G K; Katz, S

    1982-01-01

    Weanling rats were given high-sucrose cariogenic diets containing 2 per cent lauric acid, linoleic acid, nonanoic acid or monolaurin. Plaque accumulation was determined on the incisors of half the animals during only the last 3 days of the study and on the remaining animals at the conclusion of a 21-day test period when both sulcal and smooth-surface caries were assessed. No significant differences between the test groups in food consumption were observed nor were there any differences in body weight gain. The least amount of plaque was observed in the animals given monolaurin; the other fatty acids exerted no significant effect upon plaque accumulation. The smooth-surface caries data indicated that the least number of lesions occurred in the animals on the diet containing monolaurin. Nonanoic acid was significantly more effective in limiting sulcal caries than any of the other fatty acids studied. Thus both monolaurin and nonanoic acid have significant cariostatic activity in the rat.

  6. Fatty acid chemistry of Atrichum undulatum and Hypnum andoi

    Directory of Open Access Journals (Sweden)

    Pejin Boris

    2012-01-01

    Full Text Available The fatty acid composition of the moss species Atrichum undulatum (Hedw. P. Beauv. (Polytrichaceae and Hypnum andoi A.J.E. Sm. (Hypnaceae collected in winter time were analyzed by gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS as a contribution to their chemistry. Eight fatty acids were identified in the chloroform/methanol extract 1:1 of A. undulatum (linoleic acid 26.80%, palmitic acid 22.17%, α-linolenic acid 20.50%, oleic acid 18.49%, arachidonic acid 6.21%, stearic acid 3.34%, cis-5,8,11,14,17-eicosapentaenoic acid 1.52% and behenic acid 1.01%, while six fatty acids were found in the same type of extract of H. andoi (palmitic acid 63.48%, erucic acid 12.38%, stearic acid 8.08%, behenic acid 6.26%, lignoceric acid 5.16% and arachidic acid 4.64%. According to this study, the moss A. undulatum can be considered as a good source of both essential fatty acids for humans (linoleic acid and α-linolenic acid during the winter.

  7. Modification of diet fatty acid composition change the fatty acid composition of rabbit meat:

    OpenAIRE

    Tatjana PIRMAN; Trebušak, Tina; Levart, Alenka

    2012-01-01

    The objective of the study was to determine the effect of linseed oil supplementation on the performance and fatty acid composition of rabbit leg muscle and adipose tissue. Two experiments were done. First experiment: twelvemale SIKA rabbits, divided in two groups, control (n = 4; commercial diet) and the linseed (n = 8; commercial diet with 9% of linseed oil sprayed onto the pellets). Second experiment: twenty-four (12 male and 12 female) SIKArabbits, divided in two groups, palm fat (n = 12;...

  8. Omega-3 fatty acids as treatments for mental illness: which disorder and which fatty acid?

    OpenAIRE

    Sieswerda Lee E; Seguin Jennifer; Ross Brian M

    2007-01-01

    Abstract Background A growing number of observational and epidemiological studies have suggested that mental illness, in particular mood disorders, is associated with reduced dietary intake and/or cellular abundance of omega-3 polyunsaturated fatty acids (PUFA). This has prompted researchers to test the efficacy of omega-3 PUFA in a range of different psychiatric disorders. We have critically reviewed the double blind placebo controlled clinical trials published prior to April 2007 to determi...

  9. Effect of sugar fatty acid esters on rumen fermentation in vitro

    OpenAIRE

    Wakita, M; Hoshino, S.

    1987-01-01

    1.The effect of sugar fatty acid esters (SFEs; currently used as food additives for human consumption) on rumen volatile fatty acids (VFA) and gas production was studied with sheep rumen contents in vitro.2. Some SFEs having monoester contents of more than 70% increased the molar proportion of propionate in conjunction with reduction in the acetate: propionate ratio when the individual SFE was added to rumen contents in a final concentration of 4 g/l. Laurate sugar ester was the most potent p...

  10. Fortification of foods with omega-3 polyunsaturated fatty acids.

    Science.gov (United States)

    Ganesan, Balasubramanian; Brothersen, Carl; McMahon, Donald J

    2014-01-01

    A $600 million nutritional supplements market growing at 30% every year attests to consumer awareness of, and interests in, health benefits attributed to these supplements. For over 80 years the importance of polyunsaturated fatty acid (PUFA) consumption for human health has been established. The FDA recently approved the use of ω-3 PUFAs in supplements. Additionally, the market for ω-3 PUFA ingredients grew by 24.3% last year, which affirms their popularity and public awareness of their benefits. PUFAs are essential for normal human growth; however, only minor quantities of the beneficial ω-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are synthesized by human metabolism. Rather PUFAs are obtained via dietary or nutritional supplementation and modified into other beneficial metabolites. A vast literature base is available on the health benefits and biological roles of ω-3 PUFAs and their metabolism; however, information on their dietary sources and palatability of foods incorporated with ω-3 PUFAs is limited. DHA and EPA are added to many foods that are commercially available, such as infant and pet formulae, and they are also supplemented in animal feed to incorporate them in consumer dairy, meat, and poultry products. The chief sources of EPA and DHA are fish oils or purified preparations from microalgae, which when added to foods, impart a fishy flavor that is considered unacceptable. This fishy flavor is completely eliminated by extensively purifying preparations of n-3 PUFA sources. While n-3 PUFA lipid autoxidation is considered the main cause of fishy flavor, the individual oxidation products identified thus far, such as unsaturated carbonyls, do not appear to contribute to fishy flavor or odor. Alternatively, various compound classes such as free fatty acids and volatile sulfur compounds are known to impart fishy flavor to foods. Identification of the causative compounds to reduce and eventually eliminate fishy flavor is important

  11. Fatty acids, lipid mediators, and T-cell function.

    Science.gov (United States)

    de Jong, Anja J; Kloppenburg, Margreet; Toes, René E M; Ioan-Facsinay, Andreea

    2014-01-01

    Research toward the mechanisms underlying obesity-linked complications has intensified during the last years. As a consequence, it has become clear that metabolism and immunity are intimately linked. Free fatty acids and other lipids acquired in excess by current feeding patterns have been proposed to mediate this link due to their immune modulatory capacity. The functional differences between saturated and unsaturated fatty acids, in combination with their dietary intake are believed to modulate the outcome of immune responses. Moreover, unsaturated fatty acids can be oxidized in a tightly regulated and specific manner to generate either potent pro-inflammatory or pro-resolving lipid mediators. These oxidative derivatives of fatty acids have received detailed attention during the last years, as they have proven to have strong immune modulatory capacity, even in pM ranges. Both fatty acids and oxidized fatty acids have been studied especially in relation to macrophage and T-cells functions. In this review, we propose to focus on the effect of fatty acids and their oxidative derivatives on T-cells, as it is an active area of research during the past 5 years. The effect of fatty acids and their derivatives on activation and proliferation of T-cells, as well as the delicate balance between stimulation and lipotoxicity will be discussed. Moreover, the receptors involved in the interaction between free fatty acids and their derivatives with T-cells will be summarized. Finally, the mechanisms involved in modulation of T-cells by fatty acids will be addressed, including cellular signaling and metabolism of T-cells. The in vitro results will be placed in context of in vivo studies both in humans and mice. In this review, we summarize the latest findings on the immune modulatory function of lipids on T-cells and will point out novel directions for future research.

  12. Fatty Acids, Lipid Mediators, and T-Cell Function

    Science.gov (United States)

    de Jong, Anja J.; Kloppenburg, Margreet; Toes, René E. M.; Ioan-Facsinay, Andreea

    2014-01-01

    Research toward the mechanisms underlying obesity-linked complications has intensified during the last years. As a consequence, it has become clear that metabolism and immunity are intimately linked. Free fatty acids and other lipids acquired in excess by current feeding patterns have been proposed to mediate this link due to their immune modulatory capacity. The functional differences between saturated and unsaturated fatty acids, in combination with their dietary intake are believed to modulate the outcome of immune responses. Moreover, unsaturated fatty acids can be oxidized in a tightly regulated and specific manner to generate either potent pro-inflammatory or pro-resolving lipid mediators. These oxidative derivatives of fatty acids have received detailed attention during the last years, as they have proven to have strong immune modulatory capacity, even in pM ranges. Both fatty acids and oxidized fatty acids have been studied especially in relation to macrophage and T-cells functions. In this review, we propose to focus on the effect of fatty acids and their oxidative derivatives on T-cells, as it is an active area of research during the past 5 years. The effect of fatty acids and their derivatives on activation and proliferation of T-cells, as well as the delicate balance between stimulation and lipotoxicity will be discussed. Moreover, the receptors involved in the interaction between free fatty acids and their derivatives with T-cells will be summarized. Finally, the mechanisms involved in modulation of T-cells by fatty acids will be addressed, including cellular signaling and metabolism of T-cells. The in vitro results will be placed in context of in vivo studies both in humans and mice. In this review, we summarize the latest findings on the immune modulatory function of lipids on T-cells and will point out novel directions for future research. PMID:25352844

  13. Inhibition of in vitro cholesterol synthesis by fatty acids.

    Science.gov (United States)

    Kuroda, M; Endo, A

    1976-01-18

    Inhibitory effect of 44 species of fatty acids on cholesterol synthesis has been examined with a rat liver enzyme system. In the case of saturated fatty acids, the inhibitory activity increased with chain length to a maximum at 11 to 14 carbons, after which activity decreased rapidly. The inhibition increased with the degree of unsaturation of fatty acids. Introduction of a hydroxy group at the alpha-position of fatty acids abolished the inhibition, while the inhibition was enhanced by the presence of a hydroxy group located in an intermediate position of the chain. Branched chain fatty acids having a methyl group at the terminal showed much higher activity than the corresponding saturated straight chain fatty acids with the same number of carbons. With respect to the mechanism for inhibition, tridecanoate was found to inhibit acetoacetyl-CoA thiolase specifically without affecting the other reaction steps in the cholesterol synthetic pathway. The highly unsaturated fatty acids, arachidonate and linoleate, were specific inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA synthase. On the other hand, ricinoleate (hydroxy acid) and phytanate (branched-chain acid) diminished the conversion of mevalonate to sterols by inhibiting a step or steps between squalene and lanosterol.

  14. Effects of Fatty Acid Inclusion in a DMPC Bilayer Membrane

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Hansen, Flemming Yssing; Møller, Martin S.

    2009-01-01

    Free fatty acids in biomembranes have been proposed to be a central component in several cellular control and regulatory mechanisms. To elucidate some fundamental elements underlying this, we have applied molecular dynamics simulations and experimental density measurements to study the molecular...... packing and structure of oleic acid (HOA) and stearic acid (HSA) in fluid bilayers of dimyristoylphosphatidylcholine (DMPC). The experimental data show a small but consistent positive excess volume for fatty acid concentrations below 10 mol %. At higher concentrations the fatty acids mix ideally...... with fluid DMPC. The simulations, which were benchmarked against the densitometric data, revealed interesting differences in the structure and location of the fatty acids depending on their protonation status. Thus, the protonated (uncharged) acid is located rather deeply in the membrane with an average...

  15. Cardioprotective mechanism of omega-3 polyunsaturated fatty acids.

    Science.gov (United States)

    Endo, Jin; Arita, Makoto

    2016-01-01

    Omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid and docosahexaenoic acid, are widely regarded as cardioprotective. Several large-scale, randomized clinical trials have shown that dietary intake of omega-3 PUFAs improves the prognosis of patients with symptomatic heart failure or recent myocardial infarction. Therefore, dietary consumption of omega-3 PUFA is recommended in international guidelines for the general population to prevent the occurrence of cardiovascular diseases (CVDs). However, the precise mechanisms underlying the cardioprotective effects of omega-3 PUFAs are not fully understood. Omega-3 PUFAs can be incorporated into the phospholipid bilayer of cell membranes and can affect membrane fluidity, lipid microdomain formation, and signaling across membranes. Omega-3 PUFAs also modulate the function of membrane ion channels, such as Na and L-type Ca channels, to prevent lethal arrhythmias. Moreover, omega-3 PUFAs also prevent the conversion of arachidonic acid into pro-inflammatory eicosanoids by serving as an alternative substrate for cyclooxygenase or lipoxygenase, resulting in the production of less potent products. In addition, a number of enzymatically oxygenated metabolites derived from omega-3 PUFAs were recently identified as anti-inflammatory mediators. These omega-3 metabolites may contribute to the beneficial effects against CVDs that are attributed to omega-3 PUFAs.

  16. Analysis of mixtures of fatty acids and fatty alcohols in fermentation broth.

    Science.gov (United States)

    Liu, Yilan; Chen, Ting; Yang, Maohua; Wang, Caixia; Huo, Weiyan; Yan, Daojiang; Chen, Jinjin; Zhou, Jiemin; Xing, Jianmin

    2014-01-03

    Microbial production of fatty acids and fatty alcohols has attracted increasing concerns because of energy crisis and environmental impact of fossil fuels. Therefore, simple and efficient methods for the extraction and quantification of these compounds become necessary. In this study, a high-performance liquid chromatography-refractive index detection (HPLC-RID) method was developed for the simultaneous quantification of fatty acids and fatty alcohols in these samples. The optimum chromatographic conditions are C18 column eluted with methanol:water:acetic acid (90:9.9:0.1, v/v/v); column temperature, 26°C; flow rate, 1.0mL/min. Calibration curves of all selected analytes showed good linearity (r(2)≥0.9989). The intra-day and inter-day relative standard deviations (RSDs) of the 10 compounds were less than 4.46% and 5.38%, respectively, which indicated that the method had good repeatability and precision. Besides, a method for simultaneous extraction of fatty acids and fatty alcohols from fermentation broth was optimized by orthogonal design. The optimal extraction conditions were as follows: solvent, ethyl acetate; solvent to sample ratio, 0.5:1; rotation speed, 2min at 260rpm; extraction temperature, 10°C. This study provides simple and fast methods to simultaneously extract and quantify fatty acids and fatty alcohols for the first time. It will be useful for the study of microbial production of these products. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Fatty acid profile of Albizia lebbeck and Albizia saman seed oils: Presence of coronaric acid

    Science.gov (United States)

    In this work, the fatty acid profiles of the seed oils of Albizia lebbeck and Albizia saman (Samanea saman) are reported. The oils were analyzed by GC, GC-MS, and NMR. The most prominent fatty acid in both oils is linoleic acid (30-40%), followed by palmitic acid and oleic acid for A. lebbeck and ol...

  18. Differentiation of Bacillus anthracis from Bacillus cereus by gas chromatographic whole-cell fatty acid analysis.

    OpenAIRE

    Lawrence, D.; Heitefuss, S; Seifert, H S

    1991-01-01

    Three strains of Bacillus anthracis and seven strains of Bacillus cereus were grown on complex medium and on synthetic medium. Gas chromatographic analysis of whole-cell fatty acids of strains grown on complex medium gave nearly identical fatty acid patterns. Fatty acid patterns of strains grown on synthetic medium showed a high content of branched-chain fatty acids. Significant differences between the fatty acid patterns of the two species were found. Odd iso/anteiso fatty acid ratios were a...

  19. Diets containing traditional and novel green leafy vegetables improve liver fatty acid profiles of spontaneously hypertensive rats

    OpenAIRE

    Johnson, Melissa; Pace, Ralphenia D.; Dawkins, Norma L.; Willian, Kyle R

    2013-01-01

    Background The consumption of green leafy vegetables (GLVs) has been demonstrated to reduce the risks associated with cardiovascular and other diseases. However, no literature exists that examines the influence of traditional and novel GLVs on the liver fatty acid profile of an animal model genetically predisposed to developing hypertension. The aim of the present study was to examine the effects of diets containing 4% collard greens, purslane or sweet potato greens on the liver fatty acid pr...

  20. Fatty acid metabolism studies of human epidermal cell cultures.

    Science.gov (United States)

    Marcelo, C L; Dunham, W R

    1993-12-01

    Adult human epidermal keratinocytes grow rapidly in medium that is essential fatty acid (EFA)-deficient. In this medium they exhibit decreased amounts of the fatty acids, 18:2, 20:3, 20:4, and contain increased amounts of monounsaturated fatty acids. [14C]- and [3H]acetate and radiolabeled fatty acids, 16:0, 18:2, and 20:4 were used to study the fatty acid metabolism of these cells. Label from acetate appeared in 14- to 20-carbon fatty acids, both saturated and monounsaturated. No label was seen in the essential fatty acid 18:2, 18:3, and 20:4. Radiolabel from [9, 10-3H]palmitic acid (16:0) was detected in 16:0, 16:1, 18:0, and 18:1. [14C]linoleic acid (18:2) was converted to 18:3, 20:2, 20:3, and 20:4, demonstrating delta 6 and delta 5 desaturase activity in keratinocytes. Label from acetate, 16:0, or 18:2 was found mostly in the cellular phospholipids while only one third of the label from [14C]arachidonic was found in the phospholipids. [14C]acetate and [14C]18:2 time course data were used to construct a model of the metabolism of these reactants, using coupled, first-order differential equations. The data show that EFA-deficient keratinocytes metabolize fatty acids using pathways previously found in liver; they suggest the positioning of 18:2 desaturase and 18:3 elongase near the plasma membrane; they indicate that for the synthesis of nonessential fatty acids the formation of 18:0 from 16:0 is the rate-determining step; and they show that the conversion of 18:2 to 20:3 is rapid. These experiments demonstrate a method to study lipid enzyme kinetics in living cells.

  1. [Fatty acid composition and cholesterol content in naturally canned jurel, sardine, salmon, and tuna].

    Science.gov (United States)

    Romero, N; Robert, P; Masson, L; Luck, C; Buschmann, L

    1996-03-01

    To obtain more information about fatty acid profile and cholesterol content of fat extracted from canned fish in brine habitually consumed in Chile, four different species Jurel (Trachurus murphyi), Sardine (Sardinops sagax), Salmon (Oncorhynchus kisutch) and Tuna (Thunnus alalunga) were analyzed. The GLC of fatty acid methyl esters showed that the main group of fatty acids belongs to polyunsaturated, being omega-3 family the more important. The principal representants were eicosapentaenoic (EPA) and docosahexaenoic acids (DHA), with percentages between 5%-11% and 12%-22% respectively. Omega-6 family was represented mainly by arachidonic acid (AA) with percentages between 2%-4%. Cholesterol content was similar to the values found in other animal origen meats. The figures were between 41-86 mg of cholesterol per 100 g of edible product, Tuna in brine, was the product with the lowest content of cholesterol. The calculated amount of EPA, DHA and total omega-3 fatty acids indicated values between 95-604, 390-1163 and 609-2775 mg respectively per 100 g of edible product. Due these results is important to emphasize the consumption of this type of canned fish in brine, that they really represent a good dietary source of mainly polyunsaturated omega-3 fatty acids. The international recommendations indicate to increase the consumption of fish, due the beneficial effects described in relation with cardiovascular disease, which is the mean cause of death in Chile, country with a wide variety of marine origen foods, but with a contradictory answer about its consumption which is not incorporated in the current diet.

  2. Omega-3 polyunsaturated fatty acids and mood disorders

    Directory of Open Access Journals (Sweden)

    Astorg Pierre

    2007-05-01

    Full Text Available The hypothesis of a role of n-3 polyunsaturated fatty acids (PUFA in the pathophysiology of depression has emerged from the observation that depressed patients had decreased levels of n-3 long-chain PUFA (especially eicosapentaenoic acid, EPA, and docosahexaenoic acid, DHA in plasma, erythrocytes, or adipose tissue, as compared to healthy controls, a decrease which was not observed with n-6 PUFA. Suicide attempters have much lower levels of EPA and DHA in red blood cells than hospital controls. Recently, a decreased level of DHA has also been observed in the post-mortem brain cortex of patients with major depression. The fact that these changes were specific of the n-3 family suggests that a low n-3 PUFA status or intake predisposes to depression. International ecological studies show a strong negative correlation between apparent fish consumption and the prevalence of depression or of bipolar disorder, as well as between DHA content of maternal milk and the prevalence of postpartum depression. In cross-sectional studies in several countries, a higher risk of depression or of depressive symptoms has been found in subjects with a lower fish consumption. In a French cohort of adults, habitual fatty fish consumption or a higher n-3 PUFA intake were associated with a lower risk of depression, especially of recurrent depression. Randomized, placebo-controlled trials have been conducted to test the effects of long-chain n-3 PUFA in depressive or bipolar patients. EPA as an adjunct to a standard treatment appears to improve depressive patients or bipolar patients in depressive phase when given at the dose of 1-2 g/day, and fish oil prevents depressive recurrences in bipolar patients. Recently, a mixture of EPA plus DHA has proven efficiency in untreated depressive children. In summary, many epidemiological and clinical works in the last ten years have abundantly documented the existence of an association between a low n-3 PUFA intake or status and a

  3. Regulation of hepatic gene expression by saturated fatty acids.

    Science.gov (United States)

    Vallim, T; Salter, A M

    2010-01-01

    Diets rich in saturated fatty acids have long been associated with increased plasma cholesterol concentrations and hence increased risk of cardiovascular disease. More recently, they have also been suggested to promote the development of non-alcoholic fatty liver disease. While there is now considerable evidence to suggest that polyunsaturated fatty acids exert many of their effects through regulating the activity of transcription factors, including peroxisome proliferator activated receptors, sterol regulatory binding proteins (SREBPs) and liver X receptor, our understanding of how saturated fatty acids act is still limited. Here we review the potential mechanisms whereby saturated fatty acids modulate hepatic lipid metabolism thereby impacting on the synthesis, storage and secretion of lipids. Evidence is presented that their effects are, at least partly, mediated through modulation of the activity of the SREBP family of transcription factors.

  4. Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae.

    Science.gov (United States)

    Teixeira, Paulo Gonçalves; Ferreira, Raphael; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2017-03-15

    In vivo production of fatty acid-derived chemicals in Saccharomyces cerevisiae requires strategies to increase the intracellular supply of either acyl-CoA or free fatty acids (FFAs), since their cytosolic concentrations are quite low in a natural state for this organism. Deletion of the fatty acyl-CoA synthetase genes FAA1 and FAA4 is an effective and straightforward way to disable re-activation of fatty acids and drastically increase FFA levels. However, this strategy causes FFA over-accumulation and consequential release to the extracellular medium, which results in a significant loss of precursors that compromises the process yield. In the present study, we aimed for dynamic expression of the fatty acyl-CoA synthetase gene FAA1 to regulate FFA and acyl-CoA pools in order to improve fatty alcohol production yields. We analyzed the metabolite dynamics of a faa1Δ faa4Δ strain constitutively expressing a carboxylic acid reductase from Mycobacterium marinum (MmCAR) and an endogenous alcohol dehydrogenase (Adh5) for in vivo production of fatty alcohols from FFAs. We observed production of fatty acids and fatty alcohols with different rates leading to high levels of FFAs not being converted to the final product. To address the issue, we expressed the MmCAR + Adh5 pathway together with a fatty acyl-CoA reductase from Marinobacter aquaeolei to enable fatty alcohol production simultaneously from FFA and acyl-CoA, respectively. Then, we expressed FAA1 under the control of different promoters in order to balance FFA and acyl-CoA interconversion rates and to achieve optimal levels for conversion to fatty alcohols. Expressing FAA1 under control of the HXT1 promoter led to an increased accumulation of fatty alcohols per OD600 up to 41% while FFA levels were decreased by 63% compared with the control strain. Fine-tuning and dynamic regulation of key metabolic steps can be used to improve cell factories when the rates of downstream reactions are limiting. This avoids loss of

  5. Adaptive modification of membrane phospholipid fatty acid composition and metabolic thermosuppression of brown adipose tissue in heat-acclimated rats

    Science.gov (United States)

    Saha, S. K.; Ohno, T.; Tsuchiya, K.; Kuroshima, A.

    Thermogenesis, especially facultative thermogenesis by brown adipose tissue (BAT), is less important in high ambient temperature and the heat-acclimated animals show a lower metabolic rate. Adaptive changes in the metabolic activity of BAT are generally found to be associated with a modification of membrane phospholipid fatty acid composition. However, the effect of heat acclimation on membrane phospholipid fatty acid composition is as yet unknown. In this study, we examined the thermogenic activity and phospholipid fatty acid composition of interscapular BAT from heat-acclimated rats (control: 25+/-1°C, 50% relative humidity and heat acclimation: 32+/-0.5°C, 50% relative humidity). Basal thermogenesis and the total thermogenic capacity after noradrenaline stimulation, as estimated by in vitro oxygen consumption of BAT (measured polarographically using about 1-mm3 tissue blocks), were smaller in the heat-acclimated group than in the control group. There was no difference in the tissue content of phospholipids between the groups when expressed per microgram of DNA. The phospholipid fatty acid composition was analyzed by a capillary gas chromatograph. The state of phospholipid unsaturation, as estimated by the number of double bonds per fatty acid molecule, was similar between the groups. The saturated fatty acid level was higher in the heat-acclimated group. Among the unsaturated fatty acids, heat acclimation decreased docosahexaenoic acid and oleic acid levels, and increased the arachidonic acid level. The tissue level of docosahexaenoic acid correlated with the basal oxygen consumption of BAT (r=0.6, Pfatty acids, especially the n-3 polyunsaturated fatty acid docosahexaenoic acid, which is possibly involved in the metabolic thermosuppression.

  6. Chia (Salvia hispanica L.) seed as an n-3 fatty acid source for finishing pigs: effects on fatty acid composition and fat stability of the meat and internal fat, growth performance, and meat sensory characteristics.

    Science.gov (United States)

    Coates, W; Ayerza, R

    2009-11-01

    Coronary heart disease is caused by arteriosclerosis, which is triggered by an unbalanced fatty acid profile in the body. Today, Western diets are typically low in n-3 fatty acids and high in SFA and n-6 fatty acids; consequently, healthier foods are needed. Chia seed (Salvia hispanica L.), which contains the greatest known plant source of n-3 alpha-linolenic acid, was fed at the rate of 10 and 20% to finishing pigs, with the goal to determine if this new crop would increase the n-3 content of the meat as has been reported for other n-3 fatty acid-rich crops. The effects of chia on fatty acid composition of the meat, internal fats, growth performance, and meat sensory characteristics were determined. Productive performance was unaffected by dietary treatment. Chia seed modified the fatty acid composition of the meat fat, but not of the internal fat. Significantly (P < 0.05) less palmitic, stearic, and arachidic acids were found with both chia treatments. This is different than trials in which flaxseed, another plant based source of omega-3 fatty acid, has been fed. Alpha-linolenic acid content increased with increasing chia content of the diet; however, only the effect of the 20% ration was significantly (P < 0.05) different from that of the control. Chia seed increased panel member preferences for aroma and flavor of the meat. This study tends to show that chia seems to be a viable feed that can produce healthier pork for human consumption.

  7. [Treatment of hypertriglyceridemia with omega-3 fatty acids].

    Science.gov (United States)

    Miyoshi, Toru; Ito, Hiroshi

    2013-09-01

    Omega-3 fatty acids such as eicosapentaenoic acid(EPA) and docosahexaenoic acid(DHA) have important biologic functions, including effects on membranes, eicosanoid metabolism, and gene transcription. Studies indicate that the use of EPA and DHA lowered triglyceride levels, which is accomplished by decreasing the production of hepatic triglycerides and increasing the clearance of plasma triglycerides. Recent clinical studies showed that intake of omega-3 fatty acids reduced cardiovascular events. In addition, combination therapy with omega-3 fatty acids and a statin is a safe and effective way to improve lipid levels and cardiovascular prognosis beyond the benefits provided by statin therapy alone. Our focus is to review the potential mechanisms by which these fatty acids reduce cardiovascular disease risk.

  8. Identification of fatty acids in canine seminal plasma.

    Science.gov (United States)

    Díaz, R; Inostroza, K; Risopatrón, J; Sanchez, R; Sepúlveda, N

    2014-03-01

    Seminal plasma contains various biochemical components associated with sperm function. However, there is limited information regarding the fatty acid composition of seminal plasma and their effect on sperm. The aim of this study was to identify the fatty acid content in canine seminal plasma using gas chromatography. Twelve ejaculates were studied, the seminal plasma was obtained by centrifugation and then the lipids were extracted, methylated and analysed by chromatography. The total lipids in the seminal plasma were 2.5 ± 0.3%, corresponding to 85% saturated fatty acids (SFA) and 15% unsaturated fatty acids (UFA). The greatest proportions of SFA were palmitic acid (30.4%), stearic acid (23.4%) and myristic acid (5.3%) and of UFA oleic acid (9.0%). Therefore, the protocols and techniques used enabled the identification of 18 different fatty acids in canine seminal plasma, which constitutes a good method to evaluate and quantify the fatty acid profile in this species. © 2013 Blackwell Verlag GmbH.

  9. [Fatty acid content of sausages manufactured in Venezuela].

    Science.gov (United States)

    Araujo de Vizcarrondo, C; Martín, E

    1997-06-01

    The moisture and lipid content as well as the fatty acid composition of sausages were determined. Lipids were extracted and purified with a mixture of cloroform/methanol 2:1. Fatty acids in the lipid extract were methylated with 4% sulfuric acid/methanol solution and later were separated as methyl esters by gas liquid cromatography (GLC). Sausages presented a lipid content between 7.10% for canned sausages and 35.23% for the cocktail type. Most of the fatty acids were monounsatured with oleic acid as the major component with values between 42.54% for ham sausage and 48.83% for francfort type. Satured fatty acids followed, with palmitic acid as the major component in a range between 21.46% and 26.59% for bologna and Polaca sausage respectively. Polyunsaturated fatty acids were present in less quantities with concentration of linoleic acid between 8.5% (cotto salami type) and 12.60% (cocktail type). Turkey and poultry sausages presented a higher content of polyunsaturated and less saturated fatty acids than the other types of sausages studied.

  10. Survey on the fatty acids profile of fluid goat milk

    Directory of Open Access Journals (Sweden)

    Daniela Pittau

    2013-10-01

    Full Text Available Fluid goat milk submitted to thermal treatment has interesting nutritional properties and a potential expanding market. The present study was aimed to conduct fatty acids profile characterisation of goat milk placed on market. Forty-nine fluid milk samples were collected: 12 pasteurised, 12 pasteurised at high temperature, 11 ultrahigh temperature (UHT whole milk and 14 UHT semi-skimmed milk. Milk samples were collected at retail level from 7 different companies and from different production batches. After extraction and methilation, fatty acids (FAs profile was determined on each sample using a gas chromatograph with flame ionisation detector (GC-FID with high-polarity capillary column. The concentration (g/100mL of saturated fatty acids (SFAs, monounsaturated fatty acids (MUFAs, polyunsaturated fatty acids (PUFAs, trans fatty acids (t-FAs, and isomers of conjugated linoleic acid (CLA was determined. N-6/n-3 ratio, atherogenic index (AI and thrombogenic index (TI were also assessed. Fluid goat milk lipid profile was characterised by SFAs (68.4% of total FAs, PUFAs (5.3%, MUFAs (21.3%, t-FAs (3.6% and CLA (0.8%. The most represented fatty acids were: 16:0 (24.5%, 9cis-18:1 (18.2%, 18:0 (9.6%, 14:0 (9.5%, 10:0 (9.3% and 12:0 (4.5%. Nutritional indices were 2.8-6.8 for n-6/n-3 ratio; 2.3-2.9 for AI; and 2.7-3.2 for TI. Milk produced by small scale plants, with no milk fat standardisation, showed greater differences in fatty acid profile as compared to industrial plants milk. Large scale production is characterised by commingled bulk tank milk of different origins and then is more homogeneous. The whole goat milk supply chain should be controlled to obtain milk with fatty acids of high nutritional value.

  11. Traditional food in Serbia: Sources, recipes and fatty acids profiles

    Directory of Open Access Journals (Sweden)

    Popović Tamara B.

    2014-01-01

    Full Text Available Traditional foods play a major role in traditions of different cultures and regions for thousands of years while preparation methods of traditional foods are part of the folklore of a country or a region. This paper presents recipes and fatty acid profiles of selected commonly consumed traditional foods in Serbia. The obtained fatty acid composition data are used for making conclusions about meals which are commonly consumed in Serbia. Traditional Serbian dairy products, cheese and kajmak, contained 70% SFAs (mostly palmitic acid. Commonly used meal in Serbian cuisine, prebranac, also contained palmitic acid and oleic acid (38.67% and 35.58% respectively, while linoleic acid was presented with 17.34%, similarly to vanilice. Ajvar, frequently used as a salad, is rich in linoleic acid (49.12% but less rich in palmitic acid. Trans fatty acids were found in very small amounts in all foods.

  12. Urinary prostaglandin E and vasopressin excretion in essential fatty acid-deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Jensen, B.

    1983-01-01

    and the (n-3) rats, even though large differences were found in the percentage of arachidonic acid (20:4[n-6]), icosapentaenoic acid (20:5[n-3]), and icosatrienoic acid (20:3[n-9]) of total kidney fatty acids as well as of kidney phosphatidylinositol fatty acids. Fractionation of urine extracts on high...... excretion of prostaglandin E (PGE), immunoreactive arginine vasopressin (iA VP), and kallikrein were determined. PGE was quantitated with a radioimmunoassay having 4.9% cross-reactivity with prostaglandin E (PGE). After 4 weeks on the diet, water consumption and urinary iAVP excretion increased...... an arachidonic acid pool, which is rather resistant to restriction in dietary linoleate. © 1983 American Oil Chemists' Society (AOCS)....

  13. Plasma concentrations of trans fatty acids in persons with type 2 diabetes between September 2002 and April 200412345

    OpenAIRE

    Schwenke, Dawn C.; Foreyt, John P.; Edgar R Miller; Reeves, Rebecca S.; Vitolins, Mara Z.

    2013-01-01

    Background: transFatty acids (TFAs) increase cardiovascular disease risk. TFAs and polyunsaturated fatty acids (PUFAs) in the food supply may be declining with reciprocal increases in cis-monounsaturated fatty acids (MUFAs) and saturated fatty acids (SFAs).

  14. Molecular recognition of nitrated fatty acids by PPAR[gamma

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yong; Zhang, Jifeng; Schopfer, Francisco J.; Martynowski, Dariusz; Garcia-Barrio, Minerva T.; Kovach, Amanda; Suino-Powell, Kelly; Baker, Paul R.S.; Freeman, Bruce A.; Chen, Y. Eugene; Xu, H. Eric (Pitt); (Michigan); (Van Andel); (Morehouse-MED)

    2010-03-08

    Peroxisome proliferator activated receptor-{gamma} (PPAR{gamma}) regulates metabolic homeostasis and adipocyte differentiation, and it is activated by oxidized and nitrated fatty acids. Here we report the crystal structure of the PPAR{gamma} ligand binding domain bound to nitrated linoleic acid, a potent endogenous ligand of PPAR{gamma}. Structural and functional studies of receptor-ligand interactions reveal the molecular basis of PPAR{gamma} discrimination of various naturally occurring fatty acid derivatives.

  15. Characterization of Enzymes Involved in Fatty Acid Elongation

    Science.gov (United States)

    2007-04-11

    dihydroxyacetone reductase involved in phosphatidic acid biosynthesis [111]. Therefore, altered glycerophospholipid metabolism, along with reduced...in Mammals Increases with Muscle n-6 Polyunsaturated Fatty Acid Content. PLoS ONE, 2006. 1: p. e65. 143. Cole, G.M., Lim, G.P., Yang, F., Teter, B...2007 Title of Dissertation: "Characterization of Enzymes Involved in Fatty Acid Elongation" APPROVAL SHEET Ernest Maynard, P .D. Department of

  16. Emulsification of waste cooking oils and fatty acid distillates as diesel engine fuels: An attractive alternative

    Directory of Open Access Journals (Sweden)

    Eliezer Ahmed Melo Espinosa

    2016-06-01

    Full Text Available The scope of this paper is to analyze the possibility and feasibility of the use of emulsification method applied to waste cooking oils and fatty acid distillates as diesel engine fuels, compared with other commonly used methods. These waste products are obtained from the refining oil industry, food industry and service sector, mainly. They are rarely used as feedstock to produce biofuels and other things, in spite of constitute a potential source of environmental contamination. From the review of the state of arts, significant decreases in exhaust emissions of nitrogen oxides, cylinder pressure as well as increases of the ignition delay, brake specific fuel consumption, hydrocarbon, smoke opacity, carbon monoxide, particulate matters to emulsified waste cooking oils and fatty acid distillates compared with diesel fuel are reported. In some experiments the emulsified waste cooking oils achieved better performance than neat fatty acid distillates, neat waste cooking oils and their derivatives methyl esters.

  17. Omega-3 fatty acids in the prevention and control of cardiovascular disease.

    Science.gov (United States)

    Mata López, P; Ortega, R M

    2003-09-01

    Cardiovascular disease is one of the main causes of death in developed countries. Several factors are involved in its appearance and progress, among which nutrition enjoys a certain protagonism. Until recently, the dietetic criteria for preventing and controlling cardiovascular disease were mainly restrictive (at least in terms of energy and fat intake), but such advice is difficult to follow, and without careful monitoring can lead to deficiencies that might negatively affect quality of life and perhaps even life expectancy. Several investigations show that some components of the lipid fraction of the diet, such as omega-3 fatty acids, are beneficial with respect to cardiovascular disease, and these have become the centre of much attention. This paper reviews the results of some of these studies and evaluates the benefit of these fatty acids in the prevention of coronary heart disease. The sources of omega-3 fatty acids, their recommended consumption, possible mechanisms of action and potential adverse effects are discussed.

  18. Cultural symbolism of fish and the psychotropic properties of omega-3 fatty acids.

    Science.gov (United States)

    Reis, L C; Hibbeln, J R

    2006-01-01

    Fish is a food with unique psychotropic properties. Consumption of long-chain omega-3 fatty acids, rich in seafood, reduces depression, aggression and anger while improving mental well-being. We posit that symbols of fish have become linked to the emotional states induced by long-chain fatty acid by associative pairings, both conscious and unconscious. The limbic and hippocampal activity necessary for memory formation containing emotional content and the labeling of social context by cortical processes appears to be optimized by diets rich in long-chain omega-3 fatty acid. In this critical literature survey, we find that fish have been culturally labeled as symbols of emotional well-being and social healing in religious and medical practices among independent cultures, for at least six millennia. This understanding of the perception of fish as a symbolically healing or purifying food can assist current messages improving public health.

  19. Furan fatty acids efficiently rescue brain cells from cell death induced by oxidative stress.

    Science.gov (United States)

    Teixeira, Antoinette; Cox, Ruud C; Egmond, Maarten R

    2013-08-01

    Treatment of rat brain C6 astroglioma cells with furan fatty acid F6 prior to exposure to hydrogen peroxide shows a strong protective effect of F6 against cell death resulting from oxidative stress. This protective effect is obtained only for F6 administered as a free fatty acid and with an intact furan ring. It is proposed that brain cells are rescued by F6 scavenging radicals elicited by lipid peroxidation within the cell membrane. Oxidative processes outside the cell membrane, such as protein carbonylation, are not affected by F6. Furan fatty acids such as those present in fish oils and marine organisms are likely beneficial for consumption in reducing the risk of diseases that have been implicated to arise from oxidative stress, such as Alzheimer's disease.

  20. The role and mechanism of fatty acids in gallstones

    Institute of Scientific and Technical Information of China (English)

    Shuo-Dong Wu; Kazuhisa Uchiyama; Ying Fan

    2007-01-01

    BACKGROUND: Cholelithiasis is a common entity in China, but its etiology and pathogenesis have not been fully elucidated. Pigment stones of the intrahepatic and extrahepatic bile duct still form a high proportion in China, while they are rare in Europeans. To date, reports on fatty acids in stones remain few. We analyzed the quantity of fatty acids in different stones from Chinese and Japanese cases and discussed the role and mechanism of fatty acids in the formation of pigment stones. METHODS: Clinical data from 18 Chinese and 37 Japanese patients with different types of stones were analyzed using the procedure for extracting fatty acids from gallstones and high performance liquid chromatography. RESULTS: The total fatty acid and free fatty acid contents of pigment stones were markedly higher than those in black or cholesterol stones. The ratio of free saturated to free unsaturated fatty acids was highest in intrahepatic and less in extrahepatic pigment stones, which were signiifcantly different from the other two kinds of stones. CONCLUSIONS: This indicates that phospholipase participates in the course of pigment stone formation. The action of phospholipase A1 is more important than phospholipase A2.

  1. Kinetics of saturated, monounsaturated, and polyunsaturated fatty acids in humans.

    Science.gov (United States)

    Nelson, Robert H; Mundi, Manpreet S; Vlazny, Danielle T; Smailovic, Almira; Muthusamy, Kalpana; Almandoz, Jaime P; Singh, Ekta; Jensen, Michael D; Miles, John M

    2013-03-01

    Plasma free fatty acid (FFA) kinetics in humans are often measured with only one tracer. In study 1, healthy volunteers received infusions of [U-¹³C]linoleate, [U-¹³C]oleate, and [U-¹³C]palmitate during continuous feeding with liquid meals low (n = 12) and high (n = 5) in palmitate and containing three labeled fatty acids to measure FFA appearance and fractional spillover of lipoprotein lipase-generated fatty acids. Study 2 used an intravenous lipid emulsion to increase FFA concentrations during infusion of linoleate and palmitate tracers. In study 1, there were no differences in spillover of the three fatty acids for the low-palmitate meal, but linoleate spillover was greater than oleate or palmitate for the high-palmitate meal. In studies 1 and 2, clearance was significantly greater for linoleate than for the other FFAs. There was a negative correlation between clearance and concentration for each fatty acid in the two studies. In study 1, concentration and spillover correlated positively for oleate and palmitate but negatively for linoleate. In conclusion, linoleate spillover is greater than that of other fatty acids under some circumstances. Linoleate clearance is greater than that of palmitate or oleate, indicating a need for caution when using a single FFA to infer the behavior of all fatty acids.

  2. Structural Equation Modeling for Analyzing Erythrocyte Fatty Acids in Framingham

    Directory of Open Access Journals (Sweden)

    James V. Pottala

    2014-01-01

    Full Text Available Research has shown that several types of erythrocyte fatty acids (i.e., omega-3, omega-6, and trans are associated with risk for cardiovascular diseases. However, there are complex metabolic and dietary relations among fatty acids, which induce correlations that are typically ignored when using them as risk predictors. A latent variable approach could summarize these complex relations into a few latent variable scores for use in statistical models. Twenty-two red blood cell (RBC fatty acids were measured in Framingham (N = 3196. The correlation matrix of the fatty acids was modeled using structural equation modeling; the model was tested for goodness-of-fit and gender invariance. Thirteen fatty acids were summarized by three latent variables, and gender invariance was rejected so separate models were developed for men and women. A score was developed for the polyunsaturated fatty acid (PUFA latent variable, which explained about 30% of the variance in the data. The PUFA score included loadings in opposing directions among three omega-3 and three omega-6 fatty acids, and incorporated the biosynthetic and dietary relations among them. Whether the PUFA factor score can improve the performance of risk prediction in cardiovascular diseases remains to be tested.

  3. Regional uptake of meal fatty acids in humans.

    Science.gov (United States)

    Jensen, Michael D; Sarr, Michael G; Dumesic, Daniel A; Southorn, Peter A; Levine, James A

    2003-12-01

    Two protocols were performed to study meal fatty acid metabolism. In protocol 1, 14 patients scheduled for elective intra-abdominal surgery (11 undergoing bariatric surgery for severe obesity) consumed a meal containing [3H]triolein in the evening before surgery. This allowed us to measure adipose tissue lipid specific activity (SA) in mesenteric and omental, deep and superficial abdominal subcutaneous adipose tissue. Intra-abdominal adipose tissue lipid SA was greater than subcutaneous lipid SA. There were no significant differences between mesenteric and omental or between deep and superficial abdominal subcutaneous adipose tissue. In protocol 2, meal fatty acid oxidation and uptake into subcutaneous and omental adipose tissue ([3H]triolein) were measured in six normal, healthy volunteers. Meal fatty acid oxidation (3H2O generation) plus that remaining in plasma ( approximately 1%) plus uptake into upper body subcutaneous, lower body subcutaneous, and visceral fat allowed us to account for 98 +/- 6% of meal fatty acids 24 h after meal ingestion. We conclude that omental fat is a good surrogate for visceral fat and that abdominal subcutaneous fat depots are comparable with regard to meal fatty acid metabolic studies. Using [3H]triolein, we were able to account for virtually 100% of meal fatty acids 24 h after meal ingestion. These results support the meal fatty acid tracer model as a way to study the metabolic fate of dietary fat.

  4. Fatty Acid and Phytosterol Content of Commercial Saw Palmetto Supplements

    Directory of Open Access Journals (Sweden)

    Brian L. Lindshield

    2013-09-01

    Full Text Available Saw palmetto supplements are one of the most commonly consumed supplements by men with prostate cancer and/or benign prostatic hyperplasia (BPH. Some studies have found significant improvements in BPH and lower urinary tract symptoms (LUTS with saw palmetto supplementation, whereas others found no benefits. The variation in the efficacy in these trials may be a result of differences in the putative active components, fatty acids and phytosterols, of the saw palmetto supplements. To this end, we quantified the major fatty acids (laurate, myristate, palmitate, stearate, oleate, linoleate and phytosterols (campesterol, stigmasterol, β-sitosterol in 20 commercially available saw palmetto supplements using GC-FID and GC-MS, respectively. Samples were classified into liquids, powders, dried berries, and tinctures. Liquid saw palmetto supplements contained significantly higher (p < 0.05 concentrations of total fatty acids (908.5 mg/g, individual fatty acids, total phytosterols (2.04 mg/g, and individual phytosterols, than the other supplement categories. Powders contained significantly higher (p < 0.05 concentrations of total fatty acids than tinctures, which contain negligible amounts of fatty acids (46.3 mg/g and phytosterols (0.10 mg/g. Our findings suggest that liquid saw palmetto supplements may be the best choice for individuals who want to take a saw palmetto supplement with the highest concentrations of both fatty acids and phytosterols.

  5. Toxicity of fatty acid salts to German and American cockroaches.

    Science.gov (United States)

    Baldwin, R W; Koehler, P G; Pereira, R M

    2008-08-01

    The toxicity of fatty acid salts to German, Blattella germanica (L.), and American cockroaches, Periplaneta americana (L.), was evaluated. Potassium and sodium laurate caused up to 95% mortality of German cockroaches and 100% mortality of American cockroaches. Even-numbered potassium fatty acid salts, C8-C18 were assessed for toxicity at 0.125, 0.25, 0.5, 1, and 2% concentrations by a 30-s immersion of cockroaches. The more soluble of the fatty acid salts at 2% concentration caused 65-95% mortality of German cockroaches and 100% mortality of American cockroaches. Potassium oleate, C18, was most toxic to both German (LC50 = 0.36%) and American (LC50 = 0.17%) cockroaches. Fatty acid salt solutions on a substrate were tested by placing cockroaches in contact with treated floor tiles immediately after application (wet) or after the solutions had dried. Sodium laurate and potassium caprate caused mortality of German (62 +/- 17.4 and 58 +/- 12.6%, respectively) and American cockroaches (52 +/- 18.5 and 28 +/- 4.9%, respectively) on wet tiles, whereas potassium oleate caused mortality of German cockroaches (67 +/- 14.1%) only. Dry fatty acids caused no mortality among exposed cockroaches. Fatty acid salt solutions can be effective in killing German and American cockroaches but only when insects are thoroughly wetted with 1-2% fatty acid salt solutions.

  6. Fatty acid and phytosterol content of commercial saw palmetto supplements.

    Science.gov (United States)

    Penugonda, Kavitha; Lindshield, Brian L

    2013-09-13

    Saw palmetto supplements are one of the most commonly consumed supplements by men with prostate cancer and/or benign prostatic hyperplasia (BPH). Some studies have found significant improvements in BPH and lower urinary tract symptoms (LUTS) with saw palmetto supplementation, whereas others found no benefits. The variation in the efficacy in these trials may be a result of differences in the putative active components, fatty acids and phytosterols, of the saw palmetto supplements. To this end, we quantified the major fatty acids (laurate, myristate, palmitate, stearate, oleate, linoleate) and phytosterols (campesterol, stigmasterol, β-sitosterol) in 20 commercially available saw palmetto supplements using GC-FID and GC-MS, respectively. Samples were classified into liquids, powders, dried berries, and tinctures. Liquid saw palmetto supplements contained significantly higher (p fatty acids (908.5 mg/g), individual fatty acids, total phytosterols (2.04 mg/g), and individual phytosterols, than the other supplement categories. Powders contained significantly higher (p fatty acids than tinctures, which contain negligible amounts of fatty acids (46.3 mg/g) and phytosterols (0.10 mg/g). Our findings suggest that liquid saw palmetto supplements may be the best choice for individuals who want to take a saw palmetto supplement with the highest concentrations of both fatty acids and phytosterols.

  7. Short communication: Association of milk fatty acids with early lactation hyperketonemia and elevated concentration of nonesterified fatty acids.

    Science.gov (United States)

    Mann, S; Nydam, D V; Lock, A L; Overton, T R; McArt, J A A

    2016-07-01

    The objective of our study was to extend the limited research available on the association between concentrations of milk fatty acids and elevated nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) concentrations in early lactation dairy cattle. Measurement of milk fatty acids for detection of cows in excessive negative energy balance has the potential to be incorporated in routine in-line monitoring systems. Blood samples were taken from 84 cows in second or greater lactation 3 times per week between 3 to 14 d in milk. Cows were characterized as hyperketonemic (HYK) if blood BHB concentration was ≥1.2mmol/L at least once and characterized as having elevated concentrations of NEFA (NEFAH) if serum NEFA concentration was ≥1mmol/L at least once. Composition of colostrum and milk fatty acids at wk 2 postpartum was used to investigate the potential diagnostic value of individual fatty acids and fatty acid ratios for the correct classification of cows with NEFA and BHB concentrations above these thresholds, respectively. Receiver operating characteristic (ROC) curves were used to identify thresholds of fatty acid concentration and fatty acid ratios when ROC area under the curve was ≥0.70. Correct classification rate (CCR, %) was calculated as {[(number of true positives + number of true negatives)/total number tested] × 100}. None of the colostrum fatty acids yielded a sufficiently high area under the curve in ROC analysis for the association with HYK and NEFAH. The following fatty acids and fatty acid ratios were identified for an association with NEFAH (threshold, CCR): C15:0 (≤0.65g/100g, 68.3%); cis-9 C16:1 (≥1.85g/100g, 70.7%); cis-9 C18:1 (≥26g/100g, 69.5%), cis-9 C18:1 to C15:0 ratio (≥45, 69.5%); cis-9 C16:1 to C15:0 (≥2.50, 73.2%). Several fatty acids were associated with HYK (threshold, CCR): C6:0 (≤1.68g/100g, 80.5%), C8:0 (≤0.80g/100g, 80.5%), C10:0 (≤1.6g/100g, 79.3%); C12:0 (≤1.42g/100g, 82.9%); C14:0 (≤6.10g/100g, 84

  8. Esterification free fatty acid in palm fatty acid distillate using sulfonated rice husk ash catalyst

    Science.gov (United States)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-01-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as Palm Fatty Acid Distillate (PFAD) from palm oil industries. The use of PFAD can reduce the cost of biodiesel production significantly, which makes PFAD a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid (FFA) on PFAD was studied using rice husk ash (RHA) as heterogeneous catalyst. The rice husk ash catalyst was synthesized by sulfonation using concentrated sulfuric acid. The RHA catalyst were characterized by using different techniques, such as porosity analysis, Fourier transform infrared (FT-IR) spectroscopy, total number of acid sites and elemental analysis. The effects of the molar ratio of methanol to PFAD (1-10%), the molar ratio of methanol to PFAD (4:1-10:1), and the reaction temperature (40-60°C) were studied for the conversion of FFA to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 10:1, the catalyst amount of 10 wt% of PFAD, and reaction temperature of 60°C.

  9. Quantification of primary fatty acid amides in commercial tallow and tallow fatty acid methyl esters by HPLC-APCI-MS.

    Science.gov (United States)

    Madl, Tobias; Mittelbach, Martin

    2005-04-01

    Primary fatty acid amides are a group of biologically highly active compounds which were already identified in nature. Here, these substances were determined in tallow and tallow fatty acid methyl esters for the first time. As tallow is growing in importance as an oleochemical feedstock for the soap manufacturing, the surfactant as well as the biodiesel industry, the amounts of primary fatty acid amides have to be considered. As these compounds are insoluble in tallow as well as in the corresponding product e.g. tallow fatty acid methyl esters, filter plugging can occur. For the quantification in these matrices a purification step and a LC-APCI-MS method were developed. Although quantification of these compounds can be performed by GC-MS, the presented approach omitted any derivatization and increased the sensitivity by two orders of magnitude. Internal standard calibration using heptadecanoic acid amide and validation of the method yielded a limit of detection of 18.5 fmol and recoveries for the tallow and fatty acid methyl ester matrices of 93% and 95%, respectively. A group of commercially available samples were investigated for their content of fatty acid amides resulting in an amount of up to 0.54%m/m (g per 100 g) in tallow and up to 0.16%m/m (g per 100 g) in fatty acid methyl esters.

  10. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: meta-analysis of 9 studies in the CHARGE consortium

    Science.gov (United States)

    Smith, Caren E.; Follis, Jack L.; Nettleton, Jennifer A.; Foy, Millennia; Wu, Jason H.Y.; Ma, Yiyi; Tanaka, Toshiko; Manichakul, Ani W.; Wu, Hongyu; Chu, Audrey Y.; Steffen, Lyn M.; Fornage, Myriam; Mozaffarian, Dariush; Kabagambe, Edmond K.; Ferruci, Luigi; da Chen, Yii-Der I; Rich, Stephen S.; Djoussé, Luc; Ridker, Paul M.; Tang, Weihong; McKnight, Barbara; Tsai, Michael Y.; Bandinelli, Stefania; Rotter, Jerome I.; Hu, Frank B.; Chasman, Daniel I.; Psaty, Bruce M.; Arnett, Donna K.; King, Irena B.; Sun, Qi; Wang, Lu; Lumley, Thomas; Chiuve, Stephanie E.; Siscovick, David S; Ordovás, José M.; Lemaitre, Rozenn N.

    2015-01-01

    Scope Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. Objective We evaluated interactions between genetic variants and fatty acid intakes for circulating alpha-linoleic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). Methods and Results We conducted meta-analyses (N to 11,668) evaluating interactions between dietary fatty acids and genetic variants (rs174538 and rs174548 in FADS1 (fatty acid desaturase 1), rs7435 in AGPAT3 (1-acyl-sn-glycerol-3-phosphate), rs4985167 in PDXDC1 (pyridoxal-dependent decarboxylase domain-containing 1), rs780094 in GCKR (glucokinase regulatory protein) and rs3734398 in ELOVL2 (fatty acid elongase 2)). Stratification by measurement compartment (plasma vs. erthyrocyte) revealed compartment-specific interactions between FADS1 rs174538 and rs174548 and dietary ALA and linoleic acid for DHA and DPA. Conclusion Our findings reinforce earlier reports that genetically-based differences in circulating fatty acids may be partially due to differences in the conversion of fatty acid precursors. Further, fatty acids measurement compartment may modify gene-diet relationships, and considering compartment may improve the detection of gene-fatty acids interactions for circulating fatty acid outcomes. PMID:25626431

  11. Omega-3 fatty acids and cardiovascular disease: epidemiology and effects on cardiometabolic risk factors.

    Science.gov (United States)

    Mori, Trevor A

    2014-09-01

    Clinical and epidemiological studies provide support that the polyunsaturated omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid from fish and fish oils are cardioprotective, particularly in the setting of secondary prevention. Omega-3 fatty acids benefit multiple cardiometabolic risk factors including lipids, blood pressure, vascular reactivity and cardiac function, as well as having antithrombotic, anti-inflammatory and anti-oxidative actions. Omega-3 fatty acids do not associate with any adverse effects and do not adversely interact with prescriptive drugs such as lipid-lowering, antihypertensive or hypoglycaemic medications. Clinical studies suggest that doses up to 4 g daily when prescribed with anticoagulant or antiplatelet drugs do not associate with increased risk of major bleeding episodes. Omega-3 fatty acids have gained widespread usage by general practitioners and clinicians in clinical settings such as pregnancy and infant development, secondary prevention in coronary heart disease patients and treatment of dyslipidaemias. Health authorities currently recommend an intake of at least two oily fish meals per week for the general population which equates to approximately 500 mg per day of eicosapentaenoic acid and docosahexaenoic acid. In patients with coronary heart disease the guidelines recommend 1 g daily supplements and in hypertriglyceridaemic patients up to 4 g per day. These doses are now achievable with readily available purified encapsulated preparations of omega-3 fatty acids. However, a more practical recommendation for increasing omega-3 fatty acid intake in the general population is to incorporate fish as part of a healthy diet that includes increased consumption of fruits and vegetables, and moderation of salt intake.

  12. Fatty Acid Structure and Degradation Analysis in Fingerprint Residues

    Science.gov (United States)

    Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter

    2016-09-01

    GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl- N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints.

  13. Interaction of fatty acid genotype and diet on changes in colonic fatty acids in a Mediterranean diet intervention study.

    Science.gov (United States)

    Porenta, Shannon R; Ko, Yi-An; Gruber, Stephen B; Mukherjee, Bhramar; Baylin, Ana; Ren, Jianwei; Djuric, Zora

    2013-11-01

    A Mediterranean diet increases intakes of n-3 and n-9 fatty acids and lowers intake of n-6 fatty acids. This can impact colon cancer risk as n-6 fatty acids are metabolized to proinflammatory eicosanoids. The purpose of this study was to evaluate interactions of polymorphisms in the fatty acid desaturase (FADS) genes, FADS1 and FADS2, and changes in diet on fatty acid concentrations in serum and colon. A total of 108 individuals at increased risk of colon cancer were randomized to either a Mediterranean or a Healthy Eating diet. Fatty acids were measured in both serum and colonic mucosa at baseline and after six months. Each individual was genotyped for four single-nucleotide polymorphisms in the FADS gene cluster. Linear regression was used to evaluate the effects of diet, genotype, and the diet by genotype interaction on fatty acid concentrations in serum and colon. Genetic variation in the FADS genes was strongly associated with baseline serum arachidonic acid (n-6) but serum eicosapentaenoic acid (n-3) and colonic fatty acid concentrations were not significantly associated with genotype. After intervention, there was a significant diet by genotype interaction for arachidonic acid concentrations in colon. Subjects who had all major alleles for FADS1/2 and were following a Mediterranean diet had 16% lower arachidonic acid concentrations in the colon after six months of intervention than subjects following the Healthy Eating diet. These results indicate that FADS genotype could modify the effects of changes in dietary fat intakes on arachidonic acid concentrations in the colon.

  14. Capillary Electrophoresis in the Analysis of Polyunsaturated Fatty Acids

    Directory of Open Access Journals (Sweden)

    Gabriel Hancu

    2015-12-01

    Full Text Available The aim of this study to inventory the main electrophoretic methods for identification and quantitative determination of fatty acids from different biological matrices. Critical analysis of electrophoretic methods reported in the literature show that the determination of polyunsaturated fatty acids can be made by: capillary zone electrophoresis, micellar electrokinetic chromatography and microemulsion electrokinetic chromatography using different detection systems such as ultraviolet diode array detection, laser induced fluorescence or mass – spectrometry. Capillary electrophoresis is a fast, low-cost technique used for polyunsaturated fatty acids analysis although their determination is mostly based on gas chromatography.

  15. Antiproliferative activity of synthetic fatty acid amides from renewable resources.

    Science.gov (United States)

    dos Santos, Daiane S; Piovesan, Luciana A; D'Oca, Caroline R Montes; Hack, Carolina R Lopes; Treptow, Tamara G M; Rodrigues, Marieli O; Vendramini-Costa, Débora B; Ruiz, Ana Lucia T G; de Carvalho, João Ernesto; D'Oca, Marcelo G Montes

    2015-01-15

    In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Transgenic Mice Convert Carbohydrates to Essential Fatty Acids

    OpenAIRE

    Pai, Victor J.; Bin Wang; Xiangyong Li; Lin Wu; Kang, Jing X.

    2014-01-01

    Transgenic mice (named “Omega mice”) were engineered to carry both optimized fat-1 and fat-2 genes from the roundworm Caenorhabditis elegans and are capable of producing essential omega-6 and omega-3 fatty acids from saturated fats or carbohydrates. When maintained on a high-saturated fat diet lacking essential fatty acids or a high-carbohydrate, no-fat diet, the Omega mice exhibit high tissue levels of both omega-6 and omega-3 fatty acids, with a ratio of ∼1∶1. This study thus presents an in...

  17. Trans fatty acids in a range of UK processed foods.

    Science.gov (United States)

    Roe, Mark; Pinchen, Hannah; Church, Susan; Elahi, Selvarani; Walker, Margaret; Farron-Wilson, Melanie; Buttriss, Judith; Finglas, Paul

    2013-10-01

    A survey to determine the trans fatty acid content of a range of processed foods was carried out in response to recent reformulation work by the food industry to lower the artificial trans fatty acid content of processed products. Sixty two composite samples, made up of between 5 and 12 sub-samples, were collected in 2010 and were analysed for fatty acids, and a range of nutrients. The foods analysed included pizza, garlic bread, breakfast cereals, quiche, fat spreads, a range of fish and meat products, chips, savoury snacks, confectionery and ice cream. Levels of trans fatty acids were reduced considerably compared with previous UK analyses of similar foods where comparisons are possible. Concentrations of trans elaidic acid (t9-C18:1) from hydrogenated oils in all samples were food. These results confirm information provided by the food industry in 2007 on the levels of trans fats in key processed food sectors.

  18. Omega-3 polyunsaturated fatty acids and cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Ştefan C. Vesa

    2008-12-01

    Full Text Available The article presents some general facts about omega-3 fatty acids and their role in the treatment and prevention of cardiovascular diseases. Omega-3 fatty acids are essential for the human body. Their beneficial effects in the prevention of cardiovascular disease have been known for decades. Since then, several epidemiological and interventional trials showed the value of omega-3 acids in the treatment of certain diseases. Most of them revealed the protective role of omega-3 fatty acids on heart and cardiac functions. However, some of these studies couldn?t demonstrate a positive association between fish oils and preventing cardiac events. The major cardiologic societies from European Union and United States of America recommend omega-3 fatty acids as supplements for primary and secondary prophylaxis of cardiovascular diseases.

  19. A high intake of industrial or ruminant trans fatty acids does not affect the plasma proteome in healthy men

    NARCIS (Netherlands)

    Roos, de B.; Wanders, A.J.; Wood, S.; Horgan, G.; Rucklige, G.; Reid, M.; Siebelink, E.; Brouwer, I.A.

    2011-01-01

    Consumption of industrial trans fat raises the risk of cardiovascular disease, but it is unclear whether cis9,trans11-conjugated linoleic acid (CLA) – a trans fatty acid in dairy products – modulates disease development. We investigated the effects of complete diets providing 7% of energy as industr

  20. A high intake of industrial or ruminant trans fatty acids does not affect the plasma proteome in healthy men

    NARCIS (Netherlands)

    Roos, de B.; Wanders, A.J.; Wood, S.; Horgan, G.; Rucklige, G.; Reid, M.; Siebelink, E.; Brouwer, I.A.

    2011-01-01

    Consumption of industrial trans fat raises the risk of cardiovascular disease, but it is unclear whether cis9,trans11-conjugated linoleic acid (CLA) – a trans fatty acid in dairy products – modulates disease development. We investigated the effects of complete diets providing 7% of energy as

  1. Omega-3 fatty acids moderate effects of physical activity on cognitive function.

    Science.gov (United States)

    Leckie, Regina L; Manuck, Stephen B; Bhattacharjee, Neha; Muldoon, Matthew F; Flory, Janine M; Erickson, Kirk I

    2014-07-01

    Greater amounts of physical activity (PA) and omega-3 fatty acids have both been independently associated with better cognitive performance. Because of the overlapping biological effects of omega-3 fatty acids and PA, fatty acid intake may modify the effects of PA on neurocognitive function. The present study tested this hypothesis by examining whether the ratio of serum omega-6 to omega-3 fatty acid levels would moderate the association between PA and executive and memory functions in 344 participants (Mean age=44.42 years, SD=6.72). The Paffenbarger Physical Activity Questionnaire (PPAQ), serum fatty acid levels, and performance on a standard neuropsychological battery were acquired on all subjects. A principal component analysis reduced the number of cognitive outcomes to three factors: n-back working memory, Trail Making test, and Logical Memory. We found a significant interaction between PA and the ratio of omega-6 to omega-3 fatty acid serum levels on Trail Making performance and n-back performance, such that higher amounts of omega-3 levels offset the deleterious effects of lower amounts of PA. These effects remained significant in a subsample (n=299) controlling for overall dietary fat consumption. There were no significant additive or multiplicative benefits of higher amounts of both omega-3 and PA on cognitive performance. Our results demonstrate that a diet high in omega-3 fatty acids might mitigate the effect of lower levels of PA on cognitive performance. This study illuminates the importance of understanding dietary and PA factors in tandem when exploring their effects on neurocognitive health.

  2. Breast milk: Fatty acid composition and maternal diet

    Directory of Open Access Journals (Sweden)

    Mihela Dujmović

    2013-08-01

    Full Text Available Breast milk from healthy and well-nourished mothers is the preferred form of infants´ feeding in the first six months after parturition, and breastfeeding in this period supports the normal growth and development of new-born infants. During the first month postpartum, breast milk changes through three stages: colostrum, transitional milk and mature milk. Mature milk, which is excreted after the 16th day postpartum, contains on average 3.4-4.5 % lipids. Breast milk lipids fulfill 40-55 % of an infant´s daily energy needs and provide a supply of fat-soluble vitamins and fatty acids. The characteristics of milk lipids are largely determined by their fatty acid composition. In this work the general characteristics of breast milk and milk lipids, as well as the influence of maternal diet on composition of fatty acids in breast milk, are discussed. Breast milk provides all dietary essential fatty acids, linoleic acid (C18:2n-6 and α-linolenic acid (C18:3n-3, as well as their longer-chain more-unsaturated metabolites, including arachidonic acid (C20:4n-6 and docosahexaenoic acid (C22:6n-3. Long-chain polyunsaturated fatty acids are of particular importance in visual and neural development, and their content in milk is a reflection of the mother´s current and long-term dietary intake. A positive association has been established between the maternal intake of fish and seafood and the content of polyunsaturated fatty acids (especially docosahexaenoic acid in milk. Numerous researches have been shown that supplementation with docosahexaenoic acids during the last trimester of pregnancy and during lactation significantly increases the content of polyunsaturated fatty acids in breast milk.

  3. Differing Daphnia magna assimilation efficiencies for terrestrial, bacterial, and algal carbon and fatty acids.

    Science.gov (United States)

    Taipale, Sami J; Brett, Michael T; Hahn, Martin W; Martin-Creuzburg, Dominik; Yeung, Sean; Hiltunen, Minna; Strandberg, Ursula; Kankaala, Paula

    2014-02-01

    -POC was >60%, but due to low PUFA to carbon ratio, these conditions yielded poor Daphnia growth. Because of lower assimilation for carbon, nitrogen, and fatty acids from t-POC relative to diets of bacteria mixed with phytoplankton, we conclude that the microbial food web, supported by phytoplankton, and not direct t-POC consumption, may support zooplankton production. Our results suggest that terrestrial particulate organic carbon poorly supports upper trophic levels of the lakes.

  4. Specific fatty acids as metabolic modulators in the dairy cow

    Directory of Open Access Journals (Sweden)

    J.A.A. Pires

    2008-07-01

    Full Text Available This review summarizes recent developments on the utilization of specific fatty acids to modulate bovine energy metabolism, with emphasis on the periparturient dairy cow. A number of experiments have assessed the effects of polyunsaturated fatty acids on bovine hepatic energy metabolism using in vitro and in vivo models. Treatment of hepatocytes with specific fatty acids altered energy metabolism in vitro. For example, linolenic acid seemed to decrease hepatocyte triacylglycerol accumulation. This effect was confirmed in vivo, using parenteral infusions of emulsions derived from different fat sources to feed-restricted non-lactating cows. Additionally, polyunsaturated fatty acids can increase whole body response to insulin, potentially enhancing antilipolytic effects of insulin and muscle protein anabolism in the bovine. There is limited literature on the effects of feeding fat sources rich in omega-3 polyunsaturated fatty acids, such as fish oil and linseed oil, on metabolism of periparturient dairy cows. Available research has yielded conflicting results which need further clarification. On the other hand, specific isomers of conjugated linoleic acid consistently induce milk fat depression and are able to decrease energy export in milk by periparturient dairy cows. Nonetheless, research is still needed to assess whether these effects will ultimately benefit productivity and health status of periparturient dairy cows. Limitations of available methods to protect fatty acids from ruminal biohydrogenation are also addressed.

  5. Generation and esterification of electrophilic fatty acid nitroalkenes in triacylglycerides.

    Science.gov (United States)

    Fazzari, Marco; Khoo, Nicholas; Woodcock, Steven R; Li, Lihua; Freeman, Bruce A; Schopfer, Francisco J

    2015-10-01

    Electrophilic fatty acid nitroalkenes (NO(2)-FA) are products of nitric oxide and nitrite-mediated unsaturated fatty acid nitration. These electrophilic products induce pleiotropic signaling actions that modulate metabolic and inflammatory responses in cell and animal models. The metabolism of NO(2)-FA includes reduction of the vinyl nitro moiety by prostaglandin reductase-1, mitochondrial β-oxidation, and Michael addition with low molecular weight nucleophilic amino acids. Complex lipid reactions of fatty acid nitroalkenes are not well defined. Herein we report the detection and characterization of NO(2)-FA-containing triacylglycerides (NO(2)-FA-TAG) via mass spectrometry-based methods. In this regard, unsaturated fatty acids of dietary triacylglycerides are targets for nitration reactions during gastric acidification, where NO(2)-FA-TAG can be detected in rat plasma after oral administration of nitro-oleic acid (NO(2)-OA). Furthermore, the characterization and profiling of these species, including the generation of beta oxidation and dehydrogenation products, could be detected in NO(2)-OA-supplemented adipocytes. These data revealed that NO(2)-FA-TAG, formed by either the direct nitration of esterified unsaturated fatty acids or the incorporation of nitrated free fatty acids into triacylglycerides, contribute to the systemic distribution of these reactive electrophilic mediators and may serve as a depot for subsequent mobilization by lipases to in turn impact adipocyte homeostasis and tissue signaling events.

  6. Thai jute seed oil: a potential polyunsaturated fatty acid source

    Directory of Open Access Journals (Sweden)

    Maitree Suttajit

    2006-03-01

    Full Text Available This study examined lipid and fatty acid compositions of different varieties of jute (Po-kra-jao, Corchorus olitorius L. seed grown in Thailand. Four different jute seeds (Nonn-Soong, Keaw-Yai, Cuba and Khonkaen harvested from northeastern Thailand were ground, their lipid was extracted with chloroform: methanol (2:1, v/v, and lipid composition was determined by Iatroscan (TLC/FID. Fatty acid composition was analyzed using GLC with standard methods. Triacylglycerol was a predominant lipid in jute seed oil, ranging from 70% to 74%, and other two minor components were phytosterol (12% to 28% and diacylglycerol (0% to 9%. The ratio of saturates: monounsaturates: polyunsaturates, was approximately 2: 3: 4. Most predominant polyunsaturated fatty acid (PUFA was linoleic acid (18:2n-6, accounting for 40-67% of total fatty acid. Nonn-Soong had the highest amount of PUFA (67.7%, followed by Khonkaen (44.53%, Keaw-Yai (41.14%, and Cuba (40.19%. Another PUFA found was α-linolenic acid (18:3n-3, accounting for about 1% of total fatty acid. The results indicated that jute seed oil was a potential edible PUFA source. The oils obtained from different kinds of jute seeds had significantly different lipid and fatty acid compositions.

  7. Influence of trans fatty acids on health.

    Science.gov (United States)

    Stender, Steen; Dyerberg, Jørn

    2004-01-01

    The contribution of dietary trans fatty acids (TFAs) on the risk of ischemic heart disease (IHD) has recently gained further support due to the results from large, prospective, population-based studies. Compared to saturated fat, TFAs are, gram to gram, associated with a considerably (2.5- to >10-fold) higher risk increment for IHD. A negative effect on the human fetus and on newborns and an increase in colon cancer risk in adults are possible but, however, still equivocal. Recent findings justify further studies concerning the effect of TFAs on allergic diseases in children and on the risk of type-2 diabetes in adults. The intake of industrially produced TFAs in European countries is decreasing. However, determination of the TFA content in various popular food items collected in Danish shops showed that it is likely that persons with a frequent intake of, e.g., French fries, microwave oven popcorn, chocolate bars, fast food, etc., consume industrially produced TFAs in amounts far exceeding the average intake, and are thereby exposed to an unnecessary health risk. The Danish government has decided that oils and fats containing more than 2% industrially produced TFAs will not be sold in Denmark after the January 1, 2004.

  8. Omega-3 Fatty Acids and FFAR4

    Directory of Open Access Journals (Sweden)

    Da Young eOh

    2014-07-01

    Full Text Available The beneficial roles of omega-3 fatty acids (ω3-FAs on obesity, type 2 diabetes, and other metabolic diseases are well known. Most of these effects can be explained by their anti-inflammatory effects, triggered through their receptor, G protein-coupled receptor 120 (GPR120 activation. Although the whole mechanism of action is not fully described yet, it has been shown that stimulation of ω3-FA to GPR120 is followed by receptor phosphorylation. This makes GPR120 be capable of interacting to beta-arrestin-2, which in turn results in association, of beta-arrestin-2 to TAB1. This stealing of an important partaker of the inflammatory cascade, leads to interruption of the pathway, resulting in reduced inflammation. Besides this regulation of the anti-inflammatory response, GPR120 signaling also has been shown to regulate glucose homeostasis, adiposity, gastrointestinal peptide secretion, and taste preference. In this review we summarize the current knowledge about the interaction of ω3-FAs with GPR120 and the consequent opportunities for the application of ω3-FAs and possible GPR120 targets.

  9. Fatty Acids, Obesity and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Peter Arner

    2015-04-01

    Full Text Available Objective: Although elevated free fatty acid (FFA levels in obesity have been considered to be of importance for insulin resistance, a recent meta-analysis suggested normal FFA levels in obese subjects. We investigated fasting circulating FFA and glycerol levels in a large cohort of non-obese and obese subjects. Methods: Subjects recruited for a study on obesity genetics were investigated in the morning after an overnight fast (n = 3,888. Serum FFA (n = 3,306, plasma glycerol (n = 3,776, and insulin sensitivity index (HOMA-IR,n = 3,469 were determined. Obesity was defined as BMI ≥ 30 kg/m2 and insulin resistance as HOMA-IR ≥ 2.21. Results: In obese subjects, circulating FFA and glycerol levels were higher than in non-obese individuals (by 26% and 47%, respectively; both p Conclusion: Circulating FFA and glycerol levels are markedly elevated in obesity but only marginally influenced by insulin resistance and type 2 diabetes. Whether these differences persist during diurnal variations in circulating FFA/glycerol, remains to be established.

  10. Fatty Acids, Obesity and Insulin Resistance.

    Science.gov (United States)

    Arner, Peter; Rydén, Mikael

    2015-01-01

    Although elevated free fatty acid (FFA) levels in obesity have been considered to be of importance for insulin resistance, a recent meta-analysis suggested normal FFA levels in obese subjects. We investigated fasting circulating FFA and glycerol levels in a large cohort of non-obese and obese subjects. Subjects recruited for a study on obesity genetics were investigated in the morning after an overnight fast (n = 3,888). Serum FFA (n = 3,306), plasma glycerol (n = 3,776), and insulin sensitivity index (HOMA-IR,n = 3,469) were determined. Obesity was defined as BMI ≥ 30 kg/m 2 and insulin resistance as HOMA-IR ≥ 2.21. In obese subjects, circulating FFA and glycerol levels were higher than in non-obese individuals (by 26% and 47%, respectively; both p Insulin resistance and type 2 diabetes were associated with a further minor increase in FFA/glycerol among obese subjects. When comparing insulin-sensitive non-obese with insulin-sensitive or -resistant obese individuals, FFA and glycerol were 21–29% and 43–49% higher in obese individuals, respectively. Circulating FFA and glycerol levels are markedly elevated in obesity but only marginally influenced by insulin resistance and type 2 diabetes. Whether these differences persist during diurnal variations in circulating FFA/glycerol, remains to be established

  11. Effect of flaxseed supplementation rate and processing on the production, fatty acid profile, and texture of milk, butter, and cheese.

    Science.gov (United States)

    Oeffner, S P; Qu, Y; Just, J; Quezada, N; Ramsing, E; Keller, M; Cherian, G; Goddick, L; Bobe, G

    2013-02-01

    Health and nutrition professionals advise consumers to limit consumption of saturated fatty acids and increase the consumption of foods rich in n-3 fatty acids. Researchers have previously reported that feeding extruded flaxseed, which is high in C18:3n-3, improves the fatty acid profile of milk and dairy products to less saturated fatty acids and to more C18:3n-3. Fat concentrations in milk and butter decreased when cows were fed higher concentrations of extruded flaxseed. The objective of this study was to determine the optimal rate of flaxseed supplementation for improving the fatty acid profile without decreasing production characteristics of milk and dairy products. By using a double 5 × 5 Latin square design, 10 mid- to late-lactation Holstein cows were fed extruded (0, 0.91, 1.81, and 2.72 kg/d) and ground (1.81 kg/d) flaxseed as a top dressing for 2-wk periods each. At the end of each 2-wk treatment period, milk and serum samples were taken. Milk was subsequently manufactured into butter and fresh Mozzarella cheese. Increasing supplementation rates of extruded flaxseed improved the fatty acid profile of milk, butter, and cheese gradually to less saturated and atherogenic fatty acids and to more C18:3n-3 by increasing concentrations of C18:3n-3 in serum. The less saturated fatty acid profile was associated with decreased hardness and adhesiveness of refrigerated butter, which likely cause improved spreadability. Supplementation rates of extruded flaxseed did not affect dry matter intake of the total mixed ration, milk composition, and production of milk, butter, or cheese. Flaxseed processing did not affect production, fatty acid profile of milk, or texture of butter and cheese. Feeding up to 2.72 kg/d of extruded flaxseed to mid- to late-lactation Holstein cows may improve nutritional and functional properties of milk fat without compromising production parameters.

  12. Short-term consumption of n-3 PUFAs increases murine IL-5 levels, but IL-5 is not the mechanistic link between n-3 fatty acids and changes in B-cell populations.

    Science.gov (United States)

    Teague, Heather; Harris, Mitchel; Whelan, Jarrett; Comstock, Sarah S; Fenton, Jenifer I; Shaikh, Saame Raza

    2016-02-01

    N-3 polyunsaturated fatty acids (PUFAs) exert immunomodulatory effects on B cells. We previously demonstrated that n-3 PUFAs enhanced the relative percentage and/or frequency of select B2 cell subsets. The objectives here were to determine if n-3 PUFAs (a) could boost cytokines that target B-cell frequency, (b) enhance the frequency of the B1 population and (c) to identify the mechanism by which n-3 PUFAs modify the proportion of B cells. Administration of n-3 PUFAs as fish oil to C57BL/6 mice enhanced secretion of the Th2 cytokine IL-5 but not IL-9 or IL-13. N-3 PUFAs had no influence on the percentage or frequency of peritoneal B1 or B2 cells. Subsequent experiments with IL-5(-/-) knockout mice showed n-3 PUFAs decreased the percentage of bone marrow B220(lo)IgM(hi) cells and increased the proportion and number of splenic IgM(+)IgD(lo)CD21(lo) cells compared to the control. These results, when compared with our previous findings with wild-type mice, suggested IL-5 had no role in mediating the effect of n-3 PUFAs on B-cell populations. To confirm this conclusion, we assayed IL-5 secretion in a diet-induced obesity model in which n-3 PUFAs enhanced the frequency of select B-cell subsets. N-3 PUFA supplementation as ethyl esters to obesogenic diets did not alter circulating IL-5 levels. Altogether, the data establish that n-3 PUFAs as fish oil can increase circulating IL-5 in lean mice, which has implications for several disease end points, but this increase in IL-5 is not the mechanistic link between n-3 PUFAs and changes in B-cell populations.

  13. Nutrigenomics and nutrigenetics of ω3 polyunsaturated fatty acids.

    Science.gov (United States)

    Vanden Heuvel, John P

    2012-01-01

    Diets rich in ω3 polyunsaturated fatty acids (ω3-PUFAs) such as alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid are associated with decreased incidence and severity of several chronic diseases including cardiovascular disease (CVD) and cancer. At least some of the beneficial effects of these dietary fatty acids are via metabolites such as prostaglandins, leukotrienes, thromboxanes, and resolvins. The effects of ω3-PUFAs are in contrast to those of fatty acids with virtually identical structures, such as the ω6-PUFAs linoleic acid and arachidonic acid, and their corresponding metabolites. The purpose of this chapter is to discuss both the nutrigenomics (nutrient-gene interactions) and nutrigenetics (genetic variation in nutrition) of dietary fatty acids with a focus on the ω3-PUFAs (Gebauer et al., 2007(1)). Important in the biological response for these fatty acids or their metabolites are cognate receptors that are able to regulate gene expression and coordinately affect metabolic or signaling pathways associated with CVD and cancer. Four nuclear receptor (NR) subfamilies will be emphasized as receptors that respond to dietary and endogenous ligands: (1) peroxisome proliferator-activated receptors, (2) retinoid X receptors, (3) liver X receptors, and (4) farnesoid X receptor. In addition to the different responses elicited by varying structures of fatty acids, responses may vary because of genetic variation in enzymes that metabolize ω3- and ω6 fatty acids or that respond to them. In particular, polymorphisms in the fatty acid desaturases and the aforementioned NRs contribute to the complexity of nutritional effects seen with ω3-PUFAs. Following a brief introduction to the health benefits of ω3-PUFAs, the regulation of gene expression by these dietary fatty acids via NRs will be characterized. Subsequently, the effects of single-nucleotide polymorphisms (SNPs) in key enzymes involved in the metabolism and response to ω3-PUFAs will

  14. Trienoic fatty acids and plant tolerance of temperature

    Directory of Open Access Journals (Sweden)

    Routaboul Jean-Marc

    2002-01-01

    Full Text Available The biophysical reactions of light harvesting and electron transport during photosynthesis take place in a uniquely constructed bilayer, the thylakoid. In all photosynthetic eukaryotes, the complement of atypical glycerolipid molecules that form the foundation of this membrane are characterised by sugar head-groups and a very high level of unsaturation in the fatty acids that occupy the central portion of the thylakoid bilayer. alpha-linolenic (18:3 or a combination of 18:3 and hexadecatrienoic (16:3 acids typically account for approximately two-thirds of all thylakoid membrane fatty acids and over 90% of the fatty acids of monogalactosyl diacylglycerol, the major thylakoid lipid [1, 2]. The occurrence of trienoic fatty acids as a major component of the thylakoid membrane is especially remarkable since these fatty acids form highly reactive targets for active oxygen species and free radicals, which are often the by-products of oxygenic photosynthesis. Photosynthesis is one of the most temperature-sensitive functions of plant [3, 4]. There remains a widespread belief that these trienoic fatty acids might have some crucial role in plants to be of such universal occurrence, especially in photosynthesis tolerance of temperature [5].

  15. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    Science.gov (United States)

    Refsgaard, Hanne H. F.; Tsai, Lin; Stadtman, Earl R.

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(III)/O2] depends on the degree of unsaturation of the fatty acid. The fatty acid-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate < methyl linolenate < methyl arachidonate. The amounts of alkyl hydroperoxides, malondialdehyde, and a number of other aldehydes that accumulated when polyunsaturated fatty acids were oxidized in the presence of BSA were significantly lower than that observed in the absence of BSA. Direct treatment of proteins with various lipid hydroperoxides led to a slight increase in the formation of protein carbonyl derivatives, whereas treatment with the hydroperoxides together with Fe(II) led to a substantial increase in the formation of protein carbonyls. These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (α,β-unsaturated aldehydes) with lysine residues (Michael addition reactions) and also by interactions with alkoxyl radicals obtained by Fe(II) cleavage of lipid hydroperoxides that are formed. In addition, saturated aldehydes derived from the polyunsaturated fatty acids likely react with lysine residues to form Schiff base adducts.

  16. Intake of trans fatty acids causes nonalcoholic steatohepatitis and reduces adipose tissue fat content.

    Science.gov (United States)

    Machado, Roberta M; Stefano, José T; Oliveira, Claudia P M S; Mello, Evandro S; Ferreira, Fabiana D; Nunes, Valeria S; de Lima, Vicência M R; Quintão, Eder C R; Catanozi, Sergio; Nakandakare, Edna R; Lottenberg, Ana Maria P

    2010-06-01

    We investigated the effects of dietary trans fatty acids, PUFA, and SFA on body and liver fat content, liver histology, and mRNA of enzymes involved in fatty acid metabolism. LDL receptor knockout weaning male mice were fed for 16 wk with diets containing 40% energy as either trans fatty acids (TRANS), PUFA, or SFA. Afterwards, subcutaneous and epididymal fat were weighed and histological markers of nonalcoholic fatty liver disease (NAFLD) were assessed according to the Histological Scoring System for NAFLD. PPARalpha, PPARgamma, microsomal triglyceride transfer protein (MTP), carnitine palmitoyl transferase 1 (CPT-1), and sterol regulatory element binding protein-1c (SREBP-1c) mRNA were measured by quantitative RT-PCR. Food intake was similar in the 3 groups, although mice fed the TRANS diet gained less weight than those receiving the PUFA diet. Compared with the PUFA- and SFA-fed mice, TRANS-fed mice had greater plasma total cholesterol (TC) and triglyceride (TG) concentrations, less epididymal and subcutaneous fat, larger livers with nonalcoholic steatohepatitis (NASH)-like lesions, and greater liver TC and TG concentrations. Macrosteatosis in TRANS-fed mice was associated with a higher homeostasis model assessment of insulin resistance (HOMA(IR)) index and upregulated mRNA related to hepatic fatty acid synthesis (SREBP-1c and PPARgamma) and to downregulated MTP mRNA. Diet consumption did not alter hepatic mRNA related to fatty acid oxidation (PPARalpha and CPT-1). In conclusion, compared with PUFA- and SFA-fed mice, TRANS-fed mice had less adiposity, impaired glucose tolerance characterized by greater HOMA(IR) index, and NASH-like lesions due to greater hepatic lipogenesis. These results demonstrate the role of trans fatty acid intake on the development of key features of metabolic syndrome.

  17. Effects of recombinant bovine somatotropin on fatty acid composition ...

    African Journals Online (AJOL)

    To investigate the effects on milk fatty acid composition of recombinant bovine somatotropin (rBST) ..... lipid responses induced by growth hormone administration in lactating cows ... reserves and adipose tissue metabolism in !he lactating cow.

  18. Omega-3 fatty acids in mood disorders: an overview

    Directory of Open Access Journals (Sweden)

    Young Christopher

    2003-01-01

    Full Text Available This review addresses the potential role of omega-3 fatty acids in mood disorders, from the biochemical rationale for their use to the growing body of data supporting their clinical efficacy.

  19. Inert Reassessment Document for PEG Fatty Acid Esters

    Science.gov (United States)

    The tolerance reassessment decision document and action memorandum for the PEG fatty acid ester date September 28, 2005, included two tolerance exemptions (under 40 CFR 180.910 and $) CFR 180.930, respectively)

  20. Volatile fatty acids production in ruminants and the role of ...

    African Journals Online (AJOL)

    Essential to these roles is their rapid transport across the plasma membrane, ... The aim of this review is to critically discuss short-chain fatty acids production and the ... Two major functions of monocarboxylate transporter proteins, namely the ...

  1. Saturated and trans fatty acids and coronary heart disease.

    Science.gov (United States)

    Woodside, Jayne V; McKinley, Michelle C; Young, Ian S

    2008-12-01

    Dietary intake of both saturated and trans fatty acids has been associated with an increase in the risk of coronary heart disease (CHD). Evidence comes mainly from controlled dietary experiments with intermediate end points, such as blood lipoproteins, and from observational studies. A few small, randomized controlled trials with clinical end points have been carried out in which saturated fat was replaced with polyunsaturated fat, leading to a reduction in low-density lipoprotein cholesterol and a reduction in CHD risk. However, no such studies exist for trans fatty acids. More high-quality, randomized controlled trials on fatty acids and CHD are required, but public health recommendations to reduce intake of both saturated and trans fatty acids are appropriate based on the current evidence.

  2. Omega 3 fatty acids, gestation and pregnancy outcomes

    National Research Council Canada - National Science Library

    Larqué, Elvira; Gil-Sánchez, Alfonso; Prieto-Sánchez, María Teresa; Koletzko, Berthold

    2012-01-01

    .... Since the synthesis of long chain polyunsaturated fatty acids (LCPUFA) in the fetus and placenta is low, both the maternal LCPUFA status and placental function are critical for their supply to the fetus...

  3. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA); Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol

    DEFF Research Database (Denmark)

    Tetens, Inge

    This Opinion of the EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) deals with the setting of Dietary Reference Values (DRVs) for fats. A lower bound of the reference intake range for total fat of 20 energy % (E%) and an upper bound of 35 E% are proposed. Fat intake in infants can...... gradually be reduced from 40 E% in the 6-12 month period to 35-40 E% in the 2nd and 3rd year of life. For specific fatty acids the following is proposed: saturated fatty acid (SFA) and trans fatty acid intake should be as low as possible; not to set any DRV for cis-monounsaturated fatty acids...

  4. Fatty acid methyl esters production: chemical process variables

    Directory of Open Access Journals (Sweden)

    Paulo César Narváez Rincón

    2010-06-01

    Full Text Available The advantages of fatty acid methyl esters as basic oleochemicals over fatty acids, the seventies world energy crisis and the use of those oleochemicals as fuels, have increased research interest on fats and oils trans-esterification. In this document, a review about basic aspects, uses, process variables and problems associated to the production process of fatty acid methyl esters is presented. A global view of recent researches, most of them focused in finding a new catalyst with same activity as the alcohol-soluble hydroxides (NaOH, KOH, and suitable to be used in transforming fats and oils with high levels of free fatty acids and water avoiding separation problems and reducing process costs, is also discussed.

  5. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation

    DEFF Research Database (Denmark)

    Dzamko, Nicolas; Schertzer, Jonathan D.; Ryall, James G.

    2008-01-01

    , malonyl-CoA levels were reduced and rates of fatty acid oxidation were comparable between genotypes. During treadmill exercise both KD and WT mice had similar values of respiratory exchange ratio. These studies suggested the presence of an alternative ACC2 kinase(s). Using a phosphoproteomics......The activation of AMP-activated protein kinase (AMPK) and phosphorylation/inhibition of acetyl-CoA carboxylase 2 (ACC2) is believed to be the principal pathway regulating fatty acid oxidation. However, during exercise AMPK activity and ACC Ser-221 phosphorylation does not always correlate...... with rates of fatty acid oxidation. To address this issue we have investigated the requirement for skeletal muscle AMPK in controlling aminoimidazole-4-carboxymide-1-beta-d-ribofuranoside (AICAR) and contraction-stimulated fatty acid oxidation utilizing transgenic mice expressing a muscle-specific kinase...

  6. Interaction between fatty acid and the elastin network

    OpenAIRE

    Vreeswijk, van, M.

    1995-01-01

    The aim of the present study was to investigate the interaction between salts of fatty acids (FAS) and elastin. Absorption of fatty acids in elastin may affect the elasticity of elastin-containing tissue. Such phenomena could, for instance, be of relevance for the understanding of the formation of atherosclerotic plaque in blood vessel walls.

    Chapter I gives a general introduction on the relevance of this study and an outline of the thesis. Furthermore, it contains informatio...

  7. Essential fatty acids in extruded and raw dog foods

    OpenAIRE

    Karlsen, Juni S.

    2015-01-01

    This thesis is divided into two sections: section 1 explaining the theory about fat and fatty acids functions, health effects and sources, section 2 includes a study of commercial extruded and raw dog foods. Fat is the most energy dens nutrient and functions as energy, structural components in cell membranes, source of essential fatty acids (EFA), precursor to biological active substrates and carrier of fat-soluble vitamins. EFA cannot be synthesized by the animal, and needs to be added ...

  8. Fatty acids, membrane viscosity, serotonin and ischemic heart disease

    OpenAIRE

    Cocchi Massimo; Tonello Lucio; Lercker Giovanni

    2010-01-01

    Abstract Novel markers for ischemic heart disease are under investigation by the scientific community at international level. This work focuses on a specific platelet membrane fatty acid condition of viscosity which is linked to molecular aspects such as serotonin and G proteins, factors involved in vascular biology. A suggestive hypothesis is considered about the possibility to use platelet membrane viscosity, in relation to serotonin or, indirectly, the fatty acid profile, as indicator of i...

  9. The omega-6/omega-3 fatty acid ratio: health implications

    OpenAIRE

    Simopoulos Artemis P.

    2010-01-01

    Today, Western diets are characterized by a higher omega-6 and a lower omega-3 fatty acid intake, whereas during the Paleolithic period when human’s genetic profile was established, there was a balance between omega-6 and omega-3 fatty acids. Their balance is an important determinant for brain development and in decreasing the risk for coronary heart disease (CHD), hypertension, cancer, diabetes, arthritis, and other autoimmune and possibly neurodegenerative diseases. Both omega-6 and omega-3...

  10. Update on cardiometabolic health effects of w-3 fatty acids

    NARCIS (Netherlands)

    Kromhout, D.; Goede, de J.

    2014-01-01

    PURPOSE OF REVIEW: The fish fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may promote cardiometabolic health. This review summarizes the results of recent meta-analyses of prospective studies on cardiovascular diseases, diabetes type 2 and markers of atherosclerosis and thro

  11. Plasma Fatty Acid Profile of Gestating Ewes Supplemented with Fishmeal

    Directory of Open Access Journals (Sweden)

    Mamun M. Or-Rashid

    2012-01-01

    Full Text Available Problem statement: The very long chain n-3 polyunsaturated fatty acids (>18C cannot be adequately synthesized by ruminant tissues to meet their requirements; therefore, their concentration in body depends on the supply through feed. It may be possible to improve the essential fatty acid status of ruminant animals, during gestation by manipulating the maternal diet with Fishmeal (FM. The objectives of this research were to (1 determine the effect of fishmeal supplementation on the plasma fatty acid profile of ewes during late gestation and (2 determine the status of the plasma docosahexaenoic acid (22:6n3 of lambs born to these ewes. Approach: Eight gestating ewes [Rideau-Arcott, 97±5 kg initial body weight, 100 days of gestation] were used in a completely randomized design. Ewes were individually-housed and fed either a control diet (supplemented with soybean meal or a fishmeal supplemented diet. Blood samples were collected via jugular venipuncture for plasma fatty acids analysis on 100, 114, 128 and 142 days of “gestation”. Blood samples from the lambs were also collected via jugular venipuncture immediately after birth and before receiving their mothers’ colostrum. Plasma fatty acids were analyzed by gas-liquid chromatography. Results: The ewes from both groups, i.e., control and fishmeal supplemented, had a similar fatty acid profile prior to supplementation (at 100 days, p>0.05. Thereafter, there was an increase in eicosapentaenoic acid (20:5n3, docosahexaenoic acid, total n3-PUFA and total very long chain n3-PUFA (>C18 contents in plasma for the fishmeal supplemented ewes compared to the control (p0.05 in total saturated fatty acids, total monounsaturated fatty acids, total conjugated linoleic acid, total trans-18:1, total cis-18:1, or total n6-PUFA contents in ewe plasma between control and fishmeal supplemented groups. Lambs born to ewes fed the fishmeal supplemented diet had greater (pConclusion: The ewes supplemented

  12. The omega-6/omega-3 fatty acid ratio: health implications

    Directory of Open Access Journals (Sweden)

    Simopoulos Artemis P.

    2010-09-01

    Full Text Available Today, Western diets are characterized by a higher omega-6 and a lower omega-3 fatty acid intake, whereas during the Paleolithic period when human’s genetic profile was established, there was a balance between omega-6 and omega-3 fatty acids. Their balance is an important determinant for brain development and in decreasing the risk for coronary heart disease (CHD, hypertension, cancer, diabetes, arthritis, and other autoimmune and possibly neurodegenerative diseases. Both omega-6 and omega-3 fatty acids influence gene expression. Because of single nucleotide polymorphisms (SNPs in their metabolic pathways, blood levels of omega-6 and omega-3 fatty acids are determined by both endogenous metabolism and dietary intake making the need of balanced dietary intake essential for health and disease prevention. Whether an omega-6/omega-3 ratio of 3:1 to 4:1 could prevent the pathogenesis of many diseases induced by today’s Western diets (AFSSA, 2010, a target of 1:1 to 2:1 appears to be consistent with studies on evolutionary aspects of diet, neurodevelopment, and genetics. A target of omega-6/omega-3 fatty acid ratio of 1:1 to 2:1 appears to be consistent with studies on evolutionary aspects of diet, neurodevelopment and genetics. A balanced ratio of omega-6/omega-3 fatty acids is important for health and in the prevention of CHD and possibly other chronic diseases.

  13. Use of dried blood for measurement of trans fatty acids

    Directory of Open Access Journals (Sweden)

    Ramakrishnan Lakshmy

    2009-07-01

    Full Text Available Abstract Background Fatty acid measurements especially trans fatty acid has gained interest in recent times. Among the various available biomarkers, adipose tissue is considered to be the best for the long term dietary intake but the invasive nature of tissue aspiration reduces its utility. Phlebotomy is a much less invasive method of sample collection when a large number of participants are involved in the study and therefore is an alternative, most suitable for large population based studies. In the present study fatty acid (with special emphasis on trans fatty acid extraction from blood spotted and dried on filter paper was carried out to simplify the sample collection procedure and transportation. Methods Blood samples were collected from 19 healthy volunteers. The blood was spotted (30 spots of 10 μl each on filter paper, dried at room temperature and stored at 4°C in zip-lock poly bags. For comparison whole blood stored at -70°C was simultaneously analyzed. Results A good agreement was seen between trans fatty acid values obtained in dried blood and whole blood as evident from the pearson correlation coefficients ('r' for monounsaturated (trans 0.70 and for polyunsaturated (trans 0.692 respectively. The intraclass correlation coefficient for monounsaturated trans was 0.805 and for polyunsarurated trans was 0.776. Conclusion Dried blood spots can be used for trans fatty acid analysis.

  14. Fatty acid phytyl ester synthesis in chloroplasts of Arabidopsis.

    Science.gov (United States)

    Lippold, Felix; vom Dorp, Katharina; Abraham, Marion; Hölzl, Georg; Wewer, Vera; Yilmaz, Jenny Lindberg; Lager, Ida; Montandon, Cyrille; Besagni, Céline; Kessler, Felix; Stymne, Sten; Dörmann, Peter

    2012-05-01

    During stress or senescence, thylakoid membranes in chloroplasts are disintegrated, and chlorophyll and galactolipid are broken down, resulting in the accumulation of toxic intermediates, i.e., tetrapyrroles, free phytol, and free fatty acids. Chlorophyll degradation has been studied in detail, but the catabolic pathways for phytol and fatty acids remain unclear. A large proportion of phytol and fatty acids is converted into fatty acid phytyl esters and triacylglycerol during stress or senescence in chloroplasts. We isolated two genes (PHYTYL ESTER SYNTHASE1 [PES1] and PES2) of the esterase/lipase/thioesterase family of acyltransferases from Arabidopsis thaliana that are involved in fatty acid phytyl ester synthesis in chloroplasts. The two proteins are highly expressed during senescence and nitrogen deprivation. Heterologous expression in yeast revealed that PES1 and PES2 have phytyl ester synthesis and diacylglycerol acyltransferase activities. The enzymes show broad substrate specificities and can employ acyl-CoAs, acyl carrier proteins, and galactolipids as acyl donors. Double mutant plants (pes1 pes2) grow normally but show reduced phytyl ester and triacylglycerol accumulation. These results demonstrate that PES1 and PES2 are involved in the deposition of free phytol and free fatty acids in the form of phytyl esters in chloroplasts, a process involved in maintaining the integrity of the photosynthetic membrane during abiotic stress and senescence.

  15. Polyunsaturated Fatty Acids in Male Ruminant Reproduction — A Review

    Science.gov (United States)

    Van Tran, Len; Malla, Bilal Ahmad; Kumar, Sachin; Tyagi, Amrish Kumar

    2017-01-01

    Fatty acids such as n-3 and n-6 polyunsaturated fatty acids (PUFA) are critical nutrients, used to improve male reproductive performance through modification of fatty acid profile and maintenance of sperm membrane integrity, especially under cold shock or cryopreservation condition. Also, PUFA provide the precursors for prostaglandin synthesis and can modulate the expression patterns of many key enzymes involved in both prostaglandin and steroid metabolism. Many studies carried out on diets supplemented with PUFA have demonstrated their capability to sustain sperm motility, viability and fertility during chilling and freezing as well as improving testis development and spermatogenesis in a variety of livestock species. In addition to the type and quantity of dietary fatty acids, ways of addition of PUFA to diet or semen extender is very crucial as it has different effects on semen quality in male ruminants. Limitation of PUFA added to ruminant ration is due to biohydrogenation by rumen microorganisms, which causes conversion of unsaturated fatty acids to saturated fatty acids, leading to loss of PUFA quantity. Thus, many strategies for protecting PUFA from biohydrogenation in rumen have been developed over the years. This paper reviews four aspects of PUFA in light of previous research including rumen metabolism, biological roles, influence on reproduction, and strategies to use in male ruminants. PMID:26954196

  16. Comparative Analysis of Fatty Acid Desaturases in Cyanobacterial Genomes

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Chi

    2008-01-01

    Full Text Available Fatty acid desaturases are enzymes that introduce double bonds into the hydrocarbon chains of fatty acids. The fatty acid desaturases from 37 cyanobacterial genomes were identified and classified based upon their conserved histidine-rich motifs and phylogenetic analysis, which help to determine the amounts and distributions of desaturases in cyanobacterial species. The filamentous or N2-fixing cyanobacteria usually possess more types of fatty acid desaturases than that of unicellular species. The pathway of acyl-lipid desaturation for unicellular marine cyanobacteria Synechococcus and Prochlorococcus differs from that of other cyanobacteria, indicating different phylogenetic histories of the two genera from other cyanobacteria isolated from freshwater, soil, or symbiont. Strain Gloeobacter violaceus PCC 7421 was isolated from calcareous rock and lacks thylakoid membranes. The types and amounts of desaturases of this strain are distinct to those of other cyanobacteria, reflecting the earliest divergence of it from the cyanobacterial line. Three thermophilic unicellular strains, Thermosynechococcus elongatus BP-1 and two Synechococcus Yellowstone species, lack highly unsaturated fatty acids in lipids and contain only one Δ9 desaturase in contrast with mesophilic strains, which is probably due to their thermic habitats. Thus, the amounts and types of fatty acid desaturases are various among different cyanobacterial species, which may result from the adaption to environments in evolution.

  17. Observable essential fatty acid deficiency markers and autism spectrum disorder.

    Science.gov (United States)

    Brown, Christine M; Austin, David W; Busija, Lucy

    2014-07-01

    Autism Spectrum Disorder (ASD) has been associated with essential fatty acid (EFA) deficiencies, with some researchers theorising that dysregulation of phospholipid metabolism may form part of the biological basis for ASD. This pilot study compared observable signs of fatty acid status of 19 children with an ASD diagnosis to 23 of their typically developing siblings. A pregnancy, birth and breastfeeding history was also obtained from their parents, which included a measure of infant intake of fatty acid rich colostrum immediately post-partum. When considered within their family group, those infants not breastfed (with colostrum) within the first hour of life and who had a history of fatty acid deficiency symptoms were more likely to have an ASD diagnosis. Other variables such as formula use, duration of breastfeeding, gestational age and Apgar scores were not associated with group membership. The results of this study are consistent with previous research showing a relationship between fatty acid metabolism, breastfeeding and ASD such that early infant feeding practices and the influence this has on the fatty acid metabolism of the child may be a risk factor for ASD.

  18. Importance of medium chain fatty acids in animal nutrition

    Science.gov (United States)

    Baltić, B.; Starčević, M.; Đorđević, J.; Mrdović, B.; Marković, R.

    2017-09-01

    Fats in animal and human nutrition are a common subject of research. These studies most often pay attention to particular fat groups (saturated, unsaturated, polyunsaturated fats or fats grouped by the length of their fatty acid chains into short, medium or long chain fatty acids). Medium chain fatty acids (MCFAs) have two main sources: milk and coconut oil. To date, research has shown these acids have positive effects on health, production, feed digestibility and lower body and muscle fats in broilers and swine. MCFAs possess antibacterial, anticoccidial and antiviral effects. Also, it has been proven that these acids act synergistically if they are used together with organic acids, essential oils, or probiotics. Nowadays, commercial MCFA products are available for use in animal nutrition as feed additives.

  19. Inhibition of fatty acid synthesis in rat hepatocytes by exogenous polyunsaturated fatty acids is caused by lipid peroxidation

    DEFF Research Database (Denmark)

    Mikkelsen, L.; Hansen, Harald S.; Grunnet, N.

    1993-01-01

    by the peroxidized PUFA. Arachidonic acid and eicosapentaenoic acid showed a dose- and time-dependent cytotoxicity. Two other antioxidants: 50 µM a-tocopherol acid succinate and 1 µM N,N'-diphenyl-1,4-phenylenediamine, both proved more efficient than a-tocopherol phosphate. There was a significant correlation......Rat hepatocyte long-term cultures were utilized to investigate the impact of different polyunsaturated fatty acids (PUFA) on the insulin-induced de novo fatty acid synthesis in vitro. The addition of 0.5 mM albumin-complexed oleic, linoleic, columbinic, arachidonic, eicosapentaenoic...... or docosahexaenoic acid resulted in a marked suppression of fatty acid synthesis. By evaluation of cell viability (determined as the leakage of lactate dehydrogenase (LDH)) it turned our, that the antioxidant used (50 µM a-tocopherol phosphate) had a low antioxidant activity, resulting in cytotoxic effects...

  20. Effect of dietary fatty acids on the postprandial fatty acid composition of triacylglycerol-rich lipoproteins in healthy male subjects

    DEFF Research Database (Denmark)

    Bysted, Anette; Holmer, G.; Lund, Pia

    2005-01-01

    positions in accordance with the distributions in test fats. Calculations of postprandial TAG concentrations from fatty acid data revealed increasing amounts up to 4 h but lower response curves (IAUC) for the two saturated fats in accordance with previous published data. The T fat gave results comparable......Objective: The aim of the present study was to investigate the effect of trans-18: 1 isomers compared to other fatty acids, especially saturates, on the postprandial fatty acid composition of triacylglycerols ( TAG) in chylomicrons and VLDL. Design: A randomised crossover experiment where five...... interesterified test fats with equal amounts of palmitic acid ( P fat), stearic acid (S fat), trans-18: 1 isomers (T fat), oleic acid (O fat), or linoleic acid (L fat) were tested. Subjects: A total of 16 healthy, normolipidaemic males ( age 23 +/- 2 y) were recruited. Interventions: The participants ingested fat...

  1. Annual cycle and spatial trends in fatty acid composition of suspended particulate organic matter across the Beaufort Sea shelf

    Science.gov (United States)

    Connelly, Tara L.; Businski, Tara N.; Deibel, Don; Parrish, Christopher C.; Trela, Piotr

    2016-11-01

    Fatty acid profiles of suspended particulate organic matter (POM) were determined over an annual cycle (September 2003 to August 2004) on the Beaufort Sea shelf, Canadian Arctic. Special emphasis was placed on the nutritional quality of the fatty acid pool available to zooplankton by examining spatial and temporal patterns in the proportions of total polyunsaturated fatty acids (PUFA) and the essential fatty acids 22:6n-3 (DHA) and 20:5n-3 (EPA). EPA and DHA were the two most abundant PUFA throughout the study period. A log-ratio multivariate (LRA) analysis revealed strong structure in fatty acid profiles related to season and depth. Dominant fatty acids accounting for the observed trend included 18:5n-3, 18:4n-3, 16:1n-7, 20:5n-3, 18:0 and 20:3n-3. We observed a shift in fatty acid profiles from summer to autumn (e.g., from 16:1n-7 and EPA to 18:5n-3 and 18:4n-3) that likely corresponded to a shift in the relative importance of diatoms versus dinoflagellates, prymnesiophytes and/or prasinophytes to the POM pool. Fatty acid composition during winter was dominated by more refractory saturated fatty acids. A surprising finding was the depth and seasonal trend of 20:3n-3, which was higher in winter, aligned with 18:0 in the LRA, but behaved differently than other n-3 PUFA. We interpret fatty acid profiles during summer to be predominantly driven by phytoplankton inputs, whereas fatty acid profiles in winter were dominated by fatty acids that were left over after consumption and/or were generated by heterotrophs. The highest diatom inputs (EPA, the diatom fatty acid marker), n-3/n-6 ratios, and C16 PUFA index were located in an upwelling region off Cape Bathurst. This study is the first annual time series of fatty acid profiles of POM in Arctic seas, expanding our knowledge of the composition of POM throughout the dark season.

  2. FATTY ACIDS, AMINO ACIDS, MINERAL CONTENTS, AND PROXIMATE COMPOSITION OF SOME BROWN SEAWEEDS(1).

    Science.gov (United States)

    Tabarsa, Mehdi; Rezaei, Masoud; Ramezanpour, Zohreh; Robert Waaland, J; Rabiei, Reza

    2012-04-01

    This study was conducted to create a nutritional database on brown seaweeds and to popularize their consumption and utilization in Iran. The fatty acid contents, amino acids profiles, and certain mineral elements composition of some brown seaweeds, Padina pavonica (L.) Thivy, Dictyota dichotoma (Huds.) J. V. Lamour., and Colpomenia sinuosa (Mert. ex Roth) Derbés et Solier were determined. Total lipid content ranged from 1.46 ± 0.38 to 2.94 ± 0.94 g · 100 g(-1) dry weight (dwt), and the most abundant fatty acids were C16:0, C18:1, C20:4 ω6, and C20:5 ω3. The unsaturated fatty acids predominated in all species and had balanced sources of ω3 and ω6 acids. Highest total polyunsaturated fatty acid (PUFA) levels occurred in C. sinuosa. The protein content of D. dichotoma was 17.73 ± 0.29 g · 100 g(-1) dwt, significantly higher than the other seaweeds examined. Among amino acids essential to human nutrition, methionine (Met; in D. dichotoma and P. pavonica) and lysine (Lys; in C. sinuosa) were present in high concentrations. The crude fiber content varied by 9.5 ± 11.6 g · 100 g(-1) dwt in all species. Chemical analysis indicated that ash content was between 27.02 ± 0.6 and 39.28 ± 0.7 g · 100 g(-1) dwt, and that these seaweeds contained higher amounts of both macrominerals (7,308-9,160 mg · 100 g(-1) dwt; Na, K, Ca) and trace elements (263-1,594 mg · 100 g(-1) dwt; Fe, Ni, Mn, Cu, Co) than have been reported for edible land plants. C. sinuosa had the highest amount of Ca, Fe, and a considerable content of Na was measured in P. pavonica.

  3. Adipose tissue Fatty Acid patterns and changes in anthropometry: a cohort study

    DEFF Research Database (Denmark)

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre;

    2011-01-01

    Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns in adipose tissue...... fatty acids and changes in anthropometry....

  4. Omega-3 free fatty acids for the treatment of severe hypertriglyceridemia

    DEFF Research Database (Denmark)

    Kastelein, John J P; Maki, Kevin C; Susekov, Andrey

    2014-01-01

    Omega-3 fatty acids in free fatty acid form have enhanced bioavailability, and plasma levels are less influenced by food than for ethyl ester forms.......Omega-3 fatty acids in free fatty acid form have enhanced bioavailability, and plasma levels are less influenced by food than for ethyl ester forms....

  5. Fish Oil Supplementation and Fatty Acid Synthase Expression in the Prostate: A Randomized Controlled Trial

    Science.gov (United States)

    2008-03-01

    expression and fatty acid synthesis. Research in normal cells has demonstrated that dietary supplementation with polyunsaturated fatty acids ( PUFA ...particularly omega -3 fatty acids , inhibits SREBP-1 activation, resulting in a decreased transcription of FAS. 15. SUBJECT TERMS Prostate Cancer...Lipid Medtabolism, Clinical Trial; Omega -3 Fatty Acids 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME

  6. Metabolically Engineered Fungal Cells With Increased Content Of Polyunsaturated Fatty Acids

    DEFF Research Database (Denmark)

    2008-01-01

    This invention relates to the production of fatty acids and particularly to the production of the polyunsaturated fatty acids (PUFAs) arachidonic acid (ARA) and eicosapentaenoic acid (EPA) in genetically engineered fungal cells, in particular, to metabolically engineered Saccharomyces cerevisiae...

  7. Constitutive uptake and degradation of fatty acids by Yersinia pestis.

    OpenAIRE

    Moncla, B. J.; Hillier, S L; Charnetzky, W T

    1983-01-01

    Yersinia pestis was found to utilize palmitic acid as a primary carbon and energy source. No inhibition of growth by palmitic acid was observed. Comparison of palmitic acid uptake by cells pregrown either with or without palmitic acid demonstrated that fatty acid uptake was constitutive. High basal levels of two enzymes of beta-oxidation, beta-hydroxyacyl-coenzyme A dehydrogenase and thiolase, and the two enzymes of the glyoxylate shunt, isocitrate lyase and malate synthase, were found in cel...

  8. Essential fatty acid intake and serum fatty acid composition among adolescent girls in central Mozambique.

    Science.gov (United States)

    Freese, Riitta; Korkalo, Liisa; Vessby, Bengt; Tengblad, Siv; Vaara, Elina M; Hauta-alus, Helena; Selvester, Kerry; Mutanen, Marja

    2015-04-14

    Many African diets are low in fat but are currently changing because of nutrition transition. We studied fat and fatty acid (FA) intake and the essential fatty acid (EFA) status of adolescent girls (aged 14-19 years, n 262) in Zambezia Province, central Mozambique. A cross-sectional study was carried out in a city as well as in the towns and rural villages of a coastal and an inland district. Dietary intake and FA sources were studied in a 24 h dietary recall. FA compositions of cholesteryl esters and phospholipids of non-fasting serum samples were analysed by GLC. Fat intake was low (13-18 % of energy) in all areas. Coconut and palm oil were the main sources of fat, and soyabean oil and maize were the main sources of PUFA. Compared to Food and Agriculture Organization/WHO 2010 recommendations, intake of linoleic acid (LA, 18 : 2n-6) was inadequate in the coastal district, and intakes of n-3 PUFA were inadequate in all areas. FA compositions of serum lipids differed between areas. The proportions of LA tended to be highest in the city and lowest in the rural areas. The phospholipid mead (20 : 3n-9):arachidonic acid (20 : 4n-6) ratio did not indicate EFA insufficiency. LA proportions in phospholipids were low, but those of long-chain n-6 and n-3 PUFA were high in comparison with Western adolescents. To conclude, fat sources, FA intake and EFA status differed between adolescent girls living in different types of communities. Fat intake was low, but EFA insufficiency was not indicated.

  9. Fatty acid metabolism and insulin secretion in pancreatic beta cells.

    Science.gov (United States)

    Yaney, G C; Corkey, B E

    2003-10-01

    Increases in glucose or fatty acids affect metabolism via changes in long-chain acyl-CoA formation and chronically elevated fatty acids increase total cellular CoA. Understanding the response of pancreatic beta cells to increased amounts of fuel and the role that altered insulin secretion plays in the development and maintenance of obesity and Type 2 diabetes is important. Data indicate that the activated form of fatty acids acts as an effector molecule in stimulus-secretion coupling. Glucose increases cytosolic long-chain acyl-CoA because it increases the "switch" compound malonyl-CoA that blocks mitochondrial beta-oxidation, thus implementing a shift from fatty acid to glucose oxidation. We present arguments in support of the following: (i) A source of fatty acid either exogenous or endogenous (derived by lipolysis of triglyceride) is necessary to support normal insulin secretion; (ii) a rapid increase of fatty acids potentiates glucose-stimulated secretion by increasing fatty acyl-CoA or complex lipid concentrations that act distally by modulating key enzymes such as protein kinase C or the exocytotic machinery; (iii) a chronic increase of fatty acids enhances basal secretion by the same mechanism, but promotes obesity and a diminished response to stimulatory glucose; (iv) agents which raise cAMP act as incretins, at least in part, by stimulating lipolysis via beta-cell hormone-sensitive lipase activation. Furthermore, increased triglyceride stores can give higher rates of lipolysis and thus influence both basal and stimulated insulin secretion. These points highlight the important roles of NEFA, LC-CoA, and their esterified derivatives in affecting insulin secretion in both normal and pathological states.

  10. Gas Chromatographic Analysis of Medium Chain Fatty Acids in Coconut Oil

    Directory of Open Access Journals (Sweden)

    Julius Pontoh

    2016-09-01

    Full Text Available Analysis of medium chain of fatty acids in coconut oil becomes important due to their roles in health issues. The present analysis methods for fatty acids present in food mainly focused to the overall fatty acid concentration. The analytical method for specific medium chain fatty acids is not so much be given attention. This research is focused to the analytical methods for these particular fatty acids in coconut oil. Several analytical methods were compared including acid catalyzed, basic catalyzed and acid boron trifluoride catalyzed derivatization. The response of each fatty acid toward the derivatization methods are different. Formation of the fatty acid methyl ester from caprylic and capric was low for acid catalyzed method compared to basic catalyzed method and acid boron trifluoride catalyzed methods. This finding shows that the kinetics of the esterification among the fatty acids are not the same. The analysis of all fatty acids in coconut oil is better using basic catalyzed than the other methods.

  11. n-3 fatty acids: role in neurogenesis and neuroplasticity.

    Science.gov (United States)

    Crupi, R; Marino, A; Cuzzocrea, S

    2013-01-01

    Omega-3 polyunsaturated fatty acids (PUFA) are essential unsaturated fatty acids with a double bond (C=C) starting after the third carbon atom from the end of the carbon chain. They are important nutrients but, unfortunately, mammals cannot synthesize them, whereby they must be obtained from food sources or from supplements. Amongst nutritionally important polyunsaturated n-3 fatty acids, α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are highly concentrated in the brain and have anti-oxidative stress, anti-inflammatory and antiapoptotic effects. They are involved in many bodily processes and may reportedly lead to neuron protection in neurological diseases. aged or damaged neurons and in Alzheimer's disease. Their effect in cognitive and behavioral functions and in several neurological and psychiatric disorders has been also proven. The dentate gyrus (DG), a sub-region of hippocampus, is implicated in cognition and mood regulation. The hippocampus represents one of the two areas in the mammalian brain in which adult neurogenesis occurs. This process is associated with beneficial effects on cognition, mood and chronic pharmacological treatment. The exposure to n-3 fatty acids enhances adult hippocampal neurogenesis associated with cognitive and behavioral processes, promotes synaptic plasticity by increasing long-term potentiation and modulates synaptic protein expression to stimulate the dendritic arborization and new spines formation. On this basis we review the effect of n-3 fatty acids on adult hippocampal neurogenesis and neuroplasticity. Moreover their possible use as a new therapeutic approach for neurodegenerative diseases is pointed out.

  12. The fatty acids of calcareous sponges (Calcarea, Porifera).

    Science.gov (United States)

    Schreiber, Andrea; Wörheide, Gert; Thiel, Volker

    2006-09-01

    Twenty-nine specimens of calcareous sponges (Class Calcarea, Phylum Porifera), covering thirteen representative species of the families Soleneiscidae, Leucaltidae, Levinellidae, Leucettidae, Clathrinidae, Sycettidae, Grantiidae, Jenkinidae, and Heteropiidae were analysed for their fatty acids. The fatty acids of Calcarea generally comprise saturated and monounsaturated linear (n-), and terminally methylated (iso-, anteiso-) C(14)-C(20) homologues. Furthermore, polyunsaturated C(22) fatty acids and the isoprenoic 4,8,12-trimethyltridecanoic acid were found. The most prominent compounds are n-C(16), iso-C(17), iso-C(18), n-C(18), n-C(20). In addition, a high abundance of the exotic 16-methyloctadecanoic acid (anteiso-C(19)) appears to be a characteristic trait of Calcarea. Long-chain 'demospongic acids', typically found in Demospongiae and Hexactinellida, are absent in Calcarea. The completely different strategy of calcarean fatty acid synthesis supports their phylogenetic distinctiveness from a common Demospongiae/Hexactinellida taxon. Both intraspecific and intraclass patterns of Calcarea showed great similarity, suggesting a conserved fatty acid composition that already existed in the last common ancestor of Calcinea and Calcaronea, i.e. before subclasses diverged.

  13. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells.

    Science.gov (United States)

    Mitchell, Ryan W; On, Ngoc H; Del Bigio, Marc R; Miller, Donald W; Hatch, Grant M

    2011-05-01

    The blood-brain barrier (BBB), formed by the brain capillary endothelial cells, provides a protective barrier between the systemic blood and the extracellular environment of the CNS. Passage of fatty acids from the blood to the brain may occur either by diffusion or by proteins that facilitate their transport. Currently several protein families have been implicated in fatty acid transport. The focus of the present study was to identify the fatty acid transport proteins (FATPs) expressed in the brain microvessel endothelial cells and characterize their involvement in fatty acid transport across an in vitro BBB model. The major fatty acid transport proteins expressed in human brain microvessel endothelial cells (HBMEC), mouse capillaries and human grey matter were FATP-1, -4 and fatty acid binding protein 5 and fatty acid translocase/CD36. The passage of various radiolabeled fatty acids across confluent HBMEC monolayers was examined over a 30-min period in the presence of fatty acid free albumin in a 1 : 1 molar ratio. The apical to basolateral permeability of radiolabeled fatty acids was dependent upon both saturation and chain length of the fatty acid. Knockdown of various fatty acid transport proteins using siRNA significantly decreased radiolabeled fatty acid transport across the HBMEC monolayer. Our findings indicate that FATP-1 and FATP-4 are the predominant fatty acid transport proteins expressed in the BBB based on human and mouse expression studies. While transport studies in HBMEC monolayers support their involvement in fatty acid permeability, fatty acid translocase/CD36 also appears to play a prominent role in transport of fatty acids across HBMEC.

  14. Effect of fatty Amazon fish consumption on lipid metabolism

    Directory of Open Access Journals (Sweden)

    Francisca das Chagas do Amaral Souza

    2014-01-01

    Full Text Available OBJECTIVE: The present study aimed to evaluate the effect of feeding diets enriched with fatty fish from the Amazon basin on lipid metabolism. METHODS: Male Wistar rats were divided into four groups: control group treated with commercial chow; Mapará group was fed diet enriched with Hypophthalmus edentatus; Matrinxã group was fed diet enriched with Brycon spp.; and, Tambaqui group was fed diet enriched with Colossoma macropomum. Rats with approximately 240g±0.60 of body weight were fed ad libitum for 30 days, and then were sacrificed for collection of whole blood and tissues. RESULTS: The groups treated with enriched diets showed a significant reduction in body mass and lipogenesis in the epididymal and retroperitoneal adipose tissues and carcass when compared with the control group. However, lipogenesis in the liver showed an increase in Matrinxã group compared with the others groups. The levels of serum triglycerides in the treated groups with Amazonian fish were significantly lower than those of the control group. Moreover, total cholesterol concentration only decreased in the group Matrinxã. High Density Lipoprotein cholesterol levels increased significantly in the Mapará and Tambaqui compared with control group and Matrinxã group. The insulin and leptin levels increased significantly in all treatment groups. CONCLUSION: This study demonstrated that diets enriched with fatty fish from the Amazon basin changed the lipid metabolism by reducing serum triglycerides and increasing high density lipoprotein-cholesterol in rats fed with diets enriched with Mapará, Matrinxã, and Tambaqui.

  15. Essential fatty acid nutrition of the American alligator (Alligator mississippiensis).

    Science.gov (United States)

    Staton, M A; Edwards, H M; Brisbin, I L; Joanen, T; McNease, L

    1990-07-01

    The essential fatty acid (EFA) nutrition of young American alligators (Alligator mississippiensis) was examined by feeding a variety of fats/oils with potential EFA activity. Over a 12-wk period, alligators fed diets containing 2.5 or 5.0% chicken liver oil grew longer and heavier and converted feed to body mass more efficiently than alligators fed other fat/oil combinations that lacked or contained only trace amounts of arachidonic acid [20:4(n-6)]. Alligators fed an EFA-deficient diet (containing only coconut fat as the dietary fat) were the slowest-growing animals and converted feed to body mass least efficiently. However, over a 41-wk feeding period, alligators fed this diet showed no obvious external signs of deficiency other than being reduced in size and unthrifty. Fatty acid composition of heart, liver, muscle, skin and adipose tissue lipids was influenced markedly by dietary fat composition. Tissues varied significantly in response to dietary fat composition. Heart lipids contained the lowest levels of short- and medium-chain fatty acids and the highest levels of arachidonic acid. Arachidonic acid levels were less influenced by diet than were levels of other 20- and 22-carbon polyunsaturated fatty acids. Radiotracer studies indicated that linoleic acid was converted to arachidonic acid in the liver. Nevertheless, tissue arachidonic acid levels also appeared to be maintained by concentration from dietary sources and selective conservation. It appears that a dietary source of arachidonic acid may be required for a maximum rate of growth.

  16. Current Evidence Supporting the Link Between Dietary Fatty Acids and Cardiovascular Disease.

    Science.gov (United States)

    Hammad, Shatha; Pu, Shuaihua; Jones, Peter J

    2016-05-01

    Lack of consensus exists pertaining to the scientific evidence regarding effects of various dietary fatty acids on cardiovascular disease (CVD) risk. The objective of this article is to review current evidence concerning cardiovascular health effects of the main dietary fatty acid types; namely, trans (TFA), saturated (SFA), polyunsaturated (PUFA; n-3 PUFA and n-6 PUFA), and monounsaturated fatty acids (MUFA). Accumulating evidence shows negative health impacts of TFA and SFA; both may increase CVD risk. Policies have been proposed to reduce TFA and SFA consumption to less than 1 and 7 % of energy intake, respectively. Cardiovascular health might be promoted by replacing SFA and TFA with n-6 PUFA, n-3 PUFA, or MUFA; however, the optimal amount of PUFA or MUFA that can be used to replace SFA and TFA has not been defined yet. Evidence suggests of the potential importance of restricting n-6 PUFA up to 10 % of energy and obtaining an n-6/n-3 ratio as close as possible to unity, along with a particular emphasis on consuming adequate amounts of essential fatty acids. The latest evidence shows cardioprotective effects of MUFA-rich diets, especially when MUFA are supplemented with essential fatty acids; namely, docosahexaenoic acid. MUFA has been newly suggested to be involved in regulating fat oxidation, energy metabolism, appetite sensations, weight maintenance, and cholesterol metabolism. These favorable effects might implicate MUFA as the preferable choice to substitute for other fatty acids, especially given the declaration of its safety for up to 20 % of total energy.

  17. Influence of trans fatty acids on linoleic acid metabolism in the rat

    NARCIS (Netherlands)

    J.L. Zevenbergen

    1988-01-01

    textabstractAt the start of the work described in this thesis, most reviewers on trans fatty acids agreed that these isomeric fatty acids did not induce undesirable effects, provided sufficient linoleic acid was present in the diet (Beare-Rogers, 1983; Emken, 1983; Gottenbos, 1983; Gurr, 1983). Howe

  18. Alternative Sources of n-3 Long-Chain Polyunsaturated Fatty Acids in Marine Microalgae

    Directory of Open Access Journals (Sweden)

    João Varela

    2013-06-01

    Full Text Available The main source of n-3 long-chain polyunsaturated fatty acids (LC-PUFA in human nutrition is currently seafood, especially oily fish. Nonetheless, due to cultural or individual preferences, convenience, geographic location, or awareness of risks associated to fatty fish consumption, the intake of fatty fish is far from supplying the recommended dietary levels. The end result observed in most western countries is not only a low supply of n-3 LC-PUFA, but also an unbalance towards the intake of n-6 fatty acids, resulting mostly from the consumption of vegetable oils. Awareness of the benefits of LC-PUFA in human health has led to the use of fish oils as food supplements. However, there is a need to explore alternatives sources of LC-PUFA, especially those of microbial origin. Microalgae species with potential to accumulate lipids in high amounts and to present elevated levels of n-3 LC-PUFA are known in marine phytoplankton. This review focuses on sources of n-3 LC-PUFA, namely eicosapentaenoic and docosahexaenoic acids, in marine microalgae, as alternatives to fish oils. Based on current literature, examples of marketed products and potentially new species for commercial exploitation are presented.

  19. Alternative Sources of n-3 Long-Chain Polyunsaturated Fatty Acids in Marine Microalgae

    Science.gov (United States)

    Martins, Dulce Alves; Custódio, Luísa; Barreira, Luísa; Pereira, Hugo; Ben-Hamadou, Radhouan; Varela, João; Abu-Salah, Khalid M.

    2013-01-01

    The main source of n-3 long-chain polyunsaturated fatty acids (LC-PUFA) in human nutrition is currently seafood, especially oily fish. Nonetheless, due to cultural or individual preferences, convenience, geographic location, or awareness of risks associated to fatty fish consumption, the intake of fatty fish is far from supplying the recommended dietary levels. The end result observed in most western countries is not only a low supply of n-3 LC-PUFA, but also an unbalance towards the intake of n-6 fatty acids, resulting mostly from the consumption of vegetable oils. Awareness of the benefits of LC-PUFA in human health has led to the use of fish oils as food supplements. However, there is a need to explore alternatives sources of LC-PUFA, especially those of microbial origin. Microalgae species with potential to accumulate lipids in high amounts and to present elevated levels of n-3 LC-PUFA are known in marine phytoplankton. This review focuses on sources of n-3 LC-PUFA, namely eicosapentaenoic and docosahexaenoic acids, in marine microalgae, as alternatives to fish oils. Based on current literature, examples of marketed products and potentially new species for commercial exploitation are presented. PMID:23807546

  20. Influence of fatty acids on pressor responses to catecholamines.

    Science.gov (United States)

    Chopde, C T; Brahmankar, D M; Jadhav, S S; Hardas, A P; Dorle, A K

    1975-01-01

    Lauric, Myristic and Palmitic acids had no appreciable effect whereas Stearic, Oleic and Linoleic acids caused some reduction in dog blood pressure. Pressor responses to epinephrine and nor-epinephrine were potentiated whereas the depressor response to isoproterenol was reduced during the infusion of fatty acids in dogs. ACTH alone, which causes mobilization of free fatty acids had no appreciable effect on blood pressure responses to catecholamines, however, its administration followed by salicylate produced marked potentiation of the pressor responses to epinephrine and nor-epinephrine; the depressor response to isoproterenol was reduced.

  1. Fatty acid biosynthesis VII. Substrate control of chain-length of products synthesised by rat liver fatty acid synthetase

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Carey, E.M.; Dils, R.

    1970-01-01

    - 1. Gas-liquid and paper chromatography have been used to determine the chain-lengths of fatty acids synthesised by purified rat liver fatty acid synthetase from [1-14C]acetyl-CoA, [1,3-14C2]malonyl-CoA and from [1-14C]acetyl-CoA plus partially purified rat liver acetyl-CoA carboxylase. - 2. A w...

  2. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels

    Science.gov (United States)

    2014-01-01

    The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789

  3. Synthesis of long-chain polyunsaturated fatty acids in preterm newborns fed formula with long-chain polyunsaturated fatty acids

    NARCIS (Netherlands)

    Carnielli, Virgilio P.; Simonato, Manuela; Verlato, Giovanna; Luijendijk, Ingrid; De Curtis, Mario; Sauer, Pieter J. J.; Cogo, Paola E.

    2007-01-01

    Background: Docosahexaenoic acid (DHA) and arachidonic acid (AA) are long-chain polyunsaturated fatty acids (LCPs) that play pivotal roles in growth and neurodevelopment. Objective: We aimed to quantify the synthesis of LCPs in preterm infants fed infant formula containing LCPs. Design: Twenty-two p

  4. DIETARY ADENINE ALLEVIATES FATTY LIVER INDUCED BY OROTIC ACID

    Directory of Open Access Journals (Sweden)

    Yohanes Buang

    2010-12-01

    Full Text Available The effects of dietary adenine in fatty liver induced by orotic acid (OA were studied. Rats were paired-fed 1% OA-supplemented diets with/or without 0.25% adenine or a diet without OA for 10 days. Serum lipid profiles were measured using enzyme assay kits. Lipids of liver tissues were extracted and liver lipid contents were determined. A peach of liver was prepared to determine the activities of fatty acid synthase (FAS and fatty acid β-oxidation. The results showed that liver TG content of OA-fed rats increased markedly in comparison to basal group.  However, the addition of adenine to the diet reversed promotion of liver TG content to basal level. It was also found that FAS activities decreased. Furthermore, these diets reversed the inhibition of fatty acid β-oxidation to basal level and induced the serum lipid levels secretion. Therefore, the alleviation of fatty liver in OA-treated rats given dietary adenine is associated with the inhibition of FAS activities accompanied with the promotion of mitochondrial fatty acid β-oxidation and the promotion of serum lipid secretion from the hepatic tissue into the bloodstream.

  5. Sheep erythrocyte membrane binding and transfer of long-chain fatty acids

    DEFF Research Database (Denmark)

    Bojesen, Inge Norby; Bojesen, Eigil

    1999-01-01

    Palmitic acid, oleic acid, linoleic acid, arachidonic acid, sheep erythrocyte ghosts, transporting elements, transport kinetics, fatty acid transport, transport rate constants......Palmitic acid, oleic acid, linoleic acid, arachidonic acid, sheep erythrocyte ghosts, transporting elements, transport kinetics, fatty acid transport, transport rate constants...

  6. Exploring the Lean Phenotype of Glutathione-Depleted Mice: Thiol, Amino Acid and Fatty Acid Profiles

    Science.gov (United States)

    Elshorbagy, Amany K.; Jernerén, Fredrik; Scudamore, Cheryl L.; McMurray, Fiona; Cater, Heather; Hough, Tertius; Cox, Roger; Refsum, Helga

    2016-01-01

    Background Although reduced glutathione (rGSH) is decreased in obese mice and humans, block of GSH synthesis by buthionine sulfoximine (BSO) results in a lean, insulin-sensitive phenotype. Data is lacking about the effect of BSO on GSH precursors, cysteine and glutamate. Plasma total cysteine (tCys) is positively associated with stearoyl-coenzyme A desaturase (SCD) activity and adiposity in humans and animal models. Objective To explore the phenotype, amino acid and fatty acid profiles in BSO-treated mice. Design Male C3H/HeH mice aged 11 weeks were fed a high-fat diet with or without BSO in drinking water (30 mmol/L) for 8 weeks. Amino acid and fatty acid changes were assessed, as well as food consumption, energy expenditure, locomotor activity, body composition and liver vacuolation (steatosis). Results Despite higher food intake, BSO decreased particularly fat mass but also lean mass (both P<0.001), and prevented fatty liver vacuolation. Physical activity increased during the dark phase. BSO decreased plasma free fatty acids and enhanced insulin sensitivity. BSO did not alter liver rGSH, but decreased plasma total GSH (tGSH) and rGSH (by ~70%), and liver tGSH (by 82%). Glutamate accumulated in plasma and liver. Urine excretion of cysteine and its precursors was increased by BSO. tCys, rCys and cystine decreased in plasma (by 23–45%, P<0.001 for all), but were maintained in liver, at the expense of decreased taurine. Free and total plasma concentrations of the SCD products, oleic and palmitoleic acids were decreased (by 27–38%, P <0.001 for all). Conclusion Counterintuitively, block of GSH synthesis decreases circulating tCys, raising the question of whether the BSO-induced obesity-resistance is linked to cysteine depletion. Cysteine-supplementation of BSO-treated mice is warranted to dissect the effects of cysteine and GSH depletion on energy metabolism. PMID:27788147

  7. Thiamine and fatty acid content of Lake Michigan Chinook salmon

    Science.gov (United States)

    Honeyfield, D.C.; Peters, A.K.; Jones, M.L.

    2008-01-01

    Nutritional status of Lake Michigan Chinook salmon (Oncorhynchus tshawytscha) is inadequately documented. An investigation was conducted to determine muscle and liver thiamine content and whole body fatty acid composition in small, medium and large Chinook salmon. Muscle and liver thiamine concentrations were highest in small salmon, and tended to decrease with increasing fish size. Muscle thiamine was higher in fall than spring in large salmon. The high percentage of Chinook salmon (24-32% in fall and 58-71% in spring) with muscle thiamine concentration below 500 pmol/g, which has been associated with loss of equilibrium and death in other Great Lake salmonines, suggest that Chinook appear to rely less on thiamine than other Great Lakes species for which such low concentrations would be associated with thiamine deficiency (Brown et al. 2005b). A positive correlation was observed between liver total thiamine and percent liver lipids (r = 0.53, P salmon, liver lipids were observed to be low in fish with less than 4,000 pmol/g liver total thiamine. In individuals with greater than 4,000 pmol/g liver thiamine, liver lipid increased with thiamine concentration. Individual fatty acids declined between fall and spring. Essential omega-3 fatty acids appear to be conserved as lipid content declined. Arachidonic acid (C20:4n6), an essential omega-6 fatty acid was not different between fall and spring, although the sum of omega-6 (Sw6) fatty acids declined over winter. Elevated concentrations of saturated fatty acids (sum) were observed in whole body tissue lipid. In summary, thiamine, a dietary essential vitamin, and individual fatty acids were found to vary in Lake Michigan Chinook salmon by fish size and season of the year.

  8. Control of food intake by fatty acid oxidation and ketogenesis.

    Science.gov (United States)

    Scharrer, E

    1999-09-01

    Fatty acid oxidation seems to provide an important stimulus for metabolic control of food intake, because various inhibitors of fatty acid oxidation (mercaptoacetate, methyl palmoxirate, R-3-amino-4-trimethylaminobutyric acid) stimulated feeding in rats and/or mice, in particular when fed a fat-enriched diet, and long-term intravascular infusion of lipids reduced voluntary food intake in various species, including humans. The feeding response to decreased fatty acid oxidation was due to a shortening of the intermeal interval with meal size remaining unaffected. Thus, energy derived from fatty acid oxidation seems to contribute to control of the duration of postmeal satiety and meal onset. Since inhibition of glucose metabolism by 2-deoxy-D-glucose affects feeding pattern similarly, and spontaneous meals were shown to be preceded by a transient decline in blood glucose in rats and humans, a decrease in energy availability from glucose and fatty acid oxidation seems to be instrumental in eliciting eating. Since the feeding response of rats to inhibition of fatty acid oxidation was abolished by total abdominal vagotomy and pretreatment with capsaicin destroying non-myelinated afferents and attenuated by hepatic branch vagotomy, fatty acid oxidation in abdominal tissues, especially in the liver, apparently is signalled to the brain by vagal afferents to affect eating. Brain lesions and Fos immunohistochemistry were employed to identify pathways within the brain mediating eating in response to decreased fatty acid oxidation. According to these studies, the nucleus tractus solitarii (NTS) of the medulla oblongata represents the gate for central processing of vagally mediated afferent information related to fatty acid oxidation. The lateral parabrachial nucleus of the pons seems to be a major relay for pertinent ascending input from the NTS. In particular the central nucleus of the amygdala, a projection area of the parabrachial nucleus, appears to be crucial for eating

  9. Polyunsaturated Fatty Acid Composition of Maternal Diet and Erythrocyte Phospholipid Status in Chilean Pregnant Women

    Directory of Open Access Journals (Sweden)

    Karla A. Bascuñán

    2014-11-01

    Full Text Available Chilean diets are characterized by a low supply of n-3 polyunsaturated fatty acids (n-3 PUFA, which are critical nutrients during pregnancy and lactation, because of their role in brain and visual development. DHA is the most relevant n-3 PUFA in this period. We evaluated the dietary n-3 PUFA intake and erythrocyte phospholipids n-3 PUFA in Chilean pregnant women. Eighty healthy pregnant women (20–36 years old in the 3rd–6th month of pregnancy were included in the study. Dietary assessment was done applying a food frequency questionnaire, and data were analyzed through the Food Processor SQL® software. Fatty acids of erythrocyte phospholipids were assessed by gas-liquid chromatography. Diet composition was high in saturated fat, low in mono- and PUFA, high in n-6 PUFA (linoleic acid and low in n-3 PUFA (alpha-linolenic acid and DHA, with imbalance in the n-6/n-3 PUFA ratio. Similar results were observed for fatty acids from erythrocyte phospholipids. The sample of Chilean pregnant women showed high consumption of saturated fat and low consumption of n-3 PUFA, which is reflected in the low DHA content of erythrocyte phospholipids. Imbalance between n-6/n-3 PUFA could negatively affect fetal development. New strategies are necessary to improve n-3 PUFA intake throughout pregnancy and breast feeding periods. Furthermore, it is necessary to develop dietary interventions to improve the quality of consumed foods with particular emphasis on n-3 PUFA.

  10. Training affects muscle phospholipid fatty acid composition in humans

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Wu, B J; Willer, Mette

    2001-01-01

    Training improves insulin sensitivity, which in turn may affect performance by modulation of fuel availability. Insulin action, in turn, has been linked to specific patterns of muscle structural lipids in skeletal muscle. This study investigated whether regular exercise training exerts an effect...... on the muscle membrane phospholipid fatty acid composition in humans. Seven male subjects performed endurance training of the knee extensors of one leg for 4 wk. The other leg served as a control. Before, after 4 days, and after 4 wk, muscle biopsies were obtained from the vastus lateralis. After 4 wk......, the phospholipid fatty acid contents of oleic acid 18:1(n-9) and docosahexaenoic acid 22:6(n-3) were significantly higher in the trained (10.9 +/- 0.5% and 3.2 +/- 0.4% of total fatty acids, respectively) than the untrained leg (8.8 +/- 0.5% and 2.6 +/- 0.4%, P

  11. Essential fatty acid deficiency in patients with severe fat malabsorption

    DEFF Research Database (Denmark)

    Jeppesen, Palle B; Christensen, Michael Søberg; Høy, Carl-Erik

    1997-01-01

    Essential fatty acid deficiency is commonly described in patients receiving parenteral nutrition, but the occurrence in patients with severe fat malabsorption not receiving parenteral nutrition is uncertain. One hundred twelve patients were grouped according to their degree of fat malabsorption......: group 1, 50% (n = 15). Fecal fat was measured by the method of Van de Kamer the last 2 of 5 d of a 75-g fat diet. Serum fatty acids in the phospholipid fraction were measured by gas-liquid chromatography after separation...... by thin-layer chromatography and expressed as a percentage of total fatty acids. The concentration of linoleic acid in groups 1, 2, 3, and 4 was 21.7%, 19.4%, 16.4%, and 13.4% respectively (P acid in groups 1, 2, 3, and 4 was 0.4%, 0.4%, 0.3% and 0.3%, respectively...

  12. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    Science.gov (United States)

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  13. Production of Medium Chain Fatty Acids by Yarrowia lipolytica: Combining Molecular Design and TALEN to Engineer the Fatty Acid Synthase.

    Science.gov (United States)

    Rigouin, Coraline; Gueroult, Marc; Croux, Christian; Dubois, Gwendoline; Borsenberger, Vinciane; Barbe, Sophie; Marty, Alain; Daboussi, Fayza; André, Isabelle; Bordes, Florence

    2017-06-21

    Yarrowia lipolytica is a promising organism for the production of lipids of biotechnological interest and particularly for biofuel. In this study, we engineered the key enzyme involved in lipid biosynthesis, the giant multifunctional fatty acid synthase (FAS), to shorten chain length of the synthesized fatty acids. Taking as starting point that the ketoacyl synthase (KS) domain of Yarrowia lipolytica FAS is directly involved in chain length specificity, we used molecular modeling to investigate molecular recognition of palmitic acid (C16 fatty acid) by the KS. This enabled to point out the key role of an isoleucine residue, I1220, from the fatty acid binding site, which could be targeted by mutagenesis. To address this challenge, TALEN (transcription activator-like effector nucleases)-based genome editing technology was applied for the first time to Yarrowia lipolytica and proved to be very efficient for inducing targeted genome modifications. Among the generated FAS mutants, those having a bulky aromatic amino acid residue in place of the native isoleucine at position 1220 led to a significant increase of myristic acid (C14) production compared to parental wild-type KS. Particularly, the best performing mutant, I1220W, accumulates C14 at a level of 11.6% total fatty acids. Overall, this work illustrates how a combination of molecular modeling and genome-editing technology can offer novel opportunities to rationally engineer complex systems for synthetic biology.

  14. Avaliação do consumo e análise da rotulagem nutricional de alimentos com alto teor de ácidos graxos trans Consumption and analysis of nutricional label of foods with high content of trans fatty acids

    Directory of Open Access Journals (Sweden)

    Juliana Ribeiro Dias

    2009-03-01

    Full Text Available Nas últimas décadas, diversos estudos vêm sendo realizados visando avaliar os efeitos dos ácidos graxos trans sobre o organismo e identificar seu mecanismo de ação. Entretanto, somente a cerca de um ano, este item foi incluído na rotulagem nutricional obrigatória brasileira, permitindo ao consumidor controlar o consumo de ácidos graxos trans. Assim, o objetivo deste estudo foi avaliar a adequação de alguns alimentos com alto teor de ácidos graxos trans (biscoitos, sorvetes, chocolates e fast-food frente à legislação pertinente e, ainda, o consumo diário por adultos e crianças observando a recomendação da OMS. A avaliação da rotulagem nutricional demonstrou que a maioria das amostras analisadas ainda não se adequou à nova legislação. Com base na análise dos questionários de consumo, identificou-se que 39,7