WorldWideScience

Sample records for fatigue variability behavior

  1. Fatigue Behavior under Multiaxial Stress States Including Notch Effects and Variable Amplitude Loading

    Science.gov (United States)

    Gates, Nicholas R.

    The central objective of the research performed in this study was to be able to better understand and predict fatigue crack initiation and growth from stress concentrations subjected to complex service loading histories. As such, major areas of focus were related to the understanding and modeling of material deformation behavior, fatigue damage quantification, notch effects, cycle counting, damage accumulation, and crack growth behavior under multiaxial nominal loading conditions. To support the analytical work, a wide variety of deformation and fatigue tests were also performed using tubular and plate specimens made from 2024-T3 aluminum alloy, with and without the inclusion of a circular through-thickness hole. However, the analysis procedures implemented were meant to be general in nature, and applicable to a wide variety of materials and component geometries. As a result, experimental data from literature were also used, when appropriate, to supplement the findings of various analyses. Popular approaches currently used for multiaxial fatigue life analysis are based on the idea of computing an equivalent stress/strain quantity through the extension of static yield criteria. This equivalent stress/strain is then considered to be equal, in terms of fatigue damage, to a uniaxial loading of the same magnitude. However, it has often been shown, and was shown again in this study, that although equivalent stress- and strain-based analysis approaches may work well in certain situations, they lack a general robustness and offer little room for improvement. More advanced analysis techniques, on the other hand, provide an opportunity to more accurately account for various aspects of the fatigue failure process under both constant and variable amplitude loading conditions. As a result, such techniques were of primary interest in the investigations performed. By implementing more advanced life prediction methodologies, both the overall accuracy and the correlation of fatigue

  2. Variable amplitude fatigue crack growth behavior - a short overview

    International Nuclear Information System (INIS)

    Singh, Konjengbam Darunkumar; Parry, Matthew Roger; Sinclair, Ian

    2011-01-01

    A short overview concerning variable amplitude (VA) fatigue crack growth behavior is presented in this paper. The topics covered in this review encompass important issues pertaining to both single and repeated overload transients. Reviews on transient post overload effects such as plasticity induced crack closure, crack tip blunting, residual stresses, crack deflection and branching, activation of near threshold mechanisms, strain hardening are highlighted. A brief summary on experimental trends and finite element modelling of overload induced crack closure is also presented

  3. Variable amplitude fatigue crack growth behavior - a short overview

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Konjengbam Darunkumar [Indian Institute of Technology, Guwahati (India); Parry, Matthew Roger [Airbus Operations Ltd, Bristol (United Kingdom); Sinclair, Ian [University of Southampton, Southampton (United Kingdom)

    2011-03-15

    A short overview concerning variable amplitude (VA) fatigue crack growth behavior is presented in this paper. The topics covered in this review encompass important issues pertaining to both single and repeated overload transients. Reviews on transient post overload effects such as plasticity induced crack closure, crack tip blunting, residual stresses, crack deflection and branching, activation of near threshold mechanisms, strain hardening are highlighted. A brief summary on experimental trends and finite element modelling of overload induced crack closure is also presented.

  4. The Effect of Material Variability on Fatigue Behaviors of Low Alloy Steels in 310 .deg. C Deoxygenated Water

    International Nuclear Information System (INIS)

    Jang, Hun; Jang, Changheui; Kim, Insup; Cho, Hyunchul

    2008-01-01

    As environmental fatigue damage is one of the main crack initiation mechanisms in nuclear power plants (NPPs), it is most important factor to assess the integrity and safety of NPPs. So, based on extensive researches, argon nation laboratory (ANL) suggested the statistical model to predict fatigue life of low alloy steels (LASs) which are widely used as structural material in NPPs. Also, we reported the environmental fatigue behaviors of SA508 Gr.1a LAS. However, from comparison between our experimental fatigue data and ANL's statistical model, our fatigue life data showed poor agreement with the ANL's statistical model. In this regard, the additional low cycle fatigue (LCF) tests were performed in 310 .deg. C deoxygenated water, and compared with ANL's statistical model to evaluate reliability of the data. And then, the effect of material variability on the fatigue life of LASs was investigated through microstructure analysis

  5. Fatigue-crack propagation behavior of Inconel 718

    International Nuclear Information System (INIS)

    James, L.A.

    1975-09-01

    The techniques of linear-elastic fracture mechanics were used to characterize the effect of several variables (temperature, environment, cyclic frequency, stress ratio, and heat-treatment variations) upon the fatigue-crack growth behavior of Inconel 718 base metal and weldments. Relevant crack growth data on this alloy from other laboratories is also presented. (33 fig, 39 references)

  6. Static and Fatigue Behavior Investigation of Artificial Notched Steel Reinforcement

    Directory of Open Access Journals (Sweden)

    Yafei Ma

    2017-05-01

    Full Text Available Pitting corrosion is one of the most common forms of localized corrosion. Corrosion pit results in a stress concentration and fatigue cracks usually initiate and propagate from these corrosion pits. Aging structures may fracture when the fatigue crack reaches a critical size. This paper experimentally simulates the effects of pitting morphologies on the static and fatigue behavior of steel bars. Four artificial notch shapes are considered: radial ellipse, axial ellipse, triangle and length-variable triangle. Each shape notch includes six sizes to simulate a variety of pitting corrosion morphologies. The stress-strain curves of steel bars with different notch shape and depth are obtained based on static tensile testing, and the stress concentration coefficients for various conditions are determined. It was determined that the triangular notch has the highest stress concentration coefficient, followed by length-variable triangle, radial ellipse and axial ellipse shaped notches. Subsequently, the effects of notch depth and notch aspect ratios on the fatigue life under three stress levels are investigated by fatigue testing, and the equations for stress range-fatigue life-notch depth are obtained. Several conclusions are drawn based on the proposed study. The established relationships provide an experimental reference for evaluating the fatigue life of concrete bridges.

  7. Study the Cyclic Plasticity Behavior of 508 LAS under Constant, Variable and Grid-Load-Following Loading Cycles for Fatigue Evaluation of PWR Components

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Barua, Bipul [Argonne National Lab. (ANL), Argonne, IL (United States); Soppet, William K. [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    This report provides an update of an earlier assessment of environmentally assisted fatigue for components in light water reactors. This report is a deliverable in September 2016 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2016 report, we presented a detailed thermal-mechanical stress analysis model for simulating the stress-strain state of a reactor pressure vessel and its nozzles under grid-load-following conditions. In this report, we provide stress-controlled fatigue test data for 508 LAS base metal alloy under different loading amplitudes (constant, variable, and random grid-load-following) and environmental conditions (in air or pressurized water reactor coolant water at 300°C). Also presented is a cyclic plasticity-based analytical model that can simultaneously capture the amplitude and time dependency of the component behavior under fatigue loading. Results related to both amplitude-dependent and amplitude-independent parameters are presented. The validation results for the analytical/mechanistic model are discussed. This report provides guidance for estimating time-dependent, amplitude-independent parameters related to material behavior under different service conditions. The developed mechanistic models and the reported material parameters can be used to conduct more accurate fatigue and ratcheting evaluation of reactor components.

  8. Taltirelin alleviates fatigue-like behavior in mouse models of cancer-related fatigue.

    Science.gov (United States)

    Dougherty, John P; Wolff, Brian S; Cullen, Mary J; Saligan, Leorey N; Gershengorn, Marvin C

    2017-10-01

    Fatigue affects most cancer patients and has numerous potential causes, including cancer itself and cancer treatment. Cancer-related fatigue (CRF) is not relieved by rest, can decrease quality of life, and has no FDA-approved therapy. Thyrotropin-releasing hormone (TRH) has been proposed as a potential novel treatment for CRF, but its efficacy against CRF remains largely untested. Thus, we tested the TRH analog, taltirelin (TAL), in mouse models of CRF. To model fatigue, we used a mouse model of chemotherapy, a mouse model of radiation therapy, and mice bearing colon 26 carcinoma tumors. We used the treadmill fatigue test to assess fatigue-like behavior after treatment with TAL. Additionally, we used wild-type and TRH receptor knockout mice to determine which TRH receptor was necessary for the actions of TAL. Tumor-bearing mice displayed muscle wasting and all models caused fatigue-like behavior, with mice running a shorter distance in the treadmill fatigue test than controls. TAL reversed fatigue-like behavior in all three models and the mouse TRH 1 receptor was necessary for the effects of TAL. These data suggest that TAL may be useful in alleviating fatigue in all cancer patients and provide further support for evaluating TAL as a potential therapy for CRF in humans. Published by Elsevier Ltd.

  9. Experimental Study on Variable-Amplitude Fatigue of Welded Cross Plate-Hollow Sphere Joints in Grid Structures

    Directory of Open Access Journals (Sweden)

    Jin-Feng Jiao

    2018-01-01

    Full Text Available The fatigue stress amplitude of the welded cross plate-hollow sphere joint (WCPHSJ in a grid structure varies due to the random loading produced by suspending cranes. A total of 14 specimens considering three different types of WCPHSJs were prepared and tested using a specially designed test rig. Four typical loading conditions, “low-high,” “high-low,” “low-high-low,” and “high-low-high,” were first considered in the tests to investigate the fatigue behavior under variable load amplitudes, followed by metallographic analyses. The experimental and metallographic analysis results provide a fundamental understanding on the fatigue fracture form and fatigue mechanism of WCPHSJs. Based on the available data from constant-amplitude fatigue tests, the variable-amplitude fatigue life of the three types of WCPHSJs was estimated using the Miner rule and Corten-Dolan theory. Since both accumulative damage theories yield virtually same damaging results, the Miner rule is hence suggested to estimate the fatigue life of WCPHSJs.

  10. Self-Regulatory Fatigue, Quality of Life, Health Behaviors, and Coping in Patients with Hematologic Malignancies

    Science.gov (United States)

    Ehlers, Shawna L.; Patten, Christi A.; Gastineau, Dennis A.

    2015-01-01

    Background Self-regulatory fatigue may play an important role in a complex medical illness. Purpose Examine associations between self-regulatory fatigue, quality of life, and health behaviors in patients pre- (N=213) and 1-year post-hematopoietic stem cell transplantation (HSCT; N=140). Associations between self-regulatory fatigue and coping strategies pre-HSCT were also examined. Method Pre- and 1-year post-HSCT data collection. Hierarchical linear regression modeling. Results Higher self-regulatory fatigue pre-HSCT associated with lower overall, physical, social, emotional, and functional quality of life pre- (p’sself-regulatory fatigue pre-HSCT relating to decreased quality of life and health behaviors, and predicting changes in these variables 1-year post-HSCT. PMID:24802991

  11. Fatigue Crack Propagation Under Variable Amplitude Loading Analyses Based on Plastic Energy Approach

    Directory of Open Access Journals (Sweden)

    Sofiane Maachou

    2014-04-01

    Full Text Available Plasticity effects at the crack tip had been recognized as “motor” of crack propagation, the growth of cracks is related to the existence of a crack tip plastic zone, whose formation and intensification is accompanied by energy dissipation. In the actual state of knowledge fatigue crack propagation is modeled using crack closure concept. The fatigue crack growth behavior under constant amplitude and variable amplitude loading of the aluminum alloy 2024 T351 are analyzed using in terms energy parameters. In the case of VAL (variable amplitude loading tests, the evolution of the hysteretic energy dissipated per block is shown similar with that observed under constant amplitude loading. A linear relationship between the crack growth rate and the hysteretic energy dissipated per block is obtained at high growth rates. For lower growth rates values, the relationship between crack growth rate and hysteretic energy dissipated per block can represented by a power law. In this paper, an analysis of fatigue crack propagation under variable amplitude loading based on energetic approach is proposed.

  12. Competing fatigue failure behaviors of Ni-based superalloy FGH96 at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Guolei [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Yang, Xiaoguang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-engine(CICAAE), Beihang University, Beijing 100191 (China); Shi, Duoqi, E-mail: shdq@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-engine(CICAAE), Beihang University, Beijing 100191 (China)

    2016-06-21

    Fatigue experiments were performed on a polycrystalline P/M processed nickel-based superalloy, FGH96 at 600 °C to investigate competing fatigue failure behaviors of the alloy. The experiments were performed at four levels of stress (from high cycle fatigue to low cycle fatigue) at stress ratio of 0.05. There was large variability in fatigue life at both high and low stresses. Scanning electron microscopy (SEM) was used to analyze the failure surfaces. Three types of competing failure modes were observed (surface, sub-surface and internal initiated failures). Crack initiation sites were gradually changed from the surface to the interior with the decreasing of stress level. Roles of microstructures in competing failure mechanism were analyzed. There were six kinds of fatigue crack initiation modes: (1) surface inclusion initiated; (2) surface facet initiated; (3) sub-surface inclusion initiated; (4) sub-surface facet initiated; (5) internal inclusion initiated; (6) internal facet initiated. Inclusions at surface were the life-limiting microstructures at higher stress levels. The probability of occurrence of inclusions initiated is gradually reduced with decreasing of stress level, simultaneously the probability of occurrence of facets initiated is increasing. The existence of the inclusions resulted in large life variability at higher stress levels, while heterogeneity of material caused by random combinations of grains was the main cause of fatigue variability at lower stress levels.

  13. Competing fatigue failure behaviors of Ni-based superalloy FGH96 at elevated temperature

    International Nuclear Information System (INIS)

    Miao, Guolei; Yang, Xiaoguang; Shi, Duoqi

    2016-01-01

    Fatigue experiments were performed on a polycrystalline P/M processed nickel-based superalloy, FGH96 at 600 °C to investigate competing fatigue failure behaviors of the alloy. The experiments were performed at four levels of stress (from high cycle fatigue to low cycle fatigue) at stress ratio of 0.05. There was large variability in fatigue life at both high and low stresses. Scanning electron microscopy (SEM) was used to analyze the failure surfaces. Three types of competing failure modes were observed (surface, sub-surface and internal initiated failures). Crack initiation sites were gradually changed from the surface to the interior with the decreasing of stress level. Roles of microstructures in competing failure mechanism were analyzed. There were six kinds of fatigue crack initiation modes: (1) surface inclusion initiated; (2) surface facet initiated; (3) sub-surface inclusion initiated; (4) sub-surface facet initiated; (5) internal inclusion initiated; (6) internal facet initiated. Inclusions at surface were the life-limiting microstructures at higher stress levels. The probability of occurrence of inclusions initiated is gradually reduced with decreasing of stress level, simultaneously the probability of occurrence of facets initiated is increasing. The existence of the inclusions resulted in large life variability at higher stress levels, while heterogeneity of material caused by random combinations of grains was the main cause of fatigue variability at lower stress levels.

  14. Fatigue Behavior of Inconel 718 TIG Welds

    Science.gov (United States)

    Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.

    2014-08-01

    Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.

  15. Prediction of fretting fatigue behavior under elastic-plastic conditions

    International Nuclear Information System (INIS)

    Shin, Ki Su

    2009-01-01

    Fretting fatigue generally leads to the degradation of the fatigue strength of a material due to cyclic micro-slip between two contacting materials. Fretting fatigue is regarded as an important issue in designing aerospace structures. While many studies have evaluated fretting fatigue behavior under elastic deformation conditions, few have focused on fretting fatigue behavior under elastic-plastic deformation conditions, especially the crack orientation and fatigue life prediction for Ti-6Al-4V. The primary goal of this study was to characterize the fretting fatigue crack initiation behavior in the presence of plasticity. Experimental tests were performed using pad configurations involving elastic-plastic deformations. To calculate stress distributions under elastic-plastic fretting fatigue conditions, FEA was also performed. Several parametric approaches were used to predict fretting fatigue life along with stress distribution resulting from FEA. However, those parameters using surface stresses were unable to establish an equivalence between elastic fretting fatigue data and elastic-plastic fretting fatigue data. Based on this observation, the critical distance methods, which are commonly used in notch analysis, were applied to the fretting fatigue problem. In conclusion, the effective strain range method when used in conjunction with the SMSSR parameter showed a good correlation of data points between the pad configurations involving elastic and elastic plastic deformations

  16. Fatigue life assessment under multiaxial variable amplitude loading

    International Nuclear Information System (INIS)

    Morilhat, P.; Kenmeugne, B.; Vidal-Salle, E.; Robert, J.L.

    1996-06-01

    A variable amplitude multiaxial fatigue life prediction method is presented in this paper. It is based on a stress as input data are the stress tensor histories which may be calculated by FEM analysis or measured directly on the structure during the service loading. The different steps of he method are first presented then its experimental validation is realized for log and finite fatigue lives through biaxial variable amplitude loading tests using cruciform steel samples. (authors). 9 refs., 7 figs

  17. Three-point bending fatigue behavior of WC–Co cemented carbides

    International Nuclear Information System (INIS)

    Li, Anhai; Zhao, Jun; Wang, Dong; Gao, Xinliang; Tang, Hongwei

    2013-01-01

    Highlights: ► Mechanical fatigue tests were conducted on a specific designed jig. ► Three-point bending fatigue behavior of WC–Co cemented carbides was studied. ► Fatigue mechanisms of WC–Co cemented carbides with different WC grain sizes and Co binder contents were revealed. -- Abstract: WC–Co cemented carbides with different WC grain sizes and Co binder contents were sintered and fabricated. The three-point bending specimens with a single edge notch were prepared for tests. In the experiments, the mechanical properties of materials were investigated under static and cyclic loads (20 Hz) in air at room temperature. The fatigue behaviors of the materials under the same applied loading conditions are presented and discussed. Optical microscope and scanning electron microscopy were used to investigate the micro-mechanisms of damage during fatigue, and the results were used to correlate with the mechanical fatigue behavior of WC–Co cemented carbides. Experimental results indicated that the fatigue fracture surfaces exhibited more fracture origins and diversification of crack propagation paths than the static strength fracture surfaces. The fatigue fracture typically originates from inhomogeneities or defects such as micropores or aggregates of WC grains near the notch tip. Moreover, due to the diversity and complexity of the fatigue mechanisms, together with the evolution of the crack tip and the ductile deformation zone, the fatigue properties of WC–Co cemented carbides were largely relevant with the combination of transverse rupture strength and fracture toughness, rather than only one of them. Transverse rupture strength dominated the fatigue behavior of carbides with low Co content, whilst the fatigue behavior of carbides with high Co content was determined by fracture toughness.

  18. Hand Fatigue Analysis Using Quantitative Evaluation of Variability in Drawing Patterns

    Directory of Open Access Journals (Sweden)

    mohamadali Sanjari

    2015-02-01

    Full Text Available Background & aim: Muscle fatigue is defined as the reduced power generation capacity of a muscle or muscle group after activity which can lead to a variety of lesions. The purpose of the present study was to define the fatigue analysis by quantitative analysis using drawing patterns. Methods: the present cross-sectional study was conducted on 37 healthy volunteers (6 men and 31 women aged 18-30 years. Before & immediately after a fatigue protocol, quantitative assessment of hand drawing skills was performed by drawing repeated, overlapping, and concentric circles. The test was conducted in three sessions with an interval of 48-72 hours. Drawing was recorded by a digital tablet. Data were statistically analyzed using paired t-test and repeated measure ANOVA. Result: In drawing time series data analysis, at fatigue level of 100%, the variables standard deviation along x axis (SDx, standard deviation of velocity on both x and y axis (SDVx and SDVy and resultant vector velocity standard deviation (SDVR, showed significant differences after fatigue (P<0.05. In comparison of variables after the three fatigue levels, SDx showed significant difference (P<0.05. Conclusions: structurally full fatigue showed significant differences with other levels of fatigue, so it contributed to significant variability in drawing parameters. The method used in the present study recognized the fatigue in high frequency motion as well.

  19. A study of probabilistic fatigue crack propagation models in Mg Al Zn alloys under different specimen thickness conditions by using the residual of a random variable

    International Nuclear Information System (INIS)

    Choi, Seon Soon

    2012-01-01

    The primary aim of this paper was to evaluate several probabilistic fatigue crack propagation models using the residual of a random variable, and to present the model fit for probabilistic fatigue behavior in Mg Al Zn alloys. The proposed probabilistic models are the probabilistic Paris Erdogan model, probabilistic Walker model, probabilistic Forman model, and probabilistic modified Forman models. These models were prepared by applying a random variable to the empirical fatigue crack propagation models with these names. The best models for describing fatigue crack propagation models with these names. The best models for describing fatigue crack propagation models with these names. The best models for describing fatigue crack propagation models with these names. The best models vor describing fatigue crack propagation behavior in Mg Al Zn alloys were generally the probabilistic Paris Erdogan and probabilistic Walker models. The probabilistic Forman model was a good model only for a specimen with a thickness of 9.45mm

  20. Fatigue Behavior of 2A12 Aluminum Alloy Under Multiaxial Loading

    Directory of Open Access Journals (Sweden)

    CHEN Ya-jun

    2017-08-01

    Full Text Available The multiaxial fatigue behavior of 2A12 aluminum alloy was studied with SDN100/1000 electro-hydraulic servo tension-torsion fatigue tester under multiple variables, and the failure mechanism was investigated by scanning electron microscopy (SEM. The results show that under the loading condition of equivalent stress, the fatigue life decreases with the increase of phase angle. For the phase angle 0°, some special features can be observed in the crack initial zone, such as the tire pattern,fishbone pattern and stalactite pattern. There are secondary cracks and vague fatigue striations in the crack propagation zone; the multiaxial fatigue life decreases with the change of mean stress for tension or torsion. Some white flocculent oxides can be found in the crack initiation zone, and secondary crack as well as shear-type elongated dimples in the instantaneous fracture zone; facing different loading waveforms, the multiaxial life of sine wave is the longest, triangle wave in the second place, and the square wave is the shortest, under the loading condition of equivalent stress, square wave leads to the maximum structural energy dissipation. Under the low and high two step loading, 2A12 shows training effect.

  1. Low-cycle fatigue behaviors of pre-hardening Hadfield steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, Bo [College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Wang, Fei [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, Fucheng, E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004 (China)

    2017-05-17

    Low-cycle fatigue behaviors of the pre-hardening (PH) and the water-quenching (WQ) Hadfield steel were studied using optical microscopy, transmission electron microscopy, and electron backscatter diffraction technique. The effect of the PH treatment on low-cycle fatigue behavior of the Hadfield steel was analyzed through comparing the cyclic hardening/softening behaviors and the changing regulations of stress amplitude, internal stress, and effective stress at different total strain amplitudes. Results showed obvious differences in fatigue behaviors between the PH (with a cold rolling deformation degree of 40%) and the WQ Hadfield steels. Transient hardening followed by cyclic stability behavior occurred in the PH Hadfield steel under cyclic loading, whereas cyclic softening behavior was barely observed. The fatigue life of the PH Hadfield steel was higher than that of the WQ Hadfield steel at relatively low strain amplitudes, while a contrary result was obtained at relatively high strain amplitudes. At low strain amplitudes, the deformation twins induced in the PH Hadfield steel could enhance the multiplication and slip process of dislocations, which actually improved the deformation uniformity. The long-range motion of dislocations was intensified at high strain amplitudes. However, the dislocation motion was also blocked by twin boundaries. As a result, the interactions between dislocations and deformation twins enhanced, finally causing severe dislocation accumulation. These two effects of deformation twins on dislocation motion eventually resulted in different low-cycle fatigue behaviors of the PH Hadfield steel.

  2. Flexural fatigue behavior of steel fiber reinforced concrete structures

    International Nuclear Information System (INIS)

    Chang, G.I.; Chai, W.K.; Park, C.W.; Min, I.K.

    1993-01-01

    In this thesis, the fatigue tests are performed on a series of SFRC (steel fiber reinforced concrete) to investigate the fatigue behavior of SFRC varing with the steel fiber contents and the steel fiber aspect ratios. Thirty SFRC beams are used in this test. The relationships between repeated loading cycle and mid-span deflection of the beams are observed under the three-point loading system. From the test results, the effects of the fiber content and the fiber aspect ratio on the concrete fatigue behavior were studied. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams are also suggested. (author)

  3. Low cycle fatigue and creep fatigue behavior of alloy 617 at high temperature

    International Nuclear Information System (INIS)

    Cabet, Celine; Carroll, Laura; Wright, Richard

    2013-01-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the very high temperature nuclear reactor (VHTR), expected to have an outlet temperature as high as 950 C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanisms and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle fatigue specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens and the addition of a hold time at peak tensile strain degraded the cycle life. This suggests that creep-fatigue interaction occurs and that the environment may be partially responsible for accelerating failure. (authors)

  4. Flexural fracture and fatigue behavior of steel-fiber-reinforced concrete structures

    International Nuclear Information System (INIS)

    Chang, D.I.

    1995-01-01

    Fracture and fatigue tests were performed in order to investigate the fracture and fatigue behavior of steel-fibre-reinforced concrete (SFRC) structures. 33 SFRC beams were used in the fracture and fatigue tests. The relationship between loading, strain and midspan deflection of the beams was observed under the three-point loading system.From the test results, the effects of the fiber content, fiber aspect ratio and notch-to-depth ratio on the concrete fracture and fatigue behavior were studied, and the fatigue strengths of SFRC beams were calculated. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams were also suggested. (orig.)

  5. The Fatigue Behavior of Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    2008-01-01

    Fatigue damage accumulation in steel structures under random loading has been studied in a number of investigations at the Technical University of Denmark. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part...... and variable amplitude fatigue test results. Both the fracture mechanics analysis and the fatigue test results indicate that Miner’s rule, which is normally used in the design against fatigue in steel structures, may give results, which are unconservative, and that the validity of the results obtained from...

  6. Seismic Behavior of Fatigue-Retrofitted Steel Frame Piers

    Directory of Open Access Journals (Sweden)

    Kinoshita K.

    2013-01-01

    Full Text Available Fatigue retrofit works have been conducted on severely fatigue damaged beam-to-column connections of existing steel frame bridge piers in Japan. It is clear that retrofit works provides additional stiffness but the significance on the seismic behavior of steel frame piers is not clear. Since fatigue retrofit works have become prevalent, the effect of fatigue retrofit works on the seismic behavior of steel frame piers need to be understood. The objective of this study is therefore to investigate these effects of the retrofit work, especially installation of bolted splices, which is the most common technique. Elasto-plastic finite element earthquake response analyses were carried out. It is shown that the existence of bolted splices may increase seismic demand on the piers when plastic hinge zone is located on the beam. In addition, longer bolted splices using low yield strength steel are proposed to overcome this problem and are shown to give beneficial effects.

  7. Cyclic deformation and fatigue behaviors of Hadfield manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, B. [School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2014-01-03

    The cyclic deformation characteristics and fatigue behaviors of Hadfield manganese steel have been investigated by means of its ability to memorize strain and stress history. Detailed studies were performed on the strain-controlled low cycle fatigue (LCF) and stress-controlled high cycle fatigue (HCF). Initial cyclic hardening to saturation or peak stress followed by softening to fracture occurred in LCF. Internal stress made the dominant contribution to the fatigue crack propagation until failure. Effective stress evolution revealed the existence of C–Mn clusters with short-range ordering in Hadfield manganese steel and demonstrated that the interaction between C atoms in the C–Mn cluster and dislocation was essential for its cyclic hardening. The developing/developed dislocation cells and stacking faults were the main cyclic deformation microstructures on the fractured sample surface in LCF and HCF, which manifested that fatigue failure behavior of Hadfield manganese steel was induced by plastic deformation during strain-controlled or stress-controlled testing.

  8. Fatigue shifts and scatters heart rate variability in elite endurance athletes.

    Directory of Open Access Journals (Sweden)

    Laurent Schmitt

    Full Text Available PURPOSE: This longitudinal study aimed at comparing heart rate variability (HRV in elite athletes identified either in 'fatigue' or in 'no-fatigue' state in 'real life' conditions. METHODS: 57 elite Nordic-skiers were surveyed over 4 years. R-R intervals were recorded supine (SU and standing (ST. A fatigue state was quoted with a validated questionnaire. A multilevel linear regression model was used to analyze relationships between heart rate (HR and HRV descriptors [total spectral power (TP, power in low (LF and high frequency (HF ranges expressed in ms(2 and normalized units (nu] and the status without and with fatigue. The variables not distributed normally were transformed by taking their common logarithm (log10. RESULTS: 172 trials were identified as in a 'fatigue' and 891 as in 'no-fatigue' state. All supine HR and HRV parameters (Beta±SE were significantly different (P<0.0001 between 'fatigue' and 'no-fatigue': HRSU (+6.27±0.61 bpm, logTPSU (-0.36±0.04, logLFSU (-0.27±0.04, logHFSU (-0.46±0.05, logLF/HFSU (+0.19±0.03, HFSU(nu (-9.55±1.33. Differences were also significant (P<0.0001 in standing: HRST (+8.83±0.89, logTPST (-0.28±0.03, logLFST (-0.29±0.03, logHFST (-0.32±0.04. Also, intra-individual variance of HRV parameters was larger (P<0.05 in the 'fatigue' state (logTPSU: 0.26 vs. 0.07, logLFSU: 0.28 vs. 0.11, logHFSU: 0.32 vs. 0.08, logTPST: 0.13 vs. 0.07, logLFST: 0.16 vs. 0.07, logHFST: 0.25 vs. 0.14. CONCLUSION: HRV was significantly lower in 'fatigue' vs. 'no-fatigue' but accompanied with larger intra-individual variance of HRV parameters in 'fatigue'. The broader intra-individual variance of HRV parameters might encompass different changes from no-fatigue state, possibly reflecting different fatigue-induced alterations of HRV pattern.

  9. Localized bending fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2012-01-01

    In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement of the st......In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement...... displacement (opening/closing and sliding) of the helically wound wires. Moreover, the results are a step towards understanding the bending fatigue damage mechanisms of monostrand cables....

  10. The fatigue life and fatigue crack through thickness behavior of a surface cracked plate, 2

    International Nuclear Information System (INIS)

    Nam, Ki-Woo; Fujibayashi, Shinpei; Ando, Kotoji; Ogura, Nobukazu.

    1987-01-01

    Most structures have a region where stresses concentrate, and the probability of fatigue crack initiation may be higher than in other parts. Therefore, to improve the reliability of an LBB design, it is necessary to evaluate the growth and through thickness behavior of fatigue cracks in the stress concentration part. In this paper, a fatigue crack growth test at a stress concentration region has been made on 3 % NiCrMo and HT 80 steel. Stress concentration is caused by a fillet on the plate. The main results obtained are as follows : (1) Before cracking through the plate thickness, stress concentration has a remarkable effect on the fatigue crack growth behavior and it flatens the shape of a surface crack. The crack growth behavior can be explained quantatively by using the Newman-Raju equation and the stress resolving method proposed by ASME B and P Code SecXI. (2) The da/dN-ΔK relation obtained in a stress concentration specimen shows good agreement with that obtained in a surface cracked smooth specimen. (3) It is shown that stress concentration caused by a fillet has little effect on the crack growth rate after cracking through the plate thickness. (4) By using the K value based on eq. (1), (2), particular crack growth behavior and the change in crack shape after cracking through thickness can be explained quantatively. (author)

  11. Fractal cluster modeling of the fatigue behavior of lead zirconate titanate

    OpenAIRE

    Priya, Shashank; Kim, Hyeoung Woo; Ryu, Jungho; Uchino, Kenji; Viehland, Dwight D.

    2002-01-01

    The fatigue behavior of lead zirconate titanate ceramics (PZT) has been studied under electrical and mechanical drives. Piezoelectric fatigue was studied using a mechanical method. Under ac mechanical drive, hard and soft PZTs showed an increase in the longitudinal piezoelectric constant at short times, reaching a maximum at intermediate times. Systematic investigations were performed to characterize the electrical fatigue behavior. A decrease in the magnitude of the remanent polarization was...

  12. MUSCLE WEAKNESS, FATIGUE, AND TORQUE VARIABILITY: EFFECTS OF AGE AND MOBILITY STATUS

    Science.gov (United States)

    KENT-BRAUN, JANE A.; CALLAHAN, DAMIEN M.; FAY, JESSICA L.; FOULIS, STEPHEN A.; BUONACCORSI, JOHN P.

    2013-01-01

    Introduction Whereas deficits in muscle function, particularly power production, develop in old age and are risk factors for mobility impairment, a complete understanding of muscle fatigue during dynamic contractions is lacking. We tested hypotheses related to torque-producing capacity, fatigue resistance, and variability of torque production during repeated maximal contractions in healthy older, mobility-impaired older, and young women. Methods Knee extensor fatigue (decline in torque) was measured during 4 min of dynamic contractions. Torque variability was characterized using a novel 4-component logistic regression model. Results Young women produced more torque at baseline and during the protocol than older women (P torque variability differed by group (P = 0.022) and was greater in older impaired compared with young women (P = 0.010). Conclusions These results suggest that increased torque variability may combine with baseline muscle weakness to limit function, particularly in older adults with mobility impairments. PMID:23674266

  13. Fatigue behavior of niobium--hydrogen alloys

    International Nuclear Information System (INIS)

    Chung, D.W.; Stoloff, N.S.

    1978-01-01

    The effects of hydrogen on room temperature fatigue behavior of niobium were investigated under both high frequency stress control and low frequency strain control conditions, in air. Hydrogen markedly improved the fatigue life in high frequency tests, while low frequency tests resulted in decreased fatigue life with increasing hydrogen content. Notches in hydrogen-charged alloys reduced high cycle life significantly but had little effect on low cycle tests. Fracture surfaces of annealed niobium mainly exhibited striations, with numerous cracks originating at troughs of striated bands in both stress and strain control tests. The fracture mode for alloys with hydrogen in solution was mixed, with striations interspersed with cleavage facets at high frequencies but generally cleavage steps at low frequencies. For the hydrided alloys, distinctive steps of mixed ductile-brittle appearance were revealed under high frequency conditions, but large cleavage facets only were observed for low frequency tests. The results are discussed in terms of the effects of hydrogen on the cyclic strain hardening rate, as well as on fatigue strength and ductility of niobium

  14. Effect of specimen geometry on the variability in fatigue crack growth rate

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Hajime; Kondo, Tatsuo

    1982-02-01

    Fatigue crack growth tests on SA 533 grade B class 1 steel were conducted in air with both contoured double cantilever beam (CDCB) specimens and compact-tension (CT) specimens for comparison, which corresponded to the ΔK constant and ΔK increasing fatigue tests respectively. The variability of the measured values was examined statistically, and possible sources of the determined variability were discussed. The variability in the ΔK increasing fatigue tests with the CT specimens was found to be substantially greater than that in the ΔK constant fatigue tests with the CDCB specimens employed in the present study. In addition, the width of the scatter as well as in the degree of deviation from the expected linearity in da/dN versus ΔK plots were found to be varied depending on the level of ΔK in the CT specimen. Based on the results, a conclusion was drawn that constant ΔK type tests should be preferred in the tests where accuracy and reproducibility of crack growth rate measurement was of particular importance. (author)

  15. Fatigue behavior of ULTIMETRTM alloy: Experiment and theoretical modeling

    Science.gov (United States)

    Jiang, Liang

    ULTIMETRTM alloy is a commercial Co-26Cr-9Ni (weight percent) superalloy, which possesses excellent resistance to both wear and corrosion. In order to extend the structural applications of this alloy and improve the fundamental understanding of the fatigue damage mechanisms, stress- and strain-controlled fatigue tests were performed at various temperatures and in different environments. The stress- and strain-life data were developed for the structural design and engineering applications of this material. Fractographic studies characterized the crack-initiation and propagation behavior of the alloy. Microstructure evolution during fatigue was revealed by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Specifically, it was found that the metastable face-centered-cubic structure of this alloy in the as-received condition could be transformed into a hexagonal-close-packed structure either under the action of plastic deformation at room temperature, or due to the aging and cyclic deformation at intermediate temperatures. This interesting observation constructed a sound basis for the alloy development. The dominant mechanisms, which control the fatigue behavior of ULTIMET alloy, were characterized. High-speed, high-resolution infrared (IR) thermography, as a non-contact, full-field, and nondestructive technique, was used to characterize the damage during fatigue. The temperature variations during each fatigue cycle, which were due to the thermal-elastic-plastic effect, were observed and related to stress-strain analyses. The temperature evolution during fatigue manifested the cumulative fatigue damage process. A constitutive model was developed to predict thermal and mechanical responses of ULTIMET alloy subjected to cyclic deformation. The predicted cyclic stress-strain responses and temperature variations were found to be in good agreement with the experimental results. In addition, a fatigue life prediction model was developed

  16. Cognitive behavioral therapies and multiple sclerosis fatigue: A review of literature.

    Science.gov (United States)

    Chalah, Moussa A; Ayache, Samar S

    2018-03-30

    Patients with multiple sclerosis (MS) commonly suffer from fatigue, a multidimensional symptom with physical, cognitive and psychosocial components that can drastically alter the quality of life. Despite its debilitating nature, the current treatment options are limited by their modest efficacy and numerous side effects. Cognitive behavioral therapies (CBT) have been applied in MS patients and might be of help in relieving fatigue. This constitutes the main objective of the current review. Computerized databases (Medline/PubMed, Scopus) were consulted till January 2018, and a research was conducted according to PRISMA guidelines in order to identify original research articles published at any time in English and French languages on cognitive behavioral therapies and MS fatigue as a primary outcome. The following key terms were used: ('multiple sclerosis' OR 'MS') AND ('fatigue') AND ('cognitive behavioral therapy' OR 'CBT' OR 'cognitive therapy' OR 'CT' OR 'behavioral therapy' OR 'BT' OR 'psychotherapy'). Fourteen papers matched the above criteria (11 trials, 2 methods and 1 study addressing CBT mechanisms of action). CBT seems to have positive effects on MS fatigue. However, the onset and duration of effects varied across the studies. These data highlight the promising effects of CBT in MS fatigue. Admitting the limited number of studies, more protocols are needed before drawing any conclusion. Future works might benefit from combining CBT with emerging therapies such as non-invasive brain stimulation techniques which also yielded promising results in the setting of MS. This may help in long-term maintenance of fatigue relief. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. High-Temperature Creep-Fatigue Behavior of Alloy 617

    Directory of Open Access Journals (Sweden)

    Rando Tungga Dewa

    2018-02-01

    Full Text Available This paper presents the high-temperature creep-fatigue testing of a Ni-based superalloy of Alloy 617 base metal and weldments at 900 °C. Creep-fatigue tests were conducted with fully reversed axial strain control at a total strain range of 0.6%, 1.2%, and 1.5%, and peak tensile hold time of 60, 180, and 300 s. The effects of different constituents on the combined creep-fatigue endurance such as hold time, strain range, and stress relaxation behavior are discussed. Under all creep-fatigue tests, weldments’ creep-fatigue life was less than base metal. In comparison with the low-cycle fatigue condition, the introduction of hold time decreased the cycle number of both base metal and weldments. Creep-fatigue lifetime in the base metal was continually decreased by increasing the tension hold time, except for weldments under longer hold time (>180 s. In all creep-fatigue tests, intergranular brittle cracks near the crack tip and thick oxide scales at the surface were formed, which were linked to the mixed-mode creep and fatigue cracks. Creep-fatigue interaction in the damage-diagram (D-Diagram (i.e., linear damage summation was evaluated from the experimental results. The linear damage summation was found to be suitable for the current limited test conditions, and one can enclose all the data points within the proposed scatter band.

  18. Sleep variability and fatigue in adolescents: Associations with school-related features.

    Science.gov (United States)

    Matos, M G; Gaspar, T; Tomé, G; Paiva, T

    2016-10-01

    This study aims to evaluate the influences of sleep duration and sleep variability (SleepV), upon adolescents' school-related situations. The Health Behaviour in School-Aged Children (HBSC) survey is based on a self-completed questionnaire. The participants were 3164 pupils (53.7% girls), attending the 8th and 10th grades, 14.9 years old, and were inquired about subjective sleep duration during the week and weekends, SleepV, fatigue, difficulties in sleep initiation, school achievement, feelings towards schools, pressure with school work and skipping classes. Multiple regression models used, as dependent variables: (a) school achievement, (b) disliking school, (c) pressure with school work and (d) skipping classes, using as independent variables, each of the remaining school-related variables, fatigue, total sleep duration and difficulties in sleep initiation. The average sleep duration in the week and during weekdays was lower than recommended for these age groups, and almost half of students had high SleepV between weekdays and weekends. A logistic model revealed that the absence of SleepV was associated with lower perception of school work pressure, less frequent skipping classes, more infrequent fatigue and more infrequent difficulties in sleep initiation. Poor sleep quality, SleepV and insufficient sleep duration affected negatively school-related variables. © 2015 International Union of Psychological Science.

  19. Fatigue behavior of thick composite single lap joints

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.H.; Sridhar, I.; Srikanth, N. [Nanyang Technological Univ., Singapore (Singapore)

    2012-07-01

    In consideration of bondline thickness variability, in bonded joints where thick adherend is adopted, relative thick adhesive layer (2-5 mm) is preferable. This paper aims to give some insight in fatigue strength of adhesively bonded structures involving thick adherend coupled with thick adhesive layer. Single lap joints with nominal adherend thickness of 8 mm and two different nominal thicknesses (2.5 mm and 5.5 mm) were made and tested under fatigue loading. The failure mode exhibits always a tendency for interfacial initiation, followed by interlaminar separation. Fatigue strength for higher adhesive thickness is found to be lower. (Author)

  20. Tensile and high cycle fatigue behaviors of high-Mn steels at 298 and 110 K

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Wongyu; Jeong, Daeho; Sung, Hyokyung; Kim, Sangshik, E-mail: sang@gnu.ac.kr

    2017-02-15

    Tensile and high cycle fatigue behaviors of high-Mn austenitic steels, including 25Mn, 25Mn0.2Al, 25Mn0.5Cu, 24Mn4Cr, 22Mn3Cr and 16Mn2Al specimens, were investigated at 298 and 110 K. Depending on the alloying elements, tensile ductility of high-Mn steels either increased or decreased with decreasing temperature from 298 to 110 K. Reasonable correlation between the tendency for martensitic tranformation, the critical twinning stress and the percent change in tensile elongation suggested that tensile deformation of high-Mn steels was strongly influenced by SFE determining TRIP and TWIP effects. Tensile strength was the most important parameter in determining the resistance to high cycle fatigue of high-Mn steels with an exceptional work hardening capability at room and cryogenic temperatures. The fatigue crack nucleation mechanism in high-Mn steels did not vary with decreasing tempertature, except Cr-added specimens with grain boundary cracking at 298 K and slip band cracking at 110 K. The EBSD (electron backscatter diffraction) analyses suggested that the deformation mechanism under fatigue loading was significantly different from tensile deformation which could be affected by TRIP and TWIP effects. - Highlights: •The resistances to HCF of various high-Mn steels were measured. •The variables affecting tensile and HCF behaviors of high-Mn steels were assessed. •The relationship between tensile and the HCF behaviors of high-Mn steels was established.

  1. Fatigue Behavior of Steel Fiber Reinforced High-Strength Concrete under Different Stress Levels

    Science.gov (United States)

    Zhang, Chong; Gao, Danying; Gu, Zhiqiang

    2017-12-01

    The investigation was conducted to study the fatigue behavior of steel fiber reinforced high-strength concrete (SFRHSC) beams. A series of 5 SFRHSC beams was conducted flexural fatigue tests at different stress level S of 0.5, 0.55, 0.6, 0.7 and 0.8 respectively. Static test was conducted to determine the ultimate static capacity prior to fatigue tests. Fatigue modes and S-N curves were analyzed. Besides, two fatige life prediction model were analyzed and compared. It was found that stress level S significantly influenced the fatigue life of SFRHSC beams and the fatigue behavior of SFRHSC beams was mainly determined by the tensile reinforcement.

  2. Low cycle fatigue behavior of titanium carbide coated molybdenum

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Oku, Tatsuo; Kodaira, Tsuneo; Kikuyama, Toshihiko

    1985-09-01

    Sintered molybdenum coated by TiC is used for the first wall such as a troidal fixed limiter and a magnetic limiter plate in JT-60, that is being operated at JAERI presently. This report describes the low cycle fatigue behavior of sintered molybdenum and the influence of TiC coating on fatigue strength. The low cycle fatigue test was conducted at room temperature and 500 0 C. The test results was also analyzed by fractographic observation, metallography and element analysis using EPMA. The low cycle fatigue strength of the molybdenum coated by TiC at 500 0 C is decreased compared with the one at room temperature. (author)

  3. The compensatory interaction between motor unit firing behavior and muscle force during fatigue.

    Science.gov (United States)

    Contessa, Paola; De Luca, Carlo J; Kline, Joshua C

    2016-10-01

    Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. Copyright © 2016 the American Physiological Society.

  4. Influence of shear cutting parameters on the fatigue behavior of a dual-phase steel

    Science.gov (United States)

    Paetzold, I.; Dittmann, F.; Feistle, M.; Golle, R.; Haefele, P.; Hoffmann, H.; Volk, W.

    2017-09-01

    The influence of the edge condition of car body and chassis components made of steel sheet on fatigue behavior under dynamic loading presents a major challenge for automotive manufacturers and suppliers. The calculated lifetime is based on material data determined by the fatigue testing of specimens with polished edges. Prototype components are often manufactured by milling or laser cutting, whereby in practice, the series components are produced by shear cutting due to its cost-efficiency. Since the fatigue crack in such components usually starts from a shear cut edge, the calculated and experimental determined lifetime will vary due to the different conditions at the shear cut edges. Therefore, the material data determined with polished edges can result in a non-conservative component design. The aim of this study is to understand the relationship between the shear cutting process and the fatigue behavior of a dual-phase steel sheet. The geometry of the shear cut edge as well as the depth and degree of work hardening in the shear affected zone can be adjusted by using specific shear cutting parameters, such as die clearance and cutting edge radius. Stress-controlled fatigue tests of unnotched specimens were carried out to compare the fatigue behavior of different edge conditions. By evaluating the results of the fatigue experiments, influential shear cutting parameters on fatigue behavior were identified. It was possible to assess investigated shear cutting strategies regarding the fatigue behavior of a high-strength steel DP800.

  5. Modeling of the mechanical behavior of austenitic stainless steels under pure fatigue and fatigue relaxation loadings

    International Nuclear Information System (INIS)

    Hajjaji-Rachdi, Fatima

    2015-01-01

    Austenitic stainless steels are potential candidates for structural components of sodium-cooled fast neutron reactors. Many of these components will be subjected to cyclic loadings including long hold times (1 month) under creep or relaxation at high temperature. These hold times are unattainable experimentally. The aim of the present study is to propose mechanical models which take into account the involved mechanisms and their interactions during such complex loadings. First, an experimental study of the pure fatigue and fatigue-relaxation behavior of 316L(N) at 500 C has been carried out with very long hold times (10 h and 50 h) compared with the ones studied in literature. Tensile tests at 600 C with different applied strain rates have been undertaken in order to study the dynamic strain ageing phenomenon. Before focusing on more complex loadings, the mean field homogenization approach has been used to predict the mechanical behavior of different FCC metals and alloys under low cycle fatigue at room temperature. Both Hill-Hutchinson and Kroener models have been used. Next, a physically-based model based on dislocation densities has been developed and its parameters measured. The model allows predictions in a qualitative agreement with experimental data for tensile loadings. Finally, this model has been enriched to take into account visco-plasticity, dislocation climb and interaction between dislocations and solute atoms, which are influent during creep-fatigue or fatigue relaxation at high temperature. The proposed model uses three adjustable parameters only and allows rather accurate prediction of the behavior of 316L(N) steel under tensile loading and relaxation. (author) [fr

  6. Thermal fatigue behavior of valves

    International Nuclear Information System (INIS)

    Moinereau, D.; Scliffet, L.; Capion, J.C.; Genette, P.

    1991-01-01

    This paper reports that valves of pressurized water reactors are exposed to thermal shocks during transient operations. The numerous thermal shock tests performed on valves on the EDF test facilities have shown the sensibility of fillets and geometrical discontinuities to thermal fatigue: cracks can appear in those areas and grow through the valve body. Valves systems designated as level 1 must be designed to withstand fatigue up to the second isolation valve: the relevant rule is specified in the paragraph B 3500 of the French RCCM code. It is a simplified method which doesn't require finite element calculations. Many valve systems have been designed according to this rule and have been operated without accident. However, in one case, important cracks were found in the fillet of a check-valve after numerous thermal shocks. Calculation of the valve's behavior according to the RCCM code to estimate the fatigue damage resulting from thermal shocks led to a low damage factor, which doesn't agree with the experimental results. This was confirmed by new testings and showed the inadequacy of B 3500 rule for thermal transients. On this base a new rule is proposed to estimate fatigue damage resulting from thermal shocks. An experimental program has been realized to validate this rule. Axisymetrical analytical mock-ups with different geometries and one check-valve in austenitic stainless steel 316 L have been submitted to hot thermal shocks of 210 degrees C magnitude

  7. Fatigue and fracture behavior of low alloy ferritic forged steels

    International Nuclear Information System (INIS)

    Chaudhry, V.; Sharma, A.K.; Muktibodh, U.C.; Borwankar, Neeraj; Singh, D.K.; Srinivasan, K.N.; Kulkarni, R.G.

    2016-01-01

    Low alloy ferritic steels are widely used in nuclear industry for the construction of pressure vessels. Pressure vessel forged low alloy steels 20MnMoNi55 (modified) have been developed indigenously. Experiments have been carried out to study the Low Cycle Fatigue (LCF) and fracture behavior of these forged steels. Fully reversed strain controlled LCF testing at room temperature and at 350 °C has been carried out at a constant strain rate, and for different axial strain amplitude levels. LCF material behavior has been studied from cyclic stress-strain responses and the strain-life relationships. Fracture behavior of the steel has been studied based on tests carried out for crack growth rate and fracture toughness (J-R curve). Further, responses of fatigue crack growth rate tests have been compared with the rate evaluated from fatigue precracking carried out for fracture toughness (J-R) tests. Fractography of the samples have been carried out to reveal dominant damage mechanisms in crack propagation and fracture. The fatigue and fracture properties of indigenously developed low alloy steel 20MnMoNi55 (modified) steels are comparable with similar class of steels. (author)

  8. Quantitative analysis by X-ray fractography of fatigue fractured surface under variable amplitude loading

    International Nuclear Information System (INIS)

    Akita, Koichi; Kodama, Shotaro; Misawa, Hiroshi

    1994-01-01

    X-ray fractography is a method of analysing the causes of accidental fracture of machine components or structures. Almost all of the previous research on this problem has been carried out using constant amplitude fatigue tests. However, the actual loads on components and structures are usually of variable amplitudes. In this study, X-ray fractography was applied to fatigue fractured surfaces produced by variable amplitude loading. Fatigue tests were carried out on Ni-Cr-Mo steel CT specimens under the conditions of repeated, two-step and multiple-step loading. Residual stresses were measured on the fatigue fractured surface by an X-ray diffraction method. The relationships between residual stress and stress intensity factor or crack propagation rate were studied. They were discussed in terms of the quantitative expressions under constant amplitude loading, proposed by the authors in previous papers. The main results obtained were as follows : (1) It was possible to estimate the crack propagation rate of the fatigue fractured surface under variable amplitude loading by using the relationship between residual stress and stress intensity factor under constant amplitude loading. (2) The compressive residual stress components on the fatigue fractured surface correspond with cyclic softening of the material rather than with compressive plastic deformation at the crack tip. (author)

  9. Effects of fine porosity on the fatigue behavior of a powder metallurgy superalloy

    Science.gov (United States)

    Miner, R. V.; Dreshfield, R. L.

    1980-01-01

    Hot-isostatically-pressed powder-metallurgy Astroloy was obtained which contained 1.4 percent porosity at the grain boundaries produced by argon entering the powder container during pressing. This material was tested at 650 C in fatigue, creep-fatigue, tension, and stress-rupture and the results compared with data on sound Astroloy. They influenced fatigue crack initiation and produced a more intergranular mode of propagation but fatigue life was not drastically reduced. Fatigue behavior of the porous material showed typical correlation with tensile behavior. The plastic strain range-life relation was reduced proportionately with the reduction in tensile ductility, but the elastic strain range-life relation was changed little.

  10. Heat affected zone and fatigue crack propagation behavior of high performance steel

    International Nuclear Information System (INIS)

    Choi, Sung Won; Kang, Dong Hwan; Kim, Tae Won; Lee, Jong Kwan

    2009-01-01

    The effect of heat affected zone in high performance steel on fatigue crack propagation behavior, which is related to the subsequent microstructure, was investigated. A modified Paris-Erdogan equation was presented for the analysis of fatigue crack propagation behavior corresponding to the heat affected zone conditions. Fatigue crack propagation tests under 0.3 stress ratio and 0.1 load frequency were conducted for both finegrained and coarse-grained heat affected zones, respectively. As shown in the results, much higher crack growth rate occurred in a relatively larger mean grain size material under the same stress intensity range of fatigue crack propagation process for the material.

  11. Corrosion fatigue behavior of high strength brass in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S.; Kassem, M.A.; Ramadan, R.M.; El-Zeky, M.A. [Suez Canal Univ., Dept. of Metallurgy and Materials Engineering (Egypt)

    2000-07-01

    Corrosion fatigue behavior of British Standard high strength brass, CZ 127 has been studied in various environments, 3.5%NaC1 solution and 3.5%NaC1 containing 1000ppm ammonia by applying the reverse bending technique, strain-controlled cyclic, at 67 cycles/min. Characteristics of the produced alloy were studied using differential thermal analysis with applying its results in heat treating of the alloy; metallographic examinations; hardness measurements; X-ray; and electrochemical behavior of the unstressed alloy. CZ 127 was fatigued at three different conditions, solution treated, peak aged, and over aged at a fixed strain amplitude, 0.03 5. Solution treated alloy gave the best fatigue properties in all environments tested among the other materials. Results of the alloy studied were compared with that obtained of 70/30 {alpha}-brass. Fracture surface of the fatigued alloy was examined using optical microscope and scanning electron microscope equipped with EDX. (author)

  12. Corrosion fatigue behavior of high strength brass in aqueous solutions

    International Nuclear Information System (INIS)

    Hamada, A.S.; Kassem, M.A.; Ramadan, R.M.; El-Zeky, M.A.

    2000-01-01

    Corrosion fatigue behavior of British Standard high strength brass, CZ 127 has been studied in various environments, 3.5%NaC1 solution and 3.5%NaC1 containing 1000ppm ammonia by applying the reverse bending technique, strain-controlled cyclic, at 67 cycles/min. Characteristics of the produced alloy were studied using differential thermal analysis with applying its results in heat treating of the alloy; metallographic examinations; hardness measurements; X-ray; and electrochemical behavior of the unstressed alloy. CZ 127 was fatigued at three different conditions, solution treated, peak aged, and over aged at a fixed strain amplitude, 0.03 5. Solution treated alloy gave the best fatigue properties in all environments tested among the other materials. Results of the alloy studied were compared with that obtained of 70/30 α-brass. Fracture surface of the fatigued alloy was examined using optical microscope and scanning electron microscope equipped with EDX. (author)

  13. An accurate fatigue damage model for welded joints subjected to variable amplitude loading

    Science.gov (United States)

    Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.; Langen, I.

    2017-12-01

    Researchers in the past have proposed several fatigue damage models to overcome the shortcomings of the commonly used Miner’s rule. However, requirements of material parameters or S-N curve modifications restricts their practical applications. Also, application of most of these models under variable amplitude loading conditions have not been found. To overcome these restrictions, a new fatigue damage model is proposed in this paper. The proposed model can be applied by practicing engineers using only the S-N curve given in the standard codes of practice. The model is verified with experimentally derived damage evolution curves for C 45 and 16 Mn and gives better agreement compared to previous models. The model predicted fatigue lives are also in better correlation with experimental results compared to previous models as shown in earlier published work by the authors. The proposed model is applied to welded joints subjected to variable amplitude loadings in this paper. The model given around 8% shorter fatigue lives compared to Eurocode given Miner’s rule. This shows the importance of applying accurate fatigue damage models for welded joints.

  14. Thermo-mechanical fatigue behavior of reduced activation ferrite/martensite stainless steels

    International Nuclear Information System (INIS)

    Petersen, C.; Rodrian, D.

    2002-01-01

    The thermo-mechanical cycling fatigue (TMCF) behavior of reduced activation ferrite/martensite stainless steels is examined. The test rig consists of a stiff load frame, which is directly heated by the digitally controlled ohmic heating device. Cylindrical specimens are used with a wall thickness of 0.4 mm. Variable strain rates are applied at TMCF test mode, due to the constant heating rate of 5.8 K/s and variable temperature changes. TMCF results of as received EUROFER 97 in the temperature range between 100 and 500-600 deg. C show a reduction in life time (a factor of 2) compared to F82H mod. and OPTIFER IV. TMCF-experiments with hold times of 100 and 1000 s show dramatic reduction in life time for all three materials

  15. High-cycle fatigue behavior of ultrafine-grained austenitic stainless and TWIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S. [Materials Engineering Laboratory (4KOMT), Box 4200, University of Oulu, 90014 Oulu (Finland); Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Karjalainen, L.P., E-mail: pentti.karjalainen@oulu.fi [Materials Engineering Laboratory (4KOMT), Box 4200, University of Oulu, 90014 Oulu (Finland)

    2010-08-20

    High-cycle fatigue behavior of ultrafine-grained (UFG) 17Cr-7Ni Type 301LN austenitic stainless and high-Mn Fe-22Mn-0.6C TWIP steels were investigated in a reversed plane bending fatigue and compared to the behavior of steels with conventional coarse grain (CG) size. Optical, scanning and transmission electron microscopy were used to examine fatigue damage mechanisms. Testing showed that the fatigue limits leading to fatigue life beyond 4 x 10{sup 6} cycles were about 630 MPa for 301LN while being 560 MPa for TWIP steel, and being 0.59 and 0.5 of the tensile strength respectively. The CG counterparts were measured to have the fatigue limits of 350 and 400 MPa. The primary damage caused by fatigue took place by grain boundary cracking in UFG 301LN, while slip band cracking occurred in CG 301LN. However, in the case of TWIP steel, the fatigue damage mechanism is similar in spite of the grain size. In the course of cycling neither the formation of a martensite structure nor mechanical twinning occurs, but intense slip bands are created with extrusions and intrusions. Fatigue crack initiates preferentially on grain and twin boundaries, and especially in the intersection sites of slip bands and boundaries.

  16. Effect of a new specimen size on fatigue crack growth behavior in thick-walled pressure vessels

    International Nuclear Information System (INIS)

    Shariati, Mahmoud; Mohammadi, Ehsan; Masoudi Nejad, Reza

    2017-01-01

    Fatigue crack growth in thick-walled pressure vessels is an important factor affecting their fracture. Predicting the path of fatigue crack growth in a pressure vessel is the main issue discussed in fracture mechanics. The objective of this paper is to design a new geometrical specimen in fatigue to define the behavior of semi-elliptical crack growth in thick-walled pressure vessels. In the present work, the importance of the behavior of fatigue crack in test specimen and real conditions in thick-walled pressure vessels is investigated. The results of fatigue loading on the new specimen are compared with the results of fatigue loading in a cylindrical pressure vessel and a standard specimen. Numerical and experimental methods are used to investigate the behavior of fatigue crack growth in the new specimen. For this purpose, a three-dimensional boundary element method is used for fatigue crack growth under stress field. The modified Paris model is used to estimate fatigue crack growth rates. In order to verify the numerical results, fatigue test is carried out on a couple of specimens with a new geometry made of ck45. A comparison between experimental and numerical results has shown good agreement. - Highlights: • This paper provides a new specimen to define the behavior of fatigue crack growth. • We estimate the behavior of fatigue crack growth in specimen and pressure vessel. • A 3D finite element model has been applied to estimate the fatigue life. • We compare the results of fatigue loading for cylindrical vessel and specimens. • Comparison between experimental and numerical results has shown a good agreement.

  17. Creep-fatigue behavior of turbine disc of superalloy GH720Li at 650 °C and probabilistic creep-fatigue modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dianyin [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China); Ma, Qihang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Shang, Lihong [Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5 (Canada); Gao, Ye [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Wang, Rongqiao, E-mail: wangrq@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China)

    2016-07-18

    Creep-fatigue experiments have been conducted in nickel-based superalloy GH720Li at an elevated temperature of 650 °C with a stress ratio of 0.1, based on which, different dwell times at the maximum loading were applied to investigate the effect of dwell time on the creep-fatigue behaviors. The tested specimens were cut from the rim region of an actual turbine disc in the hoop direction. The grain size and precipitates of the GH720Li superalloy were examined through scanning electronic microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses. Experimental data shows creep-fatigue lifetime decreases as the dwell time prolongs. Further, different scattering was observed in the creep-fatigue lifetime at different dwell times. Then a probabilistic model based on the applied mechanical work density (AMWD), with a linear heteroscedastic function that evaluates the non-constant deviation in the creep-fatigue lifetime, was formulated to describe the dependence of creep-fatigue lifetime on the dwell time. Finally, the possible microscopic mechanism of the creep-fatigue behavior has been discussed by SEM with EDS on the fracture surfaces.

  18. The fatigue behavior of composite laminates under various mean stresses

    Science.gov (United States)

    Rotem, A.

    1991-01-01

    A method is developed for predicting the S-N curve of a composite laminate which is subjected to an arbitrary stress ratio, R (minimum stress/maximum stress). The method is based on the measuring of the S-N behavior of two distinct cases, tension-tension and compression-compression fatigue loadings. Using these parameters, expressions are formulated that estimate the fatigue behavior under any stress ratio loading. Experimental results from the testing of graphite/epoxy laminates, with various structures, are compared with the predictions and show good agreement.

  19. Prediction of inelastic behavior and creep-fatigue life of perforated plates

    International Nuclear Information System (INIS)

    Igari, Toshihide; Yamauchi, Masafumi; Nomura, Shinichi.

    1992-01-01

    Prediction methods of macroscopic and local stress-strain behaviors of perforated plates in plastic and creep regime are proposed in this paper, and are applied to the creep-fatigue life prediction of perforated plates. Both equivalent-solid-plate properties corresponding to the macroscopic behavior and the stress-strain concentration around a hole were obtained by assuming the analogy between plasticity and creep and also by extending the authors' proposal in creep condition. The perforated plates which were made of Hastelloy XR were subjected to the strain-controlled cyclic test at 950degC in air in order to experimentally obtain the macroscopic behavior such as the cyclic stress-strain curve and creep-fatigue life around a hole. The results obtained are summarized as follows. (1) The macroscopic behavior of perforated plates including cyclic stress-strain behavior and relaxation is predictable by using the proposed method in this paper. (2) The creep-fatigue life around a hole can be predicted by using the proposed method for stress-strain concentration around a hole. (author)

  20. A thermodynamic approach to fatigue damage accumulation under variable loading

    International Nuclear Information System (INIS)

    Naderi, M.; Khonsari, M.M.

    2010-01-01

    We put forward a general procedure for assessment of damage evolution based on the concept of entropy production. The procedure is applicable to both constant- and variable amplitude loading. The results of a series of bending fatigue tests under both two-stage and three-stage loadings are reported to investigate the validity of the proposed methodology. Also presented are the results of experiments involving bending, torsion, and tension-compression fatigue tests with Al 6061-T6 and SS 304 specimens. It is shown that, within the range of parameters tested, the evolution of fatigue damage for these materials in terms of entropy production is independent of load, frequency, size, loading sequence and loading history. Furthermore, entropy production fractions of individual amplitudes sums to unity.

  1. Prediction of inelastic behavior and creep-fatigue life of perforated plates

    International Nuclear Information System (INIS)

    Igari, Toshihide; Setoguchi, Katsuya; Nakano, Shohki; Nomura, Shinichi

    1991-01-01

    Prediction methods of macroscopic and local stress-strain behavior of perforated plates in plastic and creep regime which are proposed by the authors are applied to the inelastic analysis and creep-fatigue life prediction of perforated cylinder subjected to cyclic thermal stress. Stress-strain behavior of perforated cylinder is analyzed by modeling the perforated portion to cylinder with equivalent-solid-plate properties. Creep-fatigue lives at around a hole of perforated plates are predicted by using the local stress-strain behavior and are compared with experimentally observed lives. (author)

  2. Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures

    Energy Technology Data Exchange (ETDEWEB)

    Zargarian, A.; Esfahanian, M. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kadkhodapour, J., E-mail: j.kad@srttu.edu [Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Institute for Materials Testing, Materials Science and Strength of Materials (IMWF), University of Stuttgart, Stuttgart (Germany); Ziaei-Rad, S. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-03-01

    In this paper, the effects of cell geometry and relative density on the high-cycle fatigue behavior of Titanium scaffolds produced by selective laser melting and electron beam melting techniques were numerically investigated by finite element analysis. The regular titanium lattice samples with three different unit cell geometries, namely, diamond, rhombic dodecahedron and truncated cuboctahedron, and the relative density range of 0.1–0.3 were analyzed under uniaxial cyclic compressive loading. A failure event based algorithm was employed to simulate fatigue failure in the cellular material. Stress-life approach was used to model fatigue failure of both bulk (struts) and cellular material. The predicted fatigue life and the damage pattern of all three structures were found to be in good agreement with the experimental fatigue investigations published in the literature. The results also showed that the relationship between fatigue strength and cycles to failure obeyed the power law. The coefficient of power function was shown to depend on relative density, geometry and fatigue properties of the bulk material while the exponent was only dependent on the fatigue behavior of the bulk material. The results also indicated the failure surface at an angle of 45° to the loading direction. - Highlights: • Numerical simulation was used to predict fatigue behavior of titanium scaffolds. • Good agreement between numerical and experimental results • S–N curves obeyed the power law. • Fatigue strength of scaffolds was proportional to their Young's modulus. • Failure surface of scaffolds was inclined at an angle of 45° to loading.

  3. Work stress, fatigue and risk behaviors at the wheel: Data to assess the association between psychosocial work factors and risky driving on Bus Rapid Transit drivers

    Directory of Open Access Journals (Sweden)

    Sergio Useche

    2017-12-01

    Full Text Available This Data in Brief (DiB article presents a hierarchical multiple linear regression model that examine the associations between psychosocial work factors and risk behaviors at the wheel in Bus Rapid Transit (BRT drivers (n=524. The data were collected using a structured self-administrable questionnaire made of measurements of wok stress (job strain and effort- reward imbalance, fatigue (need for recovery and chronic fatigue, psychological distress and demographics (professional driving experience, hours driven per day and days working per week. The data contains 4 parts: descriptive statistics, bivariate correlations between the study variables and a regression model predicting risk behaviors at the wheel and the entire study dataset. For further information, it is convenient to read the full article entitled “Stress-related Psychosocial Factors at Work, Fatigue, and Risky Driving Behavior in Bus Rapid Transport (BRT Drivers”, published in Accident Analysis & Prevention. Keywords: Professional drivers, Work stress, Fatigue, Psychological distress, Risk behaviors, Bus Rapid Transport, BRT

  4. Fatigue crack propagation behavior under creep conditions

    International Nuclear Information System (INIS)

    Ohji, Kiyotsugu; Kubo, Shiro

    1991-01-01

    The crack propagation behavior of the SUS 304 stainless steel under creep-fatigue conditions was reviewed. Cracks propagated either in purely time-dependent mode or in purely cycle-dependent mode, depending on loading conditions. The time-dependent crack propagation rate was correlated with modified J-integral J * and the cycle-dependent crack propagation rate was correlated with J-integral range ΔJ f . Threshold was observed in the cycle-dependent crack propagation, and below this threshold the time-dependent crack propagation appeared. The crack propagation rates were uniquely characterized by taking the effective values of J * and ΔJ f , when crack closure was observed. Change in crack propagation mode occurred reversibly and was predicted by the competitive damage model. The threshold disappeared and the cycle-dependent crack propagation continued in a subthreshold region under variable amplitude conditions, where the threshold was interposed between the maximum and minimum ΔJ f . (orig.)

  5. Fatigue behavior of porous biomaterials manufactured using selective laser melting.

    Science.gov (United States)

    Yavari, S Amin; Wauthle, R; van der Stok, J; Riemslag, A C; Janssen, M; Mulier, M; Kruth, J P; Schrooten, J; Weinans, H; Zadpoor, A A

    2013-12-01

    Porous titanium alloys are considered promising bone-mimicking biomaterials. Additive manufacturing techniques such as selective laser melting allow for manufacturing of porous titanium structures with a precise design of micro-architecture. The mechanical properties of selective laser melted porous titanium alloys with different designs of micro-architecture have been already studied and are shown to be in the range of mechanical properties of bone. However, the fatigue behavior of this biomaterial is not yet well understood. We studied the fatigue behavior of porous structures made of Ti6Al4V ELI powder using selective laser melting. Four different porous structures were manufactured with porosities between 68 and 84% and the fatigue S-N curves of these four porous structures were determined. The three-stage mechanism of fatigue failure of these porous structures is described and studied in detail. It was found that the absolute S-N curves of these four porous structures are very different. In general, given the same absolute stress level, the fatigue life is much shorter for more porous structures. However, the normalized fatigue S-N curves of these four structures were found to be very similar. A power law was fitted to all data points of the normalized S-N curves. It is shown that the measured data points conform to the fitted power law very well, R(2)=0.94. This power law may therefore help in estimating the fatigue life of porous structures for which no fatigue test data is available. It is also observed that the normalized endurance limit of all tested porous structures (<0.2) is lower than that of corresponding solid material (c.a. 0.4). © 2013.

  6. Fatigue Analysis of Magnesium Alloys Components for Car Industry

    Science.gov (United States)

    Marsavina, Liviu; Rusu, Lucian; Șerban, Dan Andrei; Negru, Radu Marcel; Cernescu, Anghel

    2017-12-01

    The use of magnesium alloys in the automotive industry increased in the last decade because of their low weight and relative good mechanical properties. However, the variable loading conditions require a good fatigue behavior. This paper summaries the fatigue properties of magnesium alloys and presents new fatigue curve results for die cast AM50 magnesium alloy.

  7. Fatigue crack growth behavior under cyclic thermal transient stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1986-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  8. Fatigue crack growth behavior under cyclic transient thermal stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1987-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  9. Effect of shot peening process on fatigue behavior of an alloyed austempered ductile iron

    Directory of Open Access Journals (Sweden)

    Amir Sadighzadeh Benam

    2011-08-01

    Full Text Available Shot peening is one of the most common surface treatments to improve the fatigue behavior of metallic parts. In this study the effect of shot peening process on the fatigue behavior of an alloyed austempered ductile iron (ADI has been studied. Austempering heat treatment consisted of austenitizing at 875℃ for 90 min followed by austempering at three different temperatures of 320, 365 and 400℃. Rotating-bending fatigue test was carried out on samples after shot peening by 0.4 – 0.6 mm shots. XRD and SEM analysis, micro hardness and roughness tests were carried out to study the fatigue behavior of the samples. Results indicate that the fatigue strengths of samples austempered at 320, 365 and 400℃ are increased by 27.3%, 33.3% and 48.4%, respectively, after shot peening process.

  10. Tension-Compression Fatigue Behavior of Plain Woven Kenaf/Kevlar Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Suhad D. Salman

    2016-02-01

    Full Text Available The applications of hybrid natural/synthetic reinforced polymer composites have been rapidly gaining market share in structural applications due to their remarkable characteristics and the fact that most of the components made of these materials are subjected to cyclic loading. Their fatigue properties have received a lot of attention because predicting their behavior is a challenge due to the effects of the synergies between the fibers. The purpose of this work is to characterize the tension, compression, and tensile-compression fatigue behavior of six layers of Kevlar hybridized with one layer of woven kenaf reinforced epoxy, at a 35% weight fraction. Fatigue tests were carried out and loaded cyclically at 60%, 70%, 80%, and 90% of their ultimate compressive stress. The results give a complete description for tensile and compression properties and could be used to predict fatigue-induced failure mechanisms.

  11. Fatigue-crack propagation behavior of Inconel 600

    International Nuclear Information System (INIS)

    James, L.A.

    1976-05-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effects of several parameters upon the fatigue-crack propagation behavior of Inconel 600. The parameters studied included temperature, cyclic frequency, stress ratio, thermal aging, and a limited amount of testing in a liquid sodium environment

  12. Epigallocatechin gallate ameliorates chronic fatigue syndrome in mice: behavioral and biochemical evidence.

    Science.gov (United States)

    Sachdeva, Anand Kamal; Kuhad, Anurag; Tiwari, Vinod; Chopra, Kanwaljit

    2009-12-28

    Three decades after the coining of the term chronic fatigue syndrome, the diagnosis of this illness is still symptom based and the aetiology remains elusive. Chronic fatigue syndrome pathogenesis seems to be multifactorial and the possible involvement of immune system is supported. The present study was designed to evaluate the effects of the epigallocatechin gallate in a mouse model of immunologically induced chronic fatigue. On 19th day, after lipopolysaccharide/Brucella abortus administration, the mice showed significant increase in immobility period, post swim fatigue and thermal hyperalgesia. Behavioral deficits were coupled with enhanced oxidative-nitrosative stress as evident by increased lipid peroxidation, nitrite levels and decreased endogenous antioxidant enzymes (superoxide dismutase, reduced glutathione and catalase) and inflammation (increased levels of tumor necrosis factor-alpha and tissue growth factor-beta). Chronic treatment with epigallocatechin gallate restored these behavioral and biochemical alterations in mice. The present study points out towards the beneficial effect of epigallocatechin gallate in the amelioration of chronic fatigue syndrome and thus may provide a new, effective and powerful strategy to treat chronic fatigue syndrome.

  13. Fatigue crack growth behavior in niobium-hydrogen alloys

    International Nuclear Information System (INIS)

    Lin, M.C.C.; Salama, K.

    1997-01-01

    Near-threshold fatigue crack growth behavior has been investigated in niobium-hydrogen alloys. Compact tension specimens (CTS) with three hydrogen conditions are used: hydrogen-free, hydrogen in solid solution, and hydride alloy. The specimens are fatigued at a temperature of 296 K and load ratios of 0.05, 0.4, and 0.75. The results at load ratios of 0.05 and 0.4 show that the threshold stress intensity range (ΔK th ) decreases as hydrogen is added to niobium. It reaches a minimum at the critical hydrogen concentration (C cr ), where maximum embrittlement occurs. The critical hydrogen concentration is approximately equal to the solubility limit of hydrogen in niobium. As the hydrogen concentration exceeds C cr , ΔK th increases slowly as more hydrogen is added to the specimen. At load ratio 0.75, ΔK th decreases continuously as the hydrogen concentration is increased. The results provide evidence that two mechanisms are responsible for fatigue crack growth behavior in niobium-hydrogen alloys. First, embrittlement is retarded by hydride transformation--induced and plasticity-induced crack closures. Second, embrittlement is enhanced by the presence of hydrogen and hydride

  14. Behavior of Fatigue Crack Tip Opening in Air and Corrosive Atmosphere

    Science.gov (United States)

    Hayashi, Morihito; Toeda, Kazunori

    In the study, a formula for predicting fatigue crack tip opening displacement is deduced firstly. And then, due to comparing actual crack growth rate with the deduced formula, the crack tip configuration factor is defined to figure out the crack tip opening configuration that is useful to clarify the behavior of fatigue crack tip formation apparently. Applying the concept, the crack growth of 7/3 brass and 6/4 brass is predicted from the formula, by replacing material properties such as plastic flow resistance, Young modulus, the Poisson ratio, and fatigue toughness, and fatigue test conditions such as the stress intensity factor range, the load ratio, and cycle frequency. Furthermore, the theoretically expected results are verified with the fatigue tests which were carried out on CT specimens under different load conditions of load ratio, cycle frequency, and cyclic peak load, in different environments of air or corrosive ammonia atmosphere, for various brasses. And by comparing and discussing the calculated crack growth rate with attained experimental results, the apparent configuration factor at the crack tip is determined. And through the attained factor which changes along with crack growth, the behaviors of fatigue crack tip formation under different test conditions have been found out.

  15. Ratcheting fatigue behavior of Zircaloy-2 at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rajpurohit, R.S., E-mail: rsrajpurohit.rs.met13@iitbhu.ac.in [Department of Metallurgical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005 (India); Sudhakar Rao, G. [Nuclear Energy and Safety Department, Paul Scherrer Institute, Villigen, CH-5232 (Switzerland); Chattopadhyay, K.; Santhi Srinivas, N.C.; Singh, Vakil [Department of Metallurgical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005 (India)

    2016-08-15

    Nuclear core components of zirconium alloys experience asymmetric stress or strain cycling during service which leads to plastic strain accumulation and drastic reduction in fatigue life as well as dimensional instability of the component. Variables like loading rate, mean stress, and stress amplitude affect the influence of asymmetric loading. In the present investigation asymmetric stress controlled fatigue tests were conducted with mean stress from 80 to 150 MPa, stress amplitude from 270 to 340 MPa and stress rate from 30 to 750 MPa/s to study the process of plastic strain accumulation and its effect on fatigue life of Zircaloy-2 at room temperature. It was observed that with increase in mean stress and stress amplitude accumulation of ratcheting strain was increased and fatigue life was reduced. However, increase in stress rate led to improvement in fatigue life due to less accumulation of ratcheting strain. - Highlights: • Ratcheting strain accumulation occurred due to asymmetric cyclic loading. • Accumulation of ratcheting strain increased with mean stress and stress amplitude. • Ratcheting strain accumulation decreased with increase in stress rate. • With increase in mean stress and stress amplitude there was reduction in fatigue life. • Fatigue life is improved with increase in stress rate.

  16. Fatigue-crack growth behavior in dissimilar metal weldments

    International Nuclear Information System (INIS)

    James, L.A.

    1977-03-01

    The techniques of linear-elastic fracture mechanics were used to characterize fatigue-crack propagation behavior in three dissimilar metal weldments at test temperatures of 800 0 F (427 0 C) and 1000 0 F (538 0 C). The weldments studied included Inconel 718/Type 316, all using Inconel 82 as the filler metal. In general, fatigue-crack growth rates in the weldments were equal to, or less than, those observed in the base metals. Crack deviation from the expected path perpendicular to the loading axis was noted in some cases, and is discussed

  17. The fatigue life and fatigue-crack-through-thickness behavior of a surface-cracked plate, 3

    International Nuclear Information System (INIS)

    Nam, Ki-Woo; Matsui, Kentaro; Ando, Kotoji; Ogura, Nobukazu

    1989-01-01

    The LBB (leak-before-break) design is one of the most important subjects for the evaluation and the assurance of safety in pressure vessels, piping systems, LNG carriers and various other structures. In the LBB design, it is necessary to evaluate precisely the lifetime of steel plate. Furthermore, the change in crack shape that occurs during the propagation after through thickness is of paramount importance. For this reason, in a previous report, the authors proposed a simplified evaluation model for the stress intensity factor after cracking through thickness. Using this model, the crack propagation behavior, crack-opening displacement and crack shape change of surface-cracked smooth specimens and surface-cracked specimens with a stress concentration were evaluated quantitatively. The present study was also done to investigate the fatigue crack propagation behavior of surface cracks subjected to combined tensile and bending stress. Estimation of fatigue crack growth was done using the Newman-Raju formula before through thickness, and using formula (7) and (8) after through thickness. Crack length a r at just through thickness increases with increasing a bending stress. Calculated fatigue crack shape showed very good agreement with experimental one. It was also found that particular crack growth behavior and change in crack shape after cracking through thickness can be explained quantitatively using the K value based on Eqs. (7) and (8). (author)

  18. The effects of Nitinol phases on corrosion and fatigue behavior

    Science.gov (United States)

    Denton, Melissa

    The purpose of these studies was to provide a detailed understanding of Nitinol phases and their effects on corrosion and fatigue life. The two primary phases, austenite and martensite, were carefully evaluated with respect to material geometry, corrosion behavior, wear, and fatigue life. Material characterization was performed using several techniques that include metallography, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray photoelectron spectrum (XPS), and Auger electron spectroscopy (AES). Uniaxial tensile tests were conducted to determine the mechanical properties such as elongation, ultimate tensile strength, modulus, transformation strain, and plateau stress. In addition, accelerated wear testing and four point bend fatigue testing were completed to study the fatigue life and durability of the material. The corrosion of Nitinol was found to be dependent on various surface conditions. Electrochemical corrosion behavior of each phase was investigated using cyclic potentiodyamic polarization testing. The corrosion response of electropolished Nitinol was found to be acceptable, even after durability testing. Stress-induced martensite had a lower breakdown potential due to a rougher surface morphology, while thermally induced martensite and austenite performed similarly well. The surface conditioning also had a significant effect on Nitinol mechanical properties. Electropolishing provided a smooth mirror finish that reduced localized texture and enhanced the ductility of the material. Quasi-static mechanical properties can be good indicators of fatigue life, but further fatigue testing revealed that phase transformations had an important role as well. The governing mechanisms for the fatigue life of Nitinol were determined to be both martesitic phase transformations and surface defects. A new ultimate dislocation strain model was proposed based on specific accelerated step-strain testing.

  19. Fatigue behavior and failure mechanisms of direct laser deposited Ti–6Al–4V

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, Amanda J.; Torries, Brian [Department of Mechanical Engineering, Mississippi State University, Box 9552, Mississippi State, MS 39762 (United States); Shamsaei, Nima, E-mail: shamsaei@me.msstate.edu [Department of Mechanical Engineering, Mississippi State University, Box 9552, Mississippi State, MS 39762 (United States); Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Box 5405, , Mississippi State, MS 39762 (United States); Thompson, Scott M. [Department of Mechanical Engineering, Mississippi State University, Box 9552, Mississippi State, MS 39762 (United States); Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Box 5405, , Mississippi State, MS 39762 (United States); Seely, Denver W. [Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Box 5405, , Mississippi State, MS 39762 (United States)

    2016-02-08

    In order for additive-manufactured parts to become more widely utilized and trusted in application, it is important to have their mechanical properties well-characterized and certified. The fatigue behavior and failure mechanisms of Ti–6Al–4V specimens fabricated using Laser Engineered Net Shaping (LENS), a Direct Laser Deposition (DLD) additive manufacturing (AM) process, are investigated in this study. A series of fully-reversed strain-controlled fatigue tests is conducted on Ti–6Al–4V specimens manufactured via LENS in their as-built and heat-treated conditions. Scanning Electron Microscopy (SEM) is used to examine the fracture surfaces of fatigue specimens to qualify the failure mechanism, crack initiation sites, and defects such as porosity. Due to the relatively high localized heating and cooling rates experienced during DLD, fabricated parts are observed to possess anisotropic microstructures, and thus, different mechanical properties than those of their traditionally-manufactured wrought counterparts. The fatigue lives of the investigated LENS specimens were found to be shorter than those of wrought specimens, and porosity was found to be the primary contributor to these shorter fatigue lives, with the exception of the heat-treated LENS samples. The presence of pores promotes more unpredictable fatigue behavior, as evidenced by data scatter. Pore shape, size, location, and number were found to impact the fatigue behavior of the as-built and annealed DLD parts. As porosity seems to be the main contributor to the fatigue behavior of DLD parts, it is important to optimize the manufacturing process and design parameters to minimize and control pore generation during the build.

  20. Variable amplitude fatigue, modelling and testing

    International Nuclear Information System (INIS)

    Svensson, Thomas.

    1993-01-01

    Problems related to metal fatigue modelling and testing are here treated in four different papers. In the first paper different views of the subject are summarised in a literature survey. In the second paper a new model for fatigue life is investigated. Experimental results are established which are promising for further development of the mode. In the third paper a method is presented that generates a stochastic process, suitable to fatigue testing. The process is designed in order to resemble certain fatigue related features in service life processes. In the fourth paper fatigue problems in transport vibrations are treated

  1. Ibuprofen Ameliorates Fatigue- and Depressive-like Behavior in Tumor-bearing Mice

    Science.gov (United States)

    Norden, Diana M.; McCarthy, Donna O.; Bicer, Sabahattin; Devine, Raymond; Reiser, Peter J.; Godbout, Jonathan P.; Wold, Loren E.

    2015-01-01

    Aims Cancer-related fatigue (CRF) is often accompanied by depressed mood, both of which reduce functional status and quality of life. Research suggests that increased expression of pro-inflammatory cytokines are associated with skeletal muscle wasting and depressive- and fatigue- like behaviors in rodents and cancer patients. We have previously shown that treatment with ibuprofen, a nonsteroidal anti-inflammatory drug, preserved muscle mass in tumor-bearing mice. Therefore, the purpose of the present study was to determine the behavioral effects of ibuprofen in a mouse model of CRF. Main Methods Mice were injected with colon-26 adenocarcinoma cells and treated with ibuprofen (10mg/kg) in the drinking water. Depressive-like behavior was determined using the forced swim test (FST). Fatigue-like behaviors were determined using voluntary wheel running activity (VWRA) and grip strength. The hippocampus, gastrocnemius muscle, and serum were collected for cytokine analysis. Key Findings Tumor-bearing mice showed depressive-like behavior in the FST, which was not observed in mice treated with ibuprofen. VWRA and grip strength declined in tumor-bearing mice, and ibuprofen attenuated this decline. Tumor-bearing mice had decreased gastrocnemius muscle mass and increased expression of IL-6, MAFBx and MuRF mRNA, biomarkers of protein degradation, in the muscle. Expression of IL-1β and IL-6 was also increased in the hippocampus. Treatment with ibuprofen improved muscle mass and reduced cytokine expression in both the muscle and hippocampus of tumor-bearing mice. Significance Ibuprofen treatment reduced skeletal muscle wasting, inflammation in the brain, and fatigue- and depressive-like behavior in tumor-bearing mice. Therefore, ibuprofen warrants evaluation as an adjuvant treatment for CRF. PMID:26498217

  2. Low cycle fatigue behavior of die cast Mg-Al-Mn-Ce magnesium alloy

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2013-11-01

    Full Text Available Fatigue failure is a main failure mode for magnesium and other alloys. It is beneficial for fatigue design and fatigue life improvement to investigate the low cycle fatigue behavior of magnesium alloys. In order to investigate the low cycle fatigue behavior of die cast Mg-Al-Mn-Ce magnesium alloy, the strain controlled fatigue experiments were performed at room temperature and fatigue fracture surfaces of specimens were observed with scanning election microscopy for the alloys under die-cast and aged states. Cyclic stress response curves, strain amplitude versus reversals to failure curve, total strain amplitude versus fatigue life curves and cyclic stress-strain curves of Mg-Al-Mn-Ce alloys were analyzed. The results show that the Mg-Al-Mn-Ce alloys under die-cast (F and aged (T5 states exhibit cyclic strain hardening under the applied total strain amplitudes, and aging treatment could greatly increase the cyclic stress amplitudes of die cast Mg-Al-Mn-Ce alloys. The relationships between the plastic strain amplitude, the elastic strain amplitude and reversals to failure of Mg-Al-Mn-Ce magnesium alloy under different treatment states could be described by Coffin-Manson and Basquin equations, respectively. Observations on the fatigue fracture surface of specimens reveal that the fatigue cracks initiate on the surface of specimens and propagate transgranularly.

  3. Low Cycle Fatigue Behavior of Alloy617 Weldment at 850°C

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jeong Jun; Kim, Seon Jin [Pukyong Nat’l Univ., Busan (Korea, Republic of); Kim, Woo Gon; Kim, Eung-Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-03-15

    Alloy 617 is one of the primary candidate materials to be used in a very high temperature reactor (VHTR) system as an intermediate heat exchanger (IHX). To investigate the low cycle fatigue behavior of Alloy 617 weldments at a high temperature of 850℃, fully reversed strain-controlled fatigue tests were conducted with the total strain values ranging from 0.6~1.5%. The weldment specimens were machined using the weld pads fabricated with a single V-grove configuration by gas tungsten arc welding (GTAW) process. The fatigue life is reduced as the total strain range increases. For all testing conditions, the cyclic stress response behavior of the Alloy 617 weldments exhibited the initial cyclic strain hardening phenomenon during the initial small number of cycles. Furthermore, the overall fatigue cracking and the propagation or cracks showed a transgranular failure mode.

  4. High-temperature low cycle fatigue behavior of a gray cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Fan, K.L., E-mail: 12klfan@tongji.edu.cn; He, G.Q.; She, M.; Liu, X.S.; Lu, Q.; Yang, Y.; Tian, D.D.; Shen, Y.

    2014-12-15

    The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by the interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude. - Highlights: • The low cycle fatigue behavior of the HT250 for engine cylinder blocks was investigated. • TEM investigations were conducted to explain the cyclic deformation response. • The low cycle fatigue cracks of HT250 GCI were studied by SEM. • The fatigue life of the examined material at 523 K is higher than that at 423 K.

  5. Fluoxetine prevents the development of depressive-like behavior in a mouse model of cancer related fatigue.

    Science.gov (United States)

    Norden, Diana M; Devine, Raymond; Bicer, Sabahattin; Jing, Runfeng; Reiser, Peter J; Wold, Loren E; Godbout, Jonathan P; McCarthy, Donna O

    2015-03-01

    Cancer patients frequently suffer from fatigue, a complex syndrome associated with tiredness and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, escalates during treatment, and can persist for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. We have previously shown that increased pro-inflammatory cytokine expression in the brain contributes to depressive- and fatigue-like behaviors in a mouse model of CRF. Inflammatory cytokines increase the activity of indoleamine 2,3-dioxygenase (IDO) and kynurenine 3-monooxygenase (KMO), which competitively reduce serotonin synthesis. Reduced serotonin availability in the brain and increased production of alternative neuroactive metabolites of tryptophan are thought to contribute to the development of depression and fatigue. The purpose of this study was to determine the effects of fluoxetine, a selective serotonin reuptake inhibitor (SSRI), on brain cytokines and behavioral measures of fatigue and depression in tumor-bearing mice. Here we show that tumor growth increased brain expression of pro-inflammatory cytokines and KMO. Treatment with fluoxetine had no effect on tumor growth, muscle wasting, fatigue behavior, or cytokine expression in the brain. Fluoxetine, however, reduced depressive-like behaviors in tumor bearing mice. In conclusion, our data confirm that increased brain expression of pro-inflammatory cytokines is associated with tumor-induced fatigue- and depressive-like behaviors. However, it is possible to separate the effects of tumor growth on mood and fatigue-like behaviors using SSRIs such as fluoxetine. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The effect of ion implantation on the fatigue behavior of metals and alloys

    International Nuclear Information System (INIS)

    Chakrabortty, S.B.; Kujore, A.; Legg, K.O.; Starke, E.A.

    1981-01-01

    The effect of ion implantation on the strain and stress controlled fatigue behavior of polycrystalline copper has been investigated. The cyclic stress-strain response, strain-life and stress-life relationships and fatigue crack nucleation behavior have been studied. The results from the non-implanted materials have been compared with those from the implanted materials. Four implant species, one with a positive misfit, one with a negative misfit, one with a zero misfit, and one insoluble under equilibrium conditions have been used. Most of the fatigue tests were performed in laboratory air. Ion implantation changes the surface deformation behavior for both monotonic and cyclic loading with a corresponding change in hardening rate. Larger changes are observed for the cyclic loading. Implantations which lead to a more homogeneous deformation (fine slip) near the surface, improves the resistance to fatigue crack initiation. Surface compressive residual stresses, induced from implanting a positive misfit species, have a major influence on crack initiation in the stress-life regime

  7. Thermo-mechanical response and fatigue behavior of shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kusagawa, Masaki; Asada, Yasuhide; Nakamura, Toshiya [Tokyo Univ. (Japan). Dept. of Mechanical Engineering

    1998-11-01

    Mechanical, thermo-mechanical and fatigue behaviors of Ni-Ti-Nb shape memory alloy (SMA) have been studied to prepare material data for a design purpose. Presented are testing devices, testing procedure and test results of monotonic tensile, recovery of inelastic deformation due to post heating (thermo-mechanical recovery) and fatigue for future use of the SMA as a structural material of nuclear incore structures. (orig.)

  8. Thermo-mechanical response and fatigue behavior of shape memory alloy

    International Nuclear Information System (INIS)

    Kusagawa, Masaki; Asada, Yasuhide; Nakamura, Toshiya

    1998-01-01

    Mechanical, thermo-mechanical and fatigue behaviors of Ni-Ti-Nb shape memory alloy (SMA) have been studied to prepare material data for a design purpose. Presented are testing devices, testing procedure and test results of monotonic tensile, recovery of inelastic deformation due to post heating (thermo-mechanical recovery) and fatigue for future use of the SMA as a structural material of nuclear incore structures. (orig.)

  9. Influence of Prior Fatigue Cycling on Creep Behavior of Reduced Activation Ferritic-Martensitic Steel

    Science.gov (United States)

    Sarkar, Aritra; Vijayanand, V. D.; Parameswaran, P.; Shankar, Vani; Sandhya, R.; Laha, K.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2014-06-01

    Creep tests were carried out at 823 K (550 °C) and 210 MPa on Reduced Activation Ferritic-Martensitic (RAFM) steel which was subjected to different extents of prior fatigue exposure at 823 K at a strain amplitude of ±0.6 pct to assess the effect of prior fatigue exposure on creep behavior. Extensive cyclic softening that characterized the fatigue damage was found to be immensely deleterious for creep strength of the tempered martensitic steel. Creep rupture life was reduced to 60 pct of that of the virgin steel when the steel was exposed to as low as 1 pct of fatigue life. However, creep life saturated after fatigue exposure of 40 pct. Increase in minimum creep rate and decrease in creep rupture ductility with a saturating trend were observed with prior fatigue exposures. To substantiate these findings, detailed transmission electron microscopy studies were carried out on the steel. With fatigue exposures, extensive recovery of martensitic-lath structure was distinctly observed which supported the cyclic softening behavior that was introduced due to prior fatigue. Consequently, prior fatigue exposures were considered responsible for decrease in creep ductility and associated reduction in the creep rupture strength.

  10. Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures.

    Science.gov (United States)

    Zargarian, A; Esfahanian, M; Kadkhodapour, J; Ziaei-Rad, S

    2016-03-01

    In this paper, the effects of cell geometry and relative density on the high-cycle fatigue behavior of Titanium scaffolds produced by selective laser melting and electron beam melting techniques were numerically investigated by finite element analysis. The regular titanium lattice samples with three different unit cell geometries, namely, diamond, rhombic dodecahedron and truncated cuboctahedron, and the relative density range of 0.1-0.3 were analyzed under uniaxial cyclic compressive loading. A failure event based algorithm was employed to simulate fatigue failure in the cellular material. Stress-life approach was used to model fatigue failure of both bulk (struts) and cellular material. The predicted fatigue life and the damage pattern of all three structures were found to be in good agreement with the experimental fatigue investigations published in the literature. The results also showed that the relationship between fatigue strength and cycles to failure obeyed the power law. The coefficient of power function was shown to depend on relative density, geometry and fatigue properties of the bulk material while the exponent was only dependent on the fatigue behavior of the bulk material. The results also indicated the failure surface at an angle of 45° to the loading direction. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Atomistic origin of size effects in fatigue behavior of metallic glasses

    Science.gov (United States)

    Sha, Zhendong; Wong, Wei Hin; Pei, Qingxiang; Branicio, Paulo Sergio; Liu, Zishun; Wang, Tiejun; Guo, Tianfu; Gao, Huajian

    2017-07-01

    While many experiments and simulations on metallic glasses (MGs) have focused on their tensile ductility under monotonic loading, the fatigue mechanisms of MGs under cyclic loading still remain largely elusive. Here we perform molecular dynamics (MD) and finite element simulations of tension-compression fatigue tests in MGs to elucidate their fatigue mechanisms with focus on the sample size effect. Shear band (SB) thickening is found to be the inherent fatigue mechanism for nanoscale MGs. The difference in fatigue mechanisms between macroscopic and nanoscale MGs originates from whether the SB forms partially or fully through the cross-section of the specimen. Furthermore, a qualitative investigation of the sample size effect suggests that small sample size increases the fatigue life while large sample size promotes cyclic softening and necking. Our observations on the size-dependent fatigue behavior can be rationalized by the Gurson model and the concept of surface tension of the nanovoids. The present study sheds light on the fatigue mechanisms of MGs and can be useful in interpreting previous experimental results.

  12. A study on the fatigue behavior of Steel Fiber Reinforced Concrete structures with initial cracks

    International Nuclear Information System (INIS)

    Chang, Dong-Il; Chai, Won-Kyu; Son, Young-Hyun; Park, Cheol-Woo

    1992-01-01

    Fatigue tests are performed in order to investigate the fatigue behavior of SFRC (Steel Fiber Reinforced Concrete) structures. Thirty SFRC beams are used in this test. The relationships between repeated loading cycle and mid-span deflection of the beams are observed under the three-point loading system. From the test results, the effects of the fiber content and the fiber aspect ratio on the concrete fatigue behavior were studied. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams are also suggested. (author)

  13. Fatiguing exercise intensity influences the relationship between parameters reflecting neuromuscular function and postural control variables.

    Directory of Open Access Journals (Sweden)

    Sébastien Boyas

    Full Text Available The purpose of this study was to investigate the influence of fatiguing exercise intensity on the nature and extent of fatigue-induced changes in neuromuscular function and postural stability in quiet standing. We also explored the contribution of selected neuromuscular mechanisms involved in force production to postural stability impairment observed following fatigue using an approach based on multivariate regressions. Eighteen young subjects performed 30-s postural trials on one leg with their eyes closed. Postural trials were performed before and after fatiguing exercises of different intensities: 25, 50 and 75% of maximal isometric plantarflexor torque. Fatiguing exercises consisted of sustaining a plantarflexor isometric contraction at the target intensity until task failure. Maximal isometric plantarflexor torque, electromyographic activity of plantarflexor and dorsiflexor muscles, activation level (twitch interpolation technique and twitch contractile properties of plantarflexors were used to characterize neuromuscular function. The 25% exercise was associated with greater central fatigue whereas the 50 and 75% exercises involved mostly peripheral fatigue. However, all fatiguing exercises induced similar alterations in postural stability, which was unexpected considering previous literature. Stepwise multiple regression analyses showed that fatigue-related changes in selected parameters related to neuromuscular function could explain more than half (0.51≤R(2≤0.82 of the changes in postural variables for the 25% exercise. On the other hand, regression models were less predictive (0.17≤R(2≤0.73 for the 50 and 75% exercises. This study suggests that fatiguing exercise intensity does not influence the extent of postural stability impairment, but does influence the type of fatigue induced and the neuromuscular function predictors explaining changes in postural variables.

  14. Fatigue behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP)

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2015-01-01

    The static and fatigue bending behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP) has been investigated by four-point bending tests. Fatigue panels and weakened panels (wESCP) with an initial interface defect were manufactured for the fatigue tests. Stress σ vs. number of cycles curves (S-N) were recorded under the different stress...

  15. Effect of tungsten and tantalum on the low cycle fatigue behavior of reduced activation ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, Vani, E-mail: vani@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Mariappan, K.; Nagesha, A.; Prasad Reddy, G.V.; Sandhya, R.; Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Effect of tungsten and tantalum on low cycle fatigue behavior of RAFM steels. Black-Right-Pointing-Pointer Both alloying elements W and Ta improved fatigue life. Black-Right-Pointing-Pointer Increase in Ta content improved fatigue life more than W. Black-Right-Pointing-Pointer Optimization of W content at 1.4 wt.%. Black-Right-Pointing-Pointer Softening behavior closely related to W and Ta content. - Abstract: Reduced activation ferritic/martensitic (RAFM) steels are candidate materials for the test blanket modules of International Thermonuclear Experimental Reactor (ITER). Several degradation mechanisms such as thermal fatigue, low cycle fatigue, creep fatigue interaction, creep, irradiation hardening, swelling and phase instability associated irradiation embrittlement must be understood in order to estimate the component lifetime and issues concerning the structural integrity of components. The current work focuses on the effect of tungsten and tantalum on the low cycle fatigue (LCF) behavior of RAFM steels. Both alloying elements tungsten and tantalum improved the fatigue life. Influence of Ta on increasing fatigue life was an order of magnitude higher than the influence of W on improving the fatigue life. Based on the present study, the W content was optimized at 1.4 wt.%. Softening behavior of RAFM steels showed a strong dependence on W and Ta content in RAFM steels.

  16. Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys

    Science.gov (United States)

    Seifi, Mohsen; Li, Dongyue; Yong, Zhang; Liaw, Peter K.; Lewandowski, John J.

    2015-08-01

    The fracture toughness and fatigue crack growth behavior of two as-vacuum arc cast high-entropy alloys (HEAs) (Al0.2CrFeNiTi0.2 and AlCrFeNi2Cu) were determined. A microstructure examination of both HEA alloys revealed a two-phase structure consisting of body-centered cubic (bcc) and face-centered cubic (fcc) phases. The notched and fatigue precracked toughness values were in the range of those reported in the literature for two-phase alloys but significantly less than recent reports on a single phase fcc-HEA that was deformation processed. Fatigue crack growth experiments revealed high fatigue thresholds that decreased significantly with an increase in load ratio, while Paris law slopes exhibited metallic-like behavior at low R with significant increases at high R. Fracture surface examinations revealed combinations of brittle and ductile/dimpled regions at overload, with some evidence of fatigue striations in the Paris law regime.

  17. Fatigue behavior of Type 316 stainless steel following neutron irradiation inducing helium

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Liu, K.C.

    1980-01-01

    Since a tokamak reactor operates in a cyclic mode, thermal stresses will result in fatigue in structural components, especially in the first wall and blanket. There has been limited work on fatigue in irradiated alloys but none on irradiated materials containing significant amounts of irradiation-induced helium. To provide scoping data and to study the effects of irradiation on fatigue behavior, 20%-cold-worked type 316 stainless steel from the MFE reference heat was studied

  18. Fretting fatigue behavior of high-strength steel monostrands under bending load

    DEFF Research Database (Denmark)

    Winkler, Jan; Georgakis, Christos T.; Fischer, Gregor

    2015-01-01

    In this paper, the fretting fatigue behavior of pretensioned high-strength steel monostrands is investigated. To measure the local deformations on the strands, a novel method based on the digital image correlation (DIC) technique was used to quantify the relative movement between individual wires...... along the length of the monostrand. Information about the monostrand bending stiffness and the extent of relative displacement between core and outer wires of a monostrand undergoing flexural deformations is provided. From the series of dynamic fatigue tests, a fretting fatigue spectrum is derived...

  19. A literature review and inventory of the effects of environment on the fatigue behavior of metals

    Science.gov (United States)

    Hudson, C. M.; Seward, S. K.

    1976-01-01

    The current state of knowledge of the effects of gas environments (at atmospheric pressure and below) on the fatigue behavior of metals is reviewed. Among the topics considered are the mechanisms proposed to explain the differences observed in the fatigue behavior of vacuum- and air-tested specimens, the effects of environment on the surface topography of fatigue cycled specimens, the effect of environment on the various phases of the fatigue phenomenon, the effect of prolonged exposure to vacuum on fatigue life, the variation of fatigue life with decreasing gas pressure, and gas evolution during fatigue cycling. Analysis of the findings of this review indicates that hydrogen embrittlement is primarily responsible for decreased fatigue resistance in humid environments, and that dislocations move more easily during tests in vacuum than during test in air. It was found that fatigue cracks generally initiated and propagated more rapidly in air than in vacuum. Prolonged exposure to vacuum does not adversely affect fatigue resistance. The variation of fatigue life with decreasing gas pressure is sometimes stepped and sometimes continuous.

  20. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    Science.gov (United States)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  1. An experimental method to quantify the impact fatigue behavior of rocks

    International Nuclear Information System (INIS)

    Wu, Bangbiao; Xia, Kaiwen; Kanopoulos, Patrick; Luo, Xuedong

    2014-01-01

    Fatigue failure is an important failure mode of engineering materials. The fatigue behavior of both ductile and brittle materials has been under investigation for many years. While the fatigue failure of ductile materials is well established, only a few studies have been carried out on brittle materials. In addition, most fatigue studies on rocks are conducted under quasi-static loading conditions. To address engineering applications involving repeated blasting, this paper proposes a method to quantify the impact fatigue properties of rocks. In this method, a split Hopkinson pressure bar system is adopted to exert impact load on the sample, which is placed in a specially designed steel sleeve to limit the displacement of the sample and thus to enable the recovery of the rock after each impact. The method is then applied to Laurentian granite, which is fine-grained and isotropic material. The results demonstrate that this is a practicable means to conduct impact fatigue tests on rocks and other brittle solids. (paper)

  2. An experimental method to quantify the impact fatigue behavior of rocks

    Science.gov (United States)

    Wu, Bangbiao; Kanopoulos, Patrick; Luo, Xuedong; Xia, Kaiwen

    2014-07-01

    Fatigue failure is an important failure mode of engineering materials. The fatigue behavior of both ductile and brittle materials has been under investigation for many years. While the fatigue failure of ductile materials is well established, only a few studies have been carried out on brittle materials. In addition, most fatigue studies on rocks are conducted under quasi-static loading conditions. To address engineering applications involving repeated blasting, this paper proposes a method to quantify the impact fatigue properties of rocks. In this method, a split Hopkinson pressure bar system is adopted to exert impact load on the sample, which is placed in a specially designed steel sleeve to limit the displacement of the sample and thus to enable the recovery of the rock after each impact. The method is then applied to Laurentian granite, which is fine-grained and isotropic material. The results demonstrate that this is a practicable means to conduct impact fatigue tests on rocks and other brittle solids.

  3. Mechanical behavior and fatigue performance of SMA short fiber reinforced MMC

    Science.gov (United States)

    Al-Matar, Basem Jawad

    The mechanical behavior and performance of Shape Memory Alloy (SMA) short fiber NiTi reinforced Al was experimentally investigated for monotonic and fatigue test Al 6061 NiTi-SiC T6 was superior to unreinforced materials as well as to the reinforced Al T4. Taya three-dimensional model was performed on the monotonic tensile test at room temperature. It showed good agreement with experimental results. In order to utilize the compressive criterion for SMA, the NiTi reinforced Al composite was cooled at -10°C and prestrained at 1.2%. Beyond this limit composite suffered from damage. The net enhancement of SMA effect was around 10 MPa on composite yield stress. Results showed that the elastic constant for the composite did not change with loading and unloading suggesting that the inelastic behavior is plasticity. Further investigation on the inelastic behavior model as damage and/or plasticity by evaluating Poisson's ratio during loading was carried out by Adaptive Image Correlation Technique for Full-Field Strain Measurement. Poisson's ratio increased from around 0.33 to 0.5 demonstrating that it is plasticity that is responsible for the inelastic behavior. Scanning electron microscopy was also used and confirmed model results. The overall damage-behavior was quantified in terms of the post fatigue failure strength for low-cycle fatigue tests. Power law model was best to fit experimental findings.

  4. Fatigue crack growth resistance and crack closure behavior in two aluminum alloys for aeronautical applications

    Directory of Open Access Journals (Sweden)

    Elenice Maria Rodrigues

    2005-09-01

    Full Text Available Aluminum-lithium alloys are candidate materials for many aerospace applications because of their high specific strength and elastic modulus. These alloys have several unique characteristics such as excellent fatigue crack growth resistance when compared with that of the conventional 2000 and 7000 series alloys. In this study, fatigue crack propagation behavior has been examined in a commercial thin plate of Al-Li-Cu-Mg alloy (8090, with specific emphasis at the fatigue threshold. The results are compared with those of the traditional Al-Cu-Mg alloy (2024. Fatigue crack closure is used to explain the different behavior of the compared alloys.

  5. Experimental Investigation on Fatigue Behavior of Epoxy Resin under Load and Displacement Controls

    Directory of Open Access Journals (Sweden)

    Mahmood Mehrdad Shokrieh

    2014-12-01

    Full Text Available The mechanical properties of epoxy resin including tensile and flexural modulus, tensile and flexural strength for static conditions are currently studied. The frequency effect as significant parameter at room temperature is investigated and fatigue behavior of the epoxy resin in tension-tension loading conditions for different frequencies of 2, 3 and 5 Hz are obtained. The epoxy resin has been taken under flexural bending fatigue loading and fatigue life is investigated. The results of the experiments show the values of 2.5 and 3 GPa of tensile and flexural modules and 59.98 and 110.02 MPa of tensile and flexural strengths for the resin, respectively. To achieve a linear load-deflection relationship in a three-point bending experiment, a maximum allowable deflection of 5 mm is acquired. The relationship between the frequency and fatigue life shows higher frequency results in lower fatigue life. Loading with frequency of 2 Hz has provided 5.8 times more fatigue life compared with 5 Hz loading. For a tension-tension fatigue loading condition, the variation of tensile module of epoxy resin shows no noticeable change during the fatigue loading condition. This module decreases significantly only in the primary and failure cycles close to the fracture point. In further experiments, fatigue behavior of epoxy resin was tested under flexural bending fatigue loadings with controlled deflection at room temperature. Maximum applied normalized stresses versus the number of cycles to failure curve are illustrated and it can be performed in order to predict the number of cycles to failure for the resin in arbitrary applied normal stresses as well.

  6. Mechanical behavior and fatigue in polymeric composites at low temperatures

    International Nuclear Information System (INIS)

    Katz, Y.; Bussiba, A.; Mathias, H.

    1986-01-01

    Advanced fiber reinforced polymeric composite materials are often suggested as structural materials at low temperature. In this study, graphite epoxy and Kevlar-49/epoxy systems were investigated. Fatigue behavior was emphasized after establishing the standard monotonic mechanical properties, including fracture resistance parameters at 77, 190, and 296 K. Tension-tension fatigue crack propagation testing was carried out at nominal constant stress intensity amplitudes using precracked compact tensile specimens. The crack tip damage zone was measured and tracked by an electro-potential device, opening displacement gage, microscopic observation, and acoustic emission activity recording. Fractograhic and metallographic studies were performed with emphasis on fracture morphology and modes, failure processes, and description of sequential events. On the basis of these experimental results, the problem of fatigue resistance, including low temperature effects, is analyzed and discussed. The fundamental concepts of fatigue in composites are assessed, particularly in terms of fracture mechanics methods

  7. Development of a Physically-Based Methodology for Predicting Material Variability in Fatigue Crack Initiation and Growth Response

    National Research Council Canada - National Science Library

    Chan, Kwai

    2004-01-01

    ... of aerospace structural alloys. In this three-year program, physics-based fatigue crack initiation and growth models were developed and integrated into a probabilistic micromechanical code for treating fatigue life variability...

  8. On the behavior of surface electromyographic variables during the menstrual cycle

    International Nuclear Information System (INIS)

    Soares, Fabiano Araujo; Salomoni, Sauro Emerick; De Carvalho, Joao Luiz Azevedo; Nascimento, Francisco Assis de Oliveira; Veneziano, Wilson Henrique; Pires, Kenia Fonseca; Da Rocha, Adson Ferreira

    2011-01-01

    The goal of this work is to study the behavior of electromyographic variables during the menstrual cycle. Ten female volunteers (24.0 ± 2.8 years of age) performed fatiguing isometric contractions, and electromyographic signals were measured on the biceps brachii in four phases of the menstrual cycle. Adaptations of classical algorithms were used for the estimation of the root mean square (RMS) value, absolute rectified value (ARV), mean frequency (MNF), median frequency (MDF), and conduction velocity (CV). The CV estimator had a higher (p = 0.002) rate of decrease at the end of the follicular phase and at the end of the luteal phase. The MDF (p = 0.002) and MNF (p = 0.004) estimators had a higher rate of decrease at the beginning of the follicular phase and at the end of the luteal phase. No significant differences between phases of the menstrual cycle were detected with the ARV and RMS estimators (p > 0.05). These results suggest that the behavior of the muscles in women presents different characteristics during different phases of the menstrual cycle. In particular, women were more susceptible to fatigue at the end of the luteal phase

  9. Effect of biomimetic non-smooth unit morphology on thermal fatigue behavior of H13 hot-work tool steel

    Science.gov (United States)

    Meng, Chao; Zhou, Hong; Cong, Dalong; Wang, Chuanwei; Zhang, Peng; Zhang, Zhihui; Ren, Luquan

    2012-06-01

    The thermal fatigue behavior of hot-work tool steel processed by a biomimetic coupled laser remelting process gets a remarkable improvement compared to untreated sample. The 'dowel pin effect', the 'dam effect' and the 'fence effect' of non-smooth units are the main reason of the conspicuous improvement of the thermal fatigue behavior. In order to get a further enhancement of the 'dowel pin effect', the 'dam effect' and the 'fence effect', this study investigated the effect of different unit morphologies (including 'prolate', 'U' and 'V' morphology) and the same unit morphology in different sizes on the thermal fatigue behavior of H13 hot-work tool steel. The results showed that the 'U' morphology unit had the optimum thermal fatigue behavior, then the 'V' morphology which was better than the 'prolate' morphology unit; when the unit morphology was identical, the thermal fatigue behavior of the sample with large unit sizes was better than that of the small sizes.

  10. Low cycle fatigue behaviors of low alloy steels in 310 .deg. C deoxygenated water

    International Nuclear Information System (INIS)

    Jang, Hun

    2008-02-01

    After low cycle fatigue tests of SA508 Gr.1a low alloy steel in 310 .deg. C deoxygenated water, the fatigue surface and the sectioned area of specimens were observed to understand the effect of the cyclic strain rate on the environmentally assisted cracking behaviors. From the fatigue crack morphologies of the specimen tested at a strain rate of 0.008 %/s, unclear ductile striations and blunt crack tip were observed. So, metal dissolution could be the main cracking mechanism of the material at the strain rate. On the other hand, on the fatigue surface of the specimen tested at strain rates of 0.04 and 0.4 %/s, the brittle cracks and the flat facets, which are the evidence of the hydrogen induced cracking, were observed. Also, the tendency of linkage between the main crack and micro-cracks was observed on the sectioned area. Therefore, the main cracking mechanism at the strain rates of 0.04 and 0.4 %/s could be the hydrogen induced cracking. Additionally, the evidence of the dissolved MnS inclusions was observed on the fatigue surface from energy dispersive x-ray spectrometer analyses. So, despite of the low sulfur content of the test material, the sulfides seem to contribute to environmentally assisted cracking of SA508 Gr.1a low alloy steel in 310 .deg. C deoxygenated water. Additionally, our experimental fatigue life data of SA508 Gr.1a low alloy steel (heat A) showed a consistent difference with statistical model produced in argon national laboratory. So, additional low cycle fatigue tests of other heat SA508 Gr.1a (heat B) and SA508 Gr.3 low alloy steels were performed to investigate the effect of material variability on fatigue behaviors of low alloy steels in 310 .deg. C deoxygenated water. In results, the fatigue lives of three low alloy steels were increased following order: SA508 Gr.1a low alloy steel - heat A, SA508 Gr.3 low alloy steel, and SA508 Gr.1a low alloy steel - heat B. From microstructure observation, the fatigue surface of SA508 Gr.1a low alloy

  11. Research on fatigue behavior and residual stress of large-scale cruciform welding joint with groove

    International Nuclear Information System (INIS)

    Zhao, Xiaohui; Liu, Yu; Liu, Yong; Gao, Yuan

    2014-01-01

    Highlights: • The fatigue behavior of the large-scale cruciform welding joint with groove was studied. • The longitudinal residual stress of the large-scale cruciform welding joint was tested by contour method. • The fatigue fracture mechanism of the large-scale cruciform welding joint with groove was analyzed. - Abstract: Fatigue fracture behavior of the 30 mm thick Q460C-Z steel cruciform welded joint with groove was investigated. The fatigue test results indicated that fatigue strength of 30 mm thick Q460C-Z steel cruciform welded joint with groove can reach fatigue level of 80 MPa (FAT80). Fatigue crack source of the failure specimen initiated from weld toe. Meanwhile, the microcrack was also found in the fusion zones of the fatigue failure specimen, which was caused by weld quality and weld metal integrity resulting from the multi-pass welds. Two-dimensional map of the longitudinal residual stress of 30 mm thick Q460C-Z steel cruciform welded joint with groove was obtained by using the contour method. The stress nephogram of Two-dimensional map indicated that longitudinal residual stress in the welding center is the largest

  12. Thermal shock fatigue behavior of TiC/Al2O3 composite ceramics

    Institute of Scientific and Technical Information of China (English)

    SI Tingzhi; LIU Ning; ZHANG Qingan; YOU Xianqing

    2008-01-01

    The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt. % TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was discussed. Indentation-quench test was conducted to evaluate the effect of thermal fatigue temperature difference (ΔT) and number of thermal cycles (N) on fatigue crack growth (Δα). The mechanical properties and thermal fatigue resistance of TiC/Al2O3 composites are remarkably improved by the addition of TiC. The thermal shock fatigue of monolithic alumina and TiC/Al2O3 composites is due to a "true" cycling effect (thermal fatigue). Crack deflection and bridging are the predominant reasons for the improvement of thermal shock fatigue resistance of the composites.

  13. Assessment of Low Cycle Fatigue Behavior of Powder Metallurgy Alloy U720

    Science.gov (United States)

    Gabb, Tomothy P.; Bonacuse, Peter J.; Ghosn, Louis J.; Sweeney, Joseph W.; Chatterjee, Amit; Green, Kenneth A.

    2000-01-01

    The fatigue lives of modem powder metallurgy disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary as functions of variables the different steps of materials/component processing: powder atomization, consolidation, extrusion, forging, heat treating, and machining. It is important to understand the relationship between the statistical variations in life and these variables, as well as the change in life distribution due to changes in fatigue loading conditions. The objective of this study was to investigate these relationships in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were performed at 538 C (1000 F) at limited sets of test conditions. Analyses were performed to: (1) assess variations of microstructure, mechanical properties, and LCF failure initiation sites as functions of disk processing and loading conditions; and (2) compare mean and minimum fatigue life predictions using different approaches for modeling the data from assorted test conditions. Significant variations in life were observed as functions of the disk processing variables evaluated. However, the lives of all specimens could still be combined and modeled together. The failure initiation sites for tests performed at a strain ratio R(sub epsilon) = epsilon(sub min)/epsilon(sub max) of 0 were different from those in tests at a strain ratio of -1. An approach could still be applied to account for the differences in mean and maximum stresses and strains. This allowed the data in tests of various conditions to be combined for more robust statistical estimates of mean and minimum lives.

  14. Analysis of the cyclic behavior and fatigue damage of extruded AA2017 aluminum alloy

    International Nuclear Information System (INIS)

    May, A.; Taleb, L.; Belouchrani, M.A.

    2013-01-01

    The present work is devoted to study the anisotropic behavior of an extruded aluminum alloy under cyclic loading in axial and shear directions. In first, we have studied its elastoplastic behavior through the evolution of stress–strain loops, isotropic and kinematic hardening and we have associated this behavior with the evolution of its elastic adaptation (shakedown). In second, we have studied the behavior of the material in fatigue damage using the evolution of stiffness. Finally, microstructural investigations were performed on fractured surfaces using scanning electron microscope (SEM) in order to understand the evolution of fatigue damage during cyclic loading

  15. Strain-rate dependent fatigue behavior of 316LN stainless steel in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jibo [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wu, Xinqiang, E-mail: xqwu@imr.ac.cn [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Han, En-Hou; Ke, Wei; Wang, Xiang [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sun, Haitao [Nuclear and Radiation Safety Center, SEPA, Beijing 100082 (China)

    2017-06-15

    Low cycle fatigue behavior of forged 316LN stainless steel was investigated in high-temperature water. It was found that the fatigue life of 316LN stainless steel decreased with decreasing strain rate from 0.4 to 0.004 %s{sup −1} in 300 °C water. The stress amplitude increased with decreasing strain rate during fatigue tests, which was a typical characteristic of dynamic strain aging. The fatigue cracks mainly initiated at pits and slip bands. The interactive effect between dynamic strain aging and electrochemical factors on fatigue crack initiation is discussed. - Highlights: •The fatigue lives of 316LN stainless steel decrease with decreasing strain rate. •Fatigue cracks mainly initiated at pits and persistent slip bands. •Dynamic strain aging promoted fatigue cracks initiation in high-temperature water.

  16. Room temperature fatigue behavior of OFHC copper and CuAl25 specimens of two sizes

    DEFF Research Database (Denmark)

    Singhal, A.; Stubbins, J.F.; Singh, B.N.

    1994-01-01

    requiring an understanding of their fatigue behavior.This paper describes the room temperature fatigue behavior of unirradiated OFHC (oxygen-free high-conductivity) copper and CuAl25 (copper strengthened with a 0.25% atom fraction dispersion of alumina). The response of two fatigue specimen sizes to strain......Copper and its alloys are appealing for application in fusion reactor systems for high heat flux components where high thermal conductivities are critical, for instance, in divertor components. The thermal and mechanical loading of such components will be, at least in part, cyclic in nature, thus...

  17. Happy Now, Tired Later? Extraverted and Conscientious Behavior Are Related to Immediate Mood Gains, but to Later Fatigue.

    Science.gov (United States)

    Leikas, Sointu; Ilmarinen, Ville-Juhani

    2017-10-01

    Experience sampling studies on Big Five-related behavior show that people display the whole spectrum of each trait in their daily behavior, and that desirable Big Five states-especially state Extraversion-are related to positive mood. However, other research lines suggest that extraverted and conscientious behavior may be mentally depleting. The present research examined this possibility by extending the time frame of the measured personality processes. A 12-day experience sampling study (N = 48; observations = 2,328) measured Big Five states, mood, stress, and fatigue five times a day. Extraverted and conscientious behavior were concurrently related to positive mood and lower fatigue, but to higher fatigue after a 3-hour delay. These relations were not moderated by personality traits. The relation between extraverted behavior and delayed fatigue was mediated by the number of people the person had encountered. Whether the person had a goal mediated the relation between conscientious behavior and delayed fatigue. Extraverted and conscientious behavior predict mental depletion after a 3-hour delay. The results help reconcile previous findings regarding the consequences of state Extraversion and provide novel information about the consequences of state Conscientiousness. © 2016 Wiley Periodicals, Inc.

  18. Effect of oxide film formation on the fatigue behavior of aluminum alloy

    International Nuclear Information System (INIS)

    Kim, Jong Cheon; Cheong, Seong Kyun

    2012-01-01

    In this study, the effects of surface oxide film formation on the fatigue behavior of 7075-T6 aluminum alloy were analyzed in terms of the corrosion time of the alloy. The aluminum material used is known to have high corrosion resistance due to the passivation phenomenon that prevents corrosion. Aluminum alloys have been widely used in various industrial applications such as aircraft component manufacturing because of their lighter weight and higher strength than other materials. Therefore, studies on the fatigue behavior of materials and passivation properties that prevent corrosion are required. The fatigue behavior in terms of the corrosion time was analyzed by using a four pointing bending machine, and the surface corrosion level of the aluminum material in terms of the corrosion time was estimated by measuring the surface were studied by scanning electron microscopy (SEM). The results indicated that corrosion actively progressed for four weeks during the initial corrosion phase, the fatigue life significantly decreased, and the surface roughness increased. However, after four weeks, the corrosion reaction tended to slow down due to the passivation phenomenon of the material. Therefore, on the basis of SEM analysis results, it was concluded that the growth of the surface oxide film was reduced after four weeks and then the oxide film on the material surface served as a protection layer and prevented further corrosion

  19. A Study on the VHCF Fatigue Behaviors of Hydrogen Attacked Inconel 718 Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Chang-Min [Kyungpook National Univ., DMI Senior Fellow, Daegu (Korea, Republic of); Nahm, Seung-Hoon [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Kim, Jun-Hyong; Pyun, Young-Sik [Sun Moon Univ., Chunan (Korea, Republic of)

    2016-07-15

    This study is to investigate the influence of hydrogen attack and UNSM on fatigue behaviors of the Inconel 718 alloy. The decrease of the fatigue life between the untreated and the hydrogen attacked material is 10-20%. The fatigue lives of hydrogen attacked specimen decreased without a fatigue limit, similar to those of nonferrous materials. Due to hydrogen embrittlement, about 80% of the surface cracks were smaller than the average grain size of 13 μm. Many small surface cracks caused by the embrittling effect of hydrogen attack were initiated at the grain boundaries and surface scratches. Cracks were irregularly distributed, grew, and then coalesced through tearing, leading to a reduction of fatigue life. Results revealed that the fatigue lives of UNSM-treated specimens were longer than those of the untreated specimens.

  20. S-N Fatigue and Fatigue Crack Propagation Behaviors of X80 Steel at Room and Low Temperatures

    Science.gov (United States)

    Jung, Dae-Ho; Kwon, Jae-Ki; Woo, Nam-Sub; Kim, Young-Ju; Goto, Masahiro; Kim, Sangshik

    2014-02-01

    In the present study, the S-N fatigue and the fatigue crack propagation (FCP) behaviors of American Petroleum Institute X80 steel were examined in the different locations of the base metal (BM), weld metal (WM), and heat-affected zone (HAZ) at 298 K, 223 K, and 193 K (25 °C, -50 °C, and -80 °C). The resistance to S-N fatigue of X80 BM specimen increased greatly with decreasing temperature from 298 K to 193 K (25 °C to -80 °C) and showed a strong dependency on the flow strength (½(yield strength + tensile strength)). The FCP rates of X80 BM specimen were substantially reduced with decreasing temperature from 298 K to 223 K (25 °C to -50 °C) over the entire ∆ K regime, while further reduction in FCP rates was not significant with temperature from 223 K to 193 K (-50 °C to -80 °C). The FCP rates of the X80 BM and the WM specimens were comparable with each other, while the HAZ specimen showed slightly better FCP resistance than the BM and the WM specimens over the entire ∆K regime at 298 K (25 °C). Despite the varying microstructural characteristics of each weld location, the residual stress appeared to be a controlling factor to determine the FCP behavior. The FCP behaviors of high strength X80 steel were discussed based on the microstructural and the fractographic observations.

  1. FATIGUE CRACK PROPAGATION THROUGH AUSTEMPERED DUCTILE IRON MICROSTRUCTURE

    Directory of Open Access Journals (Sweden)

    Lukáš Bubenko

    2010-10-01

    Full Text Available Austempered ductile iron (ADI has a wide range of application, particularly for castings used in automotive and earth moving machinery industries. These components are usually subjected to variable dynamic loading that may promote initiation and propagation of fatigue cracks up to final fracture. Thus, it is important to determine the fatigue crack propagation behavior of ADI. Since fatigue crack growth rate (da/dN vs. stress intensity factor K data describe fatigue crack propagation resistance and fatigue durability of structural materials, da/dN vs. Ka curves of ADI 1050 are reported here. The threshold amplitude of stress intensity factor Kath is also determined. Finally, the influence of stress intensity factor amplitude to the character of fatigue crack propagation through the ADI microstructure is described.

  2. Experimental study on creep-fatigue interaction behavior of GH4133B superalloy

    International Nuclear Information System (INIS)

    Hu Dianyin; Wang Rongqiao

    2009-01-01

    The creep-fatigue tests have been conducted with nickel-based superalloy GH4133B at 600 deg. C in three cases of type loading to study the creep-fatigue behavior of the alloy and the loading history effect on the creep-fatigue damage. Since the conventional linear cumulative damage rule failed in evaluating the creep-fatigue life based on experimental data, a continuous non-linear model proposed by Mao et al. was employed to describe the creep-fatigue interaction. The creep-fatigue damage in the cases of continuous cyclic creep loading (CF) and prior fatigue followed by creep loading (F + C) was larger than unity and smaller than unity when the type loading was prior creep followed by fatigue loading (C + F). Scanning electron microscope (SEM) analyses of the fracture surface showed that the cracks initiated from the specimen surface and the fracture modes in different loading history were different. The crack mode at CF loading depended on the cyclic period. In the case of F + C loading, the primary fracture mode was transgranular, and in the condition where the type of waveform was C + F, the fracture mode was of mixed transgranular and intergranular type. In addition, the origin of the history effect on creep-fatigue interaction was explained by the SEM observations.

  3. Effect of temperature upon the fatigue-crack propagation behavior of Inconel X-750

    International Nuclear Information System (INIS)

    James, L.A.

    1976-05-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effect of temperature upon the fatigue-crack propagation behavior of precipitation heat-treated Inconel X-750 in an air environment over the range 75-1200 0 F. In general, fatigue-crack growth rates increased with increasing test temperature

  4. Effect of corrosion and sandblasting on the high cycle fatigue behavior of reinforcing B500C steel bars

    Directory of Open Access Journals (Sweden)

    Marina C. Vasco

    2017-10-01

    Full Text Available In a series of applications, steel reinforced concrete structures are subjected to fatigue loads during their service life, what in most cases happens in corrosive environments. Surface treatments have been proved to represent proper processes in order to improve both fatigue and corrosion resistances. In this work, the effect of corrosion and sandblasting on the high cycle fatigue behavior reinforcing steel bars is investigated. The investigated material is the reinforcing steel bar of technical class B500C, of nominal diameter of 12 mm. Steel bars specimens were first exposed to corrosion in alternate salt spray environment for 30 and 60 days and subjected to both tensile and fatigue tests. Then, a series of specimens were subjected to common sandblasting, corroded and mechanically tested. Metallographic investigation and corrosion damage evaluation regarding mass loss and martensitic area reduction were performed. Tensile tests were conducted after each corrosion exposure period prior to the fatigue tests. Fatigue tests were performed at a stress ratio, R, of 0.1 and loading frequency of 20 Hz. All fatigue tests series as well as tensile test were also performed for as received steel bars to obtain the reference behavior. The results have shown that sandblasting hardly affects the tensile behavior of the uncorroded material. The effect of sandblasting on the tensile behavior of pre-corroded specimens seems to be also limited. On the other hand, fatigue results indicate an improved fatigue behavior for the sandblasted material after 60 days of corrosion exposure. Martensitic area reductions, mass loss and depth of the pits were significantly smaller for the case of sandblasted materials, which confirms an increased corrosion resistance

  5. Thermo-mechanical fatigue behavior of the intermetallic gamma-TiAl alloy TNB-V5 with different microstructures

    International Nuclear Information System (INIS)

    Roth, M; Biermann, H

    2010-01-01

    The cyclic deformation and fatigue behavior of the γ-TiAl alloy TNB-V5 is studied under thermo-mechanical load for the three technically important microstructures Fully-Lamellar (FL), Near-Gamma (NG) and Duplex (DP), respectively. Thus, thermo-mechanical fatigue (TMF) tests were carried out with different temperature-strain cycles, different temperature ranges from 400 0 C to 800 0 C and with two different strain ranges. Cyclic deformation curves, stress-strain hysteresis loops and fatigue lives are presented. The type of microstructure shows a surprisingly small influence on the cyclic deformation and fatigue behavior under TMF conditions. For a general life prediction the damage parameter of Smith, Watson and Topper P SWT is well suitable, if the testing and the application temperature ranges, respectively, include temperatures above the ductile-brittle transition temperature (approx. 750 0 C). If the maximum temperature is below that temperature, the brittle materials' behavior yields a high scatter of fatigue lives and a low slope of the fatigue life curve and therefore the damage parameter P SWT cannot be applied for the live prediction.

  6. Fatigue Crack Behavior of Stainless Steel 304 by the Addition of Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Rizwanulhaque Syed

    2014-01-01

    Full Text Available Fatigue is the main source of almost half of whole mechanical failures. This research investigated the effect on cyclic fatigue behavior of stainless steel 304 (SS304 when including carbon nanotubes (CNTs at the crack tip. The cyclic fatigue tests were conducted on compact tension (CT specimens to establish the relationship between crack growth and the number of cycles (a-N. It is found that the incorporation of a small amount of CNTs increased the fatigue life of the SS304/metal. Micrographs showed that the enhancement in fatigue life is caused by CNTs dense arrangement around the crack tip, entangled with each other, and finer grain size. Smooth bonding at the interface of the CNTs and SS304 grains is also observed.

  7. Fuzzy central tendency measure for time series variability analysis with application to fatigue electromyography signals.

    Science.gov (United States)

    Xie, Hong-Bo; Dokos, Socrates

    2013-01-01

    A new method, namely fuzzy central tendency measure (fCTM) analysis, that could enable measurement of the variability of a time series, is presented in this study. Tests on simulated data sets show that fCTM is superior to the conventional central tendency measure (CTM) in several respects, including improved relative consistency and robustness to noise. The proposed fCTM method was applied to electromyograph (EMG) signals recorded during sustained isometric contraction for tracking local muscle fatigue. The results showed that the fCTM increased significantly during the development of muscle fatigue, and it was more sensitive to the fatigue phenomenon than mean frequency (MNF), the most commonly-used muscle fatigue indicator.

  8. Effects of a laser surface processing induced heat-affected zone on the fatigue behavior of AISI 4340 steel

    International Nuclear Information System (INIS)

    McDaniels, R.L.; White, S.A.; Liaw, K.; Chen, L.; McCay, M.H.; Liaw, P.K.

    2008-01-01

    The effects of the heat-affected zone (HAZ) in AISI 4340 steel created by laser-surface alloying (LSA) on high-cycle fatigue behavior have been investigated. This research was performed by producing several lots of laser-processed AISI 4340 steel using different laser processing parameters, and then subjecting the samples to high-cycle fatigue and Knoop microindentation hardness studies. Samples of tested material from each lot were examined using scanning-electron microscopy (SEM) in order to establish the effects of laser processing on the microstructure of the fatigue-tested AISI 4340 steel. When these three techniques, microindentation hardness testing, high-cycle fatigue testing, and SEM, are combined, a mechanistic understanding of the effect of the HAZ on the fatigue behavior of this alloy might be gained. It was found that the HAZ did not appear to have an adverse effect on the high-cycle fatigue behavior of LSA-processed AISI 4340 steel

  9. Computational prediction of the fatigue behavior of additively manufactured porous metallic biomaterials

    NARCIS (Netherlands)

    Hedayati, R.; Hosseini-Toudeshky, H; Sadighi, M.; Mohammadi-Aghdam, M; Zadpoor, A.A.

    2016-01-01

    The mechanical behavior of additively manufactured porous biomaterials has recently received increasing attention. While there is a relatively large body of data available on the static mechanical properties of such biomaterials, their fatigue behavior is not yet well-understood. That is partly

  10. Experimental Investigation and Finite Element Analysis on Fatigue Behavior of Aluminum Alloy 7050 Single-Lap Joints

    Science.gov (United States)

    Zhou, Bing; Cui, Hao; Liu, Haibo; Li, Yang; Liu, Gaofeng; Li, Shujun; Zhang, Shangzhou

    2018-03-01

    The fatigue behavior of single-lap four-riveted aluminum alloy 7050 joints was investigated by using high-frequency fatigue test and scanning electron microscope (SEM). Stress distributions obtained by finite element (FE) analysis help explain the fatigue performance. The fatigue test results showed that the fatigue lives of the joints depend on cold expansion and applied cyclic loads. FE analysis and fractography indicated that the improved fatigue lives can be attributed to the reduction in maximum stress and evolution of fatigue damage at the critical location. The beneficial effects of strengthening techniques result in tearing ridges or lamellar structure on fracture surface, decrease in fatigue striations spacing, delay of fatigue crack initiation, crack deflection in fatigue crack propagation and plasticity-induced crack closure.

  11. Application of fracture mechanics to fatigue in pressure vessels

    International Nuclear Information System (INIS)

    Ghavami, K.

    1982-01-01

    The methods of application of fracture mechanics to predict fatigue crack propagation in welded structures and pressure vessels are described with the following objectives: i) To identify the effect of different variables such as crack tip plasticity, free surface, finite plate thickness, stress concentration and type of the structure, on the magnitude of stress intensity factor K in Welded joint. ii) To demonstrate the use of fracture mechanics for analysing fatigue crack propagation data. iii) To show how a law of fatigue crack propagation based on fracure mechanics, may be used to predict fatigue behavior of welded structures such as pressure vessel. (Author) [pt

  12. Cyclic deformation and fatigue data for Ti–6Al–4V ELI under variable amplitude loading

    Directory of Open Access Journals (Sweden)

    Patricio E. Carrion

    2017-08-01

    Full Text Available This article presents the strain-based experimental data for Ti–6Al–4V ELI under non-constant amplitude cyclic loading. Uniaxial strain-controlled fatigue experiments were conducted under three different loading conditions, including two-level block loading (i.e. high-low and low-high, periodic overload, and variable amplitude loading. Tests were performed under fully-reversed, and mean strain/stress conditions. For each test conducted, two sets of data were collected; the cyclic stress–strain response (i.e. hysteresis loops in log10 increments, and the peak and valley values of stress and strain for each cycle. Residual fatigue lives are reported for tests with two-level block loading, while for periodic overload and variable amplitude experiments, fatigue lives are reported in terms of number of blocks to failure.

  13. Microstructural Characterization Of Laser Heat Treated AISI 4140 Steel With Improved Fatigue Behavior

    Directory of Open Access Journals (Sweden)

    Oh M.C.

    2015-06-01

    Full Text Available The influence of surface heat treatment using laser radiation on the fatigue strength and corresponding microstructural evolution of AISI 4140 alloy steel was investigated in this research. The AISI 4140 alloy steel was radiated by a diode laser to give surface temperatures in the range between 600 and 800°C, and subsequently underwent vibration peening. The fatigue behavior of surface-treated specimens was examined using a giga-cycle ultrasonic fatigue test, and it was compared with that of non-treated and only-peened specimens. Fatigue fractured surfaces and microstructural evolution with respect to the laser treatment temperatures were investigated using an optical microscope. Hardness distribution was measured using Vickers micro-hardness. Higher laser temperature resulted in higher fatigue strength, attributed to the phase transformation.

  14. Thermo-mechanical fatigue behavior of the intermetallic gamma-TiAl alloy TNB-V5 with different microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M [now at IAV GmbH, Kauffahrtei 25, D-09120 Chemnitz (Germany); Biermann, H, E-mail: marcel.roth@iav.d [TU Bergakademie Freiberg, Institute for Materials Engineering, Gustav-Zeuner-Strasse 5, D-09599 Freiberg (Germany)

    2010-07-01

    The cyclic deformation and fatigue behavior of the {gamma}-TiAl alloy TNB-V5 is studied under thermo-mechanical load for the three technically important microstructures Fully-Lamellar (FL), Near-Gamma (NG) and Duplex (DP), respectively. Thus, thermo-mechanical fatigue (TMF) tests were carried out with different temperature-strain cycles, different temperature ranges from 400{sup 0}C to 800{sup 0}C and with two different strain ranges. Cyclic deformation curves, stress-strain hysteresis loops and fatigue lives are presented. The type of microstructure shows a surprisingly small influence on the cyclic deformation and fatigue behavior under TMF conditions. For a general life prediction the damage parameter of Smith, Watson and Topper P{sub SWT} is well suitable, if the testing and the application temperature ranges, respectively, include temperatures above the ductile-brittle transition temperature (approx. 750{sup 0}C). If the maximum temperature is below that temperature, the brittle materials' behavior yields a high scatter of fatigue lives and a low slope of the fatigue life curve and therefore the damage parameter P{sub SWT} cannot be applied for the live prediction.

  15. NLRP3 inflammasome activation mediates fatigue-like behaviors in mice via neuroinflammation.

    Science.gov (United States)

    Zhang, Ziteng; Ma, Xiujuan; Xia, Zhenna; Chen, Jikuai; Liu, Yangang; Chen, Yongchun; Zhu, Jiangbo; Li, Jinfeng; Yu, Huaiyu; Zong, Ying; Lu, Guocai

    2017-09-01

    Numerous experimental and clinical studies have suggested that the interaction between the immune system and the brain plays an important role in the pathophysiology of chronic fatigue syndrome (CFS). The NLRP3 inflammasome is an important part of the innate immune system. This complex regulates proinflammatory cytokine interleukin-1β (IL-1β) maturation, which triggers different kinds of immune-inflammatory reactions. We employed repeated forced swims to establish a model of CFS in mice. NLRP3 knockout (KO) mice were also used to explore NLRP3 inflammasome activation in the mechanisms of CFS, using the same treatment. After completing repeated swim tests, the mice displayed fatigue-like behaviors, including locomotor activity and reduced fall-off time on the rota-rod test, which was accompanied by significantly higher mature IL-1β level in the prefrontal cortex (PFC) and malondialdehyde (MDA) level in serum. We also found increased NLRP3 protein expression, NLRP3 inflammasome formation and increased mature IL-1β production in the PFC, relative to untreated mice. The NLRP3 KO mice displayed significantly moderated fatigue behaviors along with decreased PFC and serum IL-1β levels under the same treatment. These findings demonstrated the involvement of NLRP3 inflammasome activation in the mechanism of swimming-induced fatigue. Future therapies targeting the NLRP3/IL-1β pathway may have significant potential for fatigue prevention and treatment. Copyright © 2017. Published by Elsevier Ltd.

  16. Triphasic behavioral response of motor units to submaximal fatiguing exercise.

    Science.gov (United States)

    Dorfman, L J; Howard, J E; McGill, K C

    1990-07-01

    We have measured the firing rate and amplitude of 4551 motor unit action potentials (MUAPs) recorded with concentric needle electrodes from the brachial biceps muscles of 10 healthy young adults before, during, and after 45 minutes of intermittent isometric exercise at 20% of maximum voluntary contraction (MVC), using an automatic method for decomposition of electromyographic activity (ADEMG). During and after exercise, MUAPs derived from contractions of 30% MVC showed progressive increase in mean firing rate (P less than or equal to .01) and amplitude (P less than or equal to .05). The firing rate increase preceded the rise in mean amplitude, and was evident prior to the development of fatigue, defined as reduction of MVC. Analysis of individual potentials revealed that the increase in firing rate and in amplitude reflected different MUAP subpopulations. A short-term (less than 1 minute) reduction in MUAP firing rates (P less than or equal to .05) was also observed at the onset of each test contraction. These findings suggest that motor units exhibit a triphasic behavioral response to prolonged submaximal exercise: (1) short-term decline and stabilization of onset firing rates, followed by (2) gradual and progressive increase in firing rates and firing variability, and then by (3) recruitment of additional (larger) motor units. The (2) and (3) components presumably compensate for loss of force-generating capacity in the exercising muscle, and give rise jointly to the well-known increase in total surface EMG which accompanies muscle fatigue.

  17. Fatigue limit of Zircaloy-2 under variable one-directional tension and temperature 300 deg C

    International Nuclear Information System (INIS)

    Spasic, Z.; Simic, G.

    1968-11-01

    A vacuum chamber wad designed and constructed. It was suitable for study of materials at higher temperatures in vacuum or controlled atmospheres. Zircaloy-2 fatigue at 300 deg C in argon atmosphere was measured. Character of strain is variable one directional (A=1) tension. Obtained results are presented in tables and in the form of Veler's curve. The obtained fatigue limit was σ - 15 kp/mm 2 . The Locati method was allied as well and fatigue limit value obtained was 15,75 kp/mm 2 . Error calculated in reference to the previous value obtained by classical methods was 5% [sr

  18. Fatigue life prediction of rotor blade composites: Validation of constant amplitude formulations with variable amplitude experiments

    International Nuclear Information System (INIS)

    Westphal, T; Nijssen, R P L

    2014-01-01

    The effect of Constant Life Diagram (CLD) formulation on the fatigue life prediction under variable amplitude (VA) loading was investigated based on variable amplitude tests using three different load spectra representative for wind turbine loading. Next to the Wisper and WisperX spectra, the recently developed NewWisper2 spectrum was used. Based on these variable amplitude fatigue results the prediction accuracy of 4 CLD formulations is investigated. In the study a piecewise linear CLD based on the S-N curves for 9 load ratios compares favourably in terms of prediction accuracy and conservativeness. For the specific laminate used in this study Boerstra's Multislope model provides a good alternative at reduced test effort

  19. Fatigue life prediction of rotor blade composites: Validation of constant amplitude formulations with variable amplitude experiments

    Science.gov (United States)

    Westphal, T.; Nijssen, R. P. L.

    2014-12-01

    The effect of Constant Life Diagram (CLD) formulation on the fatigue life prediction under variable amplitude (VA) loading was investigated based on variable amplitude tests using three different load spectra representative for wind turbine loading. Next to the Wisper and WisperX spectra, the recently developed NewWisper2 spectrum was used. Based on these variable amplitude fatigue results the prediction accuracy of 4 CLD formulations is investigated. In the study a piecewise linear CLD based on the S-N curves for 9 load ratios compares favourably in terms of prediction accuracy and conservativeness. For the specific laminate used in this study Boerstra's Multislope model provides a good alternative at reduced test effort.

  20. Evaluation of Mechanical Properties and Fatigue Behavior of STS 304L due to Plastic Working

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyun-Bo [Yeungnam Univ., Daegu (Korea, Republic of); Kim, Young-Kyun [KOGAS Research Institute, Seoul (Korea, Republic of); Suh, Chang-Min [Kyungpook Nat’l Univ., Daegu (Korea, Republic of)

    2017-07-15

    The purpose of this study is to investigate the influence of the cold reduction rate and an ultrasonic fatigue test (UFT) on the fatigue behaviors of STS 304L. The tensile strength, yield strength, hardness value and fatigue limit in the UFT fatigue test linearly increased as thickness decreased from 1.5 mm to 1.1 mm, as the cold reduction rate of STS 304L increased. As a result of the UFT fatigue test (R = -1) of four specimens, the fatigue limit of the S-N curve formed a knee point in the region of 10{sup 6}, and the 2nd fatigue limit caused by giga cycle fatigue did not appeared. In the case of t = 1.1 mm, the highest fatigue limit was 345 MPa, which was 64.3% higher than the original material (t = 1.5 mm). As a result of the UFT fatigue test of STS 304L, many small surface cracks occurred, grown, coalesced while tearing.

  1. Fatigue crack propagation behavior of stainless steel welds

    Science.gov (United States)

    Kusko, Chad S.

    The fatigue crack propagation behavior of austenitic and duplex stainless steel base and weld metals has been investigated using various fatigue crack growth test procedures, ferrite measurement techniques, light optical microscopy, stereomicroscopy, scanning electron microscopy, and optical profilometry. The compliance offset method has been incorporated to measure crack closure during testing in order to determine a stress ratio at which such closure is overcome. Based on this method, an empirically determined stress ratio of 0.60 has been shown to be very successful in overcoming crack closure for all da/dN for gas metal arc and laser welds. This empirically-determined stress ratio of 0.60 has been applied to testing of stainless steel base metal and weld metal to understand the influence of microstructure. Regarding the base metal investigation, for 316L and AL6XN base metals, grain size and grain plus twin size have been shown to influence resulting crack growth behavior. The cyclic plastic zone size model has been applied to accurately model crack growth behavior for austenitic stainless steels when the average grain plus twin size is considered. Additionally, the effect of the tortuous crack paths observed for the larger grain size base metals can be explained by a literature model for crack deflection. Constant Delta K testing has been used to characterize the crack growth behavior across various regions of the gas metal arc and laser welds at the empirically determined stress ratio of 0.60. Despite an extensive range of stainless steel weld metal FN and delta-ferrite morphologies, neither delta-ferrite morphology significantly influence the room temperature crack growth behavior. However, variations in weld metal da/dN can be explained by local surface roughness resulting from large columnar grains and tortuous crack paths in the weld metal.

  2. Behavior of Steel Branch Connections during Fatigue Loading

    Directory of Open Access Journals (Sweden)

    Sládek A.

    2017-09-01

    Full Text Available Fatigue behavior of the branch connection made of low-alloyed steel with yield stress of 355 MPa during low-cycle bending test is investigated in the article. Numerical prediction of the stress and strain distribution are described and experimentally verified by fatigue test of the branch connection sample. Experimental verification is based on low-cycle bending testing of the steel pipes welded by manual metal arc process and loaded by external force in the appropriate distance. Stresses and displacement of the samples induced by bending moment were measured by unidirectional strain gauges and displacement transducers. Samples were loaded in different testing levels according to required stress for 2.106 cycles. Increase of the stress value was applied until the crack formation and growth was observed. Results showed a high agreement of numerical and experimental results of stress and displacement.

  3. The concept of fatigue fracture toughness in fatigue delamination growth behavior

    NARCIS (Netherlands)

    Yao, L.; Alderliesten, R.C.; Benedictus, R.

    2015-01-01

    This paper provides a study on mode I fatigue delamination growth in composite laminates using energy principles. Experimental data has been obtained from fatigue tests conducted on Double Cantilever Beam (DCB) specimens at various stress ratios. A concept of fatigue fracture toughness is proposed

  4. Effect of temperature upon the fatigue-crack propagation behavior of Inconel 625

    International Nuclear Information System (INIS)

    James, L.A.

    1977-03-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effect of temperature upon the fatigue-crack propagation behavior of mill-annealed Inconel 625 in an air environment over the range 75 0 - 1200 0 F (24 0 - 649 0 C). In general, fatigue-crack growth rates increased with increasing test temperature. Two different specimen sizes were employed at each test temperature, and no effects of specimen size upon crack growth were noted

  5. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting

    International Nuclear Information System (INIS)

    Liu, Y.J.; Wang, H.L.; Li, S.J.; Wang, S.G.; Wang, W.J.; Hou, W.T.; Hao, Y.L.; Yang, R.; Zhang, L.C.

    2017-01-01

    β-type titanium porous structure is a new class of solution for implant because it offers excellent combinations of high strength and low Young's modulus. This work investigated the influence of porosity variation in electron beam melting (EBM)-produced β-type Ti2448 alloy samples on the mechanical properties including super-elastic property, Young's modulus, compressive strength and fatigue properties. The relationship between the misorientation angle of adjacent grains and fatigue crack deflection behaviors was also observed. The super-elastic property is improved as the porosity of samples increases because of increasing tensile/compressive ratio. For the first time, the position of fatigue crack initiation is defined in stress-strain curves based on the variation of the fatigue cyclic loops. The unique manufacturing process of EBM results in the generation of different sizes of grains, and the apparent fatigue crack deflection occurs at the grain boundaries in the columnar grain zone due to substantial misorientation between adjacent grains. Compared with Ti-6Al-4V samples, the Ti2448 porous samples exhibit a higher normalized fatigue strength owing to super-elastic property, greater plastic zone ahead of the fatigue crack tip and the crack deflection behavior. - Highlights: • The super-elastic property is improved with increasing porosity of Ti2448 porous samples. • The position of fatigue crack initiation on the strain curve is defined. • The unique EBM-produced microstructure leads to apparent fatigue crack deflection occurring at columnar grain boundary. • Ti2448 porous samples display only half of the Young's modulus of Ti-6Al-4V porous samples at same fatigue strength level.

  6. Protective effects of antidepressants against chronic fatigue syndrome-induced behavioral changes and biochemical alterations.

    Science.gov (United States)

    Kumar, Anil; Garg, Ruchika

    2009-02-01

    Chronic fatigue syndrome (CFS) is characterized by profound fatigue, which substantially interferes with daily activities. The aim of this study was to explore the protective effects of antidepressants in an animal model of CFS in mice. Male albino mice were forced to swim individually for a period of 6-min session each for 7 days. Imipramine (10 and 20 mg/kg), desipramine (10 and 20 mg/kg) and citalopram (5 and 10 mg/kg) were administered 30 min before forced swimming test on each day. Various behavior tests (immobility time, locomotor activity, anxiety-like behavior by plus maze and mirror chamber) followed by biochemical parameters (lipid peroxidation, reduced glutathione, catalase and nitrite level) were assessed in chronic stressed mice. Chronic forced swimming for 7 days significantly caused increase in immobility period, impairment in locomotor activity, anxiety-like behavior, and oxidative stress (raised lipid peroxidation, nitrite activity and reduced glutathione and catalase activity) as compared with naïve mice (P immobility time, improved locomotor activity and anti-anxiety effect (in both plus maze and mirror chamber test), and attenuated oxidative stress in chronic stressed mice as compared with control (chronic fatigues) (P < 0.05). These results suggested that these drugs have protective effect and could be used in the management of chronic fatigue like conditions.

  7. High temperature low cycle fatigue behavior of Ni-base superalloy M963

    International Nuclear Information System (INIS)

    He, L.Z.; Zheng, Q.; Sun, X.F.; Guan, H.R.; Hu, Z.Q.; Tieu, A.K.; Lu, C.; Zhu, H.T.

    2005-01-01

    The cyclic stress-strain response and the low cycle fatigue life behavior of solution treated Ni-base superalloy M963 were studied. Fully reversed strain-controlled tests were performed at temperature range from 700 to 950 deg. C in air at a constant total strain rate. The dislocation characteristics and failed surface observation were evaluated through scanning electron microscopy and transmission electron microscopy, respectively. The alloy exhibited the cyclic hardening, softening, or stable cyclic stress response, which was dependent on the temperature and total strain range. The fracture surface observation revealed that fatigue crack initiation was transgranular and closely related to the total strain range; however, fatigue crack propagation exhibited a strong dependence on testing temperature. The dramatic reduction in fatigue life and intergranular cracking observed at 900 and 950 deg. C were attributed to oxidation

  8. Low cycle fatigue behavior in a medium-carbon carbide-free bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, B. [College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-06-01

    In the paper, different morphologies of bainite were obtained through isothermal quenching at 320 °C and 395 °C in a medium-carbon carbide-free bainitic steel. The cyclic deformation mechanism was explored by using low cycle fatigue testing. The volume fraction of retained austenite was measured by X-ray diffraction and the space partitioning of the solute atoms was constructed by three-dimensional atom probe. Results showed that the fatigue life at 320 °C was always higher than that at 395 °C under low and high total strain amplitude. The cyclic softening at the early fatigue stage increased the plastic strain of the sample which was responsible for the reduction of the fatigue life at 395 °C. Strain-induced retained austenite to martensite contributed to initial cyclic hardening, but almost having no effect on the subsequent cyclic stable/softening behaviors. The finer bainitic ferrite sheaves obtained at 320 °C changed the small fatigue crack propagation direction and delayed the crack propagation rate, which was beneficial for the fatigue properties. In addition, the substitutional atoms did not redistribute between the retained austenite and bainitic ferrite before and after cyclic deformation.

  9. High-cycle fatigue behavior of Co-based superalloy 9CrCo at elevated temperatures

    OpenAIRE

    Wan, Aoshuang; Xiong, Junjiang; Lyu, Zhiyang; Li, Kuang; Du, Yisen; Chen, Kejiao; Man, Ziyu

    2016-01-01

    A modified model is developed to characterize and evaluate high-cycle fatigue behavior of Co-based superalloy 9CrCo at elevated temperatures by considering the stress ratio effect. The model is informed by the relationship surface between maximum nominal stress, stress ratio and fatigue life. New formulae are derived to deal with the test data for estimating the parameters of the proposed model. Fatigue tests are performed on Co-based superalloy 9CrCo subjected to constant amplitude loading a...

  10. Creep-fatigue behavior of 2 1/4Cr-1Mo steel at 5500C in air and vacuum

    International Nuclear Information System (INIS)

    Asayama, T.; Cheng, S.Z.; Asada, Y.; Mitsuhashi, S.; Tachibana, Y.

    1987-01-01

    Following studies on creep-fatigue behaviors of 304 steel at 650 0 C (Asada et al (1980) and Morishita et al (1984), (1985), (1987)), 2 1/4Cr-1Mo steel was studied on its creep-fatigue behaviors at 550 0 C in air and vacuum of 100 and 0.1 μPa. The present study intends to give a base for an evaluation of the environmental effect through obtaining a pure creep-fatigue behavior of this steel which is free from the environmental effect. In the previous studies on 304 steel, tests were conducted in three kinds of environment of air, 100 and 0.1 μPa vacuum. It seemed to be plausible that the 0.1 μPa vacuum shows the pure creep-fatigue behavior of 304 steel at 650 0 C which is almost completely free from the environment. A creep-fatigue life in 0.1 μPa vacuum is almost one order of magnitude higher than that in air. The 100 μPa vacuum suggested that the environmental effect of air still remains but is so small that a creep-fatigue life in 100 μPa is same to that in 0.1 μPa in some strain wave forms. The present study intends to examine if similar observations are obtained with 2 1/4Cr-1Mo steel at 550 0 C. This paper describes the analysis of the overstress and damages, in addition to a creep-fatigue result. (orig.GL)

  11. Association of fatigue with emotional-eating behavior and the response to mental stress in food intake in a young adult population.

    Science.gov (United States)

    Yoshikawa, Takahiro; Tanaka, Masaaki; Ishii, Akira; Watanabe, Yasuyoshi

    2014-01-01

    Fatigue is a common complaint among young adults. We investigated whether eating behaviors are associated with fatigue in this population. The participants consisted of 117 healthy students attending Osaka City University. They completed questionnaires assessing fatigue and eating behaviors. To identify the factors associated with the prevalence of fatigue, multivariate logistic regression analysis adjusted for gender was performed. The Emotional Eating subscale score of the Japanese version of Three-Factor Eating Questionnaire Revised 21-item and stress response in food intake (large decrease vs. no change) were positively associated with the prevalence of fatigue assessed by the Japanese version of the Chalder Fatigue Scale. The finding suggests that emotional eating and decrease in amount of food intake under mental stress were associated with fatigue in healthy young adults. Our findings may help to clarify the mechanisms underlying fatigue-eating coupling as well as the etiology of diseases related to abnormal eating behavior.

  12. Fatigue of welded joint in a stainless steel AISI 304 L

    International Nuclear Information System (INIS)

    Kuromoto, N.K.; Guimaraes, A.S.; Miranda, P.E.V. de

    1986-01-01

    The flexion fatigue behavior for the base metal and welded joint of an AISI 304 L stainless steel type, used in the Angra-1 reactor, was determined. An automatic welding process was used with improved procedures in order to assure better welding metallurgy. Fatigue tests samples reinforcements were done to allow the evaluation of metallurgical variables, specially the role played by delta ferrite. The resulting welded joint showed better fatigue life than the base metal. Delta ferrite was found to play an important role on the initiation and propagation processes of the fatigue cracks. (Author) [pt

  13. The cyclic fatigue behavior of a Nicalon/SiC composite

    Energy Technology Data Exchange (ETDEWEB)

    Miriyala, N.; Liaw, P.K.; McHargue, C.J. [Univ. of Tennessee, Knoxville, TN (United States); Snead, L.L. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Cyclic fatigue tests were performed at ambient temperature on a Nicalon/SiC composite to study the effects of fabric orientation on the mechanical behavior. Four-point bend specimens were loaded either parallel or normal to the braided fabric plies. The maximum stresses chosen during the fatigue tests were 60, 70, and 80% of the monotonic strengths, respectively, in both orientations. Specimen failure did not occur in any case even after one million loading cycles. However, it was observed that much of the decrease in the composite modulus occurred in the first few (<10) cycles, and the fabric orientation did not significantly affect the effective modulus or midspan deflection trends.

  14. Fatigued and drowsy driving: a survey of attitudes, opinions and behaviors.

    Science.gov (United States)

    Vanlaar, Ward; Simpson, Herb; Mayhew, Dan; Robertson, Robyn

    2008-01-01

    There is evidence suggesting that the problem of fatigued or drowsy driving is an important contributor to road crashes. However, not much is known about public perceptions of the issue. The purpose of this study was to obtain information on attitudes, opinions, and professed practices related to fatigued or drowsy driving. The data were gathered by means of a public opinion poll among a representative sample of 750 Ontario drivers. A majority of drivers (58.6%) admitted that they occasionally drive while fatigued or drowsy. Of greater importance, 14.5% of respondents admitted that they had fallen asleep or "nodded off" while driving during the past year. Nearly 2% were involved in a fatigue or drowsy driving related crash in the past year. Respondents were also asked about measures they take to overcome fatigue or drowsiness. Results indicate that relatively ineffective measures such as opening the window or playing music are the most popular; the most effective preventive measure--taking a rest--is the least popular. The prevalence of the behavior, coupled with the ineffective prevention measures favored by the public suggest there is a need for increasing their level of awareness and knowledge about the problem. Results from this study further emphasize the importance of increasing the fatigued and drowsy driving knowledge base and the need to educate the public about it.

  15. Corrosion fatigue behaviors of steel wires used in coalmine

    International Nuclear Information System (INIS)

    Wang, Songquan; Zhang, Dekun; Chen, Kai; Xu, Linmin; Ge, Shirong

    2014-01-01

    Highlights: • The CF life of steel wire in acid solution is the shortest. • The fatigue source zone showed dimple morphology when coupled with anode potential. • The area of dimple increases with the increase of the applied anode potential. • The strong cathode potential cannot reduce the CF life of the smooth steel wire. • The hydrogen impacted mainly on the plastic deformation of the wire surface. - Abstract: The corrosion fatigue (CF) behaviors of the mining steel wire in different solutions at different applied polarization potentials were investigated in this paper. The surfaces and fracture morphologies of the steel wire at different applied potentials were observed by scanning electron microscope (SEM). The results showed that the CF life of steel wire in acid solution is the shortest. Moreover, the strong anodic polarization potential greatly reduced the CF life of steel wire, while the strong cathode potential did not reduce the CF life. For the smooth steel wire, the hydrogen impacted mainly on the plastic deformation of the wire surface. There was obvious dimple in the fatigue source zone of the wire when coupled with anode potential, and the area of the dimple increased with the increase of the applied anode potential. Conversely, the fatigue source zone of the fracture was relatively smooth at cathode polarization potential, which indicated that the crack propagation followed the mechanism of hydrogen induced cracking

  16. Fatigue Crack and Delamination Growth in Fibre Metal Laminates under Variable Amplitude Loading

    NARCIS (Netherlands)

    Khan, S.

    2013-01-01

    This thesis presents the investigation into the fatigue propagation and delamination growth of Fibre Metal Laminates under variable amplitude loading. As explained in the first chapter, the motivation of the research is twofold: first, to obtain a clear understanding and detailed characterization of

  17. Low-cyclic fatigue behavior of modified 9Cr–1Mo steel at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Guguloth, Krishna; Sivaprasad, S. [CSIR-National Metallurgical laboratory, Material Science and Technology Division, Jamshedpur 831007 (India); Chakrabarti, D. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302 (India); Tarafder, S. [CSIR-National Metallurgical laboratory, Material Science and Technology Division, Jamshedpur 831007 (India)

    2014-05-01

    The low-cycle fatigue behavior of indigenously developed modified 9Cr–1Mo steel has been evaluated using a constant strain rate (1×10{sup −3} s{sup −1}) at ambient temperature (25 °C) and at elevated temperatures (500–600 °C) over the strain amplitudes varying between ±0.7% and ±1.2%. Cyclic stress response showed a gradual softening regime that ended in a stress plateau until complete failure of the specimens. The estimated fatigue life decreased with the increase in test temperature. The effect of temperature on fatigue life was more pronounced at lower strain amplitudes. The cyclic deformation behavior at different temperatures has been analyzed from hysteresis loop and also in view of the changes taking place in dislocation structure and dislocation–precipitation interaction. Evaluation of low-cycle fatigue properties of modified 9Cr–1Mo steel over a range of test temperature can help in designing components for in-core applications in fast breeder reactors and in super heaters for nuclear power plants.

  18. Fatigue behavior of partially stabilized zirconia ceramics

    International Nuclear Information System (INIS)

    Ferber, M.K.; Hine, T.

    1986-01-01

    The time-dependent strength variations of two grades of MgO stabilized materials (Mg-PSZ) were measured as a function of temperature and applied stress level. The strength was determined using an interrupted fatigue (I.F.) test in which flexure samples were exposed at temperatures between 500 and 100 0 C for times up to 1008 h. During testing, the applied stress was maintained at a percentage of the short-term strength value measured at the same T. The resulting I.F. data gave evidence of both strengthening and weakening processes. The dominant mechanism at a given temperature was primarily dictated by the stress level. In the present investigation, the fatigue behavior for two grades of Mg-PSZ was evaluated by measuring the time-dependent strength variations as a function of temperature and applied stress level. Changes in microstructure resulting from the high-temperature exposure were determined from subsequent ceramographic, SEM and TEM studies. In addition, x-ray diffraction and dilatometry measurements were used to examine time-dependent variations in the phase assemblage

  19. Lower heart rate variability is associated with cancer-related fatigue in breast cancer survivors

    Directory of Open Access Journals (Sweden)

    Alexandra Dupont

    2012-09-01

    Full Text Available Background : Fatigue is the most common and distressing symptom reported by breast cancer survivors and yet the pathophysiology of cancer-related fatigue remains largely unknown. Fatigue is associated with lower parasympathetic and higher sympathetic nervous system activity in non-cancer samples, but only one study has demonstrated this same relationship in breast cancer survivors. This study evaluates the relationship between fatigue and basal autonomic nervous system activity as measured by heart rate variability (HRV in a sample of breast cancer survivors. Methods : Women who had been diagnosed with early stage breast cancer before the age of 50 were recruited from the UCLA tumor registry and completed psychological questionnaires, including measures of fatigue. A subset of these women (n=30 participated in a follow-up study in which they completed measures of fatigue, energy and mood four times per day for 5 days using electronic diaries, provided 3 days of saliva samples for cortisol assessment and underwent physiological assessment including electrocardiogram (ECG. HRV was assessed via ECG R-R wave spectral and time sequence analysis. Results : Questionnaire measures of fatigue were negatively associated with indices of parasympathetic nervous system activity, B= − 3.85, p = 0.04 for RMSSD (root of the mean squared difference of successive normal to normal waves and B= − 76.97, p = 0.04 for LF power % (low-frequency wave power percentage. Daily fatigue was also associated with lower basal HRV, B= − 15.1, p = 0.04 for RMSSD. However, fatigue indices were not associated with sympathetic nervous system activity as measured by low- to high-frequency wave ratio. Of note, fatigue was not associated with average daily cortisol output (AUC. Conclusions : Lower HRV has been associated with increased chronic inflammation, which is elevated in cancer survivors reporting persistent fatigue, thus providing insight into

  20. Randomized Evaluation of Cognitive-Behavioral Therapy and Graded Exercise Therapy for Post-Cancer Fatigue.

    Science.gov (United States)

    Sandler, Carolina X; Goldstein, David; Horsfield, Sarah; Bennett, Barbara K; Friedlander, Michael; Bastick, Patricia A; Lewis, Craig R; Segelov, Eva; Boyle, Frances M; Chin, Melvin T M; Webber, Kate; Barry, Benjamin K; Lloyd, Andrew R

    2017-07-01

    Cancer-related fatigue is prevalent and disabling. When persistent and unexplained, it is termed post-cancer fatigue (PCF). Cognitive behavioral therapy (CBT) and graded exercise therapy (GET) may improve symptoms and functional outcomes. To evaluate the outcomes of a randomized controlled trial, which assigned patients with post-cancer fatigue to education, or 12 weeks of integrated cognitive-behavioral therapy (CBT) and graded exercise therapy (GET). Three months after treatment for breast or colon cancer, eligible patients had clinically significant fatigue, no comorbid medical or psychiatric conditions that explained the fatigue, and no evidence of recurrence. The CBT/GET arm included individually tailored consultations at approximately two weekly intervals. The education arm included a single visit with clinicians describing the principles of CBT/GET and a booklet. The primary outcome was clinically significant improvement in self-reported fatigue (Somatic and Psychological HEalth REport 0-12), designated a priori as greater than one SD of improvement in fatigue score. The secondary outcome was associated improvement in function (role limitation due to physical health problems-36-Item Short Form Health Survey 0-100) comparing baseline, end treatment (12 weeks), and follow-up (24 weeks). There were 46 patients enrolled, including 43 women (94%), with a mean age of 51 years. Fatigue severity improved in all subjects from a mean of 5.2 (±3.1) at baseline to 3.9 (±2.8) at 12 weeks, suggesting a natural history of improvement. Clinically significant improvement was observed in 7 of 22 subjects in the intervention group compared with 2 of 24 in the education group (P < 0.05, χ 2 ). These subjects also had improvement in functional status compared with nonresponders (P < 0.01, t-test). Combined CBT/GET improves fatigue and functional outcomes for a subset of patients with post-cancer fatigue. Further studies to improve the response rate and the magnitude of

  1. Low-cycle fatigue behavior of HT-9 alloy in a flowing-lithium environment

    International Nuclear Information System (INIS)

    Chopra, O.K.; Smith, D.L.

    1983-06-01

    Low-cycle fatigue data have been obtained on normalized/tempered or lithium-preexposed HT-9 alloy at 755 K in flowing lithium of controlled purity. The results show that the fatigue life of this material decreases with an increase in nitrogen content in lithium. A reduction in strain rate also decreases the fatigue life in high-nitrogen lithium. However, in the range from approx. 4 x 10 - 4 to 4 x 10 - 2 s - 1 , the strain rate has no effect on fatigue life in lithium containing <200 wppM nitrogen. The fatigue life of the HT-9 alloy in low-nitrogen lithium is significantly greater than the fatigue life of Fe-9Cr-1Mo steel or Type 403 martensitic steel in air. Furthermore, a 4.0-Ms preexposure to low-nitrogen lithium has no influence on fatigue life. The reduction in fatigue life in high-nitrogen lithium is attributed to internal corrosive attack of the material. The specimens tested in high-nitrogen lithium show internal corrosion along grain and martensitic lathe boundaries and intergranular fracture. This behavior is not observed in specimens tested in low-nitrogen lithium. Results for a constant-load corrosion test in flowing lithium are also presented

  2. Modelling fatigue and the use of fatigue models in work settings.

    Science.gov (United States)

    Dawson, Drew; Ian Noy, Y; Härmä, Mikko; Akerstedt, Torbjorn; Belenky, Gregory

    2011-03-01

    In recent years, theoretical models of the sleep and circadian system developed in laboratory settings have been adapted to predict fatigue and, by inference, performance. This is typically done using the timing of prior sleep and waking or working hours as the primary input and the time course of the predicted variables as the primary output. The aim of these models is to provide employers, unions and regulators with quantitative information on the likely average level of fatigue, or risk, associated with a given pattern of work and sleep with the goal of better managing the risk of fatigue-related errors and accidents/incidents. The first part of this review summarises the variables known to influence workplace fatigue and draws attention to the considerable variability attributable to individual and task variables not included in current models. The second part reviews the current fatigue models described in the scientific and technical literature and classifies them according to whether they predict fatigue directly by using the timing of prior sleep and wake (one-step models) or indirectly by using work schedules to infer an average sleep-wake pattern that is then used to predict fatigue (two-step models). The third part of the review looks at the current use of fatigue models in field settings by organizations and regulators. Given their limitations it is suggested that the current generation of models may be appropriate for use as one element in a fatigue risk management system. The final section of the review looks at the future of these models and recommends a standardised approach for their use as an element of the 'defenses-in-depth' approach to fatigue risk management. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Fatigue Behavior of Long and Short Cracks in Wrought and Powder Aluminum Alloys.

    Science.gov (United States)

    1984-05-01

    The effects of cyclic frequency, electrochemical potential and bulk solution composition on the kinetics of small corrosion fatigue cracks have not...threshold behavior between cast iron (co = 113 MPa) and maraging steel (co = 1906 MPa), as a function of surface roughness (to simulate crack size) (after...4130 steel the crack size effect on corrosion fatigue, Fig. 2, is predicted in part based on linear superposition of stress corrosion growth rates for

  4. Spot weld arrangement effects on the fatigue behavior of multi-spot welded joints

    International Nuclear Information System (INIS)

    Hassanifard, Soran; Zehsaz, Mohammad; Esmaeili, Firooz

    2011-01-01

    In the present study, the effects of spot weld arrangements in multi-spot welded joints on the fatigue behavior of the joints are studied. Three different four-spot welded joints are considered: one-row four-spot parallel to the loading direction, one-row four-spot perpendicular to the loading direction and two-row four-spot weld specimens. The experimental fatigue test results reveal that the differences between the fatigue lives of three spot welded types in the low cycle regime are more considerable than those in the high cycle regime. However, all kinds of spot weld specimens have similar fatigue strength when approaching a million cycles. A non-linear finite element analysis is performed to obtain the relative stress gradients, effective distances and notch strength reduction factors based on the volumetric approach. The work here shows that the volumetric approach does a very good job in predicting the fatigue life of the multi-spot welded joints

  5. Characterization of uniaxial fatigue behavior of precipitate strengthened Cu-Ni-Si alloy (SICLANIC(TM

    Directory of Open Access Journals (Sweden)

    B. Saadouki

    2018-01-01

    Full Text Available Fatigue tests were conducted on cylindrical bars specimens to understand the fatigue behavior of SICLANIC. Although it displays good resistance in monotonic tension, this material weakens and shows a softening in repeated solicitation. This has been verified through a SEM observation, the Cu-Ni-Si alloy presents transgranular failure by cleavage. The MansonCoffin diagram exhibited the plastic deformation accommodation. The plastic deformation becomes periodic and decreases progressively as the cycle number increases. The approximations of Manson Coffin give fatigue parameters values which are in good agreement with the experience

  6. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    Science.gov (United States)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-02-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  7. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    Science.gov (United States)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-03-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  8. A study on fatigue crack growth behavior subjected to a single tensile overload

    International Nuclear Information System (INIS)

    Lee, S.Y.; Liaw, P.K.; Choo, H.; Rogge, R.B.

    2011-01-01

    Neutron diffraction and electric potential experiments were carried out to investigate the growth behavior of a fatigue crack subjected to a single tensile overload. The specific objectives were to (i) probe the crack tip deformation and fracture behaviors under applied loads; (ii) examine the overload-induced transient crack growth micromechanism; (iii) validate the effective stress intensity factor range based on the crack closure approach as the fatigue crack tip driving force; and (iv) establish a quantitative relationship between the crack tip driving force and crack growth behavior. Immediately after a single tensile overload was introduced and then unloaded, the crack tip became blunt and enlarged compressive residual stresses in both magnitude and zone size were observed around the crack tip. The results show that the combined contributions of the overload-induced enlarged compressive residual stresses and crack tip blunting with secondary cracks are responsible for the observed changes in the crack opening load and the resultant post-overload transient crack growth behavior.

  9. Biaxial fatigue crack propagation behavior of perfluorosulfonic-acid membranes

    Science.gov (United States)

    Lin, Qiang; Shi, Shouwen; Wang, Lei; Chen, Xu; Chen, Gang

    2018-04-01

    Perfluorosulfonic-acid membranes have long been used as the typical electrolyte for polymer-electrolyte fuel cells, which not only transport proton and water but also serve as barriers to prevent reactants mixing. However, too often the structural integrity of perfluorosulfonic-acid membranes is impaired by membrane thinning or cracks/pinholes formation induced by mechanical and chemical degradations. Despite the increasing number of studies that report crack formation, such as crack size and shape, the underlying mechanism and driving forces have not been well explored. In this paper, the fatigue crack propagation behaviors of Nafion membranes subjected to biaxial loading conditions have been investigated. In particular, the fatigue crack growth rates of flat cracks in responses to different loading conditions are compared, and the impact of transverse stress on fatigue crack growth rate is clarified. In addition, the crack paths for slant cracks under both uniaxial and biaxial loading conditions are discussed, which are similar in geometry to those found after accelerated stress testing of fuel cells. The directions of initial crack propagation are calculated theoretically and compared with experimental observations, which are in good agreement. The findings reported here lays the foundation for understanding of mechanical failure of membranes.

  10. Analysis of the Mechanical Behavior, Creep Resistance and Uniaxial Fatigue Strength of Martensitic Steel X46Cr13

    Science.gov (United States)

    Brnic, Josip; Krscanski, Sanjin; Lanc, Domagoj; Brcic, Marino; Turkalj, Goran; Canadija, Marko; Niu, Jitai

    2017-01-01

    The article deals with the analysis of the mechanical behavior at different temperatures, uniaxial creep and uniaxial fatigue of martensitic steel X46Cr13 (1.4034, AISI 420). For the purpose of considering the aforementioned mechanical behavior, as well as determining the appropriate resistance to creep and fatigue strength levels, numerous uniaxial tests were carried out. Tests related to mechanical properties performed at different temperatures are presented in the form of engineering stress-strain diagrams. Short-time creep tests performed at different temperatures and different stress levels are presented in the form of creep curves. Fatigue tests carried out at stress ratios R=0.25 and R=−1 are shown in the form of S–N (fatigue) diagrams. The finite fatigue regime for each of the mentioned stress ratios is modeled by an inclined log line, while the infinite fatigue regime is modeled by a horizontal line, which represents the fatigue limit of the material and previously was calculated by the modified staircase method. Finally, the fracture toughness has been calculated based on the Charpy V-notch impact energy. PMID:28772749

  11. Development, Characterization and Piezoelectric Fatigue Behavior of Lead-Free Perovskite Piezoelectric Ceramics

    Science.gov (United States)

    Patterson, Eric Andrew

    Much recent research has focused on the development lead-free perovskite piezoelectrics as environmentally compatible alternatives to lead zirconate titanate (PZT). Two main categories of lead free perovskite piezoelectric ceramic systems were investigated as potential replacements to lead zirconate titanate (PZT) for actuator devices. First, solid solutions based on Li, Ta, and Sb modified (K0.5Na0.5)NbO3 (KNN) lead-free perovskite systems were created using standard solid state methods. Secondly, Bi-based materials a variety of compositions were explored for (1-x)(Bi 0.5Na0.5)TiO3-xBi(Zn0.5Ti0.5)O 3 (BNT-BZT) and Bi(Zn0.5Ti0.5)O3-(Bi 0.5K0.5)TiO3-(Bi0.5Na0.5)TiO 3 (BZT-BKT-BNT). It was shown that when BNT-BKT is combined with increasing concentrations of Bi(Zn1/2i1/2)O3 (BZT), a transition from normal ferroelectric behavior to a material with large electric field induced strains was observed. The higher BZT containing compositions are characterized by large hysteretic strains(> 0.3%) with no negative strains that might indicate domain switching. This work summarizes and analyzes the fatigue behavior of the new generation of Pb-free piezoelectric materials. In piezoelectric materials, fatigue is observed as a degradation in the electromechanical properties under the application of a bipolar or unipolar cyclic electrical load. In Pb-based materials such as lead zirconate titanate (PZT), fatigue has been studied in great depth for both bulk and thin film applications. In PZT, fatigue can result from microcracking or electrode effects (especially in thin films). Ultimately, however, it is electronic and ionic point defects that are the most influential mechanism. Therefore, this work also analyzes the fatigue characteristics of bulk polycrystalline ceramics of the modified-KNN and BNT-BKT-BZT compositions developed. The defect chemistry that underpins the fatigue behavior will be examined and the results will be compared to the existing body of work on PZT. It will

  12. Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Polák, Jaroslav, E-mail: polak@ipm.cz [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); CEITEC, Institute of Physics of Materials Academy of Sciences of the Czech Republic, Žižkova 22, Brno (Czech Republic); Petráš, Roman; Heczko, Milan; Kuběna, Ivo [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Kruml, Tomáš [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); CEITEC, Institute of Physics of Materials Academy of Sciences of the Czech Republic, Žižkova 22, Brno (Czech Republic); Chai, Guocai [Sandvik Materials Technology, SE-811 81 Sandviken (Sweden); Linköping University, Engineering Materials, SE-581 83 Linköping (Sweden)

    2014-10-06

    Austenitic heat resistant Sanicro 25 steel developed for high temperature applications in power generation industry has been subjected to strain controlled low cycle fatigue tests at ambient and at elevated temperature in a wide interval of strain amplitudes. Fatigue hardening/softening curves, cyclic stress–strain curves and fatigue life curves were evaluated at room temperature and at 700 °C. The internal dislocation structures of the material at room and at elevated temperature were studied using transmission electron microscopy. High resolution surface observations and FIB cuts revealed early damage at room temperature in the form of persistent slip bands and at elevated temperature as oxidized grain boundary cracks. Dislocation arrangement study and surface observations were used to identify the cyclic slip localization and to discuss the fatigue softening/hardening behavior and the temperature dependence of the fatigue life.

  13. Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading.

    Science.gov (United States)

    de Krijger, Joep; Rans, Calvin; Van Hooreweder, Brecht; Lietaert, Karel; Pouran, Behdad; Zadpoor, Amir A

    2017-06-01

    Additively manufactured (AM) porous metallic biomaterials are considered promising candidates for bone substitution. In particular, AM porous titanium can be designed to exhibit mechanical properties similar to bone. There is some experimental data available in the literature regarding the fatigue behavior of AM porous titanium, but the effect of stress ratio on the fatigue behavior of those materials has not been studied before. In this paper, we study the effect of applied stress ratio on the compression-compression fatigue behavior of selective laser melted porous titanium (Ti-6Al-4V) based on the diamond unit cell. The porous titanium biomaterial is treated as a meta-material in the context of this work, meaning that R-ratios are calculated based on the applied stresses acting on a homogenized volume. After morphological characterization using micro computed tomography and quasi-static mechanical testing, the porous structures were tested under cyclic loading using five different stress ratios, i.e. R = 0.1, 0.3, 0.5, 0.7 and 0.8, to determine their S-N curves. Feature tracking algorithms were used for full-field deformation measurements during the fatigue tests. It was observed that the S-N curves of the porous structures shift upwards as the stress ratio increases. The stress amplitude was the most important factor determining the fatigue life. Constant fatigue life diagrams were constructed and compared with similar diagrams for bulk Ti-6Al-4V. Contrary to the bulk material, there was limited dependency of the constant life diagrams to mean stress. The notches present in the AM biomaterials were the sites of crack initiation. This observation and other evidence suggest that the notches created by the AM process cause the insensitivity of the fatigue life diagrams to mean stress. Feature tracking algorithms visualized the deformation during fatigue tests and demonstrated the root cause of inclined (45°) planes of specimen failure. In conclusion, the R

  14. Experimental evaluation of the fretting fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2013-01-01

    In this paper, the fretting fatigue behavior of pretensioned high-strength steel monostrands is investigated. A method based on the digital image correlation (DIC) technique was used to quantify the relative movement between individual wires along the length of the monostrand. The experimental data....... Moreover, the paper provides relevant information about the monostrand bending stiffness and the extent of relative displacement between core and outer wires of the monostrand undergoing flexural deformations. The results presented herein are of special interest for the fatigue analysis of modern stay...

  15. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.

    Science.gov (United States)

    Song, Wei; Liu, Xuesong; Berto, Filippo; Razavi, S M J

    2018-04-24

    The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2⁻1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them.

  16. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds

    Directory of Open Access Journals (Sweden)

    Wei Song

    2018-04-01

    Full Text Available The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2–1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them.

  17. Fatigue crack growth behavior of a new single crystal nickel-based superalloy (CMSX-4) at 650 C

    International Nuclear Information System (INIS)

    Sengupta, A.; Putatunda, S.K.

    1994-01-01

    CMSX-4 is a recently developed rhenium containing single crystal nickel-based superalloy. This alloy has potential applications in many critical high-temperature applications such as turbine blades, rotors, nuclear reactors, etc. The fatigue crack growth rate and the fatigue threshold data of this material is extremely important for accurate life prediction, as well as failure safe design, at elevated temperatures. In this paper, the fatigue crack growth behavior of CMSX-4 has been studied at 650 C. The investigation also examined the influence of γ' precipitates (size and distribution) on the near-threshold fatigue crack growth rate and the fatigue threshold. The influence of load ratio on the fatigue crack growth rate and the fatigue threshold was also examined. Detailed fractographic studies were carried out to determine the crack growth mechanism in fatigue in the threshold region. Compact tension specimens were prepared from the single crystal nickel-based superalloy CMSX-4 with [001] orientation as the tensile loading axis direction. These specimens were given three different heat treatments to produce three different γ' precipitate sizes and distributions. Fatigue crack growth behavior of these specimens was studied at 650 C in air. The results of the present investigation indicate that the near-threshold fatigue crack growth rate decreases and that the fatigue threshold increases with an increase in the γ' precipitate size at 650 C. The fatigue threshold decreased linearly with an increase in load ratio. Fractographs at 650 C show a stage 2 type of crack growth along {100} type of crystal planes in the threshold region, and along {111} type of crystal planes in the high ΔK region

  18. Effect of heat-treatment on elevated temperature fatigue-crack growth behavior of two heats of Alloy 718

    International Nuclear Information System (INIS)

    Mills, W.J.; James, L.A.

    1978-05-01

    The room temperature and elevated temperature fatigue-crack growth behavior of two heats of Alloy 718 was characterized within a linear-elastic fracture mechanics framework. Two different heat-treatments were used: the ''conventional'' (ASTM A637) treatment, and a ''modified'' heat-treatment designed to improve the toughness of Alloy 718 base metal and weldments. Heat-to-heat variations in the fatigue-crack propagation behavior were observed in the conventionally-treated material. On the other hand, no heat-to-heat variations were observed in the modified condition. Furthermore, both heats of Alloy 718 exhibited superior fatigue-crack growth resistance when given the modified heat-treatment. Electron fractographic examination of Alloy 718 fatigue fracture surfaces revealed that the operative crack growth mechanisms were dependent on heat-treatment, temperature, and ΔK level

  19. Cyclic Deformation and Fatigue Behaviors of Alloy 617 Base Metal and Weldments at 900℃ for VHTR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Jin; Kim, Byung Tak; Dewa, Rando T.; Hwang, Jeong Jun; Kim, Tae Su [Pukyong National Univ., Busan (Korea, Republic of); Kim, Woo Gon; Kim, Eung Seon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    An analysis of cyclic deformation can contribute to a deeper understanding of the fatigue fracture mechanisms as well as to improvements in the design and application of VHTR system. However, the studies associated with cyclic deformation and low cycle fatigue (LCF) properties of Alloy 617 have focused mainly on the base metal, with little attention given to the weldments. Totemeier studied on high-temperature creep-fatigue of Alloy 617 base metal and weldments. Current research activities at PKNU and KAERI focus on the study of cyclic deformation and LCF behaviors of Alloy 617 base metal (BM) and weldments (WM) specimens were machined from GTAW buttwelded plates at very high-temperature of 900℃. In this work, the cyclic deformation characteristics and fatigue behaviors of Alloy 617 BM and WM are studied and discussed with respect to LCF. In this paper, cyclic deformation and low cycle fatigue behaviors of Alloy 617 base metal and weldments was evaluated using strain-controlled LCF tests at 900℃for 0.6% total strain range. Results of the current experiments can be concluded; The WM specimen has shown a higher cyclic stress response than the BM specimen. The fatigue life of WM specimen was reduced relative to that of BM specimen.

  20. The Effect of Nitriding Treatment Variables on the Fatigue Limit of Alloy Steel (34crnimo6) Under High Cycle Fatigue

    International Nuclear Information System (INIS)

    Mohamed, J.; Al-Alkawi, H.; Salameh, M.

    2009-01-01

    The aim of this research is to improve the fatigue limit for alloy steel (34CrNiMo6) by salt bath nitriding process. This property is more effective to increase the fatigue life for parts which are used in continuous cyclic loading. All the fatigue tests were implemented before and after nitriding process under rotating bending. Constant and variable capacity stresses were applied before and after nitriding processes. The nitriding process were implemented in salt bath component at three different times (1, 2, 3) hr when temperature was constant at (555 degree centigrade). The depth of the nitride layer reached (0.24, 0.37, 0.5) mm. The nitriding process repeated of another specimens at the same times but the temperature was (600 degree centigrade), the layer depth reached (0.28, 0.41, 0.55) mm. The formation of a high nitrogen iron phases were detected with a layer of the hard chrome nitrides on the surface. The nitriding process is forming the barriers on the surface that resist the initiation and propagation of cracks, as well as generating the compressive residual stresses which delay the progress of fatigue crack. This research deduced that the nitriding processes increased the fatigue limit and this limit is proportional to the time of the nitriding process. When the time increased, the depth of nitride layer is increased, but decreased when the temperature increased to (600 degree centigrade) because of the formation of brittle phase,in spite of the increase in layer depth. (author)

  1. Tension and fatigue behavior of 316LVM 1x7 multi-strand cables used as implantable electrodes.

    Science.gov (United States)

    Lewandowski, John J; Varadarajan, Ravikumar; Smith, Brian; Tuma, Chris; Shazly, Mostafa; Vatamanu, Luciano O

    2008-07-15

    The mechanical behavior of 316LVM 1x7 cables were evaluated in uniaxial tension, and in cyclic strain-controlled fatigue with the use of a Flex tester operated to provide fully reversed bending fatigue. The magnitude of cyclic strains imparted to each cable tested was controlled via the use of different diameter mandrels. Smaller diameter mandrels produced higher values of cyclic strain and lower fatigue life. Multiple samples were tested and analyzed via scanning electron microscopy. The fatigue results were analyzed via a Coffin-Manson-Basquin approach and compared to fatigue data obtained from the literature where testing was conducted on similar materials, but under rotating bending fatigue conditions.

  2. "Well, I'm tired of tryin'!" Organizational citizenship behavior and citizenship fatigue.

    Science.gov (United States)

    Bolino, Mark C; Hsiung, Hsin-Hua; Harvey, Jaron; LePine, Jeffery A

    2015-01-01

    This study seeks to identify workplace conditions that influence the degree to which employees feel worn out, tired, or on edge attributed to engaging in organizational citizenship behavior (OCB) and also how this phenomenon, which we refer to as citizenship fatigue, is associated with future occurrences of OCB. Using data collected from 273 employees and their peers at multiple points in time, we found that the relationship between OCB and citizenship fatigue depends on levels of perceived organizational support, quality of team-member exchange relationships, and pressure to engage in OCB. Specifically, the relationship between OCB and citizenship fatigue is significantly stronger and positive when perceived organizational support is low, and it is significantly stronger and negative when the quality of team-member exchange is high and pressure to engage in OCB is low. Our results also indicate that citizenship fatigue is negatively related to subsequent acts of OCB. Finally, supplemental analyses reveal that the relationship between OCB and citizenship fatigue may vary as a function of the specific facet of OCB. We conclude with a discussion of the key theoretical and practical implications of our findings. (c) 2015 APA, all rights reserved.

  3. Intraindividual variability in cognitive performance in persons with chronic fatigue syndrome.

    Science.gov (United States)

    Fuentes, K; Hunter, M A; Strauss, E; Hultsch, D F

    2001-05-01

    Studies of cognitive performance among persons with chronic fatigue syndrome (CFS) have yielded inconsistent results. We sought to contribute to findings in this area by examining intraindividual variability as well as level of performance in cognitive functioning. A battery of cognitive measures was administered to 14 CFS patients and 16 healthy individuals on 10 weekly occasions. Analyses comparing the two groups in terms of level of performance defined by latency and accuracy scores revealed that the CFS patients were slower but not less accurate than healthy persons. The CFS group showed greater intraindividual variability (as measured by intraindividual standard deviations and coefficients of variation) than the healthy group, although the results varied by task and time frame. Intraindividual variability was found to be stable across time and correlated across tasks at each testing occasion. Intraindividual variability also uniquely differentiated the groups. The present findings support the proposition that intraindividual variability is a meaningful indicator of cognitive functioning in CFS patients.

  4. High-Cycle, Push–Pull Fatigue Fracture Behavior of High-C, Si–Al-Rich Nanostructured Bainite Steel

    Science.gov (United States)

    Zhao, Jing; Ji, Honghong

    2017-01-01

    The high-cycle, push–pull fatigue fracture behavior of high-C, Si–Al-rich nanostructured bainitic steel was studied through the measurement of fatigue limits, a morphology examination and phase composition analysis of the fatigue fracture surface, as well as fractography of the fatigue crack propagation. The results demonstrated that the push–pull fatigue limits at 107 cycles were estimated as 710–889 MPa, for the samples isothermally transformed at the temperature range of 220–260 °C through data extrapolation, measured under the maximum cycle number of 105. Both the interior inclusion and the sample surface constituted the fatigue crack origins. During the fatigue crack propagation, a high amount of secondary cracks were formed in almost parallel arrangements. The apparent plastic deformation occurred in the fracture surface layer, which induced approximately all retained austenite to transform into martensite. PMID:29286325

  5. Influence of Nickel Particle Reinforcement on Cyclic Fatigue and Final Fracture Behavior of a Magnesium Alloy Composite

    Directory of Open Access Journals (Sweden)

    Manoj Gupta

    2012-06-01

    Full Text Available The microstructure, tensile properties, cyclic stress amplitude fatigue response and final fracture behavior of a magnesium alloy, denoted as AZ31, discontinuously reinforced with nano-particulates of aluminum oxide and micron size nickel particles is presented and discussed. The tensile properties, high cycle fatigue and final fracture behavior of the discontinuously reinforced magnesium alloy are compared with the unreinforced counterpart (AZ31. The elastic modulus and yield strength of the dual particle reinforced magnesium alloy is marginally higher than of the unreinforced counterpart. However, the tensile strength of the composite is lower than the monolithic counterpart. The ductility quantified by elongation to failure over 0.5 inch (12.7 mm gage length of the test specimen showed minimal difference while the reduction in specimen cross-section area of the composite is higher than that of the monolithic counterpart. At the microscopic level, cyclic fatigue fractures of both the composite and the monolithic alloy clearly revealed features indicative of the occurrence of locally ductile and brittle mechanisms. Over the range of maximum stress and at two different load ratios the cyclic fatigue resistance of the magnesium alloy composite is superior to the monolithic counterpart. The mechanisms responsible for improved cyclic fatigue life and resultant fracture behavior of the composite microstructure are highlighted.

  6. A narrative review on the similarities and dissimilarities between myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and sickness behavior

    OpenAIRE

    Morris, Gerwyn; Anderson, George; Galecki, Piotr; Berk, Michael; Maes, Michael

    2013-01-01

    It is of importance whether myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a variant of sickness behavior. The latter is induced by acute infections/injury being principally mediated through proinflammatory cytokines. Sickness is a beneficial behavioral response that serves to enhance recovery, conserves energy and plays a role in the resolution of inflammation. There are behavioral/symptomatic similarities (for example, fatigue, malaise, hyperalgesia) and dissimilarities (gas...

  7. Fatigue behavior of welded austenitic stainless steel in different environments

    Directory of Open Access Journals (Sweden)

    D.S. Yawas

    2014-01-01

    Full Text Available The fatigue behavior of welded austenitic stainless steel in 0.5 M hydrochloric acid and wet steam corrosive media has been investigated. The immersion time in the corrosive media was 30 days to simulate the effect on stainless steel structures/equipment in offshore and food processing applications and thereafter annealing heat treatment was carried out on the samples. The findings from the fatigue tests show that seawater specimens have a lower fatigue stress of 0.5 × 10−5 N/mm2 for the heat treated sample and 0.1 × 10−5 N/mm2 for the unheat-treated sample compared to the corresponding hydrochloric acid and steam samples. The post-welding heat treatment was found to increase the mechanical properties of the austenitic stainless steel especially tensile strength but it reduces the transformation and thermal stresses of the samples. These findings were further corroborated by the microstructural examination of the stainless steel specimen.

  8. HIV prevention fatigue and HIV treatment optimism among young men who have sex with men

    Science.gov (United States)

    Macapagal, Kathryn; Birkett, Michelle; Janulis, Patrick; Garofalo, Robert; Mustanski, Brian

    2017-01-01

    HIV prevention fatigue (the sense that prevention messages are tiresome) and being overly optimistic about HIV treatments are hypothesized to increase HIV risk behavior. Little research has examined these constructs and their correlates among young men who have sex with men (YMSM), who are at high risk for HIV. YMSM (N = 352; M age = 20; 50% Black) completed measures of prevention fatigue, treatment optimism, HIV risk behaviors, and HIV-related knowledge and attitudes during a longitudinal study. Overall, YMSM reported low levels of HIV prevention fatigue and treatment optimism. Path analysis (n = 307) indicated that greater prevention fatigue and treatment optimism predicted higher rates of condomless sex, but condomless sex did not predict later increases in prevention fatigue or treatment optimism. Results are inconsistent with the hypothesis of high prevention fatigue and treatment optimism among YMSM and point to potential causal relationships among these variables and condomless sex. PMID:28825861

  9. Thermal fatigue behavior of thermal barrier coatings by air plasma spray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Sang; Kim, Eui Hyun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Lee, Jung Hyuk [Korea Plant Service and Engineering Co. Ltd., Incheon (Korea, Republic of)

    2008-06-15

    Effects of top coat morphology and thickness on thermal fatigue behavior of Thermal Barrier Coatings (TBC) were investigated in this study. Thermal fatigue tests were conducted on three coating specimens with different top coat morphology and thickness, and then the test data were compared via microstructures, cycles to failure, and fracture surfaces. In the air plasma spray specimens (APS1, APS2), top coat were 200 and 300 {mu}m respectively. The thickness of top coat was about 700 {mu}m in the Perpendicular Cracked Specimen (PCS). Under thermal fatigue condition at 1,100 .deg. C, the cycles to top coat failure of APS1, APS2, and PCS were 350, 560 and 480 cycles, respectively. The cracks were initiated at the interface of top coat and Thermally Grown Oxide (TGO) and propagated into TGO or top coat as the number of thermal fatigue cycles increased. For the PCS specimen, additive cracks were initiated and propagated at the starting points of perpendicular cracks in the top coat. Also, the thickness of TGO and the decrease of aluminium concentration in bond coat do not affect the cycles to failure.

  10. Effect of fatigue and gender on kinematics and ground reaction forces variables in recreational runners

    Directory of Open Access Journals (Sweden)

    Bruno Bazuelo-Ruiz

    2018-03-01

    Full Text Available The presence of fatigue has been shown to modify running biomechanics. Overall in terms of gender, women are at lower risk than men for sustaining running-related injuries, although it depends on the factors taken into account. One possible reason for these differences in the injury rate and location might be the dissimilar running patterns between men and women. The purpose of this study was to determine the effect of fatigue and gender on the kinematic and ground reaction forces (GRF parameters in recreational runners. Fifty-seven participants (28 males and 29 females had kinematic and GRF variables measured while running at speed of 3.3 m s−1 before and after a fatigue test protocol. The fatigue protocol included (1 a running Course-Navette test, (2 running up and down a flight of stairs for 5 min, and (3 performance of alternating jumps on a step (five sets of 1 minute each with 30 resting seconds between the sets. Fatigue decreased dorsiflexion (14.24 ± 4.98° in pre-fatigue and 12.65 ± 6.21° in fatigue condition, p < 0.05 at foot strike phase in females, and plantar flexion (−19.23 ± 4.12° in pre-fatigue and −18.26 ± 5.31° in fatigue condition, p < 0.05 at toe-off phase in males. These changes led to a decreased loading rate (88.14 ± 25.82 BW/s in pre-fatigue and 83.97 ± 18.83 BW/s in fatigue condition, p < 0.05 and the impact peak in females (1.95 ± 0.31 BW in pre-fatigue and 1.90 ± 0.31 BW in fatigue condition, p < 0.05, and higher peak propulsive forces in males (−0.26 ± 0.04 BW in pre-fatigue and −0.27 ± 0.05 BW in fatigue condition, p < 0.05 in the fatigue condition. It seems that better responses to impact under a fatigue condition are observed among women. Further studies should confirm whether these changes represent a strategy to optimize shock attenuation, prevent running injuries and improve running economy.

  11. Effect of fatigue and gender on kinematics and ground reaction forces variables in recreational runners.

    Science.gov (United States)

    Bazuelo-Ruiz, Bruno; Durá-Gil, Juan V; Palomares, Nicolás; Medina, Enrique; Llana-Belloch, Salvador

    2018-01-01

    The presence of fatigue has been shown to modify running biomechanics. Overall in terms of gender, women are at lower risk than men for sustaining running-related injuries, although it depends on the factors taken into account. One possible reason for these differences in the injury rate and location might be the dissimilar running patterns between men and women. The purpose of this study was to determine the effect of fatigue and gender on the kinematic and ground reaction forces (GRF) parameters in recreational runners. Fifty-seven participants (28 males and 29 females) had kinematic and GRF variables measured while running at speed of 3.3 m s -1 before and after a fatigue test protocol. The fatigue protocol included (1) a running Course-Navette test, (2) running up and down a flight of stairs for 5 min, and (3) performance of alternating jumps on a step (five sets of 1 minute each with 30 resting seconds between the sets). Fatigue decreased dorsiflexion (14.24 ± 4.98° in pre-fatigue and 12.65 ± 6.21° in fatigue condition, p  < 0.05) at foot strike phase in females, and plantar flexion (-19.23 ± 4.12° in pre-fatigue and -18.26 ± 5.31° in fatigue condition, p  < 0.05) at toe-off phase in males. These changes led to a decreased loading rate (88.14 ± 25.82 BW/s in pre-fatigue and 83.97 ± 18.83 BW/s in fatigue condition, p  < 0.05) and the impact peak in females (1.95 ± 0.31 BW in pre-fatigue and 1.90 ± 0.31 BW in fatigue condition, p  < 0.05), and higher peak propulsive forces in males (-0.26 ± 0.04 BW in pre-fatigue and -0.27 ± 0.05 BW in fatigue condition, p  < 0.05) in the fatigue condition. It seems that better responses to impact under a fatigue condition are observed among women. Further studies should confirm whether these changes represent a strategy to optimize shock attenuation, prevent running injuries and improve running economy.

  12. Prediction of composite fatigue life under variable amplitude loading using artificial neural network trained by genetic algorithm

    Science.gov (United States)

    Rohman, Muhamad Nur; Hidayat, Mas Irfan P.; Purniawan, Agung

    2018-04-01

    Neural networks (NN) have been widely used in application of fatigue life prediction. In the use of fatigue life prediction for polymeric-base composite, development of NN model is necessary with respect to the limited fatigue data and applicable to be used to predict the fatigue life under varying stress amplitudes in the different stress ratios. In the present paper, Multilayer-Perceptrons (MLP) model of neural network is developed, and Genetic Algorithm was employed to optimize the respective weights of NN for prediction of polymeric-base composite materials under variable amplitude loading. From the simulation result obtained with two different composite systems, named E-glass fabrics/epoxy (layups [(±45)/(0)2]S), and E-glass/polyester (layups [90/0/±45/0]S), NN model were trained with fatigue data from two different stress ratios, which represent limited fatigue data, can be used to predict another four and seven stress ratios respectively, with high accuracy of fatigue life prediction. The accuracy of NN prediction were quantified with the small value of mean square error (MSE). When using 33% from the total fatigue data for training, the NN model able to produce high accuracy for all stress ratios. When using less fatigue data during training (22% from the total fatigue data), the NN model still able to produce high coefficient of determination between the prediction result compared with obtained by experiment.

  13. A study of microstructure, quasi-static response, fatigue, deformation and fracture behavior of high strength alloy steels

    Science.gov (United States)

    Kannan, Manigandan

    The history of steel dates back to the 17th century and has been instrumental in the betterment of every aspect of our lives ever since, from the pin that holds the paper together to the Automobile that takes us to our destination steel touches everyone every day. Path breaking improvements in manufacturing techniques, access to advanced machinery and understanding of factors like heat treatment, corrosion resistance have aided in the advancement in the properties of steel in the last few years. In this dissertation document, the results of a study aimed at the influence of alloy chemistry, processing and influence of the quasi static and fatigue behavior of seven alloy steels is discussed. The microstructure of the as-received steel was examined and characterized for the nature and morphology of the grains and the presence of other intrinsic features in the microstructure. The tensile, cyclic fatigue and bending fatigue tests were done on a fully automated closed-loop servo-hydraulic test machine at room temperature. The failed samples of high strength steels were examined in a scanning electron microscope for understanding the fracture behavior, especially the nature of loading be it quasi static, cyclic fatigue or bending fatigue . The quasi static and cyclic fatigue fracture behavior of the steels examined coupled with various factors contributing to failure are briefly discussed in light of the conjoint and mutually interactive influences of intrinsic microstructural effects, nature of loading, and stress (load)-deformation-microstructural interactions.

  14. The monitoring and fatigue behavior of CFCCs at ambient temperature and 1000 degrees C

    International Nuclear Information System (INIS)

    Miriyala, N.; Liaw, P.K.; McHargue, C.J.

    1997-01-01

    Metallographically polished flexure bars of Nicalon/SiC and Nicalon/alumina composites were subjected to monotonic and cycle-fatigue loadings, with loading either parallel or normal to the fabric plies. The fabric orientation did not significantly affect the mechanical behavior of the Nicalon/SiC composite at ambient temperature. However, the mechanical behavior of the Nicalon/alumina composite was significantly affected by the fabric orientation at ambient temperature in air and at 1000 degrees C in argon atmosphere. In addition, there was a significant degradation in the fatigue performance of the alumina matrix composite at the elevated temperature, owing to creep in the material and degradation in the fiber strength

  15. The monitoring and fatigue behavior of CFCCs at ambient temperature and 1000{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Miriyala, N.; Liaw, P.K.; McHargue, C.J. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1997-04-01

    Metallographically polished flexure bars of Nicalon/SiC and Nicalon/alumina composites were subjected to monotonic and cycle-fatigue loadings, with loading either parallel or normal to the fabric plies. The fabric orientation did not significantly affect the mechanical behavior of the Nicalon/SiC composite at ambient temperature. However, the mechanical behavior of the Nicalon/alumina composite was significantly affected by the fabric orientation at ambient temperature in air and at 1000{degrees}C in argon atmosphere. In addition, there was a significant degradation in the fatigue performance of the alumina matrix composite at the elevated temperature, owing to creep in the material and degradation in the fiber strength.

  16. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, Z.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)]. E-mail: zhfzhang@imr.ac.cn; Wang, Z.G. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Qiu, K.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, H.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zang, Q.S. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Hu, Z.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2006-02-25

    The fatigue life, damage and fracture behavior of tungsten fiber reinforced metallic glass Zr{sub 41.25}Ti{sub 13.75}Ni{sub 10}Cu{sub 12.5}Be{sub 22.5} composites are investigated under cyclic push-pull loading. It is found that the fatigue life of the composite increases with increasing the volume fraction of tungsten fibers. Similar to crystalline metals, the regions of crack initiation, propagation and overload fracture can be discerned on the fracture surface of the specimen. Fatigue crack normally initiates in the metallic glass matrix at the outer surface of the composite specimen and propagates predominantly in the matrix. Different crack front profile around the tungsten fibers and fiber pullout demonstrate that fatigue crack may propagate around the fiber, leading to bridging of the crack faces by the unbroken fiber and hence improved fatigue crack-growth resistance. Locally decreased effective stiffness in the region where fiber distribution is sparse may provide preferential crack path in the composite. A proposed model was exercised to elucidate different tungsten fiber fracture morphologies in the fatigue crack propagation and overload fracture regions in the light of Poisson's ratio effect during fatigue loading.

  17. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite

    International Nuclear Information System (INIS)

    Zhang, H.; Zhang, Z.F.; Wang, Z.G.; Qiu, K.Q.; Zhang, H.F.; Zang, Q.S.; Hu, Z.Q.

    2006-01-01

    The fatigue life, damage and fracture behavior of tungsten fiber reinforced metallic glass Zr 41.25 Ti 13.75 Ni 10 Cu 12.5 Be 22.5 composites are investigated under cyclic push-pull loading. It is found that the fatigue life of the composite increases with increasing the volume fraction of tungsten fibers. Similar to crystalline metals, the regions of crack initiation, propagation and overload fracture can be discerned on the fracture surface of the specimen. Fatigue crack normally initiates in the metallic glass matrix at the outer surface of the composite specimen and propagates predominantly in the matrix. Different crack front profile around the tungsten fibers and fiber pullout demonstrate that fatigue crack may propagate around the fiber, leading to bridging of the crack faces by the unbroken fiber and hence improved fatigue crack-growth resistance. Locally decreased effective stiffness in the region where fiber distribution is sparse may provide preferential crack path in the composite. A proposed model was exercised to elucidate different tungsten fiber fracture morphologies in the fatigue crack propagation and overload fracture regions in the light of Poisson's ratio effect during fatigue loading

  18. Effect of Process Parameters on Fatigue and Fracture Behavior of Al-Cu-Mg Alloy after Creep Aging

    Directory of Open Access Journals (Sweden)

    Lihua Zhan

    2018-04-01

    Full Text Available A set of creep aging tests at different aging temperatures and stress levels were carried out for Al-Cu-Mg alloy, and the effects of creep aging on strength and fatigue fracture behavior were studied through tensile tests and fatigue crack propagation tests. The microstructures were further analyzed by using scanning electron microscopy (SEM and transmission electron microscopy (TEM. The results show that temperature and stress can obviously affect the creep behavior, mechanical properties, and fatigue life of Al-Cu-Mg alloy. As the aging temperature increases, the fatigue life of alloy first increases, and then decreases. The microstructure also displays a transition from the Guinier-Preston-Bagaryatsky (GPB zones to the precipitation of S phase in the grain interior. However, the precipitation phases grow up and become coarse at excessive temperatures. Increasing stress can narrow the precipitation-free zone (PFZ at the grain boundary and improve the fatigue life, but overhigh stress can produce the opposite result. In summary, the fatigue life of Al-Cu-Mg alloy can be improved by fine-dispersive precipitation phases and a narrow PFZ in a suitable creep aging process.

  19. Effects of environment on the low-cycle fatigue behavior of Type 304 stainless steel

    International Nuclear Information System (INIS)

    Maiya, P.S.; Burke, W.F.

    1979-12-01

    The low-cycle fatigue behavior of Type 304 stainless steel has been investigated at 593 0 C in a dynamic vacuum of better than 1.3 x 10 -6 Pa (10 -8 torr). The results concerning the effects of strain range, strain rate and tensile hold time on fatigue life are presented and compared with results of similar tests performed in air and sodium environments. Under continuous symmetrical cycling, fatigue life is significantly longer in vacuum than in air; in the low strain range regime, the effect of sodium on fatigue life appears to be similar to that of vacuum. Strain rate (or frequency) strongly influences fatigue life in both air and vacuum. In compressive hold-time tests, the effect of environment on life is similar to that in a continuous-cycling test. However, tensile hold times are nearly as damaging in vacuum as in air. Thus, at least for austenitic stainless steels, the influence of the environment of fatigue life appears to depend on the loading waveshape

  20. Fatigue damage behavior of a surface-mount electronic package under different cyclic applied loads

    Science.gov (United States)

    Ren, Huai-Hui; Wang, Xi-Shu

    2014-04-01

    This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fatigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respectively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.

  1. High-Cycle, Push–Pull Fatigue Fracture Behavior of High-C, Si–Al-Rich Nanostructured Bainite Steel

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2017-12-01

    Full Text Available The high-cycle, push–pull fatigue fracture behavior of high-C, Si–Al-rich nanostructured bainitic steel was studied through the measurement of fatigue limits, a morphology examination and phase composition analysis of the fatigue fracture surface, as well as fractography of the fatigue crack propagation. The results demonstrated that the push–pull fatigue limits at 107 cycles were estimated as 710–889 MPa, for the samples isothermally transformed at the temperature range of 220–260 °C through data extrapolation, measured under the maximum cycle number of 105. Both the interior inclusion and the sample surface constituted the fatigue crack origins. During the fatigue crack propagation, a high amount of secondary cracks were formed in almost parallel arrangements. The apparent plastic deformation occurred in the fracture surface layer, which induced approximately all retained austenite to transform into martensite.

  2. The Effects of Hot Bending on the Low Cycle Fatigue Behaviors of 347 SS in PWR Primary Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho-Sub; Hong, Jong-Dae; Lee, Junho; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    Fatigue damage could be significant for some locations, especially the welds and bends where stress concentration is typically high. As a possible solution, a large radius hot-bending method has been suggested to eliminate some weld joints and all tight bends. However, for the hot-bending process which involves a high temperature thermal cycle, there is a concern about changes in mechanical properties including low cycle fatigue behaviors. In APR1400, Type 347 SS have been used as surge line pipes. Therefore, to verify the applicability of hot-bending on 347 SS surge line pipes, an environmental fatigue test program was initiated. In this paper, the preliminary results of the on-going test program are introduced. Also, the low cycle fatigue behaviors of 347 SS are compared with those of other grade of stainless steels. The effects of hot bending on the low cycle fatigue behavior of 347 SS were quantitatively evaluated. The fatigue life was compared with the estimated values per NUREG 6909 rev. 1. There are no distinct differences between NUREG 6909 and LCF tests. According to fractography and cross section analysis in progress, basically, the reduction of LCF life of 347 SS in PWR water was caused by operation of HIC mechanism. The cyclic stress responses shows that there is no secondary hardening in 330 .deg.C air and PWR water.

  3. Effect of temperature upon the fatigue-crack propagation behavior of Hastelloy X-280

    International Nuclear Information System (INIS)

    James, L.A.

    1976-05-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effect of temperature upon the fatigue-crack propagation behavior of Hastelloy X-280 in an air environment. Also included in this study are survey tests to determine the effects of thermal aging and stress ratio upon crack growth behavior in this alloy

  4. Correlation of Stress Concentration Factors for T-Welded Connections – Finite Element Simulations and Fatigue Behavior

    Directory of Open Access Journals (Sweden)

    Gerardo Terán Méndez

    Full Text Available Abstract The stress concentration factors (SCFs in welded connections usually occur at zones with high stress levels. Stress concentrations reduce the fatigue behavior of welded connections in offshore structures and cracking can develop. By using the grinding technique, cracking can be eliminated. Stress concentration factors are defined as a ratio of maximum stress at the intersection to nominal stress on the brace. Defining the stress concentration factor is an important stage in the fatigue behavior of welded connections. Several approaches have evolved for designing structures with the classical S-N approach for estimating total life. This work correlates to the stress concentration factors of T-welded connections and the fatigue behavior. Stress concentration factors were computed with the finite element employing 3D T-welded connections with intact and grinding depth conditions. Then, T-welded connections were constructed with A36 plate steel and welded with E6013 electrodes to obtain the stress-life (S-N approach. The methodology from previous works was used to compute the SCF and fabricate the T-welded connections. The results indicated that the grinding process could restore the fatigue life of the T-welded connections for SCFs values in the range of 1.29. This value can be considered to be a low SCF value in T-welded connection. However, for higher SCF values, the fatigue life decreased, compromising and reducing the structural integrity of the T-welded connections.

  5. Fatigue life assessment based on crack growth behavior in reduced activation ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Nogami, Shuhei; Sato, Yuki; Hasegawa, Akira

    2010-01-01

    Crack growth behavior under low cycle fatigue in reduced activation ferritic/martensitic steel, F82H IEA-heat (Fe-8Cr-2W-0.2V-0.02Ta), was investigated to improve the fatigue life assessment method of fusion reactor structural material. Low cycle fatigue test was carried out at room temperature in air at a total strain range of 0.4-1.5% using an hourglass-type miniature fatigue specimen. The relationship between the surface crack length and life fraction was described using one equation independent of the total strain range. Therefore, the fatigue life and residual life could be estimated using the surface crack length. Moreover, the microcrack initiation life could be estimated using the total strain range if there was a one-to-one correspondence between the total strain range and number of cycles to failure. The crack growth rate could be estimated using the total strain range and surface crack length by introducing the concept of the normalized crack growth rate. (author)

  6. Fatigue behavior of a bolted assembly - a comparison between numerical analysis and experimental analysis

    International Nuclear Information System (INIS)

    Bosser, M.; Vagner, J.

    1987-01-01

    The fatigue behavior of a bolted assembly can be analysed, either by fatigue tests, or by computing the stress variations and using a fatigue curve. This paper presents the fatigue analysis of a stud-bolt and stud-flange of a steam generator manway carried out with the two methods. The experimental analysis is performed for various levels of load, according to the recommandations of the ASME code section III appendix II. The numerical analysis of the stresses is based on the results of a finite element analysis performed with the program SYSTUS. The maximum stresses are obtained in the first bolt threads. In using these stresses, the allowable number of cycles for each level of loading analysed, is obtained from fatigue curves, as defined in appendix I section III of the ASME code. The analysis underlines that, for each level of load the purely numerical approach is highly conservative, compared to the experimental approach. (orig.)

  7. Hydrogen effect on the fatigue behavior of LBM Inconel 718

    Directory of Open Access Journals (Sweden)

    Puydebois Simon

    2018-01-01

    Full Text Available For several years, Inconel 718 made by Laser Beam Melting (LBM has been used for components of the Ariane propulsion systems manufactured by ArianeGroup. In the aerospace field, many components of space engines are used under hydrogen environment. The risk of hydrogen embrittlement (HE can be therefore a first order problem. Consequently, to improve the HE sensitivity of LBM Inconel 718, a systematic approach needs to be developed to characterize the microstructure at different scales and its interaction with hydrogen. This study addresses the impact of gaseous hydrogen on the material mechanical behavior under fatigue loadings. In a first step, the low cycle fatigue behavior under 300 bar of hydrogen gas has been evaluated with specimen loaded at a constant load ratio of R=0.1 and a frequency of 0.5 Hz. A reduction in the cycle number of fracture is shown. This reduction of fatigue life is a consequence of the impact of hydrogen damage processes. The impact of hydrogen is evaluated at the stages of crack initiation, crack propagation. These results are discussed in relation with the hydrogen embrittlement mechanisms and particularly in terms of hydrogen / plasticity interactions. To achieve this, the fracture surface morphology was first examined using scanning electron microscopy and second samples near the fracture surface were extracted using Focused-Ion Beam machining from regions containing striation. The main result observed is a reduction of the size of dislocation organization in relation with a decrease of the striation distance.

  8. The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites

    International Nuclear Information System (INIS)

    Zhang, W; Picu, R C; Koratkar, N

    2008-01-01

    Fatigue is one of the primary reasons for failure in structural materials. It has been demonstrated that carbon nanotubes can suppress fatigue in polymer composites via crack-bridging and a frictional pull-out mechanism. However, a detailed study of the effects of nanotube dimensions and dispersion on the fatigue behavior of nanocomposites has not been performed. In this work, we show the strong effect of carbon nanotube dimensions (i.e. length, diameter) and dispersion quality on fatigue crack growth suppression in epoxy nanocomposites. We observe that the fatigue crack growth rates can be significantly reduced by (1) reducing the nanotube diameter, (2) increasing the nanotube length and (3) improving the nanotube dispersion. We qualitatively explain these observations by using a fracture mechanics model based on crack-bridging and pull-out of the nanotubes. By optimizing the above parameters (tube length, diameter and dispersion) we demonstrate an over 20-fold reduction in the fatigue crack propagation rate for the nanocomposite epoxy compared to the baseline (unfilled) epoxy

  9. Stress-related psychosocial factors at work, fatigue, and risky driving behavior in bus rapid transport (BRT) drivers.

    Science.gov (United States)

    Useche, Sergio A; Ortiz, Viviola Gómez; Cendales, Boris E

    2017-07-01

    There is consistent scientific evidence that professional drivers constitute an occupational group that is highly exposed to work related stressors. Furthermore, several recent studies associate work stress and fatigue with unsafe and counterproductive work behaviors. This study examines the association between stress-related work conditions of Bus Rapid Transport (BRT) drivers and risky driving behaviors; and examines whether fatigue is a mechanism that mediates the association between the two. A sample of 524 male Bus Rapid Transit (BRT) operators were drawn from four transport companies in Bogotá, Colombia. The participants answered a survey which included an adapted version of the Driver Behavior Questionnaire (DBQ) for BRT operators, as well as the Effort-Reward Imbalance and Job Content Questionnaires, the Subjective Fatigue subscale of the Checklist Individual Strength (CIS) and the Need for Recovery after Work Scale (NFR). Utilizing Structural Equation Models (SEM) it was found that risky driving behaviors in BRT operators could be predicted through job strain, effort-reward imbalance and social support at work. It was also found that fatigue and need for recovery fully mediate the associations between job strain and risky driving, and between social support and risky driving, but not the association between effort/reward imbalance (ERI) and risky driving. The results of this study suggest that a) stress related working conditions (Job Strain, Social Support and ERI) are relevant predictors of risky driving in BRT operators, and b) that fatigue is the mechanism which links another kind of stress related to working conditions (job strain and low social support) with risky driving. The mechanism by which ERI increases risky driving in BRT operators remains unexplained. This research suggests that in addition to the individual centered stress-reduction occupational programs, fatigue management interventions aimed to changing some working conditions may reduce

  10. Fatigue during breast cancer radiotherapy: an initial randomized study of cognitive-behavioral therapy plus hypnosis.

    Science.gov (United States)

    Montgomery, Guy H; Kangas, Maria; David, Daniel; Hallquist, Michael N; Green, Sheryl; Bovbjerg, Dana H; Schnur, Julie B

    2009-05-01

    The study purpose was to test the effectiveness of a psychological intervention combining cognitive-behavioral therapy and hypnosis (CBTH) to treat radiotherapy-related fatigue. Women (n = 42) scheduled for breast cancer radiotherapy were randomly assigned to receive standard medical care (SMC) (n = 20) or a CBTH intervention (n = 22) in addition to SMC. Participants assigned to receive CBTH met individually with a clinical psychologist. CBTH participants received training in hypnosis and CBT. Participants assigned to the SMC control condition did not meet with a study psychologist. Fatigue was measured on a weekly basis by using the fatigue subscale of the Functional Assessment of Chronic Illness Therapy (FACIT) and daily using visual analogue scales. Multilevel modeling indicated that for weekly FACIT fatigue data, there was a significant effect of the CBTH intervention on the rate of change in fatigue (p < .05), such that on average, CBTH participants' fatigue did not increase over the course of treatment, whereas control group participants' fatigue increased linearly. Daily data corroborated the analyses of weekly data. The results suggest that CBTH is an effective means for controlling and potentially preventing fatigue in breast cancer radiotherapy patients.

  11. The Effects of Cognitive Behavioral Therapy for Postcancer Fatigue on Perceived Cognitive Disabilities and Neuropsychological Test Performance

    NARCIS (Netherlands)

    Goedendorp, Martine M.; Knoop, Hans; Gielissen, Marieke F. M.; Verhagen, Constans A. H. H. V. M.; Bleijenberg, Gijs

    Context. After successful cancer treatment, a substantial number of survivors continue to experience fatigue and related concentration and memory problems. Severe fatigue after cancer treatment can be treated effectively with cognitive behavioral therapy (CBT), but it is unclear whether CBT has an

  12. Investigation of the effect of vacuum environment on the fatigue and fracture behavior of 7075-T6.

    Science.gov (United States)

    Hudson, C. M.

    1972-01-01

    Axial-load fatigue-life, fatigue-crack propagation, and fracture-toughness experiments were conducted on sheet specimens made of 7075-T6 aluminum alloy. These experiments were conducted at air pressures ranging from 101 kN/sq m to 7 micronewtons/sq m to determine the effect of air pressure on fatigue behavior. Analysis of the results from the fatigue-life experiments indicated that for a given stress level, the lower the air pressure was the longer the fatigue life. At a pressure of 7 micronewtons/sq m, fatigue lives were 15 to 30 times longer than at 101 kN/sq m. Analysis of the results from the fatigue-crack-growth experiments indicates that at low values of stress-intensity range, the fatigue-crack-growth rates were approximately twice as high at atmospheric pressure as in vacuum. However, at higher values of stress-intensity range, the fatigue-crack-growth rates were nominally the same in vacuum and at atmospheric pressure.

  13. Tensile and fatigue behaviors of printed Ag thin films on flexible substrates

    International Nuclear Information System (INIS)

    Sim, Gi-Dong; Won, Sejeong; Lee, Soon-Bok

    2012-01-01

    Flexible electronics using nanoparticle (NP) printing has been highlighted as a key technology enabling eco-friendly, low-cost, and large-area fabrication. For NP-based printing to be used as a successive alternative to photolithography and vacuum deposition, stretchability and long term reliability must be considered. This paper reports the stretchability and fatigue behavior of 100 nm thick NP-based silver thin films printed on polyethylene-terephthalate substrate and compares it to films deposited by electron-beam evaporation. NP-based films show stretchability and fatigue life comparable to evaporated films with intergranular fracture as the dominant failure mechanism.

  14. Tensile and fatigue behaviors of printed Ag thin films on flexible substrates

    Science.gov (United States)

    Sim, Gi-Dong; Won, Sejeong; Lee, Soon-Bok

    2012-11-01

    Flexible electronics using nanoparticle (NP) printing has been highlighted as a key technology enabling eco-friendly, low-cost, and large-area fabrication. For NP-based printing to be used as a successive alternative to photolithography and vacuum deposition, stretchability and long term reliability must be considered. This paper reports the stretchability and fatigue behavior of 100 nm thick NP-based silver thin films printed on polyethylene-terephthalate substrate and compares it to films deposited by electron-beam evaporation. NP-based films show stretchability and fatigue life comparable to evaporated films with intergranular fracture as the dominant failure mechanism.

  15. Influence of sodium on the low-cycle fatigue behavior of types 304 and 316 stainless steel

    International Nuclear Information System (INIS)

    Smith, D.L.; Zeman, G.J.; Natesan, K.; Kassner, T.F.

    1976-01-01

    Fatigue tests in sodium were conducted to investigate the influence of a high-temperature sodium environment on the low-cycle fatigue behavior of Types 304 and 316 stainless steel. The effects of testing in a sodium environment as well as long-term sodium exposure were investigated. The fatigue tests were conducted at 600 and 700 0 C in sodium of controlled purity, viz., approximately 1 ppM oxygen and 0.4 ppM carbon, at a strain rate of 4 x 10 -3 s -1 . The fatigue life of annealed Type 316 stainless steel is substantially greater in sodium than when tested in air; however, the fatigue life of annealed Type 304 stainless steel is altered much less when tested in sodium. A 1512-h preexposure to sodium had no significant effect on the fatigue life of Type 316 stainless steel tested in sodium. However, a similar exposure substantially increased the fatigue life of Type 304 stainless steel in sodium. 10 fig

  16. Influence of dwell times on the thermomechanical fatigue behavior of a directionally solidified Ni-base superalloy

    Czech Academy of Sciences Publication Activity Database

    Guth, S.; Petráš, Roman; Škorík, Viktor; Kruml, Tomáš; Man, Jiří; Lang, K. H.; Polák, Jaroslav

    2015-01-01

    Roč. 80, NOV (2015), s. 426-433 ISSN 0142-1123 R&D Projects: GA MŠk(CZ) EE2.3.30.0063 Institutional support: RVO:68081723 Keywords : Nickel base superalloy * Thermomechanical fatigue * Dwell time * Lifetime behavior * Damage mechanisms Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.162, year: 2015

  17. Effects of high mean stress on the high-cycle fatigue behavior of PWA 1480

    International Nuclear Information System (INIS)

    Majumdar, S.; Antolovich, S.; Milligan, W.

    1985-03-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the Space Shuttle Main Engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. This paper describes results obtained in an ongoing program to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material

  18. Statistical analysis of fatigue crack growth behavior for grade B cast steel

    International Nuclear Information System (INIS)

    Li, W.; Sakai, T.; Li, Q.; Wang, P.

    2011-01-01

    Tests for fatigue crack growth rate (FCGR) and crack-tip opening displacement (CTOD) were performed to clarify the fatigue crack growth behavior of a railway grade B cast steel. The threshold values of this steel with specific survival probabilities are evaluated, in which the mean value is 8.3516 MPa m 1/2 , very similar to the experimental value, about 8.7279 MPa m 1/2 . Under the conditions of plane strain and small-scale yielding, the values of fracture toughness for this steel with specific survival probabilities are converted from the corresponding critical CTOD values, in which the mean value is about 138.4256 MPa m 1/2 . In consideration of the inherent variability of crack growth rates, six statistical models are proposed to represent the probabilistic FCGR curves of this steel in entire crack propagation region from the viewpoints of statistical evaluation on the number of cycles at a given crack size and the crack growth rate at a given stress intensity factor range, stochastic characteristic of crack growth as well as statistical analysis of coefficient and exponent in FCGR power law equation. Based on the model adequacy checking, result shows that all models are basically in good agreement with test data. Although the probabilistic damage-tolerant design based on some models may involve a certain amount of risk in stable crack propagation region, they just accord with the fact that the dispersion degree of test data in this region is relatively smaller.

  19. Ti–6Al–4V welded joints via electron beam welding: Microstructure, fatigue properties, and fracture behavior

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoguang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Co-Innovation Center for Advanced Aero-Engine, Beijing 100191 (China); Li, Shaolin [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Qi, Hongyu, E-mail: qhy@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Co-Innovation Center for Advanced Aero-Engine, Beijing 100191 (China)

    2014-03-01

    The effect of microstructural characteristics on the fatigue properties of electron beam-welded joints of forged Ti–6Al–4V and its fracture behavior were investigated. Tensile tests and fatigue tests were conducted at room temperature in air atmosphere. The test data were analyzed in relation to microstructure, high-cycle fatigue properties, low-cycle fatigue properties, and fatigue crack propagation properties. The high-cycle fatigue test results indicated that the fatigue strength of the joint welded via electron beam welding was higher than that of the base metal because the former had a high yield strength and all high-cycle fatigue specimens were fractured in the base metal. Although the joint specimens had a lower low-cycle fatigue life than the base metal, they mainly ruptured at the fusion zone of the joint specimen and their crack initiation mechanism is load-dependent. The fatigue crack propagation test results show that the joint had a slower crack propagation rate than the base metal, which can be attributed to the larger grain in the fusion zone.

  20. Creep-Fatigue Behavior of Alloy 617 at 850 and 950°C, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Carroll, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    Alloy 617 is the leading candidate material for an Intermediate Heat Exchanger (IHX) of the Very High Temperature Reactor (VHTR). To evaluate the behavior of this material in the expected service conditions, strain-controlled cyclic tests including hold times up to 9000 s at maximum tensile strain were conducted at 850 and 950 degrees C. At both temperatures, the fatigue resistance decreased when a hold time was added at peak tensile strain. The magnitude of this effect depended on the specific mechanisms and whether they resulted in a change in fracture mode from transgranular in pure fatigue to intergranular in creep-fatigue for a particular temperature and strain range combination. Increases in the tensile hold duration beyond an initial value were not detrimental to the creep-fatigue resistance at 950 degrees C but did continue to degrade the lifetimes at 850 degrees C.

  1. The fatigue and corrosion fatigue behavior of welded Inconel 625 alloy employed in off-shore platforms; Avaliacao do comportamento a fadiga e a corrosao-fadiga de juntas soldadas da liga Inconel 625 testada para uso em plaaformas off-shore

    Energy Technology Data Exchange (ETDEWEB)

    Pfingstag, M.E.; Schroeder, R.M.; Mueller, I.L. [Universidade Federal do Rio Grande do Sul (LAPEC/UFRGS), Porto Alegre, RS (Brazil). Dept. de Metalurgia. Lab. de Pesquisa em Corrosao], e-mail: maiquel10@walla.com

    2006-07-01

    The fatigue and corrosion fatigue behavior of welded Inconel 625 employed live like risers in off-shore platforms was studied. These risers may be employed integrally of this alloy, or combined with API 52 X60 steel in the form of 'Clads'. One of the most susceptible points in .these structures is the circumferential weld that joint the pipes together. In these regions, stresses and defects are generated by the welding process, and these material remind in contact with aggressive species like, chlorides and Co{sub 2} . Polarization curves, slow strain rate fatigue and corrosion fatigue tests were used to characterize the Inconel alloy behavior. In the welded deposit condition, this alloy shows an excellent resistance corrosion and a good fatigue and corrosion-fatigue behavior.(author)

  2. Corrosion fatigue cracking behavior of Inconel 690 (TT) in secondary water of pressurized water reactors

    International Nuclear Information System (INIS)

    Xiao Jun; Chen Luyao; Qiu Shaoyu; Chen Yong; Lin Zhenxia; Fu Zhenghong

    2015-01-01

    Inconel 690 (TT) is one of the key materials for tubes of steam generators for pressurized water reactors, where it is susceptible to corrosion fatigue cracking. In this paper, the corrosion fatigue cracking behavior of Inconel 690 (TT) was investigated under small scale yielding conditions, in the simulated secondary water of pressurized water reactor. It was observed that the fatigue crack growth rate was accelerated by a maximum factor up to 3 in the simulated secondary water, comparing to that in room temperature air. In addition, it was found that the accelerating effect was influenced by out-of-plane cracking of corrosion fatigue cracks and also correlated with stress intensity factor range, maximum stress intensity factor and stress ratio. (authors)

  3. Surface modification and fatigue behavior of nitinol for load bearing implants

    Science.gov (United States)

    Bernard, Sheldon A.

    Musculoskeletal disorders are recognized amongst the most significant human health problems that exist today. Even though considerable research and development has gone towards understanding musculoskeletal disorders, there is still lack of bone replacement materials that are appropriate for restoring lost structures and functions, particularly for load-bearing applications. Many materials on the market today, such as titanium and stainless steel, suffer from significantly higher modulus than natural bone and low bioactivity leading to stress shielding and implant loosening over longer time use. Nitinol (NiTi) is an equiatomic intermetallic compound of nickel and titanium whose unique biomechanical and biological properties contributed to its increasing use as a biomaterial. An innovative method for creating dense and porous net shape NiTi alloy parts has been developed to improve biological properties while maintaining comparable or better mechanical properties than commercial materials that are currently in use. Laser engineered net shaping (LENS(TM)) and surface electrochemistry modification was used to create dense/porous samples and micro textured surfaces on NiTi parts, respectively. Porous implants are known to promote cell adhesion and have a low elastic modulus, a combination that can significantly increase the life of an implant. However, porosity can significantly reduce the fatigue life of an implant, and very little work has been reported on the fatigue behavior of bulk porous metals, specifically on porous nitinol alloy. High-cycle rotating bending and compression-compression fatigue behavior of porous NiTi fabricated using LENS(TM) were studied. In cyclic compression loading, plastic strain increased with increasing porosity and it was evident that maximum strain was achieved during the first 50000 cycles and remained constant throughout the remaining loading. No failures were observed due to loading up to 150% of the yield strength. When subjected

  4. Environmental fatigue behaviors of wrought and cast stainless steels in 310degC deoxygenated water

    International Nuclear Information System (INIS)

    Cho, Pyung-Yeon; Jang, Hun; Jang, Changheui; Jeong, Ill-Seok; Lee, Jae-Gon

    2009-01-01

    Environmental fatigue behaviors of wrought type 316LN stainless steel and cast CF8M stainless steel were investigated. Low cycle fatigue tests were performed in a 310degC deoxygenated water environment at a strain rate of 0.04%/s with various strain amplitudes. It was shown that the low cycle fatigue life of CF8M was slightly longer than that of 316LN. To understand the causes of the difference, fracture surface was observed and material factors like microstructure, mechanical properties, and chemical compositions of both materials were analyzed. In a duplex microstructure of CF8M, the fatigue crack growth was affected by barrier role of ferrite phase and acceleration role of microvoids in ferrite phase. Test results indicate that the former is greater than the latter, resulting in slower fatigue crack growth rate, or longer LCF lives in CF8M than in 316LN. (author)

  5. Fatigue Life Analysis and Prediction of 316L Stainless Steel Under Low Cycle Fatigue Loading

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Hyeong; Myung, NohJun; Choi, Nak-Sam [Hanyang Univ., Seoul (Korea, Republic of)

    2016-12-15

    In this study, a strain-controlled fatigue test of widely-used 316L stainless steel with excellent corrosion resistance and mechanical properties was conducted, in order to assess its fatigue life. Low cycle fatigue behaviors were analyzed at room temperature, as a function of the strain amplitude and strain ratio. The material was hardened during the initial few cycles, and then was softened during the long post period, until failure occurred. The fatigue life decreased with increasing strain amplitude. Masing behavior in the hysteresis loop was shown under the low strain amplitude, whereas the high strain amplitude caused non-Masing behavior and reduced the mean stress. Low cycle fatigue life prediction based on the cyclic plastic energy dissipation theory, considering Masing and non-Masing effects, showed a good correlation with the experimental results.

  6. Effect of strain rate and temperature at high strains on fatigue behavior of SAP alloys

    DEFF Research Database (Denmark)

    Blucher, J.T.; Knudsen, Per; Grant, N.J.

    1968-01-01

    Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased with decre......Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased...

  7. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Sung; Lee, Young Ju [Sunchon National University, Suncheon (Korea, Republic of); Oh, Young Jin [KEPCO E and C, Yongin (Korea, Republic of)

    2015-01-15

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions.

  8. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Lee, Young Ju; Oh, Young Jin

    2015-01-01

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions

  9. Predictors and Trajectories of Morning Fatigue Are Distinct from Evening Fatigue

    Science.gov (United States)

    Wright, Fay; Melkus, Gail D’Eramo; Hammer, Marilyn; Schmidt, Brian L.; Knobf, M. Tish; Paul, Steven M.; Cartwright, Frances; Mastick, Judy; Cooper, Bruce A.; Chen, Lee-May; Melisko, Michelle; Levine, Jon D.; Kober, Kord; Aouizerat, Bradley E.; Miaskowski, Christine

    2015-01-01

    Context Fatigue is the most common symptom in oncology patients during chemotherapy (CTX). Little is known about the predictors of interindividual variability in initial levels and trajectories of morning fatigue severity in these patients. Objectives An evaluation was done to determine which demographic, clinical, and symptom characteristics were associated with initial levels as well as the trajectories of morning fatigue and to compare findings with our companion paper on evening fatigue. Methods A sample of outpatients with breast, gastrointestinal, gynecological, and lung cancer (N=586) completed demographic and symptom questionnaires a total of six times over two cycles of CTX. Fatigue severity was evaluated using the Lee Fatigue Scale. Hierarchical linear modeling (HLM) was used to answer the study objectives. Results A large amount of interindividual variability was found in the morning fatigue trajectories. A piecewise model fit the data best. Patients with higher body mass index (BMI), who did not exercise regularly, with a lower functional status, and who had higher levels of state anxiety, sleep disturbance and depressive symptoms, reported higher levels of morning fatigue at enrollment. Variations in the trajectories of morning fatigue were predicted by the patients’ ethnicity and younger age. Conclusion The modifiable risk factors that were associated with only morning fatigue were BMI, exercise, and state anxiety. Modifiable risk factors that were associated with both morning and evening fatigue included functional status, depressive symptoms, and sleep disturbance. Using this information, clinicians can identify patients at higher risk for more severe morning fatigue and evening fatigue, provide individualized patient education, and tailor interventions to address the modifiable risk factors. PMID:25828559

  10. Effect of heat treatment upon the fatigue-crack growth behavior of Alloy 718 weldments

    International Nuclear Information System (INIS)

    Mills, W.J.; James, L.A.

    1981-05-01

    The microstructural features that influenced the room and elevated temperature fatigue-crack growth behavior of as-welded, conventional heat-treated, and modified heat-treated Alloy 718 GTA weldments were studied. Electron fractographic examination of fatigue fracture surfaces revealed that operative fatigue mechanisms were dependent on microstructure, temperatures and stress intensity factor. All specimens exhibited three basic fracture surface appearances at temperatures up to 538 degrees C: crystallographic faceting at low stress intensity range (ΔK) levels, striation, formation at intermediate values, and dimples coupled with striations in the highest (ΔK) regime. At 649 degrees C, the heat-treated welds exhibited extensive intergranular cracking. Laves and δ particles in the conventional heat-treated material nucleated microvoids ahead of the advancing crack front and caused on overall acceleration in crack growth rates at intermediate and high ΔK levels. The modified heat treatment removed many of these particles from the weld zone, thereby improving its fatigue resistance. The dramatically improved fatigue properties exhibited by the as-welded material was attributed to compressive residual stresses introduced by the welding process. 19 refs., 16 figs

  11. Cancer-related fatigue: Mechanisms, risk factors, and treatments

    Science.gov (United States)

    Bower, Julienne E.

    2015-01-01

    Fatigue is one of the most common and distressing side effects of cancer and its treatment, and may persist for years after treatment completion in otherwise healthy survivors. Cancer-related fatigue causes disruption in all aspects of quality of life and may be a risk factor for reduced survival. The prevalence and course of fatigue in cancer patients has been well characterized, and there is growing understanding of underlying biological mechanisms. Inflammation has emerged as a key biological pathway for cancer-related fatigue, with studies documenting links between markers of inflammation and fatigue before, during, and particularly after treatment. There is considerable variability in the experience of cancer-related fatigue that is not explained by disease- or treatment-related characteristics, suggesting that host factors may play an important role in the development and persistence of this symptom. Indeed, longitudinal studies have begun to identify genetic, biological, psychosocial, and behavioral risk factors for cancer-related fatigue. Given the multi-factorial nature of cancer-related fatigue, a variety of intervention approaches have been examined in randomized controlled trials, including physical activity, psychosocial, mind-body, and pharmacological treatments. Although there is currently no gold standard for treating fatigue, several of these approaches have shown beneficial effects and can be recommended to patients. This report provides a state of the science review of mechanisms, risk factors, and interventions for cancer-related fatigue, with a focus on recent longitudinal studies and randomized trials that have targeted fatigued patients. PMID:25113839

  12. Hydrogen Embrittlement Mechanism in Fatigue Behavior of Austenitic and Martensitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Sven Brück

    2018-05-01

    Full Text Available In the present study, the influence of hydrogen on the fatigue behavior of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations were the changes in the mechanisms of short crack propagation. Experiments in laboratory air with uncharged and precharged specimen and uncharged specimen in pressurized hydrogen were carried out. The aim of the ongoing investigation was to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition, simulations were carried out on the short fatigue crack growth, in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions. It was found that a lower nickel content and a higher martensite content of the samples led to a higher susceptibility to hydrogen embrittlement. In addition, crack propagation and crack path could be simulated well with the simulation model.

  13. Fatigue Crack Growth Behavior of Austempered AISI 4140 Steel with Dissolved Hydrogen

    Directory of Open Access Journals (Sweden)

    Varun Ramasagara Nagarajan

    2017-11-01

    Full Text Available The focus of this investigation was to examine the influence of dissolved hydrogen on the fatigue crack growth behavior of an austempered low-alloy AISI 4140 steel. The investigation also examined the influence of dissolved hydrogen on the fatigue threshold in this material. The material was tested in two conditions, as-received (cold rolled and annealed and austempered (austenitized at 882 °C for 1 h and austempered at 332 °C for 1 h. The microstructure of the annealed specimens consisted of a mix of ferrite and fine pearlite; the microstructure of the austempered specimens was lower bainite. Tensile and Compact Tension specimens were prepared. To examine the influence of dissolved hydrogen, two subsets of the CT specimens were charged with hydrogen for three different time periods between 150 and 250 h. All of the CT samples were then subjected to fatigue crack growth tests in the threshold and linear regions at room temperature. The test results indicate that austempering resulted in significant improvement in the yield and tensile strength as well as the fracture toughness of the material. The test results also show that, in the absence of dissolved hydrogen, the crack growth rate in the threshold and linear regions was lower in austempered samples compared to the as-received (annealed samples. The fatigue threshold was also slightly greater in the austempered samples. In presence of dissolved hydrogen, the crack growth rate was dependent upon the ∆K value. In the low ∆K region (<30 MPa√m, the presence of dissolved hydrogen caused the crack growth rate to be higher in the austempered samples as compared to annealed samples. Above this value, the crack growth rate was increasingly greater in the annealed specimens when compared to the austempered specimens in presence of dissolved hydrogen. It is concluded that austempering of 4140 steel appears to provide a processing route by which the strength, hardness, and fracture toughness of

  14. Influence of Sludge Particles on the Fatigue Behavior of Al-Si-Cu Secondary Aluminium Casting Alloys

    Directory of Open Access Journals (Sweden)

    Lorella Ceschini

    2018-04-01

    Full Text Available Al-Si-Cu alloys are the most widely used materials for high-pressure die casting processes. In such alloys, Fe content is generally high to avoid die soldering issues, but it is considered an impurity since it generates acicular intermetallics (β-Fe which are detrimental to the mechanical behavior of the alloys. Mn and Cr may act as modifiers, leading to the formation of other Fe-bearing particles which are characterized by less harmful morphologies, and which tend to settle on the bottom of furnaces and crucibles (usually referred to as sludge. This work is aimed at evaluating the influence of sludge intermetallics on the fatigue behavior of A380 Al-Si-Cu alloy. Four alloys were produced by adding different Fe, Mn and Cr contents to A380 alloy; samples were remelted by directional solidification equipment to obtain a fixed secondary dendrite arm spacing (SDAS value (~10 μm, then subjected to hot isostatic pressing (HIP. Rotating bending fatigue tests showed that, at room temperature, sludge particles play a detrimental role on fatigue behavior of T6 alloys, diminishing fatigue strength. At elevated temperatures (200 °C and after overaging, the influence of sludge is less relevant, probably due to a softening of the α-Al matrix and a reduction of stress concentration related to Fe-bearing intermetallics.

  15. Uniaxial low cycle fatigue behavior for pre-corroded 16MND5 bainitic steel in simulated pressurized water reactor environment

    Science.gov (United States)

    Chen, Xu; Ren, Bin; Yu, Dunji; Xu, Bin; Zhang, Zhe; Chen, Gang

    2018-06-01

    The effects of uniaxial tension properties and low cycle fatigue behavior of 16MND5 bainitic steel cylinder pre-corroded in simulated pressurized water reactor (PWR) were investigated by fatigue at room temperature in air and immersion test system, scanning electron microscopy (SEM), energy disperse spectroscopy (EDS). The experimental results indicated that the corrosion fatigue lives of 16MND5 specimen were significantly affected by the strain amplitude and simulated PWR environments. The compositions of corrosion products were complexly formed in simulated PWR environments. The porous corrosion surface of pre-corroded materials tended to generate pits as a result of promoting contact area to the fresh metal, which promoted crack initiation. For original materials, the fatigue cracks initiated at inclusions imbedded in the micro-cracks. Moreover, the simulated PWR environments degraded the mechanical properties and low cycle fatigue behavior of 16MND5 specimens remarkably. Pre-corrosion of 16MND5 specimen mainly affected the plastic term of the Coffin-Manson equation.

  16. Postpartum fatigue in the active-duty military woman.

    Science.gov (United States)

    Rychnovsky, Jacqueline D

    2007-01-01

    (a) To describe fatigue levels in military active-duty women, (b) to describe the relationship among selected predictor variables of fatigue, and (c) to examine the relationship between predictor variables, fatigue levels, and performance (as measured by functional status) after childbirth. Based on the Theory of Unpleasant Symptoms, a longitudinal, prospective design. A large military medical facility in the southwest United States. A convenience sample of 109 military active-duty women. Postpartum fatigue. Women were found to be moderately fatigued across time, with no change in fatigue levels from 2 to 6 weeks after delivery. All variables correlated with fatigue during hospitalization and at 2 weeks after delivery, and depression, anxiety, maternal sleep, and functional status correlated with fatigue at 6 weeks after delivery. Regression analyses indicated that maternal anxiety predicted fatigue at 6 weeks after delivery. Over half the women had not regained full functional status when they returned to work, and 40% still displayed symptoms of postpartum depression and anxiety. Military women continue to experiencing postpartum fatigue when they return to the workplace. Future research is needed to examine issues surrounding fatigue and its associated variables during the first year after delivery.

  17. All Fatigue is Not Created Equal: The Association of Fatigue and Its Subtypes on Pain Interference in Orofacial Pain.

    Science.gov (United States)

    Boggero, Ian A; Rojas-Ramirez, Marcia V; Carlson, Charles R

    2017-03-01

    Fatigue is known to be a pathway through which depression, psychological distress, pain intensity, and sleep disturbance influence pain interference, but the independent effects of fatigue on pain interference after controlling for these variables remains unknown. In addition, no study to date has tested whether fatigue subtypes of general fatigue, mental fatigue, emotional fatigue, physical fatigue, or vigor differentially predict pain interference. The current study tested these associations using archival medical data of 2133 chronic orofacial pain patients, who completed a battery of psychological questionnaires at the time of their first appointment at an orofacial pain clinic. Hierarchical linear regression analysis revealed that after controlling for depression, psychological distress, sleep disturbance, pain intensity, and demographic variables, fatigue predicted higher pain interference (B=0.70, SE=0.17, Ppain interference after controlling for the aforementioned variables. The findings suggest that fatigue is an important independent predictor of pain interference and not merely a mediator. These findings also suggest that not all fatigue is created equal. Interventions aimed at reducing pain interference should target specific fatigue symptoms of physical fatigue and vigor. Future research investigating the independent associations of fatigue subtypes on pain outcomes may help clarify the nature of the interrelationships between pain and fatigue.

  18. A comparison of patients with Q fever fatigue syndrome and patients with chronic fatigue syndrome with a focus on inflammatory markers and possible fatigue perpetuating cognitions and behaviour.

    Science.gov (United States)

    Keijmel, Stephan P; Saxe, Johanna; van der Meer, Jos W M; Nikolaus, Stephanie; Netea, Mihai G; Bleijenberg, Gijs; Bleeker-Rovers, Chantal P; Knoop, Hans

    2015-10-01

    Comparison of Q fever fatigue syndrome (QFS) and chronic fatigue syndrome (CFS) patients, with a focus on markers of inflammation and fatigue-related cognitive-behavioural variables. Data from two independent prospective studies on QFS (n=117) and CFS (n=173), respectively, were pooled and analyzed. QFS patients were less often female, had a higher BMI, and had less often received treatment for depression before the onset of symptoms. After controlling for symptom duration and correcting for differences in diagnostic criteria for QFS and CFS with respect to the level of impairment and the presence of additional symptoms, differences in the proportion of females and BMI remained significant. After correction, QFS patients were also significantly older. In all analyses QFS patients were as fatigued and distressed as CFS patients, but reported less additional symptoms. QFS patients had stronger somatic attributions, and higher levels of physical activity. No differences were found with regard to inflammatory markers and in other fatigue-related cognitive-behavioural variables. The relationship between cognitive-behavioural variables and fatigue, previously established in CFS, could not be confirmed in QFS patients with the exception of the negative relationship between physical activity and fatigue. Differences and similarities between QFS and CFS patients were found. Although the relationship between perpetuating factors and fatigue previously established in CFS could not be confirmed in QFS patients, the considerable overlap in fatigue-related cognitive-behavioural variables and the relationship found between physical activity and fatigue may suggest that behavioural interventions could reduce fatigue severity in QFS patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Effect of Various Heat Treatment Processes on Fatigue Behavior of Tool Steel for Cold Forging Die

    Science.gov (United States)

    Jin, S. U.; Kim, S. S.; Lee, Y. S.; Kwon, Y. N.; Lee, J. H.

    Effects of various heat treatment processes, including "Q/T (quenching and tempering)", "Q/CT/T (Quenching, cryogenic treatment and tempering)", "Q/T (quenching and tempering) + Ti-nitriding" and "Q/CT/T (Cryogenic treatment and tempering) + Ti-nitriding", on S-N fatigue behavior of AISI D2 tool steel were investigated. The optical micrographs and Vicker's hardness values at near surface and core area were examined for each specimen. Uniaxial fatigue tests were performed by using an electro-magnetic resonance fatigue testing machine at a frequency of 80 Hz and an R ratio of -1. The overall resistance to fatigue tends to decrease significantly with Ti-nitriding treatment compared to those for the general Q/T and Q/CT/T specimens. The reduced resistance to fatigue with Ti-nitriding is discussed based on the microstructural and fractographic analyses.

  20. The fracture behavior of an Al-Mg-Si alloy during cyclic fatigue

    International Nuclear Information System (INIS)

    Azzam, Diya; Menzemer, Craig C.; Srivatsan, T.S.

    2010-01-01

    In this paper, is presented and discussed the cyclic fracture behavior of the Al-Mg-Si alloy 6063 that is a candidate used in luminaire light poles. The light poles were subject to fatigue deformation. Test sections were taken from the failed region of the light pole and carefully examined in a scanning electron microscope with the objective of rationalizing the macroscopic fracture mode and intrinsic micromechanisms governing fracture under cyclic loading. The fatigue fracture surface of the alloy revealed distinct regions of early microscopic crack growth, stable crack growth and unstable crack growth and overload. An array of fine striations was found covering the regions of early and stable crack growth. Both macroscopic and fine microscopic cracks were found in the region of unstable crack growth. Very few microscopic voids and shallow dimples were evident on the fatigue fracture surface indicative of the limited ductility of the alloy under cyclic loading conditions.

  1. Study of crack initiation in low-cycle fatigue of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Mu, P.

    2011-03-01

    The material studied is an austenitic stainless steel, that is widely used in nuclear equipment for its very high corrosion resistance combined to good mechanical properties. Although crack initiation is proved to play an important role in fatigue, its mechanisms have not been fully understood. Some crack initiation criteria based on physical mechanisms of plastic deformation have been defined. However, these criteria are not easy to use and valid, as they need local variables at the grain scale. The present study aims at establishing a crack initiation criterion in low-cycle fatigue, which should be usable under variable amplitude loading conditions. Tension-compression fatigue tests were first carried out to characterize the mechanical behavior of the stainless steel AISI 316L. The mechanical behavior was simulated using a self-consistent model using a crystalline plastic law based on dislocation densities. The evolution of surface damage was observed during a fatigue test using an in situ optical microscopic device. Cracks were analyzed after 2000 cycles and their crystallographic characteristics calculated. As surface grains exhibit larger strain because they are less constraint by neighbor grains, a specific numerical frame is necessary to determine stress state in surface grains. A localization law specific to surface grains under cyclic loading was identified from finite element simulations. The proposed form needs an intergranular accommodation variable, on the pattern of the localization law of Cailletaud-Pilvin. Stress-strain state in surface grains was simulated. Potential indicators for crack initiation were then compared on a same experimental data base. Indicators based on the equivalent plastic strain were found to be suitable indicators of fatigue damage. (author)

  2. Influence of De-icers on the Corrosion and Fatigue Behavior of 4140 Steel

    Science.gov (United States)

    Dean, William P.; Sanford, Brittain J.; Wright, Matthew R.; Evans, Jeffrey L.

    2012-11-01

    The purpose of this test was to evaluate the effects of calcium magnesium acetate (CMA) and sodium chloride (NaCl)—two common substances used to de-ice roadways—on the corrosion and fatigue behavior of annealed AISI 4140 steel. When CMA-corroded, NaCl-corroded, and as-machined samples were tested using R = 0.1, and f = 20 Hz, it was found that, within the scope of this study, samples corroded in both 3.5% CMA solution and 3.5% NaCl solution exhibited a lower fatigue strength than samples tested in the as-machined, uncorroded condition. For the short lives tested in this study, the difference in the effects of CMA and NaCl is minimal. However, at longer lives it is suspected, based on the trends, that the CMA solution would be less detrimental to the fatigue life.

  3. Fatigue and thermal fatigue of Pb-Sn solder joints

    International Nuclear Information System (INIS)

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55 0 C and 125 0 C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb

  4. Mechanical and Fatigue Properties of Additively Manufactured Metallic Materials

    Science.gov (United States)

    Yadollahi, Aref

    This study aims to investigate the mechanical and fatigue behavior of additively manufactured metallic materials. Several challenges associated with different metal additive manufacturing (AM) techniques (i.e. laser-powder bed fusion and direct laser deposition) have been addressed experimentally and numerically. Experiments have been carried out to study the effects of process inter-layer time interval--i.e. either building the samples one-at-a-time or multi-at-a-time (in-parallel)--on the microstructural features and mechanical properties of 316L stainless steel samples, fabricated via a direct laser deposition (DLD). Next, the effect of building orientation--i.e. the orientation in which AM parts are built--on microstructure, tensile, and fatigue behaviors of 17-4 PH stainless steel, fabricated via a laser-powder bed fusion (L-PBF) method was investigated. Afterwards, the effect of surface finishing--here, as-built versus machined--on uniaxial fatigue behavior and failure mechanisms of Inconel 718 fabricated via a laser-powder bed fusion technique was sought. The numerical studies, as part of this dissertation, aimed to model the mechanical behavior of AM materials, under monotonic and cyclic loading, based on the observations and findings from the experiments. Despite significant research efforts for optimizing process parameters, achieving a homogenous, defect-free AM product--immediately after fabrication--has not yet been fully demonstrated. Thus, one solution for ensuring the adoption of AM materials for application should center on predicting the variations in mechanical behavior of AM parts based on their resultant microstructure. In this regard, an internal state variable (ISV) plasticity-damage model was employed to quantify the damage evolution in DLD 316L SS, under tensile loading, using the microstructural features associated with the manufacturing process. Finally, fatigue behavior of AM parts has been modeled based on the crack-growth concept

  5. Comportamiento a fatiga del vástago de una prótesis para cadera al caminar//Fatigue behavior stem hip prosthesis for walking

    Directory of Open Access Journals (Sweden)

    Ángel Martínez-Delfín

    2014-01-01

    Full Text Available La prótesis de cadera consiste en sustituir la parte superior fracturada del fémur por una pieza de material biocompatible. Debido a las cargas aleatorias que sobre esta prótesis actúan al caminar la persona injertada, surge la fatiga sobre la prótesis. En este trabajo se realiza el cálculo a fatiga del vástago de una prótesis de caderas fabricada con acero inoxidable austenítico AISI 316L GrQ y de uso actual. Para ellose emplea el método de los elementos finitos, considerando la compleja geometría del vástago, el material y las cargas variables resultantes del caminar de la persona con la prótesis artificial colocada. Se calcula el daño a fatiga que estas cargas provocan en la misma así como el número de pasos que pueden darse, garantizándose una larga vida útil de la prótesis por este concepto de resistencia.Palabras claves: fatiga, prótesis de cadera, ciclo, daño, elementos finitos.______________________________________________________________________________AbstractThe hip prosthesis consists in substituting the fractured femur part by a piece of biocompatible material. Because the random character of loads acting over this prosthesis while person walk, crop up the fatigue on the prosthesis. The fatigue behavior of austenitic stainless steel hips prosthesis is studied in this article. The method of finite elements is used, considering the complex geometry of the part, the material and the variable acting loads, as results of steps of walking person. The fatigue damages are calculated as well as the number of steps that can be given, guarantying a long life of the prosthesis for fatigue resistance concept.Key words: fatigue, hip prosthesis, cycle, damage, finite elements.

  6. Effects of Stress Ratio and Microstructure on Fatigue Failure Behavior of Polycrystalline Nickel Superalloy

    Science.gov (United States)

    Zhang, H.; Guan, Z. W.; Wang, Q. Y.; Liu, Y. J.; Li, J. K.

    2018-05-01

    The effects of microstructure and stress ratio on high cycle fatigue of nickel superalloy Nimonic 80A were investigated. The stress ratios of 0.1, 0.5 and 0.8 were chosen to perform fatigue tests in a frequency of 110 Hz. Cleavage failure was observed, and three competing failure crack initiation modes were discovered by a scanning electron microscope, which were classified as surface without facets, surface with facets and subsurface with facets. With increasing the stress ratio from 0.1 to 0.8, the occurrence probability of surface and subsurface with facets also increased and reached the maximum value at R = 0.5, meanwhile the probability of surface initiation without facets decreased. The effect of microstructure on the fatigue fracture behavior at different stress ratios was also observed and discussed. Based on the Goodman diagram, it was concluded that the fatigue strength of 50% probability of failure at R = 0.1, 0.5 and 0.8 is lower than the modified Goodman line.

  7. On the fatigue behavior of friction stir welded AlSi 10 Mg alloy

    Directory of Open Access Journals (Sweden)

    Ramos, R. A.

    2005-04-01

    Full Text Available The high cycle fatigue behavior of friction stir welded AlSi10Mg samples was investigated for a stress ratio R = 0.1, ranging from 0.5 to 0.9 of the yield strength, in addition to tensile tests. The welds were produced with different tool rotation and travel speeds, and these welding parameters were correlated to residual stresses, measured by X-Ray diffraction (sen2 ψmethod. Moreover, the residual stresses were measured during the fatigue testing, at fixed cycle intervals, being reported. It was observed that the residual (compressive stresses within the nugget were smaller than in the interface regions (between the thermomechanically affected zone and the base metal and stabilized above 4x105 cycles. Fatigue crack morphology and microstructural changes were characterized by optical and electron microscopy and the observations are discussed along with the fatigue results.

    Se estudia el comportamiento a la fatiga de alto ciclo de muestras de AlSi10Mg soldadas por fricción lineal para relación de tensión R = 0,1 cubriendo el rango de 0,5 a 0,9 de la resistencia a tracción, además de los datos del ensayo de tracción. Las soldaduras ensayadas fueron producidas con diferentes velocidades de rotación y avance de la herramienta. Las variables de proceso han sido correlacionadas con el análisis de tensiones residuales por difracción de Rayos X (método sen2 ψ. Además, se midieron las tensiones residuales durante la deformación en fatiga a intervalos regulares de ciclos. Se observa que las tensiones residuales (de compresión dentro del nugget son más reducidas que en la interfase entre la región afectada térmica y mecánicamente y el material base, y se mantuvieron estables de manera progresiva a partir de los 4 x 10 5ciclos. Se ha empleado la microscopía óptica y de barrido para evaluar la morfología y microestructura de las grietas de fatiga. Estos resultados se analizan

  8. Fatigue Fracture Behaviors of Transparent Polycarbonate Materials

    OpenAIRE

    ZHANG Xiao-wen; WU Nan; ZHANG Xuan; MA Li-ting; LI Lei

    2017-01-01

    The effect of the different stress ratios (R) and annealing treatment on the fatigue properties of the transparent polycarbonate (PC) sheet and the mechanism behind were studied, the fatigue crack propagation (FCP) process and mechanism were analyzed. The results show that after annealing, the residual stress of the PC samples decreases obviously and the fatigue properties are greatly improved. This is because the machining process results in tensile stress in the PC samples, eliminating the ...

  9. Fatigue Behavior of Modified Asphalt Concrete Pavement

    Directory of Open Access Journals (Sweden)

    saad I. Sarsam

    2016-02-01

    Full Text Available Fatigue cracking is the most common distress in road pavement. It is mainly due to the increase in the number of load repetition of vehicles, particularly those with high axle loads, and to the environmental conditions. In this study, four-point bending beam fatigue testing has been used for control and modified mixture under various micro strain levels of (250 μƐ, 400 μƐ, and 750 μƐ and 5HZ. The main objective of the study is to provide a comparative evaluation of pavement resistance to the phenomenon of fatigue cracking between modified asphalt concrete and conventional asphalt concrete mixes (under the influence of three percentage of Silica fumes 1%, 2%, 3% by the weight of asphalt content, and (changing in the percentage of asphalt content by (0.5% ± from the optimum. The results show that when Silica fumes content was 1%, the fatigue life increases by 17%, and it increases by 46% when Silica fumes content increases to 2%, and that fatigue life increases to 34 % when Silica fumes content increases to 3% as compared with control mixture at (250 μƐ, 20°C and optimum asphalt content. From the results above, we can conclude the optimum Silica fumes content was 2%. When the asphalt content was 4.4%, the fatigue life has increased with the use of silica fumes by (50%, when asphalt content was 5.4%, the additives had led to increasing the fatigue life by (69%, as compared with the conventional asphalt concrete pavement.

  10. Effects of pulse current stimulation on the thermal fatigue crack propagation behavior of CHWD steel

    International Nuclear Information System (INIS)

    Lin, H.Q.; Zhao, Y.G.; Gao, Z.M.; Han, L.G.

    2008-01-01

    The fatigue crack propagating behaviors of cast hot working die (CHWD) steel untreated and treated by an electric current in the intermediate stage of thermal fatigue were investigated in the present study. The circle/elliptical heating affected zone (HAZ) was formed ahead of the notch tip on the fatigued specimens after pulse electric current stimulation. Both SEM observation and X-ray diffraction analysis revealed that pulse electric current stimulation refined grains/subgrains in the HAZs. With the prolonging of discharging duration, the grains/subgrains decreased in size and the dislocation density and microhardness increased gradually. The grain refinement and dislocation density increase played an important role in the material strengthening, which inevitably enhanced the propagation resistance and delayed the propagation of thermal fatigue cracks. Therefore, the pulse electric current stimulation was an effective method to improve the service lifetime of die material

  11. Uncertainty on Fatigue Damage Accumulation for Composite Materials

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented.......In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented....

  12. The Study on Environmental Fatigue Behavior of Low Alloy Steel and Stainless Steel Pipes Using the Simplified Plant Transients

    International Nuclear Information System (INIS)

    Yoo, One; Song, M. S.; Kim, I. Y.; Park, S. H.; Lee, B. S.

    2010-01-01

    Nuclear components categorized as ASME Code Class 1 shall be evaluated for the fatigue and satisfy the fatigue acceptance criteria, CUF(cumulative usage factor) < 1 in accordance with ASME Code. However, recent studies have shown the fatigue evaluation procedure may not give conservative results when the components operate in the water environment. NRC issued Regulatory Guide 1.207 which enforces the new fatigue evaluation method or Fen(environmental fatigue correction factor) method to nuclear plants to be newly constructed. This paper describes the characteristics of the behavior of low alloy and austenitic stainless steel straight pipe related to environmental fatigue, which are obtained by using the method suggested by Regulatory Guide 1.207 and simplified plant transients

  13. Effect of membrane and through-wall bending stresses on fatigue crack growth behavior and coolant leakage velocity

    International Nuclear Information System (INIS)

    Yoo, Yeon-Sik

    2003-11-01

    This study clarified the effect of a membrane and a through-wall bending stresses on fatigue crack growth behavior and coolant leakage velocity due to irregularity of crack surface. Each stress component relates to fatigue crack growth behavior directly in general and thus the wild-used K I solutions are anticipated to give good evaluation results on it. Meanwhile, it is necessary to notify that surface irregularity for coolant leakage assessment is made by stress history in nature. Surface irregularity is known to be largely classified into the following two aspects: surface roughness due to continuous crack opening and closure behavior and surface turnover due to cyclic bending stress dominance. Therefore, the deterministic parameters on resistance of coolant leakage by surface irregularity are considered to be not only stress history but crack opening behavior. (author)

  14. Fatigue test on aluminium bridges

    NARCIS (Netherlands)

    Maljaars, J.; Soetens, F.; Straalen, van IJ.J.

    2005-01-01

    Traffic bridges are subjected to variable loads and should therefore be checked on fatigue. Especially low weight materials, like aluminium, are sensitive to fatigue, because the variable load is a substantial part of the total load. This paper shows the structural design of an aluminium bridge

  15. Fatigue Crack Growth Behavior of 2099-T83 Extrusions in two Different Environments

    Science.gov (United States)

    Goma, Franck Armel Tchitembo; Larouche, Daniel; Bois-Brochu, Alexandre; Blais, Carls; Boselli, Julien; Brochu, Mathieu

    Aluminum-lithium alloy 2099-T83 is an advanced material with superior mechanical properties, as compared to traditional alloys used in structural applications, and has been selected for use in the latest generation of airplanes. While this alloy exhibits improved fatigue crack growth (FCG) performance over non-Li alloys, it is of interest to simulate the impact of fluctuating loads under variable temperature during airplane service, particularly in terms of the potential effects of material processing history. In the present paper, the FCG behavior in an Integrally Stiffened Panel (ISP) has been investigated both at room temperature and at 243 K. It has been shown that the resistance to crack growth in a cold environment was higher than in ambient laboratory air. Results of this investigation are discussed from the microfractographic point of view, with regard to the variation of the local extrusion aspect ratio, a parameter which correlates with both the crystallographic texture and the grain structure.

  16. Effect of strain-induced martensitic transformation on high cycle fatigue behavior in cyclically-prestrained type 304

    International Nuclear Information System (INIS)

    Uematsu, Yoshihiko; Kakiuchi, Toshifumi; Akita, Masayuki; Nakajima, Masaki; Nakamura, Yuki; Yajima, Takumi

    2013-01-01

    The effects of the cyclic prestrain on the fatigue behavior in type 304 austenitic stainless steel were investigated. Rotating bending fatigue tests have been performed in laboratory air using the specimens subjected to ±5% cyclic prestrain at room temperature (R.T.) and -5°C. Martensitic phase volume fraction of the prestrained specimen at -5°C was 48% and larger than 3.8% at R.T. The prestrained specimens exhibited higher fatigue strengths than the as-received ones, and larger volume fraction of martensitic phase resulted in the higher fatigue limit. EBSD analysis revealed that the martensitic phases were more uniformly distributed in the austenitic matrix in the cyclically-prestrained specimens than in the monotonically-prestrained ones. Fatigue crack initiation from inclusion was observed only in the cyclically-prestrained specimens at -5°C. High volume fraction and uniform distribution of martensitic phase induced the transition of crack initiation mechanism and led to the higher fatigue limit. In type 304 stainless steel with high volume fraction of strain-induced martensitic phase, the prediction of fatigue limit based on Vickers hardness could give unconservative results. (author)

  17. Effect of tensile mean stress on fatigue behavior of single-crystal and directionally solidified superalloys

    Science.gov (United States)

    Kalluri, Sreeramesh; Mcgaw, Michael A.

    1990-01-01

    Two nickel base superalloys, single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf, were studied in view of the potential usage of the former and usage of the latter as blade materials for the turbomachinery of the space shuttle main engine. The baseline zero mean stress (ZMS) fatigue life (FL) behavior of these superalloys was established, and then the effect of tensile mean stress (TMS) on their FL behavior was characterized. At room temperature these superalloys have lower ductilities and higher strengths than most polycrystalline engineering alloys. The cycle stress-strain response was thus nominally elastic in most of the fatigue tests. Therefore, a stress range based FL prediction approach was used to characterize both the ZMS and TMS fatigue data. In the past, several researchers have developed methods to account for the detrimental effect of tensile mean stress on the FL for polycrystalline engineering alloys. However, the applicability of these methods to single crystal and directionally solidified superalloys has not been established. In this study, these methods were applied to characterize the TMS fatigue data of single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf and were found to be unsatisfactory. Therefore, a method of accounting for the TMS effect on FL, that is based on a technique proposed by Heidmann and Manson was developed to characterize the TMS fatigue data of these superalloys. Details of this method and its relationship to the conventionally used mean stress methods in FL prediction are discussed.

  18. Childhood maltreatment and the response to cognitive behavior therapy for chronic fatigue syndrome.

    NARCIS (Netherlands)

    Heins, M.J.; Knoop, H.; Lobbestael, J.; Bleijenberg, G.

    2011-01-01

    Objective: To examine the relationship between a history of childhood maltreatment and the treatment response to cognitive behavior therapy for chronic fatigue syndrome (CFS). Methods: A cohort study in a tertiary care clinic with a referred sample of 216 adult patients meeting the Centers for

  19. Static and fatigue mechanical behavior of three dental CAD/CAM ceramics.

    Science.gov (United States)

    Homaei, Ehsan; Farhangdoost, Khalil; Tsoi, James Kit Hon; Matinlinna, Jukka Pekka; Pow, Edmond Ho Nang

    2016-06-01

    The aim of this study was to measure the mechanical properties and fatigue behavior of three contemporary used dental ceramics, zirconia Cercon(®) (ZC), lithium disilicate e.max(®) CAD (LD), and polymer-infiltrated ceramic Enamic(®) (PIC). Flexural strength of each CAD/CAM ceramic was measured by three point bending (n=15) followed by Weibull analysis. Elastic modulus was calculated from the load-displacement curve. For cyclic fatigue loading, sinusoidal loading with a frequency of 8Hz with minimum load 3N were applied to these ceramics (n=24) using three point bending from 10(3) to 10(6) cycles. Fatigue limits of these ceramics were predicted with S-N fatigue diagram. Fracture toughness and Vickers hardness of the ceramics were measured respectively by single edge V-notch beam (SEVNB) and microindentation (Hv 0.2) methods. Chemical compositions of the materials׳ surfaces were analyzed by EDS, and microstructural analysis was conducted on the fracture surfaces by SEM. One-way ANOVA was performed and the level of significance was set at 0.05 to analyze the numerical results. The mean flexural strength of ZC, LD, and PIC was respectively 886.9, 356.7, and 135.8MPa. However, the highest Weibull modulus belonged to PIC with 19.7 and the lowest was found in LD with 7.0. The fatigue limit of maximum load for one million cycles of ZC, LD, and PIC was estimated to be 500.1, 168.4, and 73.8GPa. The mean fracture toughness of ZC, LD, and PIC was found to be respectively 6.6, 2.8, and 1.4MPam(1/2), while the mean Vickers hardness was 1641.7, 676.7, and 261.7Hv. Fracture surfaces followed fatigue loading appeared to be smoother than that after monotonic loading. Mechanical properties of ZC were substantially superior to the two other tested ceramics, but the scattering of data was the least in PIC. The fatigue limit was found to be approximately half of the mean flexural strength for all tested ceramics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Study of the behavior of welded assemblies subjected to cyclic loads of variable amplitudes

    International Nuclear Information System (INIS)

    Plumier, A.

    1977-01-01

    The optimum design of structures subjected to variable loads requires the fatigue loading to be defined not only by the extreme stresses which can occur in the structure, but also by the distribution of the amplitudes of loadings. This emphasizes the importance of relations allowing the definition of permissible stresses under variable amplitude loading on the basis of permissible stresses under constant amplitude loading: such relations lead to a thorough use of the very numerous results acquired in classical fatigue testings. The statistical analysis of our tests results confirms, for four as welded joints, the good fit of theoretical values calculated on the basis of BIERETT's theory, so that this theory seems precise enough for calculations rules. However, the differences between theory and experiments, as well as regards the passage from classical fatigue to programmed fatigue, as for the definition of resistance of a welded joint on the basis of classes in classial fatigue, can reach as much as 30%. This lack of precision can be reduced by precise definition of joints classes, also defining permissible sizes of welds defects, on the one hand, and by the precise definition of a curve taking account of an influence of the severity of the notch effect of joints on the passage from classical fatigue to programmed fatigue, on the other hand. Our tests results, which were obtained on joints with very weak or very strong notches led to suggest such a curve

  1. Role of intermetallics on the mechanical fatigue behavior of Cu–Al ball bond interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lassnig, A., E-mail: alice.lassnig@univie.ac.at [University of Vienna, Faculty of Physics, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Wien (Austria); Pelzer, R. [Infineon Technologies Austria AG, Siemensstrae 2, 9500 Villach (Austria); Gammer, C. [University of Vienna, Faculty of Physics, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Wien (Austria); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Khatibi, G. [Vienna University of Technology, Institute of Chemical Technology and Analytics, Getreidemarkt 9, 1060 Wien (Austria)

    2015-10-15

    The mechanical fatigue behavior of Cu–Al interfaces occurring in thermosonic ball bonds –typically used in microelectronic packages for automotive applications – is investigated by means of a specially designed fatigue test technique. Fully reversed cyclic shear stresses are induced at the bond interface, leading to subsequent fatigue lift off failure and revealing the weakest site of the bond. A special focus is set on the role of interfacial intermetallic compounds (IMC) on the fatigue performance of such interfaces. Therefore fatigue life curves were obtained for three representative microstructural states: The as-bonded state is compared to two annealed states at 200 °C for 200 h and at 200 °C for 2000 h respectively. In the moderately annealed state two IMC layers (Al{sub 2}Cu, Al{sub 4}Cu{sub 9}) could be identified, whereas in the highly aged state the original pad metallization was almost entirely consumed and AlCu is formed as a third IMC. Finally, the crack path is traced back as a function of interfacial microstructure by means of electron microscopy techniques. Whereas conventional static shear tests reveal no significant decrease of the bond shear force with increased IMC formation the fatigue tests prove a clear degradation in the cyclic mechanical performance. It can be concluded that during cycling the crack deflects easily into the formed intermetallics, leading to early failure of the ball bonds due to their brittle nature. - Highlights: • High cycle fatigue of various miniaturized Cu–Al interfaces is investigated. • Interfacial intermetallic compounds consist of Al2Cu, AlCu and Al4Cu9. • Static shear strength shows minor dependency on interfacial phase formation. • Fatigue tests prove significant degradation with intermetallic compound evolution. • Fatigue fracture surface analysis reveal microstructure dependent crack path.

  2. Role of intermetallics on the mechanical fatigue behavior of Cu–Al ball bond interfaces

    International Nuclear Information System (INIS)

    Lassnig, A.; Pelzer, R.; Gammer, C.; Khatibi, G.

    2015-01-01

    The mechanical fatigue behavior of Cu–Al interfaces occurring in thermosonic ball bonds –typically used in microelectronic packages for automotive applications – is investigated by means of a specially designed fatigue test technique. Fully reversed cyclic shear stresses are induced at the bond interface, leading to subsequent fatigue lift off failure and revealing the weakest site of the bond. A special focus is set on the role of interfacial intermetallic compounds (IMC) on the fatigue performance of such interfaces. Therefore fatigue life curves were obtained for three representative microstructural states: The as-bonded state is compared to two annealed states at 200 °C for 200 h and at 200 °C for 2000 h respectively. In the moderately annealed state two IMC layers (Al 2 Cu, Al 4 Cu 9 ) could be identified, whereas in the highly aged state the original pad metallization was almost entirely consumed and AlCu is formed as a third IMC. Finally, the crack path is traced back as a function of interfacial microstructure by means of electron microscopy techniques. Whereas conventional static shear tests reveal no significant decrease of the bond shear force with increased IMC formation the fatigue tests prove a clear degradation in the cyclic mechanical performance. It can be concluded that during cycling the crack deflects easily into the formed intermetallics, leading to early failure of the ball bonds due to their brittle nature. - Highlights: • High cycle fatigue of various miniaturized Cu–Al interfaces is investigated. • Interfacial intermetallic compounds consist of Al2Cu, AlCu and Al4Cu9. • Static shear strength shows minor dependency on interfacial phase formation. • Fatigue tests prove significant degradation with intermetallic compound evolution. • Fatigue fracture surface analysis reveal microstructure dependent crack path

  3. Determinants of seafarers’ fatigue

    DEFF Research Database (Denmark)

    Bøggild Dohrmann, Solveig; Leppin, Anja

    2017-01-01

    in the review. The main reason for exclusion was fatigue not being the outcome variable. Results: Most evidence was available for work time-related factors suggesting that working nights was most fatiguing, that fatigue levels were higher toward the end of watch or shift, and that the 6-h on–6-h off watch...

  4. Low cycle fatigue behavior of polycrystalline NiAl at 300 and 1000 K

    Science.gov (United States)

    Lerch, Bradley A.; Noebe, Ronald D.

    1993-01-01

    The low cycle fatigue behavior of polycrystalline NiAl was determined at 300 and 1000 K - temperatures below and above the brittle- to-ductile transition temperature (BDTT). Fully reversed, plastic strain-controlled fatigue tests were conducted on two differently fabricated alloy samples: hot isostatically pressed (HIP'ed) prealloyed powder and hot extruded castings. HIP'ed powder (HP) samples were tested only at 1000 K, whereas the more ductile cast-and-extruded (C+E) NiAl samples were tested at both 1000 and 300 K. Plastic strain ranges of 0.06 to 0.2 percent were used. The C+E NiAl cyclically hardened until fracture, reaching stress levels approximately 60 percent greater than the ultimate tensile strength of the alloy. Compared on a strain basis, NiAl had a much longer fatigue life than other B2 ordered compounds in which fracture initiated at processing-related defects. These defects controlled fatigue life at 300 K, with fracture occurring rapidly once a critical stress level was reached. At 1000 K, above the BDTT, both the C+E and HP samples cyclically softened during most of the fatigue tests in air and were insensitive to processing defects. The processing method did not have a major effect on fatigue life; the lives of the HP samples were about a factor of three shorter than the C+E NiAl, but this was attributed to the lower stress response of the C+E material. The C+E NiAl underwent dynamic grain growth, whereas the HP material maintained a constant grain size during testing. In both materials, fatigue life was controlled by intergranular cavitation and creep processes, which led to fatigue crack growth that was primarily intergranular in nature. Final fracture by overload was transgranular in nature. Also, HP samples tested in vacuum had a life three times longer than their counterparts tested in air and, in contrast to those tested in air, hardened continuously over half of the sample life, thereby indicating an environmentally assisted fatigue damage

  5. The effect of work pace on workload, motor variability and fatigue during simulated light assembly work

    NARCIS (Netherlands)

    Bosch, T.; Mathiassen, S.E.; Visser, B.; Looze, M.D. de; Dieën, J.V. van

    2011-01-01

    This study investigated the effect of work pace on workload, motor variability and fatigue during light assembly work. Upper extremity kinematics and electromyography (EMG) were obtained on a cycle-to-cycle basis for eight participants during two conditions, corresponding to "normal" and "high" work

  6. Tensile and fatigue behavior of polymer composites reinforced with superelastic SMA strands

    Science.gov (United States)

    Daghash, Sherif M.; Ozbulut, Osman E.

    2018-06-01

    This study explores the use of superelastic shape memory alloy (SMA) strands, which consist of seven individual small-diameter wires, in an epoxy matrix and characterizes the tensile and fatigue responses of the developed SMA/epoxy composites. Using a vacuum assisted hand lay-up technique, twelve SMA fiber reinforced polymer (FRP) specimens were fabricated. The developed SMA-FRP composites had a fiber volume ratio of 50%. Tensile response of SMA-FRP specimens were characterized under both monotonic loading and increasing amplitude loading and unloading cycles. The degradation in superelastic properties of the developed SMA-FRP composites during fatigue loading at different strain amplitudes was investigated. The effect of loading rate on the fatigue response of SMA-FRP composites was also explored. In addition, fractured specimens were examined using the scanning electron microscopy (SEM) technique to study the failure mechanisms of the tested specimens. A good interfacial bonding between the SMA strands and epoxy matrix was observed. The developed SMA-FRP composites exhibited good superelastic behavior at different strain amplitudes up to at least 800 cycle after which significant degradation occurred.

  7. Fatigue characteristics of dual-phase steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Onn, Irwan Herman; Ahmad, Norhayati; Tamin, Mohd Nasir [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2015-01-15

    Fatigue characteristics of dual-phase steel sheets, commonly used in automobile body construction were established. For this purpose, a series of fatigue tests, each at constant stress amplitude were conducted on 1.2 mm-thick, dual-phase DP600 steel sheet specimens with two different load ratios of minimum-to-maximum stress, R = 0.1 and -1. The resulting fatigue behavior is expressed in terms of fatigue strength-life (S-N) curves. Fatigue behavior of the steel sheets in the high-cycle fatigue region can be represented by Basquin's equation with coefficient and exponent value of 921.2 and 0.093, respectively. An endurance limit of 255 MPa is observed. In addition, fatigue strengths of the dual-phase steel sheets display lower magnitude than their bulk counterparts. Effect of mean stress on fatigue behavior of the steel sheets is well predicted by Walker's model. Exponential calibration factor is introduced to the models by SWT, Goodman and Morrow with comparable prediction to the Walker's model.

  8. Assessment and propagation of mechanical property uncertainties in fatigue life prediction of composite laminates

    DEFF Research Database (Denmark)

    Castro, Oscar; Branner, Kim; Dimitrov, Nikolay Krasimirov

    2018-01-01

    amplitude loading cycles. Fatigue life predictions of unidirectional and multi-directional glass/epoxy laminates are carried out to validate the proposed model against experimental data. The probabilistic fatigue behavior of laminates is analyzed under constant amplitude loading conditions as well as under......A probabilistic model for estimating the fatigue life of laminated composite materials considering the uncertainty in their mechanical properties is developed. The uncertainty in the material properties is determined from fatigue coupon tests. Based on this uncertainty, probabilistic constant life...... diagrams are developed which can efficiently estimate probabilistic É›-N curves at any load level and stress ratio. The probabilistic É›-N curve information is used in a reliability analysis for fatigue limit state proposed for estimating the probability of failure of composite laminates under variable...

  9. Systemic lupus erythematosus in three ethnic groups. VI: Factors associated with fatigue within 5 years of criteria diagnosis. LUMINA Study Group. LUpus in MInority populations: NAture vs Nurture.

    Science.gov (United States)

    Zonana-Nacach, A; Roseman, J M; McGwin, G; Friedman, A W; Baethge, B A; Reveille, J D; Alarcón, G S

    2000-01-01

    To determine the frequency, degree and associated features of fatigue among Hispanic (H), African American (AA) and Caucasian (C) patients with recent onset (NAture vs Nurture) cohort were studied. Fatigue [Fatigue Severity Scale (FSS)] was defined as present if FSS score > or = 3.0. Variables from functional, clinical, sociodemographic, health behaviors, behavioral and psychological and immunogenetics domains were ascertained at study entry. Associations were examined using regression models. Eighty-six percent (85.7%) of patients reported having fatigue (82.6% H; 85.5% AA; 88.7% C); median FSS score, 5.3. Factors from the psychological and clinical domains were primarily associated with FSS; immunogenetic (HLA Class II phenotypes) features were not. Increased fatigue was strongly associated with decreasing function, both physical and mental. Variables associated with significantly greater degree of fatigue at baseline in the multivariable stepwise model in order of decreasing additional partial R2 explained included: abnormal illness-related behaviors, older age, higher self-reported pain, greater degree of helplessness, greater disease activity, Caucasian race, and lacking health insurance (model R2 = 37%). Fatigue is one of the most prevalent clinical manifestations of SLE across all ethnic groups. The perception of fatigue severity in SLE may be multifactorial in origin, including psychosocial factors and disease activity. If these prove causal, knowledge of their contribution may suggest therapeutic and/or behavioral interventions, which could ameliorate this pervasive and often incapacitating symptom of SLE.

  10. A Review of Spectral Methods for Variable Amplitude Fatigue Prediction and New Results

    Science.gov (United States)

    Larsen, Curtis E.; Irvine, Tom

    2013-01-01

    A comprehensive review of the available methods for estimating fatigue damage from variable amplitude loading is presented. The dependence of fatigue damage accumulation on power spectral density (psd) is investigated for random processes relevant to real structures such as in offshore or aerospace applications. Beginning with the Rayleigh (or narrow band) approximation, attempts at improved approximations or corrections to the Rayleigh approximation are examined by comparison to rainflow analysis of time histories simulated from psd functions representative of simple theoretical and real world applications. Spectral methods investigated include corrections by Wirsching and Light, Ortiz and Chen, the Dirlik formula, and the Single-Moment method, among other more recent proposed methods. Good agreement is obtained between the spectral methods and the time-domain rainflow identification for most cases, with some limitations. Guidelines are given for using the several spectral methods to increase confidence in the damage estimate.

  11. The process of cognitive behaviour therapy for chronic fatigue syndrome: which changes in perpetuating cognitions and behaviour are related to a reduction in fatigue?

    Science.gov (United States)

    Heins, Marianne J; Knoop, Hans; Burk, William J; Bleijenberg, Gijs

    2013-09-01

    Cognitive behaviour therapy (CBT) can significantly reduce fatigue in chronic fatigue syndrome (CFS), but little is known about the process of change taking place during CBT. Based on a recent treatment model (Wiborg et al. J Psych Res 2012), we examined how (changes in) cognitions and behaviour are related to the decrease in fatigue. We included 183 patients meeting the US Centers for Disease Control criteria for CFS, aged 18 to 65 years, starting CBT. We measured fatigue and possible process variables before treatment; after 6, 12 and 18 weeks; and after treatment. Possible process variables were sense of control over fatigue, focusing on symptoms, self-reported physical functioning, perceived physical activity and objective (actigraphic) physical activity. We built multiple regression models, explaining levels of fatigue during therapy by (changes in) proposed process variables. We observed large individual variation in the patterns of change in fatigue and process variables during CBT for CFS. Increases in the sense of control over fatigue, perceived activity and self-reported physical functioning, and decreases in focusing on symptoms explained 20 to 46% of the variance in fatigue. An increase in objective activity was not a process variable. A change in cognitive factors seems to be related to the decrease in fatigue during CBT for CFS. The pattern of change varies considerably between patients, but changes in process variables and fatigue occur mostly in the same period. © 2013.

  12. Fatigue Analysis of Notched Laminates: A Time-Efficient Macro-Mechanical Approach

    Science.gov (United States)

    Naghipour, P.; Pineda, E. J.; Bednarcyk, B. A.; Arnold, S. M.; Waas, A. M.

    2016-01-01

    A coupled transversely isotropic deformation and damage fatigue model is implemented within the finite element method and was utilized along with a static progressive damage model to predict the fatigue life, stiffness degradation as a function of number of cycles, and post-fatigue tension and compression response of notched, multidirectional laminates. Initially, the material parameters for the fatigue model were obtained utilizing micromechanics simulations and the provided [0], [90] and [plus or minus 45] experimental composite laminate S-N (stress-cycle) data. Within the fatigue damage model, the transverse and shear properties of the plies were degraded with an isotropic scalar damage variable. The damage in the longitudinal (fiber) ply direction was suppressed, and only the strength of the fiber was degraded as a function of fatigue cycles. A maximum strain criterion was used to capture the failure in each element, and once this criterion was satisfied, the longitudinal stiffness of the element was decreased by a factor of 10 (sup 4). The resulting, degraded properties were then used to calculate the new stress state. This procedure was repeated until final failure of the composite laminate was achieved or a specified number of cycles reached. For post-fatigue tension and compression behavior, four internal state variables were used to control the damage and failure. The predictive capability of the above-mentioned approach was assessed by performing blind predictions of the notched multidirectional IM7/977-3 composite laminates response under fatigue and post-fatigue tensile and compressive loading, followed by a recalibration phase. Although three different multidirectional laminates were analyzed in the course of this study, only detailed results (i.e., stiffness degradation and post-fatigue stress-train curves as well as damage evolution states for a single laminate ([30/60/90/minus 30/minus 60] (sub 2s)) are discussed in detail here.

  13. Evaluation of an mHealth intervention aiming to improve health-related behavior and sleep and reduce fatigue among airline pilots.

    Science.gov (United States)

    van Drongelen, Alwin; Boot, Cécile Rl; Hlobil, Hynek; Twisk, Jos Wr; Smid, Tjabe; van der Beek, Allard J

    2014-11-01

    The aim of this study was to evaluate the effects of an mHealth intervention (intervention using mobile technology) consisting of tailored advice regarding exposure to daylight, sleep, physical activity, and nutrition, and aiming to improve health-related behavior, thereby reducing sleep problems and fatigue and improving health perception of airline pilots. A randomized controlled trial was conducted among 502 airline pilots. The intervention group was given access to both the MORE Energy mobile application (app) with tailored advice and a website with background information. The control group was directed to a website with standard information about fatigue. Health-related behavior, fatigue, sleep, and health perception outcomes were measured through online questionnaires at baseline and at three and six months after baseline. The effectiveness of the intervention was determined using linear and Poisson mixed model analyses. After six months, compared to the control group, the intervention group showed a significant improvement on fatigue (β= -3.76, P<0.001), sleep quality (β= -0.59, P=0.007), strenuous physical activity (β=0.17, P=0.028), and snacking behavior (β= -0.81, P<0.001). No significant effects were found for other outcome measures. The MORE Energy mHealth intervention reduced self-reported fatigue compared to a minimal intervention. Some aspects of health-related behavior (physical activity and snacking behavior) and sleep (sleep quality) improved as well, but most did not. The results show offering tailored advice through an mHealth intervention is an effective means to support employees who have to cope with irregular flight schedules and circadian disruption. This kind of intervention might therefore also be beneficial for other working populations with irregular working hours.

  14. Mediators of the effects on fatigue of pragmatic rehabilitation for chronic fatigue syndrome.

    Science.gov (United States)

    Wearden, Alison J; Emsley, Richard

    2013-10-01

    To examine potential mediators of the effect of pragmatic rehabilitation on improvements in fatigue following a randomized controlled trial for patients with chronic fatigue syndrome (CFS/ME) in primary care (IRCTN 74156610). Patients fulfilled the Oxford criteria for CFS. Ninety-five patients were randomized to pragmatic rehabilitation and 100 to general practitioner (GP) treatment as usual. The outcome was the Chalder fatigue scale score (0123 scoring) at end of treatment (20 weeks) and 1-year follow up (70 weeks). First, the effect of treatment on potential mediators was assessed. Then fatigue was regressed on significant mediators, treatment allocation, and baseline measures of fatigue and significant mediators. Reduction in limiting activities at 20 weeks mediated the positive effect of pragmatic rehabilitation on fatigue at 70 weeks (mediated effect size = -2.64, SE = 0.81, p = .001, proportion of effect mediated = 82.0%). Reduction in catastrophizing at 20 weeks mediated the positive effect of pragmatic rehabilitation on fatigue at 70 weeks (mediated effect size = -1.39, SE = 0.61, p = .023, proportion of effect mediated = 43.2%). Reductions in 70-week measures of fear avoidance, embarrassment avoidance, limiting activities, and all-or-nothing behavior all mediated improvement in fatigue at 70 weeks, although the causal direction of these cross-sectional effects cannot be determined. There were no between-group differences on measures of exercise capacity (a timed step test). Improvements in fatigue following pragmatic rehabilitation are related to changes in behavioral responses to and beliefs about fatigue.

  15. Fatigue behavior of an advanced SiC/SiC ceramic composite with a self-healing matrix at 1300 °C in air and in steam

    Energy Technology Data Exchange (ETDEWEB)

    Ruggles-Wrenn, M.B., E-mail: marina.ruggles-wrenn@afit.edu; Lee, M.D.

    2016-11-20

    The fatigue behavior of a non-oxide ceramic composite with a multilayered matrix was investigated at 1300 °C in laboratory air and in steam environment. The composite was produced via chemical vapor infiltration (CVI). The composite had an oxidation inhibited matrix, which consisted of alternating layers of silicon carbide and boron carbide and was reinforced with laminated woven Hi-Nicalon™ fibers. Fiber preforms had pyrolytic carbon fiber coating with boron carbon overlay applied. Tensile stress-strain behavior and tensile properties were evaluated at 1300 °C. Tension-tension fatigue behavior was studied for fatigue stresses ranging from 70 to 160 MPa in air and in steam. The fatigue limit (based on a run-out condition of 2×10{sup 5} cycles) was between 80 and 100 MPa. Presence of steam had little influence on fatigue performance. The retained properties of all specimens that achieved fatigue run-out were characterized. Composite microstructure, as well as damage and failure mechanisms were investigated.

  16. Effect of Micro-Structure on Fatigue Behavior of Intact Rocks under Completely Reversed Loading

    Directory of Open Access Journals (Sweden)

    Saeed Jamali Zavareh

    2017-01-01

    Full Text Available Rock formations and structures can be subjected to both static and dynamic loadings. Static loadings resulting from different sources such as gravity and tectonic forces and dynamic forces are intermittently transmitted via vibrations of the earth’s crust, through major earthquakes, rock bursts, rock blasting and drilling and also, traffic. Reaction of rocks to cyclic and repetitive stresses resulting from dynamic loads has been generally neglected with the exception of a few rather limited studies. In this study, , two crystalline quarry stones in Iran; (Natanz gabbro and Green onyx and one non-crystalline rock (Asmari limestone are used to evaluate the effect of micro-structure of intact rock on fatigue behavior. These rocks have different mineral compositions and formation conditions. A new apparatus based on rotating beam fatigue testing machine (R.R.Moore, which is commonly used for laboratory fatigue test in metals, is developed and fatigue behavior and existence of the endurance limit were evaluated for the mentioned rocks based on stress-life method. The obtained results in the variation of applied amplitude stress versus loading cycle number (S-N diagram followed common relationship in other materials. In addition, the endurance limit is perceived for all tested rocks. The results also illustrated that the endurance limits for all types of tested rocks in this study are ranged between 0.4 and 0.6 of their tensile strengths. The endurance limit to tensile strength fraction of green onyx and Natanz gabbro were approximated in a higher value compared to the Asmari limestone with non-crystalline micro-structure.

  17. Effect of fiber fabric orientation on the flexural monotonic and fatigue behavior of 2D woven ceramic matrix composites

    International Nuclear Information System (INIS)

    Chawla, N.; Liaw, P.K.; Lara-Curzio, E.; Ferber, M.K.; Lowden, R.A.

    2012-01-01

    The effect of fiber fabric orientation, i.e., parallel to loading and perpendicular to the loading axis, on the monotonic and fatigue behavior of plain-weave fiber reinforced SiC matrix laminated composites was investigated. Two composite systems were studied: Nextel 312 (3M Corp.) reinforced SiC and Nicalon (Nippon Carbon Corp.) reinforced SiC, both fabricated by Forced Chemical Vapor Infiltration (FCVI). The behavior of both materials was investigated under monotonic and fatigue loading. Interlaminar and in-plane shear tests were conducted to further correlate shear properties with the effect of fabric orientation, with respect to the loading axis, on the orientation effects in bending. The underlying mechanisms, in monotonic and fatigue loading, were investigated through post-fracture examination using scanning electron microscopy (SEM).

  18. Standard guide for fretting fatigue testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide defines terminology and covers general requirements for conducting fretting fatigue tests and reporting the results. It describes the general types of fretting fatigue tests and provides some suggestions on developing and conducting fretting fatigue test programs. 1.2 Fretting fatigue tests are designed to determine the effects of mechanical and environmental parameters on the fretting fatigue behavior of metallic materials. This guide is not intended to establish preference of one apparatus or specimen design over others, but will establish guidelines for adherence in the design, calibration, and use of fretting fatigue apparatus and recommend the means to collect, record, and reporting of the data. 1.3 The number of cycles to form a fretting fatigue crack is dependent on both the material of the fatigue specimen and fretting pad, the geometry of contact between the two, and the method by which the loading and displacement are imposed. Similar to wear behavior of materials, it is important t...

  19. Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy

    International Nuclear Information System (INIS)

    Mokhtarishirazabad, M.; Boutorabi, S.M.A.; Azadi, M.; Nikravan, M.

    2013-01-01

    This article investigates effects of adding rare earth elements (RE) into a magnesium–aluminum–zinc alloy (the AZ91 alloy) on its high cycle fatigue (HCF) behavior. For this purpose, AZ91 and AZ91+1% RE (AZE911) alloys were gravity casted in a metallic die. RE elements were added to the AZ91 alloy in the form of mischmetals. Microscopic evaluations with the scanning electron microscopy (SEM) and mechanical tests include tensile, hardness and HCF behaviors, were performed on prepared samples. Rotary bending fatigue tests were carried out at a stress ratio (R) of −1 and a frequency of 125 Hz, at the room temperature, in the air. The microscopic investigation demonstrates that the addition of 1% RE elements leads to the formation of Al 11 RE 3 intermetallic particles which is associated to the reduction of β-(Mg 17 Al 12 ) phases. Results of mechanical experiments suggest a negligible effect of adding 1% RE elements on mechanical properties of the AZ91 alloy. Curves of stress-life (S–N) shows an increase in the fatigue strength at 10 5 cycles, from 100±10 MPa to 135±10 MPa, when RE elements were added to the AZ91 alloy

  20. Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarishirazabad, M., E-mail: mehdi-mokhtari@hotmail.com [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Boutorabi, S.M.A. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Azadi, M.; Nikravan, M. [Irankhodro Powertrain Company (IPCO), Tehran (Iran, Islamic Republic of)

    2013-12-10

    This article investigates effects of adding rare earth elements (RE) into a magnesium–aluminum–zinc alloy (the AZ91 alloy) on its high cycle fatigue (HCF) behavior. For this purpose, AZ91 and AZ91+1% RE (AZE911) alloys were gravity casted in a metallic die. RE elements were added to the AZ91 alloy in the form of mischmetals. Microscopic evaluations with the scanning electron microscopy (SEM) and mechanical tests include tensile, hardness and HCF behaviors, were performed on prepared samples. Rotary bending fatigue tests were carried out at a stress ratio (R) of −1 and a frequency of 125 Hz, at the room temperature, in the air. The microscopic investigation demonstrates that the addition of 1% RE elements leads to the formation of Al{sub 11}RE{sub 3} intermetallic particles which is associated to the reduction of β-(Mg{sub 17}Al{sub 12}) phases. Results of mechanical experiments suggest a negligible effect of adding 1% RE elements on mechanical properties of the AZ91 alloy. Curves of stress-life (S–N) shows an increase in the fatigue strength at 10{sup 5} cycles, from 100±10 MPa to 135±10 MPa, when RE elements were added to the AZ91 alloy.

  1. Perceived Fatigue Interference and Depressed Mood: Comparison of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients with Fatigued Breast Cancer Survivors.

    Science.gov (United States)

    Hall, Daniel L; Antoni, Michael H; Lattie, Emily G; Jutagir, Devika R; Czaja, Sara J; Perdomo, Dolores; Lechner, Suzanne C; Stagl, Jamie M; Bouchard, Laura C; Gudenkauf, Lisa M; Traeger, Lara; Fletcher, MaryAnn; Klimas, Nancy G

    Persistent fatigue and depressive symptoms are both highly prevalent among patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) as well as breast cancer survivors. This study aimed to assess and directly compare perceptions of fatigue as highly interfering in one's daily functioning in both patient populations to better understand their relationships with depressed mood. Participants were 95 female CFS/ME patients and 67 females who were approximately 5 years post-treatment for stage 0-III breast cancer presenting with clinically elevated fatigue severity. Self-report measures were obtained on participants' fatigue-related interference in daily functioning and fatigue severity as well as depressed mood. Hierarchical regression was used to test effects controlling for relevant demographic, psychosocial, and medical covariates. CFS/ME patients endorsed greater depressed mood and fatigue interference than did fatigued breast cancer survivors, p's fatigued breast cancer survivors (β=.18, p =.19). CFS/ME patients reported elevated fatigue symptoms and depression relative to fatigued breast cancer survivors. In the former group, greater depressed mood was highly and significantly associated with greater fatigue-related inference in daily activities. Potential targets for cognitive behavioral interventions are discussed.

  2. Influence of stress change on the fatigue behavior and fatigue life of aluminum oxide-dispersion-strengthening copper alloy at room temperature and 350degC

    International Nuclear Information System (INIS)

    Kawagoishi, Norio; Kondo, Eiji; Nisitani, Hironobu; Shimamoto, Atsunori; Tashiro, Rieko

    2004-01-01

    In order to investigate the influence of stress change on the fatigue behavior and fatigue life of an aluminum oxide-dispersion-strengthening copper alloy at elevated temperature, rotating bending fatigue tests were carried out under two-step loading at room temperature and 350degC. Both of static strength and fatigue strength decreased at 350degC. However, at the same relative stress σ a /σ B , fatigue life was longer at 350degC than at room temperature. Although the cumulative ratios Σ(N/N f ) were nearly unity for both the low to high and the high to low block loadings at room temperature, Miner's rule did not hold at 350degC. These results were related to the stress dependence on the log l-N/N f relation. That is, the crack length initiated at the same N/N f was larger in higher stress level at 350degC, whereas there was no stress dependence in the relation at room temperature. The stress dependence on the relation at 350degC was caused by the suppression of crack initiation due to the surface oxidation. (author)

  3. Relationship Between Unusual High-Temperature Fatigue Crack Growth Threshold Behavior in Superalloys and Sudden Failure Mode Transitions

    Science.gov (United States)

    Telesman, J.; Smith, T. M.; Gabb, T. P.; Ring, A. J.

    2017-01-01

    An investigation of high temperature cyclic fatigue crack growth (FCG) threshold behavior of two advanced nickel disk alloys was conducted. The focus of the study was the unusual crossover effect in the near-threshold region of these type of alloys where conditions which produce higher crack growth rates in the Paris regime, produce higher resistance to crack growth in the near threshold regime. It was shown that this crossover effect is associated with a sudden change in the fatigue failure mode from a predominant transgranular mode in the Paris regime to fully intergranular mode in the threshold fatigue crack growth region. This type of a sudden change in the fracture mechanisms has not been previously reported and is surprising considering that intergranular failure is typically associated with faster crack growth rates and not the slow FCG rates of the near-threshold regime. By characterizing this behavior as a function of test temperature, environment and cyclic frequency, it was determined that both the crossover effect and the onset of intergranular failure are caused by environmentally driven mechanisms which have not as yet been fully identified. A plausible explanation for the observed behavior is proposed.

  4. Deformation heterogeneities and their role in life-limiting fatigue failures in a two-phase titanium alloy

    International Nuclear Information System (INIS)

    Jha, Sushant K.; Szczepanski, Christopher J.; John, Reji; Larsen, James M.

    2015-01-01

    Fatigue crack-initiation sites in Ti–6Al–2Sn–4Zr–6Mo (Ti–6–2–4–6), an α + β titanium alloy used in turbine engine applications, were characterized with emphasis on distinguishing the microstructural neighborhoods and mechanisms that produce the life-limiting failures vs. those that promote the mean-lifetime behavior. The characterization methods included quantitative tilt fractography, focused ion beam milling across crack-initiation facets, and electron backscattered diffraction analysis. The motivation for discerning between the life-limiting and the mean-dominating crack-initiation microstructural neighborhoods stemmed from the previously developed understanding that the mean and the life-limiting behaviors respond differently to stress level (and many other variables), leading to an increasing separation between the two subpopulations as the stress level is decreased, thereby increasing the variability in lifetime. The different rates of response of the two behaviors was found to arise because the life-limiting mechanism was dominated by the crack-growth lifetime, with microstructural-scale crack-initiation occurring within the first few fatigue cycles, whereas the mean behavior was increasingly dominated by the crack-initiation lifetime as the stress level was decreased. Representative specimens for 2-D characterization of crack-initiation neighborhoods were selected from life-limiting and mean-dominating populations generated by fatigue tests on a duplex α + β phase microstructure of Ti–6–2–4–6 under a narrow range of applied stress amplitudes. A compilation of data on the crack-initiation facet and the neighborhood of the faceted grain from multiple specimens pointed to at least four categories of critical microstructural configurations, each representing a set of necessary (but perhaps not sufficient) conditions for crack-initiation in this alloy. Based on this characterization, a hypothesis for the life-limiting fatigue behavior

  5. Review of time-dependent fatigue behavior and life prediction for 2 1/4 Cr-1 Mo steel

    International Nuclear Information System (INIS)

    Booker, M.K.; Majumdar, S.

    1982-01-01

    Available data on creep-fatigue life and fracture behavior of 2 1/4 Cr-1 Mo steel are reviewed. Whereas creep-fatigue interaction is important for Type 304 stainless steel, oxidation effects appear to dominate the time-dependent fatigue behavior of 2 1/4 Cr-1 Mo steel. Four of the currently available predictive methods - the Linear Damage Rule, Frequency Separation Equation, Strain Range Partitioning Equation, and Damage Rate Equation - are evaluated for their predictive capability. Variations in the parameters for the various predictive methods with temperature, heat of material, heat treatment, and environment are investigated. Relative trends in the lives predicted by the various methods as functions of test duration, waveshape, etc., are discussed. The predictive methods will need modification in order to account for oxidation and aging effects in the 2 1/4 Cr-1 Mo steel. Future tests that will emphasize the difference between the various predictive methods are proposed

  6. Perceived Fatigue Interference and Depressed Mood: Comparison of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients with Fatigued Breast Cancer Survivors

    Science.gov (United States)

    Hall, Daniel L.; Antoni, Michael H.; Lattie, Emily G.; Jutagir, Devika R.; Czaja, Sara J.; Perdomo, Dolores; Lechner, Suzanne C.; Stagl, Jamie M.; Bouchard, Laura C.; Gudenkauf, Lisa M.; Traeger, Lara; Fletcher, MaryAnn; Klimas, Nancy G.

    2015-01-01

    Objective Persistent fatigue and depressive symptoms are both highly prevalent among patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) as well as breast cancer survivors. This study aimed to assess and directly compare perceptions of fatigue as highly interfering in one’s daily functioning in both patient populations to better understand their relationships with depressed mood. Methods Participants were 95 female CFS/ME patients and 67 females who were approximately 5 years post-treatment for stage 0-III breast cancer presenting with clinically elevated fatigue severity. Self-report measures were obtained on participants’ fatigue-related interference in daily functioning and fatigue severity as well as depressed mood. Hierarchical regression was used to test effects controlling for relevant demographic, psychosocial, and medical covariates. Results CFS/ME patients endorsed greater depressed mood and fatigue interference than did fatigued breast cancer survivors, p’sfatigued breast cancer survivors (β=.18, p=.19). Conclusions CFS/ME patients reported elevated fatigue symptoms and depression relative to fatigued breast cancer survivors. In the former group, greater depressed mood was highly and significantly associated with greater fatigue-related inference in daily activities. Potential targets for cognitive behavioral interventions are discussed. PMID:26180660

  7. Damage formation, fatigue behavior and strength properties of ZrO_2-based ceramics

    International Nuclear Information System (INIS)

    Kozulin, A. A.; Kulkov, S. S.; Narikovich, A. S.; Leitsin, V. N.; Kulkov, S. N.

    2016-01-01

    It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO_2-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91–0.98, 0.8–0.83, and 0.73–0.77 MPa of the static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 10"5 stress cycles is in the range 33–34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.

  8. Fatigue Crack Growth Behavior of and Recognition of AE Signals from Composite Patch-Repaired Aluminum Panel

    International Nuclear Information System (INIS)

    Kim, Sung Jin; Kwon, Oh Yang; Jang, Yong Joon

    2007-01-01

    The fatigue crack growth behavior of a cracked and patch-repaired Ah2024-T3 panel has been monitored by acoustic emission(AE). The overall crack growth rate was reduced The crack propagation into the adjacent hole was also retarded by introducing the patch repair. AE signals due to crack growth after the patch repair and those due to debonding of the plate-patch interface were discriminated by using the principal component analysis. The former showed high center frequency and low amplitude, whereas the latter showed long rise tine, low frequency and high amplitude. This type of AE signal recognition method could be effective for the prediction of fatigue crack growth behavior in the patch-repaired structures with the aid of AE source location

  9. Safety behaviors and sleep effort predict sleep disturbance and fatigue in an outpatient sample with anxiety and depressive disorders.

    Science.gov (United States)

    Fairholme, Christopher P; Manber, Rachel

    2014-03-01

    Theoretical and empirical support for the role of dysfunctional beliefs, safety behaviors, and increased sleep effort in the maintenance of insomnia has begun to accumulate. It is not yet known how these factors predict sleep disturbance and fatigue occurring in the context of anxiety and mood disorders. It was hypothesized that these three insomnia-specific cognitive-behavioral factors would be uniquely associated with insomnia and fatigue among patients with emotional disorders after adjusting for current symptoms of anxiety and depression and trait levels of neuroticism and extraversion. Outpatients with a current anxiety or mood disorder (N = 63) completed self-report measures including the Dysfunctional Beliefs About Sleep Scale (DBAS), Sleep-Related Safety Behaviors Questionnaire (SRBQ), Glasgow Sleep Effort Scale (GSES), Pittsburgh Sleep Quality Index (PSQI), NEO Five-Factor Inventory (FFI), and the 21-item Depression Anxiety and Stress Scale (DASS). Multivariate path analysis was used to evaluate study hypotheses. SRBQ (B = .60, p relationship between safety behaviors and fatigue was strongest among individuals with greater levels of dysfunctional beliefs. Findings are consistent with cognitive behavioral models of insomnia and suggest that sleep-specific factors might be important treatment targets among patients with anxiety and depressive disorders with disturbed sleep. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Competition between microstructure and defect in multiaxial high cycle fatigue

    Directory of Open Access Journals (Sweden)

    F. Morel

    2015-07-01

    Full Text Available This study aims at providing a better understanding of the effects of both microstructure and defect on the high cycle fatigue behavior of metallic alloys using finite element simulations of polycrystalline aggregates. It is well known that the microstructure strongly affects the average fatigue strength and when the cyclic stress level is close to the fatigue limit, it is often seen as the main source of the huge scatter generally observed in this fatigue regime. The presence of geometrical defects in a material can also strongly alter the fatigue behavior. Nonetheless, when the defect size is small enough, i.e. under a critical value, the fatigue strength is no more affected by the defect. The so-called Kitagawa effect can be interpreted as a competition between the crack initiation mechanisms governed either by the microstructure or by the defect. Surprisingly, only few studies have been done to date to explain the Kitagawa effect from the point of view of this competition, even though this effect has been extensively investigated in the literature. The primary focus of this paper is hence on the use of both FE simulations and explicit descriptions of the microstructure to get insight into how the competition between defect and microstructure operates in HCF. In order to account for the variability of the microstructure in the predictions of the macroscopic fatigue limits, several configurations of crystalline orientations, crystal aggregates and defects are studied. The results of each individual FE simulation are used to assess the response at the macroscopic scale thanks to a probabilistic fatigue criterion proposed by the authors in previous works. The ability of this criterion to predict the influence of defects on the average and the scatter of macroscopic fatigue limits is evaluated. In this paper, particular emphasis is also placed on the effect of different loading modes (pure tension, pure torsion and combined tension and torsion on

  11. Mental Fatigue and Spatial References Impair Soccer Players' Physical and Tactical Performances

    Directory of Open Access Journals (Sweden)

    Diogo Coutinho

    2017-09-01

    Full Text Available This study examined the effects of mental fatigue and additional corridor and pitch sector lines on players' physical and tactical performances during soccer small-sided games. Twelve youth players performed four Gk+6vs6+Gk small-sided games. Prior to the game, one team performed a motor coordination task to induce mental fatigue, while the other one performed a control task. A repeated measures design allowed to compare players' performances across four conditions: (a with mental fatigue against opponents without mental fatigue in a normal pitch (MEN, (b with mental fatigue on a pitch with additional reference lines (#MEN; (c without mental fatigue against mentally fatigued opponents on a normal pitch (CTR; and (d without mental fatigue on a pitch with reference lines (#CTR. Player's physical performance was assessed by the distance covered per minute and the number of accelerations and decelerations (0.5–3.0 m/s2; > −3.0 m/s2. Positional data was used to determine individual (spatial exploration index, time synchronized in longitudinal and lateral directions and team-related variables (length, width, speed of dispersion and contraction. Unclear effects were found for the physical activity measures in most of the conditions. There was a small decrease in time spent laterally synchronized and a moderate decrease in the contraction speed when MEN compared to the CTR. Also, there was a small decrease in the time spent longitudinally synchronized during the #MEN condition compared to MEN. The results showed that mental fatigue affects the ability to use environmental information and players' positioning, while the additional reference lines may have enhanced the use of less relevant information to guide their actions during the #MEN condition. Overall, coaches could manipulate the mental fatigue and reference lines to induce variability and adaptation in young soccer players' behavior.

  12. Behavioral Variables Associated with Obesity in Police Officers

    Science.gov (United States)

    CAN, S. Hakan; HENDY, Helen M.

    2014-01-01

    Past research has documented that non-behavioral variables (such as long work hours, exposure to police stressors) are associated with obesity risk in police officers, but limited research has examined behavioral variables that might be targeted by Employee Assistance Programs for police weight management. The present study compared non-obese and obese officers for behavioral variables found associated with obesity in other adult samples: physical activity (cardiovascular, strength-training, stretching), sleep duration, and consumption of alcohol, fruit and vegetables, and snack foods. Participants included 172 male police officers who completed questionnaires to report height and weight, used to calculate body mass index (BMI = kg/m2) and to divide them into “non-obese” and “obese” groups. They also reported the above behaviors and six non-behavioral variables found associated with obesity risk: age, health problems, family support, police work hours, police stressors, police support. ANCOVAs compared each behavioral variable across obesity status (non-obese, obese), with the six non-behavioral variables used as covariates. Results revealed that cardiovascular and strength-training physical activity were the only behavioral variables that differed significantly between non-obese and obese police officers. The use of self-reported height and weight values may provide Employee Assistance Program with improved cost, time, and officer participation. PMID:24694574

  13. Interest of analyses of heart rate variability in the prevention of fatigue states in senior runners.

    Science.gov (United States)

    Leti, Thomas; Bricout, Véronique A

    2013-01-01

    The use of heart rate variability (HRV) in the management of sport training is a practice which tends to spread, especially in order to prevent the occurrence of fatigue states. To estimate the HRV parameters obtained using a heart rate recording, according to different exercise impacts, and to make the link with the appearance of subjective fatigue. Ten senior runners, aged 51±5 years, were each monitored over a period of 12 weeks in different conditions: (i) after a resting period, (ii) after a day with training, (iii) after a day of competition and (iv) after a rest day. They also completed three questionnaires, to assess fatigue (SFMS), profile of mood states (POMS) and quality of sleep. The HRV indices (heart rate, LF (n.u.), HF (n.u.) and LF/HF) were significantly altered with the competitive impact, shifting toward a sympathetic predominance. After rest and recovery nights, the LF (n.u.) increased significantly with the competitive impact (62.1±15.2 and 66.9±11.6 vs. 76.0±10.7; p<0.05 respectively) whereas the HF (n.u.) decreased significantly (37.9±15.2 and 33.1±11.6 vs. 24.0±10.7; p<0.05 respectively). Positive correlations were found between fatigue and frequency domain indices and between fatigue and training impact. Autonomic nervous system modulation-fatigue relationships were significant, suggesting the potential use of HRV in follow-up and control of training. Furthermore, the addition of questionnaires constitutes complementary tools that allow to achieve a greater relevance and accuracy of the athletes' fitness and results. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Potential role of licofelone, minocycline and their combination against chronic fatigue stress induced behavioral, biochemical and mitochondrial alterations in mice.

    Science.gov (United States)

    Kumar, Anil; Vashist, Aditi; Kumar, Puneet; Kalonia, Harikesh; Mishra, Jitendriya

    2012-01-01

    Chronic fatigue stress (CFS) is a common complaint among general population. Persistent and debilitating fatigue severely impairs daily functioning and is usually accompanied by combination of several physical and psychiatric problems. It is now well established fact that oxidative stress and neuroinflammation are involved in the pathophysiology of chronic fatigue and related disorders. Targeting both COX (cyclooxygenase) and 5-LOX (lipoxygenase) pathways have been proposed to be involved in neuroprotective effect. In the present study, mice were put on the running wheel apparatus for 6 min test session daily for 21 days, what produced fatigue like condition. The locomotor activity and anxiety like behavior were measured on 0, 8(th), 15(th) and 22(nd) day. The brains were isolated on 22(nd) day immediately after the behavioral assessments for the estimation of oxidative stress parameters and mitochondrial enzyme complexes activity. Pre-treatment with licofelone (2.5, 5 and 10 mg/kg, po) and minocycline (50 and 100 mg/kg, po) for 21 days, significantly attenuated fatigue like behavior as compared to the control (rotating wheel activity test session, RWATS) group. Further, licofelone (5 and 10 mg/kg, po) and minocycline (50 and 100 mg/kg, po) drug treatments for 21 days significantly attenuated behavioral alterations, oxidative damage and restored mitochondrial enzyme complex activities (I, II, III and IV) as compared to control, whereas combination of licofelone (5 mg/kg) with minocycline (50 mg/kg) significantly potentiated their protective effect which was significant as compared to their effect per se. The present study highlights the therapeutic potential of licofelone, minocycline and their combination against CFS in mice.

  15. An Abnormal Increase of Fatigue Life with Dwell Time during Creep-Fatigue Deformation for Directionally Solidified Ni-Based Superalloy DZ445

    Science.gov (United States)

    Ding, Biao; Ren, Weili; Deng, Kang; Li, Haitao; Liang, Yongchun

    2018-03-01

    The paper investigated the creep-fatigue behavior for directionally solidified nickel-based superalloy DZ445 at 900 °C. It is found that the fatigue life shows an abnormal increase when the dwell time exceeds a critical value during creep-fatigue deformation. The area of hysteresis loop and fractograph explain the phenomenon quite well. The shortest life corresponds to the maximal area of hysteresis loop, i. e. the maximum energy to be consumed during the creep-fatigue cycle. The fractographic observation of failed samples further supports the abnormal behavior of fatigue life.

  16. Effects of High Mean Stress on High-cycle Fatigue Behavior of PWA 1480

    Science.gov (United States)

    Majumdar, S.; Antolovich, S. D.; Milligan, W. W.

    1985-01-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the space shuttle main engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. The present paper describes the results obtained in an ongoing program at the Argonne National Laboratory, sponsored by NASA Lewis, to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material. Straight-gauge high-cycle fatigue specimens, 0.2 inch in diameter and with the specimen axis in the 001 direction, were supplied by NASA Lewis. The nominal room temperature yield and ultimate strength of the material were 146 and 154 ksi, respectively. Each specimen was polished with 1-micron diamond paste prior to testing. However, the surface of each specimen contained many pores, some of which were as large as 50 micron. In the initial tests, specimens were subjected to axial-strain-controlled cycles. However, very little cyclic plasticity was observed.

  17. Low cycle fatigue behavior of a ferritic reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Apu, E-mail: asarkar@barc.gov.in; Kumawat, Bhupendra K.; Chakravartty, J.K.

    2015-07-15

    The cyclic stress–strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain–stress relationships and the strain–life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.

  18. Consideration of the environmental effects on fatigue behavior of austenitic components. Calculation methods and practical application

    International Nuclear Information System (INIS)

    Seichter, Johannes; Reese, Sven H.; Klucke, Dietmar

    2012-01-01

    During the last years environmental effects on the fatigue behavior of nuclear power plant components has worldwide been discussed controversial with respect to the transferability of laboratory data on real components. A publication from Argonne National Laboratory on experimental results concerning environmental effects (air and LWR coolant) on fatigue of austenitic steels included a proposal on calculation methods concerning the lifetime reduction due to environmental effects. This calculation method, i.e. multiplication of the usage factor by a F(en), has been included into the ASME Code, Section III, Division I, as Code Case N-792 (fatigue evaluations including environmental effects). The presented contribution evaluates the practical application of this calculation procedure and demonstrates the determination of the usage factor of an austenitic component under environmental exposure.

  19. Microstructural effects on constitutive and fatigue fracture behavior of TinSilverCopper solder

    Science.gov (United States)

    Tucker, Jonathon P.

    As microelectronic package construction becomes more diverse and complex, the need for accurate, geometry-independent material constitutive and failure models increases. Evaluations of packages based on accelerated environmental tests (such as accelerated thermal cycling or power cycling) only provide package-dependent reliability information. In addition, extrapolations of such test data to life predictions under field conditions are often empirical. Besides geometry, accelerated environmental test data must account for microstructural factors such as alloy composition or isothermal aging condition, resulting in expensive experimental variation. In this work, displacement-controlled, creep, and fatigue lap shear tests are conducted on specially designed SnAgCu test specimens with microstructures representative to those found in commercial microelectronic packages. The data are used to develop constitutive and fatigue fracture material models capable of describing deformation and fracture behavior for the relevant temperature and strain rate ranges. Furthermore, insight is provided into the microstructural variation of solder joints and the subsequent effect on material behavior. These models are appropriate for application to packages of any geometrical construction. The first focus of the thesis is on Pb-mixed SnAgCu solder alloys. During the transition from Pb-containing solders to Pb-free solders, joints composed of a mixture of SnPb and SnAgCu often result from either mixed assemblies or rework. Three alloys of 1, 5 and 20 weight percent Pb were selected so as to represent reasonable ranges of Pb contamination expected from different 63Sn37Pb components mixed with Sn3.0Ag0.5Cu. Displacement-controlled (constant strain rate) and creep tests were performed at temperatures of 25°C, 75°C, and 125°C using a double lap shear test setup that ensures a nearly homogeneous state of plastic strain at the joint interface. Rate-dependent constitutive models for Pb

  20. Polyphasic Temporal Behavior of Finger-Tapping Performance: A Measure of Motor Skills and Fatigue.

    Science.gov (United States)

    Aydin, Leyla; Kiziltan, Erhan; Gundogan, Nimet Unay

    2016-01-01

    Successive voluntary motor movement involves a number of physiological mechanisms and may reflect motor skill development and neuromuscular fatigue. In this study, the temporal behavior of finger tapping was investigated in relation to motor skills and fatigue by using a long-term computer-based test. The finger-tapping performances of 29 healthy male volunteers were analyzed using linear and nonlinear regression models established for inter-tapping interval. The results suggest that finger-tapping performance exhibits a polyphasic nature, and has several characteristic time points, which may be directly related to muscle dynamics and energy consumption. In conclusion, we believe that future studies evaluating the polyphasic nature of the maximal voluntary movement will lead to the definition of objective scales that can be used in the follow up of some neuromuscular diseases, as well as, the determination of motor skills, individual ability, and peripheral fatigue through the use of a low cost, easy-to-use computer-based finger-tapping test.

  1. Near-threshold fatigue crack growth behavior of AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Tobler, R.L.

    1986-01-01

    The near-threshold fatigue behavior of an AISI 316 alloy was characterized using a newly developed, fully automatic fatigue test apparatus. Significant differences in the near-threshold behavior at temperatures of 295 and 4 K are observed. At 295 K, where the operationally defined threshold at 10 -10 m/cycle is insensitive contains stress ratio and strongly affected by crack closure, the effective threshold stress intensity factor (ΔK/sub Th/)/sub eff/) is about 4.65 MPa m/sub 1/2/ at R = 0.3. At 4 K, the threshold is higher, crack closure is less pronounced, and there is a stress ratio dependency: (ΔK/sub Th/)/sub eff/ is 5.1 MPa m/sup 1/2/ at R = 0.3 and 6.1 MPa m/sup 1/2/ at R - 0.1. There is also a significant difference in the form of the da/dN-versus-ΔK curves on log-log coordinates: at 4 K the curve has the expected sigmoidal shape, but at 295 K the trend is linear over the region of da/dN from 10 -7 to 10 -10 m/cycle. Other results suggest that the near-threshold measurements of a 6.4-mm-thick specimen of this alloy are insensitive to cyclic test frequency below 40 Hz

  2. Data related to cyclic deformation and fatigue behavior of direct laser deposited Ti–6Al–4V with and without heat treatment

    Directory of Open Access Journals (Sweden)

    Amanda J. Sterling

    2016-03-01

    Full Text Available Data is presented describing the strain-controlled, fully-reversed uniaxial cyclic deformation and fatigue behavior of Ti–6Al–4V specimens additively manufactured via Laser Engineered Net Shaping (LENS – a Direct Laser Deposition (DLD process. The data was collected by performing multiple fatigue tests on specimens with various microstructural states/conditions, i.e. in their ‘as-built’, annealed (below the beta transus temperature, or heat treated (above the beta transus temperature condition. Such data aids in characterizing the mechanical integrity and fatigue resistance of DLD parts. Data presented herein also allows for elucidating the strong microstructure coupling of the fatigue behavior of DLD Ti–6Al–4V, as the data trends were found to vary with material condition (i.e. as-built, annealed or heat treated [1]. This data is of interest to the additive manufacturing and fatigue scientific communities, as well as the aerospace and biomedical industries, since additively-manufactured parts cannot be reliably deployed for public use, until their mechanical properties are understood with high certainty. Keywords: Fatigue, Cyclic deformation, Additive manufacturing, Laser Engineered Net Shaping (LENS, Ti–6Al–4V, Titanium

  3. The effect of manufacturing conditions on discontinuity population and fatigue fracture behavior in carbon/epoxy composites

    Science.gov (United States)

    Hakim, Issa; Laquai, Rene; Walter, David; Mueller, Bernd; Graja, Paul; Meyendorf, Norbert; Donaldson, Steven

    2017-02-01

    Carbon fiber composites have been increasingly used in aerospace, military, sports, automotive and other fields due to their excellent properties, including high specific strength, high specific modulus, corrosion resistance, fatigue resistance, and low thermal expansion coefficient. Interlaminar fracture is a serious failure mode leading to a loss in composite stiffness and strength. Discontinuities formed during manufacturing process degrade the fatigue life and interlaminar fracture resistance of the composite. In his study, three approaches were implemented and their results were correlated to quantify discontinuities effecting static and fatigue interlaminar fracture behavior of carbon fiber composites. Samples were fabricated by hand layup vacuum bagging manufacturing process under three different vacuum levels, indicated High (-686 mmHg), Moderate (-330 mmHg) and Poor (0 mmHg). Discontinuity content was quantified through-thickness by destructive and nondestructive techniques. Eight different NDE methods were conducted including imaging NDE methods: X-Ray laminography, ultrasonic, high frequency eddy current, pulse thermography, pulse phase thermography and lock-in-thermography, and averaging NDE techniques: X-Ray refraction and thermal conductivity measurements. Samples were subsequently destructively serial sectioned through-thickness into several layers. Both static and fatigue interlaminar fracture behavior under Mode I were conducted. The results of several imaging NDE methods revealed the trend in percentages of discontinuity. However, the results of averaging NDE methods showed a clear correlation since they gave specific values of discontinuity through-thickness. Serial sectioning exposed the composite's internal structure and provided a very clear idea about the type, shape, size, distribution and location of most discontinuities included. The results of mechanical testing showed that discontinuities lead to a decrease in Mode I static interlaminar

  4. Fatigue crack growth behavior and AE signal recognition from a composite patch repaired Ai thein plate

    International Nuclear Information System (INIS)

    Kim, Sung Jin; Kwon, Oh Yang

    2004-01-01

    The fatigue crack growth behavior of a fatigue-cracked and patch-repaired AA2024-T3 plate has been monitored. It was found that the overall crack growth rate was reduced and the crack propagation into the adjacent hole was also retarded. Signals due to crack growth after patch-repair and those due to debonding of the plate-patch interface were discriminated each other by using principal component analysis. The former showed higher center frequency and lower amplitude, whereas the latter showed longer rise time, lower frequency and higher amplitude.

  5. Metal magnetic memory technique used to predict the fatigue crack propagation behavior of 0.45%C steel

    Energy Technology Data Exchange (ETDEWEB)

    Chongchong, Li [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072 (China); Lihong, Dong, E-mail: lihong.dong@126.com [National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072 (China); Haidou, Wang [National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072 (China); Guolu, Li [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Binshi, Xu [National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072 (China)

    2016-05-01

    Monitoring fatigue crack propagation behavior of ferromagnetic components is very important. In this paper, the tension–tension fatigue tests of center cracked tension (CCT) specimens were carried out; the variation regularity of both tangential and normal components of magnetic signals during fatigue process were investigated. The results showed that the initial abnormal signals which appeared at the notch were reversed after cyclic loading. The abnormal magnetic signals became more significant with the increase of fatigue cycles and reversed again after failure. The characteristic parameters, i.e., the peak value of tangential component, B{sub tp}, and maximum gradient value of normal component, K{sub m}, showed similar variation trends during the fatigue process, which can be divided into three different stages. An approximate linear relationship was found between the characteristic parameters and fatigue crack length 2a. The feasibility of predicting the fatigue crack propagation using the abnormal magnetic signals was discussed. What's more, the variation and distribution of the magnetic signals were also analyzed based on the theory of magnetic charge. - Highlights: • A novel and passive NDT method, i.e. MMMT method, is proposed. • Both tangential and normal components of magnetic signals were investigated. • The prediction of crack propagation by abnormal magnetic signals was discussed. • A linear relationship was found between the parameters and fatigue crack length 2a. • The parameters can be potentially used to evaluate the crack propagation state.

  6. Cognitive behavioral therapy positively affects fatigue in patients with multiple sclerosis: Results of a randomized controlled trial.

    Science.gov (United States)

    van den Akker, Lizanne E; Beckerman, Heleen; Collette, Emma H; Twisk, Jos Wr; Bleijenberg, Gijs; Dekker, Joost; Knoop, Hans; de Groot, Vincent

    2017-10-01

    Fatigue is a common symptom in multiple sclerosis (MS) and often restricts societal participation. Cognitive behavioral therapy (CBT) may alleviate MS-related fatigue, but evidence in literature is inconclusive. To evaluate the effectiveness of CBT to improve MS-related fatigue and participation. In a multi-center, assessor-masked, randomized controlled trial, participants with severe MS-related fatigue were assigned to CBT or control treatment. CBT consisted of 12 individual sessions with a psychologist trained in CBT, the control treatment consisted of three consultations with a MS nurse, both delivered over 16 weeks. Assessments were at baseline, 8, 16 (i.e. post-intervention), 26, and 52 weeks post-baseline. Primary outcomes were the Checklist Individual Strength-fatigue subscale (CIS20r fatigue) and the Impact on Participation and Autonomy questionnaire (IPA). Data were analyzed according to the intention-to-treat principle, using mixed-model analysis. Between 2011 and 2014, 91 patients were randomized (CBT: n = 44; control: n = 47). Between-group analysis showed a positive post-intervention effect for CBT on CIS20r fatigue (T16: -6.7 (95% confidence interval (CI) = -10.7; -2.7) points) that diminished during follow-up (T52: 0.5 (95% CI = -3.6; 4.4)). No clinically relevant effects were found on societal participation. Severe MS-related fatigue can be reduced effectively with CBT in the short term. More research is needed on how to maintain this effect over the long term.

  7. High cycle fatigue behavior of the IN718/M247 hybrid element fabricated by friction welding at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Tran Hung Tra

    2016-12-01

    Full Text Available A hybrid element has been fabricated by friction welding, joining two superalloys Inconel 718 and Mar-M247. The high cycle fatigue behavior of this welded element was investigated at 500 °C and 700 °C. The fabrication could obtain excellent fatigue strength in which the fracture is located in the base metal Mar-M247 side and takes place outside the welded zone. The behavior of the joint under loadings is discussed through a simulation by the numerical finite element method.

  8. Effects of Control Mode and R-Ratio on the Fatigue Behavior of a Metal Matrix Composite

    Science.gov (United States)

    2005-01-01

    Composite Because of their high specific stiffness and strength at elevated temperatures, continuously reinforced metal matrix composites (MMC's) are under consideration for a future generation of aeropropulsion systems. Since components in aeropropulsion systems experience substantial cyclic thermal and mechanical loads, the fatigue behavior of MMC's is of great interest. Almost without exception, previous investigations of the fatigue behavior of MMC's have been conducted in a tension-tension, load-controlled mode. This has been due to the fact that available material is typically less than 2.5-mm thick and, therefore, unable to withstand high compressive loads without buckling. Since one possible use of MMC's is in aircraft skins, this type of testing mode may be appropriate. However, unlike aircraft skins, most engine components are thick. In addition, the transient thermal gradients experienced in an aircraft engine will impose tension-compression loading on engine components, requiring designers to understand how the MMC will behave under fully reversed loading conditions. The increased thickness of the MMC may also affect the fatigue life. Traditionally, low-cycle fatigue (LCF) tests on MMC's have been performed in load control. For monolithic alloys, low-cycle fatigue tests are more typically performed in strain control. Two reasons justify this choice: (1) the critical volume from which cracks initiate and grow is generally small and elastically constrained by the larger surrounding volume of material, and (2) load-controlled, low-cycle fatigue tests of monolithics invariably lead to unconstrained ratcheting and localized necking--an undesired material response because the failure mechanism is far more severe than, and unrelated to, the fatigue mechanism being studied. It is unknown if this is the proper approach to composite testing. However, there is a lack of strain-controlled data on which to base any decisions. Consequently, this study addresses the

  9. Effect of Surface Impulsive Thermal Loads on Fatigue Behavior of Constant Volume Propulsion Engine Combustor Materials

    National Research Council Canada - National Science Library

    Zhu, Dongming

    2004-01-01

    .... In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz...

  10. Surface crack behavior in socket weld of nuclear piping under fatigue loading condition

    International Nuclear Information System (INIS)

    Choi, Y.H.; Kim, J.S.; Choi, S.Y.

    2005-01-01

    The ASME B and PV Code Sec. III allows the socket weld for the nuclear piping in spite of the weakness on the weld integrity. Recently, the integrity of the socket weld is regarded as a safety concern in nuclear power plants because many failures and leaks have been reported in the socket weld. OPDE (OECD Piping Failure Data Exchange) database lists 108 socket weld failures among 2,399 nuclear piping failure cases during 1970 to 2001. Eleven failures in the socket weld were also reported in Korean NPPs. Many failure cases showed that the root cause of the failure is the fatigue and the gap requirement for the socket weld given in ASME Code was not satisfied. The purpose of this paper is to evaluate the fatigue crack behavior of a surface crack in the socket weld under fatigue loading condition considering the gap effect. Three-dimensional finite element analysis was performed to estimate the fatigue crack behavior of the surface crack. Three types of loading conditions such as the deflection due to vibration, the pressure transient ranging from P=0 to 15.51 MPa, and the thermal transient ranging from T=25 C to 288 C were considered. The results are as follows; 1) The socket weld is susceptible to the vibration where the vibration levels exceed the requirement in the ASME operation and maintenance (OM) Code. 2) The effect of pressure or temperature transient load on the socket weld integrity is not significant. 3) No-gap condition gives very high possibility of the crack initiation at the socket weld under vibration loading condition. 4) For the specific systems having the vibration condition to exceed the requirement in the ASME Code OM and/or the transient loading condition from P=0 and T=25 C to P=15.51 MPa and T=288 C, radiographic examination to examine the gap during the construction stage is recommended. (orig.)

  11. Modeling time-dependent corrosion fatigue crack propagation in 7000 series aluminum alloys

    Science.gov (United States)

    Mason, Mark E.; Gangloff, Richard P.

    1994-01-01

    Stress corrosion cracking and corrosion fatigue experiments were conducted with the susceptible S-L orientation of AA7075-T651, immersed in acidified and inhibited NaCl solution, to provide a basis for incorporating environmental effects into fatigue crack propagation life prediction codes such as NASA FLAGRO. This environment enhances da/dN by five to ten-fold compared to fatigue in moist air. Time-based crack growth rates from quasi-static load experiments are an order of magnitude too small for accurate linear superposition prediction of da/dN for loading frequencies above 0.001 Hz. Alternate methods of establishing da/dt, based on rising-load or ripple-load-enhanced crack tip strain rate, do not increase da/dt and do not improve linear superposition. Corrosion fatigue is characterized by two regimes of frequency dependence; da/dN is proportional to f(exp -1) below 0.001 Hz and to F(exp 0) to F(exp -0.1) for higher frequencies. Da/dN increases mildly both with increasing hold-time at K(sub max) and with increasing rise-time for a range of loading waveforms. The mild time-dependence is due to cycle-time-dependent corrosion fatigue growth. This behavior is identical for S-L nd L-T crack orientations. The frequency response of environmental fatigue in several 7000 series alloys is variable and depends on undefined compositional or microstructural variables. Speculative explanations are based on the effect of Mg on occluded crack chemistry and embritting hydrogen uptake, or on variable hydrogen diffusion in the crack tip process zone. Cracking in the 7075/NaCl system is adequately described for life prediction by linear superposition for prolonged load-cycle periods, and by a time-dependent upper bound relationship between da/dN and delta K for moderate loading times.

  12. The Fatigue Behavior of Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    2009-01-01

    of the investigation, fatigue test series with a total of 540 fatigue tests have been carried through on various types of welded plate test specimens and full-scale offshore tubular joints. The materials that have been used are either conventional structural steel or high-strength steel. The fatigue tests......Fatigue damage accumulation in steel structures under random loading has been studied in a number of investigations at the Technical University of Denmark. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part...... and the fracture mechanics analyses have been carried out using load histories, which are realistic in relation to the types of structures studied, i.e. primarily bridges, offshore structures and chimneys. In general, the test series carried through show a significant difference between constant amplitude...

  13. Damage formation, fatigue behavior and strength properties of ZrO{sub 2}-based ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kozulin, A. A., E-mail: kozulyn@ftf.tsu.ru; Kulkov, S. S. [Tomsk State University, Tomsk, 634050 (Russian Federation); Narikovich, A. S.; Leitsin, V. N. [Immanuel Kant Baltic Federal University, Kaliningrad, 236041 (Russian Federation); Kulkov, S. N., E-mail: kulkov@ispms.ru [Tomsk State University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2016-08-02

    It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO{sub 2}-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91–0.98, 0.8–0.83, and 0.73–0.77 MPa of the static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 10{sup 5} stress cycles is in the range 33–34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.

  14. An investigation of the fatigue and fracture behavior of a Nb-12Al-44Ti-1.5Mo intermetallic alloy

    International Nuclear Information System (INIS)

    Soboyejo, W.O.; Dipasquale, J.; Ye, F.; Mercer, C.

    1999-01-01

    This article presents the results of a study of the fatigue and fracture behavior of a damage-tolerant Nb-12Al-44Ti-1.5Mo alloy. This partially ordered B2 + orthorhombic intermetallic alloy is shown to have attractive combinations of room-temperature ductility (11 to 14 pct), fracture toughness (60 to 92 MPa√m), and comparable fatigue crack growth resistance to IN718, Ti-6Al-4V, and pure Nb at room temperature. The studies show that tensile deformation in the Nb-12Al-44Ti-1.5Mo alloy involves localized plastic deformation (microplasticity via slip-band formation) which initiates at stress levels that are significantly below the uniaxial yield stress (∼9.6 pct of the 0.2 pct offset yield strength (YS)). The onset of bulk yielding is shown to correspond to the spread of microplasticity completely across the gage sections of the tensile specimen. Fatigue crack initiation is also postulated to occur by the accumulation of microplasticity (coarsening of slip bands). Subsequent fatigue crack growth then occurs by the unzipping of cracks along slip bands that form ahead of the dominant crack tip. The proposed mechanism of fatigue crack growth is analogous to the unzipping crack growth mechanism that was suggested originally by Neumann for crack growth in single-crystal copper. Slower near-threshold fatigue crack growth rates at 750 C are attributed to the shielding effects of oxide-induced crack closure. The fatigue and fracture behavior are also compared to those of pure Nb and emerging high-temperature niobium-based intermetallics

  15. Time-dependent high-temperature low-cycle fatigue behavior of nickel-base heat-resistant alloys for HTGR

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Kondo, Tatsuo

    1988-06-01

    A series of strain controlled low-cycle fatigue tests at 900 deg C in the simulated HTGR helium environment were conducted on Hastelloy X and its modified version, Hastelloy XR in order to examine time-dependent high-temperature low-cycle fatigue behavior. In the tests with the symmetric triangular strain waveform, decreasing the strain rate led to notable reductions in the fatigue life. In the tests with the trapezoidal strain waveform with different holding types, the fatigue life was found to be reduced most effectively in tensile hold-time experiments. Based on the observations of the crack morphology the strain holding in the compressive side was suggested to play the role of suppressing the initiation and the growth of internal cracks or cavities, and to cause crack branching. When the frequency modified fatigue life method and/or the prediction of life by use of the ductility were applied, both the data obtained with the symmetric triangular strain waveform and those with the tensile hold-time experiments lay on the straight line plots. The data, however, obtained with the compressive and/or both hold-time experiments could not be handled satisfactorily by those methods. When the cumulative damage rule was applied, it was found that the reliability of HTGR components was ensured by limiting the creep-fatigue damage fraction within the value of 1. (author)

  16. Evaluation of Fatigue Behavior and Surface Characteristics of Aluminum Alloy 2024 T6 After Electric Discharge Machining

    Science.gov (United States)

    Mehmood, Shahid; Shah, Masood; Pasha, Riffat Asim; Sultan, Amir

    2017-10-01

    The effect of electric discharge machining (EDM) on surface quality and consequently on the fatigue performance of Al 2024 T6 is investigated. Five levels of discharge current are analyzed, while all other electrical and nonelectrical parameters are kept constant. At each discharge current level, dog-bone specimens are machined by generating a peripheral notch at the center. The fatigue tests are performed on four-point rotating bending machine at room temperature. For comparison purposes, fatigue tests are also performed on the conventionally machined specimens. Linearized SN curves for 95% failure probability and with four different confidence levels (75, 90, 95 and 99%) are plotted for each discharge current level as well as for conventionally machined specimens. These plots show that the electric discharge machined (EDMed) specimens give inferior fatigue behavior as compared to conventionally machined specimen. Moreover, discharge current inversely affects the fatigue life, and this influence is highly pronounced at lower stresses. The EDMed surfaces are characterized by surface properties that could be responsible for change in fatigue life such as surface morphology, surface roughness, white layer thickness, microhardness and residual stresses. It is found that all these surface properties are affected by changing discharge current level. However, change in fatigue life by discharge current could not be associated independently to any single surface property.

  17. Impacts of obesity and stress on neuromuscular fatigue development and associated heart rate variability.

    Science.gov (United States)

    Mehta, R K

    2015-02-01

    Obesity and stress are independently associated with decrements in neuromuscular functions. The present study examined the interplay of obesity and stress on neuromuscular fatigue and associated heart rate variability (HRV). Forty-eight non-obese (18.5obese (30⩽BMI) adults performed repetitive handgrip exertions at 30% of their maximum strength until exhaustion in the absence and presence of a mental arithmetic stressor. Dependent measures included gold standard fatigue indicators (endurance time and rate of strength loss), perceived effort and mental demand, heart rate and temporal (RMSSD: root mean square of successive differences between N-N intervals) and spectral (LF/HF: ratio of low to high frequency) indices of HRV. Stress negatively affected endurance time (Pobesity × stress interactions were found on endurance time (P=0.0073), rate of strength loss (P=0.027) and perceived effort (P=0.026), indicating that stress increased fatigability, particularly in the obese group. Both obesity (P=0.001) and stress (P=0.033) independently lowered RMSSD. Finally, stress increased LF/HF ratio (P=0.028) and the interaction of stress and obesity (P=0.008) indicated that this was augmented in the obese group. The present study provides the first evidence that stress-related neuromuscular fatigue development is accelerated in obese individuals. In addition, the stress condition resulted in poorer HRV indices, which is indicative of autonomic dysfunction, particularly in the obese group. These findings indicate that workers are more susceptible to fatigue in high-stress work environments, particularly those with higher BMI, which can increase the risk of musculoskeletal injuries as well as cardiovascular diseases in this population.

  18. Impact of sleep, fatigue, and systemic inflammation on neurocognitive and behavioral outcomes in long-term survivors of childhood acute lymphoblastic leukemia.

    Science.gov (United States)

    Cheung, Yin Ting; Brinkman, Tara M; Mulrooney, Daniel A; Mzayek, Yasmin; Liu, Wei; Banerjee, Pia; Panoskaltsis-Mortari, Angela; Srivastava, Deokumar; Pui, Ching-Hon; Robison, Leslie L; Hudson, Melissa M; Krull, Kevin R

    2017-09-01

    Long-term survivors of childhood acute lymphoblastic leukemia (ALL) are at risk for neurocognitive impairment, which may be associated with fatigue, sleep problems, systemic inflammation, and oxidative stress. We examined these associations among survivors of childhood ALL treated with chemotherapy only. Survivors of childhood ALL (male, n = 35 and female, n = 35; mean age, 14.3 years [standard deviation, 4.7 years] and mean years from diagnosis, 7.4 years [standard deviation, 1.9 years]) completed neurocognitive testing, behavioral ratings, and reported sleep quality and fatigue symptoms 5 years after diagnosis. Serum was collected concurrently and assayed for interleukin (IL)-1β and IL-6, tumor necrosis factor α (TNF-α), high-sensitivity C-reactive protein (hsCRP), malondialdehyde, myeloperoxidase, and oxidized low-density lipoprotein. General linear modeling was used to assess associations among biomarkers and functional outcomes, adjusting for age and stratified by sex. Survivors performed worse than population norms on executive function and processing speed and reported more behavioral problems (P fatigue was associated with poor executive function (r = 0.41; P = .02), processing speed (r = 0.56; P fatigue measures were observed. Neurocognitive function in female survivors of childhood ALL appears more susceptible to the effects of sleep disturbance and fatigue. Systemic inflammation may play a role in neurocognitive impairment and behavioral symptoms. Cancer 2017;123:3410-9. © 2017 American Cancer Society. © 2017 American Cancer Society.

  19. Statistical treatment of fatigue test data

    International Nuclear Information System (INIS)

    Raske, D.T.

    1980-01-01

    This report discussed several aspects of fatigue data analysis in order to provide a basis for the development of statistically sound design curves. Included is a discussion on the choice of the dependent variable, the assumptions associated with least squares regression models, the variability of fatigue data, the treatment of data from suspended tests and outlying observations, and various strain-life relations

  20. Study on low cycle fatigue behavior of two titanium alloy materials with elevated temperature effects

    International Nuclear Information System (INIS)

    Cai Lixun; Sun Yafang; Wang Li; Huang Shuzhen

    2000-01-01

    A serial of tensional and low cycle fatigue tests for two titanium alloy materials:T42NG and T225NG under room temperature and 350 degree C elevated temperature are carried out. Based on the test results, four monotonic constitutive relationships between stress and strain and four relationships between life Nf and strain amplitude controlled are given. By three ratio λ σ , λ Δσ and λ Nf of the materials related to the elevated temperature, systematical investigations about the influence of the elevated temperature on monotonic tensional intensity, cyclic intensity and fatigue life are performed. According to the important rule opened out that it exists a linearity relationship between the ratio λ Nf and strain amplitude Δε/2, the author present a λ-M-C model for predicting the fatigue life of a exponential material under R= -1 and an elevated temperature. To get the λ-M-C model, the authors give available discussion about the method simplified test and regression. The authors know from test results that T42NG steel has better fatigue and tensional behaviors than those of T225NG steel

  1. Correlation between Fatigue Crack Growth Behavior and Fracture Surface Roughness on Cold-Rolled Austenitic Stainless Steels in Gaseous Hydrogen

    Directory of Open Access Journals (Sweden)

    Tai-Cheng Chen

    2018-03-01

    Full Text Available Austenitic stainless steels are often considered candidate materials for use in hydrogen-containing environments because of their low hydrogen embrittlement susceptibility. In this study, the fatigue crack growth behavior of the solution-annealed and cold-rolled 301, 304L, and 310S austenitic stainless steels was characterized in 0.2 MPa gaseous hydrogen to evaluate the hydrogen-assisted fatigue crack growth and correlate the fatigue crack growth rates with the fracture feature or fracture surface roughness. Regardless of the testing conditions, higher fracture surface roughness could be obtained in a higher stress intensity factor (∆K range and for the counterpart cold-rolled specimen in hydrogen. The accelerated fatigue crack growth of 301 and 304L in hydrogen was accompanied by high fracture surface roughness and was associated with strain-induced martensitic transformation in the plastic zone ahead of the fatigue crack tip.

  2. Influence of PbBi environment on the low-cycle fatigue behavior of SNS target container materials

    International Nuclear Information System (INIS)

    Kalkhof, D.; Grosse, M.

    2003-01-01

    The low-cycle fatigue (LCF) behavior of the stainless steel 316L and the 10.5Cr-steel Manet-II was investigated at 260 deg. C in air and in stagnant lead-bismuth (PbBi). At low-strain levels, the fatigue lives for 316L in PbBi and air were comparable. At total strain amplitudes of 0.50% and higher a weak influence of PbBi was observed. In contrast to 316L, the results of LCF tests for Manet-II in PbBi showed a significant reduction of lifetime for all applied strain amplitudes. In the worst case the cycle number to crack initiation was reduced by a factor of ∼7 compared with the comparable test in air. For the low-strain amplitude of 0.30%, fatigue tests conducted at a frequency of 0.1 Hz had shorter fatigue lives than at a frequency of 1.0 Hz. For Manet-II the crack propagation in PbBi was much faster than in air, and failure immediate followed the formation of the first macroscopic crack

  3. Chemotherapy-induced Fatigue among Jordanian Cancer Patients: What are the Contributing Factors?

    Directory of Open Access Journals (Sweden)

    Kholoud Abu Obead

    2014-03-01

    Full Text Available Background: The purposes of this study were to examine the impact of chemotherapy treatment on Jordanian cancer patients’ fatigue and to correlate their fatigue with selected sociodemographic variables at the beginning of treatment and after four weeks of treatment. Methods: This was a single group quasi-experimental correlational design study that enrolled 43 patients diagnosed with cancer who required chemotherapy treatment. Fatigue was measured according to the Piper Fatigue Scale (PFS before starting chemotherapy treatment and after four weeks of receiving the first dose of chemotherapy. Data were collected over a period of four weeks and analyzed with descriptive statistics, the paired-sample t-test, and Pearson product-moment correlation. Results: The study included 17 (39.5% males and 26 (60.5% females with a mean age of 45.98 years. Most (n=17 were diagnosed with breast cancer. Obesity was present in about 64.4% of patients. The majority (46% received an anthracycline-based regimen. There were statistically significant differences between respondents’ total mean scores of fatigue pre-treatment and four weeks following chemotherapy treatment (t= -2.31, df=42, P<0.05. In addition, significant differences were found in the scores for behavioral, affective, sensory, and cognitive dimensions subscales (t= -2.24, -2.19, - 2.4, -2.4, df=42, P<0.05 between pre-treatment and four weeks after receiving the first dose of chemotherapy treatment. We observed a significant negative relationship between fatigue scores and hemoglobin levels (r= -0.04, P<0.01. Conclusion: Cancer-related fatigue is common among cancer patients who received chemotherapy and result in substantial adverse physical, behavioral, cognitive and affective consequences for patient. Given the impact of fatigue, treatment options should be routinely considered in the care of patients with cancer.

  4. Behavioral Variables Associated with Obesity in Police Officers

    OpenAIRE

    CAN, S. Hakan; HENDY, Helen M.

    2014-01-01

    Past research has documented that non-behavioral variables (such as long work hours, exposure to police stressors) are associated with obesity risk in police officers, but limited research has examined behavioral variables that might be targeted by Employee Assistance Programs for police weight management. The present study compared non-obese and obese officers for behavioral variables found associated with obesity in other adult samples: physical activity (cardiovascular, strength-training, ...

  5. Risk factors for fatigue in patients with epilepsy.

    Science.gov (United States)

    Yan, Song; Wu, Yuanbin; Deng, Yanchun; Liu, Yonghong; Zhao, Jingjing; Ma, Lei

    2016-11-01

    Fatigue is highly prevalent in patients with epilepsy and has a major impact on quality of life, but little data is available on its effects and management in epilepsy. To identify the incidence and risk factors of fatigue in patients with epilepsy, 105 epilepsy patients (45 women and 60 men) were enrolled in our study. Demographic and clinical data were collected and psychological variables including fatigue, sleep quality, excess daytime sleepiness, anxiety, and depression were measured by Fatigue Severity Scale, Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale, and Hospital Anxiety and Depression Scale, respectively. Of 105 patients, 29.5% exhibited fatigue (FSS score ⩾4). We found no correlation between the occurrence of fatigue and any of our demographic or clinical variables. Fatigue is correlated with low sleep quality, anxiety, and depression, but not with excess daytime sleepiness. Thus, we concluded that fatigue is highly prevalent in patients with epilepsy, and that low sleep quality, anxiety, and depression are significantly correlated with fatigue in epileptics, while excess daytime sleepiness not. Copyright © 2016. Published by Elsevier Ltd.

  6. High-cycle fatigue behavior of Co-based superalloy 9CrCo at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Wan Aoshuang

    2016-10-01

    Full Text Available A modified model is developed to characterize and evaluate high-cycle fatigue behavior of Co-based superalloy 9CrCo at elevated temperatures by considering the stress ratio effect. The model is informed by the relationship surface between maximum nominal stress, stress ratio and fatigue life. New formulae are derived to deal with the test data for estimating the parameters of the proposed model. Fatigue tests are performed on Co-based superalloy 9CrCo subjected to constant amplitude loading at four stress ratios of −1, −0.3, 0.5 and 0.9 in three environments of room temperature (i.e., about 25 °C and elevated temperatures of 530 °C and 620 °C, and the interaction mechanisms between the elevated temperature and stress ratio are deduced and compared with each other from fractographic studies. Finally, the model is applied to experimental data, demonstrating the practical and effective use of the proposed model. It is shown that new model has good correlation with experimental results.

  7. Study on high-cycle fatigue behavior of candidate Fe-Cr-Ni alloys for SCWR

    International Nuclear Information System (INIS)

    Zhao Yuxiang; Liu Guiliang; Tang Rui; Xiong Ru; Qiao Yingjie

    2014-01-01

    In the design for supercritical water reactor (SCWR), the operating temperature, pressure, burn up and irradiation damage are very high, so it seems vital to make correct choice of structural materials in core and obtain their key application behavior which would beneficial the research and development of SCWR. In this paper, the high cycle fatigue (HCF) tests of commerce austenite alloys including 6XN and 825 were conducted under bending and rotating loads at room temperature (RT) as well as at 550 ℃ in air. The experimental data were analyzed and the S-N curves were processed, the fracture morphology was also observed by SEM. The results indicate that the fatigue limited stresses at RT for the 2 Fe-Cr-Ni alloy were in such order of 825 < 6XN, which consistent with the order of their tensile strength. Elevated temperature would accelerate the oxidation of the specimen and therefore the fatigue life would decrease, among them 6XN was more sensitive to high temperature with the larger decreasing tendency which make the fatigue limited stress of the two alloys more closer at 550 ℃. While 825 is more sensitive to the stress cycles. All the two alloys have good resistance to high cycle fatigue when comparing their experimental data with the calculated value from the empirical formula. The fracture morphology presents areas of crack initiation, crack growth and fracture, the fracture area has much dimples. This work can be applied to the conceptional design for SCWR. (authors)

  8. A new model for fatigue damage accumulation of austenitic stainless steel under variable amplitude loading

    International Nuclear Information System (INIS)

    Taheri, S.; Vincent, L.; Le-Roux, J.C.

    2013-01-01

    The application of Miner's rule using a loading issued from a mock-up of a RHR system (removal heat system) of PWR plant, made of 304 steel gives a very important non-conservative fatigue life in strain control when strain fatigue curve is used. This result is due to the absence of sequence effect in Miner's rule. Many non linear damage accumulation models have been proposed to get a sequence effect. Shortcomings of some non linear damage accumulation models are discussed. So Smith-Watson-Topper and Fatemi-Socie criterions with a linear damage accumulation rule are then applied to experimental data. A major issue is the need for an elastic-plastic constitutive law which is difficult to propose in the presence of high cycle secondary hardening observed in austenitic stainless steels. A conservative model for fatigue damage accumulation under variable amplitude loading is then proposed for austenitic stainless steels in strain control, which does not need a constitutive law, but takes into account plasticity through cyclic strain stress curve. The model uses a linear damage accumulation rule. This model is based on the fact that for stainless steels, pre-hardening is detrimental for fatigue life in strain control, while it is beneficial in stress control. In the presence of low mean stress, the model is approved based on a large number of tests. Moreover the model allows to explain the larger detrimental effect of a tension mean stress in strain control tests than in stress control tests. (authors)

  9. Fatigue Reliability and Calibration of Fatigue Design Factors for Offshore Wind Turbines

    Directory of Open Access Journals (Sweden)

    Sergio Márquez-Domínguez

    2012-06-01

    Full Text Available Consequences of failure of offshore wind turbines (OWTs is in general lower than consequences of failure of, e.g., oil & gas platforms. It is reasonable that lower fatigue design factors can be applied for fatigue design of OWTs when compared to other fixed offshore structures. Calibration of appropriate partial safety factors/Fatigue Design Factors (FDF for steel substructures for OWTs is the scope of this paper. A reliability-based approach is used and a probabilistic model has been developed, where design and limit state equations are established for fatigue failure. The strength and load uncertainties are described by stochastic variables. SN and fracture mechanics approaches are considered for to model the fatigue life. Further, both linear and bi-linear SN-curves are formulated and various approximations are investigated. The acceptable reliability level for fatigue failure of OWTs is discussed and results are presented for calibrated optimal fatigue design factors. Further, the influence of inspections is considered in order to extend and maintain a given target safety level.

  10. Fatigue and creep-fatigue in sodium of 316 1 stainless steel

    International Nuclear Information System (INIS)

    Ardellier, A.

    1982-01-01

    Equipment and results obtained on type 316 L stainless stee1 at 450 0 C and 600 0 C with low-cycle fatique and creep fatigue tests are described. Comparison with runs in air on type 316 L stainless steel shows a better low-cycle fatigue behavior in a sodium environment. This beneficial effect can be attributed to the low oxygen content which limits the surface oxidazation

  11. Fatigue crack closure behavior at high stress ratios

    Science.gov (United States)

    Turner, C. Christopher; Carman, C. Davis; Hillberry, Ben M.

    1988-01-01

    Fatigue crack delay behavior at high stress ratio caused by single peak overloads was investigated in two thicknesses of 7475-T731 aluminum alloy. Closure measurements indicated no closure occurred before or throughout the overload plastic zones following the overload. This was further substantiated by comparing the specimen compliance following the overload with the compliance of a low R ratio test when the crack was fully open. Scanning electron microscope studies revealed that crack tunneling and possibly reinitiation of the crack occurred, most likely a result of crack-tip blunting. The number of delay cycles was greater for the thinner mixed mode stress state specimen than for the thicker plane strain stress state specimen, which is similar to low R ratio test results and may be due to a larger plastic zone for the mixed mode cased.

  12. ISOTHERMAL AND THERMOMECHANICAL FATIGUE OF A NICKEL-BASE SUPERALLOY

    Directory of Open Access Journals (Sweden)

    Carlos Carvalho Engler-Pinto Júnior

    2014-06-01

    Full Text Available Thermal gradients arising during transient regimes of start-up and shutdown operations produce a complex thermal and mechanical fatigue loading which limits the life of turbine blades and other engine components operating at high temperatures. More accurate and reliable assessment under non-isothermal fatigue becomes therefore mandatory. This paper investigates the nickel base superalloy CM 247LC-DS under isothermal low cycle fatigue (LCF and thermomechanical fatigue (TMF. Test temperatures range from 600°C to 1,000°C. The behavior of the alloy is strongly affected by the temperature variation, especially in the 800°C-1,000°C range. The Ramberg-Osgood equation fits very well the observed isothermal behavior for the whole temperature range. The simplified non-isothermal stress-strain model based on linear plasticity proposed to represent the thermo-mechanical fatigue behavior was able to reproduce the observed behavior for both in-phase and out-of-phase TMF cycling.

  13. Stable and unstable fatigue crack propagation during high temperature creep-fatigue in austenitic steels: the role of precipitation

    International Nuclear Information System (INIS)

    Lloyd, G.J.; Wareing, J.

    1979-01-01

    The distinction between stable and unstable fatigue crack propagation during high temperature creep-fatigue in austenitic stainless steels is introduced. The transition from one class of behavior to the other is related to the precipitate distribution and to the nature of the prevailing crack path. It is shown by reference to new studies and examples drawn from the literature that this behavior is common to both high strain and predominantly elastic fatigue in austenitic stainless steels. The relevance of this distinction to a mechanistic approach to high temperature plant design is discussed

  14. Thermal fatigue. Materials modelling

    International Nuclear Information System (INIS)

    Siegele, D.; Fingerhuth, J.; Mrovec, M.

    2012-01-01

    In the framework of the ongoing joint research project 'Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behavior under transient thermal-mechanical stress conditions (high cycle fatigue V HCF and low cycle fatigue - LCF) are carried out. The primary objective of the research is the further development of simulation methods applied in safety evaluations of nuclear power plant components. In this context the modeling of crack initiation and growth inside the material structure induced by varying thermal loads are of particular interest. Therefore, three scientific working groups organized in three sub-projects of the joint research project are dealing with numerical modeling and simulation at different levels ranging from atomistic to micromechanics and continuum mechanics, and in addition corresponding experimental data for the validation of the numerical results and identification of the parameters of the associated material models are provided. The present contribution is focused on the development and experimental validation of material models and methods to characterize the damage evolution and the life cycle assessment as a result of thermal cyclic loading. The individual purposes of the subprojects are as following: - Material characterization, Influence of temperature and surface roughness on fatigue endurances, biaxial thermo-mechanical behavior, experiments on structural behavior of cruciform specimens and scatter band analysis (IfW Darmstadt) - Life cycle assessment with micromechanical material models (MPA Stuttgart) - Life cycle assessment with atomistic and damage-mechanical material models associated with material tests under thermal fatigue (Fraunhofer IWM, Freiburg) - Simulation of fatigue crack growth, opening and closure of a short crack under

  15. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials.

    Science.gov (United States)

    Amin Yavari, S; Ahmadi, S M; Wauthle, R; Pouran, B; Schrooten, J; Weinans, H; Zadpoor, A A

    2015-03-01

    Meta-materials are structures when their small-scale properties are considered, but behave as materials when their homogenized macroscopic properties are studied. There is an intimate relationship between the design of the small-scale structure and the homogenized properties of such materials. In this article, we studied that relationship for meta-biomaterials that are aimed for biomedical applications, otherwise known as meta-biomaterials. Selective laser melted porous titanium (Ti6Al4V ELI) structures were manufactured based on three different types of repeating unit cells, namely cube, diamond, and truncated cuboctahedron, and with different porosities. The morphological features, static mechanical properties, and fatigue behavior of the porous biomaterials were studied with a focus on their fatigue behavior. It was observed that, in addition to static mechanical properties, the fatigue properties of the porous biomaterials are highly dependent on the type of unit cell as well as on porosity. None of the porous structures based on the cube unit cell failed after 10(6) loading cycles even when the applied stress reached 80% of their yield strengths. For both other unit cells, higher porosities resulted in shorter fatigue lives for the same level of applied stress. When normalized with respect to their yield stresses, the S-N data points of structures with different porosities very well (R(2)>0.8) conformed to one single power law specific to the type of the unit cell. For the same level of normalized applied stress, the truncated cuboctahedron unit cell resulted in a longer fatigue life as compared to the diamond unit cell. In a similar comparison, the fatigue lives of the porous structures based on both truncated cuboctahedron and diamond unit cells were longer than that of the porous structures based on the rhombic dodecahedron unit cell (determined in a previous study). The data presented in this study could serve as a basis for design of porous biomaterials

  16. Effects of laser peening treatment on high cycle fatigue and crack propagation behaviors in austenitic stainless steel

    International Nuclear Information System (INIS)

    Masaki, Kiyotaka; Ochi, Yasuo; Matsumura, Takashi; Ikarashi, Takaaki; Sano, Yuji

    2010-01-01

    Laser peening without protective coating (LPwC) treatment is one of surface enhancement techniques using an impact wave of high pressure plasma induced by laser pulse irradiation. High compressive residual stress was induced by the LPwC treatment on the surface of low-carbon type austenitic stainless steel SUS316L. The affected depth reached about 1mm from the surface. High cycle fatigue tests with four-points rotating bending loading were carried out to confirm the effects of the LPwC treatment on fatigue strength and surface fatigue crack propagation behaviors. The fatigue strength was remarkably improved by the LPwC treatment over the whole regime of fatigue life up to 10 8 cycles. Specimens with a pre-crack from a small artificial hole due to fatigue loading were used for the quantitative study on the effect of the LPwC treatment. The fracture mechanics investigation on the pre-cracked specimens showed that the LPwC treatment restrained the further propagation of the pre-crack if the stress intensity factor range ΔK on the crack tip was less than 7.6 MPa√m. Surface cracks preferentially propagated into the depth direction as predicted through ΔK analysis on the crack by taking account of the compressive residual stresses due to the LPwC treatment. (author)

  17. A narrative review on the similarities and dissimilarities between myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and sickness behavior.

    Science.gov (United States)

    Morris, Gerwyn; Anderson, George; Galecki, Piotr; Berk, Michael; Maes, Michael

    2013-03-08

    It is of importance whether myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a variant of sickness behavior. The latter is induced by acute infections/injury being principally mediated through proinflammatory cytokines. Sickness is a beneficial behavioral response that serves to enhance recovery, conserves energy and plays a role in the resolution of inflammation. There are behavioral/symptomatic similarities (for example, fatigue, malaise, hyperalgesia) and dissimilarities (gastrointestinal symptoms, anorexia and weight loss) between sickness and ME/CFS. While sickness is an adaptive response induced by proinflammatory cytokines, ME/CFS is a chronic, disabling disorder, where the pathophysiology is related to activation of immunoinflammatory and oxidative pathways and autoimmune responses. While sickness behavior is a state of energy conservation, which plays a role in combating pathogens, ME/CFS is a chronic disease underpinned by a state of energy depletion. While sickness is an acute response to infection/injury, the trigger factors in ME/CFS are less well defined and encompass acute and chronic infections, as well as inflammatory or autoimmune diseases. It is concluded that sickness behavior and ME/CFS are two different conditions.

  18. Relationships between parental sleep quality, fatigue, cognitions about infant sleep, and parental depression pre and post-intervention for infant behavioral sleep problems.

    Science.gov (United States)

    Hall, Wendy A; Moynihan, Melissa; Bhagat, Radhika; Wooldridge, Joanne

    2017-04-04

    Maternal and paternal depression has been associated with infants' behavioral sleep problems. Behavioral sleep interventions, which alter parental cognitions about infant sleep, have improved infant sleep problems. This study reports relationships between parental depression, fatigue, sleep quality, and cognitions about infant sleep pre and post-intervention for a behavioral sleep problem. This secondary analysis of data from Canadian parents (n = 455), with healthy infants aged 6-to-8-months exposed to a behavioral sleep intervention, examined baseline data and follow-up data from 18 or 24 weeks post intervention (group teaching or printed material) exposure. Parents reported on sleep quality, fatigue, depression, and cognitions about infant sleep. Data were analyzed using Pearson's r and stepwise regression analysis. Parents' fatigue, sleep quality, sleep cognitions, and depression scores were correlated at baseline and follow-up. At baseline, sleep quality (b = .52, 95% CI .19-.85), fatigue (b = .48, 95% CI .33-.63), doubt about managing infant sleep (b = .44, 95% CI .19-.69), and anger about infant sleep (b = .69, 95% CI .44-.94) were associated with mothers' depression. At baseline, fathers' depression related to sleep quality (b = .42, 95% CI .01-.83), fatigue (b = .47, 95% CI .32-.63), and doubt about managing infant sleep (b = .50, 95% CI .24-.76). At follow-up, mothers' depression was associated with sleep quality (b = .76, 95% CI .41-1.12), fatigue (b = .25, 95% CI .14-.37), doubt about managing infant sleep (b = .44, 95% CI .16-.73), sleep anger (b = .31, 95% CI .02-.59), and setting sleep limits (b = -.22, 95% CI -.41-[-.03]). At follow-up, fathers' depression related to sleep quality (b = .84, 95% CI .46-1.22), fatigue (b = .31, 95% CI .17-.45), sleep doubt (b = .34, 95% CI .05-.62), and setting sleep limits (b = .25, 95% CI .01-.49). Mothers' and fathers' cognitions about infant

  19. Fatigue crack growth behaviors in hot-rolled low carbon steels: A comparison between ferrite–pearlite and ferrite–bainite microstructures

    International Nuclear Information System (INIS)

    Guan, Mingfei; Yu, Hao

    2013-01-01

    The roles of microstructure types in fatigue crack growth behaviors in ferrite–pearlite steel and ferrite–bainite steel were investigated. The ferrite–bainite dual-phase microstructure was obtained by intermediate heat treatment, conducted on ferrite–pearlite hot-rolled low carbon steel. This paper presents the results from investigation using constant stress-controlled fatigue tests with in-situ scanning electron microscopy (SEM), fatigue crack growth (FCG) rate tests, and fatigue fractography analysis. Microscopy images arrested by in-situ SEM showed that the fatigue crack propagation in F–P steel could become unstable more ealier compared with that in F–B steel. The fatigue cracks in ferrite–pearlite were more tortuous and could propagate more freely than that in ferrite–bainite microstructures. However, frequent crack branching were observed in ferrite–bainite steel and it indicated that the second hard bainite phase effectively retarded the crack propagation. The variation of FCG rate (da/dN) with stress intensity factor range (ΔK) for F–P and F–B steels was discussed within the Paris region. It was shown that FCG rate of F–P steel was higher than that of F–B steel. Moreover, the fatigue fracture surface analysis proved that grain boundaries could also play a role in the resistance of crack propagation.

  20. Fatigue behavior of Ti–6Al–4V alloy in saline solution with the surface modified at a micro- and nanoscale by chemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Claros, Cesar Adolfo Escobar; Oliveira, Diego Pedreira; Campanelli, Leonardo Contri; Pereira da Silva, Paulo Sergio Carvalho; Bolfarini, Claudemiro

    2016-10-01

    This work evaluated the influence of the surface modification using acid etching combined with alkaline treatment on the fatigue strength of Ti–6Al–4V ELI alloy. The topography developed by chemical surface treatments (CST) was examined by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Increased roughness and effective surface area were investigated and compared with the Ti–6Al–4V samples without modification. Surface composition was analyzed by energy dispersive X-ray spectroscopy (EDS). Axial fatigue resistance of polished and modified surfaces was determined by stepwise load increase tests and staircase test method. Light microscopy and SEM were employed to examine the fracture surface of the tested specimens. According to the results, a similar fatigue behavior was found and a negligible difference in the fatigue crack nucleation was observed for the Ti–6Al–4V with CST in comparison to the samples without treatment. - Highlights: • Fatigue behavior of Ti–6Al–4V with the surface modified by chemical treatments • The topography developed did not induce differences in the fatigue resistance. • Untreated and chemically treated surfaces presented fractographic similarities.

  1. Fatigue behavior of Ti–6Al–4V alloy in saline solution with the surface modified at a micro- and nanoscale by chemical treatment

    International Nuclear Information System (INIS)

    Claros, Cesar Adolfo Escobar; Oliveira, Diego Pedreira; Campanelli, Leonardo Contri; Pereira da Silva, Paulo Sergio Carvalho; Bolfarini, Claudemiro

    2016-01-01

    This work evaluated the influence of the surface modification using acid etching combined with alkaline treatment on the fatigue strength of Ti–6Al–4V ELI alloy. The topography developed by chemical surface treatments (CST) was examined by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Increased roughness and effective surface area were investigated and compared with the Ti–6Al–4V samples without modification. Surface composition was analyzed by energy dispersive X-ray spectroscopy (EDS). Axial fatigue resistance of polished and modified surfaces was determined by stepwise load increase tests and staircase test method. Light microscopy and SEM were employed to examine the fracture surface of the tested specimens. According to the results, a similar fatigue behavior was found and a negligible difference in the fatigue crack nucleation was observed for the Ti–6Al–4V with CST in comparison to the samples without treatment. - Highlights: • Fatigue behavior of Ti–6Al–4V with the surface modified by chemical treatments • The topography developed did not induce differences in the fatigue resistance. • Untreated and chemically treated surfaces presented fractographic similarities.

  2. The role of central and peripheral muscle fatigue in postcancer fatigue: a randomized controlled trial.

    Science.gov (United States)

    Prinsen, Hetty; van Dijk, Johannes P; Zwarts, Machiel J; Leer, Jan Willem H; Bleijenberg, Gijs; van Laarhoven, Hanneke W M

    2015-02-01

    Postcancer fatigue is a frequently occurring problem, impairing quality of life. Little is known about (neuro)physiological factors determining postcancer fatigue. It may be hypothesized that postcancer fatigue is characterized by low peripheral muscle fatigue and high central muscle fatigue. The aims of this study were to examine whether central and peripheral muscle fatigue differ between fatigued and non-fatigued cancer survivors and to examine the effect of cognitive behavioral therapy (CBT) on peripheral and central muscle fatigue of fatigued cancer survivors in a randomized controlled trial. Sixteen fatigued patients in the intervention group (CBT) and eight fatigued patients in the waiting list group were successfully assessed at baseline and six months later. Baseline measurements of 20 fatigued patients were compared with 20 non-fatigued patients. A twitch interpolation technique and surface electromyography were applied, respectively, during sustained contraction of the biceps brachii muscle. Muscle fiber conduction velocity (MFCV) and central activation failure (CAF) were not significantly different between fatigued and non-fatigued patients. Change scores of MFCV and CAF were not significantly different between patients in the CBT and waiting list groups. Patients in the CBT group reported a significantly larger decrease in fatigue scores than patients in the waiting list group. Postcancer fatigue is neither characterized by abnormally high central muscle fatigue nor by low peripheral muscle fatigue. These findings suggest a difference in the underlying physiological mechanism of postcancer fatigue vs. other fatigue syndromes. Copyright © 2015 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  3. High temperature mechanical properties and surface fatigue behavior improving of steel alloy via laser shock peening

    International Nuclear Information System (INIS)

    Ren, N.F.; Yang, H.M.; Yuan, S.Q.; Wang, Y.; Tang, S.X.; Zheng, L.M.; Ren, X.D.; Dai, F.Z.

    2014-01-01

    Highlights: • The properties of 00C r 12 were improved by laser shock processing. • A deep layer of residual compressive stresses was introduced. • Fatigue life was enhanced about 58% at elevated temperature up to 600 °C. • The pinning effect is the reason of prolonging fatigue life at high temperature. - Abstract: Laser shock peening was carried out to reveal the effects on ASTM: 410L 00C r 12 microstructures and fatigue resistance in the temperature range 25–600 °C. The new conception of pinning effect was proposed to explain the improvements at the high temperature. Residual stress was measured by X-ray diffraction with sin 2 ψ method, a high temperature extensometer was utilized to measure the strain and control the strain signal. The grain and precipitated phase evolutionary process were observed by scanning electron microscopy. These results show that a deep layer of compressive residual stress is developed by laser shock peening, and ultimately the isothermal stress-controlled fatigue behavior is enhanced significantly. The formation of high density dislocation structure and the pinning effect at the high temperature, which induces a stronger surface, lower residual stress relaxation and more stable dislocation arrangement. The results have profound guiding significance for fatigue strengthening mechanism of components at the elevated temperature

  4. Multi-scale analysis of behavior and fatigue life of 304L stainless under cyclic loading with pre-hardening

    International Nuclear Information System (INIS)

    Belattar, A.

    2013-01-01

    This study investigates the effects of loading history on the cyclic stress-strain curve and fatigue behavior of 304L stainless steel at room temperature. Tension-compression tests were performed on the same specimen under controlled strain, using several loading sequences of increasing or decreasing amplitude. The results showed that fatigue life is significantly reduced by the previous loading history. A previously developed method for determining the effect of prehardening was evaluated. Microstructural analyses were also performed; the microstructures after pre-loading and their evolution during the fatigue cycles were characterized by TEM. The results of these analyses improve our understanding of the macroscopic properties of 304L stainless steel and can help us identify the causes of failure and lifetime reduction. (author)

  5. Fatigue crack propagation behavior and acoustic emission characteristics of the heat affected zone of super duplex stainless steel

    International Nuclear Information System (INIS)

    Do, Jae Yoon; Kim, Jin Hwan; Ahn, Seok Hwan; Park, In Duck; Kang, Chang Yong; Nam, Ki Woo

    2002-01-01

    Because duplex stainless steel shows the good strength and corrosion resistance properties, the necessity of duplex stainless steel, which has long life in severe environments, has been increased with industrial development. The fatigue crack propagation behavior of Heat Affected Zone(HAZ) has been investigated in super duplex stainless steel. The fatigue crack propagation rate of HAZ of super duplex stainless steel was faster than that of base metal of super duplex stainless steel. We also analysed acoustic emission signals during the fatigue test with time-frequency analysis method. According to the results of time-frequency analysis, the frequency ranges of 200-400 kHz were obtained by striation and the frequency range of 500 kHz was obtained due to dimple and separate of inclusion

  6. Fatigue lifetime estimation of railway axles

    Czech Academy of Sciences Publication Activity Database

    Náhlík, Luboš; Pokorný, Pavel; Ševčík, Martin; Fajkoš, R.; Matušek, P.; Hutař, Pavel

    2017-01-01

    Roč. 73, MAR (2017), s. 139-157 ISSN 1350-6307 R&D Projects: GA MŠk LM2015069; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Residual fatigue lifetime * Railway axle * Variable amplitude loading * Fatigue crack propagation * Damage tolerance methodology Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 1.676, year: 2016

  7. Fatigue behavior of an insulation system for the ITER magnets

    International Nuclear Information System (INIS)

    Prokopec, R.; Humer, K.; Weber, H.W.

    2006-01-01

    The application of glass-fiber reinforced plastics as insulation materials for fusion magnet coils (e.g. the Toroidal Field Coils of ITER) requires the full characterization of their mechanical performance under ITER-relevant conditions. One of the methods of testing material's response under dynamic load is the tension-tension fatigue procedure. This test can be used to simulate the pulsed tokamak-operation of the ITER coils over a lifetime of more than 20 years. Furthermore, it provides information on the maximum tensile or shear stress in the ITER-relevant range of 10 4 -10 5 cycles. In order to simulate the operation conditions of ITER as closely as possible, several fatigue parameters can be set in the test programme, e.g., the minimum-to-peak stress ratio R and the frequency ν of the sinusoidal load function. Further, the fatigue process can be run under load or strain control. All of these parameters may influence the mechanical response of the insulation system under cyclic load. Therefore, it is highly desirable to investigate the influence of test parameter variations on the measured stress-lifetime diagrams. The investigations were performed at 77 K using an industrial glass-fiber reinforced composite impregnated with epoxy resin. For both the load and the strain controlled mode, R-values of 0.3 and 0.5 and a frequency of 10 Hz were chosen. The results showed almost no deviations in the lifetime behavior between the load and the strain controlled mode, up to the ITER specified number of pulses, i.e. 3 x 10 4 cycles. Beyond this point, the residual strength levels were lower by 5-30 % under strain control than under load control. This effect is more pronounced at higher cycle numbers and for lower R-ratios. (author)

  8. How driving duration influences drivers' visual behaviors and fatigue ...

    African Journals Online (AJOL)

    unhcc

    Eye fixations express the focus of driver's visual attention on driving, ... driver's attention is attracted by fatigue. The second ... was divided into seven refined categories (see Table 1), ...... driver fatigue in terms of line crossing: a pilot study.

  9. Some questions regarding the interaction of creep and fatigue

    International Nuclear Information System (INIS)

    James, L.A.

    1975-04-01

    Data are presented from fatigue-crack growth tests conducted on Type 304 S.S. in inert environments at elevated temperatures which show that the thermal-activation noted in similar tests run in air environments is not present in the inert environment. Similar observations from the literature are reviewed, including the observation that the time-dependency noted in tests conducted in elevated temperature air environments is also greatly suppressed in inert environments. These findings suggest that an interaction between the fatigue process and the corrosive air environments is responsible for the thermally activated time-dependent behavior often attributed to creep-fatigue interaction. Data are also presented which show that the fatigue-crack growth behavior of Type 304 S.S. subjected to significant creep damage prior to fatigue testing does not differ appreciably from the behavior of material not subjected to prior creep damage, again indicating minimal interaction between creep and fatigue. It is suggested that in the temperature range where pressure vessels and piping are generally designed to operate (i.e. below about one-half the absolute melting temperature of the alloy), the interaction between creep and fatigue is far less significant than once supposed, and that the major parameter interacting with the fatigue process is that of high-temperature corrosion. (39 references, 12 fig) (auth)

  10. Low-cycle fatigue-cracking mechanisms in fcc crystalline materials

    Science.gov (United States)

    Zhang, P.; Qu, S.; Duan, Q. Q.; Wu, S. D.; Li, S. X.; Wang, Z. G.; Zhang, Z. F.

    2011-01-01

    The low-cycle fatigue (LCF) cracking behavior in various face-centered-cubic (fcc) crystalline materials, including Cu single crystals, bicrystals and polycrystals, Cu-Al and Cu-Zn alloys, ultrafine-grained (UFG) Al-Cu and Cu-Zn alloys, was systematically investigated and reviewed. In Cu single crystals, fatigue cracking always nucleates along slip bands and deformation bands. The large-angle grain boundary (GB) becomes the preferential site in bicrystals and polycrystals. In addition, fatigue cracking can also nucleate along slip bands and twin boundaries (TBs) in polycrystalline materials. However, shear bands and coarse deformation bands are observed to the preferential sites for fatigue cracking in UFG materials with a large number of GBs. Based on numerous observations on fatigue-cracking behavior, the fatigue-cracking mechanisms along slip bands, GBs, TBs, shear bands and deformation bands were systematically compared and classified into two types, i.e. shear crack and impingement crack. Finally, these fatigue-cracking behaviors are discussed in depth for a better understanding of their physical nature and the transition from intergranular to transgranular cracking in various fcc crystalline materials. These comprehensive results for fatigue damage mechanisms should significantly aid in obtaining the optimum design to further strengthen and toughen metallic materials in practice.

  11. Differential effects of childhood trauma subtypes on fatigue and physical functioning in chronic fatigue syndrome.

    Science.gov (United States)

    De Venter, Maud; Illegems, Jela; Van Royen, Rita; Moorkens, Greta; Sabbe, Bernard G C; Van Den Eede, Filip

    2017-10-01

    There is wide consensus that childhood trauma plays an important role in the aetiology of chronic fatigue syndrome (CFS). The current study examines the differential effects of childhood trauma subtypes on fatigue and physical functioning in individuals suffering from CFS. Participants were 155 well-documented adult, predominantly female CFS patients receiving treatment at the outpatient treatment centre for CFS of the Antwerp University Hospital in Belgium. Stepwise regression analyses were conducted with outcomes of the total score of the Checklist Individual Strength (CIS) measuring fatigue and the scores on the physical functioning subscale of the Medical Outcomes Short Form 36 Health Status Survey (SF-36) as the dependent variables, and the scores on the five subscales of the Traumatic Experiences Checklist (TEC) as the independent variables. The patients' fatigue (β=1.38; p=0.025) and physical functioning scores (β=-1.79; p=0.034) were significantly predicted by childhood sexual harassment. There were no significant effects of emotional neglect, emotional abuse, bodily threat, or sexual abuse during childhood. Of the childhood trauma subtypes investigated, sexual harassment emerged as the most important predictor of fatigue and poor physical functioning in the CFS patients assessed. These findings have to be taken into account in further clinical research and in the assessment and treatment of individuals coping with chronic fatigue syndrome. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Fatigue reduction during aggregated and distributed sequential stimulation.

    Science.gov (United States)

    Bergquist, Austin J; Babbar, Vishvek; Ali, Saima; Popovic, Milos R; Masani, Kei

    2017-08-01

    Transcutaneous neuromuscular electrical stimulation (NMES) can generate muscle contractions for rehabilitation and exercise. However, NMES-evoked contractions are limited by fatigue when they are delivered "conventionally" (CONV) using a single active electrode. Researchers have developed "sequential" (SEQ) stimulation, involving rotation of pulses between multiple "aggregated" (AGGR-SEQ) or "distributed" (DISTR-SEQ) active electrodes, to reduce fatigue (torque-decline) by reducing motor unit discharge rates. The primary objective was to compare fatigue-related outcomes, "potentiation," "variability," and "efficiency" between CONV, AGGR-SEQ, and DISTR-SEQ stimulation of knee extensors in healthy participants. Torque and current were recorded during testing with fatiguing trains using each NMES type under isometric and isokinetic (180°/s) conditions. Compared with CONV stimulation, SEQ techniques reduced fatigue-related outcomes, increased potentiation, did not affect variability, and reduced efficiency. SEQ techniques hold promise for reducing fatigue during NMES-based rehabilitation and exercise; however, optimization is required to improve efficiency. Muscle Nerve 56: 271-281, 2017. © 2016 Wiley Periodicals, Inc.

  13. Design fatigue curve for Hastelloy-X

    International Nuclear Information System (INIS)

    Nishiguchi, Isoharu; Muto, Yasushi; Tsuji, Hirokazu

    1983-12-01

    In the design of components intended for elevated temperature service as the experimental Very High-Temperature gas-cooled Reactor (VHTR), it is essential to prevent fatigue failure and creep-fatigue failure. The evaluation method which uses design fatigue curves is adopted in the design rules. This report discussed several aspects of these design fatigue curves for Hastelloy-X (-XR) which is considered for use as a heat-resistant alloy in the VHTR. Examination of fatigue data gathered by a literature search including unpublished data showed that Brinkman's equation is suitable for the design curve of Hastelloy-X (-XR), where total strain range Δ epsilon sub(t) is used as independent variable and fatigue life Nsub(f) is transformed into log(log Nsub(f)). (author)

  14. Fatigue crack growth behavior of RAFM steel in Paris and threshold regimes at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Babu, M. Nani; Sasikala, G., E-mail: gsasi@igcar.gov.in; Dutt, B. Shashank; Venugopal, S.; Bhaduri, A.K.; Jayakumar, T.

    2014-04-01

    Fatigue crack growth (FCG) behavior of a reduced activation ferritic martensitic (indigenous RAFM) steel has been evaluated at 300, 653 and 823 K in Paris and threshold regimes. The effect of temperature on threshold stress intensity factor range and associated crack closure mechanisms is highlighted. The FCG results were compared with those for EUROFER 97. Further, crack tip effective stress intensity factor ranges (ΔK{sub tip,eff}) have been evaluated by taking crack tip shielding into account in order to examine the effect of temperature on true intrinsic FCG behavior.

  15. Driver sleepiness, fatigue, careless behavior and risk of motor vehicle crash and injury: Population based case and control study

    Directory of Open Access Journals (Sweden)

    Abdulbari Bener

    2017-10-01

    Conclusion: The current study confirmed that drivers with chronic fatigue, acute sleepiness, and careless driver behavior may significantly increases the risk of road crash which can be lead to serious injury.

  16. Sleep complaints and fatigue of airline pilots.

    Science.gov (United States)

    Reis, Cátia; Mestre, Catarina; Canhão, Helena; Gradwell, David; Paiva, Teresa

    2016-01-01

    This work aimed to determine daytime sleepiness and sleep complaints prevalence and the corresponding influence on perceived fatigue and to evaluate the influence of sociodemographic parameters and labour variables on sleep complaints, sleepiness and fatigue. A questionnaire was developed including socio-economic and labour issues and instruments, focused in sleep and fatigue. The response rate was 32% and the final sample had 435 pilots. The prevalence of sleep complaints was 34.9%, daytime sleepiness 59.3% and fatigue 90.6%. The high prevalence of sleep complaints, sleepiness and fatigue was disclosed in pilots, with those who fly short/medium having an added risk of fatigue.

  17. Review on fatigue behavior of high-strength concrete after high temperature

    Science.gov (United States)

    Zhao, Dongfu; Jia, Penghe; Gao, Haijing

    2017-06-01

    The fatigue of high-strength concrete after high temperature has begun to attract attention. But so far the researches work about the fatigue of high-strength concrete after high temperature have not been reported. This article based on a large number of literature. The research work about the fatigue of high-strength concrete after high temperature are reviewed, analysed and expected, which can provide some reference for the experimental study of fatigue damage analysis.

  18. Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid.

    Science.gov (United States)

    Gu, X N; Zhou, W R; Zheng, Y F; Cheng, Y; Wei, S C; Zhong, S P; Xi, T F; Chen, L J

    2010-12-01

    Magnesium alloys have been recently developed as biodegradable implant materials, yet there has been no study concerning their corrosion fatigue properties under cyclic loading. In this study the die-cast AZ91D (A for aluminum 9%, Z for zinc 1% and D for a fourth phase) and extruded WE43 (W for yttrium 4%, E for rare earth mischmetal 3%) alloys were chosen to evaluate their fatigue and corrosion fatigue behaviors in simulated body fluid (SBF). The die-cast AZ91D alloy indicated a fatigue limit of 50MPa at 10⁷ cycles in air compared to 20MPa at 10⁶ cycles tested in SBF at 37°C. A fatigue limit of 110MPa at 10⁷ cycles in air was observed for extruded WE43 alloy compared to 40MPa at 10⁷ cycles tested in SBF at 37°C. The fatigue cracks initiated from the micropores when tested in air and from corrosion pits when tested in SBF, respectively. The overload zone of the extruded WE43 alloy exhibited a ductile fracture mode with deep dimples, in comparison to a brittle fracture mode for the die-cast AZ91D. The corrosion rate of the two experimental alloys increased under cyclic loading compared to that in the static immersion test. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Ecological Momentary Assessment of Pain, Fatigue, Depressive, and Cognitive Symptoms Reveals Significant Daily Variability in Multiple Sclerosis.

    Science.gov (United States)

    Kratz, Anna L; Murphy, Susan L; Braley, Tiffany J

    2017-11-01

    To describe the daily variability and patterns of pain, fatigue, depressed mood, and cognitive function in persons with multiple sclerosis (MS). Repeated-measures observational study of 7 consecutive days of home monitoring, including ecological momentary assessment (EMA) of symptoms. Multilevel mixed models were used to analyze data. General community. Ambulatory adults (N=107) with MS recruited through the University of Michigan and surrounding community. Not applicable. EMA measures of pain, fatigue, depressed mood, and cognitive function rated on a 0 to 10 scale, collected 5 times a day for 7 days. Cognitive function and depressed mood exhibited more stable within-person patterns than pain and fatigue, which varied considerably within person. All symptoms increased in intensity across the day (all Pfatigue showing the most substantial increase. Notably, this diurnal increase varied by sex and age; women showed a continuous increase from wake to bedtime, whereas fatigue plateaued after 7 pm for men (wake-bed B=1.04, P=.004). For the oldest subgroup, diurnal increases were concentrated to the middle of the day compared with younger subgroups, which showed an earlier onset of fatigue increase and sustained increases until bed time (wake-3 pm B=.04, P=.01; wake-7 pm B=.03, P=.02). Diurnal patterns of cognitive function varied by education; those with advanced college degrees showed a more stable pattern across the day, with significant differences compared with those with bachelor-level degrees in the evening (wake-7 pm B=-.47, P=.02; wake-bed B=-.45, P=.04). Findings suggest that chronic symptoms in MS are not static, even over a short time frame; rather, symptoms-fatigue and pain in particular-vary dynamically across and within days. Incorporation of EMA methods should be considered in the assessment of these chronic MS symptoms to enhance assessment and treatment strategies. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier

  20. A Case for Including Atmospheric Thermodynamic Variables in Wind Turbine Fatigue Loading Parameter Identification

    International Nuclear Information System (INIS)

    Kelley, Neil D.

    1999-01-01

    This paper makes the case for establishing efficient predictor variables for atmospheric thermodynamics that can be used to statistically correlate the fatigue accumulation seen on wind turbines. Recently, two approaches to this issue have been reported. One uses multiple linear-regression analysis to establish the relative causality between a number of predictors related to the turbulent inflow and turbine loads. The other approach, using many of the same predictors, applies the technique of principal component analysis. An examination of the ensemble of predictor variables revealed that they were all kinematic in nature; i.e., they were only related to the description of the velocity field. Boundary-layer turbulence dynamics depends upon a description of the thermal field and its interaction with the velocity distribution. We used a series of measurements taken within a multi-row wind farm to demonstrate the need to include atmospheric thermodynamic variables as well as velocity-related ones in the search for efficient turbulence loading predictors in various turbine-operating environments. Our results show that a combination of vertical stability and hub-height mean shearing stress variables meet this need over a period of 10 minutes

  1. Is there a cognitive signature for MS-related fatigue?

    Science.gov (United States)

    Hanken, Katrin; Eling, Paul; Hildebrandt, Helmut

    2015-04-01

    The compensatory approach of fatigue argues that it is a state caused by task load. The neuropsychiatric approach argues that fatigue is a trait (like depression), unrelated to environmental challenges. We propose that fatigue is an internal state that can be measured behaviorally only by applying specific cognitive tasks. PubMed was searched for articles concerning the relation between fatigue and cognitive performance or brain atrophy or functional MRI, distinguishing between the following cognitive domains: learning/memory, cognitive speed/selective attention, language, visuospatial processing, working memory, alerting/vigilance. Only tasks assessing alerting/vigilance are strongly related to fatigue. Areas with brain atrophy in fatigue patients overlap with brain regions activated in healthy controls performing alerting/vigilance tasks. Fatigue is not a compensatory state, nor a psychogenic trait. It is a feeling with behavioral effects that seems to be caused by brain atrophy or a neurochemical dysfunction of the alerting/vigilance system. © The Author(s), 2014.

  2. Peridynamic model for fatigue cracking.

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart Andrew; Abe Askari (Boeing)

    2014-10-01

    The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the "remaining life" of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.

  3. Fatigue Crack Propagation Behavior of RC Beams Strengthened with CFRP under High Temperature and High Humidity Environment

    Directory of Open Access Journals (Sweden)

    Dongyang Li

    2017-01-01

    Full Text Available Numerical and experimental methods were applied to investigate fatigue crack propagation behavior of reinforced concrete (RC beams strengthened with a new type carbon fiber reinforced polymer (CFRP named as carbon fiber laminate (CFL subjected to hot-wet environment. J-integral of a central crack in the strengthened beam under three-point bending load was calculated by ABAQUS. In finite element model, simulation of CFL-concrete interface was based on the bilinear cohesive zone model under hot-wet environment and indoor atmosphere. And, then, fatigue crack propagation tests were carried out under high temperature and high humidity (50°C, 95% R · H environment pretreatment and indoor atmosphere (23°C, 78% R · H to obtain a-N curves and crack propagation rate, da/dN, of the strengthened beams. Paris-Erdogan formula was developed based on the numerical analysis and environmental fatigue tests.

  4. Relationships among the Microstructure, Mechanical Properties, and Fatigue Behavior in Thin Ti6Al4V

    Directory of Open Access Journals (Sweden)

    Y. Fan

    2016-01-01

    Full Text Available The microstructures of Ti6Al4V are complex and strongly affect its mechanical properties and fatigue behavior. This paper investigates the role of microstructure on mechanical and fatigue properties of thin-section Ti6Al4V sheets, with the aim of reviewing the effects of microstructure on fatigue properties where suboptimal microstructures might result following heat treatment of assemblies that may not be suited to further annealing, for example, following laser welding. Samples of Ti6Al4V sheet were subjected to a range of heat treatments, including annealing and water quenching from temperatures ranging from 650°C to 1050°C. Micrographs of these samples were inspected for microstructure, and hardness, 0.2% proof stress, elongation, and fracture strength were measured and attributed back to microstructure. Fractography was used to support the findings from microstructure and mechanical analyses. The strength ranking from high to low for the microstructures of thin Ti6Al4V sheets observed in this study is as follows: acicular α′ martensite, Widmanstätten, bimodal, and equiaxed microstructure. The fatigue strength ranking from high to low is as follows: equiaxed, bimodal, Widmanstätten, and acicular α′ martensite microstructure.

  5. Corrosion and Corrosion-Fatigue Behavior of 7075 Aluminum Alloys Studied by In Situ X-Ray Tomography

    Science.gov (United States)

    Stannard, Tyler

    7XXX Aluminum alloys have high strength to weight ratio and low cost. They are used in many critical structural applications including automotive and aerospace components. These applications frequently subject the alloys to static and cyclic loading in service. Additionally, the alloys are often subjected to aggressive corrosive environments such as saltwater spray. These chemical and mechanical exposures have been known to cause premature failure in critical applications. Hence, the microstructural behavior of the alloys under combined chemical attack and mechanical loading must be characterized further. Most studies to date have analyzed the microstructure of the 7XXX alloys using two dimensional (2D) techniques. While 2D studies yield valuable insights about the properties of the alloys, they do not provide sufficiently accurate results because the microstructure is three dimensional and hence its response to external stimuli is also three dimensional (3D). Relevant features of the alloys include the grains, subgrains, intermetallic inclusion particles, and intermetallic precipitate particles. The effects of microstructural features on corrosion pitting and corrosion fatigue of aluminum alloys has primarily been studied using 2D techniques such as scanning electron microscopy (SEM) surface analysis along with post-mortem SEM fracture surface analysis to estimate the corrosion pit size and fatigue crack initiation site. These studies often limited the corrosion-fatigue testing to samples in air or specialized solutions, because samples tested in NaCl solution typically have fracture surfaces covered in corrosion product. Recent technological advancements allow observation of the microstructure, corrosion and crack behavior of aluminum alloys in solution in three dimensions over time (4D). In situ synchrotron X-Ray microtomography was used to analyze the corrosion and cracking behavior of the alloy in four dimensions to elucidate crack initiation at corrosion pits

  6. Fatigue in patients with COPD participating in a pulmonary rehabilitation program

    Directory of Open Access Journals (Sweden)

    Cindy J Wong

    2010-09-01

    Full Text Available Cindy J Wong1, Donna Goodridge1, Darcy D Marciniuk2, Donna Rennie1,31College of Nursing, 2College of Medicine, 3Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, CanadaBackground: Fatigue is a distressing, complex, multidimensional sensation common in individuals with chronic obstructive pulmonary disease (COPD. While fatigue negatively impacts functional performance and quality of life, there has been little study of the fatigue that affects participants in pulmonary rehabilitation programs. The purpose of this study was to examine the emotional, behavioral, cognitive, and physical dimensions of fatigue and their relationships to dyspnea, mental health, sleep, and physiologic factors.Patients and methods: A convenience sample of 42 pulmonary rehabilitation participants with COPD completed self-report questionnaires which measured dimensions of fatigue using the Multidimensional Fatigue Inventory, anxiety and depression using the Hospital Anxiety and Depression Scale, and sleep quality using the Pittsburgh Sleep Quality Index. Data on other clinical variables were abstracted from pulmonary rehabilitation program health records.Results: Almost all (95.3% participants experienced high levels of physical fatigue. High levels of fatigue were also reported for the dimensions of reduced activity (88.1%, reduced motivation (83.3%, mental fatigue (69.9%, and general fatigue (54.5%. Close to half (42.9% of participants reported symptoms of anxiety, while almost one quarter (21.4% reported depressive symptoms. Age was related to the fatigue dimensions of reduced activity (ρ = 0.43, P < 0.01 and reduced motivation (ρ = 0.31, P < 0.05. Anxiety was related to reduced motivation (ρ = -0.47, P < 0.01. Fatigue was not associated with symptoms of depression, sleep quality, gender, supplemental oxygen use, smoking status, or Medical Research Council dyspnea scores.Conclusions: Fatigue (particularly the physical and

  7. Evaluation of micro fatigue crack growth under equi-biaxial stress by membranous pressure fatigue test

    International Nuclear Information System (INIS)

    Iida, Satoshi; Abe, Shigeki; Nakamura, Takao; Kamaya, Masayuki

    2014-01-01

    For preventing nuclear power plant (NPP) accidents, NPPs are required to ensure system safety in long term safe operation under aging degradation. Now, fatigue accumulation is one of major ageing phenomena and are evaluated to ensure safety by design fatigue curve that are based on the results of uniaxial fatigue tests. On the other hand, thermal stress that occurs in piping of actual components is not uniaxial but equi-biaxial. For accurate evaluation, it is required to conform real circumstance. In this study, membranous pressure fatigue test was conducted to simulated equi-biaxial stress. Crack initiation and crack growth were examined by replica investigation. Calculation result of equivalent stress intensity factor shows crack growth under equi-biaxial stress is faster than under uniaxial stress. It is concluded that equi-biaxial fatigue behavior should be considered in the evaluation of fatigue crack initiation and crack growth. (author)

  8. Fatigue and creep-fatigue strength of 304 steel under biaxial strain conditions

    International Nuclear Information System (INIS)

    Asayama, Tai; Aoto, Kazumi; Wada, Yusaku

    1990-01-01

    A series of fatigue and creep-fatigue tests were conducted with 304 stainless steel at 550degC under a variety of biaxial strain conditions. Fatigue life under nonproportional loading conditions showed a significant life reduction compared with that of proportional loading, and this life reduction was reasonably estimated by taking into account the strain paths along which the strain history is imposed. Furthermore, a marked life reduction was shown to occur under nonproportional loading by imposing a strain hold period at a peak tensile strain. This life reduction was evaluated by the linear damage rule. It was shown to be possible to estimate the fatigue damage and the creep damage under nonproportional loading by a linear damage rule by estimating a stress relaxation behavior by Mises-type equivalent stress or Huddleston-type equivalent stress. (author)

  9. Test Population Selection from Weibull-Based, Monte Carlo Simulations of Fatigue Life

    Science.gov (United States)

    Vlcek, Brian L.; Zaretsky, Erwin V.; Hendricks, Robert C.

    2012-01-01

    Fatigue life is probabilistic and not deterministic. Experimentally establishing the fatigue life of materials, components, and systems is both time consuming and costly. As a result, conclusions regarding fatigue life are often inferred from a statistically insufficient number of physical tests. A proposed methodology for comparing life results as a function of variability due to Weibull parameters, variability between successive trials, and variability due to size of the experimental population is presented. Using Monte Carlo simulation of randomly selected lives from a large Weibull distribution, the variation in the L10 fatigue life of aluminum alloy AL6061 rotating rod fatigue tests was determined as a function of population size. These results were compared to the L10 fatigue lives of small (10 each) populations from AL2024, AL7075 and AL6061. For aluminum alloy AL6061, a simple algebraic relationship was established for the upper and lower L10 fatigue life limits as a function of the number of specimens failed. For most engineering applications where less than 30 percent variability can be tolerated in the maximum and minimum values, at least 30 to 35 test samples are necessary. The variability of test results based on small sample sizes can be greater than actual differences, if any, that exists between materials and can result in erroneous conclusions. The fatigue life of AL2024 is statistically longer than AL6061 and AL7075. However, there is no statistical difference between the fatigue lives of AL6061 and AL7075 even though AL7075 had a fatigue life 30 percent greater than AL6061.

  10. An investigation on fatigue in high-strength steel offshore structures

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1998-01-01

    of the investigation, fatigue test series were carried out on both full scale tubular joints and smaller welded plate test specimens in high-strength steel as well as in conventional offshore structural steel. This paper gives a summary of the main results presented in two recent research reports [15, 16], from...... these investigations. A comparison between constant amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula.Furthermore, in general longer fatigue lives were obtained for the test...... specimens in high-strength steel than those obtained in corresponding tests on joints in conventional offshore structural steel....

  11. The interaction between non-metallic inclusions and surface roughness in fatigue failure and their influence on fatigue strength

    International Nuclear Information System (INIS)

    Saberifar, S.; Mashreghi, A.R.; Mosalaeepur, M.; Ghasemi, S.S.

    2012-01-01

    Highlights: ► The fatigue strength of a tested steel was affected by inclusions and surface notches. ► Inclusions were the main fatigue crack sources even in rough specimens. ► The stress intensity factor represented the behavior of inclusions properly. ► In rough steels the effect of inclusions was intensified by surface roughness. ► The critical inclusion size increased when surface roughness was removed. -- Abstract: In this study, the influence of non-metallic inclusions on the fatigue behavior of 30MnVS6 steel containing different inclusion sizes and surface roughness has been investigated. Scanning electron microscope (SEM) was used to examine fatigue fracture origins. It was concluded that the non-metallic inclusions were dominant fatigue crack initiation sites in both smooth and rough specimens. This was justified by the calculation of stress intensity factor generated by both surface roughness and non-metallic inclusions, based on Murakami’s model. In addition, it was found that for a given stress, the critical inclusion size could be increased by eliminating the surface roughness.

  12. Thermal-stress fatigue behavior of twenty-six superalloys

    Science.gov (United States)

    Bizon, P. T.; Spera, D. A.

    1976-01-01

    The comparative thermal-stress fatigue resistances of 26 nickeland cobalt-base alloys were determined by fluidized bed tests. Cycles to cracking differed by almost three orders of magnitude for these materials, with directional solidification and surface protection showing definite benefit. The alloy-coating combination with the highest thermal-stress fatigue resistance was directionally solidified NASA TAZ-8A with an RT-SP coating. Its oxidation resistance was also excellent, showing approximately a 1/2 percent weight loss after 14,000 fluidized bed cycles.

  13. Fatigue-free PZT-based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H J; Sando, M [Nat. Ind. Res. Inst., Nagoya (Japan); Tajima, K [Synergy Ceramics Lab., Fine Ceramics Research Association, Nagoya (Japan); Niihara, K [ISIR, Osaka Univ., Mihogaoka, Ibaraki (Japan)

    1999-03-01

    The goal of this study is to fabricate fatigue-free piezoelectrics-based nanocomposites. Lead zirconate titanate (PZT) and metallic platinum (Pt) were selected as a matrix and secondary phase dispersoid. Fine Pt particles were homogeneously dispersed in the PZT matrix. Fatigue properties of the unpoled PZT-based nanocomposite under electrical cyclic loading were investigated. The electrical-field-induced crack growth was monitored by an optical microscope, and it depended on the number of cycles the sample was subjected to. Resistance to fatigue was significantly enhanced in the nanocomposite. The excellent fatigue behavior of the PZT/Pt nanocomposites may result from the grain boundary strenghtening due to the interaction between the matrix and Pt particles. (orig.) 8 refs.

  14. Behavioral Variability and Somatic Mosaicism: A Cytogenomic Hypothesis.

    Science.gov (United States)

    Vorsanova, Svetlana G; Zelenova, Maria A; Yurov, Yuri B; Iourov, Ivan Y

    2018-04-01

    Behavioral sciences are inseparably related to genetics. A variety of neurobehavioral phenotypes are suggested to result from genomic variations. However, the contribution of genetic factors to common behavioral disorders (i.e. autism, schizophrenia, intellectual disability) remains to be understood when an attempt to link behavioral variability to a specific genomic change is made. Probably, the least appreciated genetic mechanism of debilitating neurobehavioral disorders is somatic mosaicism or the occurrence of genetically diverse (neuronal) cells in an individual's brain. Somatic mosaicism is assumed to affect directly the brain being associated with specific behavioral patterns. As shown in studies of chromosome abnormalities (syndromes), genetic mosaicism is able to change dynamically the phenotype due to inconsistency of abnormal cell proportions. Here, we hypothesize that brain-specific postzygotic changes of mosaicism levels are able to modulate variability of behavioral phenotypes. More precisely, behavioral phenotype variability in individuals exhibiting somatic mosaicism might correlate with changes in the amount of genetically abnormal cells throughout the lifespan. If proven, the hypothesis can be used as a basis for therapeutic interventions through regulating levels of somatic mosaicism to increase functioning and to improve overall condition of individuals with behavioral problems.

  15. Effectiveness of cognitive behavioral therapy for the treatment of fatigue in patients with multiple sclerosis: A systematic review and meta-analysis.

    Science.gov (United States)

    van den Akker, Lizanne Eva; Beckerman, Heleen; Collette, Emma Hubertine; Eijssen, Isaline Catharine Josephine Maria; Dekker, Joost; de Groot, Vincent

    2016-11-01

    Fatigue is a frequently occurring symptom of multiple sclerosis (MS) that limits social participation. To systematically determine the short and long-term effects of cognitive behavioral therapy (CBT) for the treatment of MS-related fatigue. Pubmed, Cochrane, EMBASE, Psychology and Behavioral Sciences Collection, ERIC, PsychINFO, Cinahl, PsycARTICLES, and relevant trial registers were searched up to February 2016. In addition, references from retrieved articles were examined. Studies were included if participants had MS, fatigue was a primary outcome measure, the intervention was CBT, and the design was a randomized controlled trial. The search was performed by two independent reviewers, three CBT experts determined whether interventions were CBT. Data on patient and study characteristics and fatigue were systematically extracted using a standardized data extraction form. Two independent reviewers assessed risk of bias using the Cochrane Collaboration risk of bias tool. In the event of disagreement, a third reviewer was consulted. Of the 994 identified studies, 4 studies were included in the meta-analysis, comprising 193 CBT-treated patients and 210 patients who underwent a control treatment. Meta-analyses of these studies showed that CBT treatment had a positive short-term effect on fatigue (standardized mean difference [SMD]=-0.47; 95% confidence interval [CI]=-0.88; -0.06; I 2 =73%). In addition, three studies showed a long-term positive effect of CBT (SMD=-0.30; CI -0.51; -0.08; I 2 =0%). This review found that the use of CBT for the treatment of fatigue in patients with MS has a moderately positive short-term effect. However, this effect decreases with cessation of treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Low cycle fatigue behavior of ITER-like divertor target under DEMO-relevant operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Muyuan; Werner, Ewald [Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, Technische Universität München, Boltzmannstr. 15, 85748 Garching (Germany); You, Jeong-Ha, E-mail: you@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-01-15

    Highlights: • LCF behavior of the cooling tube and the interlayer of an ITER-like divertor target is studied. • For the cooling tube, LCF failure will not be an issue under an HHF load of up to 18 MW/m{sup 2}. • Plastic strain in the interlayer is concentrated at the free surface edge of the bond interface. • The predicted LCF lifetime of the interlayer may not meet the design requirement. - Abstract: In this work the low cycle fatigue (LCF) behavior of the copper alloy cooling tube and the copper interlayer of an ITER-like divertor target is reported for nine different combinations of loading and cooling conditions relevant to DEMO divertor operation. The LCF lifetime is presented as a function of loading and cooling conditions considered here by means of cyclic plasticity simulation and using LCF data of materials relevant for ITER. The numerical predictions indicate, that fatigue failure will not be an issue for the copper alloy tube under a high heat flux (HHF) load of up to 18 MW/m{sup 2} as long as it preserves its initial strength. In contrast, the copper interlayer exhibits significant plastic dissipation at the free surface edge of the bond interface adjacent to the cooling tube, where the LCF lifetime is predicted to be below 3000 load cycles for HHF loads higher than 15 MW/m{sup 2}. Most of the bulk region of the copper interlayer away from the free surface edge does not experience severe plastic fatigue and hence does not pose any critical concern as the LCF lifetime is predicted to be at least 7000 load cycles. LCF lifetime decreases as HHF load is increased or coolant temperature is decreased.

  17. Effects of polymerization degree on recovery behavior of PVA/PVP hydrogels as potential articular cartilage prosthesis after fatigue test

    Directory of Open Access Journals (Sweden)

    Y. Shi

    2016-02-01

    Full Text Available Poly (vinyl alcohol/poly (vinyl pyrrolidone (PVA/PVP hydrogels with various polymerization degrees of PVA were synthesized by a repeated freezing-thawing method. The influence of polymerization degree on microstructure, water content, friction coefficient, compressive fatigue and recovery properties of PVA/PVP hydrogels were investigated. The results showed that higher polymerization degree resulted in larger compressive modulus and lower friction coefficient. The fatigue behaviors of PVA/PVP hydrogels were evaluated under sinusoidal compressive loading from 200 to 800 N at 5 Hz for up to 50 000 cycles. The unconfined uniaxial compressive tests of PVA/PVP hydrogels were performed before and after fatigue test. During the fatigue test, the height of the hydrogel rapidly decreased at first and gradually became stable with loading cycles. The compressive tangent modulus measured 0 h after fatigue was significantly larger than the values obtained before test, and then the modulus recovered to its original level for 48 h after test. However, the geometry of hydrogels could not return to the original level due to the creep effects. PVA/PVP hydrogels prepared with lower polymerization degree showed better recovery capability than that prepared with high polymerization degree.

  18. Fatigue behavior of RC T-beams

    Directory of Open Access Journals (Sweden)

    Omar A. Farghal

    2014-09-01

    Full Text Available The objective of this research is to study the fatigue performance of reinforced concrete (RC T-beams strengthened in shear with Carbon Fiber Reinforced Polymer (CFRP composite. Experiments were conducted on RC beams with and without CFRP sheets bonded on their web surfaces and subjected to static and cycling loading. The obtained results showed that the strengthened beams could survive one million cycles of cyclic loading (=50% of maximum static load with no apparent signs of damage (premature failure demonstrating the effectiveness of CFRP strengthening system on extending the fatigue life of structures. Also, for beams having the same geometry, the applied strengthening technique can significantly enhance the cycling load particularly, in case of beams provided with U-jacket sheets. Moreover, although the failure mode for the different beams was a brittle one, the strengthened beams provided with U-jacket sheets approved an acceptable enhancement in the structural ductility.

  19. Fatigue analysis - computation of the actual strain range using elastic calculations (factor Ke)

    International Nuclear Information System (INIS)

    Roche, R.L.

    1987-01-01

    Pressure vessels are not eternal, their life is not endless, but must be long enough for profitable use. Fatigue is the most important damage limiting life time. It is due to variable loading and especially to deformation-controlled loading like thermal dilatation (thermal stress). Hence, it is of prime importance to perform an fatigue analysis in the design phase in order to be sure the pressure vessel life meet requirement of the design specification. It is also useful to perform such an analysis for assessing the remaining life. To compute the fatigue damage, knowledge of the strain range is needed. As calculation taking into account non linear behavior of the material are very expensive and not always reliable, the current practice is using elastic computation. The aim of this paper is to discuss the methods for correcting the elastically calculated strain range and to propose a sound and practical method

  20. Fatigue evaluation algorithms: Review

    Energy Technology Data Exchange (ETDEWEB)

    Passipoularidis, V.A.; Broendsted, P.

    2009-11-15

    A progressive damage fatigue simulator for variable amplitude loads named FADAS is discussed in this work. FADAS (Fatigue Damage Simulator) performs ply by ply stress analysis using classical lamination theory and implements adequate stiffness discount tactics based on the failure criterion of Puck, to model the degradation caused by failure events in ply level. Residual strength is incorporated as fatigue damage accumulation metric. Once the typical fatigue and static properties of the constitutive ply are determined,the performance of an arbitrary lay-up under uniaxial and/or multiaxial load time series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a wind turbine rotor blade construction. Two versions of the algorithm, the one using single-step and the other using incremental application of each load cycle (in case of ply failure) are implemented and compared. Simulation results confirm the ability of the algorithm to take into account load sequence effects. In general, FADAS performs well in predicting life under both spectral and block loading fatigue. (author)

  1. Low Cycle Fatigue behavior of SMAW welded Alloy28 superaustenitic stainless steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kchaou, Y., E-mail: yacinekchaou@yahoo.fr [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia); Pelosin, V.; Hénaff, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Haddar, N.; Elleuch, K. [Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia)

    2016-01-10

    This paper focused on the study of Low Cycle Fatigue of welded joints of superaustenitic (Alloy28) stainless steels. Chemical composition and microstructure investigation of Base Metal (BM) and Weld Metal (WM) were identified. The results showed that both of composition is fully austenitic with a dendritic microstructure in the WM. Low cycle fatigue tests at different strain levels were performed on Base Metal (BM) and Welded Joint (WJ) specimens with a strain ratio R{sub ε}=−1. The results indicated that the fatigue life of welded joints is lower than the base metal. This is mainly due to the low ductility of the Welded Metal (WM) and the presence of welding defects. Simultaneously, Scanning Electron Microscope (SEM) observations of fractured specimens show that WJ have brittle behavior compared to BM with the presence of several welding defects especially in the crack initiation site. An estimation of the crack growth rate during LCF tests of BM and WJ was performed using distance between striations. The results showed that the crack initiation stage is shorter in the case of WJ compared to BM because of the presence of welding defects in WJ specimens.

  2. Habituation/Fatigue behavior of a synapse memristor based on IGZO-HfO2 thin film.

    Science.gov (United States)

    Jiang, Ran; Ma, Pengfei; Han, Zuyin; Du, Xianghao

    2017-08-24

    A synaptic memristor based on IGZO and oxygen-deficient HfO 2 films has been demonstrated. The memristor exhibits a fatigue response to a monotonic stimulus of voltage pulses, which is analogous to the habituation behavior of biological memory. The occurrence of habituation is nearly simultaneous with the transition from short-term memory to long-term memory. The movement and redistribution of oxygen species with the assistance of polarization in HfO 2 layer are responsible for the above results. The observation of habituation behavior proves the potential prospect of memristor on the mimic of biological neuron.

  3. Effect of Solder-Joint Geometry on the Low-Cycle Fatigue Behavior of Sn- xAg-0.7Cu

    Science.gov (United States)

    Lee, Hwa-Teng; Huang, Kuo-Chen

    2016-12-01

    Low-cycle fatigue tests of Sn-Ag-Cu (SAC) Pb-free solder joints under fixed displacement were performed to evaluate the influence of Ag content (0-3 wt.%) and solder-joint geometry (barrel and hourglass types) on solder-joint fatigue behavior and reliability. The solder joints were composed of fine particles of Ag3Sn and Cu6Sn5, which aggregated as an eutectic constituent at grain boundaries of the primary β-Sn phase and formed a dense network structure. A decrease in the Ag content resulted in coarsening of the β-Sn and eutectic phases, which, in turn, decreased the strength of the joint and caused earlier failure. Solder joints in the hourglass form exhibited better fatigue performance with longer life than barrel-type joints. The sharp contact angle formed between the solder and the Cu substrate by the barrel-type joints concentrated stress, which compromised fatigue reliability. The addition of Ag to the solder, however, enhanced fatigue performance because of strengthening caused by Ag3Sn formation. The cracks of the barrel-type SAC solder joints originated mostly at the contact corner and propagated along the interfacial layer between the interfacial intermetallic compound (IMC) and solder matrix. Hourglass-type solder joints, however, demonstrated both crack initiation and propagation in the solder matrix (solder mode). The addition of 1.5-2.0 wt.% Ag to SAC solder appears to enhance the fatigue performance of solder joints while maintaining sufficient strength.

  4. IEA Joint Action. Wind turbine fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B [ed.

    1996-09-01

    Fatigue research on wind turbine blade material has been an important issue over the years in many countries and in the E.U. As a result of the effort the knowledge on fatigue properties of fibre reinforced materials has been expanded enormously. Practical fatigue design properties are available for constant amplitude tests at ambient temperatures. A lack of knowledge can be shown in several other fields, such as variable amplitude and multi-axial testing and the influence of the environment and carbon fibres. Fatigue is seen as dominant for the blade design, improvements in both the load prediction and material fatigue properties should be strove for. In discussions with blade manufacturers and subsidy agencies (E.U. DGXII, NOVEM, ETSU, etc.) on the importance of continuous materials fatigue research the improvement in reliability should be stressed. (au)

  5. The fatigue life prediction of aluminium alloy using genetic algorithm and neural network

    Science.gov (United States)

    Susmikanti, Mike

    2013-09-01

    The behavior of the fatigue life of the industrial materials is very important. In many cases, the material with experiencing fatigue life cannot be avoided, however, there are many ways to control their behavior. Many investigations of the fatigue life phenomena of alloys have been done, but it is high cost and times consuming computation. This paper report the modeling and simulation approaches to predict the fatigue life behavior of Aluminum Alloys and resolves some problems of computation. First, the simulation using genetic algorithm was utilized to optimize the load to obtain the stress values. These results can be used to provide N-cycle fatigue life of the material. Furthermore, the experimental data was applied as input data in the neural network learning, while the samples data were applied for testing of the training data. Finally, the multilayer perceptron algorithm is applied to predict whether the given data sets in accordance with the fatigue life of the alloy. To achieve rapid convergence, the Levenberg-Marquardt algorithm was also employed. The simulations results shows that the fatigue behaviors of aluminum under pressure can be predicted. In addition, implementation of neural networks successfully identified a model for material fatigue life.

  6. Fatigue analysis of welding seams in automotive structures

    International Nuclear Information System (INIS)

    Halaszi, C.; Gaier, C.; Dannbauer, H.; Hofwimmer, K.

    2006-01-01

    For lightweight automotive structures, the stiffness and the fatigue behavior is greatly influenced by the properties of the joints. The joining technology used and the number and locations of the joints are of high importance for both engineers and cost accountants. An overview of common computational procedures including European and national standards is given for the assessments of the fatigue behavior of thin sheet structures with arc welds. The influence of the quality and size of finite shell elements on the fatigue results are investigated and it is shown how this influence can be minimized. (author)

  7. In situ observation of fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy at 750 °C

    Energy Technology Data Exchange (ETDEWEB)

    Min, Zhang [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Xi-ping, Song, E-mail: xpsong@skl.ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Long, Yu; Hong-liang, Li [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Ze-hui, Jiao; Hui-chen, Yu [National Key Laboratory of Science and Technology on Advanced High Temperature Structural Materials, Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2015-01-12

    In this paper, the fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy with nearly lamellar microstructure was studied by in situ scanning electron microscope observation at 750 °C. Dog-bone shaped specimens with a single-edge notch were used in the test. The results showed that the fatigue crack initiated first at the central portion of the notch, and then shifted to the edge portion. As the cycle numbers went on increasing, these cracks joined together and formed a main fatigue crack, which could propagate along the surface of the specimen. During the fatigue crack propagation two or three propagation stages were found depending on the microstructure of the crack tip. When the fatigue crack was parallel to the lamellar laths, it exhibited the rapid, steady and accelerated propagation stages successively, while when the fatigue crack was perpendicular to the lamellar laths, it exhibited only the steady and accelerated propagation stages, with no rapid propagation stage being found. In these different propagation stages the fatigue crack propagation rates were different and depended intensively on the lamellar laths orientation, lamellar colony size, equiaxed gamma grains and peak stress intensity factor K{sub max}. Based on the experimental data it was concluded that the fatigue crack initiation lifetime was much longer than the propagation lifetime for the single-edge notched specimens at 750 °C.

  8. In situ observation of fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy at 750 °C

    International Nuclear Information System (INIS)

    Min, Zhang; Xi-ping, Song; Long, Yu; Hong-liang, Li; Ze-hui, Jiao; Hui-chen, Yu

    2015-01-01

    In this paper, the fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy with nearly lamellar microstructure was studied by in situ scanning electron microscope observation at 750 °C. Dog-bone shaped specimens with a single-edge notch were used in the test. The results showed that the fatigue crack initiated first at the central portion of the notch, and then shifted to the edge portion. As the cycle numbers went on increasing, these cracks joined together and formed a main fatigue crack, which could propagate along the surface of the specimen. During the fatigue crack propagation two or three propagation stages were found depending on the microstructure of the crack tip. When the fatigue crack was parallel to the lamellar laths, it exhibited the rapid, steady and accelerated propagation stages successively, while when the fatigue crack was perpendicular to the lamellar laths, it exhibited only the steady and accelerated propagation stages, with no rapid propagation stage being found. In these different propagation stages the fatigue crack propagation rates were different and depended intensively on the lamellar laths orientation, lamellar colony size, equiaxed gamma grains and peak stress intensity factor K max . Based on the experimental data it was concluded that the fatigue crack initiation lifetime was much longer than the propagation lifetime for the single-edge notched specimens at 750 °C

  9. An Investigation on Fatigue in High-Strength Steel Offshore Structures

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Lopez Martinez, L.

    1997-01-01

    . In the experimental part of the investigation, fatigue test series have been carried through on both full-scale tubular joints and smaller welded plate test specimens, in high-strength steel as well as in conventional offshore structural steel. The present document gives a summary of the main results presented in two...... recent research reports, Refs. 15 and 16, from these investigations.A comparison between constant amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore......, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those obtained in corresponding tests on joints in conventional offshore structural steel....

  10. Fatigue in Welded High-Strength Steel Plate Elements under Stochastic Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1999-01-01

    The present project is a part of an investigation on fatigue in offshore structures in high-strength steel. The fatigue life of plate elements with welded attachments is studied. The material used has a yield stress of ~ 810-840 MPa, and high weldability and toughness properties. Fatigue test...... series with constant amplitude loading and with various types of stochastic loading have been carried through on test specimens in high-strength steel, and - for a comparison - on test specimens in conventional offshore structural steel with a yield stress of ~ 400-410 MPa.A comparison between constant...... amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those...

  11. Microstructural heterogeneities and fatigue anisotropy of forged steels

    International Nuclear Information System (INIS)

    Pessard, Etienne; Morel, Franck; Verdu, Catherine; Flaceliere, Laurent; Baudry, Gilles

    2011-01-01

    Highlights: → Tomography result: fibering is composed of non-metallic inclusions bands. → Elongated inclusions decreases the: ductility, fracture toughness and fatigue limit. → Cracks initiate from both inclusion clusters and from the bainitic matrix. → The classical self-heating method does not predict the effect of the inclusions. - Abstract: In this study, various experimental methods are employed to determine the anisotropic fatigue behavior of a 25MnCrSiVB6 forged steel (Metasco MC). This material has a bainitic microstructure and contains many elongated non-metallic inclusions in the rolled direction, which are grouped into clusters. Specimens with different orientations relative to the rolling direction have been extracted from a hot rolled bar and the ability of certain experimental techniques to capture the fatigue anisotropy has been tested. Results obtained from monotonic tensile tests and Charpy impact tests show that the material has isotropic fracture strength and anisotropic ductility. The influence of the 'inclusion clusters' is clearly demonstrated via observation of the fracture surfaces. Concerning the fatigue behavior, results from a classical staircase experimental procedure are compared to results from self-heating fatigue tests. For specimens orientated at 0 o relative to the rolled direction, microcrack initiation is controlled by the material matrix and the prediction of the fatigue strength with the self-heating method has been observed to be correct. For specimens orientated at 45 o and 90 o , the elongated manganese sulfide inclusion clusters are the origin of crack initiation and the fatigue strength drops significantly. For this case, it appears that the self-heating method has difficulty predicting the fatigue behavior.

  12. Microstructural heterogeneities and fatigue anisotropy of forged steels

    Energy Technology Data Exchange (ETDEWEB)

    Pessard, Etienne, E-mail: etienne.pessard@angers.ensam.fr [LAMPA, Arts et Metiers ParisTech Angers, 2 Bd du Ronceray, 49035 Angers Cedex 01 (France); Morel, Franck [LAMPA, Arts et Metiers ParisTech Angers, 2 Bd du Ronceray, 49035 Angers Cedex 01 (France); Verdu, Catherine [MATEIS, INSA-Lyon, Universite de Lyon, 25 Av Jean Capelle, 69621 Villeurbanne Cedex (France); Flaceliere, Laurent; Baudry, Gilles [CREAS - ASCOMETAL, BP 70045, 57301 Hagondange (France)

    2011-11-25

    Highlights: {yields} Tomography result: fibering is composed of non-metallic inclusions bands. {yields} Elongated inclusions decreases the: ductility, fracture toughness and fatigue limit. {yields} Cracks initiate from both inclusion clusters and from the bainitic matrix. {yields} The classical self-heating method does not predict the effect of the inclusions. - Abstract: In this study, various experimental methods are employed to determine the anisotropic fatigue behavior of a 25MnCrSiVB6 forged steel (Metasco MC). This material has a bainitic microstructure and contains many elongated non-metallic inclusions in the rolled direction, which are grouped into clusters. Specimens with different orientations relative to the rolling direction have been extracted from a hot rolled bar and the ability of certain experimental techniques to capture the fatigue anisotropy has been tested. Results obtained from monotonic tensile tests and Charpy impact tests show that the material has isotropic fracture strength and anisotropic ductility. The influence of the 'inclusion clusters' is clearly demonstrated via observation of the fracture surfaces. Concerning the fatigue behavior, results from a classical staircase experimental procedure are compared to results from self-heating fatigue tests. For specimens orientated at 0{sup o} relative to the rolled direction, microcrack initiation is controlled by the material matrix and the prediction of the fatigue strength with the self-heating method has been observed to be correct. For specimens orientated at 45{sup o} and 90{sup o}, the elongated manganese sulfide inclusion clusters are the origin of crack initiation and the fatigue strength drops significantly. For this case, it appears that the self-heating method has difficulty predicting the fatigue behavior.

  13. Is there a cognitive signature for MS-related fatigue?

    NARCIS (Netherlands)

    Hanken, K.; Eling, P.A.T.M.; Hildebrandt, H.

    2015-01-01

    The compensatory approach of fatigue argues that it is a state caused by task load. The neuropsychiatric approach argues that fatigue is a trait (like depression), unrelated to environmental challenges. We propose that fatigue is an internal state that can be measured behaviorally only by applying

  14. Elevated temperature axial and torsional fatigue behavior of Haynes 188

    Science.gov (United States)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1992-06-01

    The results of high-temperature axial and torsional low-cycle fatigue experiments performed on Haynes 188, a wrought cobalt-base superalloy, are reported. Fatigue tests were performed at 760 C in air on thin-walled tubular specimens at various ranges under strain control. Data are also presented for coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. The data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME boiler and pressure vessel code), Manson-Halford, Modified Multiaxiality Factor (proposed here), Modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The Modified Multiaxiality Factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.

  15. Survey of the effect of heat-to-heat variations upon the fatigue-crack propagation behavior of types 304 and 316 stainless steels

    International Nuclear Information System (INIS)

    James, L.A.

    1975-05-01

    The fatigue-crack growth behavior of four heats of annealed Type 304 stainless steel and three heats of annealed Type 316 stainless steel were studied at elevated temperature using the techniques of linear-elastic fracture mechanics. It is estimated that a factor of 1.5 applied above and below the mean line would provide upper and lower bounds that would account for heat-to-heat variations. In addition, the three heats of Type 316 represented three different melt practices: air-melt, vacuum-arc-remelt, and double-vacuum-melt processes. No effect on fatigue-crack growth behavior was noted due to melt practice. (U.S.)

  16. Effect of sodium environment on the creep-rupture and low-cycle fatigue behavior of austenitic stainless steels

    International Nuclear Information System (INIS)

    Natesan, K.; Chopra, D.K.; Zeman, G.J.; Smith, D.L.; Kassner, T.F.

    1977-01-01

    Austenitic stainless steels used for in-core structural components, piping, valves, and the intermediate heat exchanger in Liquid-Metal Fast-Breeder Reactors (LMFBRs) are subjected to sodium at elevated temperatures and to complex stress conditions. As a result, the materials can undergo compositional and microstructural changes as well as mechanical deformation by creep and cyclic fatigue processes. In the present paper, information is presented on the creep-rupture and low-cycle fatigue behavior of Types 304 and 316 stainless steel in the solution-annealed condition and after long-term exposure to flowing sodium. The nonmetallic impurity-element concentrations in the sodium were controlled at levels similar to those in EBR-II primary sodium. Strain-time relationships developed from the experimental creep data were used to generate isochronous stress-creep strain curves as functions of sodium-exposure time and temperature. The low-cycle fatigue data were used to obtain relationships between plastic strain range and cycles-to-failure based on the Coffin-Manson formalism and a damage-rate approach developed at ANL. An analysis of the cyclic stress-strain behavior of the materials showed that the strain-hardening rates for the sodium-exposed steels were larger than those for the annealed material. However, the sodium-exposed specimens showed significant softening, as evidenced by the lower stress at half the fatigue life. Microstructural information obtained from the different specimens suggests that crack initiation is more difficult in the long-term sodium-exposed specimens when compared with the solution-annealed material. Based on the expected carbon concentrations in LMFBR primary system sodium, moderate carburization of the austenitic stainless steels will not degrade the mechanical properties to a significant extent, and therefore, will not limit the performance of out-of-core components. (author)

  17. Fatigue behavior of lubricated Ni-Ti endodontic rotary instruments

    Directory of Open Access Journals (Sweden)

    A. Brotzu

    2014-04-01

    Full Text Available The use of Ni-Ti alloys in the practice of endodontic comes from their important properties such as shape memory and superelasticity phenomena, good corrosion resistance and high compatibility with biological tissues. In the last twenty years a great variety of nickel-titanium rotary instruments, with various sections and taper, have been developed and marketed. Although they have many advantages and despite their increasing popularity, a major concern with the use of Ni-Ti rotary instruments is the possibility of unexpected failure in use due to several reasons: novice operator handling, presence manufacturing defects, fatigue etc. Recently, the use of an aqueous gel during experimental tests showed a longer duration of the instruments. The aim of the present work is to contribute to the study of the fracture behavior of these endodontic rotary instruments particularly assessing whether the use of the aqueous lubricant gel can extend their operative life stating its reasons. A finite element model (FEM has been developed to support the experimental results. The results were rather contradictory, also because the Perspex (Poly-methyl methacrylate, PMMA cannot simulate completely the dentin mechanical behavior; however the results highlight some interesting points which are discussed in the paper.

  18. Effects of Contact Load on the Fretting Fatigue Behavior of IN-100 at Elevated Temperature

    Science.gov (United States)

    2009-03-01

    Effect of contact pressure on fretting fatigue of austenitic stainless steel ,” Tribology International, vol. 36, pp. 79-85, 2003. 155 [56] N.K. Naidu...austenitic stainless steel was presented. Like the studies in the previous section, this study investigated how a variably increased contact load...that their stainless steel specimens acted much in the same manner as the aluminum specimens presented in the previous section. It was observed

  19. Fatigue tests of dowel-socket systems

    International Nuclear Information System (INIS)

    Chiang, D.D.

    1976-01-01

    A test program was conducted to determine the fatigue behavior of LHTGR fuel element dowel/socket systems. Two dowel/socket systems, namely, a four-dowel system and a five-dowel system, were tested to failure under shear loads applied through a fatigue test apparatus to simulate repetitive loading during a seismic event

  20. Role of Lactobacillus acidophilus loaded floating beads in chronic fatigue syndrome: behavioral and biochemical evidences.

    Science.gov (United States)

    Singh, P K; Chopra, K; Kuhad, A; Kaur, I P

    2012-04-01

      In recent years the interface between neuropsychiatry and gastroenterology has converged in to a new discipline referred to as enteric neuroscience. Implications of brain-gut communication in the pathogenesis of psychiatric disorders indicate a possible role of suitably packaged/delivered probiotics as newer therapeutic options. In the present study probable role of per-oral administration of free Lactobacillus acidophilus (LAB) and LAB loaded alginate beads in attenuation of the symptoms associated with chronic fatigue syndrome (CFS) were evaluated.   Chronic fatigue syndrome following physical fatigue was induced in rats by forcing them to swim (forced swim test; FST) in water till exhaustion, after weighing them down with 10% their body weight, daily for 28 days. Immobility (I) and postswim fatigue time (PSF) were taken as suitable markers. Free LAB and LAB loaded floating beads (FBs) were administered, from 21 to 28 days.   Immobility and PSF were found to increase considerably in FST rats (665 ± 22 s and 196 ± 6 s) as compared with the naïve (32 ± 7 s and 22 ± 2 s) at 20 days, establishing severe fatigue like behavior. FST control group exhibited significant (P < 0.05) hypertrophy of spleen, hypotrophy of thymus, and increased oxido-nitrosative stress in brain and tumor necrosis factor-α (TNF-α) levels in serum. Treatment with LAB and LAB FBs significantly decreased I and PSF and attenuated (P < 0.05) oxido-nitrosative stress and TNF-α levels. Spleen and thymus were also restored to their original size in this group.   The findings suggest a valuable therapeutic role of LAB especially when incorporated into alginate beads for the treatment of CFS. © 2012 Blackwell Publishing Ltd.

  1. Dwell Notch Low Cycle Fatigue Behavior of a Powder Metallurgy Nickel Disk Alloy

    Science.gov (United States)

    Telesman, J.; Gabb, T. P.; Yamada, Y.; Ghosn, L. J.; Jayaraman, N.

    2012-01-01

    A study was conducted to determine the processes which govern dwell notch low cycle fatigue (NLCF) behavior of a powder metallurgy (P/M) ME3 disk superalloy. The emphasis was placed on the environmentally driven mechanisms which may embrittle the highly stressed notch surface regions and reduce NLCF life. In conjunction with the environmentally driven notch surface degradation processes, the visco-plastic driven mechanisms which can significantly change the notch root stresses were also considered. Dwell notch low cycle fatigue testing was performed in air and vacuum on a ME3 P/M disk alloy specimens heat treated using either a fast or a slow cooling rate from the solutioning treatment. It was shown that dwells at the minimum stress typically produced a greater life debit than the dwells applied at the maximum stress, especially for the slow cooled heat treatment. Two different environmentally driven failure mechanisms were identified as the root cause of early crack initiation in the min dwell tests. Both of these failure mechanisms produced mostly a transgranular crack initiation failure mode and yet still resulted in low NLCF fatigue lives. The lack of stress relaxation during the min dwell tests produced higher notch root stresses which caused early crack initiation and premature failure when combined with the environmentally driven surface degradation mechanisms. The importance of environmental degradation mechanisms was further highlighted by vacuum dwell NLCF tests which resulted in considerably longer NLCF lives, especially for the min dwell tests.

  2. Chronic post-inflammatory fatigue in sarcoidosis : from cytokines to behavior

    NARCIS (Netherlands)

    Korenromp, I.H.E.

    2011-01-01

    Sarcoidosis is a systemic inflammatory disorder that is characterized by granuloma formation in different organs. Sarcoidosis patients frequently report fatigue. Even when the clinical symptoms of the inflammatory disease sarcoidosis have resolved, chronic fatigue may persist. In this study 75

  3. A Constitutive Relationship between Fatigue Limit and Microstructure in Nanostructured Bainitic Steels

    Science.gov (United States)

    Mueller, Inga; Rementeria, Rosalia; Caballero, Francisca G.; Kuntz, Matthias; Sourmail, Thomas; Kerscher, Eberhard

    2016-01-01

    The recently developed nanobainitic steels show high strength as well as high ductility. Although this combination seems to be promising for fatigue design, fatigue properties of nanostructured bainitic steels are often surprisingly low. To improve the fatigue behavior, an understanding of the correlation between the nanobainitic microstructure and the fatigue limit is fundamental. Therefore, our hypothesis to predict the fatigue limit was that the main function of the microstructure is not necessarily totally avoiding the initiation of a fatigue crack, but the microstructure has to increase the ability to decelerate or to stop a growing fatigue crack. Thus, the key to understanding the fatigue behavior of nanostructured bainite is to understand the role of the microstructural features that could act as barriers for growing fatigue cracks. To prove this hypothesis, we carried out fatigue tests, crack growth experiments, and correlated these results to the size of microstructural features gained from microstructural analysis by light optical microscope and EBSD-measurements. Finally, we were able to identify microstructural features that influence the fatigue crack growth and the fatigue limit of nanostructured bainitic steels. PMID:28773953

  4. Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads

    International Nuclear Information System (INIS)

    Han, Jeong Woo; Woo, Eun Taek; Han, Seung Ho

    2015-01-01

    To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka’s equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka’s equation, and the Paris’ equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%

  5. Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Woo [KIMM, Daejeon (Korea, Republic of); Woo, Eun Taek; Han, Seung Ho [Dong-A University, Busan (Korea, Republic of)

    2015-07-15

    To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka’s equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka’s equation, and the Paris’ equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%.

  6. Changes in motor unit behavior following isometric fatigue of the first dorsal interosseous muscle

    Science.gov (United States)

    Rymer, William Z.; Lowery, Madeleine M.; Suresh, Nina L.

    2015-01-01

    The neuromuscular strategies employed to compensate for fatigue-induced muscle force deficits are not clearly understood. This study utilizes surface electromyography (sEMG) together with recordings of a population of individual motor unit action potentials (MUAPs) to investigate potential compensatory alterations in motor unit (MU) behavior immediately following a sustained fatiguing contraction and after a recovery period. EMG activity was recorded during abduction of the first dorsal interosseous in 12 subjects at 20% maximum voluntary contraction (MVC), before and directly after a 30% MVC fatiguing contraction to task failure, with additional 20% MVC contractions following a 10-min rest. The amplitude, duration and mean firing rate (MFR) of MUAPs extracted with a sEMG decomposition system were analyzed, together with sEMG root-mean-square (RMS) amplitude and median frequency (MPF). MUAP duration and amplitude increased immediately postfatigue and were correlated with changes to sEMG MPF and RMS, respectively. After 10 min, MUAP duration and sEMG MPF recovered to prefatigue values but MUAP amplitude and sEMG RMS remained elevated. MU MFR and recruitment thresholds decreased postfatigue and recovered following rest. The increase in MUAP and sEMG amplitude likely reflects recruitment of larger MUs, while recruitment compression is an additional compensatory strategy directly postfatigue. Recovery of MU MFR in parallel with MUAP duration suggests a possible role for metabolically sensitive afferents in MFR depression postfatigue. This study provides insight into fatigue-induced neuromuscular changes by examining the properties of a large population of concurrently recorded single MUs and outlines possible compensatory strategies involving alterations in MU recruitment and MFR. PMID:25761952

  7. Latent variables and route choice behavior

    DEFF Research Database (Denmark)

    Prato, Carlo Giacomo; Bekhor, Shlomo; Pronello, Cristina

    2012-01-01

    In the last decade, a broad array of disciplines has shown a general interest in enhancing discrete choice models by considering the incorporation of psychological factors affecting decision making. This paper provides insight into the comprehension of the determinants of route choice behavior...... and bound algorithm. A hybrid model consists of measurement equations, which relate latent variables to measurement indicators and utilities to choice indicators, and structural equations, which link travelers’ observable characteristics to latent variables and explanatory variables to utilities. Estimation...

  8. Parallel monostrand stay cable bending fatigue

    DEFF Research Database (Denmark)

    Winkler, Jan Pawel

    This dissertation investigates the bending fatigue response of high-strength steel monostrands and multistrand stay cables to cyclic transverse deformations. Increasing bridge stock numbers and a push for longer cable-supported span lengths have led to an increased number of reported incidents...... of damage and replacement of bridge stay cables due to wind and traffic-induced fatigue. The understanding of fatigue mechanisms in most steel structures is well established. However, in the case of cables composed of steel strands, many important aspects related with bending fatigue remain to be clarified...... associated with variable loading, and different testing procedures. As most of the contemporary stay cables are comprised of a number of individual highstrength steel monostrands, the research study started with an extensive experimental work on the fatigue response of a single monostrand to cyclic flexural...

  9. Influence of shrinkage porosity on fatigue performance of iron castings and life estimation method

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2016-01-01

    Full Text Available Shrinkage porosity exists more or less in heavy castings, and it plays an important role in the fatigue behavior of cast materials. In this study, fatigue tests were carried out on the QT400-18 cast iron specimens containing random degrees of shrinkage porosity defect. Experimental results showed that the order of magnitude of life scattered from 103 to 106 cycles when the shrinkage percentage ranged from 0.67% to 5.91%. SEM analyses were carried out on the shrinkage porosity region. The inter-granular discontinuous, micro cracks and inclusions interfered with the fatigue sliding or hindering process. The slip in shrinkage porosity region was not as orderly as the ordinary continuous medium. The shrinkage porosity area on fracture surface (SPAFS and alternating stress intensity factor (ASIF were applied to evaluate the tendency of residual life distribution; their relationship was fitted by negative exponent functions. Based on the intermediate variable of ASIF, a fatigue life prediction model of nodular cast iron containing shrinkage porosity defects was established. The modeling prediction was in agreement with the experimental results.

  10. Crack closure and growth behavior of short fatigue cracks under random loading (part I : details of crack closure behavior)

    International Nuclear Information System (INIS)

    Lee, Shin Young; Song, Ji Ho

    2000-01-01

    Crack closure and growth behavior of physically short fatigue cracks under random loading are investigated by performing narrow-and wide-band random loading tests for various stress ratios. Artificially prepared two-dimensional, short through-thickness cracks are used. The closure behavior of short cracks under random loading is discussed, comparing with that of short cracks under constant-amplitude loading and also that of long cracks under random loading. Irrespective of random loading spectrum or block length, the crack opening load of short cracks is much lower under random loading than under constant-amplitude loading corresponding to the largest load cycle in a random load history, contrary to the behavior of long cracks that the crack opening load under random loading is nearly the same as or slightly higher than constant-amplitude results. This result indicates that the largest load cycle in a random load history has an effect to enhance crack opening of short cracks

  11. On the Specific Role of Microstructure in Governing Cyclic Fatigue, Deformation, and Fracture Behavior of a High-Strength Alloy Steel

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.

    2015-06-01

    In this paper, the results of an experimental study that focused on evaluating the conjoint influence of microstructure and test specimen orientation on fully reversed strain-controlled fatigue behavior of the high alloy steel X2M are presented and discussed. The cyclic stress response of this high-strength alloy steel revealed initial hardening during the first few cycles followed by gradual softening for most of fatigue life. Cyclic strain resistance exhibited a linear trend for the variation of elastic strain amplitude with reversals to failure, and plastic strain amplitude with reversals to failure. Fracture morphology was the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, the alloy steel revealed fracture to be essentially ductile with features reminiscent of predominantly "locally" ductile and isolated brittle mechanisms. The mechanisms governing stress response at the fine microscopic level, fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  12. Fatigue crack layer propagation in silicon-iron

    Science.gov (United States)

    Birol, Y.; Welsch, G.; Chudnovsky, A.

    1986-01-01

    Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution.

  13. Association of Fatigue With Sarcopenia and its Elements: A Secondary Analysis of SABE-Bogotá

    Directory of Open Access Journals (Sweden)

    Daniela Patino-Hernandez

    2017-04-01

    Full Text Available Objective: Sarcopenia, fatigue, and depression are associated with higher mortality rates and adverse outcomes in the aging population. Understanding the association among clinical variables, mainly symptoms, is important for screening and appropriately managing these conditions. The aim of this article is to evaluate the association among sarcopenia and its elements with depression and fatigue. Method: We used cross-sectional data from 2012 SABE ( Salud, Bienestar y Envejecimiento -Bogotá study, which included 2,000 participants of ages ≥60 years. Sarcopenia and its elements were taken as the dependent variable, while fatigue and depression were the main independent variables. We tested the association among these through multiple logistic regression models, which were fitted for each dependent variable and adjusted for confounding variables. Results: Our findings showed that gait speed was associated with fatigue (adjusted odds ratio [OR] = 1.41, 95% confidence interval [CI] = [1.05, 1.90], p = .02 as well as abnormal handgrip strength (adjusted OR = 1.40, 95% CI = [1.02, 1.93], p = .04. No other associations were significant. Conclusion: While sarcopenia and fatigue are not associated, two of the sarcopenia-defining variables are associated with fatigue; this suggests that lack of sarcopenia does not exclude undesirable outcomes related to fatigue in aging adults. Also, the lack of association between sarcopenia-defining elements and depression demonstrates that depression and fatigue are different concepts.

  14. Association of Fatigue With Sarcopenia and its Elements: A Secondary Analysis of SABE-Bogotá

    Science.gov (United States)

    Patino-Hernandez, Daniela; David-Pardo, David Gabriel; Borda, Miguel Germán; Pérez-Zepeda, Mario Ulises; Cano-Gutiérrez, Carlos

    2017-01-01

    Objective: Sarcopenia, fatigue, and depression are associated with higher mortality rates and adverse outcomes in the aging population. Understanding the association among clinical variables, mainly symptoms, is important for screening and appropriately managing these conditions. The aim of this article is to evaluate the association among sarcopenia and its elements with depression and fatigue. Method: We used cross-sectional data from 2012 SABE (Salud, Bienestar y Envejecimiento)-Bogotá study, which included 2,000 participants of ages ≥60 years. Sarcopenia and its elements were taken as the dependent variable, while fatigue and depression were the main independent variables. We tested the association among these through multiple logistic regression models, which were fitted for each dependent variable and adjusted for confounding variables. Results: Our findings showed that gait speed was associated with fatigue (adjusted odds ratio [OR] = 1.41, 95% confidence interval [CI] = [1.05, 1.90], p = .02) as well as abnormal handgrip strength (adjusted OR = 1.40, 95% CI = [1.02, 1.93], p = .04). No other associations were significant. Conclusion: While sarcopenia and fatigue are not associated, two of the sarcopenia-defining variables are associated with fatigue; this suggests that lack of sarcopenia does not exclude undesirable outcomes related to fatigue in aging adults. Also, the lack of association between sarcopenia-defining elements and depression demonstrates that depression and fatigue are different concepts. PMID:28474000

  15. Fatigue behavior of austenitic steels. Subproject. Mechanism oriented investigation of the fatigue behavior of austenitic steel X6CrNiNb1810 in the HCF and VHCF regime. Final report; Ermuedungsverhalten Austenit. Teilprojekt. Mechanismenorientierte Untersuchung des Ermuedungsverhaltens des austenitischen Stahles X6CrNiNb1810 im HCF- und VHCF-Bereich. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Sorich, A.; Smaga, M.; Eifler, D.

    2015-01-23

    In addition to load cycles in the Low Cycle Fatigue (LCF)-regime due to start up and shut down procedures of power plants, in some components additional high-frequency loadings in the High Cycle Fatigue (HCF)- and Very High Cycle Fatigue (VHCF)-regime occur. These loadings are induced e.g. by stresses due to thermal cyclic fluctuations and fluid dynamic processes. Therefore it is necessary to characterize experimentally the cyclic deformation behavior of metastable austenitic steels at operating temperature particularly in the HCF- and VHCF-regime and to develop a nondestructive method to detect fatigue processes. This joint research project was conducted in cooperation between the Institute of Materials Science and Engineering (WKK) of the University of Kaiserslautern and the Fraunhofer-Institute for Non-Destructive Testing (IZFP) in Saarbruecken. WKK was focused on experimental investigations to characterize the cyclic deformation behavior of the metastable austenitic steel in the HCF- and VHCF-range, taking into account cyclic hardening and softening processes and in particular to consider fatigue-induced changes in microstructure. The IZFP has focused on the development and application of a testing concept based on electromagnetic ultrasonic measurements. The isothermal cyclic deformation behavior of the metastable austenitic steel X6CrNiNb1810 (1.4550, AISI 347) at 300 C in the HCF-range is characterized by cyclic softening until specimen failure. At strain amplitudes of 0.10 % ≤ ε{sub a,t} ≤ 0.15 % and the stress amplitude σ{sub a} = 160 MPa cyclic softening is followed by cyclic hardening, which results in a significant increase in life time, up to the limiting number of cycles, which was defined at N{sub I} = 10{sup 7} in HCF-regime. The cyclic hardening is determined by a transformation induced phase formation from face-centered cubic (fcc) austenite to body-centered cubic (bcc) α{sup '}-martensite and/or in hexagonal (hcp) ε-martensite. In

  16. The Static and Fatigue Behavior of AlSiMg Alloy Plain, Notched, and Diamond Lattice Specimens Fabricated by Laser Powder Bed Fusion

    Directory of Open Access Journals (Sweden)

    Hugo Soul

    2018-04-01

    Full Text Available The fabrication of engineered lattice structures has recently gained momentum due to the development of novel additive manufacturing techniques. Interest in lattice structures resides not only in the possibility of obtaining efficient lightweight materials, but also in the functionality of pre-designed architectured structures for specific applications, such as biomimetic implants, chemical catalyzers, and heat transfer devices. The mechanical behaviour of lattice structures depends not only the composition of the base material, but also on the type and size of the unit cells, as well as on the material microstructure resulting from a specific fabrication procedure. The present work focuses on the static and fatigue behavior of diamond cell lattice structures fabricated from an AlSiMg alloy by laser powder bed fusion technology. In particular, the specimens were fabricated with three different orientations of lattice cells—[001], [011], [111]—and subjected to static tensile testing and force-controlled pull–pull fatigue testing up to 1 × 107 cycles. In parallel, the mechanical behavior of dense tensile plain and notched specimens was also studied and compared to that of their lattice counterparts. Results showed a significant effect of the cell orientation on the fatigue lives: specimens oriented at [001] were ~30% more fatigue-resistant than specimens oriented at [011] and [111].

  17. Evaluation of Fatigue Behavior in Dental Implants from In Vitro Clinical Tests: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Rosa Rojo

    2018-05-01

    Full Text Available In the area of dentistry, there is a wide variety of designs of dental implant and materials, especially titanium, which aims to avoid failures and increase their clinical durability. The purpose of this review was to evaluate fatigue behavior in different connections and implant materials, as well as their loading conditions and response to failure. In vitro tests under normal and dynamic loading conditions evaluating fatigue at implant and abutment connection were included. A search was conducted in PubMed, Scopus, and Science Direct. Data extraction was performed independently by two reviewers. The quality of selected studies was assessed using the Cochrane Handbook proposed by the tool for clinical trials. Nineteen studies were included. Fourteen studies had an unclear risk and five had high risk of bias. Due to the heterogeneity of the data and the evaluation of the quality of the studies, meta-analysis could not be performed. Evidence from this study suggests that both internal and morse taper connections presented a better behavior to failure. However, it is necessary to unify criteria in the methodological design of in vitro studies, following methodological guidelines and establishing conditions that allow the homogenization of designs in ISO (International Organization for Standardization standards.

  18. Development and characterization of fatigue resistant aramid reinforced aluminium laminates (ARALL) for fatigue critical aircraft components

    International Nuclear Information System (INIS)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2013-01-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced Aluminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft. (author)

  19. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    Science.gov (United States)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2014-06-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft.

  20. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    International Nuclear Information System (INIS)

    Qaiser, M H; Umar, S; Nauman, S

    2014-01-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft

  1. Change in intraindividual variability over time as a key metric for defining performance-based cognitive fatigability.

    Science.gov (United States)

    Wang, Chao; Ding, Mingzhou; Kluger, Benzi M

    2014-03-01

    Cognitive fatigability is conventionally quantified as the increase over time in either mean reaction time (RT) or error rate from two or more time periods during sustained performance of a prolonged cognitive task. There is evidence indicating that these mean performance measures may not sufficiently reflect the response characteristics of cognitive fatigue. We hypothesized that changes in intraindividual variability over time would be a more sensitive and ecologically meaningful metric for investigations of fatigability of cognitive performance. To test the hypothesis fifteen young adults were recruited. Trait fatigue perceptions in various domains were assessed with the Multidimensional Fatigue Index (MFI). Behavioral data were then recorded during performance of a three-hour continuous cued Stroop task. Results showed that intraindividual variability, as quantified by the coefficient of variation of RT, increased linearly over the course of three hours and demonstrated a significantly greater effect size than mean RT or accuracy. Change in intraindividual RT variability over time was significantly correlated with relevant subscores of the MFI including reduced activity, reduced motivation and mental fatigue. While change in mean RT over time was also correlated with reduced motivation and mental fatigue, these correlations were significantly smaller than those associated with intraindividual RT variability. RT distribution analysis using an ex-Gaussian model further revealed that change in intraindividual variability over time reflects an increase in the exponential component of variance and may reflect attentional lapses or other breakdowns in cognitive control. These results suggest that intraindividual variability and its change over time provide important metrics for measuring cognitive fatigability and may prove useful for inferring the underlying neuronal mechanisms of both perceptions of fatigue and objective changes in performance. Copyright © 2014

  2. The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting.

    Science.gov (United States)

    Zhao, S; Li, S J; Hou, W T; Hao, Y L; Yang, R; Misra, R D K

    2016-06-01

    Additive manufacturing technique is a promising approach for fabricating cellular bone substitutes such as trabecular and cortical bones because of the ability to adjust process parameters to fabricate different shapes and inner structures. Considering the long term safe application in human body, the metallic cellular implants are expected to exhibit superior fatigue property. The objective of the study was to study the influence of cell shape on the compressive fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting. The results indicated that the underlying fatigue mechanism for the three kinds of meshes (cubic, G7 and rhombic dodecahedron) is the interaction of cyclic ratcheting and fatigue crack growth on the struts, which is closely related to cumulative effect of buckling and bending deformation of the strut. By increasing the buckling deformation on the struts through cell shape design, the cyclic ratcheting rate of the meshes during cyclic deformation was decreased and accordingly, the compressive fatigue strength was increased. With increasing bending deformation of struts, fatigue crack growth in struts contributed more to the fatigue damage of meshes. Rough surface and pores contained in the struts significantly deteriorated the compressive fatigue strength of the struts. By optimizing the buckling and bending deformation through cell shape design, Ti-6Al-4V alloy cellular solids with high fatigue strength and low modulus can be fabricated by the EBM technique. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Evolution of dislocation structure and fatigue crack behavior in Fe-Si alloys during cyclic bending test

    International Nuclear Information System (INIS)

    Ushioda, Kohsaku; Takebayashi, Shigeto; Goto, Shoji; Komatsu, Yoshinari; Hoshino, Akinori

    2010-01-01

    The evolution of dislocation structures was investigated by means of TEM in Fe-Si alloys with 0, 0.5 and 1.0 mass% Si during a cyclic bending test in conjunction with fatigue crack behavior. The addition of Si increased the fatigue strength. In steel without Si the cell structure develops, whereas in steel with 1%Si the vein structure evolves, which is considered to lead to the increased fatigue strength. The cell structure in 0%Si steel is postulated to be caused by the easy cross slip of dislocations, whereas the vein structure in the steels with Si is inferred to be caused by the difficulty in cross slip presumably due to the decrease in stacking fault energy. Furthermore, the steel containing Si shows a dislocation free zone (DFZ) along grain boundaries. A transgranular fracture takes place in 0%Si steel, while in 1%Si steel many intergranular cracks were observed just beneath the top surface, which was thought to be caused by the fact that a) strains are dispersed within grains owing to the vein structure and b) micro cracks are initiated and propagated along a DFZ.

  4. A Constitutive Relationship between Fatigue Limit and Microstructure in Nanostructured Bainitic Steels

    Directory of Open Access Journals (Sweden)

    Inga Mueller

    2016-10-01

    Full Text Available The recently developed nanobainitic steels show high strength as well as high ductility. Although this combination seems to be promising for fatigue design, fatigue properties of nanostructured bainitic steels are often surprisingly low. To improve the fatigue behavior, an understanding of the correlation between the nanobainitic microstructure and the fatigue limit is fundamental. Therefore, our hypothesis to predict the fatigue limit was that the main function of the microstructure is not necessarily totally avoiding the initiation of a fatigue crack, but the microstructure has to increase the ability to decelerate or to stop a growing fatigue crack. Thus, the key to understanding the fatigue behavior of nanostructured bainite is to understand the role of the microstructural features that could act as barriers for growing fatigue cracks. To prove this hypothesis, we carried out fatigue tests, crack growth experiments, and correlated these results to the size of microstructural features gained from microstructural analysis by light optical microscope and EBSD-measurements. Finally, we were able to identify microstructural features that influence the fatigue crack growth and the fatigue limit of nanostructured bainitic steels.

  5. Fatigue failure analysis of V-4Ti-4Cr alloy

    International Nuclear Information System (INIS)

    Aglan, H.; Gan, Y.X.; Grossbeck, M.

    1999-01-01

    In the present work, the fatigue fracture and failure behavior of a V-4Ti-4Cr has been studied. Static tests were conducted to study the overloading behavior and to select the magnitude of the stress level for the fatigue studies. Fatigue tests were performed using single edge notched (SEN) specimens under tension-tension load control conditions. Fatigue crack propagation (FCP) data such as the crack length, number of cycles, and hysteresis loops were recorded to calculate the crack speed, the energy release rate, and the change in work expended on damage formation and dissipative processes within the material. Parameters characterizing the fatigue fracture resistance of V-4Ti-4Cr alloy, namely the specific energy of damage (γ'), and the dissipative coefficient (β'), were determined from the fatigue data using the modified crack layer (MCL) theory. Fracture surface examination using scanning electron microscopy (SEM) revealed ductile failure mechanisms under tensile overloading conditions. The fatigue fracture surface of the V-4Ti-4Cr consists of three distinct regions, corresponding to the threshold, stable and unstable crack propagation stages. (orig.)

  6. Investigation of thermal fatigue behavior of thermal barrier coating systems

    International Nuclear Information System (INIS)

    Zhu Dongming; Miller, R.A.

    1997-01-01

    In the present study, the mechanisms of fatigue crack initiation and propagation, and of coating failure under thermal loads that simulate those in diesel engines are investigated. Surface cracks initiate early and grow continuously under thermal low cycle fatigue (LCF) and high cycle fatigue (HCF) stresses. It is found that, in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures. Significant LCF and HCF interactions have been observed in the thermal fatigue tests. The fatigue crack growth rate in the ceramic coating strongly depends on the characteristic HCF cycle number, N* HCF which is defined as the number of HCF cycles per LCF cycle. The crack growth rate is increased from 0.36 μm/LCF cycle for a pure LCF test to 2.8 μm/LCF cycle for a combined LCF and HCF test at N* HCF about 20 000. A surface wedging model has been proposed to account for the HCF crack growth in the coating systems. This mechanism predicts that the HCF damage effect increases with heat flux and thus with increasing surface temperature swing, thermal expansion coefficient and elastic modulus of the ceramic coating, as well as with the HCF interacting depth. Good correlation has been found between the analysis and experimental evidence. (orig.)

  7. Near threshold fatigue testing

    Science.gov (United States)

    Freeman, D. C.; Strum, M. J.

    1993-01-01

    Measurement of the near-threshold fatigue crack growth rate (FCGR) behavior provides a basis for the design and evaluation of components subjected to high cycle fatigue. Typically, the near-threshold fatigue regime describes crack growth rates below approximately 10(exp -5) mm/cycle (4 x 10(exp -7) inch/cycle). One such evaluation was recently performed for the binary alloy U-6Nb. The procedures developed for this evaluation are described in detail to provide a general test method for near-threshold FCGR testing. In particular, techniques for high-resolution measurements of crack length performed in-situ through a direct current, potential drop (DCPD) apparatus, and a method which eliminates crack closure effects through the use of loading cycles with constant maximum stress intensity are described.

  8. Residual Fatigue Properties of Asphalt Pavement after Long-Term Field Service

    Directory of Open Access Journals (Sweden)

    Peide Cui

    2018-05-01

    Full Text Available Asphalt pavement is widely used for expressways due to its advantages of flexibility, low cost, and easy maintenance. However, pavement failures, including cracking, raveling, and potholes, will appear after long-term service. This research evaluated the residual fatigue properties of asphalt pavement after long-term field service. Fatigue behavior of specimens with different pavement failure types, traffic load, service time, and layers were collected and characterized. Results indicate that after long-term field service, surface layer has a longer fatigue life under small stress levels, but shorter fatigue life under large stress levels. Longer service time results in greater sensitivity to loading stress, while heavier traffic results in shorter fatigue life. Surface and underneath layers present very close fatigue trend lines in some areas, indicating that the fatigue behavior of asphalt mixture in surface and underneath layers are aged to the same extent after eight to ten years of field service.

  9. Fatigue Behaviors of Materials Processed by Planar Twist Extrusion

    Science.gov (United States)

    Ebrahimi, Mahmoud

    2017-12-01

    Since the last decade, the fabrication of ultrafine grain and nanostructure metals and alloys has attracted much attention in the field of materials engineering. The present study aimed at experimentally investigating the fatigue properties that are of great importance in dynamic structures before and after the planar twist extrusion process for both commercially pure copper and 6061 aluminum alloy. The results indicated that the yield strength, tensile strength, hardness, and fatigue endurance of copper increased by about 398, 122, 198, and 183 pct, respectively, while they improved by about 429, 212, 227, and 148 pct, respectively, in aluminum alloy as compared to the initial conditions. The stress-strain curves displayed sizable reduction of strain hardening. Furthermore, grain-size correction factors based on the empirical results were introduced to include the effect of the grain-size effect on both low and high-cycle fatigue strengths of the material.

  10. Fatigue and creep–fatigue deformation of an ultra-fine precipitate strengthened advanced austenitic alloy

    International Nuclear Information System (INIS)

    Carroll, M.C.; Carroll, L.J.

    2012-01-01

    An advanced austenitic alloy, HT-UPS (high-temperature ultrafine-precipitation-strengthened), has been identified as an ideal candidate material for the structural components of fast reactors and energy-conversion systems. HT-UPS alloys demonstrate improved creep resistance relative to 316 stainless steel (SS) through additions of Ti and Nb, which precipitate to form a widespread dispersion of stable nanoscale metallic carbide (MC) particles in the austenitic matrix. To investigate the behavior in more representative conditions than are offered by uniaxial creep tests, the low-cycle continuous fatigue and combined creep–fatigue response of an HT-UPS alloy have been investigated at 650 °C and 1.0% total strain, with an R-ratio of −1 and hold times at peak tensile strain of up to 150 min. The cyclic deformation response of HT-UPS is directly compared to that of standard 316 SS. The measured values for total cycles to failure between the two alloys are similar, despite differences in peak stress profiles and in qualitative observations of the deformed microstructures. Crack propagation is primarily transgranular in both fatigue and creep–fatigue of each alloy at the investigated conditions. Internal grain boundary damage in the form of fine cracks resulting from the tensile hold is present following the application of hold times of 60 min and longer, and considerably more internal cracks are quantifiable in 316 SS than in HT-UPS. The dislocation substructures observed in the deformed material differ substantially; an equiaxed cellular structure is observed in the microstructure of 316 SS, whereas HT-UPS exhibits widespread and relatively homogenous tangles of dislocations pinned by the nanoscale MC precipitates. The significant effect of the fine distribution of precipitates on observed fatigue and creep–fatigue response is described in three distinct behavioral regions as the microstructure evolves with continued cycling.

  11. Fatigue and creep-fatigue deformation of an ultra-fine precipitate strengthened advanced austenitic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, M.C., E-mail: Mark.Carroll@INL.gov [Idaho National Laboratory, 1955 Fremont, PO Box 1625, Idaho Falls, ID 83415-2218 (United States); Carroll, L.J. [Idaho National Laboratory, 1955 Fremont, PO Box 1625, Idaho Falls, ID 83415-2218 (United States)

    2012-10-30

    An advanced austenitic alloy, HT-UPS (high-temperature ultrafine-precipitation-strengthened), has been identified as an ideal candidate material for the structural components of fast reactors and energy-conversion systems. HT-UPS alloys demonstrate improved creep resistance relative to 316 stainless steel (SS) through additions of Ti and Nb, which precipitate to form a widespread dispersion of stable nanoscale metallic carbide (MC) particles in the austenitic matrix. To investigate the behavior in more representative conditions than are offered by uniaxial creep tests, the low-cycle continuous fatigue and combined creep-fatigue response of an HT-UPS alloy have been investigated at 650 Degree-Sign C and 1.0% total strain, with an R-ratio of -1 and hold times at peak tensile strain of up to 150 min. The cyclic deformation response of HT-UPS is directly compared to that of standard 316 SS. The measured values for total cycles to failure between the two alloys are similar, despite differences in peak stress profiles and in qualitative observations of the deformed microstructures. Crack propagation is primarily transgranular in both fatigue and creep-fatigue of each alloy at the investigated conditions. Internal grain boundary damage in the form of fine cracks resulting from the tensile hold is present following the application of hold times of 60 min and longer, and considerably more internal cracks are quantifiable in 316 SS than in HT-UPS. The dislocation substructures observed in the deformed material differ substantially; an equiaxed cellular structure is observed in the microstructure of 316 SS, whereas HT-UPS exhibits widespread and relatively homogenous tangles of dislocations pinned by the nanoscale MC precipitates. The significant effect of the fine distribution of precipitates on observed fatigue and creep-fatigue response is described in three distinct behavioral regions as the microstructure evolves with continued cycling.

  12. The effects of strain-induced martensitic transformation and temperature on impact fatigue crack propagation behavior of SUS 304 at low temperature

    International Nuclear Information System (INIS)

    Murakami, Ri-ichi; Akizono, Koichi; Kusukawa, Kazuhiro.

    1988-01-01

    The fatigue crack propagation behavior in fatigue impact at room temperature and 103 K was investigated by means of fracture mechanics, X-ray diffraction analysis and fractography for an austenitic stainless steel, SUS 304. The crack growth rate in fatigue impact decreased with decreasing temperature. The crack growth rate at room temperature was scarcely influenced by the microstructure, while at low temperature it was markedly influenced by the microstructure. The effects of microstructure and temperature on the crack growth rate were closely related to the strain-induced martensitic transformation. The martensitic transformation was influenced by the microstructure, the temperature, the fracture morphology and the stress intensity level and resulted in a decrease in crack growth rate with increasing crack opening level. (author)

  13. Environmental fatigue in aluminum-lithium alloys

    Science.gov (United States)

    Piascik, Robert S.

    1992-01-01

    Aluminum-lithium alloys exhibit similar environmental fatigue crack growth characteristics compared to conventional 2000 series alloys and are more resistant to environmental fatigue compared to 7000 series alloys. The superior fatigue crack growth behavior of Al-Li alloys 2090, 2091, 8090, and 8091 is due to crack closure caused by tortuous crack path morphology and crack surface corrosion products. At high R and reduced closure, chemical environment effects are pronounced resulting in accelerated near threshold da/dN. The beneficial effects of crack closure are minimized for small cracks resulting in rapid growth rates. Limited data suggest that the 'chemically small crack' effect, observed in other alloy system, is not pronounced in Al-Li alloys. Modeling of environmental fatigue in Al-Li-Cu alloys related accelerated fatigue crack growth in moist air and salt water to hydrogen embrittlement.

  14. The Meaning and Measurement of Work Fatigue: Development and Evaluation of the Three-Dimensional Work Fatigue Inventory (3D-WFI)

    Science.gov (United States)

    Frone, Michael R.; Tidwell, Marie-Cecile O.

    2015-01-01

    Although work fatigue represents an important construct in several substantive areas, prior conceptual definitions and measures have been inadequate in a number of ways. The goals of the present study were to develop a conceptual definition and outline the desirable characteristics of a work fatigue measure; briefly examine several prior measures of work fatigue-related constructs; and develop and evaluate a new measure of work fatigue. The Three-Dimensional Work Fatigue Inventory (3D-WFI) provides separate and commensurate assessments of physical, mental, and emotional work fatigue. Results from a pilot study (N = 207) and a broader evaluative study of U.S. wage and salary workers (N = 2,477) suggest that the 3D-WFI is psychometrically sound and evinces a meaningful pattern of relations with variables that comprise the nomological network of work fatigue. As with all new measures, additional research is required to evaluate fully the utility of the 3D-WFI in research on work fatigue. PMID:25602275

  15. Miniature specimen technology for postirradiation fatigue crack growth testing

    International Nuclear Information System (INIS)

    Mervyn, D.A.; Ermi, A.M.

    1979-01-01

    Current magnetic fusion reactor design concepts require that the fatigue behavior of candidate first wall materials be characterized. Fatigue crack growth may, in fact, be the design limiting factor in these cyclic reactor concepts given the inevitable presence of crack-like flaws in fabricated sheet structures. Miniature specimen technology has been developed to provide the large data base necessary to characterize irradiation effects on the fatigue crack growth behavior. An electrical potential method of measuring crack growth rates is employed on miniature center-cracked-tension specimens (1.27 cm x 2.54 cm x 0.061 cm). Results of a baseline study on 20% cold-worked 316 stainless steel, which was tested in an in-cell prototypic fatigue machine, are presented. The miniature fatigue machine is designed for low cost, on-line, real time testing of irradiated fusion candidate alloys. It will enable large scale characterization and development of candidate first wall alloys

  16. Translating Fatigue to Human Performance

    Science.gov (United States)

    Enoka, Roger M.; Duchateau, Jacques

    2016-01-01

    Despite flourishing interest in the topic of fatigue—as indicated by the many presentations on fatigue at the 2015 annual meeting of the American College of Sports Medicine—surprisingly little is known about its impact on human performance. There are two main reasons for this dilemma: (1) the inability of current terminology to accommodate the scope of the conditions ascribed to fatigue, and (2) a paucity of validated experimental models. In contrast to current practice, a case is made for a unified definition of fatigue to facilitate its management in health and disease. Based on the classic two-domain concept of Mosso, fatigue is defined as a disabling symptom in which physical and cognitive function is limited by interactions between performance fatigability and perceived fatigability. As a symptom, fatigue can only be measured by self-report, quantified as either a trait characteristic or a state variable. One consequence of such a definition is that the word fatigue should not be preceded by an adjective (e.g., central, mental, muscle, peripheral, and supraspinal) to suggest the locus of the changes responsible for an observed level of fatigue. Rather, mechanistic studies should be performed with validated experimental models to identify the changes responsible for the reported fatigue. As indicated by three examples (walking endurance in old adults, time trials by endurance athletes, and fatigue in persons with multiple sclerosis) discussed in the review, however, it has proven challenging to develop valid experimental models of fatigue. The proposed framework provides a foundation to address the many gaps in knowledge of how laboratory measures of fatigue and fatigability impact real-world performance. PMID:27015386

  17. Fatigue behavior of Ti-6Al-4V alloy modified by plasma immersion ion implantation: temperature effect.

    Directory of Open Access Journals (Sweden)

    Velloso Verônica

    2018-01-01

    Full Text Available This research studied Ti-6Al-4V alloy behavior with two (2 different microstructure subjected to nitrogen addition by PIII treatment, with and without sample heating, under cyclic load. PIII conditions, at 390 °C, were DC voltage of 9.5 kV, frequency of 1.5 kHz and pulse of 40 μs. PIII conditions, with sample heating at 800 °C, were 7 kV, 0.4 kHz and 30 μs. Axial fatigue tests were performed on untreated and treated samples for resistance to fatigue comparison. The untreated Ti-6Al-4V had an annealed microstructure, PIII treatment at 390 °C resulted in a microstructure that has no nitride layer or diffusion zone. In the PIII treatment at 800 °C, the microstructure presented nitride layer and diffusion zone. Resistance to fatigue decreased with PIII treatments in both temperatures. At 390 °C, the treatment created deformation regions and cracks on surface due to nitrogen implantation that formed solid solution with titanium and imposed lattice strains on the crystal lattice. At 800 °C, bulk ductility decrease, increasing of αTi proportion in microstructure due to α case formation and the presence of a ceramic layer dropped fatigue resistance of Ti-6A-4V alloy.

  18. Fatigue behaviour of fiberglass wind turbine blade material under variable amplitude loading

    Energy Technology Data Exchange (ETDEWEB)

    Delft, D R.V. Van; Winkel, G.D. de [Delft Univ. of Technology, STEVIN Lab., Delft (Netherlands); Joosse, P A [Stork Product Engineering b.v., Amsterdam (Netherlands)

    1996-09-01

    In the work presented here fatigue tests with the WISPER and WISPERX load sequence have been carried out and analysed. The test programme includes tests at low stress levels which results in fatigue lives of 50 millions of cycles. The results are compared with constant amplitude tests in the very high cycle range, carried out in a previous programme. The results are also compared with ECN results in the lower cycle range (on identical specimens). It appeared, that the difference between the fatigue life of the specimens tested with the WISPER and the WISPERX load sequence is larger than can be expected from the theoretical damage rates. Moreover, the slope of the S-N data differs from theoretical values obtained by using commonly applied design rules. (au)

  19. Experimental investigation and analysis of damage evolution in concrete under high-cyclic fatigue loadings

    International Nuclear Information System (INIS)

    Thiele, Marc

    2016-01-01

    The main objective of this thesis is the fatigue behavior of concrete under high-cycle compressive loadings. Current knowledge about fatigue behavior of concrete is still incomplete. This concerns especially the process of fatigue which is preceding the fatigue failure. The leak of knowledge about fatigue behavior is opposed to the steady growing importance of this topic within the practice in civil engineering. Therefore, within this thesis a systematic and comprehensive investigation of the process of fatigue itself was done. This contributes to the better understanding of the progression of damage and the corresponding processes within the material. The experimental investigation consisted mainly of experiments with constant amplitude loadings in compression with cylindrical specimen made of normal strength concrete. Two differed load levels were used which resulted in numbers of cycles to failure of 10 6 and 10 7 as well as 10 3 and 10 4 . The experiments were done in combination with different types of nondestructive and destructive testing methods like strain measuring, deformation of surface, ultrasonic signals, acoustic emissions, optical microscopy and also scattering electron microscopy. To access some parameters of influence in relation to the fatigue behavior additional creep tests and also several tests with different scales of specimen were done. The fatigue process of concrete is determined as an evolution of damage that starts from the beginning of the loading process. This evolution has manifold and different influences on the different material properties of concrete. In this relation a major finding was that fatigue related damage leads to a transformation of the complete stress-strain-relationship. This relationship is also subjected to an evolution process. Due to the authors observations it could not be determined that the investigated changes in macroscopic material behavior are caused by a development of micro cracks within the material

  20. Effects of moisture, elevated temperature, and fatigue loading on the behavior of graphite/epoxy buffer strip panels with center cracks

    Science.gov (United States)

    Bigelow, C. A.

    1988-01-01

    The effects of fatigue loading combined with moisture and heat on the behavior of graphite epoxy panels with either Kevlar-49 or S-glass buffer strips were studied. Buffer strip panels, that had a slit in the center to represent damage, were moisture conditioned or heated, fatigue loaded, and then tested in tension to measure their residual strength. The buffer strips were parallel to the loading direction and were made by replacing narrow strips of the 0 deg graphite plies with Kevlar-49 epoxy or S-glass epoxy on a 1-for-1 basis. The panels were subjected to a fatigue loading spectrum. One group of panels was preconditioned by soaking in 60 C water to produce a 1 percent weight gain then tested at room temperature. One group was heated to 82 C during the fatigue loading. Another group was moisture conditioned and then tested at 82 C. The residual strengths of the buffer panels were not highly affected by the fatigue loading, the number of repetitions of the loading spectrum, or the maximum strain level. The moisture conditioning reduced the residual strengths of the S-glass buffer strip panel by 10 to 15 percent below the ambient results. The moisture conditioning did not have a large effect on the Kevlar-49 panels.

  1. Domain switching of fatigued ferroelectric thin films

    Science.gov (United States)

    Tak Lim, Yun; Yeog Son, Jong; Shin, Young-Han

    2014-05-01

    We investigate the domain wall speed of a ferroelectric PbZr0.48Ti0.52O3 (PZT) thin film using an atomic force microscope incorporated with a mercury-probe system to control the degree of electrical fatigue. The depolarization field in the PZT thin film decreases with increasing the degree of electrical fatigue. We find that the wide-range activation field previously reported in ferroelectric domains result from the change of the depolarization field caused by the electrical fatigue. Domain wall speed exhibits universal behavior to the effective electric field (defined by an applied electric field minus the depolarization field), regardless of the degree of the electrical fatigue.

  2. Domain switching of fatigued ferroelectric thin films

    International Nuclear Information System (INIS)

    Tak Lim, Yun; Yeog Son, Jong; Shin, Young-Han

    2014-01-01

    We investigate the domain wall speed of a ferroelectric PbZr 0.48 Ti 0.52 O 3 (PZT) thin film using an atomic force microscope incorporated with a mercury-probe system to control the degree of electrical fatigue. The depolarization field in the PZT thin film decreases with increasing the degree of electrical fatigue. We find that the wide-range activation field previously reported in ferroelectric domains result from the change of the depolarization field caused by the electrical fatigue. Domain wall speed exhibits universal behavior to the effective electric field (defined by an applied electric field minus the depolarization field), regardless of the degree of the electrical fatigue

  3. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications.

    Science.gov (United States)

    Ritchie, R O; Dauskardt, R H; Yu, W K; Brendzel, A M

    1990-02-01

    Fracture-mechanics tests were performed to characterize the cyclic fatigue, stress-corrosion cracking, and fracture-toughness behavior of a pyrolytic carbon-coated graphite composite material used in the manufacture of cardiac valve prostheses. Testing was carried out using compact tension C(T) samples containing "atomically" sharp precracks, both in room-temperature air and principally in a simulated physiological environment of 37 degrees C Ringer's lactate solution. Under sustained (monotonic) loads, the composite exhibited resistance-curve behavior, with a fracture toughness (KIc) between 1.1 and 1.9 MPa square root of m, and subcritical stress-corrosion crack velocities (da/dt) which were a function of the stress intensity K raised to the 74th power (over the range approximately 10(-9) to over 10(-5) m/s). More importantly, contrary to common perception, under cyclic loading conditions the composite was found to display true (cyclic) fatigue failure in both environments; fatigue-crack growth rates (da/dN) were seen to be a function of the 19th power of the stress-intensity range delta K (over the range approximately 10(-11) to over 10(-8) m/cycle). As subcritical crack velocities under cyclic loading were found to be many orders of magnitude faster than those measured under equivalent monotonic loads and to occur at typically 45% lower stress-intensity levels, cyclic fatigue in pyrolytic carbon-coated graphite is reasoned to be a vital consideration in the design and life-prediction procedures of prosthetic devices manufactured from this material.

  4. Brain Electrodynamic and Hemodynamic Signatures Against Fatigue During Driving

    Directory of Open Access Journals (Sweden)

    Chun-Hsiang Chuang

    2018-03-01

    Full Text Available Fatigue is likely to be gradually cumulated in a prolonged and attention-demanding task that may adversely affect task performance. To address the brain dynamics during a driving task, this study recruited 16 subjects to participate in an event-related lane-departure driving experiment. Each subject was instructed to maintain attention and task performance throughout an hour-long driving experiment. The subjects' brain electrodynamics and hemodynamics were simultaneously recorded via 32-channel electroencephalography (EEG and 8-source/16-detector functional near-infrared spectroscopy (fNIRS. The behavior performance demonstrated that all subjects were able to promptly respond to lane-deviation events, even if the sign of fatigue arose in the brain, which suggests that the subjects were fighting fatigue during the driving experiment. The EEG event-related analysis showed strengthening alpha suppression in the occipital cortex, a common brain region of fatigue. Furthermore, we noted increasing oxygenated hemoglobin (HbO of the brain to fight driving fatigue in the frontal cortex, primary motor cortex, parieto-occipital cortex and supplementary motor area. In conclusion, the increasing neural activity and cortical activations were aimed at maintaining driving performance when fatigue emerged. The electrodynamic and hemodynamic signatures of fatigue fighting contribute to our understanding of the brain dynamics of driving fatigue and address driving safety issues through the maintenance of attention and behavioral performance.

  5. Fatigue life prediction and strength degradation of wind turbine rotor blade composites

    NARCIS (Netherlands)

    Nijssen, R.P.L.

    2006-01-01

    Wind turbine rotor blades are subjected to a large number of highly variable loads, but life predictions are typically based on constant amplitude fatigue behaviour. Therefore, it is important to determine how service life under variable amplitude fatigue can be estimated from constant amplitude

  6. Low cyclic fatigue behavior of 32 % Mn nonmagnetic steel and the effects of C and N in liquid nitrogen and liquid helium

    International Nuclear Information System (INIS)

    Shibata, Koji; Fujita, Toshio

    1987-01-01

    The effects of testing temperature, C, and N on the low cyclic deformation behavior of 32 % Mn non-magnetic steels have been investigated in ambient air, liquid nitrogen, and liquid helium. It was observed that several problems exsisted in fatigue tests in liquid helium due to special phenomena occurred at very low temperatures. The steel containing 0.3 % N, which showed large fatigue softening at room temperature, increased the trend toward the softening at low temperatures. The steel containing 0.14 % C and 0.13 % N also increased the tendency of softening with the temperature decrease, while it was not so large at room temperature. Dislocation configuration in steels showing the softening tended to be mainly planne at very low temperatures same as at room temperature. The steel with a very low content of C and N, the 0.3 % C steel, and the 0.12 % N steel did not show the softening at low temperatures, but showed only fatigue hardening. The hardening of the former two steels increased remarkably as the temperature decreased. This phenomenon was attributable to ε martensite induced by the cyclic deformation. The fatigue softening behavior observed at low temperatures could qualitatively be explained with the hypothesis that the softening occurred through the breakdown of solid solution strengthening due to IS complexes during the cyclic deformation. (author)

  7. Influence of different temperatures on the thermal fatigue behavior and thermal stability of hot-work tool steel processed by a biomimetic couple laser technique

    Science.gov (United States)

    Meng, Chao; Zhou, Hong; Zhou, Ying; Gao, Ming; Tong, Xin; Cong, Dalong; Wang, Chuanwei; Chang, Fang; Ren, Luquan

    2014-04-01

    Three kinds of biomimetic non-smooth shapes (spot-shape, striation-shape and reticulation-shape) were fabricated on the surface of H13 hot-work tool steel by laser. We investigated the thermal fatigue behavior of biomimetic non-smooth samples with three kinds of shapes at different thermal cycle temperature. Moreover, the evolution of microstructure, as well as the variations of hardness of laser affected area and matrix were studied and compared. The results showed that biomimetic non-smooth samples had better thermal fatigue behavior compared to the untreated samples at different thermal cycle temperatures. For a given maximal temperature, the biomimetic non-smooth sample with reticulation-shape had the optimum thermal fatigue behavior, than with striation-shape which was better than that with the spot-shape. The microstructure observations indicated that at different thermal cycle temperatures the coarsening degrees of microstructures of laser affected area were different and the microstructures of laser affected area were still finer than that of the untreated samples. Although the resistance to thermal cycling softening of laser affected area was lower than that of the untreated sample, laser affected area had higher microhardness than the untreated sample at different thermal cycle temperature.

  8. Cyclic Strain Resistance, Stress Response, Fatigue Life, and Fracture Behavior of High Strength Low Alloy Steel 300 M

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.; Tammana, Deepthi; Poorgangi, Behrang; Vasudevan, Vijay K.

    2014-05-01

    The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300 M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress.

  9. The combined effects of prior-corrosion and aggressive chemical environments on fatigue crack growth behavior in aluminum alloy 7075-T651

    Science.gov (United States)

    Mills, Thomas Brian

    1997-11-01

    Exfoliation corrosion is a potentially severe form of corrosion that frequently affects high-strength aluminum, particularly 2xxx- and 7xxx-series alloys. Exfoliation degrades components such as sheets, plates, and extrusions that have highly elongated grain structures. Few attempts have been made to investigate the effects of this form of corrosion on the fatigue performance of these materials, so a preliminary study was conducted to determine the effects of exfoliation corrosion on the fatigue response of quarter-inch 7075-T651 aluminum alloy plate. This was accomplished by subjecting aluminum panels to an ASTM standard corrosive solution known as EXCO then fatiguing the panels in corrosion fatigue environments of dry air, humid air, and artificial acid rain. Statistical analyses of the fatigue crack growth data suggest that prior-corrosion and corrosion fatigue are competing mechanisms that both have the potential of accelerating crack growth rates. In the dry air cases, exfoliation accelerated crack growth rates a maximum of 4.75 times over the uncorroded material at lower stress intensities such as 5 ksi surdinch. This accelerated behavior dropped off rapidly, however, and was nonexistent at higher stress intensities. Humid air increased crack velocities considerably as compared to the dry air uncorroded case, but the addition of exfoliation corrosion to the humid cases did not have a significant effect on crack growth behavior. On the other hand, specimens containing exfoliation corrosion and then exposed to artificial acid rain had significantly higher crack growth rates than their uncorroded counterparts. Finally, fractographic examinations of the specimens revealed evidence of lower energy, quasi-cleavage fracture persisting near to the exfoliated edge of specimens tested in the dry air, humid air, and artificial acid rain environments. The implications of this research are that prior-corrosion damage has the ability to significantly increase crack growth

  10. Prevalence and factors associated with fatigue in female patients with systemic lupus erythematosus.

    Science.gov (United States)

    Carrión-Barberà, Irene; Salman-Monte, Tarek Carlos; Castell, Sonia; Castro, Francisco; Ojeda, Fabiola; Carbonell, Jordi

    2018-02-10

    To determine the prevalence of fatigue in our cohort as well as the factors to which it is associated, its relationship with demographic variables, vitamin D levels, treatment, systemic lupus erythematosus (SLE) symptoms and disease activity. A cross-sectional study was carried out including 102 consecutive female patients with SLE (American College of Rheumatology 1997 criteria) who attended the Parc de Salut Mar between January 2012 and May 2014. Variables collected were: sociodemographic data, vitamin D supplementation, fatigue VAS, pharmacological treatment, main serological markers of SLE, and plasma levels of 25(OH)-vitD. The association between fatigue and the different variables was evaluated by the Spearman's Rho correlation coefficient for the continuous variables, the Mann-Whitney U test for the categorical and the Kruskal-Wallis test for the seasons of the year. The fatigue variable was evaluated through a fatigue VAS with a mean score of 52.84 (range 0-100), a median of 59 and a standard deviation of 29.86. A statistically significant relationship was found between fatigue and age, MHAQ, SLICC, summer and photosensitivity. As for the relationship between fatigue and vitamin D insufficiency (defined as 25-(OH)-vitD≤30 levels), the sample was divided into patients receiving vitamin D supplements (n=60) and patients without supplements (n=40), finding a significant relationship in that last group. A statistically significant association was found between the presence of fatigue and age, MHAQ, SLICC, photosensitivity, fibromyalgia and summer, and with vitamin D insufficiency in the group of patients without supplements (n=40). Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  11. Statistical analysis of elevated-temperature, strain-controlled fatigue data on Type 304 stainless steel

    International Nuclear Information System (INIS)

    Diercks, D.R.; Raske, D.T.

    1976-01-01

    The available elevated-temperature, strain-controlled, uniaxial fatigue data on Type 304 stainless steel (435 data points) are summarized, and variables that influence cyclic life are divided into first- and second-order categories. The first-order variables, which include strain range, strain rate, temperature, and tensile hold time, were used in a multivariable regression analysis to describe the observed variation in fatigue life. Goodness of fit with respect to these variables as well as the appropriateness of the transformations employed are discussed. Confidence intervals are estimated, and a comparison with the ASME Boiler and Pressure Vessel Code Case 1592 creep-fatigue design curve is made for a particular set of conditions. The second-order variables include the laboratories at which the data were generated, the different heats from which the test specimens were fabricated, and the heat treatments that preceded testing. These variables were statistically analyzed to determine their effect on fatigue life. The results are discussed, and the heats and heat treatments that are most resistant to fatigue damage under these loading and environmental conditions are identified

  12. Influence of surface finish on the high cycle fatigue behavior of a 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    Petitjean, S.

    2003-06-01

    This work has dealt with the influence of surface finish on the high cycle fatigue behavior of a 304L. The role played by roughness, surface hardening and residual stresses has been particularly described. First part of this study has consisted of the production of several surface finishes. These latter were obtained by turning, grinding, mechanical polishing and sandblasting. The obtained surfaces were then characterised in terms of roughness, hardening, microstructure and residual stresses. Fatigue tests were finally conducted under various stress ratios or mean stresses at two temperatures (25 C and 300 C). Results clearly evidenced an effect of the surface integrity on the fatigue resistance of the 304L. This influence is nevertheless more pronounced at ambient temperature and for a positive mean stress. For all explored testing conditions, the lowest endurance limit was obtained for ground specimens whereas polished samples exhibited the best fatigue strength. Results also cleared out a detrimental influence of a positive mean stress in the case of specimens having surface defaults of a great acuity. The study of the relative effect of each of the surface parameter, under a positive stress ratio and at the ambient temperature, showed that roughness profile and surface hardening are the two more influential factors. The role of the residual stresses remains negligible due to their rapid relaxation during the application of the first cycles of fatigue. The estimation of the initiation and propagation periods showed that mechanisms differed as a function of the applied stress ratio. Crack propagation is governed by the parameter DK at a positive stress ratio and by Dep/2 in the case of tension-compression tests. (author)

  13. Influence of weld discontinuities on strain controlled fatigue behavior of 308 stainless steel weld metal

    International Nuclear Information System (INIS)

    Bhanu Sankara Rao, K.; Valsan, M.; Sandhya, R.; Mannan, S.L.; Rodriguez, P.

    1994-01-01

    Detailed investigations have been performed for assessing the importance of weld discontinuities in strain controlled low cycle fatigue (LCF) behavior of 308 stainless steel (SS) welds. The LCF behavior of 308 SS welds containing defects was compared with that of type 304 SS base material and 308 SS sound weld metal. Weld pads were prepared by shielded metal arc welding process. Porosity and slag inclusions were introduced deliberately into the weld metal by grossly exaggerating the conditions normally causing such defects. Total axial strain controlled LCF tests have been conducted in air at 823 K on type 304 SS base and 308 SS sound weld metal employing strain amplitudes in the range from ±0.25 to ±0.8 percent. A single strain amplitude of ±0.25 percent was used for all the tests conducted on weld samples containing defects. The results indicated that the base material undergoes cyclic hardening whereas sound and defective welds experience cyclic softening. Base metal showed higher fatigue life than sound weld metal at all strain amplitudes. The presence of porosity and slag inclusions in the weld metal led to significant reduction in life. Porosity on the specimen surface has been found to be particularly harmful and caused a reduction in life by a factor of seven relative to sound weld metal

  14. Low cycle fatigue of irradiated LMFBR materials

    International Nuclear Information System (INIS)

    Blackburn, L.D.

    1976-01-01

    A review of low cycle fatigue data on irradiated LMFBR materials was conducted and extensive graphical representations of available data are presented. Representative postirradiation tensile properties of annealed 304 and 316 SS are selected and employed in several predictive methods to estimate irradiated material fatigue curves. Experimental fatigue data confirm the use of predictive methods for establishing conservative design curves over the range of service conditions relevant to such CRBRP components as core former, fixed radial shielding, core barrel, lower inlet module and upper internals structures. New experimental data on fatigue curves and creep-fatigue interaction in irradiated 20 percent cold worked (CW) 316 SS and Alloy 718 would support the design of removable radial shielding and upper internals in CRBRP. New experimental information on notched fatigue behavior and cyclic stress-strain curves of all these materials in the irradiated condition could provide significant design data

  15. Fatigue behavior of an insulation system for the ITER magnets in the load and strain controlled mode

    International Nuclear Information System (INIS)

    Prokopec, R.; Humer, K.; Weber, H.W.

    2007-01-01

    The application of glass-fiber reinforced plastics as insulation materials for fusion magnet coils (e.g. of ITER) requires a full mechanical material characterization under ITER relevant conditions. The tension-tension fatigue test is useful to simulate the pulsed tokamak operation of the ITER coils in the relevant range of 10 4 -10 5 cycles. The fatigue process can be run under load or strain control, which may influence the material behavior under cyclic load conditions. Therefore, investigations were performed at 77 K using an industrial glass-fiber reinforced composite impregnated with epoxy resin. For both the load and the strain controlled mode, R-values of 0.3 and 0.5 and a frequency of 10 Hz were chosen. The results are discussed with respect to the lifetime performance of ITER

  16. Probabilistic Approach to Fatigue Assessment for Stay Cables

    DEFF Research Database (Denmark)

    Baussaron, Julien; Sørensen, John Dalsgaard; Toft, Henrik Stensgaard

    2013-01-01

    Many parameters used for predicting times to failure of structure due to fatigue are uncertain and their variations have a big influence on the real lifetime. This paper focus on a global methodology to take main sources of variability in fatigue prediction for stay cables into account. The first...

  17. Effect of Cryorolling and Aging on Fatigue Behavior of Ultrafine-grained Al6061

    Science.gov (United States)

    Yadollahpour, M.; Hosseini-Toudeshky, H.; Karimzadeh, F.

    2016-05-01

    The effects of cryorolling (rolling at liquid nitrogen temperature) and heat treatment on tensile and high-cycle fatigue properties and fatigue crack growth rate of Al6061 alloy have been investigated in the present work. First, the solid solution-treated bulk Al6061 alloy was subjected to cryorolling with 90% total thickness reduction and subsequent short annealing at 205°C for 5 min and peak aging at 148°C for 39 h to achieve grain refinement and simultaneous improvement of the strength and ductility. Then, hardness measurements, tensile tests, fatigue life, and fatigue crack growth rate tests including fractography analyses using scanning electron microscopy were performed on bulk Al6061 alloy, cryorolled (CR), and cryorolled material followed by peak aging (PA). The PA specimen showed improved yield strength by 24%, ultimate tensile strength by 20%, and ductility by 12% as compared with the bulk Al6061 alloy. It is shown that the fatigue strength of both CR and PA specimens under a high-cycle fatigue regime are larger than that of the bulk Al6061 alloy. Also, fatigue crack growth rates of the CR and PA specimens show significant enhancement in fatigue crack growth resistances as compared with the bulk Al6061 alloy, as a result of grain refinement.

  18. A model for high-cycle fatigue crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Balbi, Marcela Angela [Rosario National Univ. (Argentina); National Council of Scientific Research and Technology (CONICET) (Argentina)

    2017-02-01

    This paper deals with the prediction of high-cycle fatigue behavior for four different materials (7075-T6 alloy, Ti-6Al-4 V alloy, JIS S10C steel and 0.4 wt.-% C steel) using Chapetti's approach to estimate the fatigue crack propagation curve. In the first part of the paper, a single integral equation for studying the entire propagation process is determined using the recent results of Santus and Taylor, which consider a double regime of propagation (short and long cracks) characterized by the model of El Haddad. The second part of the paper includes a comparison of the crack propagation behavior model proposed by Navarro and de los Rios with the one mentioned in the first half of this work. The results allow us to conclude that the approach presented in this paper is a good and valid estimation of high-cycle fatigue crack propagation using a single equation to describe the entire fatigue crack regime.

  19. Randomized controlled trial of a cognitive-behavioral therapy plus hypnosis intervention to control fatigue in patients undergoing radiotherapy for breast cancer.

    Science.gov (United States)

    Montgomery, Guy H; David, Daniel; Kangas, Maria; Green, Sheryl; Sucala, Madalina; Bovbjerg, Dana H; Hallquist, Michael N; Schnur, Julie B

    2014-02-20

    The objective of this study was to test the efficacy of cognitive-behavioral therapy plus hypnosis (CBTH) to control fatigue in patients with breast cancer undergoing radiotherapy. We hypothesized that patients in the CBTH group receiving radiotherapy would have lower levels of fatigue than patients in an attention control group. Patients (n = 200) were randomly assigned to either the CBTH (n = 100; mean age, 55.59 years) or attention control (n = 100; mean age, 55.97 years) group. Fatigue was measured at four time points (baseline, end of radiotherapy, 4 weeks, and 6 months after radiotherapy). Fatigue was measured using the Functional Assessment of Chronic Illness Therapy (FACIT) -Fatigue subscale and Visual Analog Scales (VASs; Fatigue and Muscle Weakness). The CBTH group had significantly lower levels of fatigue (FACIT) at the end of radiotherapy (z, 6.73; P < .001), 4-week follow-up (z, 6.98; P < .001), and 6-month follow-up (z, 7.99; P < .001) assessments. Fatigue VAS scores were significantly lower in the CBTH group at the end of treatment (z, 5.81; P < .001) and at the 6-month follow-up (z, 4.56; P < .001), but not at the 4-week follow-up (P < .07). Muscle Weakness VAS scores were significantly lower in the CBTH group at the end of treatment (z, 9.30; P < .001) and at the 6-month follow-up (z, 3.10; P < .02), but not at the 4-week follow-up (P < .13). The results support CBTH as an evidence-based intervention to control fatigue in patients undergoing radiotherapy for breast cancer. CBTH is noninvasive, has no adverse effects, and its beneficial effects persist long after the last intervention session. CBTH seems to be a candidate for future dissemination and implementation.

  20. Effect of metallurgical variables on the austenite stability in fatigued AISI 304 type steels

    Czech Academy of Sciences Publication Activity Database

    Man, Jiří; Smaga, M.; Kuběna, Ivo; Eifler, D.; Polák, Jaroslav

    2017-01-01

    Roč. 185, NOV (2017), s. 139-159 ISSN 0013-7944. [XVIII International Colloquium Mechanical Fatigue of Metals. Gijón, 05.11.2016-07.11.2016] R&D Projects: GA ČR GA13-32665S Institutional support: RVO:68081723 Keywords : Austenitic stainless steel * Deformation induced martensite * Color metallography * Chemical banding * Low cycle fatigue Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering , reliability analysis Impact factor: 2.151, year: 2016

  1. On the influence of mechanical surface treatments--deep rolling and laser shock peening--on the fatigue behavior of Ti-6Al-4V at ambient and elevated temperatures

    International Nuclear Information System (INIS)

    Nalla, R.K.; Altenberger, I.; Noster, U.; Liu, G.Y.; Scholtes, B.; Ritchie, R.O.

    2003-01-01

    It is well known that mechanical surface treatments, such as deep rolling, shot peening and laser shock peening, can significantly improve the fatigue behavior of highly-stressed metallic components. Deep rolling (DR) is particularly attractive since it is possible to generate, near the surface, deep compressive residual stresses and work hardened layers while retaining a relatively smooth surface finish. In the present investigation, the effect of DR on the low-cycle fatigue (LCF) and high-cycle fatigue (HCF) behavior of a Ti-6Al-4V alloy is examined, with particular emphasis on the thermal and mechanical stability of the residual stress states and the near-surface microstructures. Preliminary results on laser shock peened Ti-6Al-4V are also presented for comparison. Particular emphasis is devoted to the question of whether such surface treatments are effective for improving the fatigue properties at elevated temperatures up to ∼450 deg. C, i.e. at a homologous temperature of ∼0.4T/T m (where T m is the melting temperature). Based on cyclic deformation and stress/life (S/N) fatigue behavior, together with the X-ray diffraction and in situ transmission electron microscopy (TEM) observations of the microstructure, it was found that deep rolling can be quite effective in retarding the initiation and initial propagation of fatigue cracks in Ti-6Al-4V at such higher temperatures, despite the almost complete relaxation of the near-surface residual stresses. In the absence of such stresses, it is shown that the near-surface microstructures, which in Ti-6Al-4V consist of a layer of work hardened nanoscale grains, play a critical role in the enhancement of fatigue life by mechanical surface treatment

  2. On the Fatigue Analysis of Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Herbert J.

    1999-06-01

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

  3. Low-cycle fatigue and cyclic deformation behavior of Type 16-8-2 weld metal at elevated temperature

    International Nuclear Information System (INIS)

    Raske, D.T.

    1977-01-01

    The low-cycle fatigue behavior of Type 16-8-2 stainless steel ASA weld metal at 593 0 C was investigated, and the results are compared with existing data for Type 316 stainless steel base metal. Tests were conducted under axial strain control and at a constant axial strain rate of 4 x 10 -3 s -1 for continuous cyclic loadings as well as hold times at peak tensile strain. Uniform-gauge specimens were machined longitudinally from the surface and root areas of 25.4-mm-thick welded plate and tested in the as-welded condition. Results indicate that the low-cycle fatigue resistance of this weld metal is somewhat better than that of the base metal for continuous-cycling conditions and significantly better for tension hold-time tests. This is attributed to the fine duplex delta ferrite-austenite microstructure in the weld metal. The initial monotonic tensile properties and the cyclic stress-strain behavior of this material were also determined. Because the cyclic changes in mechanical properties are strain-history dependent, a unique cyclic stress-strain curve does not exist for this material

  4. Multi-scale analysis of the fatigue of shape memory alloys

    International Nuclear Information System (INIS)

    Zheng, Lin

    2016-01-01

    Shape Memory Alloy (SMA) is a typical smart material having many applications from aerospace industry, mechanical and civil engineering, to biomedical devices, where the material's fatigue is a big concern. One of the challenging issues in studying the fatigue behaviors of SMA polycrystals is the interaction between the material damage and the martensitic phase transformation which takes place in a macroscopic homogeneous mode or a heterogeneous mode (forming macroscopic patterns (Luders-like bands) due to the localized deformations and localized heating/cooling). Such pattern formation and evolution imply the governing physical mechanisms in the material system such as the fatigue process, but there is still no fatigue study of SMAs by tracing the macro-band patterns and the local material responses. To bridge this gap, systematic tensile fatigue experiments are conducted on pseudo-elastic NiTi polycrystalline strips by in-situ optical observation on the band-pattern evolutions and by tracing the deformation history of the cyclic phase transformation zones where fatigue failure occurs. These experimental results help to better understand the stress- and frequency-dependent fatigue behaviors. Particularly, it is found that the local residual strain rather than the structural nominal/global residual strain is a good indicator on the material's damage leading to the fatigue failure, which is important for understanding and modeling the fatigue process in SMAs. (author)

  5. Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650 °C

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G., E-mail: agang@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhang, Y. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xu, D.K. [Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Lin, Y.C. [School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); Chen, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2016-02-08

    Total strain-controlled low cycle fatigue (LCF) tests of a nickel based superalloy were performed at 650 °C. Various hold times were introduced at the peak tensile strain to investigate the high-temperature creep-fatigue interaction (CFI) effects under the same temperature. A substantial decrease in fatigue life occurred as the total strain amplitude increased. Moreover, tensile strain holding further reduced fatigue life. The saturation phenomenon of holding effect was found when the holding period reached 120 s. Cyclic softening occurred during the LCF and CFI process and it was related to the total strain amplitude and the holding period. The relationship between life-time and total strain amplitude was obtained by combining Basquin equation and Coffin-Manson equation. The surface and fracture section of the fatigued specimens were observed via scanning electronic microscope (SEM) to determine the failure mechanism.

  6. Predicting sun protection behaviors using protection motivation variables.

    Science.gov (United States)

    Ch'ng, Joanne W M; Glendon, A Ian

    2014-04-01

    Protection motivation theory components were used to predict sun protection behaviors (SPBs) using four outcome measures: typical reported behaviors, previous reported behaviors, current sunscreen use as determined by interview, and current observed behaviors (clothing worn) to control for common method bias. Sampled from two SE Queensland public beaches during summer, 199 participants aged 18-29 years completed a questionnaire measuring perceived severity, perceived vulnerability, response efficacy, response costs, and protection motivation (PM). Personal perceived risk (similar to threat appraisal) and response likelihood (similar to coping appraisal) were derived from their respective PM components. Protection motivation predicted all four SPB criterion variables. Personal perceived risk and response likelihood predicted protection motivation. Protection motivation completely mediated the effect of response likelihood on all four criterion variables. Alternative models are considered. Strengths and limitations of the study are outlined and suggestions made for future research.

  7. Fatigue and sleep quality in rheumatoid arthritis patients during hospital admission.

    Science.gov (United States)

    Szady, Paulina; Bączyk, Grażyna; Kozłowska, Katarzyna

    2017-01-01

    Rheumatoid arthritis (RA) is a systemic disease of connective tissue characterised by chronic course with periods of exacerbation and remission. Even in the early stages of the disease patients report the occurrence of fatigue and sleep disorders. Reduced sleep quality and chronic fatigue are common among patients with rheumatoid arthritis. The aim of the research was to evaluate the severity of fatigue and sleep quality assessment among patients hospitalised with rheumatoid arthritis and to determine the relation between the level of symptoms of fatigue and sleep quality and variables such as: age, gender, disease duration, marital status, applied pharmacological treatment, and pain intensity. The study involved 38 patients (12 men and 26 women) hospitalised in the Rheumatologic Ward of the Orthopaedics and Rehabilitation Hospital of the University of Medical Sciences. The average age of the entire group was 56.26 years. Fatigue was evaluated with use of Polish version of Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F), while in order to evaluate sleep quality within the examined group of patients the Pittsburgh Sleep Quality Index (PSQI) was used. Patients with rheumatoid arthritis in the analysed group have lower sleep quality, and within subjects with such a diagnosis the fatigue is present. The relation was found between fatigue and such variables as: age, illness duration, marital status, applied pharmacological treatment, and severity of pain. Sleep quality within patients with RA is correlated by such variables as: age, gender, applied pharmaceutical treatment, and severity of pain. It was identified that patients with lower sleep quality experience increased levels of fatigue. There is a need to clarify which factors determine the level of fatigue and sleep quality in patients suffering from RA in future population-based research and to indicate to doctors, nurses, psychologists, and physiotherapists the significance and importance of

  8. Effect of low fatigue on the ductile-brittle transition of molybdenum

    International Nuclear Information System (INIS)

    Furuya, K.; Nagata, N.; Watanabe, R.; Yoshida, H.

    1982-01-01

    An explicit ductile-brittle transition of molybdenum occurring in both tensile and low cycle fatigue tests was investigated. Tests were performed on several sorts of molybdenum and its alloy TZM, and effects of heat treatment, fabrication method and alloying on the transition behavior and fracture mode are described in detail. All the materials exhibited a brittle failure with degraded fatigue behavior at room temperature, while they became ductile as temperature increased up to 573 K. The tendency of fatigue results was qualitatively in accordance with that of reduction of area in tensile tests. Differences among the materials were minor on the ductile-brittle transition temperature (DBTT), but major on the fatigue life for the embrittled materials. (orig.)

  9. Fatigue in Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    1999-01-01

    types of welded plate test specimens and full-scale offshore tubular joints. The materials that have been used are either conventional structural steel with a yield stress of ~ 360-410 MPa or high-strength steel with a yield stress of ~ 810-1010 MPa. The fatigue tests and the fracture mechanics analyses......Fatigue damage accumulation in steel structures under random loading is studied. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part of the investigation, fatigue test series have been carried through on various...... have been carried out using load histories, which are realistic in relation to the types of structures studied, i.e. primarily bridges, offshore structures and chimneys. In general, the test series carried through show a significant difference between constant amplitude and variable amplitude fatigue...

  10. Piezoelectric properties and unipolar fatigue behavior of KNN-based Pb-free piezoceramics.

    Science.gov (United States)

    Patterson, Eric A; Cann, David P

    2011-09-01

    Single-phase perovskite ceramics were synthesized using a Pb-free (K(0.44)Na(0.52)Li(0.04))(Nb(0.86)Ta(0.10)Sb(0.04))O(3) (LF4) piezoelectric material both with and without CuO as a dopant additive. Bipolar hysteresis measurements showed a relatively high remanent polarization (20 μC/cm(2), 16 μC/cm(2)) and maximum polarization (25 μC/cm(2), 21 μC/cm(2)) values were found for undoped LF4 and 0.2 wt% CuO-doped LF4, respectively. Unipolar fatigue behavior for this system was found to decrease strongly with increased applied testing fields and increased test durations. For undoped LF4, the maximum polarization values were stable after 10 cycles after testing for 100,000 cycles duration. For the CuO-doped samples, increasing the testing field to 3E(C) resulted in twice the decrease in P(MAX) (¿32%) compared with the 2E(C) tests at 10(6) cycles (-17%). At 2E(C) testing for CuO doping, polarization decreases continually through 10(7) cycles, with the decreases in P(MAX) and d(33) both reaching a maximum (-22% and -30%, respectively) after 10(7) cycles. In the CuO-doped samples, the fatigue is exacerbated because of the influence of space charge on the increased number of defects present.

  11. Fatigue resistance of CAD/CAM resin composite molar crowns.

    NARCIS (Netherlands)

    Shembish, F.A.; Tong, H.; Kaizer, M.; Janal, M.N.; Thompson, V.P.; Opdam, N.J.M.; Zhang, Y.

    2016-01-01

    OBJECTIVE: To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference. METHODS: Fully anatomically shaped monolithic resin composite molar crowns (Lava

  12. Fatigue of a Laterally-Constrained Closed Cell Aluminum Foam

    NARCIS (Netherlands)

    Murthy Kolluri, N.V.V.R.; Mukherjee, M.; Garcia-Moreno, F.; Banhart, J.; Ramamurty, U.

    2008-01-01

    An experimental investigation into the constant stress amplitude compression–compression fatigue behavior of closed-cell aluminum foam, both with and without lateral constraint, was conducted. Results show that while the early stages of strain accumulation due to fatigue loading are independent of

  13. Probabilistic modeling of fatigue crack growth in Ti-6Al-4V

    International Nuclear Information System (INIS)

    Soboyejo, W.O.; Shen, W.; Soboyejo, A.B.O.

    2001-01-01

    This paper presents the results of a combined experimental and analytical study of the probabilistic nature of fatigue crack growth in Ti-6Al-4V. A simple experimental fracture mechanics framework is presented for the determination of statistical fatigue crack growth parameters from two fatigue tests. The experimental studies show that the variabilities in long fatigue crack growth rate data and the Paris coefficient are well described by the log-normal distributions. The variabilities in the Paris exponent are also shown to be well characterized by a normal distribution. The measured statistical distributions are incorporated into a probabilistic fracture mechanics framework for the estimation of material reliability. The implications of the results are discussed for the probabilistic analysis of fatigue crack growth in engineering components and structures. (orig.)

  14. Study of Thermal Fatigue Resistance of a Composite Coating Made by a Vacuum Fusion Sintering Method

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Thermal fatigue behavior of a Ni-base alloy chromium carbide composite coating made by a vacuum fusion sintering method are discussed. Results show that thermal fatigue behavior is associated with cyclic upper temperature and coating thickness. As the thickness of the coating decreases, the thermal fatigue resistance increases. The thermal fatigue resistance cuts down with the thermal cyclic upper temperature rising. The crack growth rate decreases with the increase in cyclic number until crack arrests. Thermal fatigue failure was not found along the interface of the coating/matrix. The tract of thermal fatigue crack cracks along the interfaces of phases.

  15. Flexural fatigue life prediction of closed hat-section using materially nonlinear axial fatigue characteristics

    Science.gov (United States)

    Razzaq, Zia

    1989-01-01

    Straight or curved hat-section members are often used as structural stiffeners in aircraft. For instance, they are employed as stiffeners for the dorsal skin as well as in the aerial refueling adjacent area structure in F-106 aircraft. The flanges of the hat-section are connected to the aircraft skin. Thus, the portion of the skin closing the hat-section interacts with the section itself when resisting the stresses due to service loads. The flexural fatigue life of such a closed section is estimated using materially nonlinear axial fatigue characteristics. It should be recognized that when a structural shape is subjected to bending, the fatigue life at the neutral axis is infinity since the normal stresses are zero at that location. Conversely, the fatigue life at the extreme fibers where the normal bending stresses are maximum can be expected to be finite. Thus, different fatigue life estimates can be visualized at various distances from the neural axis. The problem becomes compounded further when significant portions away from the neutral axis are stressed into plastic range. A theoretical analysis of the closed hat-section subjected to flexural cyclic loading is first conducted. The axial fatigue characteristics together with the related axial fatigue life formula and its inverted form given by Manson and Muralidharan are adopted for an aluminum alloy used in aircraft construction. A closed-form expression for predicting the flexural fatigue life is then derived for the closed hat-section including materially nonlinear action. A computer program is written to conduct a study of the variables such as the thicknesses of the hat-section and the skin, and the type of alloy used. The study has provided a fundamental understanding of the flexural fatigue life characteristics of a practical structural component used in aircraft when materially nonlinear action is present.

  16. Review of the margins for ASME code fatigue design curve - effects of surface roughness and material variability

    International Nuclear Information System (INIS)

    Chopra, O. K.; Shack, W. J.

    2003-01-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. The Code specifies fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain-vs.-life ((var e psilon)-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This report provides an overview of the existing fatigue (var e psilon)-N data for carbon and low-alloy steels and wrought and cast austenitic SSs to define the effects of key material, loading, and environmental parameters on the fatigue lives of the steels. Experimental data are presented on the effects of surface roughness on the fatigue life of these steels in air and LWR environments. Statistical models are presented for estimating the fatigue (var e psilon)-N curves as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are discussed. Data available in the literature have been reviewed to evaluate the conservatism in the existing ASME Code fatigue evaluations. A critical review of the margins for ASME Code fatigue design curves is presented

  17. Review of the margins for ASME code fatigue design curve - effects of surface roughness and material variability.

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O. K.; Shack, W. J.; Energy Technology

    2003-10-03

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. The Code specifies fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain-vs.-life ({var_epsilon}-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This report provides an overview of the existing fatigue {var_epsilon}-N data for carbon and low-alloy steels and wrought and cast austenitic SSs to define the effects of key material, loading, and environmental parameters on the fatigue lives of the steels. Experimental data are presented on the effects of surface roughness on the fatigue life of these steels in air and LWR environments. Statistical models are presented for estimating the fatigue {var_epsilon}-N curves as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are discussed. Data available in the literature have been reviewed to evaluate the conservatism in the existing ASME Code fatigue evaluations. A critical review of the margins for ASME Code fatigue design curves is presented.

  18. Numerical analysis for prediction of fatigue crack opening level

    International Nuclear Information System (INIS)

    Choi, Hyeon Chang

    2004-01-01

    Finite Element Analysis (FEA) is the most popular numerical method to simulate plasticity-induced fatigue crack closure and can predict fatigue crack closure behavior. Finite element analysis under plane stress state using 4-node isoparametric elements is performed to investigate the detailed closure behavior of fatigue cracks and the numerical results are compared with experimental results. The mesh of constant size elements on the crack surface can not correctly predict the opening level for fatigue crack as shown in the previous works. The crack opening behavior for the size mesh with a linear change shows almost flat stress level after a crack tip has passed by the monotonic plastic zone. The prediction of crack opening level presents a good agreement with published experimental data regardless of stress ratios, which are using the mesh of the elements that are in proportion to the reversed plastic zone size considering the opening stress intensity factors. Numerical interpolation results of finite element analysis can precisely predict the crack opening level. This method shows a good agreement with the experimental data regardless of the stress ratios and kinds of materials

  19. Attention Measures of Accuracy, Variability, and Fatigue Detect Early Response to Donepezil in Alzheimer's Disease: A Randomized, Double-blind, Placebo-Controlled Pilot Trial.

    Science.gov (United States)

    Vila-Castelar, Clara; Ly, Jenny J; Kaplan, Lillian; Van Dyk, Kathleen; Berger, Jeffrey T; Macina, Lucy O; Stewart, Jennifer L; Foldi, Nancy S

    2018-04-09

    Donepezil is widely used to treat Alzheimer's disease (AD), but detecting early response remains challenging for clinicians. Acetylcholine is known to directly modulate attention, particularly under high cognitive conditions, but no studies to date test whether measures of attention under high load can detect early effects of donepezil. We hypothesized that load-dependent attention tasks are sensitive to short-term treatment effects of donepezil, while global and other domain-specific cognitive measures are not. This longitudinal, randomized, double-blind, placebo-controlled pilot trial (ClinicalTrials.gov Identifier: NCT03073876) evaluated 23 participants newly diagnosed with AD initiating de novo donepezil treatment (5 mg). After baseline assessment, participants were randomized into Drug (n = 12) or Placebo (n = 11) groups, and retested after approximately 6 weeks. Cognitive assessment included: (a) attention tasks (Foreperiod Effect, Attentional Blink, and Covert Orienting tasks) measuring processing speed, top-down accuracy, orienting, intra-individual variability, and fatigue; (b) global measures (Alzheimer's Disease Assessment Scale-Cognitive Subscale, Mini-Mental Status Examination, Dementia Rating Scale); and (c) domain-specific measures (memory, language, visuospatial, and executive function). The Drug but not the Placebo group showed benefits of treatment at high-load measures by preserving top-down accuracy, improving intra-individual variability, and averting fatigue. In contrast, other global or cognitive domain-specific measures could not detect treatment effects over the same treatment interval. The pilot-study suggests that attention measures targeting accuracy, variability, and fatigue under high-load conditions could be sensitive to short-term cholinergic treatment. Given the central role of acetylcholine in attentional function, load-dependent attentional measures may be valuable cognitive markers of early treatment response.

  20. Fatigue in the Danish general population. Influence of sociodemographic factors and disease

    DEFF Research Database (Denmark)

    Watt, T; Groenvold, M; Bjorner, J B

    2000-01-01

    -77 with an equal gender distribution (response rate 67%). MAIN OUTCOME MEASURES: Five fatigue scales from the questionnaire Multidimensional Fatigue Inventory: General Fatigue, Physical Fatigue, Reduced Activity, Reduced Motivation and Mental Fatigue. RESULTS: Fatigue scores were skewed towards absence of fatigue....... The General Fatigue and Physical Fatigue scales showed the highest fatigue levels while the Reduced Motivation scale showed lowest levels. Gender differences in fatigue scores were small, but the variability among women was higher-that is, more women had high scores. A multiple linear regression analysis......, gender and/or whether the person was living alone. For example, General and Physical Fatigue decreased with age among healthy people, whereas scores on these scales increased with age among those with a somatic disease. CONCLUSIONS: Physical and mental diseases play essential parts for the level...

  1. Study on high-cycle fatigue behavior of candidate stainless steels for SCWR

    International Nuclear Information System (INIS)

    Xiong Ru; Zhao Yuxiang; Zhang Qiang; Wang Hao; Tang Rui; Qiao Yingjie

    2013-01-01

    The fatigue experiments of commerce stainless steels including 347, 316Ti and 310 were conducted under bending and rotating loadings. The environments were at room temperature (RT) as well as at 550℃ in air. The fracture morphology was observed by SEM, and the S-N curves were processed according to the experimental data. The results indicate the fatigue limited stresses for the 3 stainless steels were in the order of 347 < 316Ti < 310, which consistent with the order of their tensile strength. Elevated temperature would accelerate the oxidation and therefore the fatigue life would decrease, among them 347 was more sensitive to temperature with the maximum decreasing tendency. All the 3 stainless steels have good resistance to high cycle fatigue when comparing their experimental data with the calculated value from the empirical formula. The fracture morphology presents areas of crack initiation, crack growth and fracture, the width of fatigue ripples is about 1 μm, the fracture area has much dimples, and 347 presents much cavities of different sizes in dimples. (authors)

  2. Characterization of high cycle fatigue behavior of a new generation aluminum lithium alloy

    International Nuclear Information System (INIS)

    De, P.S.; Mishra, R.S.; Baumann, J.A.

    2011-01-01

    Highlights: → Effect of microstructure on fatigue fracture of an advanced Al-Li alloy was studied in detail. → Preferential crack propagation in T3 state at specific orientations was analyzed. → Fatigue crack propagation difference between T3 and T8 tempers and friction stir welded condition was rationalized. → The effect of grain size on fatigue life for T3 and T8 tempers was justified based on current theories. → Delamination in T3 and T8 tempers was rationalized using microstructural analysis and FEA simulation. - Abstract: The high cycle fatigue life characteristics of an Al-Li alloy were studied as a function of microstructure. While for the parent microstructure fatigue life decreased as grain size increased, no such effect was noted at high stresses. This decrease in fatigue life was correlated with lower crack initiation life due to small crack effect. Under multiaxial stress conditions, the alloy exhibited intergranular cracking. The cross-linking of intergranular cracks (in the T8 condition) caused a further deterioration in fatigue life. Additionally, planar slip movements (in the T3 condition) in stage I crack propagation were observed. Slip planarity depended on both the sample texture and the nature of the precipitates. Fractographic and textural evidence is presented.

  3. Characterization of high cycle fatigue behavior of a new generation aluminum lithium alloy

    Energy Technology Data Exchange (ETDEWEB)

    De, P.S. [Center for Friction Stir Processing, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Mishra, R.S., E-mail: rsmishra@mst.edu [Center for Friction Stir Processing, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Baumann, J.A. [Boeing Company, St. Louis, MO 631666 (United States)

    2011-09-15

    Highlights: {yields} Effect of microstructure on fatigue fracture of an advanced Al-Li alloy was studied in detail. {yields} Preferential crack propagation in T3 state at specific orientations was analyzed. {yields} Fatigue crack propagation difference between T3 and T8 tempers and friction stir welded condition was rationalized. {yields} The effect of grain size on fatigue life for T3 and T8 tempers was justified based on current theories. {yields} Delamination in T3 and T8 tempers was rationalized using microstructural analysis and FEA simulation. - Abstract: The high cycle fatigue life characteristics of an Al-Li alloy were studied as a function of microstructure. While for the parent microstructure fatigue life decreased as grain size increased, no such effect was noted at high stresses. This decrease in fatigue life was correlated with lower crack initiation life due to small crack effect. Under multiaxial stress conditions, the alloy exhibited intergranular cracking. The cross-linking of intergranular cracks (in the T8 condition) caused a further deterioration in fatigue life. Additionally, planar slip movements (in the T3 condition) in stage I crack propagation were observed. Slip planarity depended on both the sample texture and the nature of the precipitates. Fractographic and textural evidence is presented.

  4. Creep and fatigue behavior of a novel 2-component paste-like formulation of acrylic bone cements.

    Science.gov (United States)

    Köster, Ulrike; Jaeger, Raimund; Bardts, Mareike; Wahnes, Christian; Büchner, Hubert; Kühn, Klaus-Dieter; Vogt, Sebastian

    2013-06-01

    The fatigue and creep performance of two novel acrylic bone cement formulations (one bone cement without antibiotics, one with antibiotics) was compared to the performance of clinically used bone cements (Osteopal V, Palacos R, Simplex P, SmartSet GHV, Palacos R+G and CMW1 with Gentamicin). The preparation of the novel bone cement formulations involves the mixing of two paste-like substances in a static mixer integrated into the cartridge which is used to apply the bone cement. The fatigue performance of the two novel bone cement formulations is comparable to the performance of the reference bone cements. The creep compliance of the bone cements is significantly influenced by the effects of physical ageing. The model parameters of Struik's creep law are used to compare the creep behavior of different bone cements. The novel 2-component paste-like bone cement formulations are in the group of bone cements which exhibit a higher creep resistance.

  5. Environmental Fatigue Behaviors of CF8M Stainless Steel in 310 .deg. C Deoxygenated Water - Effects of Hydrogen and Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hun; Cho, Pyungyeon; Jang, Changheui [KAIST, Daejeon (Korea, Republic of); Kim, Tae Soon [Korea Hydro and Nuclear Power Corporation, Seoul (Korea, Republic of)

    2014-01-15

    The effects of environment and microstructure on low cycle fatigue (LCF) behaviors of CF8M stainless steels containing 11% of ferrites were investigated in a 310 .deg. C deoxygenated water environment. The reduction of LCF life of CF8M in a 310 .deg. C deoxygenated water was smaller than 316LN stainless steels. Based on the microstructure and fatigue surface analyses, it was confirmed that the hydrogen induced cracking contributed to the reduction in LCF life for CF8M as well as for 316LN. However, many secondary cracks were found on the boundaries of ferrite phases in CF8M, which effectively reduced the stress concentration at the crack tip. Because of the reduced stress concentration, the accelerated fatigue crack growth by hydrogen induced cracking was less significant, which resulted in the smaller environmental effects for CF8M than 316LN in a 310 .deg. C deoxygenated water.

  6. Evaluation of the fatigue macro-cracking behavior of crumb rubber modified bituminous mixes

    Directory of Open Access Journals (Sweden)

    Moreno-Navarro, F.

    2014-09-01

    Full Text Available The use of crumb rubber modified bitumen (CRMB in asphalt mixes is a road engineering technology that has become increasingly important in recent years. Given the many economic and environmental benefits of this type of binder, the goal is to give CRMB the same level of performance as conventional polymer-modified bitumen. The appearance and propagation of cracks due to fatigue phenomena is one of the most common distresses affecting road pavements. Since crumb rubber enhances the mechanical properties of asphalt mixes, it can provide a viable solution for fatigue cracking. This paper presents the results of a comparative analysis of the fatigue-cracking behavior of asphalt mixtures manufactured with crumb rubber modified bitumen and polymer-modified bitumen.El empleo de betunes modificados con polvo de neumático usado en la fabricación de mezclas bituminosas es una de las técnicas que mayor auge está teniendo en los últimos años en la ingeniería de carreteras. Dadas sus grandes ventajas económicas y ambientales, este tipo de ligantes pretende conseguir prestaciones similares a la de los betunes modificados con polímeros utilizados habitualmente. La aparición de fisuras debido a fenómenos de fatiga es una de las patologías más comunes en firmes de carretera. Debido a las mejoras de las propiedades mecánicas del betún aportadas tras la incorporación de polvo de neumático, las mezclas fabricadas con estos ligantes se postulan como una posible solución a dicho problema. En este artículo se lleva a cabo un análisis comparativo del comportamiento a fisuración por fatiga realizado sobre mezclas bituminosas fabricadas con betún modificado con polvo de neumático y con polímeros.

  7. Fatigue crack growth behavior of Inconel 718 produced by selective laser melting

    Czech Academy of Sciences Publication Activity Database

    Konečná, R.; Kunz, Ludvík; Nicoletto, G.; Bača, A.

    2016-01-01

    Roč. 35, č. 10 (2016), s. 31-40 ISSN 1971-8993 Institutional support: RVO:68081723 Keywords : Inconel 718 * Selective laser melting * Microstructure * Fatigue crack growth * Fractography Subject RIV: JL - Materials Fatigue, Friction Mechanics

  8. Corrosion-fatigue studies of the Zr-based Vitreloy 105 bulk metallic glass

    International Nuclear Information System (INIS)

    Horton Jr, Joe A.; Morrison, M.L.; Buchanan, R.A.; Liaw, Peter K.; Green, B.A.; Wang, G.Y.

    2007-01-01

    The purpose of this study was to characterize the stress-life behavior of the Vitreloy 105 BMG alloy in the four-point bending configuration in a 0.6 M. NaCl electrolyte. At high stress amplitudes, the corrosion-fatigue life was similar to the fatigue lives observed in air. The environment became increasingly detrimental with decreases in stress, and the corrosion-fatigue endurance limit decreased to about 50 MPa, an 88% decrease relative to testing in air. Similar to the tests conducted in air, oxide particles were found on the fracture surfaces but did not appear to significantly affect the corrosion-fatigue lives. However, wear and the resultant corrosion at the outer loading pins resulted in crack initiation in most of the samples. Thus, these results are considered conservative estimates of the corrosion-fatigue behavior of this BMG alloy. Monitoring of the samples and the open-circuit potentials revealed that the onset of significant crack growth occurred at an average of 92% of the total fatigue life. The mechanism of corrosion-fatigue degradation was found to be anodic dissolution

  9. A population-based study of associations between current posttraumatic stress symptoms and current fatigue.

    Science.gov (United States)

    Lerdal, Anners; Lee, Kathryn A; Rokne, Berit; Knudsen, Øistein; Wahl, Astrid K; Dahl, Alv A

    2010-10-01

    This study explores current experience with posttraumatic stress disorder (PTSD) symptoms and other variables (sociodemographic, mental distress, somatic morbidity, self-rated health, and quality of life [QoL]) in relation to fatigue. A representative sample of the Norwegian population (N = 3,944) was invited to participate in a mailed survey, and 1,857 (47%) returned valid responses on the questionnaire that included the Fatigue Severity Scale and the Posttraumatic Symptom Scale-10. Posttraumatic stress disorder symptoms showed a strong association with fatigue in univariate (β = .41) and multivariate analyses (β = .33). Associations between psychosocial health variables, QoL, and fatigue were confirmed. However, PTSD symptoms showed the strongest association with fatigue in the analyses. Findings need to be replicated in other population samples and in clinical samples with PTSD and fatigue.

  10. An experimental study on the factors that affect fatigue crack growth retardation behavior in SM45C steel

    International Nuclear Information System (INIS)

    Kim, Seon Jin; Kim, Jong Hoon; Ahn, Seok Hwan

    2000-01-01

    Constant ΔK fatigue crack growth tests were performed applying an intermediate multiple overload for SM45C steel. The purpose of the present study is to investigate the effects of specimen thickness at various baseline stress intensity levels(ΔK b ), overload application position(a/W) and overload application frequency(OL Hz ) on fatigue crack growth retardation behavior. The principal results are summarized as follows. The amount of retardation for a given ΔK b level is increased with increasing the baseline stress intensity level in all specimen thickness. The normalized minimum crack growth rate is increased with increasing the specimen thickness, except for ΔK=45MPa√m. The retardation cycle is decreased with increasing the overload application position and increased with the overload application frequency

  11. Fatigue-propagation du melange polymere polystyrene/polyethylene

    Science.gov (United States)

    Bureau, Martin N.

    The interrelations between the morphology of PS/HDPE and PS/SEBS/HDPE immiscible polymer blends and their mechanical behavior, namely in monotonic loading and in cyclic loading, were studied. As predicted by theory, high shear rates encountered during extrusion blending led to efficient minor phase emulsification in PS/HDPE blends for which the viscosity ratio approaches unity. Consequently, the emulsifying effect of an SEBS triblock copolymer employed as a compatibilizer was found to be negligible. In subsequent molding process, disintegration, shape relaxation and coarsening of the minor phase domains were responsible for the morphological evolution of the blends. In the compression molding process, morphological observations showed that the rate of minor phase coarsening followed the predictions of the Ostwald ripening theory, in agreement with the rheological analysis. In the injection molding process, minor phase coarsening was attributed to shear coalescence. The fatigue crack propagation behavior of injection-molded specimens of pure PS as well as of 95/5, 85/15 and 70/30 PS/HDPE blends and of 95/(0.5/4.5), 85/(1.5/13.5) and 70/(3/27) PS/(SEBS/HDPE) blends was then studied. The fatigue fracture surface features of specimens of pure PS as well as of PS/HDPE and PS/SEBS/HDPE blends were analyzed in detail in order to interpret their fatigue crack propagation behavior. In pure PS specimens, discontinuous growth bands, associated with the fracture of crazes in the plastic zone, formed at low fatigue crack growth rates, large dimple-like features at intermediate fatigue crack growth rates and fatigue striations at high fatigue crack growth rates. The fracture toughness of injection-molded specimens of pure PS as well as of 95/5, 85/15 and 70/30 PS/HDPE blends and of 95/(0.5/4.5) PS/(SEBS/HDPE), 85/(1.5/13.5) and 70/(3/27) PS/(SEBS/HDPE) was finally studied. The results showed that the addition of HDPE to PS led to a reduction of the fracture toughness KQ

  12. Reliability improvement of wire bonds subjected to fatigue stresses.

    Science.gov (United States)

    Ravi, K. V.; Philofsky, E. M.

    1972-01-01

    The failure of wire bonds due to repeated flexure when semiconductor devices are operated in an on-off mode has been investigated. An accelerated fatigue testing apparatus was constructed and the major fatigue variables, aluminum alloy composition, and bonding mechanism, were tested. The data showed Al-1% Mg wires to exhibit superior fatigue characteristics compared to Al-1% Cu or Al-1% Si and ultrasonic bonding to be better than thermocompression bonding for fatigue resistance. Based on these results highly reliable devices were fabricated using Al-1% Mg wire with ultrasonic bonding which withstood 120,000 power cycles with no failures.

  13. Application of fatigue monitoring system in PWR nuclear power plant

    International Nuclear Information System (INIS)

    Piao Lei

    2014-01-01

    Fatigue failure is one form of equipment failure of nuclear power plant, influencing equipment lifetime and lifetime extension. Fatigue monitoring system can track real thermal transient at fatigue sensitive components, establish a basis for fatigue analyses based on realistic operating loads, identify unexpected operational transients, optimize the plant behavior by improved operating modes, provide supporting data for lifetime management, enhance security of plant and reduce economical loss. Fatigue monitoring system has been applied in many plants and is required to be applied in Generation-III nuclear power plant. It is necessary to develop the fatigue monitoring system with independent intellectual property rights and improve the competitiveness of domestic Generation-III nuclear power technology. (author)

  14. Hormone levels in radiotherapy treatment related fatigue

    International Nuclear Information System (INIS)

    Biswal, B.M.; Mallik, G.S.

    2003-01-01

    Radiotherapy is known to cause debilitating treatment related fatigue. Fatigue in general is a conglomeration of psychological, physical, hematological and unknown factors influencing the internal milieu of the cancer patient. Radiotherapy can add stress at the cellular and somatic level to aggravate further fatigue in cancer patients undergoing radiotherapy. Stress related hormones might be mediating in the development of fatigue. This is an ongoing prospective study to evaluate if the hormonal profile related to stress is influenced by radiotherapy treatment related fatigue. The study was conducted from September 2002 onwards in the division of Radiotherapy and Oncology of our Medical School. Previously untreated patients with histopathology proof of malignancy requiring external beam radiotherapy were considered for this study. Selection criteria were applied to exclude other causes of fatigue. Initial fatigue score was obtained using Pipers Fatigue Score questionnaire containing 23 questions, subsequently final fatigue score was obtained at the end of radiotherapy. Blood samples were obtained to estimate the levels of ACTH, TSH, HGH, and cortisol on the final assessment. The hormone levels were compared with resultant post radiotherapy fatigue score. At the time of reporting 50 patients were evaluable for the study. The total significant fatigue score was observed among 12 (24%) patients. The individual debilitating fatigue score were behavioral severity 14 (28%), affective meaning 14(28%), Sensory 13 (26%) and cognitive mood 10 (20%) respectively. From the analysis of hormonal profile, growth hormone level > 1 ng/mL and TSH <0.03 appears to be associated with high fatigue score (though statistically not significant); whereas there was no correlation with ACTH and serum cortisol level. In our prospective study severe radiotherapy treatment related fatigue was found among our patient population. Low levels of TSH and high levels of GH appear to be associated

  15. Usefulness of multiple dimensions of fatigue in fibromyalgia.

    Science.gov (United States)

    Ericsson, Anna; Bremell, Tomas; Mannerkorpi, Kaisa

    2013-07-01

    To explore in which contexts ratings of multiple dimensions of fatigue are useful in fibromyalgia, and to compare multidimensional fatigue between women with fibromyalgia and healthy women. A cross-sectional study. The Multidimensional Fatigue Inventory (MFI-20), comprising 5 subscales of fatigue, was compared with the 1-dimensional subscale of fatigue from the Fibromyalgia Impact Questionnaire (FIQ) in 133 women with fibromyalgia (mean age 46 years; standard deviation 8.6), in association with socio-demographic and health-related aspects and analyses of explanatory variables of severe fatigue. The patients were also compared with 158 healthy women (mean age 45 years; standard deviation 9.1) for scores on MFI-20 and FIQ fatigue. The MFI-20 was associated with employment, physical activity and walking capacity (rs = -0.27 to -0.36), while FIQ fatigue was not. MFI-20 and FIQ fatigue were equally associated with pain, sleep, depression and anxiety (rs = 0.32-0.63). Regression analyses showed that the MFI-20 increased the explained variance (R2) for the models of pain intensity, sleep, depression and anxiety, by between 7 and 29 percentage points, compared with if FIQ fatigue alone was included in the models. Women with fibromyalgia rated their fatigue higher than healthy women for all subscales of the MFI-20 and the FIQ fatigue (p fibromyalgia. The patients reported higher levels on all fatigue dimensions in comparison with healthy women.

  16. Outcomes of Cognitive-Behavioral Treatment for Insomnia on Insomnia, Depression, and Fatigue for Individuals with Multiple Sclerosis: A Case Series

    OpenAIRE

    Clancy, Megan; Drerup, Michelle; Sullivan, Amy Burleson

    2015-01-01

    Background: This clinical case series examined outcomes of cognitive-behavioral therapy for insomnia (CBT-I) in individuals with multiple sclerosis (MS). Current literature links insomnia with higher rates of depression and fatigue in individuals with MS. However, no research to date evaluates a targeted psychotherapeutic intervention for insomnia in this population.

  17. Mental Fatigue: Impairment of Technical Performance in Small-Sided Soccer Games.

    Science.gov (United States)

    Badin, Oliver O; Smith, Mitchell R; Conte, Daniele; Coutts, Aaron J

    2016-11-01

    To assess the effects of mental fatigue on physical and technical performance in small-sided soccer games. Twenty soccer players (age 17.8 ± 1.0 y, height 179 ± 5 cm, body mass 72.4 ± 6.8 kg, playing experience 8.3 ± 1.4 y) from an Australian National Premier League soccer club volunteered to participate in this randomized crossover investigation. Participants played 15-min 5-vs-5 small-sided games (SSGs) without goalkeepers on 2 occasions separated by 1 wk. Before the SSG, 1 team watched a 30-min emotionally neutral documentary (control), while the other performed 30 min of a computer-based Stroop task (mental fatigue). Subjective ratings of mental and physical fatigue were recorded before and after treatment and after the SSG. Motivation was assessed before treatment and SSG; mental effort was assessed after treatment and SSG. Player activity profiles and heart rate (HR) were measured throughout the SSG, whereas ratings of perceived exertion (RPEs) were recorded before the SSG and immediately after each half. Video recordings of the SSG allowed for notational analysis of technical variables. Subjective ratings of mental fatigue and effort were higher after the Stroop task, whereas motivation for the upcoming SSG was similar between conditions. HR during the SSG was possibly higher in the control condition, whereas RPE was likely higher in the mental-fatigue condition. Mental fatigue had an unclear effect on most physical-performance variables but impaired most technical-performance variables. Mental fatigue impairs technical but not physical performance in small-sided soccer games.

  18. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    Science.gov (United States)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  19. Fatigue and sleep quality in rheumatoid arthritis patients during hospital admission

    Directory of Open Access Journals (Sweden)

    Paulina Szady

    2017-04-01

    Full Text Available Objectives : Rheumatoid arthritis (RA is a systemic disease of connective tissue characterised by chronic course with periods of exacerbation and remission. Even in the early stages of the disease patients report the occurrence of fatigue and sleep disorders. Reduced sleep quality and chronic fatigue are common among patients with rheumatoid arthritis. The aim of the research was to evaluate the severity of fatigue and sleep quality assessment among patients hospitalised with rheumatoid arthritis and to determine the relation between the level of symptoms of fatigue and sleep quality and variables such as: age, gender, disease duration, marital status, applied pharmacological treatment, and pain intensity. Materials and methods : The study involved 38 patients (12 men and 26 women hospitalised in the Rheumatologic Ward of the Orthopaedics and Rehabilitation Hospital of the University of Medical Sciences. The average age of the entire group was 56.26 years. Fatigue was evaluated with use of Polish version of Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F, while in order to evaluate sleep quality within the examined group of patients the Pittsburgh Sleep Quality Index (PSQI was used. Results : Patients with rheumatoid arthritis in the analysed group have lower sleep quality, and within subjects with such a diagnosis the fatigue is present. The relation was found between fatigue and such variables as: age, illness duration, marital status, applied pharmacological treatment, and severity of pain. Sleep quality within patients with RA is correlated by such variables as: age, gender, applied pharmaceutical treatment, and severity of pain. It was identified that patients with lower sleep quality experience increased levels of fatigue. Conclusions : There is a need to clarify which factors determine the level of fatigue and sleep quality in patients suffering from RA in future population-based research and to indicate to doctors

  20. Creep-fatigue behavior of 2 1/4Cr-1Mo steel at 5500C in air and vacuum

    International Nuclear Information System (INIS)

    Asayama, T.; Cheng, S.Z.; Asada, Y.; Mitsuhashi, S.; Tachibana, Y.

    1987-01-01

    Creep-fatigue tests were conducted with 2 1/4Cr-1Mo steel at 550 0 C under various strain wave forms in air and vacuum of 100 and 0.1 μPa. No indication of environmental effect of air was observed in 0.1 μPa vacuum in which a strain rate effect diminished. However, there observed still a time/rate dependent life reduction in a case of wave forms with a longer tension going time than compression. In addition, there observed an effect of mean stress with this steel. An analysis of stress-strain response showed the response is not affected by the test environment. Internal stresses of back and drag stress were obtained with this steel and an overstress was predicted based on phenomenology. A pure creep-fatigue life reduction was predicted based on a damage model composed of the overstress. The prediction showed a scatter of a factor of two. An effect of air environment was evaluated based on the prediction procedure. The method should be improved to include the effect of mean stress on creep-fatigue behavior of this steel