WorldWideScience

Sample records for fatigue damage process

  1. Study on determination of durability analysis process and fatigue damage parameter for rubber component

    International Nuclear Information System (INIS)

    Moon, Seong In; Cho, Il Je; Woo, Chang Su; Kim, Wan Doo

    2011-01-01

    Rubber components, which have been widely used in the automotive industry as anti-vibration components for many years, are subjected to fluctuating loads, often failing due to the nucleation and growth of defects or cracks. To prevent such failures, it is necessary to understand the fatigue failure mechanism for rubber materials and to evaluate the fatigue life for rubber components. The objective of this study is to develop a durability analysis process for vulcanized rubber components, that can predict fatigue life at the initial product design step. The determination method of nonlinear material constants for FE analysis was proposed. Also, to investigate the applicability of the commonly used damage parameters, fatigue tests and corresponding finite element analyses were carried out and normal and shear strain was proposed as the fatigue damage parameter for rubber components. Fatigue analysis for automotive rubber components was performed and the durability analysis process was reviewed

  2. Fatigue Damage in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1996-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Fatigue failure is found to depend both on the total time under load and on the number of cycles.Recent accelerated fatigue research on wood is reviewed, and a discrepancy between...... to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation between stiffness reduction...

  3. Ductile Damage and Fatigue Behavior of Semi-Finished Tailored Blanks for Sheet-Bulk Metal Forming Processes

    Science.gov (United States)

    Besserer, Hans-Bernward; Hildenbrand, Philipp; Gerstein, Gregory; Rodman, Dmytro; Nürnberger, Florian; Merklein, Marion; Maier, Hans Jürgen

    2016-03-01

    To produce parts from sheet metal with thickened functional elements, bulk forming operations can be employed. For this new process class, the term sheet-bulk metal forming has been established recently. Since sheet-bulk metal forming processes such as orbital forming generates triaxial stress and strain states, ductile damage is induced in the form of voids in the microstructure. Typical parts will experience cyclic loads during service, and thus, the influence of ductile damage on the fatigue life of parts manufactured by orbital forming is of interest. Both the formation and growth of voids were characterized following this forming process and then compared to the as-received condition of the ferritic deep drawing steel DC04 chosen for this study. Subsequent to the forming operation, the specimens were fatigued and the evolution of ductile damage and the rearrangement of the dislocation networks occurring during cyclic loading were determined. It was shown, that despite an increased ductile damage due to the forming process, the induced strain hardening has a positive effect on the fatigue life of the material. However, by analyzing the fatigued specimens a development of the ductile damage by an increasing number of voids and a change in the void shape were detected.

  4. Probabilistic Fatigue Damage Program (FATIG)

    Science.gov (United States)

    Michalopoulos, Constantine

    2012-01-01

    FATIG computes fatigue damage/fatigue life using the stress rms (root mean square) value, the total number of cycles, and S-N curve parameters. The damage is computed by the following methods: (a) traditional method using Miner s rule with stress cycles determined from a Rayleigh distribution up to 3*sigma; and (b) classical fatigue damage formula involving the Gamma function, which is derived from the integral version of Miner's rule. The integration is carried out over all stress amplitudes. This software solves the problem of probabilistic fatigue damage using the integral form of the Palmgren-Miner rule. The software computes fatigue life using an approach involving all stress amplitudes, up to N*sigma, as specified by the user. It can be used in the design of structural components subjected to random dynamic loading, or by any stress analyst with minimal training for fatigue life estimates of structural components.

  5. Fatigue damage of nuclear facilities

    International Nuclear Information System (INIS)

    2001-01-01

    The conference on the fatigue damage of nuclear facilities, organized by the SFEN (french society of nuclear energy), took place at Paris the 23. of november 2000. Eleven papers were presented, showing the state of the art and the research programs in the domain of the sizing rules, safety, installations damage, examination and maintenance. (A.L.B.)

  6. Thermography detection on the fatigue damage

    Science.gov (United States)

    Yang, Bing

    It has always been a great temptation in finding new methods to in-situ "watch" the material fatigue-damage processes so that in-time reparations will be possible, and failures or losses can be minimized to the maximum extent. Realizing that temperature patterns may serve as fingerprints for stress-strain behaviors of materials, a state-of-art infrared (IR) thermography camera has been used to "watch" the temperature evolutions of both crystalline and amorphous materials "cycle by cycle" during fatigue experiments in the current research. The two-dimensional (2D) thermography technique records the surface-temperature evolutions of materials. Since all plastic deformations are related to heat dissipations, thermography provides an innovative method to in-situ monitor the heat-evolution processes, including plastic-deformation, mechanical-damage, and phase-transformation characteristics. With the understanding of the temperature evolutions during fatigue, thermography could provide the direct information and evidence of the stress-strain distribution, crack initiation and propagation, shear-band growth, and plastic-zone evolution, which will open up wide applications in studying the structural integrity of engineering components in service. In the current research, theoretical models combining thermodynamics and heat-conduction theory have been developed. Key issues in fatigue, such as in-situ stress-strain states, cyclic softening and hardening observations, and fatigue-life predictions, have been resolved by simply monitoring the specimen-temperature variation during fatigue. Furthermore, in-situ visulizations as well as qualitative and quantitative analyses of fatigue-damage processes, such as Luders-band evolutions, crack propagation, plastic zones, and final fracture, have been performed by thermography. As a method requiring no special sample preparation or surface contact by sensors, thermography provides an innovative and convenient method to in-situ monitor

  7. Mesoscopic scale thermal fatigue damage

    International Nuclear Information System (INIS)

    Robertson, C.; Fissolo, A.; Fivel, M.

    2001-01-01

    In an attempt to better understand damage accumulation mechanisms in thermal fatigue, dislocation substructures forming in 316L steel during one specific test were examined and simulated. Hence, thin foils taken out of massive, tested specimens were first observed in transmission electron microscopy (TEM). These observations help in determining one initial dislocation configuration to be implemented in a 3-D model combining 3D discrete dislocation dynamics simulation (DDD) and finite element method computations (FEM). It was found that the simulated mechanical behaviour of the DDD microstructure is compatible with FEM and experimental data. The numerically generated dislocation microstructure is similar to ladder-like dislocation arrangements as found in many fatigued f.c.c. materials. Distinct mechanical behaviour for the two active slip systems was shown and deformation mechanisms were proposed. (authors)

  8. Mesoscopic scale thermal fatigue damage

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, C.; Fissolo, A. [CEA Saclay, Dept. des Materiaux pour le Nucleaire, DMN, 91 - Gif sur Yvette (France); Fivel, M. [Centre National de la Recherche Scientifique, CNRS-GPM2, 38 - Saint Martin d' Heres (France)

    2001-07-01

    In an attempt to better understand damage accumulation mechanisms in thermal fatigue, dislocation substructures forming in 316L steel during one specific test were examined and simulated. Hence, thin foils taken out of massive, tested specimens were first observed in transmission electron microscopy (TEM). These observations help in determining one initial dislocation configuration to be implemented in a 3-D model combining 3D discrete dislocation dynamics simulation (DDD) and finite element method computations (FEM). It was found that the simulated mechanical behaviour of the DDD microstructure is compatible with FEM and experimental data. The numerically generated dislocation microstructure is similar to ladder-like dislocation arrangements as found in many fatigued f.c.c. materials. Distinct mechanical behaviour for the two active slip systems was shown and deformation mechanisms were proposed. (authors)

  9. Nonlinear Fatigue Damage Model Based on the Residual Strength Degradation Law

    Science.gov (United States)

    Yongyi, Gao; Zhixiao, Su

    In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.

  10. Fatigue and damage tolerance scatter models

    Science.gov (United States)

    Raikher, Veniamin L.

    1994-09-01

    Effective Total Fatigue Life and Crack Growth Scatter Models are proposed. The first of them is based on the power form of the Wohler curve, fatigue scatter dependence on mean life value, cycle stress ratio influence on fatigue scatter, and validated description of the mean stress influence on the mean fatigue life. The second uses in addition are fracture mechanics approach, assumption of initial damage existence, and Paris equation. Simple formulas are derived for configurations of models. A preliminary identification of the parameters of the models is fulfilled on the basis of experimental data. Some new and important results for fatigue and crack growth scatter characteristics are obtained.

  11. Quantification of damage and fatigue life under random loading

    Directory of Open Access Journals (Sweden)

    Sahnoun ZENGAH

    2017-12-01

    Full Text Available The fatigue of components and structures under real stress is a very complex process that appears at the grain scale. The present work is to highlight a variable loading fatigue life prediction process using the Rain-flow cycle count method and cumulative damage models. Four damage cumulative models are retained and used to estimate the lifetime and to evaluate the indicator of the damage (D namely: the model Miner, the model of the damaged stress "DSM", the theory unified and finally Henry's law.

  12. Mean stress and the exhaustion of fatigue-damage resistance

    Science.gov (United States)

    Berkovits, Avraham

    1989-01-01

    Mean-stress effects on fatigue life are critical in isothermal and thermomechanically loaded materials and composites. Unfortunately, existing mean-stress life-prediction methods do not incorporate physical fatigue damage mechanisms. An objective is to examine the relation between mean-stress induced damage (as measured by acoustic emission) and existing life-prediction methods. Acoustic emission instrumentation has indicated that, as with static yielding, fatigue damage results from dislocation buildup and motion until dislocation saturation is reached, after which void formation and coalescence predominate. Correlation of damage processes with similar mechanisms under monotonic loading led to a reinterpretation of Goodman diagrams for 40 alloys and a modification of Morrow's formulation for life prediction under mean stresses. Further testing, using acoustic emission to monitor dislocation dynamics, can generate data for developing a more general model for fatigue under mean stress.

  13. Uncertainty on Fatigue Damage Accumulation for Composite Materials

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented.......In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented....

  14. Study on evolution of internal damage in CFRP in fatigue process; Hiro katei ni okeru CFRP no naibu sonsho no kento

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K. [Nagoya Univ. (Japan); Murakami, S. [Nagoya Univ. (Japan). Faculty of Engineering

    1998-05-15

    Development of internal damage evolution in plates and thin tubular speciments of CFRP laminates under static and dynamic loadings are discussed by means of Acoustic Emission measurements and micrographical observations. The mechanical behavior of three kinds of speciments, i.e. undamaged laminate plates [+45deg{sub 4}/-45deg{sub 4}]{sub s}, damaged plates [+45deg{sub 4}/-45deg{sub 4}]{sub s} subjected to drop-weight impact and undamaged tubular speciments [ 45deg]{sub 4}, under quasi-static and fatigue loadings is observed first. Then the mechanism of the resulting inelastic behavior and the change in the mechanical properties are discussed in relation to the evolution of internal damage. Finally the distribution and the evolution of matrix crecks and delamination in the sliced section of the speciments are measured quantitatively in several stages of fatigue process. The dependence of damage distribution on the loading condition is elucidated. Namely, in the case of the stress ratio R=-0.25, the growth of damage zone involving the main crack is localized, and the main crack forms large delamination. On the other hand, for the stress ratio R=0, small cracks are distributed sparsely, but the main crack is not observed until the final stage of the fatifue process. 8 refs., 12 figs.

  15. Damage evolution during fatigue in structural materials

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Man, Jiří; Petrenec, Martin

    2012-01-01

    Roč. 1, August (2012), s. 3-12 ISSN 2211-8128. [International Congress on Metallurgy and Materials - SAM/CONAMET 2011 /11./. Rosario, 18.10.2011-21.10.2011] R&D Projects: GA ČR GA106/09/1954 Institutional support: RVO:68081723 Keywords : cyclic plasticity * crack nucleation * crack growth * fatigue damage Subject RIV: JL - Materials Fatigue, Friction Mechanics

  16. Probabilistic analysis and fatigue damage assessment of offshore mooring system due to non-Gaussian bimodal tension processes

    Science.gov (United States)

    Chang, Anteng; Li, Huajun; Wang, Shuqing; Du, Junfeng

    2017-08-01

    Both wave-frequency (WF) and low-frequency (LF) components of mooring tension are in principle non-Gaussian due to nonlinearities in the dynamic system. This paper conducts a comprehensive investigation of applicable probability density functions (PDFs) of mooring tension amplitudes used to assess mooring-line fatigue damage via the spectral method. Short-term statistical characteristics of mooring-line tension responses are firstly investigated, in which the discrepancy arising from Gaussian approximation is revealed by comparing kurtosis and skewness coefficients. Several distribution functions based on present analytical spectral methods are selected to express the statistical distribution of the mooring-line tension amplitudes. Results indicate that the Gamma-type distribution and a linear combination of Dirlik and Tovo-Benasciutti formulas are suitable for separate WF and LF mooring tension components. A novel parametric method based on nonlinear transformations and stochastic optimization is then proposed to increase the effectiveness of mooring-line fatigue assessment due to non-Gaussian bimodal tension responses. Using time domain simulation as a benchmark, its accuracy is further validated using a numerical case study of a moored semi-submersible platform.

  17. Fatigue damage monitoring of structural aluminum alloys

    Directory of Open Access Journals (Sweden)

    С.Р. Ігнатович

    2004-01-01

    Full Text Available  Results of the experiments directed on creation of a new tool method of fatigue damage diagnostics and an estimation of a residual life of aviation designs are presented. It is shown, that the defo rmation relief formed on a surface of cladding  layer of sheets of constructional alloys Д-16АТ, 2024-Т3, 7075-Т6  can be considered as the metal damage indicator  under cyclically repeating loadings.

  18. A Modified Fatigue Damage Model for High-Cycle Fatigue Life Prediction

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-01-01

    Full Text Available Based on the assumption of quasibrittle failure under high-cycle fatigue for the metal material, the damage constitutive equation and the modified damage evolution equation are obtained with continuum damage mechanics. Then, finite element method (FEM is used to describe the failure process of metal material. The increment of specimen’s life and damage state can be researched using damage mechanics-FEM. Finally, the lifetime of the specimen is got at the given stress level. The damage mechanics-FEM is inserted into ABAQUS with subroutine USDFLD and the Python language is used to simulate the fatigue process of titanium alloy specimens. The simulation results have a good agreement with the testing results under constant amplitude loading, which proves the accuracy of the method.

  19. Modeling of the fatigue damage accumulation processes in the material of NPP design units under thermomechanical unstationary effects. Estimation of spent life and forecast of residual life

    International Nuclear Information System (INIS)

    Kiriushin, A.I.; Korotkikh, Yu.G.; Gorodov, G.F.

    2002-01-01

    Full text: The estimation problems of spent life and forecast of residual life of NPP equipment design units, operated at unstationary thermal force loads are considered. These loads are, as a rule, unregular and cause rotation of main stress tensor platforms of the most loaded zones of structural elements and viscoelastic plastic deformation of material in the places of stresses concentrations. The existing engineering approaches to the damages accumulation processes calculation in the material of structural units, their advantages and disadvantages are analyzed. For the processes of fatigue damages accumulation a model is proposed, which allows to take into account the unregular pattern of deformation multiaxiality of stressed state, rotation of main platforms, non-linear summation of damages at the loading mode change. The model in based on the equations of damaged medium mechanics, including the equations of viscoplastic deformation of the material and evolutionary equations of damages accumulation. The algorithms of spent life estimation and residual life forecast of the controlled equipment and systems zones are made on the bases of the given model by the known real history of loading, which is determined by real model of NPP operation. The results of numerical experiments on the basis of given model for various processes of thermal force loads and their comparison with experimental results are presented. (author)

  20. Creep fatigue damage under multiaxial conditions

    International Nuclear Information System (INIS)

    Lobitz, D.W.; Nickell, R.E.

    1977-01-01

    When structural components are subjected to severe cyclic loading conditions with intermittent periods of sustained loading at elevated temperature, the designer must guard against a failure mode caused by the interaction of time-dependent and time-independent deformation. This phenomena is referred to as creep-fatigue interaction. The most elementary form of interaction theory (called linear damage summation) is now embodied in the ASME Boiler and Pressure Vessel Code. In recent years, a competitor for the linear damage summation theory has emerged, called strainrange partitioning. This procedure is based upon the visualization of the cyclic strain in a uniaxial creep-fatigue test as a hysteresis loop, with the inelastic strains in the loop counter-balanced in one of two ways. The two theories are compared and contrasted in terms of ease of use, possible inconsistencies, and component life prediction. Future work to further test the damage theories is recommended

  1. Development of probabilistic fatigue curve for asphalt concrete based on viscoelastic continuum damage mechanics

    Directory of Open Access Journals (Sweden)

    Himanshu Sharma

    2016-07-01

    Full Text Available Due to its roots in fundamental thermodynamic framework, continuum damage approach is popular for modeling asphalt concrete behavior. Currently used continuum damage models use mixture averaged values for model parameters and assume deterministic damage process. On the other hand, significant scatter is found in fatigue data generated even under extremely controlled laboratory testing conditions. Thus, currently used continuum damage models fail to account the scatter observed in fatigue data. This paper illustrates a novel approach for probabilistic fatigue life prediction based on viscoelastic continuum damage approach. Several specimens were tested for their viscoelastic properties and damage properties under uniaxial mode of loading. The data thus generated were analyzed using viscoelastic continuum damage mechanics principles to predict fatigue life. Weibull (2 parameter, 3 parameter and lognormal distributions were fit to fatigue life predicted using viscoelastic continuum damage approach. It was observed that fatigue damage could be best-described using Weibull distribution when compared to lognormal distribution. Due to its flexibility, 3-parameter Weibull distribution was found to fit better than 2-parameter Weibull distribution. Further, significant differences were found between probabilistic fatigue curves developed in this research and traditional deterministic fatigue curve. The proposed methodology combines advantages of continuum damage mechanics as well as probabilistic approaches. These probabilistic fatigue curves can be conveniently used for reliability based pavement design. Keywords: Probabilistic fatigue curve, Continuum damage mechanics, Weibull distribution, Lognormal distribution

  2. Fatigue damage modeling in solder interconnects using a cohesive zone approach

    NARCIS (Netherlands)

    Abdul-Baqi, A.J.J.; Schreurs, P.J.G.; Geers, M.G.D.

    2005-01-01

    The objective of this work is to model the fatigue damage process in a solder bump subjected to cyclic loading conditions. Fatigue damage is simulated using the cohesive zone methodology. Damage is assumed to occur at interfaces modeled through cohesive zones in the material, while the bulk material

  3. Creep-fatigue damage under multiaxial conditions

    International Nuclear Information System (INIS)

    Lobitz, D.W.; Nickell, R.E.

    1977-02-01

    ASME Code rules for design against creep-fatigue damage for Class 1 nuclear components operating at elevated temperatures are currently being studied by ASME working groups and task forces with a view toward major modification. In addition, the design rules being developed for Class 2 and Class 3 components would be affected by any major modifications of Class 1 Rules. The report represents an attempt to evaluate the differences between two competing procedures--linear damage summation and strainrange partitioning--for multiaxial stress conditions. A modified version of strainrange partitioning is also developed to alleviate some limitations on nonproportional loading

  4. Random accumulated damage evaluation under multiaxial fatigue loading conditions

    Directory of Open Access Journals (Sweden)

    V. Anes

    2015-07-01

    Full Text Available Multiaxial fatigue is a very important physical phenomenon to take into account in several mechanical components; its study is of utmost importance to avoid unexpected failure of equipment, vehicles or structures. Among several fatigue characterization tools, a correct definition of a damage parameter and a load cycle counting method under multiaxial loading conditions show to be crucial to estimate multiaxial fatigue life. In this paper, the SSF equivalent stress and the virtual cycle counting method are presented and discussed, regarding their physical foundations and their capability to characterize multiaxial fatigue damage under complex loading blocks. Moreover, it is presented their applicability to evaluate random fatigue damage.

  5. Prediction of fatigue damage in tapered laminates

    DEFF Research Database (Denmark)

    Raeis Hosseiny, Seyed Aydin; Jakobsen, Johnny

    2017-01-01

    Effective implementation of ply-drops configurations substantially improve the damage tolerant design of flexible and aero-elastic wind turbine blades. Terminating a number of layers for an optimized blade design creates local bending effects. Inter-laminar stress states in tapered areas give rise...... to delamination and premature structural failure. Precise calculation of the stress levels for embedded ply-drops is required to predict failure initiation within acceptable limits. Multi-axial stress states in orthotropic laminates subjected to diverse loading mechanisms nucleate microscopic cracks....... By increasing the cracks density, damage occurs when residual material properties reduce to a critical level. Residual strength and stiffness of simple laminates are assigned in a set of fatigue failure criteria to assess the remaining life of the components by increasing number of loading cycles. The mode...

  6. Integrated fatigue damage diagnosis and prognosis under uncertainties

    Data.gov (United States)

    National Aeronautics and Space Administration — An integrated fatigue damage diagnosis and prognosis framework is proposed in this paper. The proposed methodology integrates a Lamb wave-based damage detection...

  7. Continuum damage mechanics method for fatigue growth of surface cracks

    International Nuclear Information System (INIS)

    Feng Xiqiao; He Shuyan

    1997-01-01

    With the background of leak-before-break (LBB) analysis of pressurized vessels and pipes in nuclear plants, the fatigue growth problem of either circumferential or longitudinal semi-elliptical surface cracks subjected to cyclic loading is studied by using a continuum damage mechanics method. The fatigue damage is described by a scalar damage variable. From the damage evolution equation at the crack tip, a crack growth equation similar to famous Paris' formula is derived, which shows the physical meaning of Paris' formula. Thereby, a continuum damage mechanics approach is developed to analyze the configuration evolution of surface cracks during fatigue growth

  8. Study on the effect of prior fatigue and creep-fatigue damage on the fatigue and creep characteristics of 316 FR stainless steel. 2nd report. The effect of prior creep-fatigue damage on the creep and fatigue characteristics

    International Nuclear Information System (INIS)

    Yamauchi, Masafumi; Chuman, Yasuharu; Otani, Tomomi; Takahashi, Yukio

    2001-01-01

    The effect of prior creep-fatigue damage on the creep and the fatigue characteristics was studied to investigate the creep-fatigue life evaluation procedure of 316FR stainless steel. Creep and fatigue tests were conducted at 550degC by using the specimen exposed to prior creep-fatigue cycles at the same temperature and interrupted at 1/4 Nf, 1/2 Nf and 3/4 Nf cycle. The creep and fatigue strength of the pre-damaged material showed monotonic reduction with the prior creep-fatigue damage compared with the virgin material. The creep ductility also showed monotonic reduction with the prior creep-fatigue damage. These results were evaluated by the stress-based Time Fraction Rule and the strain-based Ductility Exhaustion Method. The result showed that the application of the Ductility Exhaustion Method to the creep-fatigue damage evaluation is more promising than the Time Fraction Rule. (author)

  9. 77 FR 4890 - Damage Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures, and Damage Tolerance...

    Science.gov (United States)

    2012-02-01

    ...-AJ52, 2120-AJ51 Damage Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures, and Damage Tolerance and Fatigue Evaluation for Metallic Structures; Correction AGENCY: Federal Aviation Administration... Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures'' (76 FR 74655), published December 1...

  10. Fatigue testing of wood composites for aerogenerator blades. Pt. 11: Assessment of fatigue damage accumulation using a fatigue modulus approach

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, C L; Ansell, M P [Bath Univ. (United Kingdom)

    1996-12-31

    Stress-strain hysteresis loops have been captured during fatigue tests performed at R=10 (compression-compression) and R=0.1 (tension-tension) on Khaya epoxy wood composites. A fatigue modulus approach, proposed by Hwang and Han in 1989, has been applied to the data and a relationship established between the initial change in fatigue modulus and fatigue life. By following changes in fatigue modulus during the first 100 test cycles it is possible to predict the life of the sample allowing rapid evaluation of the fatigue performance of wood composites. Fatigue modulus values have also been calculated for hysteresis loops captured during complex load - time history tests. Similar trends in change in fatigue modulus suggest that this approach could be used in complex loading conditions to evaluate fatigue damage accumulation and predict fatigue life. (Author)

  11. Fatigue Damage Estimation and Data-based Control for Wind Turbines

    DEFF Research Database (Denmark)

    Barradas Berglind, Jose de Jesus; Wisniewski, Rafal; Soltani, Mohsen

    2015-01-01

    based on hysteresis operators, which can be used in control loops. The authors propose a data-based model predictive control (MPC) strategy that incorporates an online fatigue estimation method through the objective function, where the ultimate goal in mind is to reduce the fatigue damage of the wind......The focus of this work is on fatigue estimation and data-based controller design for wind turbines. The main purpose is to include a model of the fatigue damage of the wind turbine components in the controller design and synthesis process. This study addresses an online fatigue estimation method...... turbine components. The outcome is an adaptive or self-tuning MPC strategy for wind turbine fatigue damage reduction, which relies on parameter identification on previous measurement data. The results of the proposed strategy are compared with a baseline model predictive controller....

  12. ESTIMATION OF IRREVERSIBLE DAMAGEABILITY AT FATIGUE OF CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2014-04-01

    Full Text Available Purpose. Damageability estimation of carbon steel in the conditions of cyclic loading. Methodology. The steel fragments of railway wheel rim and rail head served as material for research with chemical composition 0.65 % С, 0.67 % Mn, 0.3 % Si, 0.027 % P, 0.028 % S и 0.7 % C, 0.82 % Mn, 0.56 % Si, 0.025 % P, 0.029 % S accordingly. The microstructure of tested steels corresponded to the state of metal after a hot plastic deformation. The fatigue research was conducted in the conditions of symmetric bend using the proof-of-concept machine of type «Saturn-10». Full Wohler diagrams and the lines corresponding to forming of sub-and micro cracks were constructed. The distribution analysis of internal stresses in the metal under cyclic loading was carried out using the microhardness tester of PMT-3 type.Findings. On the basis of fatigue curves for high-carbon steels analysis the positions of borders dividing the areas of convertible and irreversible damages were determined. The article shows that with the growth of carbon concentration in the steel at invariability of the structural state an increase of fatigue limit is observed. At the same time the acceleration of processes, which determine transition terms from the stage of forming of submicrocracks to the microcracks occurs. The research of microhardness distribution in the metal after destruction confirmed the nature of carbon amount influence on the carbon steel characteristics. Originality. Regardless on the stages of breakdown site forming the carbon steels behavior at a fatigue is determined by the ration between the processes of strengthening and softening. At a cyclic loading the heterogeneity of internal stresses distribution decreases with the increase of distance from the destruction surface. Analysis of metal internal restructuring processes at fatigue loading made it possible to determine that at the stages prior to incubation period in the metal microvolumes the cells are already

  13. Fatigue damage propagation in unidirectional glass fibre reinforced composites

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Alzamora Guzman, Vladimir Joel; Østergaard, R.C.

    2012-01-01

    bundles. The underlying mechanisms are examined using digital microscopy, and it is postulated that fatigue damage initiates due to stress concentrations between the backing (transverse) layer and the unidirectional layer, followed by a cyclic fretting and axial fibre debonding. This fretting mechanism......Damage progression in unidirectional glass fibre reinforced composites exposed to tension fatigue is investigated, and a quantitative explanation is given for the observed stiffness loss. The stiffness degradation during fatigue is directly related to fibre breaks in the load-carrying axial fibre...... needs further attention and understanding in order to improve the fatigue life-time of glass fibre reinforced composites....

  14. Fatigue behavior and damage characteristic of ultra-fine grain low-purity copper processed by equal-channel angular pressing (ECAP)

    Energy Technology Data Exchange (ETDEWEB)

    Xu Changzheng; Wang Qingjuan [School of Materials Science and Engineering, Xian Jiaotong University, Xian 710049 (China); Zheng Maosheng [Institute of Condensed Matter Physics and Materials, Northwest University, Xian 710069 (China)], E-mail: mszhengnw@sohu.com; Li Jindou; Huang Meiquan; Jia Qingming; Zhu Jiewu [School of Materials Science and Engineering, Xian Jiaotong University, Xian 710049 (China); Kunz, Ludvik; Buksa, Michal [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Brno 61662 (Czech Republic)

    2008-02-25

    The S-N and Coffin-Manson plot, cyclic stress-strain response, changes of microstructure, and the surface morphology of ultra-fine grain (UFG) low-purity copper processed by ECAP were tested and observed in present study. And the formation mechanism of shear bands was discussed in detail. The results show that the UFG Cu represents longer lifetime under stress-controlled fatigue, but lower fatigue resistance under strain-controlled fatigue when compared with the coarse grain counterpart. Cyclic stress-strain responses of UFG Cu under stress-controlled fatigue alter from cyclic softening to cyclic hardening as stress amplitude decreases. But the responses always show cyclic softening under strain-controlled fatigue in present testing. By electron back scattering diffraction and transmission electron microscope technique, the shear bands were discovered on the surface of all cycled samples and no grain coarsening was discovered near the shear bands, which indicated that there was no inevitable relationship between formation of SBs and cyclic softening/grain coarsening. The discovery should be related to impurities in copper. The oriented distribution of defects along the shear plane in the last ECAP processing is one of the major mechanisms of SBs formation.

  15. Fatigue behavior and damage characteristic of ultra-fine grain low-purity copper processed by equal-channel angular pressing (ECAP)

    International Nuclear Information System (INIS)

    Xu Changzheng; Wang Qingjuan; Zheng Maosheng; Li Jindou; Huang Meiquan; Jia Qingming; Zhu Jiewu; Kunz, Ludvik; Buksa, Michal

    2008-01-01

    The S-N and Coffin-Manson plot, cyclic stress-strain response, changes of microstructure, and the surface morphology of ultra-fine grain (UFG) low-purity copper processed by ECAP were tested and observed in present study. And the formation mechanism of shear bands was discussed in detail. The results show that the UFG Cu represents longer lifetime under stress-controlled fatigue, but lower fatigue resistance under strain-controlled fatigue when compared with the coarse grain counterpart. Cyclic stress-strain responses of UFG Cu under stress-controlled fatigue alter from cyclic softening to cyclic hardening as stress amplitude decreases. But the responses always show cyclic softening under strain-controlled fatigue in present testing. By electron back scattering diffraction and transmission electron microscope technique, the shear bands were discovered on the surface of all cycled samples and no grain coarsening was discovered near the shear bands, which indicated that there was no inevitable relationship between formation of SBs and cyclic softening/grain coarsening. The discovery should be related to impurities in copper. The oriented distribution of defects along the shear plane in the last ECAP processing is one of the major mechanisms of SBs formation

  16. Fatigue-Damage Estimation and Control for Wind Turbines

    OpenAIRE

    Barradas Berglind, Jose de Jesus

    2015-01-01

    How can fatigue-damage for control of wind turbines be represented? Fatigue-damage is indeed a crucial factor in structures such as wind turbines that are exposed to turbulent and rapidly changing wind flow conditions. This is relevant both in their design stage and during the control of their operation. Accordingly, the most recognized methods of fatigue-damage estimation are discussed in this thesis.In wind energy conversion systems there is an intrinsic trade-off between power generation m...

  17. Fatigue Life of Postbuckled Structures with Indentation Damage

    Science.gov (United States)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of the stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 37 millimeters to 56 millimeters were tested in fatigue and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  18. Fatigue Life of Postbuckled Structures with Indentation Damages

    Science.gov (United States)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of each stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 32 millimeters to 56 millimeters were tested quasi-statically and in fatigue, and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  19. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    Lehericy, Y.

    2007-05-01

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  20. Optimal Inspection Planning for Fatigue Damage of Offshore Structures

    DEFF Research Database (Denmark)

    Madsen, H.O.; Sørensen, John Dalsgaard; Olesen, R.

    1990-01-01

    A formulation of optimal design, inspection and maintenance against damage caused by fatigue crack growth is formulated. A stochastic model for fatigue crack growth based on linear elastic fracture mechanics Is applied. Failure is defined by crack growth beyond a critical crack size. The failure ...

  1. Fatigue damage mechanisms in short fiber reinforced PBT+PET GF30

    International Nuclear Information System (INIS)

    Klimkeit, B.; Castagnet, S.; Nadot, Y.; Habib, A. El; Benoit, G.; Bergamo, S.; Dumas, C.; Achard, S.

    2011-01-01

    Research highlights: → Final macroscopic cracking only affects the few last percent of the lifetime → Classical approach based on fracture surface observation is not sufficient to characterize micro-mechanisms → Different techniques (scanning electron microscopy, replica technique, infra-red imaging) are compared to the macroscopic mechanical behavior evolution (stiffness, viscous damping, ratcheting effect) → The influence of surrounding fibers on some observed damage processes is being evidenced for the first time. - Abstract: The fatigue damage of a glass-reinforced PolyButylene Terephthalate and PolyEthylene Terephthalate with the fiber volume fraction of 30% (PBT+PET GF30) is investigated by means of various techniques. Fatigue tests at R = 0.1 are carried out on dogbone specimens and tubular specimens with different fiber orientations. The macroscopic evolution of the material behavior is evaluated and fatigue damage mechanisms are observed with a replica technique, Infrared imaging and scanning electron microscopy. A fatigue damage scenario is finally proposed. It is shown that the propagation of a single macroscopic crack is not the major fatigue mechanism under fatigue loading. Damage is spatially distributed in the material and the classical circular crack at the end of the fiber is confirmed as the based fatigue mechanisms. It is also shown that the damage observed alongside the fibers is related to spatial distribution of fiber rather than stress distribution around one single fiber.

  2. Nondestructive evaluation of creep-fatigue damage: an interim report

    International Nuclear Information System (INIS)

    Nickell, R.E.

    1977-02-01

    In view of the uncertainties involved in designing against creep-fatigue failure and the consequences of such failures in Class 1 nuclear components that operate at elevated temperature, the possibility of intermittent or even continuous non-destructive examination of these components has been considered. In this interim report some preliminary results on magnetic force and ultrasonic evaluation of creep-fatigue damage in an LMFBR steam generator material are presented. These results indicate that the non-destructive evaluation of pure creep damage will be extremely difficult. A set of biaxial creep-fatigue tests that are designed to discriminate between various failure theories is also described

  3. Sources of fatigue damage to passive yaw wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Laino, D.J. [Univ. of Utah, Salt Lake City, UT (United States)

    1997-12-31

    Using an integrated computer analysis approach developed at the University of Utah, fatigue damage sources to passive yaw wind turbine blades have been investigated. Models of a rigid hub and teetering hub machine reveal the parameters important to the fatigue design of each type. The teetering hub proved much less susceptible to fatigue damage from normal operation loads. As a result, extreme events were critical to the teetering hub fatigue life. The rigid hub blades experienced extremely large gyroscopic load cycles induced by rapid yaw rates during normal operation. These yaw rates stem from turbulence activity which is shown to be dependent upon atmospheric stability. Investigation revealed that increasing yaw damping is an effective way of significantly reducing these gyroscopic fatigue loads.

  4. Cumulative fatigue and creep-fatigue damage at 3500C on recrystallized zircaloy 4

    International Nuclear Information System (INIS)

    Brun, G.; Pelchat, J.; Floze, J.C.; Galimberti, M.

    1985-06-01

    An experimental programme undertaken by C.E.A., E.D.F. and FRAGEMA with the aim of characterizing the fatigue and creep fatigue behaviour of zircaloy-4 following annealing treatments (recrystallized, stress-delived) is in progress. The results given below concern only recrystallized material. Cyclic properties, low-cycle fatigue curves and creep behaviour laws under stresses have been established. Sequential tests of pure fatigue and creep-fatigue were performed. The cumulative life fractions at fracture depend on the sequence of leading, stress history and number of cycles of prestressing. The MINER's rule appears to be conservative with regard to a low-high loading sequence whereas it is not for the reverse high-low loading sequences. Fatigue and creep damage are not interchangeable. Pre-creep improves the fatigue resistance. Pre-fatigue improves the creep strength as long as the beneficial effect of cyclic hardening overcomes the damaging effect of surface cracking. The introduction of a tension hold time into the fatigue cycle slightly increases cyclic hardening and reduces the number of cycles to failure. For hold times of less than one hour, the sum of fatigue and creep life fractions is closed to one

  5. Study of the damage processes induced by thermal fatigue in stainless steels F17TNb and R20-12 for automobile application; Etude de l'endommagement en fatigue thermique des aciers inoxydables F17TNb et R20-12 pour application automobile

    Energy Technology Data Exchange (ETDEWEB)

    Bucher, L.

    2004-12-15

    Thermal cycling is the main cause of fatigue failure in automobile exhaust manifolds for which the use of stainless steel now rivals that of cast iron which has been traditionally used. An original fatigue test has been developed by Ugine and ALZ, a stainless steel producer, so as to be able to compare different grades of stainless steel alloys. This test is representative of the thermal conditions encountered in the critical zones of exhaust manifolds. However, it has revealed significant differences in damage processes in the ferritic and austenitic grades tested. The subject of this thesis is the damage processes induced by thermal fatigue in stainless steels used for automotive exhaust manifolds. Two stainless steels were studied: a ferritic grade, F17TNb (17%Cr and stabilized with Ti and Nb), and an austenitic grade, R20-12, containing 20% Cr and 12% Ni. The first objective was to understand the different damage processes induced by thermal fatigue in the ferritic and austenitic grades. The second was to develop a numerical design tool of the thermally tested structures. (author)

  6. Fatigue-Damage Estimation and Control for Wind Turbines

    DEFF Research Database (Denmark)

    Barradas Berglind, Jose de Jesus

    How can fatigue-damage for control of wind turbines be represented? Fatigue-damage is indeed a crucial factor in structures such as wind turbines that are exposed to turbulent and rapidly changing wind flow conditions. This is relevant both in their design stage and during the control......, the inclusion of fatigue-damage within feedback control loops is of special interest. Four strategies in total are proposed in this work: three for the wind turbine level and one for the wind farm level. On one hand, the three strategies in the turbine level are based on hysteresis operators and strive......-damage estimation in wind turbine components, to the mixed objective operation of wind energy conversion systems, and to the synthesis of control strategies that include hysteresis operators....

  7. Nondestructive detection of microstructural fatigue damage

    International Nuclear Information System (INIS)

    Willems, H.; Persch, H.

    1990-02-01

    Ultrasonic as well as magnetic investigations have been performed on a pressure vessel steel (A533, B class 1) in order to study the influence of fatigue loading on both elastic and magnetic material properties. Using laboratory specimens under two different loading conditions (tension-tension loading, tension-compression loading), material characteristics like ultrasonic velocity, ultrasonic absorption, coercivity, incremental permeability were measured and evaluated as a function of consumed lifetime. Only in case of macroscopic plastic deformation, significant changes of the measuring quantities were observed. Otherwise the effects are so small that the nondestructive detection of microstructural changes due to fatigue loading seems not to be feasible under practical conditions (for example at pressure vessels) with the techniques used. Besides a zero measurement, additional measurements on a 1:5 model vessel at JRC Ispra could not be carried out, because the planned fatigue tests were not performed by JRC Ispra during the research period

  8. Thermomechanical fatigue and damage mechanisms in Sanicro 25 steel

    Czech Academy of Sciences Publication Activity Database

    Petráš, Roman; Škorík, Viktor; Polák, Jaroslav

    2016-01-01

    Roč. 650, JAN (2016), s. 52-62 ISSN 0921-5093 R&D Projects: GA MŠk(CZ) EE2.3.30.0063; GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : thermomechanical fatigue * Sanicro 25 steel * damage mechanism * FIB cutting * localized oxidation-cracking Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 3.094, year: 2016

  9. Fatigue Damage Predictions in Aluminium Constructions

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Toernqvist, Rikard; Nielsen, Poul Erik

    2002-01-01

    The paper describes parts of the outcome of a large Danish research project on Large Scale Aluminum Connections. The topic addressed is calculation of fatigue failure in complicated welded aluminum connections. The calculation procedure is based on a S-N curve for the hot-spot stresses at the wel...

  10. Thermomechanical fatigueDamage mechanisms and mechanism ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    varied linearly with time and synchronously in-phase (IP) and out-of-phase (OP) to the plas- tic strain. The tests were always started at the mean temperature and at zero plastic strain with the strain increasing. The majority of the fatigue tests were conducted in laboratory air; though some experiments were carried out in high ...

  11. Computational stress and damage modelling for rolling contact fatigue

    DEFF Research Database (Denmark)

    Cerullo, Michele

    Rolling contact fatigue in radial roller bearings is studied by means of a 2D plane strain nite element program. The Dang Van multiaxial fatigue criterion is firstly used, in a macroscopic study modeling the bearing raceway, to investigate the region where fatigue cracks are more likely to nucleate...... and of compressive residual stresses are also analyzed. The stress history of a material point at the depth where the maximum Dang Van damage factor is reached is then recorded and used in a subsequent micro-mechanical analysis. The stress history is applied as periodic boundary conditions in a representative volume...

  12. Fatigue damage behavior of a surface-mount electronic package under different cyclic applied loads

    Science.gov (United States)

    Ren, Huai-Hui; Wang, Xi-Shu

    2014-04-01

    This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fatigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respectively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.

  13. Onboard monitoring of fatigue damage rates in the hull girder

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Jensen, Jørgen Juncher; Pedersen, Preben Terndrup

    2011-01-01

    Most new advanced ships have extensive data collection systems to be used for continuous monitoring of engine and hull performance, for voyage performance evaluation etc. Such systems could be expanded to include also procedures for stress monitoring and for decision support, where the most...... critical wave-induced ship extreme responses and fatigue damage accumulation can be estimated for hypothetical changes in ship course and speed in the automatically estimated wave environment.The aim of this paper is to outline a calculation procedure for fatigue damage rate prediction in hull girders...... taking into account whipping stresses. It is conceptually shown how such a method, which integrates onboard estimation of sea states, can be used to deduce decision support with respect to the accumulated fatigue damage in the hull girder.The paper firstly presents a set of measured full-scale wave...

  14. Fatigue damage of nuclear facilities; Endommagement par fatigue des installations nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The conference on the fatigue damage of nuclear facilities, organized by the SFEN (french society of nuclear energy), took place at Paris the 23. of november 2000. Eleven papers were presented, showing the state of the art and the research programs in the domain of the sizing rules, safety, installations damage, examination and maintenance. (A.L.B.)

  15. Nondestructive detection of microstructural fatigue damage

    International Nuclear Information System (INIS)

    Willems, H.; Persch, H.; Voss, B.; Falk, L.

    1989-01-01

    Ultrasonic as well as magnetic investigations have been performed on a pressure vessel steel (A533, B class 1) in order to study the influence of fatigue loading on both elastic and magnetic material properties. Using laboratory specimens under two different loading conditions (tension-tension loading, tension-compression loading), material characteristics like ultrasonic velocity, ultrasonic absorption, coercivity, incremental permeability were measured and evaluated as a function of consumed lifetime. Only in case of macroscopic plastic deformation, significant changes of the measuring quantities were observed. Otherwise the effects are so small that the nondestructive detection of microstructural changes due to high-cycle fatigue loading seems not to be feasible under practical conditions (for example at pressure vessels) with the techniques used. (orig.) [de

  16. Fretting fatigue life estimation using fatigue damage gradient correction factor in various contact configurations

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dong Hyeon; Cho, Sung-San [Hongik University, Seoul (Korea, Republic of)

    2017-03-15

    A fretting fatigue life estimation method that takes into account the stress gradient effect was developed by the authors [Journal of Mechanical Science and Technology, 28 (2014) 2153-2159]. In the developed method, fatigue damage value at the cracking location is corrected with fatigue damage gradient and the corrected value is compared directly with the plain fatigue data for life estimation. In other words, the correction factor is the ratio of plain fatigue damage to fretting fatigue damage at the same life and a function of fatigue damage gradient. Since reliability of the method was verified only for cylinder-on-flat contact configuration in the previous study, the present study extends application of the method to flat-on-flat contact configurations by developing the correction factor for both the contact configuration. Fretting fatigue experiments were conducted to obtain fatigue life data for various fretting pads. Finite element analyses were conducted to evaluate the Smith-Watson-Topper (SWT) fatigue damage parameter in the cracking region. It is revealed that the SWT parameter in fat-on-flat contact configuration decreases exponentially away from the surface as in cylinder-on-flat contact configuration, and thus the SWT gradient at the surface can be evaluated reliably. Moreover, it is found that decrease in the SWT parameter around the cracking location can be expressed by piecewise exponential curves. If the gradient of SWT at the surface is used as a representative value of SWT gradient, it is impossible to establish functional relationship between the SWT gradient and the correction factor for both the contact configurations although it was possible for cylinder-on-flat contact configuration. However, if weighted average of the SWT gradient values obtained from each exponential curve in the piecewise exponential curve is used as a representative value, the correction factor for both the contact configurations becomes a function of the SWT gradient

  17. Fatigue damage mechanism and strength of woven laminates

    International Nuclear Information System (INIS)

    Xiao, J.; Bathias, C.

    1993-01-01

    The apparent secant stiffness changes with the cyclic number for both unnotched and notched woven laminated specimens (two orthotropic and one quasi-isotropic) during tensile fatigue test at a fixed ratio of maximum fatigue load to UTS were observed. The observable damage initiation and evolution as a function of the cyclic number were directly measured at the notched specimen surface with a video-camera system. The fatigue strengths of the unnotched and notched specimens were determined. The results show that the normalized apparent secant stiffness change curves as a function of cyclic numbers can be divided into three stages. For the first and the second stages in notched specimens and for total life of unnotched specimens, the damage has not been evidently observed and certainly verified with the traditional experimental methods such as radiography and microscopy although many acoustic emission signals can be obtained. The last stage for the notched specimens (N/Nf>0.4, the secant stiffness decreases fast) corresponds to the initiation and evolution of the observable damages. The fatigue strength of these woven composite laminates is dominated by the third stage during which the observable damage develops along the specimen ligament until fracture. During the third stage, a critical dimension at the specimen ligament and a life threshold can be found beyond which a final catastrophic fracture will immediately occur. The quasi-isotropic laminate is of a fatigue strength lower than the two orthotropic laminates of which the fatigue strengths are approaching to each other. The fatigue life is also influenced by the stacking sequences. (orig.)

  18. Some aspects of thermomechanical fatigue of AISI 304L stainless steel: Part I. creep- fatigue damage

    Science.gov (United States)

    Zauter, R.; Christ, H. J.; Mughrabi, H.

    1994-02-01

    Thermomechanical fatigue (TMF) tests on the austenitic stainless steel AISI 304L have been conducted under “true≓ plastic-strain control in vacuum. This report considers the damage oc-curring during TMF loading. It is shown how the temperature interval and the phasing (in-phase, out-of-phase) determine the mechanical response and the lifetime of the specimens. If creep-fatigue interaction takes place during in-phase cycling, the damage occurs inside the ma-terial, leading to intergranular cracks which reduce the lifetime considerably. Out-of-phase cy-cling inhibits creep-induced damage, and no lifetime reduction occurs, even if the material is exposed periodically to temperatures in the creep regime. A formula is proposed which allows prediction of the failure mode, depending on whether creep-fatigue damage occurs or not. At a given strain rate, the formula is able to estimate the temperature of transition between pure fatigue and creep-fatigue damage.

  19. The effect of creep-fatigue damage relationships upon HTGR heat exchanger design

    International Nuclear Information System (INIS)

    Kozina, M.M.; King, J.H.; Basol, M.

    1984-01-01

    Materials for heat exchangers in the high temperature gas-cooled reactor (HTGR) are subjected to cyclic loading, extending the necessity to design against fatigue failure into the temperature region where creep processes become significant. Therefore, the fatigue life must be considered in terms of creep-fatigue interaction. In addition, since HTGR heat exchangers are subjected to holds at constant strain levels or constant stress levels in high-temperature environments, the cyclic life is substantially reduced. Of major concern in the design and analysis of HTGR heat exchangers is the accounting for the interaction of creep and fatigue. The accounting is done in conformance to the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Code Case N-47, which allows the use of the linear damage criterion for interaction of creep and fatigue. This method separates the damage incurred in the material into two parts: one due to fatigue and one due to creep. The summation of the creep-fatigue damage must be less than 1.0. Recent material test data have indicated that the assumption of creep and fatigue damage equals unity at failure may not always be valid for materials like Alloy 800H, which is used in the higher temperature sections of HTGR steam generators. Therefore, a more conservative creep-fatigue damage relationship was postulated for Alloy 800H. This more conservative bilinear damage relationship consists of a design locus drawn from D F =1.0, D C =0 to D F =0.1, D C =0.1 to D F =0, D C =1.0. D F is the fatigue damage and D C is the creep damage. A more conservative damage relationship for 2-1/4 Cr-1 Mo material consisted of including factors that degrade the fatigue curves. These revised relationships were used in a structural evaluation of the HTGR steam cycle/cogeneration (SC/C) steam generator design. The HTGR-SC/C steam generator, a once-through type, is comprised of an economizer-evaporator-superheater (ESS) helical bundle of 2-1/4 Cr-1

  20. Damage and fatigue in cross-linked rubbers

    Science.gov (United States)

    Melnikov, Alexei

    Damage and fatigue of elastomers have not been fundamentally understood because of the complex nature of these materials. All currently existing models are completely phenomenological. Therefore two problems have been investigated in this research to address those fundamental issues. The first problem was creating an innovative concept with a mathematical modeling, which would be able to describe the damage using molecular characteristics of elastomers. The second problem is developing new approaches to study fatigue, and especially impact fatigue of elastomers. The following results have been obtained in this research. A theoretical model of damage has been developed which involves the basic molecular characteristics of cross-linked elastomers and takes into account the effects of viscoelasticity and stress-induced crystallization. This model was found very reliable and successful in description of numerous quasi-static simple extension experiments for monotonous and repeating loadings. It also roughly predicts in molecular terms the failure of elastomers with various degrees of cross-linking. Quasi-impact fatigue tests with different geometry of an indenter have also been performed. Some microscopic features of rubber damage have been investigated using optical microscopy and SEM. In particular, the accumulation of a completely de-vulcanized, liquid-like substance was observed under intense, multi-cycle impacts. All the findings discovered in quasi-impact experiments are consistent with the damage model predictions.

  1. Creep-fatigue damage in austenitic stainless steels

    International Nuclear Information System (INIS)

    Rezgui, Brahim.

    1980-06-01

    This is a study of hold time effects on the low cycle fatigue (L.C.F.) properties of 316L austenitic stainless steel at 600 0 C in air. Results obtained for different plastic strain levels indicate that a tension hold time at peak strain lead to a reduction in fatigue life. The importance of this effect depend on the length of hold period, and also on the strain amplitude. No saturation had been observed. Metallographic and microstructural analysis of failed specimens indicates mechanisms by which failure is produced. For continuous cycling the fractures occurs by the initiation and the propagation of a trans-granular crack. Creep damage in the bulk of material is formed during periods of tensile stress relaxation; it causes a change in the failure mode which became intergranular. It is the interaction between this creep-damage and fatigue cracks which is partly responsable for the reduction in the fatigue life. Predictions based upon linear cumulative damage method indicate that virgin material properties may be irrelevant in creep-fatigue interactions [fr

  2. A thermodynamic approach to fatigue damage accumulation under variable loading

    International Nuclear Information System (INIS)

    Naderi, M.; Khonsari, M.M.

    2010-01-01

    We put forward a general procedure for assessment of damage evolution based on the concept of entropy production. The procedure is applicable to both constant- and variable amplitude loading. The results of a series of bending fatigue tests under both two-stage and three-stage loadings are reported to investigate the validity of the proposed methodology. Also presented are the results of experiments involving bending, torsion, and tension-compression fatigue tests with Al 6061-T6 and SS 304 specimens. It is shown that, within the range of parameters tested, the evolution of fatigue damage for these materials in terms of entropy production is independent of load, frequency, size, loading sequence and loading history. Furthermore, entropy production fractions of individual amplitudes sums to unity.

  3. Fatigue damage mechanics of notched graphite-epoxy laminates

    Science.gov (United States)

    Spearing, Mark; Beaumont, Peter W. R.; Ashby, Michael F.

    A modeling approach is presented that recognizes that the residual properties of composite laminates after any form of loading depend on the damage state. Therefore, in the case of cyclic loading, it is necessary to first derive a damage growth law and then relate the residual properties to the accumulated damage. The propagation of fatigue damage in notched laminates is investigated. A power law relationship between damage growth and the strain energy release rate is developed. The material constants used in the model have been determined in independent experiments and are invariant for all the layups investigated. The strain energy release rates are calculated using a simple finite element representation of the damaged specimen. The model is used to predict the effect of tension-tension cyclic loading on laminates of the T300/914C carbon-fiber epoxy system. The extent of damage propagation is successfully predicted in a number of cross-ply laminates.

  4. Failure Mechanisms and Damage Model of Ductile Cast Iron Under Low-Cycle Fatigue Conditions

    Science.gov (United States)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Sloss, Clayton

    2014-10-01

    Strain-controlled low-cycle fatigue (LCF) tests were conducted on ductile cast iron (DCI) at strain rates of 0.02, 0.002, and 0.0002/s in the temperature range from room temperature to 1073 K (800 °C). A constitutive-damage model was developed within the integrated creep-fatigue theory (ICFT) framework on the premise of strain decomposition into rate-independent plasticity and time-dependent creep. Four major damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement (IE), (iii) creep, and (iv) oxidation were considered in a nonlinear creep-fatigue interaction model which represents the overall damage accumulation process consisting of oxidation-assisted fatigue crack nucleation and propagation in coalescence with internally distributed damage ( e.g., IE and creep), leading to final fracture. The model was found to agree with the experimental observations of the complex DCI-LCF phenomena, for which the linear damage summation rule would fail.

  5. Experimental investigation and analysis of damage evolution in concrete under high-cyclic fatigue loadings

    International Nuclear Information System (INIS)

    Thiele, Marc

    2016-01-01

    The main objective of this thesis is the fatigue behavior of concrete under high-cycle compressive loadings. Current knowledge about fatigue behavior of concrete is still incomplete. This concerns especially the process of fatigue which is preceding the fatigue failure. The leak of knowledge about fatigue behavior is opposed to the steady growing importance of this topic within the practice in civil engineering. Therefore, within this thesis a systematic and comprehensive investigation of the process of fatigue itself was done. This contributes to the better understanding of the progression of damage and the corresponding processes within the material. The experimental investigation consisted mainly of experiments with constant amplitude loadings in compression with cylindrical specimen made of normal strength concrete. Two differed load levels were used which resulted in numbers of cycles to failure of 10 6 and 10 7 as well as 10 3 and 10 4 . The experiments were done in combination with different types of nondestructive and destructive testing methods like strain measuring, deformation of surface, ultrasonic signals, acoustic emissions, optical microscopy and also scattering electron microscopy. To access some parameters of influence in relation to the fatigue behavior additional creep tests and also several tests with different scales of specimen were done. The fatigue process of concrete is determined as an evolution of damage that starts from the beginning of the loading process. This evolution has manifold and different influences on the different material properties of concrete. In this relation a major finding was that fatigue related damage leads to a transformation of the complete stress-strain-relationship. This relationship is also subjected to an evolution process. Due to the authors observations it could not be determined that the investigated changes in macroscopic material behavior are caused by a development of micro cracks within the material

  6. Damage identification of RC bridge decks under fatigue loading

    Directory of Open Access Journals (Sweden)

    Zanuy, C.

    2014-12-01

    Full Text Available The complex nature of structural phenomena still requires the comparison between numerical models and the real structural performance. Accordingly, many civil structures are monitored to detect structural damage and provide updated data for numerical models. Monitoring usually relies on the change of dynamic properties (experimental modal analysis. Regarding concrete structures, existing works have typically focused on the progressive decrease of natural frequencies under gradually increasing loads. In this paper, high-cycle fatigue effects are analyzed. An experimental campaign on specimens reproducing the top slab of concrete girders has been carried out, including fatigue tests and a reference static test. Impact-excitation tests were done at different stages to extract dynamic properties. Output-only models (only based on the structural response to an external excitation that is not measured were used as identification techniques. The evolution of dynamic properties was correlated with damage development, with emphasis on the fatigue process stages: crack formation, cyclic reduction of tension-stiffening and brittle fracture of the reinforcement.La naturaleza compleja de muchos fenómenos estructurales requiere que los modelos numéricos necesiten ser verificados con el comportamiento estructural real. Por ello, muchas estructuras son monitorizadas, tanto para detectar posibles daños estructurales como para proporcionar datos a incluir en los modelos. A menudo, la monitorización se basa en el cambio de las propiedades dinámicas mediante técnicas de análisis modal experimental. Con respecto al hormigón estructural, la mayoría de los trabajos existentes se ha centrado en el cambio de las frecuencias propias con cargas monótonamente crecientes. En este artículo se analizan los efectos de la fatiga. Se ha llevado a cabo una campaña experimental sobre piezas que reproducen la losa superior de tableros de puentes, realizándose ensayos

  7. An Improved Spectral Analysis Method for Fatigue Damage Assessment of Details in Liquid Cargo Tanks

    Science.gov (United States)

    Zhao, Peng-yuan; Huang, Xiao-ping

    2018-03-01

    Errors will be caused in calculating the fatigue damages of details in liquid cargo tanks by using the traditional spectral analysis method which is based on linear system, for the nonlinear relationship between the dynamic stress and the ship acceleration. An improved spectral analysis method for the assessment of the fatigue damage in detail of a liquid cargo tank is proposed in this paper. Based on assumptions that the wave process can be simulated by summing the sinusoidal waves in different frequencies and the stress process can be simulated by summing the stress processes induced by these sinusoidal waves, the stress power spectral density (PSD) is calculated by expanding the stress processes induced by the sinusoidal waves into Fourier series and adding the amplitudes of each harmonic component with the same frequency. This analysis method can take the nonlinear relationship into consideration and the fatigue damage is then calculated based on the PSD of stress. Take an independent tank in an LNG carrier for example, the accuracy of the improved spectral analysis method is proved much better than that of the traditional spectral analysis method by comparing the calculated damage results with the results calculated by the time domain method. The proposed spectral analysis method is more accurate in calculating the fatigue damages in detail of ship liquid cargo tanks.

  8. Fatigue life determination by damage measuring in SAE 8620 specimens steel subjected to multiaxial experiments in neutral and corrosive environment

    International Nuclear Information System (INIS)

    Silva, Luiz L. da; Filho, Nelson do N.A.; Gomes, Paulo de T.V.; Rabello, Emerson G.; Mansur, Tanius R.

    2013-01-01

    Fatigue is the fail phenomenon of a material subjected to cyclic loads. This phenomenon affects any component under loads (forces, temperatures, etc.) that changes in time. When there is a combined load, originating multiaxial fatigue, which is the most of the real loads, worst is the situation. Before the component fail, the fatigue phenomenon produces damages to its material and this is a cumulative process that could not be reduced. In the continuum mechanic context, material damage is defined as a parameter that reduces the component resistance and this could cause its fail. The process of damage measuring by changes in electrical resistance is used in this work, and from experimental results of SAE 8620 steel specimens subjected to multiaxial fatigue in corrosive and neutral environment, the remaining specimen time life could be determined. Each specimen has its initial electrical resistance measured and after a certain number of fatigue cycles stopping points, its electrical resistance was measured again. In order to study multiaxial fatigue in specimens, a machine that induces simultaneously bending and torsional loads in the specimen was developed. Air at the temperature range of 18 deg C and 20 deg C was considered neutral environment. The corrosive environment was a NaCl solution with a concentration of 3,5% in weigh. The experimental results showed that the measuring fatigue damage using the changes in electrical resistance is efficient and that is possible to estimate the effect of a corrosive environment in the fatigue damage. (author)

  9. Study of cumulative fatigue damage detection for used parts with nonlinear output frequency response functions based on NARMAX modelling

    Science.gov (United States)

    Huang, Honglan; Mao, Hanying; Mao, Hanling; Zheng, Weixue; Huang, Zhenfeng; Li, Xinxin; Wang, Xianghong

    2017-12-01

    Cumulative fatigue damage detection for used parts plays a key role in the process of remanufacturing engineering and is related to the service safety of the remanufactured parts. In light of the nonlinear properties of used parts caused by cumulative fatigue damage, the based nonlinear output frequency response functions detection approach offers a breakthrough to solve this key problem. First, a modified PSO-adaptive lasso algorithm is introduced to improve the accuracy of the NARMAX model under impulse hammer excitation, and then, an effective new algorithm is derived to estimate the nonlinear output frequency response functions under rectangular pulse excitation, and a based nonlinear output frequency response functions index is introduced to detect the cumulative fatigue damage in used parts. Then, a novel damage detection approach that integrates the NARMAX model and the rectangular pulse is proposed for nonlinear output frequency response functions identification and cumulative fatigue damage detection of used parts. Finally, experimental studies of fatigued plate specimens and used connecting rod parts are conducted to verify the validity of the novel approach. The obtained results reveal that the new approach can detect cumulative fatigue damages of used parts effectively and efficiently and that the various values of the based nonlinear output frequency response functions index can be used to detect the different fatigue damages or working time. Since the proposed new approach can extract nonlinear properties of systems by only a single excitation of the inspected system, it shows great promise for use in remanufacturing engineering applications.

  10. Lamb Wave Assessment of Fatigue and Thermal Damage in Composites

    Science.gov (United States)

    Seale, Michael D.; Smith, Barry T.; Prosser, W. H.

    2004-01-01

    Among the various techniques available, ultrasonic Lamb waves offer a convenient method of evaluating composite materials. Since the Lamb wave velocity depends on the elastic properties of a structure, an effective tool exists to monitor damage in composites by measuring the velocity of these waves. Lamb wave measurements can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper describes two studies which monitor fatigue damage and two studies which monitor thermal damage in composites using Lamb waves. In the fatigue studies, the Lamb wave velocity is compared to modulus measurements obtained using strain gage measurements in the first experiment and the velocity is monitored along with the crack density in the second. In the thermal damage studies, one examines samples which were exposed to varying temperatures for a three minute duration and the second includes rapid thermal damage in composites by intense laser beams. In all studies, the Lamb wave velocity is demonstrated to be an excellent method to monitor damage in composites.

  11. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    Science.gov (United States)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  12. Damage assessment in multilayered MEMS structures under thermal fatigue

    Science.gov (United States)

    Maligno, A. R.; Whalley, D. C.; Silberschmidt, V. V.

    2011-07-01

    This paper reports on the application of a Physics of Failure (PoF) methodology to assessing the reliability of a micro electro mechanical system (MEMS). Numerical simulations, based on the finite element method (FEM) using a sub-domain approach was used to examine the damage onset due to temperature variations (e.g. yielding of metals which may lead to thermal fatigue). In this work remeshing techniques were employed in order to develop a damage tolerance approach based on the assumption that initial flaws exist in the multi-layered.

  13. Damage assessment in CFRP laminates exposed to impact fatigue loading

    International Nuclear Information System (INIS)

    Tsigkourakos, George; Silberschmidt, Vadim V; Ashcroft, I A

    2011-01-01

    Demand for advanced engineering composites in the aerospace industry is increasing continuously. Lately, carbon fibre reinforced polymers (CFRPs) became one of the most important structural materials in the industry due to a combination of characteristics such as: excellent stiffness, high strength-to-weight ratio, and ease of manufacture according to application. In service, aerospace composite components and structures are exposed to various transient loads, some of which can propagate in them as cyclic impacts. A typical example is an effect of the wind gusts during flight. This type of loading is known as impact fatigue (IF); it is a repetition of low-energy impacts. Such loads can cause various types of damage in composites: fibre breaking, transverse matrix cracking, de-bonding between fibres and matrix and delamination resulting in reduction of residual stiffness and loss of functionality. Furthermore, this damage is often sub-surface, which reinforces the need for more regular inspection. The effects of IF are of major importance due its detrimental effect on the structural integrity of components that can be generated after relatively few impacts at low force levels compared to those in a standard fatigue regime. This study utilises an innovative testing system with the capability of subjecting specimens to a series of repetitive impacts. The primary subject of this paper is to assess the damaging effect of IF on the behaviour of drilled CFRP specimens, exposed to such loading. A detailed damage analysis is implemented utilising an X-ray micro computed tomography system. The main findings suggested that at early stages of life damage is governed by o degree splits along the length of the specimens resulting in a 20% reduction of stiffness. The final failure damage scenario indicated that transverse crasks in the 90 degree plies are the main reason for complete delamination which can be translated to a 50% stiffness reduction.

  14. Study of cumulative fatigue damage on an austenitic steel

    International Nuclear Information System (INIS)

    Baudry, G.; Amzallag, C.; Bernard, J.L.

    1984-01-01

    The validity of Palmgren-Miner rule is verified for working life between about 500 and 1,000,000 cycles for two damages: one corresponding to complete rupture of smooth test piece and the other corresponding to initiation of a fatigue crack in a high stress area. Material studied is a stainless steel Z3CND17-12 (AISI 316) used in nuclear industry. Validity of the rule is better verified in the case of small cracks than for a smooth sample. (15 references are given) [fr

  15. Assessment of corrosion and fatigue damage to light water reactor metal containments

    International Nuclear Information System (INIS)

    Sinha, U.P.; Shah, V.N.; Smith, S.K.

    1991-01-01

    This paper presents a generic procedure for estimating aging damage, evaluating structural integrity, and identifying mitigation activities for safe operation of boiling water reactor (BWR) Mark I metal containments and ice-condenser type pressurized water reactor (PWR) cylindrical metal containments. The mechanisms of concern that can cause aging damage to these two types of containments are corrosion and fatigue. Assessment of fatigue damage to bellows is also described. Assessment of corrosion and fatigue damage described in this paper include: containment design features that are relevant to aging assessment, several corrosion and fatigue mechanisms, inspection of corrosion and fatigue damage, and mitigation of damage caused by these mechanisms. In addition, synergistic interaction between corrosion and fatigue is considered. Possible actions for mitigating aging include enhanced inspection methods, maintenance activities based on operating experience, and supplementary surveillance programs. Field experience related to aging of metal containments is reviewed. Finally, conclusions and recommendations are presented

  16. Assessment of creep-fatigue damage using the UK strain based procedure

    International Nuclear Information System (INIS)

    Bate, S.K.

    1997-01-01

    The UK strain based procedures have been developed for the evaluation of damage in structures, arising from fatigue cycles and creep processes. The fatigue damage is assessed on the basis of modelling crack growth from about one grain depth to an allowable limit which represents an engineering definition of crack formation. Creep damage is based up on the exhaustion of available ductility by creep strain accumulation. The procedures are applicable only when level A and B service conditions apply, as defined in RCC-MR or ASME Code Case N47. The procedures require the components of strain to be evaluated separately, thus they may be used with either full inelastic analysis or simplified methods. To support the development of the UK strain based creep-fatigue procedures an experimental program was undertaken by NNC to study creep-fatigue interaction of structures operating at high temperature. These tests, collectively known as the SALTBATH tests considered solid cylinder and tube-plate specimens, manufactured from Type 316 stainless steel. These specimens were subjected to thermal cycles between 250 deg. C and 600 deg. C. In all the cases the thermal cycle produces tensile residual stresses during dwells at 600 deg. C. One of the tube-plate specimens was used as a benchmark for validating the strain based creep fatigue procedures and subsequently as part of a CEC co-operative study. This benchmark work is described in this paper. A thermal and inelastic stress analysis was carried out using the finite element code ABAQUS. The inelastic behaviour of the material was described using the ORNL constitutive equations. A creep fatigue assessment using the strain based procedures has been compared with an assessment using the RCC-MR inelastic rules. The analyses indicated that both the UK strain based procedures and the RCC-MR rules were conservative, but the conservatism was greater for the RCC-MR rules. (author). 8 refs, 8 figs, 4 tabs

  17. Structural Damage Identification in Stiffened Plate Fatigue Specimens Using Piezoelectric Active Sensing

    Science.gov (United States)

    2011-09-01

    isolated AO mode first arrival, recorded at PZT 2, is shown at 3 different fatigue levels. Figure 5. The area under the PSD curve, calculated twice...Structural Damage Identification in Stiffened Plate Fatigue Specimens Using Piezoelectric Active Sensing B. L. GRISSO, G. PARK, L. W. SALVINO...with several challenges including limited performance knowledge of the materials, aluminum sensitization, structural fatigue performance, and

  18. Individual aircraft life monitoring: An engineering approach for fatigue damage evaluation

    Directory of Open Access Journals (Sweden)

    Rui JIAO

    2018-04-01

    Full Text Available Individual aircraft life monitoring is required to ensure safety and economy of aircraft structure, and fatigue damage evaluation based on collected operational data of aircraft is an integral part of it. To improve the accuracy and facilitate the application, this paper proposes an engineering approach to evaluate fatigue damage and predict fatigue life for critical structures in fatigue monitoring. In this approach, traditional nominal stress method is applied to back calculate the S-N curve parameters of the realistic structure details based on full-scale fatigue test data. Then the S-N curve and Miner’s rule are adopted in damage estimation and fatigue life analysis for critical locations under individual load spectra. The relationship between relative small crack length and fatigue life can also be predicted with this approach. Specimens of 7B04-T74 aluminum alloy and TA15M titanium alloy are fatigue tested under two types of load spectra, and there is a good agreement between the experimental results and analysis results. Furthermore, the issue concerning scatter factor in individual aircraft damage estimation is also discussed. Keywords: Fatigue damage, Fatigue monitoring, Fatigue test, Scatter factor, S-N curve

  19. Model-Based Fatigue Prognosis of Fiber-Reinforced Laminates Exhibiting Concurrent Damage Mechanisms

    Science.gov (United States)

    Corbetta, M.; Sbarufatti, C.; Saxena, A.; Giglio, M.; Goebel, K.

    2016-01-01

    Prognostics of large composite structures is a topic of increasing interest in the field of structural health monitoring for aerospace, civil, and mechanical systems. Along with recent advancements in real-time structural health data acquisition and processing for damage detection and characterization, model-based stochastic methods for life prediction are showing promising results in the literature. Among various model-based approaches, particle-filtering algorithms are particularly capable in coping with uncertainties associated with the process. These include uncertainties about information on the damage extent and the inherent uncertainties of the damage propagation process. Some efforts have shown successful applications of particle filtering-based frameworks for predicting the matrix crack evolution and structural stiffness degradation caused by repetitive fatigue loads. Effects of other damage modes such as delamination, however, are not incorporated in these works. It is well established that delamination and matrix cracks not only co-exist in most laminate structures during the fatigue degradation process but also affect each other's progression. Furthermore, delamination significantly alters the stress-state in the laminates and accelerates the material degradation leading to catastrophic failure. Therefore, the work presented herein proposes a particle filtering-based framework for predicting a structure's remaining useful life with consideration of multiple co-existing damage-mechanisms. The framework uses an energy-based model from the composite modeling literature. The multiple damage-mode model has been shown to suitably estimate the energy release rate of cross-ply laminates as affected by matrix cracks and delamination modes. The model is also able to estimate the reduction in stiffness of the damaged laminate. This information is then used in the algorithms for life prediction capabilities. First, a brief summary of the energy-based damage model

  20. Development of nondestructive evaluation of creep-fatigue damage in SUS316 stainless steel

    International Nuclear Information System (INIS)

    Shoji, Tetsuo; Kawahara, Tetsuji; Awano, Masakazu; Sato, Yasumoto

    1999-01-01

    Creep-fatigue is a fatal failure mode of high temperature structural materials. It is recognized that the law of linear damage, according to which creep-fatigue damage is expressed by the sum of the creep damage and the fatigue damage, is inadequate to evaluate creep-fatigue damage. This is due to the fact that the law of linear damage does not include the effect of interaction between the creep damage and the fatigue damage. Consequently, development of direct measurement of damage accumulation on the sample of interest is required for plant life evaluation. In this study, the induced current focusing potential drop (ICFPD) technique was used to evaluate the depth of small surface cracks in SUS316FR stainless steel which was subjected to creep-fatigue damage. It is shown that the potential drop increased during the micro-crack initiation and propagation. Correspondingly, the ICFPD technique applied to estimate micro-crack depth changes was used to accurately evaluate the residual life of creep-fatigue damaged structural materials. (author)

  1. Thermal stress analysis for fatigue damage evaluation at a mixing tee

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Nakamura, Akira

    2011-01-01

    Highlights: → Thermal stress and fatigue damage have been analyzed for a mixing tee. → Fatigue damage was accumulated near boundaries of the cold spot. → It was found that fatigue damage was brought about by fluctuation of cold spot. → Simple one-dimensional analysis could derive stress for fatigue evaluation. - Abstract: Fatigue cracks have been found at mixing tees where fluids of different temperature flow in. In this study, the thermal stress at a mixing tee was calculated by the finite element method using temperature transients obtained by a fluid dynamics simulation. The simulation target was an experiment for a mixing tee, in which cold water flowed into the main pipe from a branch pipe. The cold water flowed along the main pipe wall and caused a cold spot, at which the membrane stress was relatively large. Based on the evaluated thermal stress, the magnitude of the fatigue damage was assessed according to the linear damage accumulation rule and the rain-flow procedure. Precise distributions of the thermal stress and fatigue damage could be identified. Relatively large axial stress occurred downstream from the branch pipe due to the cold spot. The variation ranges of thermal stress and fatigue damage became large near the position 20 o from the symmetry line in the circumferential direction. The position of the cold spot changed slowly in the circumferential direction, and this was the main cause of the fatigue damage. The fatigue damage was investigated for various differences in the temperature between the main and branch pipes. Since the magnitude of accumulated damage increased abruptly when the temperature difference exceeded the value corresponding to the fatigue limit, it was suggested that the stress amplitude should be suppressed less than the fatigue limit. In the thermal stress analysis for fatigue damage assessment, it was found that the detailed three-dimensional structural analysis was not required. Namely, for the current case, a one

  2. Simulation of fatigue damage in ferroelectric polycrystals under mechanical/electrical loading

    Science.gov (United States)

    Kozinov, S.; Kuna, M.

    2018-07-01

    The reliability of smart-structures made of ferroelectric ceramics is essentially reduced by the formation of cracks under the action of external electrical and/or mechanical loading. In the current research a numerical model for low-cycle fatigue in ferroelectric mesostructures is proposed. In the finite element simulations a combination of two user element routines is utilized. The first one is used to model a micromechanical ferroelectric domain switching behavior inside the grains. The second one is used to simulate fatigue damage of grain boundaries by a cohesive zone model (EMCCZM) based on an electromechanical cyclic traction-separation law (TSL). For numerical simulations a scanning electron microscope image of the ceramic's grain structure was digitalized and meshed. The response of this mesostructure to cyclic electrical or mechanical loading is systematically analyzed. As a result of the simulations, the distribution of electric potential, field, displacement and polarization as well as mechanical stresses and deformations inside the grains are obtained. At the grain boundaries, the formation and evolution of damage are analyzed until final failure and induced degradation of electric permittivity. It is found that the proposed model correctly mimics polycrystalline behavior during poling processes and progressive damage under cyclic electromechanical loading. To the authors' knowledge, it is the first model and numerical analysis of ferroelectric polycrystals taking into account both domain reorientation and cohesive modeling of intergranular fracture. It can help to understand failure mechanisms taking place in ferroelectrics during fatigue processes.

  3. Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone.

    Science.gov (United States)

    Fletcher, Lloyd; Codrington, John; Parkinson, Ian

    2014-07-01

    As a composite material, cortical bone accumulates fatigue microdamage through the repetitive loading of everyday activity (e.g. walking). The accumulation of fatigue microdamage is thought to contribute to the occurrence of fragility fractures in older people. Therefore it is beneficial to understand the relationship between microcrack accumulation and the fracture resistance of cortical bone. Twenty longitudinally orientated compact tension fracture specimens were machined from a single bovine femur, ten specimens were assigned to both the control and fatigue damaged groups. The damaged group underwent a fatigue loading protocol to induce microdamage which was assessed via fluorescent microscopy. Following fatigue loading, non-linear fracture resistance tests were undertaken on both the control and damaged groups using the J-integral method. The interaction of the crack path with the fatigue induced damage and inherent toughening mechanisms were then observed using fluorescent microscopy. The results of this study show that fatigue induced damage reduces the initiation toughness of cortical bone and the growth toughness within the damage zone by three distinct mechanisms of fatigue-fracture interaction. Further analysis of the J-integral fracture resistance showed both the elastic and plastic component were reduced in the damaged group. For the elastic component this was attributed to a decreased number of ligament bridges in the crack wake while for the plastic component this was attributed to the presence of pre-existing fatigue microcracks preventing energy absorption by the formation of new microcracks.

  4. Analysis of Fatigue Life of PMMA at Different Frequencies Based on a New Damage Mechanics Model

    Directory of Open Access Journals (Sweden)

    Aifeng Huang

    2014-01-01

    Full Text Available Low-cycle fatigue tests at different frequencies and creep tests under different stress levels of Plexiglas Resist 45 were conducted. Correspondingly, the creep fracture time, S-N curves, cyclic creep, and hysteresis loop were obtained. These results showed that the fatigue life increases with frequency at low frequency domain. After analysis, it was found that fatigue life is dependent on the load rate and is affected by the creep damage. In addition, a new continuum damage mechanics (CDM model was established to analyze creep-fatigue life, where the damage increment nonlinear summation rule was proposed and the frequency modification was made on the fatigue damage evolution equation. Differential evolution (DE algorithm was employed to determine the parameters within the model. The proposed model described fatigue life under different frequencies, and the calculated results agreed well with the experimental results.

  5. Fatigue damage in coarse-grained lean duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Strubbia, R., E-mail: strubbia@ifir-conicet.gov.ar; Hereñú, S.; Marinelli, M.C.; Alvarez-Armas, I.

    2016-04-06

    The present investigation is focused on assessing the effect of a thermal treatment for grain coarsening on the low cycle fatigue damage evolution in two types of Lean Duplex Stainless Steels (LDSSs). The dislocation structure developed during cycling is observed by transmission electron microscopy (TEM). Additionally, a detailed analysis of short crack initiated and grown during low cycle fatigue (LCF) is performed by means of optical and scanning electron (SEM) microscopy in combination with automated electron back-scattered diffraction (EBSD) technique. Though in both coarse-grained LDSSs the short cracks nucleate in the ferrite phase, in each steels its origin is different. The embrittlement caused by the Cr{sub 2}N precipitation and the plastic activity sustained by each phase can explain this difference. The propagation behavior of the short cracks present two alternative growing mechanisms: the crack grows along a favorable slip plane with high Schmid Factor (SF) or the crack alternates between two slip systems. In both cases, the crack follows the path with the smallest tilt angle (β) at a grain boundary.

  6. Fatigue damage sensor and substatiation of its application. Communication 1

    International Nuclear Information System (INIS)

    Troshchenko, V.T.; Bojko, V.I.

    1985-01-01

    Basic characteristics are presented for the fatigue damage sensor at regular loading produced according to the technology developed at the Institute of Problems in Strength. It is shown that the sensor application potentialities may be extended at the exoense of using deformation multipliers. Loading frequency, temperature and cycle assymetry are studied for their effect on the sensor readings. It is established that the basic sensor characteristics are not affected by the cycle assymetry in the deformation range studied. Frequency and temperature variation ranges are determined where these parameters have no effect on the sensor readings. Ways for considering the effect of the studied factors, as well as the effect of a part stress concentration on sensor readings are shown when the sensor is applied for predicting a part

  7. Fatigue Damage Evolution in Fibre Composites for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk

    on the micro-scale in the non-crimp fabric based composites used for wind turbine blades. The results show that fibre fractures in the unidirectional (UD) load carrying fibre bundles initiate from off-axis cracks in the thin supporting backing fibre bundles. With an increasing number of fatigue load cycles......, the UD fibre fractures progress gradually into the thickness direction of the UD fibre bundles, which eventually results in final fracture of the fibre composite. It is also found that the UD fibre fracture regions generally grow larger and initiate earlier at cross-over regions of the backing fibre...... bundles than at single backing fibre bundle regions. Furthermore, UD Fibre fractures are only observed to initiate at locations where the backing fibre bundles are ‘in contact’ with a UD fibre bundle. By observing the damage progression in 3D, it is also clear that the UD fibre fractures initiated...

  8. Fatigue processes in thermoplastic fibres; Les mecanismes de fatigue dans les fibres thermoplastiques

    Energy Technology Data Exchange (ETDEWEB)

    Herrera Ramirez, J.M.

    2004-09-15

    The present study examines and compares the behaviour of the two types of PA66 fibres and two types of PET fibres under fatigue loading up to failure, and the correlation between the fibres (nano)structures and their structural heterogeneities, with fatigue lifetimes. Several techniques have been used to analyze the materials, such as scanning electron microscopy (SEM), microanalysis (EDS), differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and micro-Raman spectroscopy. A meticulous analysis by scanning electron microscopy of the fracture morphology of fibres broken in tension and in fatigue, as well as a study of the fatigue life, were undertaken. The fatigue process occurs when the cyclic load amplitude is sufficiently large, however a condition for fatigue failure is that the minimum load each cycle must be lower than a threshold stress level. Failure under fatigue conditions leads to distinctive fracture morphologies which are very different from those seen after tensile or creep failure and this allows easy identification of the fatigue process. The fibres have been analyzed in the as received state and after fatigue failure in order to observe the microstructural changes resulting from the fatigue loading. The results will be compared with those obtained for fibres loaded under conditions where the fatigue process was hindered. The role of the microstructure of the fibres in determining fatigue will be discussed in this work and the possibility of improving their resistance to fatigue or eliminating the fatigue process will be discussed. (author)

  9. Fatigue Damage Spectrum calculation in a Mission Synthesis procedure for Sine-on-Random excitations

    International Nuclear Information System (INIS)

    Angeli, Andrea; Troncossi, Marco; Cornelis, Bram

    2016-01-01

    In many real-life environments, certain mechanical and electronic components may be subjected to Sine-on-Random vibrations, i.e. excitations composed of random vibrations superimposed on deterministic (sinusoidal) contributions, in particular sine tones due to some rotating parts of the system (e.g. helicopters, engine-mounted components,...). These components must be designed to withstand the fatigue damage induced by the “composed” vibration environment, and qualification tests are advisable for the most critical ones. In the case of an accelerated qualification test, a proper test tailoring which starts from the real environment (measured vibration signals) and which preserves not only the accumulated fatigue damage but also the “nature” of the excitation (i.e. sinusoidal components plus random process) is important to obtain reliable results. In this paper, the classic time domain approach is taken as a reference for the comparison of different methods for the Fatigue Damage Spectrum (FDS) calculation in case of Sine-on-Random vibration environments. Then, a methodology to compute a Sine-on-Random specification based on a mission FDS is proposed. (paper)

  10. Comparative Study of Fatigue Damage Models Using Different Number of Classes Combined with the Rainflow Method

    Directory of Open Access Journals (Sweden)

    S. Zengah

    2013-06-01

    Full Text Available Fatigue damage increases with applied load cycles in a cumulative manner. Fatigue damage models play a key role in life prediction of components and structures subjected to random loading. The aim of this paper is the examination of the performance of the “Damaged Stress Model”, proposed and validated, against other fatigue models under random loading before and after reconstruction of the load histories. To achieve this objective, some linear and nonlinear models proposed for fatigue life estimation and a batch of specimens made of 6082T6 aluminum alloy is subjected to random loading. The damage was cumulated by Miner’s rule, Damaged Stress Model (DSM, Henry model and Unified Theory (UT and random cycles were counted with a rain-flow algorithm. Experimental data on high-cycle fatigue by complex loading histories with different mean and amplitude stress values are analyzed for life calculation and model predictions are compared.

  11. Two scale damage model and related numerical issues for thermo-mechanical high cycle fatigue

    International Nuclear Information System (INIS)

    Desmorat, R.; Kane, A.; Seyedi, M.; Sermage, J.P.

    2007-01-01

    On the idea that fatigue damage is localized at the microscopic scale, a scale smaller than the mesoscopic one of the Representative Volume Element (RVE), a three-dimensional two scale damage model has been proposed for High Cycle Fatigue applications. It is extended here to aniso-thermal cases and then to thermo-mechanical fatigue. The modeling consists in the micro-mechanics analysis of a weak micro-inclusion subjected to plasticity and damage embedded in an elastic meso-element (the RVE of continuum mechanics). The consideration of plasticity coupled with damage equations at micro-scale, altogether with Eshelby-Kroner localization law, allows to compute the value of microscopic damage up to failure for any kind of loading, 1D or 3D, cyclic or random, isothermal or aniso-thermal, mechanical, thermal or thermo-mechanical. A robust numerical scheme is proposed in order to make the computations fast. A post-processor for damage and fatigue (DAMAGE-2005) has been developed. It applies to complex thermo-mechanical loadings. Examples of the representation by the two scale damage model of physical phenomena related to High Cycle Fatigue are given such as the mean stress effect, the non-linear accumulation of damage. Examples of thermal and thermo-mechanical fatigue as well as complex applications on real size testing structure subjected to thermo-mechanical fatigue are detailed. (authors)

  12. Damage development in woven fabric composites during tension-tension fatigue

    DEFF Research Database (Denmark)

    Hansen, U.

    1999-01-01

    of the operating fatigue damage mechanism(s). Fatigue leads to a degradation of material properties. Consequently, in connection with impact induced local stress raisers, fatigue produces continuously changing non-uniform stress fields because of stress redistribution effects. Other models addressing evolution...... of fatigue damage in composite materials have not been able to simulate evolving nonuniform stress fields. Therefore. in the second part of this paper, an analytical/numerical approach capable of addressing these issues is also proposed.......Impacted woven fabric composites were tested in tension-tension fatigue. In contrast to results from static testing, the effects of low energy impact damage in a fatigue environment were found to be the critical element leading to failure of the specimen. This difference emphasizes the need...

  13. Fatigue damage sensor and substantitation of its application. Communication 2

    Energy Technology Data Exchange (ETDEWEB)

    Troshchenko, V T; Bojko, V I

    1985-01-01

    Block and random loading is studied for its effect on sensor readings. It is established that variation of electric sensor conductivity for these conditions does not depend on the loading prehistory and may be calculated according to the sensor test results at a regular loading. A general scheme of the sensor application is considered for determining residual part life with allowance for the factors. Effect on a part fatigue resistance when operating conditions of the loading are characterized by a stationary random process. Particular cases of the sensor application are considered coming out from a common scheme.

  14. Evaluation of fatigue-ratcheting damage of a pressurised elbow undergoing damage seismic inputs

    International Nuclear Information System (INIS)

    Dang Van, K.

    2000-01-01

    We present a simplified method to calculate the plastic ratchet of elbow-shaped pipes submitted to seismic loading and an internal pressure. This method is simplified in the sense that the value of the ratchet is obtained without the use of finite element method (FEM) calculations. Here we derive a formula and use it to evaluate the fatigue-ratcheting damage of an elbow. This approach is applicable to complex plastic response appropriately described by non-linear kinematics hardening, which is more realistic for stainless steel such as 316-L. (orig.)

  15. Creep, fatigue and creep-fatigue damage evaluation and estimation of remaining life of SUS 304 austenitic stainless steel at high temperature

    International Nuclear Information System (INIS)

    Nishino, Seiichi; Sakane, Masao; Ohnami, Masateru

    1986-01-01

    Experimental study was made on the damage evaluation and estimation of remaining life of SUS 304 stainless steel in creep, low-cycle fatigue and creep-fatigue at 873 K in air. Creep, fatigue and creep-fatigue damage curves were drawn by the method proposed by D.A. Woodford and the relations between these damages and non-destructive parameters, i.e., microvickers hardness and quantities obtained from X-ray diffraction, were discussed. From these tests, the following conclusions were obtained. (1) Constant damage lines in the diagram of remaining lives in creep and fatigue could be drawn by changing load levels during the tests. Constant damage lines in creep-fatigue were also made by a linear damage rule using both static creep and fatigue damage curves, which agree well with the experimental data in creep-fatigue. (2) Microvickers hardness and half-value breadth in X-ray diffraction are appropriate parameters to evaluate creep damage but are not proper to evaluate fatigue damage. Particle size and microstrain obtained by X-ray profile analysis are good parameters to evaluate both creep and fatigue damages. (author)

  16. Effect of hardening induced by cold expansion on damage fatigue accumulation and life assessment of Aluminum alloy 6082 T6

    Directory of Open Access Journals (Sweden)

    Bendouba Mostefa

    2012-12-01

    Full Text Available Hole cold expansion (HCE is an effective method to extend the fatigue life of mechanical structures. During cold expansion process compressive residual stresses around the expanded hole are generated. The enhancement of fatigue life and the crack initiation and growth behavior of a holed specimen were investigated by using the 6082 Aluminum alloy. The present study suggests a simple technical method for enhancement of fatigue life by a cold expansion hole of pre-cracked specimen. Fatigue damage accumulation of cold expanded hole in aluminum alloy which is widely used in transportation and in aeronautics was analyzed. Experimental tests were carried out using pre-cracked SENT specimens. Tests were performed in two and four block loading under constant amplitude. These tests were performed by using two and four blocks under uniaxial constant amplitude loading. The increasing and decreasing loading were carried. The experimental results were compared to the damage calculated by the Miner's rule and a new simple fatigue damage indicator. This comparison shows that the 'damaged stress model', which takes into account the loading history, yields a good estimation according to the experimental results. Moreover, the error is minimized in comparison to the Miner's model.

  17. A discrete element model for damage and fracture of geomaterials under fatigue loading

    Science.gov (United States)

    Gao, Xiaofeng; Koval, Georg; Chazallon, Cyrille

    2017-06-01

    Failure processes in geomaterials (concrete, asphalt concrete, masonry, etc.) under fatigue loading (repeated moving loads, cycles of temperature, etc.) are responsible for most of the dysfunctions in pavements, brick structures, etc. In the beginning of the lifetime of a structure, the material presents only inner defects (micro cracks, voids, etc.). Due to the effect of the cyclic loading, these small defects tend to grow in size and quantity which damage the material, reducing its stiffness. With a relatively high number of cycles, these growing micro cracks become large cracks, which characterizes the fracture behavior. From a theoretical point of view, both mechanisms are treated differently. Fracture is usually described locally, with the propagation of cracks defined by the energy release rate at the crack tip; damage is usually associated to non-local approaches. In the present work, damage and fracture mechanics are combined in a local discrete element approach.

  18. Combined simulation of fatigue crack nucleation and propagation based on a damage indicator

    Directory of Open Access Journals (Sweden)

    M. Springer

    2016-10-01

    Full Text Available Fatigue considerations often distinguish between fatigue crack nucleation and fatigue crack propagation. The current work presents a modeling approach utilizing one Fatigue Damage Indicator to treat both in a unified way. The approach is implemented within the framework of the Finite Element Method. Multiaxial critical plane models with an extended damage accumulation are employed as Fatigue Indicators. Locations of fatigue crack emergence are predicted by these indicators and material degradation is utilized to model local material failure. The cyclic loading is continued on the now degraded structure and the next location prone to material failure is identified and degradation modeled. This way, fatigue crack propagation is represented by an evolving spatial zone of material failure. This propagating damage zone leads to a changing structural response of the pristine structure. By recourse to the Fatigue Damage Indicator a correlation between the number of applied load cycles and the changing structural behavior is established. Finally, the proposed approach is exemplified by cyclic bending experiments in the Low Cycle Fatigue regime

  19. X-ray diffraction study of microstructural changes during fatigue damage initiation in steel pipes

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, B., E-mail: bianca@lts.coppe.ufrj.br [Laboratory of Mechanics of Lille (LML), UMR CNRS 8107, University of Lille 1, Boulevard Paul Langevin, Cite Scientifique, 59655 Villeneuve d' Ascq (France); Lesage, J. [Laboratory of Mechanics of Lille (LML), UMR CNRS 8107, University of Lille 1, Boulevard Paul Langevin, Cite Scientifique, 59655 Villeneuve d' Ascq (France); Pasqualino, I. [Subsea Technology Laboratory (LTS), Ocean Engineering Department, COPPE/Federal University of Rio de Janeiro, PO Box 68508, Cidade Universitaria, CEP 21945-970, Rio de Janeiro/RJ (Brazil); Benseddiq, N. [Laboratory of Mechanics of Lille (LML), UMR CNRS 8107, University of Lille 1, Boulevard Paul Langevin, Cite Scientifique, 59655 Villeneuve d' Ascq (France); Bemporad, E. [Interdepartmental Laboratory of Electron Microscopy (LIME), University of Rome TRE, Via Della Vasca Navale 79, 00146 Rome (Italy)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer In this work we study the fatigue damage evolution in an API 5L X60 steel. Black-Right-Pointing-Pointer Microstructural changes and residual stresses are evaluated during fatigue tests. Black-Right-Pointing-Pointer Microdeformations and macro residual stresses are estimated by X-ray diffraction. Black-Right-Pointing-Pointer Results are discussed in view of an indicator of fatigue damage initiation. Black-Right-Pointing-Pointer This indicator could allow the prediction of residual life before macrocracking. - Abstract: Steel pipes used in the oil and gas industry undergo the action of cyclic loads that can cause their failure by fatigue. A consistent evaluation of the fatigue damage during the initiation phase should fundamentally be based on a nanoscale approach, i.e., at the scale of the dislocation network, in order to take into account the micromechanisms of fatigue damage that precede macrocrack initiation and propagation until the final fracture. In this work, microstructural changes related to fatigue damage initiation are investigated in the API 5L X60 grade steel, used in pipe manufacturing. Microdeformations and macro residual stress are evaluated using X-ray diffraction in real time during alternating bending fatigue tests performed on samples cut off from an X60 steel pipe. The aim of this ongoing work is to provide ground for further development of an indicator of fatigue damage initiation in X60 steel. This damage indicator could allow a good residual life prediction of steel pipes previously submitted to fatigue loading, before macroscopic cracking, and help to increase the reliability of these structures.

  20. Hull Girder Fatigue Damage Estimations of a Large Container Vessel by Spectral Analysis

    DEFF Research Database (Denmark)

    Andersen, Ingrid Marie Vincent; Jensen, Jørgen Juncher

    2013-01-01

    This paper deals with fatigue damage estimation from the analysis of full-scale stress measurements in the hull of a large container vessel (9,400 TEU) covering several months of operation. For onboard decision support and hull monitoring sys-tems, there is a need for a fast reliable method...... for esti-mation of fatigue damage in the ship hull. The objective of the study is to investigate whether the higher frequency contributions from the hydroelastic responses (springing and whipping) can satisfactory be included in the fatigue damage estimation by only a few parameters derived from the stress...

  1. Fatigue damage propagation in unidirectional glass fibre reinforced composites made of a non-crimp fabric

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Brøndsted, Povl; Gillespie Jr., John W.

    2014-01-01

    bundles. A simple stiffness spring model validates the stiffness loss observed. A fatigue damage scheme is presented, which suggests that damage initiates due to failure of the backing bundle causing a stress concentration in the axial load carrying fibres. This stress concentration, along with fretting...... fatigue, gives rise to axial fibre fractures and a loss of stiffness, eventually leading to final failure. The uniqueness of the present work is identification of the mechanisms associated with tension fatigue failure of unidirectional non-crimp fabrics used for wind turbine blades. The observed damage...

  2. Continuum damage mechanics based approach to the fatigue life prediction of cast aluminium alloy with considering the effect of porosity

    Directory of Open Access Journals (Sweden)

    Wang Xiaojia

    2018-01-01

    Full Text Available A damage mechanics based approach is applied for the study of fatigue behaviour of high pressure die cast ADC12 aluminium alloy. A damage coupled elastoplastic constitutive model is presented according to the concept of effective stress and the hypothesis of strain equivalence. An elastic fatigue damage model taking into account the pore-induced stress concentration is developed to investigate fatigue damage evolution of the specimens subjected to cyclic loading. The predicted lives for the specimens with different sizes of pores are consistent with the experimental data. The pore-induced fatigue damage and the variation of fatigue life along with the size of pores are also investigated.

  3. Hot-Spot Fatigue and Impact Damage Detection on a Helicopter Tailboom

    Science.gov (United States)

    2011-09-01

    other 14 PZT disks were used as sensors. Among the 28 PZT disks, 16 PZT disks were placed in the two fatigue hot-spot areas to detect cracks initiated...more efficient and effective airframe maintenance, fatigue cracking and impact damage detection technologies were developed and demonstrated on a...SHM system in successfully monitoring fatigue cracks initiated from cyclical loading conditions; detecting, locating and quantifying ballistic

  4. Fatigue damage assessment under multi-axial non-proportional cyclic loading

    International Nuclear Information System (INIS)

    Mohta, Keshav; Gupta, Suneel K.; Jadhav, P.A.; Bhasin, V.; Vijayan, P.K.

    2016-01-01

    Detailed fatigue analysis is carried out for class I Nuclear Power Plant (NPP) components to rule out the fatigue failure during their design lifetime. ASME Boiler and Pressure Vessel code Section III NB, has provided two schemes for fatigue assessment, one for fixed principal directions (proportional) loading and the other for varying principal directions (non-proportional) loading conditions. Recent literature on multi-axial fatigue tests has revealed lower fatigue lives under nonproportional loading conditions. In an attempt to understand the loading parameter lowering the fatigue life, a finite element based study has been carried out. Here, fatigue damage in a tube has been correlated with the applied axial to shear strain ratio and phase difference between them. The FE analysis has used Chaboche nonlinear kinematic hardening rule to model material's realistic cyclic plastic deformation behavior. The ASME alternating stress intensity (based on linear elastic FEA) and the plastic strain energy dissipation (based on elastic-plastic FEA) have been considered to assess the per cycle fatigue damage. The study has revealed that ASME criteria predicts lower alternating stress intensity (fatigue damage parameter S alt ) for some cases of non-proportional loading than that predicted for corresponding proportional loading case. However, the actual fatigue damage is higher in non-proportional loading than that in corresponding proportional loading case. Further the fatigue damage of an NPP component under realistic multi-axial cyclic loading conditions has been assessed using some popular critical plane based models vis-à-vis ASME Sec. III criteria. (author)

  5. Nonlinear aspects of structural fatigue damage assessment and accumulation

    International Nuclear Information System (INIS)

    Leis, B.N.

    1977-01-01

    The present paper reviews a recently developed concept for structural fatigue analysis which is capable of accounting for nonlinearities in both the above noted transformations. It is shown that, for cases where the local stressing and straining is proportional, the multiplicity of initiation sites and mechanisms observed to dominate structural fatigue resistance can be explained in terms of these additional nonlinearities. The ability of current concepts for structural fatigue analysis which account for nonlinear action to handle situaions where nonproportional stressing occurs in fatigue critical locations is next examined. Limitations in the assumptions made in fatigue analysis are shown to essentially preclude the application of present technology to that class of problems. A new approach whereby the present fatigue analysis procedures based on a deformation-type plasticity analysis can be extended to handle the nonproportional cycling by their application on a 'memory event' by 'memory event' basis is postulated and discussed in the context of a simple component

  6. Reducing uncertainty of Monte Carlo estimated fatigue damage in offshore wind turbines using FORM

    DEFF Research Database (Denmark)

    H. Horn, Jan-Tore; Jensen, Jørgen Juncher

    2016-01-01

    Uncertainties related to fatigue damage estimation of non-linear systems are highly dependent on the tail behaviour and extreme values of the stress range distribution. By using a combination of the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), the accuracy of the fatigue...

  7. Effect of stitch density on fatigue characteristics and damage mechanisms of stitched carbon/epoxy composites

    KAUST Repository

    Yudhanto, Arief; Watanabe, Naoyuki; Iwahori, Yutaka; Hoshi, Hikaru

    2014-01-01

    The effect of stitch density (SD) on fatigue life, stiffness degradation and fatigue damage mechanisms in carbon/epoxy (T800SC/XNRH6813) stitched using Vectran thread is presented in this paper. Moderately stitched composite (SD = 0.028/mm2

  8. Fundamental principles of the cyclic behaviour and the fatigue damage for metallic materials

    International Nuclear Information System (INIS)

    Vogt, J.B.

    2001-01-01

    The aim of this paper is a pedagogic presentation of the basic concepts concerning the cyclic behaviour and the fatigue damage of metallic materials in order to offer a better understand of mechanisms. The following aspects are taking into account: the fatigue fracture, the cyclic accommodation, the dislocations structures, the surface and bulk cracks and the influence of the medium. (A.L.B.)

  9. Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue for the austentic stainless steels, and application of multiaxial fatigue criteria

    International Nuclear Information System (INIS)

    Fissolo, Antoine; Gourdin, Cedric; Vincent, Ludovic

    2009-01-01

    For nuclear reactor components, uniaxial isothermal fatigue curves are used to estimate the crack initiation under thermal fatigue. However, such approach would be not sufficient in some cases where cracking was observed. To investigate differences between uniaxial and thermal fatigue damage, tests have been carried out at CEA using the thermal fatigue devices SPLASH and FAT3D: a bi-dimensional (2-D) loading status is obtained in SPLASH, whereas a tri-dimensional (3-D) loading status is obtained in FAT3D. All the analysed tests clearly show that crack initiation in thermal fatigue is faster than in uniaxial isothermal fatigue conditions: for identical levels of strain, the number of cycles required to achieve crack initiation is significantly lower. The enhanced damaging effect probably results from a pure mechanical origin: a nearly perfect biaxial state corresponds to an increased hydrostatic stress. Consequently, multiaxial fatigue criteria must be applied. The Zamrik's strain criterion and the energy criterion proposed by Ecole Polytechnique provide the best estimations. In that framework, the proposed new method coupling both RCC-MR strain estimations and Zamrik's criterion appears to be more promising for the designer. (orig.)

  10. Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue for the austentic stainless steels, and application of multiaxial fatigue criteria

    Energy Technology Data Exchange (ETDEWEB)

    Fissolo, Antoine; Gourdin, Cedric [DM2S/SEMT/LISN, Gif sur Yvette (France); Vincent, Ludovic [DMN/SRMA/LCD, Gif sur Yvette (France)

    2009-07-01

    For nuclear reactor components, uniaxial isothermal fatigue curves are used to estimate the crack initiation under thermal fatigue. However, such approach would be not sufficient in some cases where cracking was observed. To investigate differences between uniaxial and thermal fatigue damage, tests have been carried out at CEA using the thermal fatigue devices SPLASH and FAT3D: a bi-dimensional (2-D) loading status is obtained in SPLASH, whereas a tri-dimensional (3-D) loading status is obtained in FAT3D. All the analysed tests clearly show that crack initiation in thermal fatigue is faster than in uniaxial isothermal fatigue conditions: for identical levels of strain, the number of cycles required to achieve crack initiation is significantly lower. The enhanced damaging effect probably results from a pure mechanical origin: a nearly perfect biaxial state corresponds to an increased hydrostatic stress. Consequently, multiaxial fatigue criteria must be applied. The Zamrik's strain criterion and the energy criterion proposed by Ecole Polytechnique provide the best estimations. In that framework, the proposed new method coupling both RCC-MR strain estimations and Zamrik's criterion appears to be more promising for the designer. (orig.)

  11. Fatigue life estimation of MD36 and MD523 bogies based on damage accumulation and random fatigue theory

    International Nuclear Information System (INIS)

    Younesian, Davood; Solhmirzaei, Ali; Gachloo, Alireza

    2009-01-01

    Bogies are one of the multifunctional parts of trains which are extremely subjected to random loads. This type of oscillating and random excitation arises from irregularities of the track including rail surface vertical roughness, rail joints, variance in super-elevation, and also wheel imperfections like wheel flats and unbalancy. Since most of the prementioned sources have random nature, a random based theory should be applied for fatigue life estimation of the bogie frame. Two methods of fatigue life estimation are investigated in this paper. The first approach which is being implemented in time domain is based on the damage accumulation (DA) approach. Using Monte-Carlo simulation algorithm, the rail surface roughness is generated. Finite element (FE) model of the bogie is subjected to the generated random excitation in the first approach and the stress time histories are obtained, and consequently the fatigue life is estimated by using the rain-flow algorithm. In the second approach, the fatigue life is estimated in frequency domain. Power spectral density (PSD) of the stress is obtained by using the FE model of the bogie frame and the fatigue life is estimated using Rayleigh technique in random fatigue theory. A comprehensive parametric study is carried out and effects of different parameters like the train speeds and level of the rail surface vertical roughness on the estimated fatigue life are investigated

  12. Entropy-based Probabilistic Fatigue Damage Prognosis and Algorithmic Performance Comparison

    Data.gov (United States)

    National Aeronautics and Space Administration — In this paper, a maximum entropy-based general framework for probabilistic fatigue damage prognosis is investigated. The proposed methodology is based on an...

  13. Entropy-based probabilistic fatigue damage prognosis and algorithmic performance comparison

    Data.gov (United States)

    National Aeronautics and Space Administration — In this paper, a maximum entropy-based general framework for probabilistic fatigue damage prognosis is investigated. The proposed methodology is based on an...

  14. DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING

    Data.gov (United States)

    National Aeronautics and Space Administration — DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING SUBHASISH MOHANTY*, ADITI CHATTOPADHYAY, JOHN N. RAJADAS, AND CLYDE...

  15. Fatigue damage monitoring for basalt fiber reinforced polymer composites using acoustic emission technique

    Science.gov (United States)

    Wang, Wentao; Li, Hui; Qu, Zhi

    2012-04-01

    Basalt fiber reinforced polymer (BFRP) is a structural material with superior mechanical properties. In this study, unidirectional BFRP laminates with 14 layers are made with the hand lay-up method. Then, the acoustic emission technique (AE) combined with the scanning electronic microscope (SEM) technique is employed to monitor the fatigue damage evolution of the BFRP plates in the fatigue loading tests. Time-frequency analysis using the wavelet transform technique is proposed to analyze the received AE signal instead of the peak frequency method. A comparison between AE signals and SEM images indicates that the multi-frequency peaks picked from the time-frequency curves of AE signals reflect the accumulated fatigue damage evolution and fatigue damage patterns. Furthermore, seven damage patterns, that is, matrix cracking, delamination, fiber fracture and their combinations, are identified from the time-frequency curves of the AE signals.

  16. Estimation of Temperature Conductivity Coefficient Impact upon Fatigue Damage of Material

    International Nuclear Information System (INIS)

    Bibik, V; Galeeva, A

    2015-01-01

    In the paper we consider the peculiarities of adhesive wear of cutting tools. Simulation of heat flows in the cutting zone showed that, as thermal conduction and heat conductivity of tool material grow, the heat flows from the front and back surfaces to tool holder will increase and so, the temperature of the contact areas of the tool will lower. When estimating the adhesive wear rate of cemented-carbide tool under the cutting rates corresponding to the cutting temperature of up to 900 °C, it is necessary to take the fatigue character of adhesive wear into consideration. The process of accumulation and development of fatigue damage is associated with micro- and macroplastic flowing of material, which is determined by the processes of initiation, motion, generation, and elimination of line defects - dislocations. Density of dislocations grows with increase of the loading cycles amount and increase of load amplitude. Growth of dislocations density leads to loosening of material, formation of micro- and macrocracks. The heat capacity of material grows as the loosening continues. In the given paper the authors prove theoretically that temperature conductivity coefficient which is associated with heat capacity of material, decreases as fatigue wear grows. (paper)

  17. Fatigue damage assessment of recycled metals and alloys | Ayensu ...

    African Journals Online (AJOL)

    Cyclic fatigue tests were conducted on recycled polycrystalline metals and alloys at room and elevated tempera-ures to determine the fatigue strength, endurance limit and endurance ratio. Annealed and polished stainless steel (Fe-18Cr-8Ni), mild steel (Fe-0.25Cr), aluminium (Al), alpha-brass (Cu-30 % Zn) and copper ...

  18. Optimization of fatigue damage indication in ferromagnetic low carbon steel

    Czech Academy of Sciences Publication Activity Database

    Tomáš, Ivan; Kovářík, O.; Kadlecová, Jana; Vértesy, G.

    2015-01-01

    Roč. 26, č. 9 (2015), 095603 ISSN 0957-0233 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 Keywords : fatigue * residual lifetime * magnetic non-destructive evaluation * ferromagnetic construction materials Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.492, year: 2015

  19. New fatigue damage analysis of complex engineering components based on FEM

    International Nuclear Information System (INIS)

    Ott, W.

    1987-05-01

    A new type of fatigue damage analysis for multiaxial elastoplastic conditions based on a three-dimensional finite element analysis has been developed. The analysis includes the material model after Mroz. The fatigue life evaluation in the critical areas is based on plastic work at these locations. The proposed damage concept can be applied to arbitrary multiaxial stress-strain paths. For the evaluation of the damage cycles in terms of closed stress-strain hysteresis loops are not required. The damage is determined on the basis of uniaxial material data (stress-strain curve, life to crack iniation curve). (orig./HP) [de

  20. Research on Fatigue Damage of Compressor Blade Steel KMN-I Using Nonlinear Ultrasonic Testing

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    2017-01-01

    Full Text Available The fatigue damage of compressor blade steel KMN-I was investigated using nonlinear ultrasonic testing and the relation curve between the material nonlinearity parameter β and the fatigue life was obtained. The results showed that the nonlinearity parameter increased first and then decreased with the increase of the fatigue cycles. The microstructures were observed by scanning electron microscopy (SEM. It was found that some small defects like holes and pits appeared in the material matrix with the increase of the fatigue cycles, and the nonlinearity parameter increased correspondingly. The nonlinearity parameter reached the peak value when the microcracks initiated, and the nonlinearity parameter began to decrease when the microcracks further propagated to macrocracks. Therefore, it is proved that the nonlinearity parameter can be used to characterize the initiation of microcracks at the early stage of fatigue, and a method of evaluating the fatigue life of materials by nonlinear ultrasonic testing is proposed.

  1. Fatigue damage of ultrafine-grain copper in very-high cycle fatigue region

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík; Navrátilová, Lucie; Bokůvka, O.

    2011-01-01

    Roč. 528, - (2011), s. 7036-7040 ISSN 0921-5093 R&D Projects: GA ČR GAP108/10/2001 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultrafine-grained microstructure * ultrasonic fatigue * crack initiation * copper Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.003, year: 2011

  2. Application of viscoelastic continuum damage approach to predict fatigue performance of Binzhou perpetual pavements

    Directory of Open Access Journals (Sweden)

    Wei Cao

    2016-04-01

    Full Text Available For this study, the Binzhou perpetual pavement test sections constructed in Shandong Province, China, were simulated for long-term fatigue performance using the layered viscoelastic pavement analysis for critical distresses (LVECD finite element software package. In this framework, asphalt concrete was treated in the context of linear viscoelastic continuum damage theory. A recently developed unified fatigue failure criterion that defined the boundaries of the applicable region of the theory was also incorporated. The mechanistic modeling of the fatigue mechanisms was able to accommodate the complex temperature variations and loading conditions of the field pavements in a rigorous manner. All of the material models were conveniently characterized by dynamic modulus tests and direct tension cyclic fatigue tests in the laboratory using cylindrical specimens. By comparing the obtained damage characteristic curves and failure criteria, it is found that mixtures with small aggregate particle sizes, a dense gradation, and modified asphalt binder tended to exhibit the best fatigue resistance at the material level. The 15-year finite element structural simulation results for all the test sections indicate that fatigue performance has a strong dependence on the thickness of the asphalt pavements. Based on the predicted location and severity of the fatigue damage, it is recommended that Sections 1 and 3 of the Binzhou test sections be employed for perpetual pavement design.

  3. Fatigue crack growth spectrum simplification: Facilitation of on-board damage prognosis systems

    Science.gov (United States)

    Adler, Matthew Adam

    2009-12-01

    monitoring and management of aircraft. A spectrum reduction method was proposed and experimentally validated that reduces a variable-amplitude spectrum to a constant-amplitude equivalent. The reduction from a variable-amplitude (VA) spectrum to a constant-amplitude equivalent (CAE) was proposed as a two-part process. Preliminary spectrum reduction is first performed by elimination of those loading events shown to be too negligible to significantly contribute to fatigue crack growth. This is accomplished by rainflow counting. The next step is to calculate the appropriate, equivalent maximum and minimum loads by means of a root-mean-square average. This reduced spectrum defines the CAE and replaces the original spectrum. The simplified model was experimentally shown to provide the approximately same fatigue crack growth as the original spectrum. Fatigue crack growth experiments for two dissimilar aircraft spectra across a wide-range of stress-intensity levels validated the proposed spectrum reduction procedure. Irrespective of the initial K-level, the constant-amplitude equivalent spectra were always conservative in crack growth rate, and were so by an average of 50% over the full range tested. This corresponds to a maximum 15% overestimation in driving force Delta K. Given other typical sources of scatter that occur during fatigue crack growth, a consistent 50% conservative prediction on crack growth rate is very satisfying. This is especially attractive given the reduction in cost gained by the simplification. We now have a seamless system that gives an acceptably good approximation of damage occurring in the aircraft. This contribution is significant because in a very simple way we now have given a path to bypass the current infrastructure and ground-support requirements. The decision-making is now a lot simpler. In managing an entire fleet we now have a workable system where the strength is in no need for a massive, isolated computational center. The fidelity of the model

  4. Anisotropic Elastoplastic Damage Mechanics Method to Predict Fatigue Life of the Structure

    Directory of Open Access Journals (Sweden)

    Hualiang Wan

    2016-01-01

    Full Text Available New damage mechanics method is proposed to predict the low-cycle fatigue life of metallic structures under multiaxial loading. The microstructure mechanical model is proposed to simulate anisotropic elastoplastic damage evolution. As the micromodel depends on few material parameters, the present method is very concise and suitable for engineering application. The material parameters in damage evolution equation are determined by fatigue experimental data of standard specimens. By employing further development on the ANSYS platform, the anisotropic elastoplastic damage mechanics-finite element method is developed. The fatigue crack propagation life of satellite structure is predicted using the present method and the computational results comply with the experimental data very well.

  5. Evaluation of fatigue damage of pressure vessel materials by observation of microstructures

    International Nuclear Information System (INIS)

    Yoshida, Kazuo

    1994-01-01

    As the important factor as the secular change mode of pressure vessel materials, there is fatigue damage. In USA, there is the move to use LWRs by extending their life, and it becomes necessary to show the soundness of the structures of machinery and equipment for long period. For exactly evaluating the soundness of the structures of machinery and equipment, it is important to clarify the degree of secular deterioration of the materials. In this report, by limiting to the fatigue damage of LWR pressure vessel steel, the method of grasping the change of microstructure and the method of estimating the degree of fatigue damage from the change of microstructure are shown. The change of microstructure arising in materials due to fatigue advances in the following steps, namely, the multiplication of dislocations, the tangling of dislocations, the formation of cell structure, the turning of cells, the formation of microcracks, the growth of cracks and fracture. In the case of pressure vessel steel, due to the quenching and tempering, the cell structure is formed from the beginning, and the advance of fatigue is recognized as the increase of the turning angle of cell structures. The detection of fatigue damage by microstructure is reported. (K.I.)

  6. Probability-based assessment and maintenance of welded joints damaged by fatigue

    International Nuclear Information System (INIS)

    Cremona, C.; Lukic, M.

    1998-01-01

    This paper presents a probabilistic reliability assessment procedure for steel components damaged by fatigue. The study combines the structural reliability theory with a maintenance strategy. The fatigue assessment model is based on a modelisation of the fatigue phenomenon issued from the principles of fracture mechanics theory. The safety margin includes the crack growth propagation and allows to treat fatigue damage in a general manner. Damaging cycles and non damaging cycles are distinguished. The sensitivity study of the different parameters shows that some variables can be taken as deterministic. Applications are made on a welded joint 'stiffener/bottom-plate' of a typical steel bridge. The model is then used for taking into account inspection results. Non destructive inspection (NDI) techniques are also used for updating failure probabilities. The results show their ability to be inserted in a maintenance strategy for optimizing the next inspection time. This has led to define cost functions related to the total maintenance cost; this cost is then minimized for determining the optimal next inspection time. An example of welded joint cracked by fatigue highlights the different concepts. The approach presented in the paper is not only restrained to fatigue problems, but can be applied to a wide variety of degrading phenomena. (orig.)

  7. The Vibration Based Fatigue Damage Assessment of Steel and Steel Fiber Reinforced Concrete (SFRC Composite Girder

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2015-01-01

    Full Text Available The steel-concrete composite girder has been usually applied in the bridge and building structures, mostly consisting of concrete slab, steel girder, and shear connector. The current fatigue damage assessment for the composite girder is largely based on the strain values and concrete crack features, which is time consuming and not stable. Hence the vibration-based fatigue damage assessment has been considered in this study. In detail, a steel-steel fiber reinforced concrete (SFRC composite girder was tested. The steel fiber reinforced concrete is usually considered for dealing with the concrete cracks in engineering practice. The composite girder was 3.3m long and 0.45m high. The fatigue load and impact excitation were applied on the specimen sequentially. According to the test results, the concrete crack development and global stiffness degradation during the fatigue test were relatively slow due to the favourable performance of SFRC in tension. But on the other hand, the vibration features varied significantly during the fatigue damage development. Generally, it confirmed the feasibility of executing fatigue damage assessment of composite bridge based on vibration method.

  8. Detection of Fatigue Damage by Using Frequency Attenuation of a Laser Ultrasonic Longitudinal Wave

    International Nuclear Information System (INIS)

    Park, Seung-Kyu; Baik, Sung-Hoon; Jung, Hyun-Kyu; Joo, Young-Sang; Cha, Hyung-Ki; Kang, Young-June

    2006-01-01

    The measurement of fatigue damage in nuclear power plant components is very important to prevent a catastrophic accident and the subsequent severe losses. Specifically, it is preferred to detect at an early stage of the fatigue damage. If the fatigue damage that is in danger of growing into a fracture is accurately detected, an appropriate treatment could be carried out to improve the condition. Although most engineers and designers take precautions against fatigue, some breakdowns of nuclear power plant components still occur due to fatigue damage. It is considered that ultrasound testing technique is the most promising method to detect the fatigue damage in many nondestructive testing methods. Ultrasound testing method has a variety of elastic waves, such as a longitudinal wave, a shear wave, a surface wave and a lamb wave. Also we can use various analysis methods, such as a velocity variation and a signal attenuation. Laser ultrasonic testing has attracted attention as a non-contact testing technique. This system consists of a pulse laser to remotely generate ultrasound and a laser interferometer to remotely measure the surface displacement due to the generated ultrasound. This noncontact testing technique has the following advantages over the conventional piezoelectric transducers. Firstly, the inspection system can be remotely operated for a structure in hostile environments, such as in high radioactivity, high temperatures and narrow spaces. Secondly, we can obtain lots of information from the received ultrasonic waveforms because the laser ultrasonic technique does not require fluid couplant which disturbs the ultrasonic waveforms. Thirdly, laser ultrasound has a wideband spectrum and a high spatial resolution. Therefore, the laser ultrasound provides more accurate information for a testing material and has potential for the detection of fatigue damage in various metals composing a nuclear power plant

  9. Fatigue damage in nuclear power plants: cases study

    International Nuclear Information System (INIS)

    Goltrant, O.; Thebault, Y.

    2001-01-01

    Some fatigue cracks have been detected on nuclear power plants components. Generally they appears under local solicitations not correctly predicted. Two cases are presented in this paper to illustrate the problem: the pitting during mechanical fatigue where the stresses are induced by the pumps vibrations or by fluid flow; the mixing zones of RRA circuit (N4 bearing) where the stresses are induced by the flow of different temperature fluids. The examination allowed the identification of the cracking origin and the development of corrective solutions. (A.L.B.)

  10. Studying fatigue damage evolution in uni-directional composites using x-ray computed tomography

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    , it will be possible to lower the costs of energy for wind energy based electricity. In the present work, a lab-source x-ray computed tomography equipment (Zeiss Xradia 520 Versa) has been used in connection with ex-situ fatigue testing of uni-directional composites in order to identify fibre failure during...... comparable x-ray studies) have been used in order to ensure a representative test volume during the ex-situ fatigue testing. Using the ability of the x-ray computed tomography to zoom into regions of interest, non-destructive, the fatigue damage evolution in a repeating ex-situ fatigue loaded test sample has...... improving the fatigue resistance of non-crimp fabric used in the wind turbine industry can be made....

  11. Effects of Various Factors on the Viv-Induced Fatigue Damage In The Cable Of Submerged Floating Tunnel

    Directory of Open Access Journals (Sweden)

    Luoa Gang

    2015-12-01

    Full Text Available According to the modal superposition method, the vortex vibration procedure of submerged floating tunnel cable was compiled using Matlab, based on the calculated results, the fatigue damage was predicted. The effects of various factors, such as cable density, cable length, and pretension and velocity distribution on vortex induced fatigue damage in the cable were studied. The results show that velocity distribution has more effect on the cable fatigue damage than cable length, cable density and pre-tension. Secondly, cable length has also relatively effect on the cable damage fatigue, cable density and pretension has limited in a certain range.

  12. An Intelligent Sensor System for Monitoring Fatigue Damage in Welded Steel Components

    Science.gov (United States)

    Fernandes, B.; Gaydecki, P.; Burdekin, F. Michael

    2005-04-01

    A system for monitoring fatigue damage in steel components is described. The sensor, a thin steel sheet with a pre-crack in it, is attached to the component. Its crack length increases by fatigue in service and is recorded using a microcontroller. Measurement is accomplished using conductive tracks in a circuit whose output voltage changes when the crack propagates past a track. Data stored in memory can be remotely downloaded using Bluetooth™ technology to a PC.

  13. An Intelligent Sensor System for Monitoring Fatigue Damage in Welded Steel Components

    International Nuclear Information System (INIS)

    Fernandes, B.; Gaydecki, P.; Burdekin, F. Michael

    2005-01-01

    A system for monitoring fatigue damage in steel components is described. The sensor, a thin steel sheet with a pre-crack in it, is attached to the component. Its crack length increases by fatigue in service and is recorded using a microcontroller. Measurement is accomplished using conductive tracks in a circuit whose output voltage changes when the crack propagates past a track. Data stored in memory can be remotely downloaded using Bluetooth TM technology to a PC

  14. Survey on damage mechanics models for fatigue life prediction

    NARCIS (Netherlands)

    Silitonga, S.; Maljaars, J.; Soetens, F.; Snijder, H.H.

    2013-01-01

    Engineering methods to predict the fatigue life of structures have been available since the beginning of the 20th century. However, a practical problem arises from complex loading conditions and a significant concern is the accuracy of the methods under variable amplitude loading. This paper

  15. Nondestructive Detection of Structural Damage Uniquely Associated with Fatigue

    Science.gov (United States)

    1974-07-01

    corrosion were not as numerous as cracks caused by fatigue. Stress corrosion cracking occurred mostly at fillet radius, shear pinhole, and the web of...nil i. i^mji^mitm^mm^mmmmmw^mmmtmi>i>i.vi\\ -^^ wix ^w 0) a E re i A c 0) 1- D o ^el /l Current le // T wi th ~ transducer — ’"A

  16. Multi-scale Fatigue Damage Life Assessment of Railroad Wheels

    Science.gov (United States)

    2018-01-01

    This study focused on the presence of a crack in the railway wheels subsurface and how it affects the wheels fatigue life. A 3-D FE-model was constructed to simulate the stress/strain fields that take place under the rolling contact of railway ...

  17. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianfeng; Xuan, Fu-Zhen, E-mail: fzxuan@ecust.edu.cn [MOE Key Laboratory of Pressurized System and Safety, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2014-05-28

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  18. Analysis and prediction of Multiple-Site Damage (MSD) fatigue crack growth

    Science.gov (United States)

    Dawicke, D. S.; Newman, J. C., Jr.

    1992-08-01

    A technique was developed to calculate the stress intensity factor for multiple interacting cracks. The analysis was verified through comparison with accepted methods of calculating stress intensity factors. The technique was incorporated into a fatigue crack growth prediction model and used to predict the fatigue crack growth life for multiple-site damage (MSD). The analysis was verified through comparison with experiments conducted on uniaxially loaded flat panels with multiple cracks. Configuration with nearly equal and unequal crack distribution were examined. The fatigue crack growth predictions agreed within 20 percent of the experimental lives for all crack configurations considered.

  19. Analysis and prediction of Multiple-Site Damage (MSD) fatigue crack growth

    Science.gov (United States)

    Dawicke, D. S.; Newman, J. C., Jr.

    1992-01-01

    A technique was developed to calculate the stress intensity factor for multiple interacting cracks. The analysis was verified through comparison with accepted methods of calculating stress intensity factors. The technique was incorporated into a fatigue crack growth prediction model and used to predict the fatigue crack growth life for multiple-site damage (MSD). The analysis was verified through comparison with experiments conducted on uniaxially loaded flat panels with multiple cracks. Configuration with nearly equal and unequal crack distribution were examined. The fatigue crack growth predictions agreed within 20 percent of the experimental lives for all crack configurations considered.

  20. Fatigue damage characterization in plain-wave carbon-carbon fabric reinforced plastic composites

    International Nuclear Information System (INIS)

    Khan, Z.; Al-sulaiman, F.S.; Farooqi, J.K.

    1997-01-01

    In this paper fatigue damage mechanisms in 8 ply Carbon-Carbon Fabric reinforced Plastic Laminates obtained from polyester resin-prepreg plain weave carbon-carbon fabric layers have been investigated. Enhanced dye penetrant, X-ray radiography, optical microscopy, edge replication, and scanning electron fractography have been employed to examine the fatigue damage in three classes of laminates having the unidirectional (O)/sub delta/, the angle-plied (0,0,45,-45)/sub s/ fiber orientations. It is shown the laminates that have off axis plies, i.e.,0,0,45,-45), and (45,-45,0,0) /sub s/, the fatigue damage is initiated through matrix cracking. This matrix cracking induces fiber fracture in adjacent plies near the matrix crack tip. This event is followed by the man damage event of delamination of the stacked plies. It is shown that the delamination was the major damage mode, which caused the eventual fatigue failure in the angle-plied composites. The unidirectional composite (O)/sub delta/ laminates failed predominantly by lateral fracture instead of delamination. Fiber fracture was observed in the prime damage mode in unidirectional (O)/sub delta/ composite laminates. (author)

  1. An accurate fatigue damage model for welded joints subjected to variable amplitude loading

    Science.gov (United States)

    Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.; Langen, I.

    2017-12-01

    Researchers in the past have proposed several fatigue damage models to overcome the shortcomings of the commonly used Miner’s rule. However, requirements of material parameters or S-N curve modifications restricts their practical applications. Also, application of most of these models under variable amplitude loading conditions have not been found. To overcome these restrictions, a new fatigue damage model is proposed in this paper. The proposed model can be applied by practicing engineers using only the S-N curve given in the standard codes of practice. The model is verified with experimentally derived damage evolution curves for C 45 and 16 Mn and gives better agreement compared to previous models. The model predicted fatigue lives are also in better correlation with experimental results compared to previous models as shown in earlier published work by the authors. The proposed model is applied to welded joints subjected to variable amplitude loadings in this paper. The model given around 8% shorter fatigue lives compared to Eurocode given Miner’s rule. This shows the importance of applying accurate fatigue damage models for welded joints.

  2. A Real-time Evaluation Technique of Fatigue Damage in Adhesively Bonded Composite-Metal Joints

    International Nuclear Information System (INIS)

    Kwon, Oh Yang; Kim, Tae Hyun

    1999-01-01

    One of the problems for practical use of fiber-reinforced plastics is the performance degradation by fatigue damage in the joints. The study is to develop a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between the qualify of bonded parts and AUP's. We obtained a curve showing the correlation between the degree of fatigue damage and AUP's calculated from signals acquired during fatigue loading of single-lap and double-lap joints of CFRP and Al6061. The curve is an analogy to the one showing stiffness reduction (E/Eo) of polymer matrix composites by fatigue damage. From those facts, it is plausible to predict the degree of fatigue damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joints whereas Amplitude and AUP2 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the application for real structures

  3. A Real-time Evaluation Technique of Fatigue Damage in Adhesively Bonded Composite-Metal Joints

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Yang; Kim, Tae Hyun [Inha University, Incheon (Korea, Republic of)

    1999-12-15

    One of the problems for practical use of fiber-reinforced plastics is the performance degradation by fatigue damage in the joints. The study is to develop a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between the qualify of bonded parts and AUP's. We obtained a curve showing the correlation between the degree of fatigue damage and AUP's calculated from signals acquired during fatigue loading of single-lap and double-lap joints of CFRP and Al6061. The curve is an analogy to the one showing stiffness reduction (E/Eo) of polymer matrix composites by fatigue damage. From those facts, it is plausible to predict the degree of fatigue damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joints whereas Amplitude and AUP2 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the application for real structures

  4. Evaluation of fatigue damage for wind turbine blades using acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Jee, Hyun Sup; Ju, No Hoe [Korea Institute of Materials Science, Changwon (Korea, Republic of); So, Cheal Ho [Dongshin University, Naju (Korea, Republic of); Lee, Jong Kyu [Dept. of Physics, Pukyung National University, Busan (Korea, Republic of)

    2015-06-15

    In this study, the flap fatigue test of a 48 m long wind turbine blade was performed for 1 million cycles to evaluate the characteristics of acoustic emission signals generated from fatigue damage of the wind blades. As the number of hits and total energy continued to increase during the first 0.6 million cycles, blade damage was constant. The rise-time result showed that the major aspects of damage were initiation and propagation of matrix cracks. In addition, the signal analysis of each channel showed that the most seriously damaged sections were the joint between the skin and spar, 20 m from the connection, and the spot of actual damage was observable by visual inspection. It turned out that the event source location was related to the change in each channel{sup s} total energy. It is expected that these findings will be useful for the optimal design of wind turbine blades.

  5. Analysis of the cyclic behavior and fatigue damage of extruded AA2017 aluminum alloy

    International Nuclear Information System (INIS)

    May, A.; Taleb, L.; Belouchrani, M.A.

    2013-01-01

    The present work is devoted to study the anisotropic behavior of an extruded aluminum alloy under cyclic loading in axial and shear directions. In first, we have studied its elastoplastic behavior through the evolution of stress–strain loops, isotropic and kinematic hardening and we have associated this behavior with the evolution of its elastic adaptation (shakedown). In second, we have studied the behavior of the material in fatigue damage using the evolution of stiffness. Finally, microstructural investigations were performed on fractured surfaces using scanning electron microscope (SEM) in order to understand the evolution of fatigue damage during cyclic loading

  6. Effect of control activity on blade fatigue damage rate for a small horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, A F; Freris, L L; Graham, J M.R. [Imperial College, London (United Kingdom)

    1996-09-01

    An experiment into the effect of control activity on blade fatigue damage rate for a 5 kW, two bladed, teetered HAWT has been performed. It has been shown that control activity influences the distribution of strain in the blade but that in a high rotor speed, high cycle fatigue regime this has little influence on damage rate. The experiment was conducted on a small test turbine by implementing variable speed stall, pitch and yaw control strategies and measuring blade flapwise strain response at root and midspan locations. A full description of the investigation is provided. (au)

  7. An Artificial Neural Network-Based Algorithm for Evaluation of Fatigue Crack Propagation Considering Nonlinear Damage Accumulation.

    Science.gov (United States)

    Zhang, Wei; Bao, Zhangmin; Jiang, Shan; He, Jingjing

    2016-06-17

    In the aerospace and aviation sectors, the damage tolerance concept has been applied widely so that the modeling analysis of fatigue crack growth has become more and more significant. Since the process of crack propagation is highly nonlinear and determined by many factors, such as applied stress, plastic zone in the crack tip, length of the crack, etc. , it is difficult to build up a general and flexible explicit function to accurately quantify this complicated relationship. Fortunately, the artificial neural network (ANN) is considered a powerful tool for establishing the nonlinear multivariate projection which shows potential in handling the fatigue crack problem. In this paper, a novel fatigue crack calculation algorithm based on a radial basis function (RBF)-ANN is proposed to study this relationship from the experimental data. In addition, a parameter called the equivalent stress intensity factor is also employed as training data to account for loading interaction effects. The testing data is then placed under constant amplitude loading with different stress ratios or overloads used for model validation. Moreover, the Forman and Wheeler equations are also adopted to compare with our proposed algorithm. The current investigation shows that the ANN-based approach can deliver a better agreement with the experimental data than the other two models, which supports that the RBF-ANN has nontrivial advantages in handling the fatigue crack growth problem. Furthermore, it implies that the proposed algorithm is possibly a sophisticated and promising method to compute fatigue crack growth in terms of loading interaction effects.

  8. Using ultrasonic attenuation for assessing the fatigue damage of concrete

    International Nuclear Information System (INIS)

    Suaris, W.; Fernando, V.

    1987-01-01

    The results from cyclic loading tests indicate that damage accumulation as measured by pulse attenuation during cyclic loading is not linear, particularly during the initial cycles. The crack growth results obtained may be used for ascertaining the extent of damage in a in-situ structure using the following procedure: The ultrasonic waveforms obtained from a damaged region can first be compared with that obtained from the same region initially to yield a damage coefficient. Then the calibration charts obtained from laboratory specimens may be used to predict the extent of damage due to cyclic loading. The proposed method can also easily be extended to predict the deterioration due to shrinkage, creep and other environmental effects as long as their effect is to produce cracking in the concrete. (orig./HP)

  9. Damage and failure modeling of lotus-type porous material subjected to low-cycle fatigue

    Directory of Open Access Journals (Sweden)

    J. Kramberger

    2016-01-01

    Full Text Available The investigation of low-cycle fatigue behaviour of lotus-type porous material is presented in this paper. Porous materials exhibit some unique features which are useful for a number of various applications. This paper evaluates a numerical approach for determining of damage initiation and evolution of lotus-type porous material with computational simulations, where the considered computational models have different pore topology patterns. The low-cycle fatigue analysis was performed by using a damage evolution law. The damage state was calculated and updated based on the inelastic hysteresis energy for stabilized cycle. Degradation of the elastic stifness was modeled using scalar damage variable. In order to examine crack propagation path finite elements with severe damage were deleted and removed from the mesh during simulation. The direct cyclic analysis capability in Abaqus/Standard was used for low-cycle fatigue analysis to obtain the stabilized response of a model subjected to the periodic loading. The computational results show a qualitative understanding of pores topology influence on low-cycle fatigue under transversal loading conditions in relation to pore orientation.

  10. A new model for fatigue damage accumulation of austenitic stainless steel under variable amplitude loading

    International Nuclear Information System (INIS)

    Taheri, S.; Vincent, L.; Le-Roux, J.C.

    2013-01-01

    The application of Miner's rule using a loading issued from a mock-up of a RHR system (removal heat system) of PWR plant, made of 304 steel gives a very important non-conservative fatigue life in strain control when strain fatigue curve is used. This result is due to the absence of sequence effect in Miner's rule. Many non linear damage accumulation models have been proposed to get a sequence effect. Shortcomings of some non linear damage accumulation models are discussed. So Smith-Watson-Topper and Fatemi-Socie criterions with a linear damage accumulation rule are then applied to experimental data. A major issue is the need for an elastic-plastic constitutive law which is difficult to propose in the presence of high cycle secondary hardening observed in austenitic stainless steels. A conservative model for fatigue damage accumulation under variable amplitude loading is then proposed for austenitic stainless steels in strain control, which does not need a constitutive law, but takes into account plasticity through cyclic strain stress curve. The model uses a linear damage accumulation rule. This model is based on the fact that for stainless steels, pre-hardening is detrimental for fatigue life in strain control, while it is beneficial in stress control. In the presence of low mean stress, the model is approved based on a large number of tests. Moreover the model allows to explain the larger detrimental effect of a tension mean stress in strain control tests than in stress control tests. (authors)

  11. Detection of Fatigue Damage by Using High Frequency Nonlinear Laser Ultrasonic Signals

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Park, Nak Kyu; Baik, Sung Hoon; Cheong, Yong Moo; Cha, Byung Heon

    2012-01-01

    The detection of fatigue damage for the components of a nuclear power plant is one of key techniques to prevent a catastrophic accident and the subsequent severe losses. Specifically, it is preferred to detect at an early stage of the fatigue damage. If the fatigue damage that is in danger of growing into a fracture is accurately detected, an appropriate treatment could be carried out to improve the condition. Although most engineers and designers take precautions against fatigue, some breakdowns of nuclear power plant components still occur due to fatigue damage. It is considered that ultrasound testing technique is the most promising method to detect the fatigue damage in many nondestructive testing methods. Laser ultrasound has attracted attention as a noncontact testing technique. Especially, laser ultrasonic signal has wide band frequency spectrum which can provide more accurate information for a testing material. The conventional linear ultrasonic technique is sensitive to gross defects or opened cracks whereas it is less sensitive to evenly distributed micro-cracks or degradation. An alternative technique to overcome this limitation is nonlinear ultrasound. The principal difference between linear and nonlinear technique is that in the latter the existence and characteristics of defects are often related to an acoustic signal whose frequency differs from that of the input signal. This is related to the radiation and propagation of finite amplitude, especially high power, ultrasound and its interaction with discontinuities, such as cracks, interfaces and voids. Since material failure or degradation is usually preceded by some kind of nonlinear mechanical behavior before significant plastic deformation or material damage occurs. The presence of nonlinear terms in the wave equation causes intense acoustic waves to generate new waves at frequencies which are multiples of the initial sound wave frequency. The nonlinear effect can exert a strong effect on the

  12. Three technical issues in fatigue damage assessment of nuclear power plant components

    International Nuclear Information System (INIS)

    Ware, A.G.; Shah, V.N.

    1991-01-01

    This paper addresses three technical issues that affect the fatigue damage assessment of nuclear power plant components: the effect of the environment on the fatigue life, the importance of the loading sequence in calculating the fatigue crack-initiation damage, and the adequacy of current inservice inspection requirements and methods to characterize fatigue cracks. The environmental parameters that affect the fatigue life of carbon and low alloy steel components are the sulphur content in the steel, the temperature, the amount of dissolved oxygen in the coolant, and the presence of oxidizing agents such as copper oxide. The occurrence of large-amplitude stress cycles early in a component's life followed by low-amplitude stress cycles may cause crack initiation at a cumulative usage factor less than 1.0. The current inservice inspection requirements include volumetric inspections of welds but not of some susceptible sites in the base metal. In addition, the conventional ultrasonic testing techniques need to be improved for reliable detection and accurate sizing of fatigue cracks. 28 refs., 4 figs., 1 tab

  13. Dependence of Microelastic-plastic Nonlinearity of Martensitic Stainless Steel on Fatigue Damage Accumulation

    Science.gov (United States)

    Cantrell, John H.

    2006-01-01

    Self-organized substructural arrangements of dislocations formed in wavy slip metals during cyclic stress-induced fatigue produce substantial changes in the material microelastic-plastic nonlinearity, a quantitative measure of which is the nonlinearity parameter Beta extracted from acoustic harmonic generation measurements. The contributions to Beta from the substructural evolution of dislocations and crack growth for fatigued martensitic 410Cb stainless steel are calculated from the Cantrell model as a function of percent full fatigue life to fracture. A wave interaction factor f(sub WI) is introduced into the model to account experimentally for the relative volume of material fatigue damage included in the volume of material swept out by an interrogating acoustic wave. For cyclic stress-controlled loading at 551 MPa and f(sub WI) = 0.013 the model predicts a monotonic increase in Beta from dislocation substructures of almost 100 percent from the virgin state to roughly 95 percent full life. Negligible contributions from cracks are predicted in this range of fatigue life. However, over the last five percent of fatigue life the model predicts a rapid monotonic increase of Beta by several thousand percent that is dominated by crack growth. The theoretical predictions are in good agreement with experimental measurements of 410Cb stainless steel samples fatigued in uniaxial, stress-controlled cyclic loading at 551 MPa from zero to full tensile load with a measured f(sub WI) of 0.013.

  14. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, Z.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)]. E-mail: zhfzhang@imr.ac.cn; Wang, Z.G. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Qiu, K.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, H.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zang, Q.S. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Hu, Z.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2006-02-25

    The fatigue life, damage and fracture behavior of tungsten fiber reinforced metallic glass Zr{sub 41.25}Ti{sub 13.75}Ni{sub 10}Cu{sub 12.5}Be{sub 22.5} composites are investigated under cyclic push-pull loading. It is found that the fatigue life of the composite increases with increasing the volume fraction of tungsten fibers. Similar to crystalline metals, the regions of crack initiation, propagation and overload fracture can be discerned on the fracture surface of the specimen. Fatigue crack normally initiates in the metallic glass matrix at the outer surface of the composite specimen and propagates predominantly in the matrix. Different crack front profile around the tungsten fibers and fiber pullout demonstrate that fatigue crack may propagate around the fiber, leading to bridging of the crack faces by the unbroken fiber and hence improved fatigue crack-growth resistance. Locally decreased effective stiffness in the region where fiber distribution is sparse may provide preferential crack path in the composite. A proposed model was exercised to elucidate different tungsten fiber fracture morphologies in the fatigue crack propagation and overload fracture regions in the light of Poisson's ratio effect during fatigue loading.

  15. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite

    International Nuclear Information System (INIS)

    Zhang, H.; Zhang, Z.F.; Wang, Z.G.; Qiu, K.Q.; Zhang, H.F.; Zang, Q.S.; Hu, Z.Q.

    2006-01-01

    The fatigue life, damage and fracture behavior of tungsten fiber reinforced metallic glass Zr 41.25 Ti 13.75 Ni 10 Cu 12.5 Be 22.5 composites are investigated under cyclic push-pull loading. It is found that the fatigue life of the composite increases with increasing the volume fraction of tungsten fibers. Similar to crystalline metals, the regions of crack initiation, propagation and overload fracture can be discerned on the fracture surface of the specimen. Fatigue crack normally initiates in the metallic glass matrix at the outer surface of the composite specimen and propagates predominantly in the matrix. Different crack front profile around the tungsten fibers and fiber pullout demonstrate that fatigue crack may propagate around the fiber, leading to bridging of the crack faces by the unbroken fiber and hence improved fatigue crack-growth resistance. Locally decreased effective stiffness in the region where fiber distribution is sparse may provide preferential crack path in the composite. A proposed model was exercised to elucidate different tungsten fiber fracture morphologies in the fatigue crack propagation and overload fracture regions in the light of Poisson's ratio effect during fatigue loading

  16. Magnetic characterization of creep-fatigue damage for energy structural materials

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Hashidate, Ryuta; Harada, Yoshihisa

    2012-01-01

    Magnetic characterization of creep-fatigue damage for welded specimens of austenitic stainless steel (SUS316FR) and high-chromium steel (Mod.9Cr-1Mo) steel was performed using magnetic force microscope and Hall sensor. In SUS316FR volume fraction of δ-ferrite at weld metal region decreased by creep or creep-fatigue and the remanent magnetic flux density at weld metal region also decreased. In Mod.9Cr-1Mo steel magnetic characteristics at weld metal region were different from those at base metal initially, however, during creep or creep fatigue the difference of magnetic characteristics between welded metal and base metal became small. It was found that the degradation mechanism for these energy structural materials during creep or creep fatigue could be clarified by magnetic characterization techniques. (author)

  17. Application of positron annihilation line-shape analysis to fatigue damage for nuclear plant materials

    International Nuclear Information System (INIS)

    Maeda, N.; Uchida, M.; Ohta, Y.; Yoshida, K.

    1996-01-01

    Positron annihilation line-shape analysis is sufficiently sensitive to detect microstructural defects such as vacancies and dislocations. We are developing a portable positron annihilation system and applying this technique to fatigue damage in type 316 stainless steel and SA508 low alloy steel. The positron annihilation technique was found to be sensitive in the early fatigue life, i.e. up to 10% of the fatigue life, but showed little sensitivity in later stages of the fatigue life in type 316 stainless steel and SA508 low alloy steel. Type 316 stainless steel a higher positron annihilation sensitivity than that of SA508. It was considered that the amount of dislocation density change in the stainless steel was greater than that in the low alloy steel, because the initial microstructure contained a low dislocation density because of the solution heat treatment for the type 316 stainless steel. (orig.)

  18. Fatigue-damage evolution and damage-induced reduction of critical current of a Nb3Al superconducting composite

    International Nuclear Information System (INIS)

    Ochiai, S; Sekino, F; Sawada, T; Ohno, H; Hojo, M; Tanaka, M; Okuda, H; Koganeya, M; Hayashi, K; Yamada, Y; Ayai, N; Watanabe, K

    2003-01-01

    We have studied the fatigue-damage mechanism of a Nb 3 Al superconducting composite at room temperature, and the influences of the fatigue damages introduced at room temperature on the critical current at 4.2 K and the residual strength at room temperature. The main (largest) fatigue crack arose first in the clad copper and then extended into the inner core with an increasing number of stress cycles. The cracking of the Nb 3 Al filaments in the core region occurred at a late stage (around 60-90% of the fatigue life). Once the fracture of the core occurred, it extended very quickly, resulting in a quick reduction in critical current and the residual strength with increasing stress cycles. Such a behaviour was accounted for by the crack growth calculated from the S-N curves (the relation of the maximum stress to the number of stress cycles at failure) combined with the Paris law. The size and distribution of the subcracks along the specimen length, and therefore the reduction in critical current of the region apart from the main crack, were dependent on the maximum stress level. The large subcracks causing fracture of the Nb 3 Al filaments were formed when the maximum stress was around 300-460 MPa, resulting in large reduction in critical current, but not when the maximum stress was outside such a stress range

  19. Fatigue crack tip damaging micromechanisms in a ferritic-pearlitic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Francesco Iacoviello

    2015-07-01

    Full Text Available Due to the peculiar graphite elements shape, obtained by means of a chemical composition control (mainly small addition of elements like Mg, Ca or Ce, Ductile Cast Irons (DCIs are able to offer the good castability of gray irons with the high mechanical properties of irons (first of all, toughness. This interesting properties combination can be improved both by means of the chemical composition control and by means of different heat treatments(e.g. annealing, normalizing, quenching, austempering etc. In this work, fatigue crack tip damaging micromechanisms in a ferritic-pearlitic DCI were investigated by means of scanning electron microscope observations performed on a lateral surface of Compact Type (CT specimens during the fatigue crack propagation test (step by step procedure, performed according to the “load shedding procedure”. On the basis of the experimental results, different fatigue damaging micromechanisms were identified, both in the graphite nodules and in the ferritic – pearlitic matrix.

  20. Cumulative damage fatigue tests on nuclear reactor Zircaloy-2 fuel tubes at room temperature and 3000C

    International Nuclear Information System (INIS)

    Pandarinathan, P.R.; Vasudevan, P.

    1980-01-01

    Cumulative damage fatigue tests were conducted on the Zircaloy-2 fuel tubes at room temperature and 300 0 C on the modified Moore type, four-point-loaded, deflection-controlled, rotating bending fatigue testing machine. The cumulative cycle ratio at fracture for the Zircaloy-2 fuel tubes was found to depend on the sequence of loading, stress history, number of cycles of application of the pre-stress and the test temperature. A Hi-Lo type fatigue loading was found to be very much damaging at room temperature and this feature was not observed in the tests at 300 0 C. Results indicate significant differences in damage interaction and damage propagation under cumulative damage tests at room temperature and at 300 0 C. Block-loading fatigue tests are suggested as the best method to determine the life-time of Zircaloy-2 fuel tubes under random fatigue loading during their service in the reactor. (orig.)

  1. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    Science.gov (United States)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  2. A real time evaluation technique of fatigue damage in adhesively bonded composite metal joints

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hyun; Kwon Oh Yang [Dept. of Mechanical Engineering, Inje Univesity, Kimhae (Korea, Republic of)

    1999-05-15

    One of the problems for practical use of fiber-reinforced composite material is performance degradation by fatigue damage in the joints. The study is to develope a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between quality of bonded parts and AUP's. We obtained a curve showing the correlation between AUP's calculated from signals obtained from single-lap and double-lap joints and the degree of fatigue damage at bonding interface during fatigue test. The curve is an analogy to the one showing stiffness reduction(E/E{sub 0}) of polymer matrix composites by fatigue damage. From those facts, it is possible to predict degree of damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joint whereas amplitude and AUP1 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the real structure.

  3. A real time evaluation technique of fatigue damage in adhesively bonded composite metal joints

    International Nuclear Information System (INIS)

    Kim, Tae Hyun; Kwon Oh Yang

    1999-01-01

    One of the problems for practical use of fiber-reinforced composite material is performance degradation by fatigue damage in the joints. The study is to develope a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between quality of bonded parts and AUP's. We obtained a curve showing the correlation between AUP's calculated from signals obtained from single-lap and double-lap joints and the degree of fatigue damage at bonding interface during fatigue test. The curve is an analogy to the one showing stiffness reduction(E/E 0 ) of polymer matrix composites by fatigue damage. From those facts, it is possible to predict degree of damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joint whereas amplitude and AUP1 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the real structure.

  4. Surface Irregularity Factor as a Parameter to Evaluate the Fatigue Damage State of CFRP

    Science.gov (United States)

    Zuluaga-Ramírez, Pablo; Frövel, Malte; Belenguer, Tomás; Salazar, Félix

    2015-01-01

    This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL) and realistic variable amplitude loads (VAL), representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications. PMID:28793655

  5. Surface Irregularity Factor as a Parameter to Evaluate the Fatigue Damage State of CFRP

    Directory of Open Access Journals (Sweden)

    Pablo Zuluaga-Ramírez

    2015-11-01

    Full Text Available This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL and realistic variable amplitude loads (VAL, representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications.

  6. Impact of Higher Fidelity Models on Simulation of Active Aerodynamic Load Control For Fatigue Damage Reduction

    NARCIS (Netherlands)

    Resor, B.; Wilson, D.; Berg, D.; Berg, J.; Barlas, T.; Van Wingerden, J.W.; Van Kuik, G.A.M.

    2010-01-01

    Active aerodynamic load control of wind turbine blades is being investigated by the wind energy research community and shows great promise, especially for reduction of turbine fatigue damage in blades and nearby components. For much of this work, full system aeroelastic codes have been used to

  7. Fatigue

    Science.gov (United States)

    ... to help you find out what's causing your fatigue and recommend ways to relieve it. Fatigue itself is not a disease. Medical problems, treatments, and personal habits can add to fatigue. These include Taking certain medicines, such as antidepressants, ...

  8. Creep/fatigue damage prediction of fast reactor components using shakedown methods

    International Nuclear Information System (INIS)

    Buckthorpe, D.E.

    1997-01-01

    The present status of the shakedown method is reviewed, the application of the shakedown based principles to complex hardening and creep behaviour is described and justified and the prediction of damage against design criteria outlined. Comparisons are made with full inelastic analysis solutions where these are available and against damage assessments using elastic and inelastic design code methods. Current and future developments of the method are described including a summary of the advances made in the development of the post process ADAPT, which has enabled the method to be applied to complex geometry features and loading cases. The paper includes a review of applications of the method to typical Fast Reactor structural example cases within the primary and secondary circuits. For the primary circuit this includes structures such as the large diameter internal shells which are surrounded by hot sodium and subject to slow and rapid thermal transient loadings. One specific case is the damage assessment associated with thermal stratifications within sodium and the effects of moving sodium surfaces arising from reactor trip conditions. Other structures covered are geometric features within components such as the Above Core structure and Intermediate Heat Exchanger. For the secondary circuit the method has been applied to alternative and more complex forms of geometry namely thick section tubeplates of the Steam Generator and a typical secondary circuit piping run. Both of these applications are in an early stage of development but are expected to show significant advantages with respect to creep and fatigue damage estimation compared with existing code methods. The principle application of the method to design has so far been focused on Austenitic Stainless steel components however current work shows some significant benefits may be possible from the application of the method to structures made from Ferritic steels such as Modified 9Cr 1Mo. This aspect is briefly

  9. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades

    Directory of Open Access Journals (Sweden)

    Zheng-Yong Yu

    2017-05-01

    Full Text Available As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB and Fatemi-Socie (FS models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models.

  10. Fatigue-creep of martensitic steels containing 9-12% Cr: behaviour and damage

    International Nuclear Information System (INIS)

    Fournier, B.

    2007-09-01

    It is in the framework of the research programs on nuclear reactors (generation IV) that the martensitic steels containing 9-12% Cr are studied by the CEA. Most of the structures for which they are considered will be solicited in fatigue-creep at high temperature (550 C). The aim of this work is to understand and model the cyclic behaviour and the damage of these materials. The proposed modelling are based on detailed observations studies (SEM, TEM, EBSD...). The cyclic softening is attributed to the growth of the microstructure. A micro-mechanical model based on the physical parameters is proposed and leads to encouraging results. The damage results of interactions between fatigue, creep and oxidation. Two main types of damage are revealed. A model of anticipation of service time is proposed and gives very satisfying results. The possible extrapolations are discussed. (O.M.)

  11. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel; Endommagement et cumul de dommage en fatigue dans le domaine de l'endurance limitee d'un acier inoxydable austenitique 304L

    Energy Technology Data Exchange (ETDEWEB)

    Lehericy, Y

    2007-05-15

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  12. Gear fatigue damage for a 500 kW wind turbine exposed to increasing turbulence using a flexible multibody model

    Directory of Open Access Journals (Sweden)

    Martin Felix Jørgensen

    2014-04-01

    Full Text Available This paper investigates gear tooth fatigue damage in a 500 kW wind turbine using FLEX5 and own multibody code. FLEX5 provides the physical wind field, rotor and generator torque and the multibody code is used for obtaining gear tooth reaction forces in the planetary gearbox. Different turbulence levels are considered and the accumulated fatigue damage levels are compared. An example where the turbulence/fatigue sensitivity could be important, is in the middle of a big wind farm. Interior wind turbines in large wind farms will always operate in the wake of other wind turbines, causing increased turbulence and therefore increased fatigue damage levels. This article contributes to a better understanding of gear fatigue damage when turbulence is increased (e.g. in the center of large wind farms or at places where turbulence is pronounced.

  13. Creep-fatigue damage rules for advanced fast reactor design. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-03-01

    The IAEA, following the recommendations of the International Working Group on Fast Reactors, convened a Technical Committee Meeting on Creep-Fatigue Damage Rules to be used in Fast Reactor Design. The objective of the meeting was to review developments in design rules for creep-fatigue conditions and to identify any areas in which further work would be desirable. The meeting was hosted by AEA Technology, Risley, and held in Manchester, United Kingdom, 11-13 June 1996. It was attended by experts from the European Commission, France, India, Japan, the Republic of Korea, the Russian Federation and the United Kingdom. Refs, figs, tabs

  14. Nonlinear ultrasonic stimulated thermography for damage assessment in isotropic fatigued structures

    Science.gov (United States)

    Fierro, Gian Piero Malfense; Calla', Danielle; Ginzburg, Dmitri; Ciampa, Francesco; Meo, Michele

    2017-09-01

    Traditional non-destructive evaluation (NDE) and structural health monitoring (SHM) systems are used to analyse that a structure is free of any harmful damage. However, these techniques still lack sensitivity to detect the presence of material micro-flaws in the form of fatigue damage and often require time-consuming procedures and expensive equipment. This research work presents a novel "nonlinear ultrasonic stimulated thermography" (NUST) method able to overcome some of the limitations of traditional linear ultrasonic/thermography NDE-SHM systems and to provide a reliable, rapid and cost effective estimation of fatigue damage in isotropic materials. Such a hybrid imaging approach combines the high sensitivity of nonlinear acoustic/ultrasonic techniques to detect micro-damage, with local defect frequency selection and infrared imaging. When exciting structures with an optimised frequency, nonlinear elastic waves are observed and higher frictional work at the fatigue damaged area is generated due to clapping and rubbing of the crack faces. This results in heat at cracked location that can be measured using an infrared camera. A Laser Vibrometer (LV) was used to evaluate the extent that individual frequency components contribute to the heating of the damage region by quantifying the out-of-plane velocity associated with the fundamental and second order harmonic responses. It was experimentally demonstrated the relationship between a nonlinear ultrasound parameter (βratio) of the material nonlinear response to the actual temperature rises near the crack. These results demonstrated that heat generation at damaged regions could be amplified by exciting at frequencies that provide nonlinear responses, thus improving the imaging of material damage and the reliability of NUST in a quick and reproducible manner.

  15. The prediction of creep damage in Type 347 weld metal: part II creep fatigue tests

    International Nuclear Information System (INIS)

    Spindler, M.W.

    2005-01-01

    Calculations of creep damage under conditions of strain control are often carried out using either a time fraction approach or a ductility exhaustion approach. In part I of this paper the rupture strength and creep ductility data for a Type 347 weld metal were fitted to provide the material properties that are used to calculate creep damage. Part II of this paper examines whether the time fraction approach or the ductility exhaustion approach gives the better predictions of creep damage in creep-fatigue tests on the same Type 347 weld metal. In addition, a new creep damage model, which was developed by removing some of the simplifying assumptions that are made in the ductility exhaustion approach, was used. This new creep damage model is a function of the strain rate, stress and temperature and was derived from creep and constant strain rate test data using a reverse modelling technique (see part I of this paper). It is shown that the new creep damage model gives better predictions of creep damage in the creep-fatigue tests than the time fraction and the ductility exhaustion approaches

  16. Fatigue damage evolution in quasi-unidirectional non-crimp fabric based composite materials for wind turbine blades

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    scales, the 3D x-ray computer tomography technique is used non-destructive to observe the fatigue damage evolution on the fiber and bundle scale. Those observations are then linked to the larger scales through mechanical testing of representative volumes of the non-crimp fabric bundle structure....... Numerically, those non-crimp fabric bundle structures extracted from the 3D x-ray scans can be used in a multi-scale based finite element models used for understanding the parameters controlling the fatigue damage evolutions. During tensiontension fatigue testing, the damage mechanism is shown...

  17. Gear fatigue damage for a 500 kW wind turbine exposed to increasing turbulence using a flexible multibody model

    DEFF Research Database (Denmark)

    Jørgensen, Martin Felix; Pedersen, Niels Leergaard; Sørensen, Jens Nørkær

    2014-01-01

    This paper investigates gear tooth fatigue damage in a 500 kW wind turbine using FLEX5 and own multibody code. FLEX5 provides the physical wind eld, rotor and generator torque and the multibody code is used for obtaining gear tooth reaction forces in the planetary gearbox. Dierent turbulence levels...... and therefore increased fatigue damage levels. This article contributes to a better understanding of gear fatigue damage when turbulence is increased (e.g. in the center of large wind farms or at places where turbulence is pronounced)....

  18. Monitoring of fatigue damage in composite lap-joints using guided waves and FBG sensors

    Science.gov (United States)

    Karpenko, Oleksii; Khomenko, Anton; Koricho, Ermias; Haq, Mahmoodul; Udpa, Lalita

    2016-02-01

    Adhesive bonding is being increasingly employed in many applications as it offers possibility of light-weighting and efficient multi-material joining along with reduction in time and cost of manufacturing. However, failure initiation and progression in critical components like joints, specifically in fatigue loading is not well understood, which necessitates reliable NDE and SHM techniques to ensure structural integrity. In this work, concurrent guided wave (GW) and fiber Bragg grating (FBG) sensor measurements were used to monitor fatigue damage in adhesively bonded composite lap-joints. In the present set-up, one FBG sensor was strategically embedded in the adhesive bond-line of a lap-joint, while two other FBGs were bonded on the surface of the adherends. Full spectral responses of FBG sensors were collected and compared at specific intervals of fatigue loading. In parallel, guided waves were actuated and sensed using PZT wafers mounted on the composite adherends. Experimental results demonstrated that time-of-flight (ToF) of the fundamental modes transmitted through the bond-line and spectral response of FBG sensors were sensitive to fatigue loading and damage. Combination of guided wave and FBG measurements provided the desired redundancy and synergy in the data to evaluate the degradation in bond-line properties. Measurements taken in the presence of continuously applied load replicated the in-situ/service conditions. The approach shows promise in understanding the behavior of bonded joints subjected to complex loading.

  19. Effect of stitch density on fatigue characteristics and damage mechanisms of stitched carbon/epoxy composites

    KAUST Repository

    Yudhanto, Arief

    2014-05-01

    The effect of stitch density (SD) on fatigue life, stiffness degradation and fatigue damage mechanisms in carbon/epoxy (T800SC/XNRH6813) stitched using Vectran thread is presented in this paper. Moderately stitched composite (SD = 0.028/mm2; \\'stitched 6 × 6\\') and densely stitched composite (SD = 0.111/mm2; \\'stitched 3 × 3\\') are tested and compared with composite without stitch thread (SD = 0.0; \\'unstitched\\'). The experiments show that the fatigue life of stitched 3 × 3 is moderately better than that of unstitched and stitched 6 × 6. Stitched 3 × 3 pattern is also able to postpone the stiffness degradation onset. The improvement of fatigue properties and postponement of stiffness degradation onset in stitched 3 × 3 is primarily due to an effective impediment of edge-delamination. Quantification of damage at various cycles and stress levels shows that stitch density primarily affects the growth rate of delamination. © 2014 Elsevier Ltd. All rights reserved.

  20. Simplified Model for Evaluation of VIV-induced Fatigue Damage of Deepwater Marine Risers

    Institute of Scientific and Technical Information of China (English)

    XUE Hong-xiang; TANG Wen-yong; ZHANG Sheng-kun

    2009-01-01

    A simplified empirical model for fatigue analysis of deepwater marine risers due to vortex-induced vibration (VIV) in non-uniform current is presented. A simplified modal vibration equation is employed according to the characteristics of deepwater top tensioned risers. The response amplitude of each mode is determined by a balance between the energy feeding into the riser over the lock-in regions and the energy dissipated by the fluid damping over the remainder based on the data from self-excited oscillation and forced oscillation experiments of rigid cylinders. Multi-modal VIV fatigue loading is obtained by the square root of the sum of squares approach.Compared with previous works, this model can take fully account of the main intrinsic natures of VIV for low mass ratio structures on lock-in regions, added mass and nonlinear fluid damping. In addition, a closed form solution of fatigue damage is presented for the case of a riser with uniform mass and cross-section oscillating in a uniform flow. Fatigue analysis of a typical deepwater riser operating in Gulf of Mexico and West Africa shows that the current velocity profiles affect the riser's fatigue life significantly and the most dangerous locations of the riser are also pointed out.

  1. Creep-fatigue life prediction for different heats of Type 304 stainless steel by linear-damage rule, strain-range partitioning method, and damage-rate approach

    International Nuclear Information System (INIS)

    Maiya, P.S.

    1978-07-01

    The creep-fatigue life results for five different heats of Type 304 stainless steel at 593 0 C (1100 0 F), generated under push-pull conditions in the axial strain-control mode, are presented. The life predictions for the various heats based on the linear-damage rule, strain-range partitioning method, and damage-rate approach are discussed. The appropriate material properties required for computation of fatigue life are also included

  2. Fatigue Damage Monitoring of a Composite Step Lap Joint Using Distributed Optical Fibre Sensors

    Science.gov (United States)

    Wong, Leslie; Chowdhury, Nabil; Wang, John; Chiu, Wing Kong; Kodikara, Jayantha

    2016-01-01

    Over the past few decades, there has been a considerable interest in the use of distributed optical fibre sensors (DOFS) for structural health monitoring of composite structures. In aerospace-related work, health monitoring of the adhesive joints of composites has become more significant, as they can suffer from cracking and delamination, which can have a significant impact on the integrity of the joint. In this paper, a swept-wavelength interferometry (SWI) based DOFS technique is used to monitor the fatigue in a flush step lap joint composite structure. The presented results will show the potential application of distributed optical fibre sensor for damage detection, as well as monitoring the fatigue crack growth along the bondline of a step lap joint composite structure. The results confirmed that a distributed optical fibre sensor is able to enhance the detection of localised damage in a structure. PMID:28773496

  3. Method for identification of fluid mixing zones subject to thermal fatigue damage

    International Nuclear Information System (INIS)

    Vole, O.; Beaud, F.

    2009-01-01

    High cycle thermal fatigue due to the mixing of hot and cold fluids may initiate cracking in pipes of safety related circuits. A method has been developed to identify such fluid mixing zones subjected to potential thermal fatigue damage. This method is based on a loading model and a mechanical model that depend on the main characteristics of the mixing zone and on the material properties. It is supported by a large experimental program. This method has been applied to all the mixing zones of safety related circuits of the EDF pressurised water reactors, allowing to identify sensitive zones and to apply an appropriate inspection program that ensures the control of the risk due to this damage mechanism. (authors)

  4. The effect of surface corrosion damage on the fatigue life of 6061-T6 aluminum alloy extrusions

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Matthew; Eason, Paul D.; Özdeş, Hüseyin; Tiryakioğlu, Murat, E-mail: m.tiryakioglu@unf.edu

    2017-04-06

    An investigation was performed where 6061-T6 extrusions were exposed to a 3.5% NaCl solution at pH 2 for 2 days and 24 days to create distinct surface flaws. The effect of these flaws on the rotating beam fatigue life was then investigated and analyzed by using Wöhler curves, Weibull statistics and scanning electron microscopy (SEM). It was determined that corrosion damage reduced the fatigue life significantly and specimens corroded for both 2-days and 24-days exhibited similar fatigue lives. Statistical analyses showed that fatigue life of all three datasets followed the 3-parameter Weibull distribution and the difference between the fatigue lives of two corroded datasets was statistically insignificant. Analysis of fracture surfaces showed that sizes of pits that led to fatigue crack initiation were very different in the two corroded datasets. Implications of the similarity in fatigue lives despite disparity in surface condition are discussed in detail in the paper.

  5. Frequency domain fatigue damage estimation methods suitable for deterministic load spectra

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, A.R.; Patel, M.H. [University Coll., Dept. of Mechanical Engineering, London (United Kingdom)

    2000-07-01

    The evaluation of fatigue damage due to load spectra, directly in the frequency domain, is a complex phenomena but with the benefit of significant computation time savings. Various formulae have been suggested but have usually relating to a specific application only. The Dirlik method is the exception and is applicable to general cases of continuous stochastic spectra. This paper describes three approaches for evaluating discrete deterministic load spectra generated by the floating wind turbine model developed the UCL/RAL research project. (Author)

  6. Influenced prior loading on the creep fatigue damage accumulation of heat resistant steels

    International Nuclear Information System (INIS)

    Kloos, K.H.; Granacher, J.; Scholz, A.

    1990-01-01

    On two heat resistant power plant steels the influence of prior strain cycling on the creep rupture behaviour and the influence of prior creep loading on the strain cycling behaviour is investigated. These influences concern the number of cycles to failure and the rupture time being the reference values of the generalized damage accumulation rule and they are used for a creep fatigue analysis of the results of long term service-type strain cycling tests. (orig.) [de

  7. The numerical high cycle fatigue damage model of fillet weld joint under weld-induced residual stresses

    Science.gov (United States)

    Nguyen Van Do, Vuong

    2018-04-01

    In this study, a development of nonlinear continuum damage mechanics (CDM) model for multiaxial high cycle fatigue is proposed in which the cyclic plasticity constitutive model has been incorporated in the finite element (FE) framework. T-joint FE simulation of fillet welding is implemented to characterize sequentially coupled three-dimensional (3-D) of thermo-mechanical FE formulation and simulate the welding residual stresses. The high cycle fatigue damage model is then taken account into the fillet weld joints under the various cyclic fatigue load types to calculate the fatigue life considering the residual stresses. The fatigue crack initiation and the propagation in the present model estimated for the total fatigue is compared with the experimental results. The FE results illustrated that the proposed high cycle fatigue damage model in this study could become a powerful tool to effectively predict the fatigue life of the welds. Parametric studies in this work are also demonstrated that the welding residual stresses cannot be ignored in the computation of the fatigue life of welded structures.

  8. Two different mechanisms of fatigue damage due to cyclic stress loading at 77 K for MOCVD-YBCO-coated conductors

    International Nuclear Information System (INIS)

    Sugano, M; Yoshida, Y; Hojo, M; Shikimachi, K; Hirano, N; Nagaya, S

    2008-01-01

    Tensile fatigue tests were carried out at 77 K for YBCO-coated conductors fabricated by metal-organic chemical vapor deposition (MOCVD). The S-N relationship, variation of critical current (I c ) during cyclic loading and microscopic fatigue damage were investigated. Fatigue strength at 10 6 cycles was evaluated to be σ max = 1300 MPa and 890 MPa under the stress ratios of 0.5 and 0.1. Two different mechanisms of fatigue damage, depending on the number of stress cycles to failure, were observed. In one of the fracture mechanisms, fatigue behavior is characterized by overall fracture which occurs at 10 4 -10 5 cycles. For these specimens, I c after unloading does not degrade before overall fracture. Although only shallow slip bands were found at the Ag surface, fatigue cracks were found on the Hastelloy C-276 surface of the fractured specimen. These results suggest that overall fracture due to cyclic stress was caused by fatigue of the Hastelloy substrate. In the other fracture mechanism, even though overall fracture did not occur at 10 6 cycles, a slight decrease of I c was detected after 10 5 cycles. No fatigue crack was found on the Hastelloy surface, while deep slip bands corresponding to the initial stage of fatigue crack were observed on the Ag surface. From these results, we concluded that I c degradation at a high cycle number is attributed to the fatigue of the Ag stabilizing layer

  9. The strainrange conversion principle for treating cumulative fatigue damage in the creep range

    Science.gov (United States)

    Manson, S. S.

    1983-01-01

    A formula is derived for combining effects of successive hysteresis loops in the creep range of materials when one loop has excess tensile creep, while the other contains excess compressive creep. The resultant effect resembles single loops involving balanced tensile and compressive creep. The attempt to use the Interaction Damage Rule as a tool in combining loops of non-equal size and complex strainrange content has led to important new concepts useful in future studies of creep-fatigue. It turns out that the Interaction Damage Rule is basically an expression of how a set of hysteresis loops involving only single generic strains can combine to produce the same micromechanistic damage as the loop containing the combined strainranges which it analyzes. Making use of the underlying concept of Strainrange Partitioning that only the strainrange content of a hysteresis loop governs fatigue life, not order of introducing strainranges, a rational derivation of the Interaction Damage Rule is provided, showing also how it can effectively be used to synthesize independent loops and determine both damaging and healing effects.

  10. Fatigue damage evaluation of stainless steel pipes in nuclear power plants using positron annihilation lineshape analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Yasuhiro [Institute of Nuclear Safety System, Inc., Mihama, Fukui (Japan); Nakamura, Noriko; Yusa, Satoru [Ishikawajima-Harima Heavy Industries Co., Tokyo (Japan)

    2002-09-01

    Since positron annihilation lineshape analysis can evaluate the degree of fatigue damage by detecting defects such as dislocations in metals, we applied this method to evaluate that in a type 316 stainless steel pipe which was used in the primary system of a nuclear power plant. Using {sup 68}Ge as a positron source, an energy spread of annihilation gamma ray peak from the material was measured and expressed as the S-parameter. Actual plant material cut from a surge line pipe of a pressurizer in a pressurized water reactor type nuclear power plant was measured by positron annihilation lineshape analysis and the S-parameter was obtained. Comparing the S-parameter with a relationship between the S-parameter and fatigue life ratio of the type 316 stainless steel, we evaluated the degree of fatigue damage of the actual material. Furthermore, to verify the evaluation, microstructures of the actual material were investigated with TEM (transmission electron microscope) to observe dislocation densities. As a result, a change in the S-parameter of the actual material from standard as-received material (type 316 stainless steel) was in the range from -0.0013 to 0.0014, while variations in the S-parameter of the standard as-received material were about {+-}0.002, and hence the differences between the actual material and the as-received material were negligible. Moreover, the dislocation density of the actual plant material observed with TEM was almost the same as that of the as-received one. In conclusion, we could confirm the applicability of the positron annihilation lineshape analysis to fatigue damage evaluation of stainless steel. (author)

  11. Metallographic approach to the damage of austenitic stainless steels under plastic fatigue or under creep: description and physical interpretation of fatigue-creep-oxidation interactions

    International Nuclear Information System (INIS)

    Levaillant, Christophe

    1984-01-01

    This research thesis reports the study of interactions between fatigue, creep and oxidation in austenitic stainless steels which are to be used in the construction of fast breeder reactors. This study is addressed by means of low cycle plastic fatigue test with imposed strain, performed at 600 C with tensile relaxation hold times which may reach 24 hours. Continuous fatigue tests (without hold time) and pure creep tests have also been performed to define 'pure' fatigue damages and 'pure' creep damages. Two grades of Z3 CND 17-13 steel have been studied. Thus fracture mechanisms, crack initiation and propagation, and crack kinetic propagation have been studied. Metallographic measurements of damage have been performed. Damage types have been identified: propagation of cracks initiated at the surface, and intergranular de-cohesion within the material. An approximate modelling is proposed, as well as a critical comparison of various published models of fatigue-creep interaction. In order to predict structure lifetime, a new test methodology is proposed, based on experimental results

  12. Damage formation, fatigue behavior and strength properties of ZrO{sub 2}-based ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kozulin, A. A., E-mail: kozulyn@ftf.tsu.ru; Kulkov, S. S. [Tomsk State University, Tomsk, 634050 (Russian Federation); Narikovich, A. S.; Leitsin, V. N. [Immanuel Kant Baltic Federal University, Kaliningrad, 236041 (Russian Federation); Kulkov, S. N., E-mail: kulkov@ispms.ru [Tomsk State University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2016-08-02

    It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO{sub 2}-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91–0.98, 0.8–0.83, and 0.73–0.77 MPa of the static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 10{sup 5} stress cycles is in the range 33–34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.

  13. Damage formation, fatigue behavior and strength properties of ZrO_2-based ceramics

    International Nuclear Information System (INIS)

    Kozulin, A. A.; Kulkov, S. S.; Narikovich, A. S.; Leitsin, V. N.; Kulkov, S. N.

    2016-01-01

    It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO_2-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91–0.98, 0.8–0.83, and 0.73–0.77 MPa of the static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 10"5 stress cycles is in the range 33–34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.

  14. Markov model of fatigue of a composite material with the poisson process of defect initiation

    Science.gov (United States)

    Paramonov, Yu.; Chatys, R.; Andersons, J.; Kleinhofs, M.

    2012-05-01

    As a development of the model where only one weak microvolume (WMV) and only a pulsating cyclic loading are considered, in the current version of the model, we take into account the presence of several weak sites where fatigue damage can accumulate and a loading with an arbitrary (but positive) stress ratio. The Poisson process of initiation of WMVs is considered, whose rate depends on the size of a specimen. The cumulative distribution function (cdf) of the fatigue life of every individual WMV is calculated using the Markov model of fatigue. For the case where this function is approximated by a lognormal distribution, a formula for calculating the cdf of fatigue life of the specimen (modeled as a chain of WMVs) is obtained. Only a pulsating cyclic loading was considered in the previous version of the model. Now, using the modified energy method, a loading cycle with an arbitrary stress ratio is "transformed" into an equivalent cycle with some other stress ratio. In such a way, the entire probabilistic fatigue diagram for any stress ratio with a positive cycle stress can be obtained. Numerical examples are presented.

  15. Analysis of time domain active sensing data from CX-100 wind turbine blade fatigue tests for damage assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Mi Jin [Dept. of Aerospace Engineering and LANL-CBNU Engineering Institute, Chunbuk National University, Jeonju (Korea, Republic of); Jung, Hwee Kwon; Park, Gyu Hae [School of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of); Taylor, Stuart G.; Farinholt, Kevin M. [The Engineering Institute, Los Alamos National Laboratory, Los Alamos (United States)

    2016-04-15

    This paper presents the results obtained using time-series-based methods for structural damage assessment. The methods are applied to a wind turbine blade structure subjected to fatigue loads. A 9 m CX-100 (carbon experimental 100 kW) blade is harmonically excited at its first natural frequency to introduce a failure mode. Consequently, a through-thickness fatigue crack is visually identified at 8.5 million cycles. The time domain data from the piezoelectric active-sensing techniques are measured during the fatigue loadings and used to detect incipient damage. The damage-sensitive features, such as the first four moments and a normality indicator, are extracted from the time domain data. Time series autoregressive models with exogenous inputs are also implemented. These features could efficiently detect a fatigue crack and are less sensitive to operational variations than the other methods.

  16. Atomistic modeling of nanowires, small-scale fatigue damage in cast magnesium, and materials for MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Martin L. [Univ. of Colorado, Boulder, CO (United States); Talmage, Mellisa J. [Univ. of Colorado, Boulder, CO (United States); McDowell, David L. [Georgia Inst. of Technology, Atlanta, GA (United States); West, Neil [Univ. of Colorado, Boulder, CO (United States); Gullett, Philip Michael [Mississippi State Univ., Mississippi State, MS (United States); Miller, David C. [Univ. of Colorado, Boulder, CO (United States); Spark, Kevin [Univ. of Colorado, Boulder, CO (United States); Diao, Jiankuai [Univ. of Colorado, Boulder, CO (United States); Horstemeyer, Mark F. [Mississippi State Univ., Mississippi State, MS (United States); Zimmerman, Jonathan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gall, K. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2006-10-01

    Lightweight and miniaturized weapon systems are driving the use of new materials in design such as microscale materials and ultra low-density metallic materials. Reliable design of future weapon components and systems demands a thorough understanding of the deformation modes in these materials that comprise the components and a robust methodology to predict their performance during service or storage. Traditional continuum models of material deformation and failure are not easily extended to these new materials unless microstructural characteristics are included in the formulation. For example, in LIGA Ni and Al-Si thin films, the physical size is on the order of microns, a scale approaching key microstructural features. For a new potential structural material, cast Mg offers a high stiffness-to-weight ratio, but the microstructural heterogeneity at various scales requires a structure-property continuum model. Processes occurring at the nanoscale and microscale develop certain structures that drive material behavior. The objective of the work presented in this report was to understand material characteristics in relation to mechanical properties at the nanoscale and microscale in these promising new material systems. Research was conducted primarily at the University of Colorado at Boulder to employ tightly coupled experimentation and simulation to study damage at various material size scales under monotonic and cyclic loading conditions. Experimental characterization of nano/micro damage will be accomplished by novel techniques such as in-situ environmental scanning electron microscopy (ESEM), 1 MeV transmission electron microscopy (TEM), and atomic force microscopy (AFM). New simulations to support experimental efforts will include modified embedded atom method (MEAM) atomistic simulations at the nanoscale and single crystal micromechanical finite element simulations. This report summarizes the major research and development accomplishments for the LDRD project

  17. Damage and failure processes in structural materials

    International Nuclear Information System (INIS)

    Embury, J.D.

    1993-01-01

    At large plastic strains consideration must be given not only to the descriptions of work hardening and texture evolution but also to the process of damage accumulation and the documentation of the various modes of failure which may terminate the plastic history. In this presentation consideration is given first to documenting the various modes of failure and their dependence on stress state. It is then shown that damage accumulation can be studied in a quantitative manner by using model systems in conjunction with FEM calculations. Finally consideration is given to complex forming processes such as ironing to show how studies of damage initiation and accumulation relate to practical engineering problems. (orig.)

  18. Influence of microstructure of different stainless steels on their low cycle fatigue damage mechanisms

    International Nuclear Information System (INIS)

    Baffie, Natacha

    2002-01-01

    The present study is focused on understanding low cycle fatigue damage mechanisms in three different kind of stainless steels. In all structures, crack propagation is conditioned by microstructural barriers. In single phase austenitic alloys, short cracks initiation and growth are crystallographic. Cracks are arrested by grain and twin boundaries both at surface and in the bulk. Grain size refinement improve the fatigue life at applied Δε p . The second barrier in the bulk is shown to be very efficient because of the important number of misoriented grains. In the metastable austenitic alloy, the martensitic transformation induced by cyclic straining leads to significant modifications of damage mechanisms. The fatigue behaviour has been investigated between -50 deg. C and 120 deg. C. The γ→α' transformation takes place at the surface, in the bulk (except at 120 deg. C) and locally at the crack tip. At all temperatures, the amount of martensite formed and the fatigue life increase as the grain size decreases, even if at the same Δε p , the maximal stresses are considerably higher than in a stable γ. Short cracks growth takes place in transformed regions, γ→α' transformation being assisted by strain concentrations at the crack tip. This mechanism consumes a part of plastic deformation, which would have been available for crack propagation. Such a dynamic barrier can decrease crack propagation rate. The austenite grain size is shown to have a decisive influence both on the amount of martensite formed and on the fatigue resistance through the effect of γ grain boundaries as indirect barriers to the crack propagation. The fatigue life of the 475 deg. C aged α/γ alloy decreases sharply at high applied Δε p compared to the solution annealed one. This behaviour is explained by the modification of short cracks nucleation sites. Indeed, cleavage occurs in the hard and brittle α phase, even if plastic deformation is concentrated in γ phase. Then, easy

  19. Fatigue Behaviors of Materials Processed by Planar Twist Extrusion

    Science.gov (United States)

    Ebrahimi, Mahmoud

    2017-12-01

    Since the last decade, the fabrication of ultrafine grain and nanostructure metals and alloys has attracted much attention in the field of materials engineering. The present study aimed at experimentally investigating the fatigue properties that are of great importance in dynamic structures before and after the planar twist extrusion process for both commercially pure copper and 6061 aluminum alloy. The results indicated that the yield strength, tensile strength, hardness, and fatigue endurance of copper increased by about 398, 122, 198, and 183 pct, respectively, while they improved by about 429, 212, 227, and 148 pct, respectively, in aluminum alloy as compared to the initial conditions. The stress-strain curves displayed sizable reduction of strain hardening. Furthermore, grain-size correction factors based on the empirical results were introduced to include the effect of the grain-size effect on both low and high-cycle fatigue strengths of the material.

  20. Fatigue damage assessment of high-usage in-service aircraft fuselage structure

    Science.gov (United States)

    Mosinyi, Bao Rasebolai

    As the commercial and military aircraft fleets continue to age, there is a growing concern that multiple-site damage (MSD) can compromise structural integrity. Multiple site damage is the simultaneous occurrence of many small cracks at independent structural locations, and is the natural result of fatigue, corrosion, fretting and other possible damage mechanisms. These MSD cracks may linkup and form a fatigue lead crack of critical length. The presence of MSD also reduces the structure's ability to withstand longer cracks. The objective of the current study is to assess, both experimentally and analytically, MSD formation and growth in the lap joint of curved panels removed from a retired aircraft. A Boeing 727-232 airplane owned and operated by Delta Air Lines, and retired at its design service goal, was selected for the study. Two panels removed from the left-hand side of the fuselage crown, near stringer 4L, were subjected to extended fatigue testing using the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration (FAA) William J. Hughes Technical Center. The state of MSD was continuously assessed using several nondestructive inspection (NDI) methods. Damage to the load attachment points of the first panel resulted in termination of the fatigue test at 43,500 fatigue cycles, before cracks had developed in the lap joint. The fatigue test for the second panel was initially conducted under simulated in-service loading conditions for 120,000 cycles, and no cracks were detected in the skin of the panel test section. Artificial damage was then introduced into the panel at selected rivets in the critical (lower) rivet row, and the fatigue loads were increased. Visually detectable crack growth from the artificial notches was first seen after 133,000 cycles. The resulting lead crack grew along the lower rivet row, eventually forming an 11.8" long unstable crack after 141,771 cycles, at which point the

  1. Fatigue Damage Evaluation of Short Carbon Fiber Reinforced Plastics Based on Phase Information of Thermoelastic Temperature Change.

    Science.gov (United States)

    Shiozawa, Daiki; Sakagami, Takahide; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi

    2017-12-06

    Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft, or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to evaluate fatigue damage in short carbon fiber composites. The distribution of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damage was detected from the distribution of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was more clearly detected than before by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the property that carbon fiber shows opposite phase thermoelastic temperature change.

  2. Recent developments of continuous damage approaches for the analysis of material behavior under fatigue-creep loading

    International Nuclear Information System (INIS)

    Bui-Quoc, T.

    1982-01-01

    A review is presented with an analysis of some recent methods proposed in the literature for predicting failure of materials under a cumulative damage effect due either to fatigue, to creep, or to fatigue-creep combinations. This review is focused on the continuous damage concepts because of their possibilities of application for a wide range of testing conditions. A discussion of the potential of each damage concept is made by examining the correlation between the resulting expressions and available experimental data. The paper also points out particularities encountered in the interpretation of some of the concepts reviewed

  3. Proposal of a methodology for computing damages from flexo-rotative fatigue considering the theory of the acting average stresses

    International Nuclear Information System (INIS)

    Tanius Rodrigues Mansur; Alvaro Alvarenga Junior; Joao Mario Andrade Pinto; Wellington Antonio Soares; Ernani Sales Palma

    2005-01-01

    The useful life of metallic structures is many times governed by fatigue processes caused by vibrations or by application of dynamic loads, periodic or not. Many times the amplitude of the alternated stress applied to a structural component can vary during its useful life. In this situation the direct use of S-N-P curves cannot be done because they are generated on the basis of alternated stress with constant amplitude. Several theories have been developed during the last times, where some are deterministic and other probabilistic, in order to give a component designer a more efficient and correct tool for approaching the problem. They are called Theories on Damage Accumulation. The phenomenon of creating damages represents the generation of superficial discontinuities caused by micro-cracks or by volumetric cavities [Lemaitre and Chaboche, 1985]. In the continuous mechanics, the superficial density of micro-defects (micro-cracks or cavities) inside the shear plan of the representative element volume of the sample is the variable used to quantify the damage. A methodology for evaluating damage accumulation using average of stresses is proposed in this paper. Results obtained for a 50% failure probability are presented and are compared to those values obtained using the theories of Palmgren-Miner, Henry, Corten-Dolan, Marine, Manson, and Knee-point. (authors)

  4. Feasibility study on ductility exhaustion approach for creep-fatigue damage assessment of FBR 316 stainless steel using published data

    International Nuclear Information System (INIS)

    Nonaka, Isamu; Kitagawa, Masaki; Torihata, Shoji.

    1995-01-01

    In order to investigate the applicability of a ductility exhaustion rule to the creep-fatigue life assessment of FBR 316 stainless steel, a feasibility study using the published data was conducted. The assessment method was proposed based on the linear damage summation rule. In the proposed method, fatigue damage was calculated by Minor's rule and creep damage was calculated by a ductility exhaustion rule. The creep-fatigue lives in the published data were predicted by the proposed method. The results obtained are as follows: (1) All the data could be predicted within a factor of two on life by the proposed method. (2) The creep-fatigue lives under 10 minute strain hold at 550degC were overestimated, while those under 60 minute strain hold at 550degC and 600degC were estimated adequately. From the above facts, the proposed method seemed to be effective for the prediction of creep-fatigue life in which the creep damage was dominant and also the intergranular cracking was remarkable. (3) The creep damage was simultaneously calculated by the time fraction rule in order to compare with the ductility exhaustion role. All the data could be also predicted within a factor of two on life by this rule, but it tended to overestimate the life. (author)

  5. Approach for investigations of progressive fatigue damage in 3D in fibre composites using X-ray tomography

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard; Jespersen, Kristine Munk

    (Jespersen & Mikkelsen, 2016) has been performed. An ex-situ study where it has been important to design a good gripping strategy inside the scanning machine. Doing this, it has been possible to scan the same region multiple times. Thereby, a progressive fatigue damage evolution has been observed.......Understanding fatigue damage initiation and evolution in the load carrying laminates inside wind turbine blade plays a key factor designing longer and lighter turbine blades. Thereby, it is possible to lower the Cost of Energy for the wind energy based electricity production either by simply...... building larger wind turbines or by upgrading existing turbines for lower wind classes’ . In the presented work, a Zeiss Xradia Versa 520 scanner has been used in connection with ex-situ fatigue testing with the purpose of identifying fibre failure during the fatigue loading. The load carrying laminates...

  6. A study on damage and fatigue characteristics of plain woven carbon fiber reinforced composite material(I)

    International Nuclear Information System (INIS)

    Kim, Kwang Soo; Kim, Sang Tae

    1993-01-01

    The characteristics of damage and fatigue subjected to tensile fatigue loading in plain woven carbon fiber reinforced composite material were studied. Constant amplitude load of 90% stress of notch strength was applied to each specimen, which had different initial notch length, and crack dectectvie compliance curve was determined form load-displacement data. The effective crack length(a eff ) was obtained form this compliance curve and the effective crack growth could be divided to three-steps and explained separately. After cycling the shape of fatigue crack was observed by S.E.M.. Change of elastic modulus(E N ) during fatigue cycle was explained by repeated sudden-death medel. The material constant determined by Jen-Hsu model was more useful to evaluate damage than Wang-Chim model. (Author)

  7. Revealing fatigue damage evolution in unidirectional composites for wind turbine blades using x-ray computed tomography

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    ’. Thereby, it will be possible to lower the cost of energy for wind energy based electricity. In the presented work, a lab-source x-ray computed tomography equipment (Zeiss Xradia 520 Versa) has been used in connection with ex-situ fatigue testing of uni-directional composites in order to identify fibre...... to other comparable x-ray studies) have been used in order to ensure a representative test volume during the ex-situ fatigue testing. Using the ability of the x-ray computed tomography to zoom into regions of interest, non-destructive, the fatigue damage evolution in a repeating ex-situ fatigue loaded test...... improving the fatigue resistance of non-crimp fabric used in the wind turbine industry can be made....

  8. Fatigue

    Science.gov (United States)

    ... sleep. Fatigue is a lack of energy and motivation. Drowsiness and apathy (a feeling of not caring ... Call your provider right away if you have any of the following: Confusion or dizziness Blurred vision Little or no urine, or recent ...

  9. Damage assessment of low-cycle fatigue by crack growth prediction. Development of growth prediction model and its application

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Kawakubo, Masahiro

    2012-01-01

    In this study, the fatigue damage was assumed to be equivalent to the crack initiation and its growth, and fatigue life was assessed by predicting the crack growth. First, a low-cycle fatigue test was conducted in air at room temperature under constant cyclic strain range of 1.2%. The crack initiation and change in crack size during the test were examined by replica investigation. It was found that a crack of 41.2 μm length was initiated almost at the beginning of the test. The identified crack growth rate was shown to correlate well with the strain intensity factor, whose physical meaning was discussed in this study. The fatigue life prediction model (equation) under constant strain range was derived by integrating the crack growth equation defined using the strain intensity factor, and the predicted fatigue lives were almost identical to those obtained by low-cycle fatigue tests. The change in crack depth predicted by the equation also agreed well with the experimental results. Based on the crack growth prediction model, it was shown that the crack size would be less than 0.1 mm even when the estimated fatigue damage exceeded the critical value of the design fatigue curve, in which a twenty-fold safety margin was used for the assessment. It was revealed that the effect of component size and surface roughness, which have been investigated empirically by fatigue tests, could be reasonably explained by considering the crack initiation and growth. Furthermore, the environmental effect on the fatigue life was shown to be brought about by the acceleration of crack growth. (author)

  10. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth did not depend on the heat transfer coefficient and only slightly depended on the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  11. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth was almost the same regardless of the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  12. Fatigue-creep of martensitic steels containing 9-12% Cr: behaviour and damage; Fatigue-fluage des aciers martensitiques a 9-12% Cr: comportement et endommagement

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, B

    2007-09-15

    It is in the framework of the research programs on nuclear reactors (generation IV) that the martensitic steels containing 9-12% Cr are studied by the CEA. Most of the structures for which they are considered will be solicited in fatigue-creep at high temperature (550 C). The aim of this work is to understand and model the cyclic behaviour and the damage of these materials. The proposed modelling are based on detailed observations studies (SEM, TEM, EBSD...). The cyclic softening is attributed to the growth of the microstructure. A micro-mechanical model based on the physical parameters is proposed and leads to encouraging results. The damage results of interactions between fatigue, creep and oxidation. Two main types of damage are revealed. A model of anticipation of service time is proposed and gives very satisfying results. The possible extrapolations are discussed. (O.M.)

  13. Effect of the fabrication process on fatigue performance of U3Si2 fuel plate with sandwich structure

    International Nuclear Information System (INIS)

    Wang Xishu; Li Shuangshou; Wang Qingyuan; Xu Yong

    2005-01-01

    U 3 Si 2 -Al fuel plate is one of the dispersion fuel structure materials recently developed and widely used in research reactors. The mechanical properties of this structural material, especially the fatigue performance, are strongly dependent on its fabrication process. To investigate the effects of these processing technologies, the fatigue tests for the different specimens were carried out. The S-N curves indicate that the fabrication processing technologies of U 3 Si 2 fuel plate, such as the addition of U 3 Si 2 particles into aluminum powder to form the fuel meat, holding and rolling the processes of meat and cladding of 6061-Al alloy, plays an important role in improving the mechanical properties and fatigue performance of this fuel plate. In addition, some factors that influence the crack initiation and propagation are summarized based on the fatigue images that are in situ observations with SEM. The critical criterion for fatigue damage is proposed based on the fatigue data of the structural material, which were obtained at the different conditions

  14. Data processing codes for fatigue and tensile tests

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, Gustavo; Iorio, A.F.; Crespi, J.C.

    1981-01-01

    The processing of fatigue and tensile tests data in order to obtain several parameters of engineering interest requires a considerable effort of numerical calculus. In order to reduce the time spent in this work and to establish standard data processing from a set of similar type tests, it is very advantageous to have a calculation code for running in a computer. Two codes have been developed in FORTRAN language; one of them predicts cyclic properties of materials from the monotonic and incremental or multiple cyclic step tests (ENSPRED CODE), and the other one reduces data coming from strain controlled low cycle fatigue tests (ENSDET CODE). Two examples are included using Zircaloy-4 material from different manufacturers. (author) [es

  15. Image-based creep-fatigue damage mechanism investigation of Alloy 617 at 950 °C

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Fraaz; Dahire, Sonam; Liu, Yongming, E-mail: yongming.liu@asu.edu

    2017-01-02

    Alloy 617 is a primary candidate material to be used in the next generation of nuclear power plants. Structural materials for these plants are expected to undergo creep and fatigue at temperatures as high as 950 °C. This study uses a hybrid-control creep-fatigue loading profile, as opposed to the traditional strain-controlled loading, to generate creep dominated failure. Qualitative and quantitative image analysis through SEM, EDS, and EBSD, is used to show that hybrid control testing is capable of producing creep dominated failure and that time fraction approach is not a valid indicator of creep or fatigue dominated damage. The focus of image analysis is on surface fatigue cracks and internal creep voids. A creep-fatigue damage interaction diagram based on these micro-scale features is plotted. It is shown that the classical time fraction approach suggested by the ASME code does not agree with the experimental findings and has a poor correlation with observed microscale damage features. A new definition of creep damage fraction based on an effective hold time is found to correlate well with the micro-scale image analysis.

  16. Fatigue damage estimation using irregularity factor. First report, irregularity factor calculations for narrow and broadband random time histories

    Science.gov (United States)

    Susuki, I.

    1981-11-01

    The results of an analysis of the irregularity factors of stationary and Gaussian random processes which are generated by filtering the output of a pure or a band-limited white noise are presented. An ideal band pass filter, a trapezoidal filter, and a Butterworth type band pass filter were examined. It was found that the values of the irregularity factors were approximately equal among these filters if only the end-slopes were the same rates. As the band width of filters increases, irregularity factors increase monotonically and approach the respective constant values depending on the end-slopes. This implies that the noise characteristics relevant to the fatigue damage such as statistical aspects of the height of the rise and fall or the distribution of the peak values are not changed for a broad band random time history. It was also found that the effect of band limitation of input white noise on irregularity factors is negligibly small.

  17. EMG Processing Based Measures of Fatigue Assessment during Manual Lifting

    Directory of Open Access Journals (Sweden)

    E. F. Shair

    2017-01-01

    Full Text Available Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs, where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG signal is used to monitor the workers’ muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird’s eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications.

  18. EMG Processing Based Measures of Fatigue Assessment during Manual Lifting

    Science.gov (United States)

    Marhaban, M. H.; Abdullah, A. R.

    2017-01-01

    Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs), where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG) signal is used to monitor the workers' muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird's eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications. PMID:28303251

  19. On long-term fatigue damage and reliability analysis of gears under wind loads in offshore wind turbine drivetrains

    OpenAIRE

    Rasekhi Nejad, Amir; Gao, Zhen; Moan, Torgeir

    2014-01-01

    In this paper, a long-term fatigue damage analysis method for gear tooth root bending in wind turbine’s drivetrains is presented. The proposed method is established based on the ISO gear design codes which are basically developed for gears in general applications, not specifically for wind turbine gears. The ISO procedure is adapted and further improved to include the long-term fatigue damage of wind turbine’s gears. The load duration distribution (LDD) method is used to obtain the short-term...

  20. Fatigue damage observed non-destructively in fibre composite coupon test specimens by X-ray CT

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Mikkelsen, Lars Pilgaard

    2016-01-01

    This study presents a method for monitoring the 3D fatigue damage progression on a micro-structural level in a glass fibre/polymer coupon test specimen by means of laboratory X-ray Computed Tomography (CT). A modified mount and holder made for the standard test samples to fit into the X-ray CT...... scanner along with a tension clamp solution is presented. Initially, the same location of the test specimen is inspected by ex-situ X-ray CT during the fatigue loading history, which shows the damage progression on a micro-structural level. The openings of individual uni-directional (UD) fibre fractures...

  1. Manual on the Fatigue of Structures. II. Causes and Prevention of Damage. 7. Mechanical Surface Damage,

    Science.gov (United States)

    1981-06-01

    AO-A103 «29 ADVISORY 6R0UP FOR AEROSPACE RESEARCH AND DEVELOPMENT—ETC F/O 20/11 MANUAL ON THE FATIfUE OF STRUCTURES. IX. CAUSES AND PREVENTION —ETC... stresses . In the case of 99.999% pure aluminium Vyas and Preece240 investigated the changes in the surface finish of the metal under the electron...during the erosion process. In the case of annealed nickel and of electrolytically polished test specimens cavitation- stressed in distilled water at 25°C

  2. Fatigue damage evolution and property degradation of a SCS-6/Ti-22Al-23Nb orthorhombic titanium aluminide composite

    International Nuclear Information System (INIS)

    Wang, P.C.; Jeng, S.M.; Yang, J.M.; Russ, S.M.

    1996-01-01

    The fatigue damage evolution and property degradation of a SCS-6/Ti-22Al-23Nb orthorhombic titanium aluminide composite under low cycle fatigue loading at room temperature was investigated. The fatigue test was conducted under a load-controlled mode with a load ratio (R) of 0.1, a frequency of 10 Hz, and a maximum applied stress ranging from 600 to 945 MPa. The stiffness reduction as well as the evolution of microstructural damage which includes matrix crack length, matrix crack density and interfacial debonding length as a function of fatigue cycles, and applied stresses were measured. An analytical model and a computer simulation were also developed to predict the residual stiffness and the post-fatigued tensile strength as a function of microstructural damage. Finally, a steady-state crack growth model proposed by Marshall et al. was used to predict the interfacial frictional stress and the critical crack length. Correlation between the theoretical predictions and experimental results were also discussed

  3. High Cycle Fatigue Performance in Laser Shock Peened TC4 Titanium Alloys Subjected to Foreign Object Damage

    Science.gov (United States)

    Luo, Sihai; Nie, Xiangfan; Zhou, Liucheng; Li, Yiming; He, Weifeng

    2018-03-01

    During their service, titanium alloys are likely to suffer from the foreign object damage (FOD), resulting in a decrease in their fatigue strength. Laser shock peening (LSP) has been proved to effectively increase the damage tolerance of military engine components by introducing a magnitude compressive residual stress in the near-surface layer of alloys. In this paper, smooth specimens of a TC4 titanium alloy were used and treated by LSP and subsequently exposed to FOD, which was simulated by firing a steel sphere with a nominal velocity of 300 m/s, at 90° with the leading edge of the LSP-treated region using a light gas gun. All impacted specimens were then subjected to fatigue loading. The results showed that LSP could effectively improve the fatigue strength of the damaged specimens. The effect of LSP on the fatigue strength was assessed through fracture observations, microhardness tests and residual stress analyses. The residual stresses due to the plastic deformation caused by LSP and the FOD impact, which were found to play a crucial role on the fatigue strength, were determined using the commercial software ABAQUS.

  4. Probabilistic inference of fatigue damage propagation with limited and partial information

    Directory of Open Access Journals (Sweden)

    Huang Min

    2015-08-01

    Full Text Available A general method of probabilistic fatigue damage prognostics using limited and partial information is developed. Limited and partial information refers to measurable data that are not enough or cannot directly be used to statistically identify model parameter using traditional regression analysis. In the proposed method, the prior probability distribution of model parameters is derived based on the principle of maximum entropy (MaxEnt using the limited and partial information as constraints. The posterior distribution is formulated using the principle of maximum relative entropy (MRE to perform probability updating when new information is available and reduces uncertainty in prognosis results. It is shown that the posterior distribution is equivalent to a Bayesian posterior when the new information used for updating is point measurements. A numerical quadrature interpolating method is used to calculate the asymptotic approximation for the prior distribution. Once the prior is obtained, subsequent measurement data are used to perform updating using Markov chain Monte Carlo (MCMC simulations. Fatigue crack prognosis problems with experimental data are presented for demonstration and validation.

  5. Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage

    Science.gov (United States)

    Lewicki, David G.; Dempsey, Paula J.; Heath, Gregory F.; Shanthakumaran, Perumal

    2010-01-01

    A study was performed to evaluate fault detection effectiveness as applied to gear-tooth-pitting-fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study. Three common condition indicators (RMS, FM4, and NA4 [Ed. 's note: See Appendix A-Definitions D were deduced from the time-averaged vibration data and used with the ODM to evaluate their performance for gear fault detection. The NA4 parameter showed to be a very good condition indicator for the detection of gear tooth surface pitting failures. The FM4 and RMS parameters perfomu:d average to below average in detection of gear tooth surface pitting failures. The ODM sensor was successful in detecting a significant 8lDOunt of debris from all the gear tooth pitting fatigue failures. Excluding outliers, the average cumulative mass at the end of a test was 40 mg.

  6. Multi Resolution In-Situ Testing and Multiscale Simulation for Creep Fatigue Damage Analysis of Alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongming [Arizona State Univ., Tempe, AZ (United States). School for Engineering of Matter, Transport and Energy; Oskay, Caglar [Vanderbilt Univ., Nashville, TN (United States). Dept. of Civil and Environmental Engineering

    2017-04-30

    This report outlines the research activities that were carried out for the integrated experimental and simulation investigation of creep-fatigue damage mechanism and life prediction of Nickel-based alloy, Inconel 617 at high temperatures (950° and 850°). First, a novel experimental design using a hybrid control technique is proposed. The newly developed experimental technique can generate different combinations of creep and fatigue damage by changing the experimental design parameters. Next, detailed imaging analysis and statistical data analysis are performed to quantify the failure mechanisms of the creep fatigue of alloy 617 at high temperatures. It is observed that the creep damage is directly associated with the internal voids at the grain boundaries and the fatigue damage is directly related to the surface cracking. It is also observed that the classical time fraction approach does not has a good correlation with the experimental observed damage features. An effective time fraction parameter is seen to have an excellent correlation with the material microstructural damage. Thus, a new empirical damage interaction diagram is proposed based on the experimental observations. Following this, a macro level viscoplastic model coupled with damage is developed to simulate the stress/strain response under creep fatigue loadings. A damage rate function based on the hysteresis energy and creep energy is proposed to capture the softening behavior of the material and a good correlation with life prediction and material hysteresis behavior is observed. The simulation work is extended to include the microstructural heterogeneity. A crystal plasticity finite element model considering isothermal and large deformation conditions at the microstructural scale has been developed for fatigue, creep-fatigue as well as creep deformation and rupture at high temperature. The model considers collective dislocation glide and climb of the grains and progressive damage accumulation of

  7. Positron lifetime measurements as a non-destructive technique to monitor fatigue damage

    International Nuclear Information System (INIS)

    Byrne, J.G.

    1975-09-01

    In the fatigue cycling of initially hard copper, self consistent positron lifetime and x-ray particle size measurements followed the softening process and revealed a new feature which may be the final development of microvoids before fracture. In the cyclic fatigue of initially soft 4340 steel closely spaced concurrent measurements of these parameters are now in progress. For initially hard 4340 steel fatigue softening was revealed with a large positron lifetime decrease. In hydrogen embrittlement studies positron lifetime was found to be sensitive to hydrogen in an interesting way, i.e., if a specimen is already at its maximum defect density, hydrogen is trapped at some of the defects, reduce their attraction for positrons and hence cause a decrease in positron lifetime; conversely in a soft specimen, hydrogen generates more dislocation length than it can trap at (thus cancelling) hence a positron lifetime increase occurs. In electron irradiated and annealed single crystal copper 4 annealing peaks were seen at 125, 270, 400, and 650 0 K. A clear correlation between decreasing positron lifetime and increasing percent porosity in α alumina was established. This behavior is quite []he opposite to that in metals. (auth)

  8. Residual strength and crack propagation tests on C-130 airplane center wings with service-imposed fatigue damage

    Science.gov (United States)

    Snider, H. L.; Reeder, F. L.; Dirkin, W. J.

    1972-01-01

    Fourteen C-130 airplane center wings, each containing service-imposed fatigue damage resulting from 4000 to 13,000 accumulated flight hours, were tested to determine their fatigue crack propagation and static residual strength characteristics. Eight wings were subjected to a two-step constant amplitude fatigue test prior to static testing. Cracks up to 30 inches long were generated in these tests. Residual static strengths of these wings ranged from 56 to 87 percent of limit load. The remaining six wings containing cracks up to 4 inches long were statically tested as received from field service. Residual static strengths of these wings ranged from 98 to 117 percent of limit load. Damage-tolerant structural design features such as fastener holes, stringers, doublers around door cutouts, and spanwise panel splices proved to be effective in retarding crack propagation.

  9. Fatigue damage assessment of uni-directional non-crimp fabric reinforced polyester composite using X-ray computed tomography

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Zangenberg Hansen, Jens; Lowe, Tristan

    2016-01-01

    In this study, the progression of tension-tension fatigue (R=0.1) damage in a unidirectional (UD) composite made from a non-crimp glass fibre fabric used for wind turbine blades is investigated using multi-scale 3D X-ray computed tomography (CT). Initially, a representative volume is examined at ...

  10. Uncovering the fatigue damage initiation and progression in uni-directional non-crimp fabric reinforced polyester composite

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Glud, Jens A.; Zangenberg, Jens

    2018-01-01

    The current work studies the fatigue damage initiation and progression in a quasi-unidirectional non-crimp fabric based fibre composite used for wind turbine blades. This is done by combining in situ transilluminated white light imagining (TWLI) with ex-situ X-ray computed tomography (CT) experim...

  11. Stress management skills, neuroimmune processes and fatigue levels in persons with chronic fatigue syndrome.

    Science.gov (United States)

    Lattie, Emily G; Antoni, Michael H; Fletcher, Mary Ann; Penedo, Frank; Czaja, Sara; Lopez, Corina; Perdomo, Dolores; Sala, Andreina; Nair, Sankaran; Fu, Shih Hua; Klimas, Nancy

    2012-08-01

    Stressors and emotional distress responses impact chronic fatigue syndrome (CFS) symptoms, including fatigue. Having better stress management skills might mitigate fatigue by decreasing emotional distress. Because CFS patients comprise a heterogeneous population, we hypothesized that the role of stress management skills in decreasing fatigue may be most pronounced in the subgroup manifesting the greatest neuroimmune dysfunction. In total, 117 individuals with CFS provided blood and saliva samples, and self-report measures of emotional distress, perceived stress management skills (PSMS), and fatigue. Plasma interleukin-1-beta (IL-1β, IL-2, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α), and diurnal salivary cortisol were analyzed. We examined relations among PSMS, emotional distress, and fatigue in CFS patients who did and did not evidence neuroimmune abnormalities. Having greater PSMS related to less fatigue (p=.019) and emotional distress (pfatigue levels most strongly in CFS patients in the top tercile of IL-6, and emotional distress mediated the relationship between PSMS and fatigue most strongly in patients with the greatest circulating levels of IL-6 and a greater inflammatory (IL-6):anti-inflammatory (IL-10) cytokine ratio. CFS patients having greater PSMS show less emotional distress and fatigue, and the influence of stress management skills on distress and fatigue appear greatest among patients who have elevated IL-6 levels. These findings support the need for research examining the impact of stress management interventions in subgroups of CFS patients showing neuroimmune dysfunction. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Creep-fatigue damage evaluation for SS-316LN (ORNL PLATES): - RCC-MR vs. ASME SEC III - NH

    International Nuclear Information System (INIS)

    Sati, Bhuwan Chandra; Jalaldeen, S.; Velusamy, K.; Selvaraj, P.

    2016-01-01

    Investigations of high temperature tests done on ORNL plate with deformation control loading, under creep-fatigue damage have been presented. The test results with methodology of RCC-MR and ASME-NH life prediction under creep-fatigue loading have been assessed. The stress relaxation effect in calculating the life using RCC-MR under creep-fatigue damage is found to be significant in presence of secondary stress. RCC-MR: 2007 is more realistic number of cycles (predicts 51 number of cycles) as compared to ASME-NH (predicts 312 number of cycles) which is demonstrated by the experimental work (observed 86 numbers of cycles). Between RCC-MR and experimental work, design code seems to be more conservative for life prediction due to creep-fatigue damage. For fatigue damage, the approaches are same and the difference comes from material properties and the starting stress for applying Neuber's rule. ASME approach has the limitation of stress range magnitude. ASME approach predicts lower elastic plus plastic strain for the cases having S* above the linear stress limit. For creep strain and creep damage evaluation, ASME and RCC-MR have different approaches for calculating the stress at the beginning and during the hold period. The RCC-MR takes account of cyclic hardening or softening effects (hardening in the present case of 316 LN) by means of the cyclic stress-strain curve and the benefit of symmetrization effects which are significant for this material. The ASME code neglects these effects and instead relies on an approach based on the isochronous stress-strain curves. (author)

  13. Processing of free radical damaged DNA bases

    International Nuclear Information System (INIS)

    Wallace, S.

    2003-01-01

    Free radicals produced during the radiolysis of water gives rise to a plethora of DNA damages including single strand breaks, sites of base loss and a wide variety of purine and pyrimidine base lesions. All these damages are processed in cells by base excision repair. The oxidative DNA glycosylases which catalyze the first step in the removal of a base damage during base excision repair evolved primarily to protect the cells from the deleterious mutagenic effects of single free radical-induced DNA lesions arising during oxidative metabolism. This is evidenced by the high spontaneous mutation rate in bacterial mutants lacking the oxidative DNA glycosylases. However, when a low LET photon transverses the DNA molecule, a burst of free radicals is produced during the radiolysis of water that leads to the formation of clustered damages in the DNA molecule, that are recognized by the oxidative DNA glycosylases. When substrates containing two closely opposed sugar damages or base and sugar damages are incubated with the oxidative DNA glycosylases in vitro, one strand is readily incised by the lyase activity of the DNA glycosylase. Whether or not the second strand is incised depends on the distance between the strand break resulting from the incised first strand and the remaining DNA lesion on the other strand. If the lesions are more than two or three base pairs apart, the second strand is readily cleaved by the DNA glycosylase, giving rise to a double strand break. Even if the entire base excision repair system is reconstituted in vitro, whether or not a double strand break ensues depends solely upon the ability of the DNA glycosylase to cleave the second strand. These data predicted that cells deficient in the oxidative DNA glycosylases would be radioresistant while those that overproduce an oxidative DNA glycosylase would be radiosensitive. This prediction was indeed borne in Escherichia coli that is, mutants lacking the oxidative DNA glycosylases are radioresistant

  14. Age-related mechanical strength evolution of trabecular bone under fatigue damage for both genders: Fracture risk evaluation.

    Science.gov (United States)

    Ben Kahla, Rabeb; Barkaoui, Abdelwahed; Merzouki, Tarek

    2018-05-04

    Bone tissue is a living composite material, providing mechanical and homeostatic functions, and able to constantly adapt its microstructure to changes in long term loading. This adaptation is conducted by a physiological process, known as "bone remodeling". This latter is manifested by interactions between osteoclasts and osteoblasts, and can be influenced by many local factors, via effects on bone cell differentiation and proliferation. In the current work, age and gender effects on damage rate evolution, throughout life, have been investigated using a mechanobiological finite element modeling. To achieve the aim, a mathematical model has been developed, coupling both cell activities and mechanical behavior of trabecular bone, under cyclic loadings. A series of computational simulations (ABAQUS/UMAT) has been performed on a 3D human proximal femur, allowing to investigate the effects of mechanical and biological parameters on mechanical strength of trabecular bone, in order to evaluate the fracture risk resulting from fatigue damage. The obtained results revealed that mechanical stimulus amplitude affects bone resorption and formation rates, and indicated that age and gender are major factors in bone response to the applied loadings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Damage and fatigue crack growth of Eurofer steel first wall mock-up under cyclic heat flux loads. Part 2: Finite element analysis of damage evolution

    International Nuclear Information System (INIS)

    You, Jeong-Ha

    2014-01-01

    Highlights: • The surface heat flux load of 3.5 MW/m 2 produced substantial stresses and inelastic strains in the heat-loaded surface region, especially at the notch root. • The notch root exhibited a typical notch effect such as stress concentration and localized inelastic yield leading to a preferred damage development. • The predicted damage evolution feature agrees well with the experimental observation. • The smooth surface also experiences considerable stresses and inelastic strains. However, the stress intensity and the amount of inelastic deformation are not high enough to cause any serious damage. • The level of maximum inelastic strain is higher at the notch root than at the smooth surface. On the other hand, the amplitude of inelastic strain variation is comparable at both positions. • The amount of inelastic deformation is significantly affected by the length of pulse duration time indicating the important role of creep. - Abstract: In the preceding companion article (part 1), the experimental results of the high-heat-flux (3.5 MW/m 2 ) fatigue tests of a Eurofer bare steel first wall mock-up was presented. The aim was to investigate the damage evolution and crack initiation feature. The mock-up used there was a simplified model having only basic and generic structural feature of an actively cooled steel FW component for DEMO reactor. In that study, it was found that microscopic damage was formed at the notch root already in the early stage of the fatigue loading. On the contrary, the heat-loaded smooth surface exhibited no damage up to 800 load cycles. In this paper, the high-heat-flux fatigue behavior is investigated with a finite element analysis to provide a theoretical interpretation. The thermal fatigue test was simulated using the coupled damage-viscoplastic constitutive model developed by Aktaa. The stresses, inelastic deformation and damage evolution at the notch groove and at the smooth surface are compared. The different damage

  16. Damage Assessment of Heat Resistant Steels through Electron BackScatter Diffraction Strain Analysis under Creep and Creep-Fatigue Conditions

    Science.gov (United States)

    Fujiyama, Kazunari; Kimachi, Hirohisa; Tsuboi, Toshiki; Hagiwara, Hiroyuki; Ogino, Shotaro; Mizutani, Yoshiki

    EBSD(Electron BackScatter Diffraction) analyses were conducted for studying the quantitative microstructural metrics of creep and creep-fatigue damage for austenitic SUS304HTB boiler tube steel and ferritic Mod.9Cr piping steel. KAM(Kernel Average Misorientation) maps and GOS(Grain Orientation Spread) maps were obtained for these samples and the area averaged values KAMave and GOSave were obtained. While the increasing trends of these misorientation metrics were observed for SUS304HTB steel, the decreasing trends were observed for damaged Mod.9Cr steel with extensive recovery of subgrain structure. To establish more universal parameter representing the accumulation of damage to compensate these opposite trends, the EBSD strain parameters were introduced for converting the misorientation changes into the quantities representing accumulated permanent strains during creep and creep-fatigue damage process. As KAM values were dependent on the pixel size (inversely proportional to the observation magnification) and the permanent strain could be expressed as the shear strain which was the product of dislocation density, Burgers vector and dislocation movement distance, two KAM strain parameters MεKAMnet and MεδKAMave were introduced as the sum of product of the noise subtracted KAMnet and the absolute change from initial value δKAMave with dislocation movement distance divided by pixel size. MεδKAMave parameter showed better relationship both with creep strain in creep tests and accumulated creep strain range in creep-fatigue tests. This parameter can be used as the strain-based damage evaluation and detector of final failure.

  17. Avoiding thermal striping damage: Experimentally-based design procedures for high-cycle thermal fatigue

    International Nuclear Information System (INIS)

    Betts, C.; Judd, A.M.; Lewis, M.W.J.

    1994-01-01

    In the coolant circuits of a liquid metal cooled reactor (LMR), where there is turbulent mixing of coolant streams at different temperatures, there are temperature fluctuations in the fluid. If an item of the reactor structure is immersed in this fluid it will, because of the good heat transfer from the flowing liquid metal, experience surface temperature fluctuations which will induce dynamic surface strains. It is necessary to design the reactor so that these temperature fluctuations do not, over the life of the plant, cause damage. The purpose of this paper is to describe design procedures to prevent damage of this type. Two such procedures are given, one to prevent the initiation of defects in a nominally defect-free structure or to allow initiation only at the end of the component life, and the other to prevent significant growth of undetectable pre-existing defects of the order of 0.2 to 0.4 mm in depth. Experimental validation of these procedures is described, and the way they can be applied in practice is indicated. To set the scene the paper starts with a brief summary of cases in which damage of this type, or the need to avoid such damage, have had important effects on reactor operation. Structural damage caused by high-cycle thermal fatigue has had a significant adverse influence on the operation of LMRs on several occasions. It is necessary to eliminate the risk of such damage at the design stage. In the absence of detailed knowledge of the temperature history to which it will be subject, an LMR structure can be designed so that, if it is initially free of defects more than 0.1 mm deep, no such defects will be initiated by high-cycle fatigue. This can be done by ensuring that the maximum source temperature difference in the liquid metal is less than a limiting value, which depends on temperature. The limit is very low, however, and likely to be restrictive. This method, by virtue of its safety margin, takes into account pre-existing surface crack

  18. 75 FR 793 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures

    Science.gov (United States)

    2010-01-06

    ... metal structures are different. Composites are complex materials that have unique advantages in fatigue... stiffness, dynamic behavior, loads, and functional performance of composite structures. In the existing rule... and Fatigue Evaluation of Composite Rotorcraft Structures AGENCY: Federal Aviation Administration (FAA...

  19. Life assessment of Mod.9Cr-1Mo steel. Quantitative evaluation of microstructural damage in creep interrupted specimens and in creep-fatigue specimens

    International Nuclear Information System (INIS)

    Maruyama, Kouichi; Kato, Syoichi; Nagae, Yuji

    1999-02-01

    Boiler and steam turbine components in power generating plants are used under creep and creep-fatigue conditions. It is important to measure both creep and creep-fatigue damage of the components in order to assess the residual life of the components. Modified 9Cr-1Mo steel, a candidate material for steam generator in FBR, has a tempered martensitic lath structure. It was proposed in the second report that lath width in the lath structure is closely related to creep strain, and using this relation one can assess residual creep life of a structural component made of the steel. The objectives of this study are to investigate the change of the lath structure during creep.fatigue deformation, and to estimate creep strain by measuring area of cell composing the lath structure. The area of cell can be a better measure of creep deformation than the lath width. The lath structure is covered during creep-fatigue deformation. The lath structure becomes equiaxed cell structure under creep-fatigue more quickly compared with the lath structure recovered during creep. The lath structure recovered under creep-fatigue has a stationary value of the lath width determined by maximum stress at Nf/2. (Nf: number of cycles) If the recovery process of the lath structure can be investigated under creep-fatigue, the lath width can be a measure of the life assessment under creep-fatigue. Area of cell composing the lath structure increases with creep deformation and reaches a stationary value S s determined by creep stress. The rate of increase in the area is faster at a higher stress and temperature. A normalized change in the area of cell, ΔS/ΔS s , was introduced as a measure of the recovery process of martensitic lath structure. ΔS is the change in area of cell from the initial value S 0 , ΔS s is the difference between S s and S 0 . ΔS/ΔS s is uniquely related to creep strain independent of creep conditions. However, the scatter of data in ΔS/ΔS s -strain relation is wider than

  20. Simplified rotor load models and fatigue damage estimates for offshore wind turbines.

    Science.gov (United States)

    Muskulus, M

    2015-02-28

    The aim of rotor load models is to characterize and generate the thrust loads acting on an offshore wind turbine. Ideally, the rotor simulation can be replaced by time series from a model with a few parameters and state variables only. Such models are used extensively in control system design and, as a potentially new application area, structural optimization of support structures. Different rotor load models are here evaluated for a jacket support structure in terms of fatigue lifetimes of relevant structural variables. All models were found to be lacking in accuracy, with differences of more than 20% in fatigue load estimates. The most accurate models were the use of an effective thrust coefficient determined from a regression analysis of dynamic thrust loads, and a novel stochastic model in state-space form. The stochastic model explicitly models the quasi-periodic components obtained from rotational sampling of turbulent fluctuations. Its state variables follow a mean-reverting Ornstein-Uhlenbeck process. Although promising, more work is needed on how to determine the parameters of the stochastic model and before accurate lifetime predictions can be obtained without comprehensive rotor simulations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. The process of cognitive behaviour therapy for chronic fatigue syndrome: which changes in perpetuating cognitions and behaviour are related to a reduction in fatigue?

    Science.gov (United States)

    Heins, Marianne J; Knoop, Hans; Burk, William J; Bleijenberg, Gijs

    2013-09-01

    Cognitive behaviour therapy (CBT) can significantly reduce fatigue in chronic fatigue syndrome (CFS), but little is known about the process of change taking place during CBT. Based on a recent treatment model (Wiborg et al. J Psych Res 2012), we examined how (changes in) cognitions and behaviour are related to the decrease in fatigue. We included 183 patients meeting the US Centers for Disease Control criteria for CFS, aged 18 to 65 years, starting CBT. We measured fatigue and possible process variables before treatment; after 6, 12 and 18 weeks; and after treatment. Possible process variables were sense of control over fatigue, focusing on symptoms, self-reported physical functioning, perceived physical activity and objective (actigraphic) physical activity. We built multiple regression models, explaining levels of fatigue during therapy by (changes in) proposed process variables. We observed large individual variation in the patterns of change in fatigue and process variables during CBT for CFS. Increases in the sense of control over fatigue, perceived activity and self-reported physical functioning, and decreases in focusing on symptoms explained 20 to 46% of the variance in fatigue. An increase in objective activity was not a process variable. A change in cognitive factors seems to be related to the decrease in fatigue during CBT for CFS. The pattern of change varies considerably between patients, but changes in process variables and fatigue occur mostly in the same period. © 2013.

  2. Crack luminescence as an innovative method for detection of fatigue damage

    Directory of Open Access Journals (Sweden)

    R. Makris

    2018-04-01

    Full Text Available Conventional non-destructive testing methods for crack detection provide just a snapshot of fatigue crack evolution at a specific location in the moment of examination. The crack luminescence coating realizes a clear visibility of the entire crack formation. The coating consists of two layers with different properties and functions. The bottom layer emits light as fluorescence under UV radiation. The top layer covers the fluorescing one and prevents the emitting of light in case of no damage at the surface. Several different experiments show that due to the sensitive coating even the early stage of crack formation can be detected. That makes crack luminescence helpful for investigating the incipient crack opening behavior. Cracks can be detected and observed during operation of a structure, making it also very interesting for continuous monitoring. Crack luminescence is a passive method and no skilled professionals are necessary to detect cracks, as for conventional methods. The luminescent light is clearly noticeable by unaided eye observations and also by standard camera equipment, which makes automated crack detection possible as well. It is expected that crack luminescence can reduce costs and time for preventive maintenance and inspection.

  3. Comparison of Two Probabilistic Fatigue Damage Assessment Approaches Using Prognostic Performance Metrics

    Directory of Open Access Journals (Sweden)

    Xuefei Guan

    2011-01-01

    Full Text Available In this paper, two probabilistic prognosis updating schemes are compared. One is based on the classical Bayesian approach and the other is based on newly developed maximum relative entropy (MRE approach. The algorithm performance of the two models is evaluated using a set of recently developed prognostics-based metrics. Various uncertainties from measurements, modeling, and parameter estimations are integrated into the prognosis framework as random input variables for fatigue damage of materials. Measures of response variables are then used to update the statistical distributions of random variables and the prognosis results are updated using posterior distributions. Markov Chain Monte Carlo (MCMC technique is employed to provide the posterior samples for model updating in the framework. Experimental data are used to demonstrate the operation of the proposed probabilistic prognosis methodology. A set of prognostics-based metrics are employed to quantitatively evaluate the prognosis performance and compare the proposed entropy method with the classical Bayesian updating algorithm. In particular, model accuracy, precision, robustness and convergence are rigorously evaluated in addition to the qualitative visual comparison. Following this, potential development and improvement for the prognostics-based metrics are discussed in detail.

  4. Modelling of pavement materials on steel decks using the five-point bending test: Thermo mechanical evolution and fatigue damage

    International Nuclear Information System (INIS)

    Arnaud, L; Houel, A

    2010-01-01

    This paper deals with the modelling of wearing courses on steel orthotropic decks such as the Millau viaduct in France. This is of great importance when dealing with durability: due to the softness of such a support, the pavement is subjected to considerable strains that may generate top-down cracks in the layer at right angles of the orthotropic plate stiffeners and shear cracks at the interface between pavement and steel. Therefore, a five-point bending fatigue test was developed and improved since 2003 at the ENTPE laboratory, to test different asphalt concrete mixes. This study aims at modelling the mechanical behavior of the wearing course throughout the fatigue test by a finite element method (Comsol Multiphysics software). Each material - steel, sealing sheet, asphalt concrete layer - is considered and modelled. The modelling of asphalt concrete is complex since it is a heterogeneous material, a viscoelastic medium and it thermosensitive. The actual characteristics of the asphalt concrete (thermo physical parameter and viscoelastic complex modulus) are determined experimentally on cylindrical cores. Moreover, a damage law based on Miner's damage is included in the model. The modelling of the fatigue test leads to encouraging results. Finally, results from the model are compared to the experimental data obtained from the five-point bending fatigue test device. The experimental data are very consistent with the numerical simulation.

  5. A study on creep-fatigue life analysis using a unified constitutive equation and a continuous damage law

    International Nuclear Information System (INIS)

    Hiroe, Tetsuyuki; Igari, Toshihide; Nakajima, Keiichi

    1986-01-01

    A newly developed type of life analysis is introduced using a unified constitutive equation and a continuous damage law on 2 1/4Cr - 1Mo steel at 600 deg C. the viscoplasticity theory based on total strain and overstress used for the rate effect at room temperature is extended for application to the inelastic analysis at elevated temperature, and the extended uniaxial model is shown to reproduce the inelastic stress and strain behavior with a strain rate change observed in the experiment. The incremental life prediction law is employed and its coupling with the viscoplasticity model produces both an inelastic stress-strain response and the damage accumulation, simultaneously and continuously. The life prediction for creep, fatigue and creep-fatigue loading shows good correspondence with the experimental data. (author)

  6. Role of damage tolerance and fatigue crack growth in the power generation industry

    International Nuclear Information System (INIS)

    Coffin, L.F.

    1988-01-01

    The problem of intergranular stress-corrosion cracking (IGSCC) in boiling water reactor (BWR) piping is discussed and the body of work undertaken in the author's laboratory to solve that problem is described. Particular attention is given to the development of electrical potential crack monitoring techniques and their application to surface crack growth, particularly under conditions approaching those found in service. The important role of water chemistry and its control is described in this context. The concept and description of sensors to monitor in situ the degree of damage containment from intergranular stress-corrosion cracking is then described, with reference to use in piping components and other types of monitoring. Finally, a concept for the life management of structures is described where damage processes are identified and monitored in situ using appropriate sensors to measure the damage rate continuously

  7. Discrimination between Fatigue Cracking and Mechanical Damage in Aircraft Fastener Holes by Eddy-Current Phase Rotation

    Science.gov (United States)

    2016-08-01

    Science and Technology Organisation) EDM Electrodischarge machining FSH Full Screen Height on an eddy - current instrument IVD Ion Vapour...electromagnetic skin depth δ is 0.15 mm in the fastener holes3. 4.1 Bolt Hole Eddy Current Inspection Procedure 4.1.1 Calibration on Machined ...UNCLASSIFIED UNCLASSIFIED Discrimination between Fatigue Cracking and Mechanical Damage in Aircraft Fastener Holes by Eddy - Current Phase

  8. Influence of the topography of brain damage on depression and fatigue in patients with multiple sclerosis.

    Science.gov (United States)

    Gobbi, C; Rocca, M A; Riccitelli, G; Pagani, E; Messina, R; Preziosa, P; Colombo, B; Rodegher, M; Falini, A; Comi, G; Filippi, M

    2014-02-01

    Involvement of selected central nervous system (CNS) regions has been associated with depression and fatigue in MS. We assessed whether specific regional patterns of lesion distribution and atrophy of the gray (GM) and white matter (WM) are associated with these symptoms in MS. Brain dual-echo and 3D T1-weighted images were acquired from 123 MS patients (69 depressed (D), 54 non-depressed (nD), 64 fatigued, 59 non-fatigued) and 90 controls. Lesion distribution, GM and WM atrophy were estimated using VBM and SPM8. Gender, age, disease duration and conventional MRI characteristics did not differ between D-MS and nD-MS patients. Fatigued patients experienced higher EDSS and depression than non-fatigued ones. Lesion distribution and WM atrophy were not related to depression and fatigue. Atrophy of regions in the frontal, parietal and occipital lobes had a combined effect on depression and fatigue. Atrophy of the left middle frontal gyrus and right inferior frontal gyrus were selectively related to depression. No specific pattern of GM atrophy was found to be related to fatigue. Depression in MS is linked to atrophy of cortical regions located in the bilateral frontal lobes. A distributed pattern of GM atrophy contributes to the concomitant presence of depression and fatigue in these patients.

  9. Three dimensional fatigue damage evolution in non-crimp glass fibre fabric based composites used for wind turbine blades

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Mikkelsen, Lars Pilgaard

    2017-01-01

    This work studies the tension fatigue damage progression of a uni-directional glass fibre composite made from a non-crimp fabric similar to those used for the main load carrying parts of a wind turbine blade. The spatial damage progression in a chosen region of a test specimen is monitored...... on a micro-structural scale by ex-situ X-ray computed tomography. The centimetre sized specimen remains uncut during the ex-situ experiment. The experimental results indicate that uni-directional fibre fractures initiate from matrix cracks related to the structure of the fabric: first in the thin off...

  10. Unified risk analysis of fatigue failure in ductile alloy components during all three stages of fatigue crack evolution process.

    Science.gov (United States)

    Patankar, Ravindra

    2003-10-01

    Statistical fatigue life of a ductile alloy specimen is traditionally divided into three stages, namely, crack nucleation, small crack growth, and large crack growth. Crack nucleation and small crack growth show a wide variation and hence a big spread on cycles versus crack length graph. Relatively, large crack growth shows a lesser variation. Therefore, different models are fitted to the different stages of the fatigue evolution process, thus treating different stages as different phenomena. With these independent models, it is impossible to predict one phenomenon based on the information available about the other phenomenon. Experimentally, it is easier to carry out crack length measurements of large cracks compared to nucleating cracks and small cracks. Thus, it is easier to collect statistical data for large crack growth compared to the painstaking effort it would take to collect statistical data for crack nucleation and small crack growth. This article presents a fracture mechanics-based stochastic model of fatigue crack growth in ductile alloys that are commonly encountered in mechanical structures and machine components. The model has been validated by Ray (1998) for crack propagation by various statistical fatigue data. Based on the model, this article proposes a technique to predict statistical information of fatigue crack nucleation and small crack growth properties that uses the statistical properties of large crack growth under constant amplitude stress excitation. The statistical properties of large crack growth under constant amplitude stress excitation can be obtained via experiments.

  11. 3D characterization and modeling of low cycle fatigue damage mechanisms at high temperature in a cast aluminum alloy

    International Nuclear Information System (INIS)

    Dezecot, Sebastien; Maurel, Vincent; Buffiere, Jean-Yves; Szmytka, Fabien; Koster, Alain

    2017-01-01

    Synchrotron X-ray tomography was used to monitor damage evolution in three dimensions during in situ Low Cycle Fatigue (LCF) tests at high temperature (250 °C) for an industrial material. The studied material is an AlSi7Cu3Mg aluminum alloy (close to ASTM A319) produced by Lost Foam Casting (LFC), a process which generates coarse microstructures but is nevertheless used for engine parts by the automotive industry. The volume analysis (3D images) has shown that cracks are extremely sensitive to microstructural features: coarse pores and hard particles of the eutectic regions are critical regarding respectively the main crack initiation and the crack growth. Finite Elements (FE) simulations, performed on meshes directly generated from 3D volumes and containing only pores, have revealed that mechanical fields also play a major role on the crack behavior. Initiation sites corresponded to areas of maximum inelastic strain while the crack path was globally correlated to high stress triaxiality and inelastic strain fields.

  12. 14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.

    Science.gov (United States)

    2010-01-01

    ... contribute to a catastrophic failure (such as wing, empennage, control surfaces and their systems, the... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Fatigue Evaluation § 25... and sonic excitation environment, that— (1) Sonic fatigue cracks are not probable in any part of the...

  13. Fatigue life prediction in composites using progressive damage modelling under block and spectrum loading

    DEFF Research Database (Denmark)

    Passipoularidis, Vaggelis; Philippidis, T.P.; Brøndsted, Povl

    2010-01-01

    series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a Wind Turbine Rotor...

  14. Damage evolution during actuation fatigue in shape memory alloys (SPIE Best Student Paper Award)

    Science.gov (United States)

    Phillips, Francis R.; Wheeler, Robert; Lagoudas, Dimitris C.

    2018-03-01

    Shape Memory Alloys (SMAs) are unique materials able to undergo a thermomechanically induced, reversible phase transformation. Additionally, SMA are subject to two types of fatigue, that is structural fatigue due to cyclic loading as experienced by most materials, as well as actuation fatigue due to repeated thermally induced phase transformation. The evolution of multiple material characteristics is presented over the actuation fatigue lifetime of NiTiHf actuators, including the accumulation of irrecoverable strain, the evolution of internal voids, and the evolution of the effective modulus of the actuator. The results indicate that all three of these material characteristics are clearly interconnected and careful analysis of each of these characteristics can help to understand the evolution of the others, as well as help to understand how actuation fatigue leads to ultimate failure of the actuator.

  15. Model-Based Structural Health Monitoring of Fatigue Damage Test-Bed Specimens

    Science.gov (United States)

    2011-11-15

    the hull welds or notches along component edges are good initial candidates for the hypothetical damage initiation areas. The branching process adds...to it off-center. The base plate and the stiffener plate are rigidly welded by a tungsten inert gas ( TIG ) weld . Three different crack paths...shown in Figure 9(a), an 18 in long stiffener plate has been welded to each of the tested plates with 0.625 in long discrete TIG welds at 5 locations

  16. Mixed martial arts induces significant fatigue and muscle damage up to 24 hours post-combat.

    Science.gov (United States)

    Ghoul, Nihel; Tabben, Montassar; Miarka, Bianca; Tourny, Claire; Chamari, Karim; Coquart, Jeremy

    2017-06-22

    This study investigates the physiological/physical responses to a simulated mixed martial arts (MMA) competition over 24 hr. Twelve fighters performed a simulated MMA competition, consisting of three 5-min MMA matches. Physiological/physical data were assessed before (Trest), directly after round 1 (Trd1), round 2 (Trd2) and round 3 (Trd3), and then 30-min (Trecovery30min) and/or 24-hr (Trecovery24h) post-competition. Heart rate (HR), rating of perceived exertion (RPE) and blood lactate concentration ([La]) were assessed at Trest, Trd1, Trd2 and Trd3. Biological data were collected at Trest, Trd3, Trecovery30min and Trecovery24h. Physical tests were performed at Trest, Trecovery30min and Trecovery24h. HR, RPE and [La] were high during competition. Leukocytes, hemoglobin, total protein and glycemia were increased at Trd3 compared with all other time points (p<0.05). Cortisol was increased at Trd3 compared with Trest and Trecovery24h (p<0.05). Testosterone was higher at Trd3 and Trecovery30min than Trest (p<0.001). Higher values of uric acid were noted during recovery periods (p<0.001). Lactate dehydrogenase was lower at Trest compared with Trd3, Trecovery30min and Trecovery24h (p<0.05). Countermovement jump was higher at Trest than Trecovery30min (p=0.020). Consequently, MMA is a high-intensity intermittent combat sport that induces significant fatigue and muscle damage, both of which are still present 24-hr post-competition.

  17. Improvement of the fatigue strength of AISI 4140 steel by an ion nitriding process

    Energy Technology Data Exchange (ETDEWEB)

    Celik, A. [Atatuerk Univ., Erzurum (Turkey). Dept. of Mech. Eng.; Karadeniz, S. [Dokuz Eyluel Univ., Izmir (Turkey). Dept. of Mech. Eng.

    1995-06-01

    The influence of plasma nitriding on the fatigue behaviour of AISI 4140 low-alloy steel was investigated under varying process conditions of temperature (500-600 C), time (1-12 h), heat treatment before ion nitriding (quenched and tempered, normalized) and gas mixture (50% H{sub 2}-50% N{sub 2}). A rotating bending fatigue machine was used to determine the fatigue strength. It was found that the plasma nitriding improves the fatigue strength and increases the fatigue limit depending on the surface hardness of the case depth. The microstructure of surface and diffusion layers was examined by optical microscopy. The fracture surface of specimens and the origin of fatigue cracks were observed by scanning electron microscopy.

  18. Evaluation of local deformation behavior accompanying fatigue damage in F82H welded joint specimens by using digital image correlation

    International Nuclear Information System (INIS)

    Nakata, Toshiya; Tanigawa, Hiroyasu

    2012-01-01

    Highlights: ► In tensile, the TIG welded joint material was concentrated in the THAZ. ► In tensile, fracture occurred at the point where the axial strain converged. ► In fatigue, fracture occurred at the point where the Max. shear strain converged. ► Many macrocracks and cavities formed in the FGHAZ and THAZ of the cross section. - Abstract: By using digital image correlation, the deformation behaviors of local domains of F82H joint specimens welded using tungsten inert gas (TIG) and electron beam (EB) welding were evaluated during tensile and fatigue testing. In the tensile test specimens, the tensile strength decreased in the TIG-welded joints, and ductility decreased in both the EB- and TIG-welded joints. Because axial strain increased in the tempered heat-affected zone (HAZ) and led to the fracture of the TIG-welded joint, the strength was considered to have decreased because of welding. In fatigue testing, the number of cycles to fracture for the welded joint decreased to less than 40–60% of that for the base metal. For both fracture specimens, the largest value of shear strain was observed in the region approximately between the fine-grained HAZ and tempered HAZ; this shear strain ultimately led to fracture. Cavities and macrocracks were observed in the fine-grained HAZ and tempered HAZ in the cross sections of the fracture specimens, and geometrical damage possibly resulted in the reduction of fatigue lifetime.

  19. Effect of BCAA intake during endurance exercises on fatigue substances, muscle damage substances, and energy metabolism substances.

    Science.gov (United States)

    Kim, Dong-Hee; Kim, Seok-Hwan; Jeong, Woo-Seok; Lee, Ha-Yan

    2013-12-01

    The increase rate of utilization of branched-chain amino acids (BCAA) by muscle is reduced to its plasma concentration during prolonged exercise leading to glycogen. BCAA supplementation would reduce the serum activities of intramuscular enzymes associated with muscle damage. To examine the effects of BCAA administration on fatigue substances (serotonin, ammonia and lactate), muscle damage substances (CK and LDH) and energy metabolism substances (FFA and glucose) after endurance exercise. Subjects (n = 26, college-aged males) were randomly divided into an experimental (n = 13, EXP) and a placebo (n = 13, CON) group. Subjects both EXP and CON performed a bout of cycle training (70% VO2max intensity) to exhaustion. Subject in the EXP were administrated BCAA (78ml/kg·w) prior to the bout of cycle exercise. Fatigue substances, muscle damage substances and energy metabolism substances were measured before ingesting BCAAs and placebos, 10 min before exercise, 30 min into exercise, immediately after exercise, and 30 min after exercise. Data were analyzed by two-way repeated measure ANCOVA, correlation and statistical significance was set at p BCAA decreased serum concentrations of the intramuscular enzymes as CK and LDH following exhaustive exercise. This observation suggests that BCAA supplementation may reduce the muscle damage associated with endurance exercise.

  20. Energy based study of quasi-static delamination as a low cycle fatigue process

    NARCIS (Netherlands)

    Amaral, L.; Yao, L.; Alderliesten, R.C.; Benedictus, R.

    2015-01-01

    This work proposes to treat quasi-static mode I delamination growth of CFRP as a low-cycle fatigue process. To this end, mode I quasi-static and fatigue delamination tests were performed. An average physical Strain Energy Release Rate (SERR), derived from an energy balance, is used to characterize

  1. Plant uprooting by flow as a fatigue mechanical process

    Science.gov (United States)

    Perona, Paolo; Edmaier, Katharina; Crouzy, Benoît

    2015-04-01

    In river corridors, plant uprooting by flow mostly occurs as a delayed process where flow erosion first causes root exposure until residual anchoring balances hydrodynamic forces on the part of the plant that is exposed to the stream. Because a given plant exposure time to the action of the stream is needed before uprooting occurs (time-to-uprooting), this uprooting mechanism has been denominated Type II, in contrast to Type I, which mostly affect early stage seedlings and is rather instantaneous. In this work, we propose a stochastic framework that describes a (deterministic) mechanical fatigue process perturbed by a (stochastic) process noise, where collapse occurs after a given exposure time. We test the model using the experimental data of Edmaier (2014) and Edmaier et al. (submitted), who investigated vegetation uprooting by flow in the limit of low plant stem-to-sediment size ratio by inducing parallel riverbed erosion within an experimental flume. We first identify the proper timescale and lengthscale for rescaling the model. Then, we show that it describes well all the empirical cumulative distribution functions (cdf) of time-to-uprooting obtained under constant riverbed erosion rate and assuming additive gaussian process noise. By this mean, we explore the level of determinism and stochasticity affecting the time-to-uprooting for Avena sativa in relation to root anchoring and flow drag forces. We eventually ascribe the overall dynamics of the Type II uprooting mechanism to the memory of the plant-soil system that is stored by root anchoring, and discuss related implications thereof. References Edmaier, K., Uprooting mechansims of juvenile vegetation by flow erosion, Ph.D. thesis, EPFL, 2014. Edmaier, K., Crouzy, B. and P. Perona. Experimental characterization of vegetation uprooting by flow. J. of Geophys. Res. - Biogeosci., submitted

  2. Evaluation of fatigue damage in nuclear power plants: evolution and new tools of analysis

    International Nuclear Information System (INIS)

    Cicero, R.; Corchon, F.

    2011-01-01

    This paper presents new fatigue mechanisms requiring analysis, tools developed for evaluation and the latest trends and studies that are currently working in the nuclear field, and allow proper management referring facilities the said degradation mechanism.

  3. Fatigue and Fracture Characterization of Aircraft Aluminum Alloys Damaged by Prior Corrosion

    National Research Council Canada - National Science Library

    Baldwin, J

    2002-01-01

    At the time of the initiation of this project, there was no comprehensive data describing corrosion's effect on the fatigue and fracture behavior of aluminum alloys typically found in aging aircraft...

  4. Extreme Environment Damage Index and Accumulation Model for CMC Laminate Fatigue Life Prediction, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Materials Research & Design (MR&D) is proposing in the SBIR Phase II an effort to develop a tool for predicting the fatigue life of C/SiC composite...

  5. Lamb wave-based damage quantification and probability of detection modeling for fatigue life assessment of riveted lap joint

    Science.gov (United States)

    He, Jingjing; Wang, Dengjiang; Zhang, Weifang

    2015-03-01

    This study presents an experimental and modeling study for damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in-situ non-destructive testing during fatigue cyclical loading. A multi-feature integration method is developed to quantify the crack size using signal features of correlation coefficient, amplitude change, and phase change. In addition, probability of detection (POD) model is constructed to quantify the reliability of the developed sizing method. Using the developed crack size quantification method and the resulting POD curve, probabilistic fatigue life prediction can be performed to provide comprehensive information for decision-making. The effectiveness of the overall methodology is demonstrated and validated using several aircraft lap joint specimens from different manufactures and under different loading conditions.

  6. High Cycle Fatigue Damage Mechanisms of MAR-M 247 Superalloy at High Temperatures

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Miroslav; Horník, Vít; Hutař, Pavel; Hrbáček, K.; Kunz, Ludvík

    2016-01-01

    Roč. 69, č. 2 (2016), s. 393-397 ISSN 0972-2815 R&D Projects: GA TA ČR(CZ) TA04011525; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : High cycle fatigue * S-N curves * Fractography * High temperature * EBSD analysis Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.533, year: 2016

  7. Reducing fatigue damage for ships in transit through structured decision making

    Science.gov (United States)

    Nichols, J.M.; Fackler, P.L.; Pacifici, K.; Murphy, K.D.; Nichols, J.D.

    2014-01-01

    Research in structural monitoring has focused primarily on drawing inference about the health of a structure from the structure’s response to ambient or applied excitation. Knowledge of the current state can then be used to predict structural integrity at a future time and, in principle, allows one to take action to improve safety, minimize ownership costs, and/or increase the operating envelope. While much time and effort has been devoted toward data collection and system identification, research to-date has largely avoided the question of how to choose an optimal maintenance plan. This work describes a structured decision making (SDM) process for taking available information (loading data, model output, etc.) and producing a plan of action for maintaining the structure. SDM allows the practitioner to specify his/her objectives and then solves for the decision that is optimal in the sense that it maximizes those objectives. To demonstrate, we consider the problem of a Naval vessel transiting a fixed distance in varying sea-state conditions. The physics of this problem are such that minimizing transit time increases the probability of fatigue failure in the structural supports. It is shown how SDM produces the optimal trip plan in the sense that it minimizes both transit time and probability of failure in the manner of our choosing (i.e., through a user-defined cost function). The example illustrates the benefit of SDM over heuristic approaches to maintaining the vessel.

  8. Effect of shot peening process on fatigue behavior of an alloyed austempered ductile iron

    Directory of Open Access Journals (Sweden)

    Amir Sadighzadeh Benam

    2011-08-01

    Full Text Available Shot peening is one of the most common surface treatments to improve the fatigue behavior of metallic parts. In this study the effect of shot peening process on the fatigue behavior of an alloyed austempered ductile iron (ADI has been studied. Austempering heat treatment consisted of austenitizing at 875℃ for 90 min followed by austempering at three different temperatures of 320, 365 and 400℃. Rotating-bending fatigue test was carried out on samples after shot peening by 0.4 – 0.6 mm shots. XRD and SEM analysis, micro hardness and roughness tests were carried out to study the fatigue behavior of the samples. Results indicate that the fatigue strengths of samples austempered at 320, 365 and 400℃ are increased by 27.3%, 33.3% and 48.4%, respectively, after shot peening process.

  9. Fatigue and Damage Tolerance Analysis of a Hybrid Composite Tapered Flexbeam

    Science.gov (United States)

    Murri, Gretchen B.; Schaff, Jeffrey R.; Dobyns, Al

    2001-01-01

    The behavior of nonlinear tapered composite flexbeams under combined axial tension and cyclic bending loading was studied using coupon test specimens and finite element (FE) analyses. The flexbeams used a hybrid material system of graphite/epoxy and glass/epoxy and had internal dropped plies, dropped in an overlapping stepwise pattern. Two material configurations, differing only in the use of glass or graphite plies in the continuous plies near the midplane, were studied. Test specimens were cut from a full-size helicopter tail-rotor flexbeam and were tested in a hydraulic load frame under combined constant axialtension load and transverse cyclic bending loads. The first determination damage observed in the specimens occurred at the area around the tip of the outermost ply-drop group in the tapered region of the flexbeam, near the thick end. Delaminations grew slowly and stably, toward the thick end of the flexbeam, at the interfaces above and below the dropped-ply region. A 2D finite element model of the flexbeam was developed. The model was analyzed using a geometrically non-linear analysis with both the ANSYS and ABAQUS FE codes. The global responses of each analysis agreed well with the test results. The ANSYS model was used to calculate strain energy release rates (G) for delaminations initiating at two different ply-ending locations. The results showed that delaminations were more inclined to grow at the locations where they were observed in the test specimens. Both ANSYS and ABAQUS were used to calculate G values associated with delamination initiating at the observed location but growing in different interfaces, either above or below the ply-ending group toward the thick end, or toward the thin end from the tip of the resin pocket. The different analysis codes generated the same trends and comparable peak values, within 5-11 % for each delamination path. Both codes showed that delamination toward the thick region was largely mode II, and toward the thin

  10. Positron-annihilation studies of cyclic fatigue damage in metals and aging in polymers

    International Nuclear Information System (INIS)

    Panigrahi, N.

    1987-01-01

    Positron-lifetime measurements were performed on fatigued nickel samples. Both ex-situ type of source ( 22 Na source deposited on a nickel foil in a sandwich geometry) and in-situ source ( 58 Co) (produced by proton irradiation of the nickel sample through the reaction 61 Ni(p,α) 58 Co) were used. Specimens were both flexurally and axially fatigued. Spectra were analyzed by resolving into three and four exponentials. In contrast to other studies, positrons are found to be sensitive to defects formed during the cyclic fatiguing. These data were analyzed in terms of various trapping models. The results could be explained by assuming the detrapping of positrons from defect sites. In both types of fatigued specimens the lifetimes of the defect clusters decreased with increasing intensities, showing either the proliferation of smaller clusters or the formation of the new relaxed microstructures. Advantage of using in-situ source for the study of fatigue cycling is stressed. Quenching experiments were performed on polystyrene and polyvinyl acetate samples. In the former the long lifetime (tau 3 ) increased with aging, while the intensity decreased. These indicate that the cavities in the polymers getting bigger while becoming fewer in number

  11. Effect of Various Heat Treatment Processes on Fatigue Behavior of Tool Steel for Cold Forging Die

    Science.gov (United States)

    Jin, S. U.; Kim, S. S.; Lee, Y. S.; Kwon, Y. N.; Lee, J. H.

    Effects of various heat treatment processes, including "Q/T (quenching and tempering)", "Q/CT/T (Quenching, cryogenic treatment and tempering)", "Q/T (quenching and tempering) + Ti-nitriding" and "Q/CT/T (Cryogenic treatment and tempering) + Ti-nitriding", on S-N fatigue behavior of AISI D2 tool steel were investigated. The optical micrographs and Vicker's hardness values at near surface and core area were examined for each specimen. Uniaxial fatigue tests were performed by using an electro-magnetic resonance fatigue testing machine at a frequency of 80 Hz and an R ratio of -1. The overall resistance to fatigue tends to decrease significantly with Ti-nitriding treatment compared to those for the general Q/T and Q/CT/T specimens. The reduced resistance to fatigue with Ti-nitriding is discussed based on the microstructural and fractographic analyses.

  12. Damage evaluation under thermal fatigue of a vertical target full scale component for the ITER divertor

    International Nuclear Information System (INIS)

    Missirlian, M.; Escourbiac, F.; Merola, M.; Durocher, A.; Bobin-Vastra, I.; Schedler, B.

    2007-01-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a Full Scale Vertical Target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses thermographic examination and thermal fatigue testing results obtained on this component. The study includes thermal analysis, with a tentative proposal to evaluate with finite element approach the location/size of defects and the possible propagation during fatigue cycling

  13. Finite Element Analysis for Fatigue Damage Reduction in Metallic Riveted Bridges Using Pre-Stressed CFRP Plates

    Directory of Open Access Journals (Sweden)

    Elyas Ghafoori

    2014-04-01

    Full Text Available Many old riveted steel bridges remain operational and require retrofit to accommodate ever increasing demands. Complicating retrofit efforts, riveted steel bridges are often considered historical structures where structural modifications that affect the original construction are to be avoided. The presence of rivets along with preservation requirements often prevent the use of traditional retrofit methods, such as bonding of fiber reinforced composites, or the addition of supplementary steel elements. In this paper, an un-bonded post-tensioning retrofit method is numerically investigated using existing railway riveted bridge geometry in Switzerland. The finite element (FE model consists of a global dynamic model for the whole bridge and a more refined sub-model for a riveted joint. The FE model results include dynamic effects from axle loads and are compared with field measurements. Pre-stressed un-bonded carbon fiber reinforced plastic (CFRP plates will be considered for the strengthening elements. Fatigue critical regions of the bridge are identified, and the effects of the un-bonded post-tensioning method with different pre-stress levels on fatigue susceptibility are explored. With an applied 40% CFRP pre-stress, fatigue damage reductions of more than 87% and 85% are achieved at the longitudinal-to-cross beam connections and cross-beam bottom flanges, respectively.

  14. Fatigue of Beta Processed and Beta Heat-treated Titanium Alloys

    CERN Document Server

    Wanhill, Russell

    2012-01-01

    This publication reviews most of the available literature on the fatigue properties of β annealed Ti-6Al-4V and titanium alloys with similar microstructures. The focus is on β processed and β heat-treated alloys because β annealed Ti-6Al-4V has been selected for highly loaded and fatigue-critical structures, including the main wing-carry-through bulkheads and vertical tail stubs, of advanced high-performance military aircraft.   An important aspect of the review is a concise survey of fatigue life assessment methods and the required types of fatigue data. This survey provides the background to recommendations for further research, especially on the fatigue behaviour of β annealed Ti-6Al-4V under realistic fatigue load histories, including the essential topic of short/small fatigue crack growth. Such research is required for independent fatigue life assessments that conform to the aircraft manufacturer’s design requirements, and also for life reassessments that most probably will have to be made during...

  15. Fatigue behaviors and damage mechanism of a Cr-Mn-N austenitic steel

    DEFF Research Database (Denmark)

    Lv, Z.; Cai, P.; Yu, Tianbo

    2017-01-01

    . It was found that multi-site crack nucleation took place on the surface of the steel during fatigue, and that the crack population (i.e., fatigue weak-links) was found to be a Weibull function of the applied stress. Usually only one or two of the initiated cracks could lead to the final failure of the samples....... Most of the cracks were initiated at the{111} primary slip bands, especially within coarse grains. The cracks were deflected at grain boundaries, which effectively resisted short crack growth and arrested most of the short cracks in the alloy. It can be anticipated that grain refinement could further...

  16. Compression fatigue of Wind Turbine Blade composites materials and damage mechanisms

    DEFF Research Database (Denmark)

    Fraisse, Anthony; Brøndsted, Povl

    According to the new IEC 61400-5-rev0 recommendation, which is under preparation it will be required to qualify wind turbine blade (WTB) composite materials in fatigue at R=0.1, R=-1, and R=10. As a minimum fatigue at R=-1 is required. This is a consequence of the ever-growing blades, where gravity...... driven edgewise bending introduces significant fully reversed cycling at the leading and trailing edges. Therefore, material manufacturer and WTB manufacturer demand test results of highest reliability and reproducibility. However, these equirements for compression-compression and tensioncompression...

  17. Application of FIB technique to study of early fatigue damage in polycrystals

    Czech Academy of Sciences Publication Activity Database

    Man, Jiří; Weidner, A.; Kuběna, Ivo; Vystavěl, T.; Skrotzki, W.; Polák, Jaroslav

    2010-01-01

    Roč. 240, - (2010), 012058 ISSN 1742-6588. [ICSMA-15 (15th International Conference on the Strength of Materials). Dresden, 16.08.2009-21.08.2009] R&D Projects: GA AV ČR 1QS200410502; GA ČR GA101/07/1500; GA ČR GA106/06/1096 Institutional research plan: CEZ:AV0Z20410507 Keywords : focused ion beam (FIB) * persistent slip band (PSB) * fatigue crack initiation Subject RIV: JL - Materials Fatigue, Friction Mechanics

  18. 77 FR 50576 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures; OMB Approval of...

    Science.gov (United States)

    2012-08-22

    ... Composite Rotorcraft Structures; OMB Approval of Information Collection AGENCY: Federal Aviation... Rotorcraft Structures,'' which was published on December 1, 2011. DATES: The rule published on December 1... and Fatigue Evaluation of Composite Rotorcraft Structures,'' published in the Federal Register (76 FR...

  19. Residual Strains and Their Relation to the Fatigue Damage Evolution in Composite Materials

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard; Pereira, Gilmar Ferreira; Jespersen, Kristine Munk

    2016-01-01

    , the volumetric shrinkage of the epoxy at the two curing cycles is identical, the resulting residual strain in an embedded optical fibre measured using fibre Bragg Grating is found to be increased with a factor of 3. Together with, 3D x-ray tomography of partly fatigued test specimens there is an indication...

  20. On the influence of the environment on modeling the fatigue crack growth process

    International Nuclear Information System (INIS)

    Mc Evily, A.J.

    1987-01-01

    The effect of the environment at room and elevated temperature were considered with respect to the influence exerted on the basic mechanical aspects of the fatigue crack growth process. An experimental assessment of this influence was obtained by conducting fatigue crack growth tests both in air and vacuum and the results of such experiments are given. Topics considered include crack closure, short crack growth in notched and unnotched specimens, Mode II crack growth, and the effects of oxidation at elevated temperatures. It is shown that the basic mechanisms of fatigue crack growth can be greatly altered by the presence of oxide films at the fatigue crack tip. Modeling the mechanical aspects of the crack growth process is by itself a challenging task. In addition, the environmental considerations adds to the complexity of the modeling process. (Author)

  1. Separation of surface, subsurface and volume fatigue damage effects in AISI 348 steel for power plant applications

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Martin; Nowak, David; Walther, Frank [Technical Univ. Dortmund (Germany). Dept. of Materials Test Engineering (WPT); Starke, Peter [Saarland Univ., Saarbruecken (Germany). Chair of Non-Destructive Testing and Quality Assurance; Boller, Christian [Saarland Univ., Saarbruecken (Germany). Chair of Non-Destructive Testing and Quality Assurance; Fraunhofer IZFP, Saarbruecken (Germany)

    2016-08-01

    A wide range of industries including energy, chemistry, pharmacy, textiles, food and drink, pulp and paper, etc. is using stainless steels. Metastable austenitic steels such as used in power plants and chemical industry are subjected to cyclic mechanical and thermal loading in air as well as under the influence of corrosive media. This paper provides an overview on different nondestructive and electrochemical measurement techniques, which allow differentiating fatigue damage effects in total strain controlled multiple and constant amplitude tests with respect to damage appearance on surface, in subsurface area as well as in volume of specimens or components microstructure. In addition to conventional mechanical stress-strain hysteresis curves, electrical resistance, magnetic and open circuit potential measurements have been applied to characterize the cyclic deformation behavior of the metastable austenitic steel AISI 348 (X10CrNiNb18-9) in laboratory air and in distilled water. Based on these results obtained, the paper provides an outlook on the possibility for an efficient (remaining) fatigue life evaluation approach, which is adapted to the needs of the application areas.

  2. Effects of foreign object damage from small hard particles on the high-cycle fatigue life of titanium-(6)aluminum-(4)vanadium

    Science.gov (United States)

    Hamrick, Joseph L., II

    Thin rectangular samples of Ti-6Al-4V were damaged by four methods to represent foreign object damage found in turbine engine blades: (1) impact with 2 mm. and 5 mm diameter glass spheres at 305 m/s, (2) impact with 2 mm and 4 mm diameter steel spheres at 305 m/s, (3) quasi-static displacement controlled indentation using steel chisels with 1 mm, 2 nun and 5 mm diameter tips and (4) shearing notches with a 2 mm. diameter chisel point under a quasi-static loading condition. Finite element analysis was used to study the relationship between the stress state created by the plastic damage and the fatigue strength. A new method of quantifying the amount of plastic damage from multiple methods was developed. The fatigue strength required for crack initiation at 10E7 cycles was found to be a function of the total depth from the edge of the undeformed specimen up to the end of the plastically deformed zone. For damage depths less than 1750 mum, the reduction in fatigue strength is proportional to the depth of total damage. For depths > 1750 mum, there appears to be a threshold value of fatigue strength.

  3. Interaction of elementary damage processes and their contribution to neutron damage of ceramics

    International Nuclear Information System (INIS)

    Itoh, Noriaki

    1989-01-01

    Specific features of radiation damage of ceramics as compared with those of metals are discussed. It is pointed out that the electronic excitation gives considerable contribution to radiation damage of ceramics not only by itself but also through interaction with knock-on processes. In the talk first I mention briefly the elementary damage processes; the knock-on process and the processes induced by electronic excitation; the latter is of particularly importance in ceramics because of large energy quantums. Then I discuss possible interactions between these elementary processes; why they may contribute to radiation damage and in what situation they are induced. The types of interactions discussed include those between knock-on processes, between electronic excitation and knock-on processes and between processes induced by electronic excitation. Experimental results which prove directly the significance of such interactions are also described. Importance of such interactions in radiation damage of ceramics and their relevance to other phenomena, such as laser damage, is emphasized. Possible experimental techniques, including those which uses high energy neutron sources, are described. (author)

  4. Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage.

    Science.gov (United States)

    Flanagan, Christopher D; Unal, Mustafa; Akkus, Ozan; Rimnac, Clare M

    2017-11-01

    Thermal denaturation and monotonic mechanical damage alter the organic and water-related compartments of cortical bone. These changes can be detected using Raman spectroscopy. However, less is known regarding Raman sensitivity to detect the effects of cyclic fatigue damage and allograft sterilization doses of gamma radiation. To determine if Raman spectroscopic biomarkers of collagen denaturation and hydration are sensitive to the effects of (a) high cycle fatigue damage and (b) 25kGy irradiation. Unirradiated and gamma-radiation sterilized human cortical bone specimens previously tested in vitro under high-cycle (> 100,000 cycles) fatigue conditions at 15MPa, 25MPa, 35MPa, 45MPa, and 55MPa cyclic stress levels were studied. Cortical bone Raman spectral profiles from wavenumber ranges of 800-1750cm -1 and 2700-3800cm -1 were obtained and compared from: a) non-fatigue vs fatigue fracture sites and b) radiated vs. unirradiated states. Raman biomarker ratios 1670/1640 and 3220/2949, which reflect collagen denaturation and organic matrix (mainly collagen)-bound water, respectively, were assessed. One- and two-way ANOVA analyses were utilized to identify differences between groups along with interaction effects between cyclic fatigue and radiation-induced damage. Cyclic fatigue damage resulted in increases in collagen denaturation (1670/1640: 1.517 ± 0.043 vs 1.579 ± 0.021, p Raman spectroscopy can detect the effects of cyclic fatigue damage and 25kGy irradiation via increases in organic matrix (mainly collagen)-bound water. A Raman measure of collagen denaturation was sensitive to cyclic fatigue damage but not 25kGy irradiation. Collagen denaturation was correlated with organic matrix-bound water, suggesting that denaturation of collagen to gelatinous form may expose more binding sites to water by unwinding the triple alpha chains. This research may eventually be useful to help identify allograft quality and more appropriately match donors to recipients. Copyright

  5. Musculoskeletal disorders as a fatigue failure process: evidence, implications and research needs.

    Science.gov (United States)

    Gallagher, Sean; Schall, Mark C

    2017-02-01

    Mounting evidence suggests that musculoskeletal disorders (MSDs) may be the result of a fatigue failure process in musculoskeletal tissues. Evaluations of MSD risk in epidemiological studies and current MSD risk assessment tools, however, have not yet incorporated important principles of fatigue failure analysis in their appraisals of MSD risk. This article examines the evidence suggesting that fatigue failure may play an important role in the aetiology of MSDs, assesses important implications with respect to MSD risk assessment and discusses research needs that may be required to advance the scientific community's ability to more effectively prevent the development of MSDs. Practitioner Summary: Evidence suggests that musculoskeletal disorders (MSDs) may result from a fatigue failure process. This article proposes a unifying framework that aims to explain why exposure to physical risk factors contributes to the development of work-related MSDs. Implications of that framework are discussed.

  6. ASME Section XI philosophy related to operating nuclear plant fatigue damage protection

    International Nuclear Information System (INIS)

    Gosselin, S.R.

    1995-01-01

    When faced with operating fatigue concerns, nuclear plants traditionally look to the requirements contained in the original construction design code, ASME Section 3, as a basis for component operability. These rules constitute the requirements for nuclear power plant vessel and component construction and, when combined with the Owner's Design Specification, provide reasonable assurance of reliable operation. However, once construction is complete and operation begins, the purpose of any subsequent evaluations shifts from component ''design qualification'' to component ''fitness for service.'' This is a role that has been assumed for ASME Section 11. This paper presents a philosophy, recently endorsed by the ASME Section 11 Executive Committee, intended to guide future Code activities regarding fatigue and its impact on component serviceability

  7. Elevated temperature creep and fatigue damage of a 2.25 Cr--1 Mo steel weldment

    International Nuclear Information System (INIS)

    Van Den Avyle, J.A.

    1978-01-01

    In weldments between dissimilar metals wide variations occur in metallurgical structure and mechanical properties, so that for good structural design it is necessary to understand the mechanical response of individual microstructural segments of the weld. This study investigates elevated temperature properties of a 2.25 Cr--1 Mo ferritic steel base metal welded with Chromenar 382V (Inconel 82) filler metal. Creep and low-cycle fatigue tests at 866 0 K (1100 0 F) show the filler metal and heat affected zone to be much stronger than the base metal. Optical microscopy does not show significant aging effects in the short-term fatigue tests or creep tests of 1180 hour duration

  8. Damage development - effects of multiaxial loads on creep pore formation and fatigue damage in typical power plant steels. Final report

    International Nuclear Information System (INIS)

    Lenk, P.; Proft, D.; Kussmaul, A.; Fischer, R.

    2000-01-01

    The influence of multiaxial stress on creep pore formation in the steels 14MoV6-3 10CrMo9-10 and X10CrMoVNb9-1 was investigated on the basis of internal pressure experiments on smooth and notched hollow cylinders. In some cases, additional axial forces were applied in order to reproduce component-relevant multiaxial stresses. Local elongation during loading was investigated and analyzed using applied HT-DMS. When different strain levels had been reached, the samples were removed, analyzed, and characterized with regard to different damage parameters. It was found that no interdependence between the surface damage pattern and the deep damage pattern can be derived across the wall thickness if no information on the load state is available. Parallel to the experiments, inelastic FEA were carried out using the ABAQUS program system. The creep law of Graham and Walles was used for calculating flow and creep via a user-defined subroutine CREEP. The parameters of the creep law could be identified by adaptation to monoaxial creep tests [de

  9. Processes of Fatigue Destruction in Nanopolymer-Hydrophobised Ceramic Bricks

    Directory of Open Access Journals (Sweden)

    Stanisław Fic

    2017-01-01

    Full Text Available The article presents a proposal of a model of fatigue destruction of hydrophobised ceramic brick, i.e., a basic masonry material. The brick surface was hydrophobised with two inorganic polymers: a nanopolymer preparation based on dialkyl siloxanes (series 1–5 and an aqueous silicon solution (series 6–10. Nanosilica was added to the polymers to enhance the stability of the film formed on the brick surface. To achieve an appropriate blend of the polymer liquid phase and the nano silica solid phase, the mixture was disintegrated by sonication. The effect of the addition of nano silica and sonication on changes in the rheological parameters, i.e., viscosity and surface tension, was determined. Material fatigue was induced by cyclic immersion of the samples in water and drying at a temperature of 100 °C, which caused rapid and relatively dynamic movement of water. The moisture and temperature effect was determined by measurement of changes in surface hardness performed with the Vickers method and assessment of sample absorbability. The results provided an approximate picture of fatigue destruction of brick and hydrophobic coatings in relation to changes in their temporal stability. Additionally, SEM images of hydrophobic coatings in are shown.

  10. Investigation of magnetic properties of steel in the process of fatigue

    International Nuclear Information System (INIS)

    Kasimov, G.A.; Pokrovskij, A.D.

    1976-01-01

    Non-destructive method was developed for the recognition of structural demages of mashine components, which is based on studying the effect of the cyclical loading of constructional steel (brands 10, 20, etc.) upon their magnetic characteristics. Using the experimental installation, we have determined the effect of the degree of fatigue destruction of steel specimens upon the main magnetization curve and the symmetrical cycles of magnetic hysteresis. The obtained results make it possible to choose the conditions of control over the fatigue process

  11. Fatigue crack propagation in UFG Ti grade 4 processed by severe plastic deformation

    Czech Academy of Sciences Publication Activity Database

    Fintová, Stanislava; Arzaghi, M.; Kuběna, Ivo; Kunz, Ludvík; Sarrazin-Baudoux, C.

    2017-01-01

    Roč. 98, MAY (2017), s. 187-194 ISSN 0142-1123 R&D Projects: GA MŠk(CZ) LQ1601; GA MŠk LM2015069 Institutional support: RVO:68081723 Keywords : Titanium * Fatigue * Crack growth * Crack closure * Equal channel angular processing Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.899, year: 2016 http://www.sciencedirect.com/science/article/pii/S014211231730035X

  12. Nondestructive indication of fatigue damage and residual lifetime in ferromagnetic construction materials

    Czech Academy of Sciences Publication Activity Database

    Tomáš, Ivan; Kovářík, O.; Vértesy, G.; Kadlecová, Jana

    2014-01-01

    Roč. 25, č. 6 (2014), "065601-1"-"065601-10" ISSN 0957-0233. [International Symposium on Measurement Technology and Intelligent Instruments /11./ (ISMTII). Aachen, 01.07.2013-03.07.2013] R&D Projects: GA ČR(CZ) GAP108/12/1872 Institutional support: RVO:68378271 Keywords : fatigue * residual lifetime * magnetic nondestructive evaluation * ferromagnetic construction materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.433, year: 2014

  13. Extracting Information from Conventional AE Features for Fatigue Onset Damage Detection in Carbon Fiber Composites

    DEFF Research Database (Denmark)

    Unnthorsson, Runar; Pontoppidan, Niels Henrik Bohl; Jonsson, Magnus Thor

    2005-01-01

    We have analyzed simple data fusion and preprocessing methods on Acoustic Emission measurements of prosthetic feet made of carbon fiber reinforced composites. This paper presents the initial research steps; aiming at reducing the time spent on the fatigue test. With a simple single feature...... approaches can readily be investigated using the improved features, possibly improving the performance using multiple feature classifiers, e.g., Voting systems; Support Vector Machines and Gaussian Mixtures....

  14. Synthesis of Sine-on-Random vibration profiles for accelerated life tests based on fatigue damage spectrum equivalence

    Science.gov (United States)

    Angeli, Andrea; Cornelis, Bram; Troncossi, Marco

    2018-03-01

    In many real life environments, mechanical and electronic systems are subjected to vibrations that may induce dynamic loads and potentially lead to an early failure due to fatigue damage. Thus, qualification tests by means of shakers are advisable for the most critical components in order to verify their durability throughout the entire life cycle. Nowadays the trend is to tailor the qualification tests according to the specific application of the tested component, considering the measured field data as reference to set up the experimental campaign, for example through the so called "Mission Synthesis" methodology. One of the main issues is to define the excitation profiles for the tests, that must have, besides the (potentially scaled) frequency content, also the same damage potential of the field data despite being applied for a limited duration. With this target, the current procedures generally provide the test profile as a stationary random vibration specified by a Power Spectral Density (PSD). In certain applications this output may prove inadequate to represent the nature of the reference signal, and the procedure could result in an unrealistic qualification test. For instance when a rotating part is present in the system the component under analysis may be subjected to Sine-on-Random (SoR) vibrations, namely excitations composed of sinusoidal contributions superimposed to random vibrations. In this case, the synthesized test profile should preserve not only the induced fatigue damage but also the deterministic components of the environmental vibration. In this work, the potential advantages of a novel procedure to synthesize SoR profiles instead of PSDs for qualification tests are presented and supported by the results of an experimental campaign.

  15. Statistical modelling of compression and fatigue damage of unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    A statistical computational model of strength and damage of unidirectional carbon fiber reinforced composites under compressive and cyclic compressive loading is presented in this paper. The model is developed on the basis of the Budiansky–Fleck fiber kinking condition, continuum damage mechanics...... concept and the Monte-Carlo method. The effects of fiber misalignment variability, fiber clustering, load sharing rules on the damage in composite are studied numerically. It is demonstrated that the clustering of fibers has a negative effect of the damage resistance of a composite. Further, the static...

  16. Introduction of Residual Stresses to Enhance Fatigue Performance in the Initial Design

    National Research Council Canada - National Science Library

    Prevey, Paul; Jayaraman, N; Ravindranath, Ravi

    2004-01-01

    .... Recently, laser shock processing (LSP) and low plasticity burnishing (LPB) have been shown to provide spectacular fatigue and damage tolerance improvement by introducing deep (through-thickness...

  17. Monitoring and modeling stress corrosion and corrosion fatigue damage in nuclear reactors

    International Nuclear Information System (INIS)

    Andresen, P.L.; Ford, F.P.; Solomon, H.D.; Taylor, D.F.

    1990-01-01

    Stress corrosion and corrosion fatigue are significant problems in many industries, causing economic penalties from decreased plant availability and component repair or replacement. In nuclear power reactors, environmental cracking occurs in a wide variety of components, including reactor piping and steam generator tubing, bolting materials and pressure vessels. Life assessment for these components is complicated by the belief that cracking is quite irreproducible. Indeed, for conditions which were once viewed as nominally similar, orders of magnitude variability in crack growth rates are observed for stress corrosion and corrosion fatigue of stainless steels and low-alloy steels in 288 degrees C water. This paper shows that design and life prediction approaches are destined to be overly conservative or to risk environmental failure if life is predicted by quantifying only the effects of mechanical parameters and/or simply ignoring or aggregating environmental and material variabilities. Examples include the Nuclear Regulatory Commission (NRC) disposition line for stress-corrosion cracking of stainless steel in boiling water reactor (BWR) water and the American Society of Mechanical Engineers' Section XI lines for corrosion fatigue

  18. Evaluation of Creep-Fatigue Damage in 304 Stainless Steel using Ultrasonic Non-Destructive Test

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Sik [Safetech Co. Ltd., Kimhae (Korea, Republic of); Oh, Yong Jun [Hanbat National Univ., Daejon (Korea, Republic of); Nam, Soo Woo [KISTI ReSEAT Program, Seoul (Korea, Republic of)

    2011-12-15

    It is well known that grain boundary cavitation is the main failure mechanism in austenitic stainless steel under tensile hold creep-fatigue interaction conditions. The cavities are nucleated at the grain boundary during cyclic loading and grow to become grain boundary cracks. The attenuation of ultrasound depends on scattering and absorption in polycrystalline materials. Scattering occurs when a propagation wave encounters microstructural discontinuities, such as internal voids or cavities. Since the density of the creepfatigue cavities increases with the fatigue cycles, the attenuation of ultrasound will also be increased with the fatigue cycles and this attenuation can be detected nondestructively. In this study, it is found that individual grain boundary cavities are formed and grow up to about 100 cycles and then, these cavities coalesce to become cracks. The measured ultrasonic attenuation increased with the cycles up to cycle 100, where it reached a maximum value and then decreased with further cycles. These experimental measurements strongly indicate that the open pores of cavities contribute to the attenuation of ultrasonic waves. However, when the cavities develop, at the grain boundary cracks whose crack surfaces are in contact with each other, there is no longer any open space and the ultrasonic wave may propagate across the cracks. Therefore, the attenuation of ultrasonic waves will be decreased. This phenomenon of maximum attenuation is very important to judge the stage of grain boundary crack development, which is the indication of the dangerous stage of the structures.

  19. A comparison of extreme structural responses and fatigue damage of semi-submersible type floating horizontal and vertical axis wind turbines

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Chai, Wei

    2017-01-01

    •A comprehensive comparison of floating HAWTs and VAWTs with different blade number.•Extreme structural responses and fatigue damage are studied.•Both operational and parked conditions are considered.•The merits and disadvantages of floating HAWTs and VAWTs are revealed and highlighted.......•A comprehensive comparison of floating HAWTs and VAWTs with different blade number.•Extreme structural responses and fatigue damage are studied.•Both operational and parked conditions are considered.•The merits and disadvantages of floating HAWTs and VAWTs are revealed and highlighted....

  20. Low-cycle fatigue and damage of an uncoated and coated single crystal nickel-base superalloy SCB

    International Nuclear Information System (INIS)

    Stekovic, S.; Ericsson, T.

    2007-01-01

    This paper presents low-cycle fatigue (LCF) behaviour and damage mechanisms of uncoated and coated specimens of a single crystal nickel-base superalloy SCB tested at 500 C and 900 C. Four coatings were deposited on the base material, an overlay coating AMDRY997, a platinum-modified aluminide diffusion coating RT22 and two innovative coatings called IC1 and IC3 with a NiW diffusion barrier in the interface. AMDRY997 and RT22 were used as reference coatings. The LCF tests were performed at three strain amplitudes, 1.0, 1.2 and 1.4%, with R = -1, in laboratory air and without any dwell time. The LCF life of the specimens is determined by crack initiation and propagation. Crack data are presented for different classes of crack size in the form of crack density, that is, the number of cracks normalised to the investigated interface length. Micrographs of damage of the coatings are also shown. The effect of the coatings on the LCF life of the superalloy was dependent on the test temperature and deposited coating. At 500 C all coatings had a detrimental effect on the LCF life of the superalloy. At 900 C both AMDRY997 and IC1 prolonged the fatigue life of the superalloy by factors ranging between 1.5 and 4 while RT22 and IC3 shortened the life of the coating-substrate system. Specimens coated with RT22 exhibited generally more damage than other tested coatings at 900 C. Most of the cracks observed initiated at the coating surface and a majority were arrested in the interdiffusion zone between the base material and the coating. No topologically close-packed phases were found. Delamination was only found in AMDRY997 at higher strains. Surface roughness or rumpling was found in the overlay coating AMDRY997 with some cracks initiating from the rumples. The failure morphology at 900 C reflected the role of oxidation in the fatigue life, the crack initiation and propagation of the coated specimens. The wake of the cracks grown into the substrate was severely oxidised leading to

  1. Helicopter rotor blade frequency evolution with damage growth and signal processing

    Science.gov (United States)

    Roy, Niranjan; Ganguli, Ranjan

    2005-05-01

    Structural damage in materials evolves over time due to growth of fatigue cracks in homogenous materials and a complicated process of matrix cracking, delamination, fiber breakage and fiber matrix debonding in composite materials. In this study, a finite element model of the helicopter rotor blade is used to analyze the effect of damage growth on the modal frequencies in a qualitative manner. Phenomenological models of material degradation for homogenous and composite materials are used. Results show that damage can be detected by monitoring changes in lower as well as higher mode flap (out-of-plane bending), lag (in-plane bending) and torsion rotating frequencies, especially for composite materials where the onset of the last stage of damage of fiber breakage is most critical. Curve fits are also proposed for mathematical modeling of the relationship between rotating frequencies and cycles. Finally, since operational data are noisy and also contaminated with outliers, denoising algorithms based on recursive median filters and radial basis function neural networks and wavelets are studied and compared with a moving average filter using simulated data for improved health-monitoring application. A novel recursive median filter is designed using integer programming through genetic algorithm and is found to have comparable performance to neural networks with much less complexity and is better than wavelet denoising for outlier removal. This filter is proposed as a tool for denoising time series of damage indicators.

  2. Fatigue in older adults: An early indicator of the aging process?

    DEFF Research Database (Denmark)

    Avlund, Kirsten

    2010-01-01

    The aim of this paper is to give an overview of research on fatigue in older adults, with a focus on fatigue as an early indicator of the aging process. Fatigue is a strong predictor of functional limitations, disability, mortality, and other adverse outcomes in young-old and old-old populations......, between men and women, and in different geographic localities. Several biological, physiological and social explanations are proposed: fatigue may be seen not only as a self-reported indicator of frailty, defined as a physiologic state of increased vulnerability to stressors, which results from decreased...... physiologic reserves and even dysregulation of multiple physiologic systems, but also this state may be accelerated because of the cumulative impact of social, mental and biological factors throughout life....

  3. Damage morphology study of high cycle fatigued as-cast Mg–3.0Nd–0.2Zn–Zr (wt.%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Haiyan; Fu, Penghuai, E-mail: fph112sjtu@sjtu.edu.cn; Peng, Liming; Li, Zhenming; Pan, Jipeng; Ding, Wenjiang

    2016-01-15

    Laser scanning confocal microscopy (LSCM) and Electron back-scattered diffraction (EBSD) were applied to the study of surface morphology variation of as-cast Mg–3.0Nd–0.2Zn–Zr (NZ30K) (wt.%) alloy under tension-compression fatigue test at room temperature. Two kinds of typical damage morphologies were observed in fatigued NZ30K alloy: One was parallel lines on basal planes led by the cumulation of basal slips, called persistent slip markings (PSMs), and the other was lens shaped, thicker and in less density, led by the formation of twinning. The surface fatigue damage morphology evolution was analyzed in a statistical way. The influences of stress amplitude and grain orientation on fatigue deformation mechanisms were discussed and the non-uniform deformation among grains and the PSMs, within twinning were described quantitatively. - Highlights: • Fatigue morphology evolution was studied by Laser Scanning Confocal Microscopy. • 3D morphology of persistent slip markings and twins was characterized. • Non-uniform deformation among grains, the PSMs and twins were quantified. • Initiations of fatigue crack were clearly investigated.

  4. Probabilistic Fatigue Damage Prognosis Using a Surrogate Model Trained Via 3D Finite Element Analysis

    Science.gov (United States)

    Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo

    2015-01-01

    Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.

  5. Thermally induced high frequency random amplitude fatigue damage at sharp notches

    International Nuclear Information System (INIS)

    Lewis, M.W.J.

    1992-01-01

    Experiments have been performed using the SUPERSOMITE facility to investigate the initiation and growth of fatigue cracks at the tips of sharp surface notches subjected to random thermally-induced stress. The experimental situation is complex involving plasticity, random amplitude loading and heat transfer medium/surface coupling. Crack initiation and growth prediction have been considered using the Creager and Neuber methods to compute the strain ranges in the vicinity of the notch root. Good agreement has been obtained between the experimental results and theoretical predictions. The paper reports the results of the analysis of the notch behavior

  6. Fatigue property and fatigue cracks of ultra-fine grained copper processed by equal-channel angular pressing

    Czech Academy of Sciences Publication Activity Database

    Wang, Q.; Du, Z.; Liu, X.; Kunz, Ludvík

    2011-01-01

    Roč. 2011, č. 682 (2011), s. 231-237 ISSN 1013-9826 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultrafine-grained copper * equal channel angular pressing * fatigue * fatigue cracks Subject RIV: JL - Materials Fatigue, Friction Mechanics

  7. Interactive processes link the multiple symptoms of fatigue in sport competition.

    Science.gov (United States)

    Knicker, Axel J; Renshaw, Ian; Oldham, Anthony R H; Cairns, Simeon P

    2011-04-01

    kinematic components. Longer sport events involve pacing strategies, central and peripheral fatigue contributions and elevated RPE. During match play, the work rate can decline late in a match (or tournament) and/or transiently after intense exercise bursts. Repeated sprint ability, agility and leg strength become slightly impaired. Technique outcomes, such as velocity and accuracy for throwing, passing, hitting and kicking, can deteriorate. Physical and subjective changes are both less severe in real rather than simulated sport activities. Little objective evidence exists to support exercise-induced mental lapses during sport. A model depicting mind-body interactions during sport competition shows that the RPE centre-motor cortex-working muscle sequence drives overall performance levels and, hence, fatigue symptoms. The sporting outputs from this sequence can be modulated by interactions with muscle afferent and circulatory feedback, psychological and decision-making inputs. Importantly, compensatory processes exist at many levels to protect against performance decrements. Small changes of putative fatigue factors can also be protective. We show that individual fatigue factors including diminished carbohydrate availability, elevated serotonin, hypoxia, acidosis, hyperkalaemia, hyperthermia, dehydration and reactive oxygen species, each contribute to several fatigue symptoms. Thus, multiple symptoms of fatigue can occur simultaneously and the underlying mechanisms overlap and interact. Based on this understanding, we reinforce the proposal that fatigue is best described globally as an exercise-induced decline of performance as this is inclusive of all viewpoints. © 2011 Adis Data Information BV. All rights reserved.

  8. Damage-based life prediction model for uniaxial low-cycle stress fatigue of super-elastic NiTi shape memory alloy microtubes

    Science.gov (United States)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-08-01

    Based on the experimental observations for the uniaxial low-cycle stress fatigue failure of super-elastic NiTi shape memory alloy microtubes (Song et al 2015 Smart Mater. Struct. 24 075004) and a new definition of damage variable corresponding to the variation of accumulated dissipation energy, a phenomenological damage model is proposed to describe the damage evolution of the NiTi microtubes during cyclic loading. Then, with a failure criterion of Dc = 1, the fatigue lives of the NiTi microtubes are predicted by the damage-based model, the predicted lives are in good agreement with the experimental ones, and all of the points are located within an error band of 1.5 times.

  9. Damage-based life prediction model for uniaxial low-cycle stress fatigue of super-elastic NiTi shape memory alloy microtubes

    International Nuclear Information System (INIS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-01-01

    Based on the experimental observations for the uniaxial low-cycle stress fatigue failure of super-elastic NiTi shape memory alloy microtubes (Song et al 2015 Smart Mater. Struct. 24 075004) and a new definition of damage variable corresponding to the variation of accumulated dissipation energy, a phenomenological damage model is proposed to describe the damage evolution of the NiTi microtubes during cyclic loading. Then, with a failure criterion of D c = 1, the fatigue lives of the NiTi microtubes are predicted by the damage-based model, the predicted lives are in good agreement with the experimental ones, and all of the points are located within an error band of 1.5 times. (paper)

  10. Study of interaction of fatigue damage and ratcheting. Effect of a tensile primary load on torsion fatigue resistance of stainless steel 304 L at ambient temperature

    International Nuclear Information System (INIS)

    Hakem, N.S.

    1987-01-01

    Effect of ratcheting on fatigue resistance of a stainless steel 304 L, used for reactor vessels, is studied experimentally. Lifetime of samples is reduced if a static constant tensile load (primary loading) is superimposed to cyclic torsion deformations (secondary loading). An equivalent deformation concept is developed to express a criterion of fatigue rupture under primary loading. No effect is noted on the curve of cyclic strain hardening. This fatigue analysis gives no information on cumulated axial deformation. Progressive elongation, observed during testing, is dependent of primary and secondary loading. Rupture is produced by fatigue because cumulated axial deformation is limited ( 4 cycles at rupture cumulated deformation is [fr

  11. Tree-based flood damage modeling of companies: Damage processes and model performance

    Science.gov (United States)

    Sieg, Tobias; Vogel, Kristin; Merz, Bruno; Kreibich, Heidi

    2017-07-01

    Reliable flood risk analyses, including the estimation of damage, are an important prerequisite for efficient risk management. However, not much is known about flood damage processes affecting companies. Thus, we conduct a flood damage assessment of companies in Germany with regard to two aspects. First, we identify relevant damage-influencing variables. Second, we assess the prediction performance of the developed damage models with respect to the gain by using an increasing amount of training data and a sector-specific evaluation of the data. Random forests are trained with data from two postevent surveys after flood events occurring in the years 2002 and 2013. For a sector-specific consideration, the data set is split into four subsets corresponding to the manufacturing, commercial, financial, and service sectors. Further, separate models are derived for three different company assets: buildings, equipment, and goods and stock. Calculated variable importance values reveal different variable sets relevant for the damage estimation, indicating significant differences in the damage process for various company sectors and assets. With an increasing number of data used to build the models, prediction errors decrease. Yet the effect is rather small and seems to saturate for a data set size of several hundred observations. In contrast, the prediction improvement achieved by a sector-specific consideration is more distinct, especially for damage to equipment and goods and stock. Consequently, sector-specific data acquisition and a consideration of sector-specific company characteristics in future flood damage assessments is expected to improve the model performance more than a mere increase in data.

  12. Fatigue damage estimation in non-linear systems using a combination of Monte Carlo simulation and the First Order Reliability Method

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2015-01-01

    For non-linear systems the estimation of fatigue damage under stochastic loadings can be rather time-consuming. Usually Monte Carlo simulation (MCS) is applied, but the coefficient-of-variation (COV) can be large if only a small set of simulations can be done due to otherwise excessive CPU time...

  13. Acoustic Emission Signatures of Fatigue Damage in Idealized Bevel Gear Spline for Localized Sensing

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2017-06-01

    Full Text Available In many rotating machinery applications, such as helicopters, the splines of an externally-splined steel shaft that emerges from the gearbox engage with the reverse geometry of an internally splined driven shaft for the delivery of power. The splined section of the shaft is a critical and non-redundant element which is prone to cracking due to complex loading conditions. Thus, early detection of flaws is required to prevent catastrophic failures. The acoustic emission (AE method is a direct way of detecting such active flaws, but its application to detect flaws in a splined shaft in a gearbox is difficult due to the interference of background noise and uncertainty about the effects of the wave propagation path on the received AE signature. Here, to model how AE may detect fault propagation in a hollow cylindrical splined shaft, the splined section is essentially unrolled into a metal plate of the same thickness as the cylinder wall. Spline ridges are cut into this plate, a through-notch is cut perpendicular to the spline to model fatigue crack initiation, and tensile cyclic loading is applied parallel to the spline to propagate the crack. In this paper, the new piezoelectric sensor array is introduced with the purpose of placing them within the gearbox to minimize the wave propagation path. The fatigue crack growth of a notched and flattened gearbox spline component is monitored using a new piezoelectric sensor array and conventional sensors in a laboratory environment with the purpose of developing source models and testing the new sensor performance. The AE data is continuously collected together with strain gauges strategically positioned on the structure. A significant amount of continuous emission due to the plastic deformation accompanied with the crack growth is observed. The frequency spectra of continuous emissions and burst emissions are compared to understand the differences of plastic deformation and sudden crack jump. The

  14. Static-transmission-error vibratory-excitation contributions from plastically deformed gear teeth caused by tooth bending-fatigue damage

    Science.gov (United States)

    Mark, W. D.; Reagor, C. P.

    2007-02-01

    To assess gear health and detect gear-tooth damage, the vibratory response from meshing gear-pair excitations is commonly monitored by accelerometers. In an earlier paper, strong evidence was presented suggesting that, in the case of tooth bending-fatigue damage, the principal source of detectable damage is whole-tooth plastic deformation; i.e. yielding, rather than changes in tooth stiffness caused by tooth-root cracks. Such plastic deformations are geometric deviation contributions to the "static-transmission-error" (STE) vibratory excitation caused by meshing gear pairs. The STE contributions caused by two likely occurring forms of such plastic deformations on a single tooth are derived, and displayed in the time domain as a function of involute "roll distance." Example calculations are provided for transverse contact ratios of Qt=1.4 and 1.8, for spur gears and for helical-gear axial contact ratios ranging from Qa=1.2 to Qa=3.6. Low-pass- and band-pass-filtered versions of these same STE contributions also are computed and displayed in the time domain. Several calculations, consisting of superposition of the computed STE tooth-meshing fundamental harmonic contribution and the band-pass STE contribution caused by a plastically deformed tooth, exhibit the amplitude and frequency or phase modulation character commonly observed in accelerometer-response waveforms caused by damaged teeth. General formulas are provided that enable computation of these STE vibratory-excitation contributions for any form of plastic deformation on any number of teeth for spur and helical gears with any contact ratios.

  15. The relations among body consciousness, somatic symptom report, and information processing speed in chronic fatigue syndrome.

    NARCIS (Netherlands)

    Werf, S.P. van der; Vree, B.P.W. de; Meer, J.W.M. van der; Bleijenberg, G.

    2002-01-01

    OBJECTIVE: The aim of this study was to assess the potential influence of body consciousness and levels of somatic symptom report upon information processing speed in patients with chronic fatigue syndrome (CFS). BACKGROUND: According to a model of a fixed information processing capacity, it was

  16. Analysis of partially pulsating fatigue process on carbon steel with microstructural observation

    International Nuclear Information System (INIS)

    Shimano, Hiroyuki; Faiz, M. Khairi; Hara, Asato; Yoshizumi, Kyoko; Yoshida, Makoto; Horibe, Susumu

    2016-01-01

    Pulsating low-cycle fatigue processes, up to the present, have been divided into three states: the transient state, steady state, and accelerating state of ratcheting. In our previous work, we suggested that fatigue behavior of pulsating fatigue process should be classified into five stages in which the plastic strain amplitude and the ratcheting strain rate are plotted on the X and Y axis, respectively. In this study, at the condition of R=−0.3 (partially pulsating fatigue), the change in the plastic strain amplitude and ratcheting strain rate for each cycle to failure was examined on AISI 1025 carbon steel. The dislocation substructure was examined using transmission electron microscopy (TEM) for each stage, except for stage I. It was also demonstrated that the fatigue process can be divided into five stages: stage I corresponds to the un-pinning of dislocations from the Cottrell atmosphere and propagation of the Luders band. Stage II corresponds to the restriction of dislocation movement by dislocation tangles. Stage III corresponds to the formation of dislocation cells. Stage IV corresponds to the promotion of the to-and-fro (back-and-forth) motion of dislocations by a re-arrangement of the dislocations in the cells. Stage V corresponds to the release of dislocation movement by the collapse of dislocation cells.

  17. Analysis of partially pulsating fatigue process on carbon steel with microstructural observation

    Energy Technology Data Exchange (ETDEWEB)

    Shimano, Hiroyuki, E-mail: tales-of-destiny@akane.waseda.jp [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan); Faiz, M. Khairi; Hara, Asato; Yoshizumi, Kyoko [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan); Yoshida, Makoto [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan); Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26, Nishi-Waseda, Shinjyuku-ku, Tokyo 169-0051 (Japan); Horibe, Susumu [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan)

    2016-01-10

    Pulsating low-cycle fatigue processes, up to the present, have been divided into three states: the transient state, steady state, and accelerating state of ratcheting. In our previous work, we suggested that fatigue behavior of pulsating fatigue process should be classified into five stages in which the plastic strain amplitude and the ratcheting strain rate are plotted on the X and Y axis, respectively. In this study, at the condition of R=−0.3 (partially pulsating fatigue), the change in the plastic strain amplitude and ratcheting strain rate for each cycle to failure was examined on AISI 1025 carbon steel. The dislocation substructure was examined using transmission electron microscopy (TEM) for each stage, except for stage I. It was also demonstrated that the fatigue process can be divided into five stages: stage I corresponds to the un-pinning of dislocations from the Cottrell atmosphere and propagation of the Luders band. Stage II corresponds to the restriction of dislocation movement by dislocation tangles. Stage III corresponds to the formation of dislocation cells. Stage IV corresponds to the promotion of the to-and-fro (back-and-forth) motion of dislocations by a re-arrangement of the dislocations in the cells. Stage V corresponds to the release of dislocation movement by the collapse of dislocation cells.

  18. Effects of a laser surface processing induced heat-affected zone on the fatigue behavior of AISI 4340 steel

    International Nuclear Information System (INIS)

    McDaniels, R.L.; White, S.A.; Liaw, K.; Chen, L.; McCay, M.H.; Liaw, P.K.

    2008-01-01

    The effects of the heat-affected zone (HAZ) in AISI 4340 steel created by laser-surface alloying (LSA) on high-cycle fatigue behavior have been investigated. This research was performed by producing several lots of laser-processed AISI 4340 steel using different laser processing parameters, and then subjecting the samples to high-cycle fatigue and Knoop microindentation hardness studies. Samples of tested material from each lot were examined using scanning-electron microscopy (SEM) in order to establish the effects of laser processing on the microstructure of the fatigue-tested AISI 4340 steel. When these three techniques, microindentation hardness testing, high-cycle fatigue testing, and SEM, are combined, a mechanistic understanding of the effect of the HAZ on the fatigue behavior of this alloy might be gained. It was found that the HAZ did not appear to have an adverse effect on the high-cycle fatigue behavior of LSA-processed AISI 4340 steel

  19. Effect of laser shock processing on fatigue crack growth of duplex stainless steel

    International Nuclear Information System (INIS)

    Rubio-Gonzalez, C.; Felix-Martinez, C.; Gomez-Rosas, G.; Ocana, J.L.; Morales, M.; Porro, J.A.

    2011-01-01

    Research highlights: → LSP is an effective surface treatment to improve fatigue properties of duplex stainless steel. → Increasing pulse density, fatigue crack growth rate is reduced. → Microstructure is not affected by LSP. → Compressive residual stresses increases increasing pulse density. - Abstract: Duplex stainless steels have wide application in different fields like the ship, petrochemical and chemical industries that is due to their high strength and excellent toughness properties as well as their high corrosion resistance. In this work an investigation is performed to evaluate the effect of laser shock processing on some mechanical properties of 2205 duplex stainless steel. Laser shock processing (LSP) or laser shock peening is a new technique for strengthening metals. This process induces a compressive residual stress field which increases fatigue crack initiation life and reduces fatigue crack growth rate. A convergent lens is used to deliver 2.5 J, 8 ns laser pulses by a Q-switched Nd:YAG laser, operating at 10 Hz with infrared (1064 nm) radiation. The pulses are focused to a diameter of 1.5 mm. Effect of pulse density in the residual stress field is evaluated. Residual stress distribution as a function of depth is determined by the contour method. It is observed that the higher the pulse density the greater the compressive residual stress. Pulse densities of 900, 1600 and 2500 pul/cm 2 are used. Pre-cracked compact tension specimens were subjected to LSP process and then tested under cyclic loading with R = 0.1. Fatigue crack growth rate is determined and the effect of LSP process parameters is evaluated. In addition fracture toughness is determined in specimens with and without LSP treatment. It is observed that LSP reduces fatigue crack growth and increases fracture toughness if this steel.

  20. Effects of processing on the transverse fatigue properties of low-sulfur AISI 4140 steel

    Science.gov (United States)

    Collins, Sunniva R.; Michal, Gary M.

    1993-12-01

    The effects of inclusions due to steelmaking processes on the fatigue life of AISI 4140 have been investigated. The test matrix consisted of three commercially produced heats of AISI 4140 of comparable cleanliness: one was conventionally cast (CC), and two were inert gas-shielded/ bottom-poured (IGS). One of the IGS heats was calcium-treated to explore the effects of inclusion shape control (IGS/SC). All heats were hot-rolled and reduced over 95 pct to produce bar stock of 127 to 152 mm (5 to 6 in.) in diameter. Transverse axial specimens conforming to ASTM E466 were machined, quenched, and tempered to approximately 40 HRC, and they were fatigue tested in tension-tension cycling ( R = 0.1). Test results and statistical analyses of the stress-life data show that the IGS grade has several times the fatigue strength of the CC grade at 107 cycles. Lower-limit fatigue strengths calculated at a 99.9 pct probability were 518.5 MPa (75.2 ksi) for IGS vs 55.6 MPa (8.1 ksi) for the CC grade. The IGS/SC grade had the best performance at all stress and life levels. The results obtained indicate that fatigue performance can be improved by choosing a processing method that reduces the incidence of exogenous oxides and by controlling the shape of the sulfides.

  1. Evaluation of fatigue damage induced by thermal striping in a T junction using the three dimensional coupling method and frequency response method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Hye; Choi, Jae boong; Kim, Moon Ki [Sungkyunkwan Univ., Seoul (Korea, Republic of); Huh, Nam Su [Seoul Nat' l Univ., Seoul (Korea, Republic of); Lee, Jin Ho [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-10-15

    Thermal fatigue cracking induced by thermal stratification, cycling and striping have been observed in several PWR plants. Especially, thermal striping, the highly fluctuating thermal layer, became one of the significant problems, since it can cause un predicted high cycle thermal fatigue (HCTF) at piping systems. This problem are usually found in T junctions of energy cooling systems, where cold and hot flows with high level of turbulence mix together. Thermal striping can cause the networks of fatigue crack at the vicinity of weld parts and these cracks can propagate to significant depth in a relatively short time. Therefore, thermal striping and fatigue crack initiations should be predicted in advance to prevent the severe failure of piping systems. The final goal of this research is to develop a rational thermal and mechanical model considering thermohydraulic characteristics of thermal striping and an evaluation procedure to predict the initiation of thermal fatigue crack. As a first step, we evaluated the fatigue damage in a T junction using two widely used methods. Then, we analyzed the results of each method and conducted comparisons and verifications.

  2. Multi-Axial Damage Index and Accumulation Model for Predicting Fatigue Life of CMC Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The fatigue life of CMCs must be well characterized for the safe and reliable use of these materials as integrated TPS components. Existing fatigue life prediction...

  3. Effect of electrical pulse treatment on the thermal fatigue resistance of bionic compacted graphite cast iron processed in water

    International Nuclear Information System (INIS)

    Liu, Yan; Zhou, Hong; Su, Hang; Yang, Chunyan; Cheng, Jingyan; Zhang, Peng; Ren, Luquan

    2012-01-01

    Highlights: ► Electrical pulse treatment can reduce cracks on bionic units before thermal fatigue tests. ► Electrical pulse treatment can reduce crack sources during thermal fatigue tests. ► Thermal fatigue resistance of bionic units processed in water is enhanced. ► Thermal fatigue resistance of bionic CGI processed in water is improved. -- Abstract: In order to further enhance the thermal fatigue resistance of bionic compacted graphite cast iron (CGI) which is processed by laser in water, the electrical pulse treatment is applied to improve the thermal fatigue resistance of bionic units. The results show that the electrical pulse treatment causes the supersaturated carbon atoms located in the lattice of austenite to react with the iron atoms to form the Fe 3 C. The microstructures of the bionic units processed in water are refined by the electrical pulse treatment. The cracks on the bionic units are reduced by the electrical pulse treatment before the thermal fatigue tests; and during the tests, the thermal fatigue resistance of bionic units is therefore enhanced by reducing the crack sources. By this way, the thermal fatigue resistance of bionic CGI processed in water is improved.

  4. Validation of a new multiaxial criteria for creep-fatigue damage evaluation

    International Nuclear Information System (INIS)

    Cabrillat, M.T.; Martin, P.

    1989-01-01

    For many years, design codes evaluated creep damage using the Von Mises criterion to take account of multiaxiality of stresses. However, recent studies have confirmed that the Von Mises criterion is overconservative for nonuniaxial stress state. Various criteria have been put forward to take account of the real stress state. This paper describes a criterion which was introduced in 1987 and the various studies which led to its adoption

  5. Evaluation of impact damage effect on fatigue life of carbon fibre composites

    Czech Academy of Sciences Publication Activity Database

    Kytýř, D.; Fíla, T.; Valach, Jaroslav; Šperl, Martin

    2013-01-01

    Roč. 75, č. 2 (2013), s. 157-164 ISSN 1454-2358 R&D Projects: GA ČR(CZ) GAP105/12/0824 Institutional support: RVO:68378297 Keywords : carbon fibre composites * impact damage * material degradation Subject RIV: JI - Composite Materials http://www.scientificbulletin.upb.ro/SeriaD_-_Inginerie_Mecanica.php?page=revistaonline&a=2&arh_an=2013&arh_ser=D&arh_nr=2

  6. The effect of metastability in the process of fatigue of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Pacheco, D.J.

    1977-01-01

    The influence of martensitic phase transformation on the process of pulsating tensile stress is studied in a metastable type AISI 316 stainless steel in the temperature range from 25 to -196 0 C. Annealed as well as previously deformed specimens are tested for the typical microstructural characteristics. It is concluded that the fatigue limit as well as the crack mechanisms depend upon the nature of the slip of crystalographic planes. The martensitic transformation previously induced by plastic deformation shows an undesirable fatigue character, in the annealed state and tested at 25 0 C, the type 316 steel will need a plastic deformation equal to or slightly above 9% for pulsating tension fracture [pt

  7. Influence of caffeine on information processing stages in well rested and fatigued subjects.

    NARCIS (Netherlands)

    Lorist, L.M.; Snel, J.; Kok, A.

    1994-01-01

    Examined the effects of caffeine on different information processing stages using choice reaction time (RT) tasks. A 200-mg dose at the beginning and a maintenance dose of 50 mg caffeine or lactose half-way through the session were administered to 15 well-rested and 15 fatigued university students

  8. Mental fatigue and the control of cognitive processes : effects on perseveration and planning

    NARCIS (Netherlands)

    Van der Linden, D.; Frese, M; Meijman, T.F.

    We tested whether behavioural manifestations of mental fatigue may be linked to compromised executive control, which refers to the ability to regulate perceptual and motor processes for goal-directed behaviour. In complex tasks, compromised executive control may become manifest as decreased

  9. Multi-purpose fatigue sensor. Part 1. Uniaxial and multiaxial fatigue

    Directory of Open Access Journals (Sweden)

    M.V. Karuskevich

    2016-10-01

    Full Text Available The paper describes the key principles and results of preliminary experiments aimed at the development of new technique for the fatigue life prediction under conditions of biaxial cyclic tension. The foundations of the method were developed early by the numerous tests with monitoring the process of surface deformation relief formation, which is proved to be an indicator of accumulated fatigue damage under uniaxial fatigue. The employed phenomenon was early applied for the development of a family of uniaxial loading fatigue sensors. The formation of strain induced relief has been recently taken into consideration as a part of damage accumulation criteria under biaxial fatigue as well. The home-made testing machine has been designed to implement combined bending and torsion loading that simulates loads experienced by an aircraft wing skin. The experimental evidences on formation and evolution of the deformation relief revealed under conditions of combined loading, supports the proposed concept of biaxial fatigue sensor

  10. Effect of different machining processes on the tool surface integrity and fatigue life

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chuan Liang [College of Mechanical and Electrical Engineering, Nanchang University, Nanchang (China); Zhang, Xianglin [School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2016-08-15

    Ultra-precision grinding, wire-cut electro discharge machining and lapping are often used to machine the tools in fine blanking industry. And the surface integrity from these machining processes causes great concerns in the research field. To study the effect of processing surface integrity on the fine blanking tool life, the surface integrity of different tool materials under different processing conditions and its influence on fatigue life were thoroughly analyzed in the present study. The result shows that the surface integrity of different materials was quite different on the same processing condition. For the same tool material, the surface integrity on varying processing conditions was quite different too and deeply influenced the fatigue life.

  11. Repair processes for photochemical damage in mammalian cells

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1974-01-01

    Repair processes for photochemical damage in cells following uv irradiation are reviewed. Cultured fibroblast cells from human patients with xeroderma pigmentosum were used as an example to illustrate aspects of repair of injuries to DNA and proteins. (250 references) (U.S.)

  12. Damage and fatigue crack growth of Eurofer steel first wall mock-up under cyclic heat flux loads. Part 1: Electron beam irradiation tests

    Energy Technology Data Exchange (ETDEWEB)

    You, J.H., E-mail: you@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Euratom Association, Boltzmannstr. 2, 85748 Garching (Germany); Höschen, T. [Max-Planck-Institut für Plasmaphysik, Euratom Association, Boltzmannstr. 2, 85748 Garching (Germany); Pintsuk, G. [Forschungszentrum Jülich GmbH, IEK2, Euratom Association, 52425 Jülich (Germany)

    2014-04-15

    Highlights: • Clear evidence of microscopic damage and crack formation at the notch root in the early stage of the fatigue loading (50–100 load cycles). • Propagation of fatigue crack at the notch root in the course of subsequent cyclic heat-flux loading followed by saturation after roughly 600 load cycles. • No sign of damage on the notch-free surface up to 800 load cycles. • No obvious effect of the pulse time duration on the crack extension. • Slight change in the grain microstructure due to the formation of sub-grain boundaries by plastic deformation. - Abstract: Recently, the idea of bare steel first wall (FW) is drawing attention, where the surface of the steel is to be directly exposed to high heat flux loads. Hence, the thermo-mechanical impacts on the bare steel FW will be different from those of the tungsten-coated one. There are several previous works on the thermal fatigue tests of bare steel FW made of austenitic steel with regard to the ITER application. In the case of reduced-activation steel Eurofer97, a candidate structural material for the DEMO FW, there is no report on high heat flux tests yet. The aim of the present study is to investigate the thermal fatigue behavior of the Eurofer-based bare steel FW under cyclic heat flux loads relevant to DEMO operation. To this end, we conducted a series of electron beam irradiation tests with heat flux load of 3.5 MW/m{sup 2} on water-cooled mock-ups with an engraved thin notch on the surface. It was found that the notch root region exhibited a marked development of damage and fatigue cracks whereas the notch-free surface manifested no sign of crack formation up to 800 load cycles. Results of extensive microscopic investigation are reported.

  13. Emotional conflict processing in adolescent chronic fatigue syndrome: A pilot study using functional magnetic resonance imaging

    OpenAIRE

    Bakke, Laura A Wortinger; Endestad, Tor; Melinder, Annika Maria D; Øie, Merete Glenne; Sulheim, Dag; Fagermoen, Frode Even; Wyller, Vegard Bruun

    2017-01-01

    Introduction: Studies of neurocognition suggest that abnormalities in cognitive control contribute to the pathophysiology of chronic fatigue syndrome (CFS) in adolescents, yet these abnormalities remain poorly understood at the neurobiological level. Reports indicate that adolescents with CFS are significantly impaired in conflict processing, a primary element of cognitive control. Method: In this study, we examine whether emotional conflict processing is altered on behavioral and neural leve...

  14. Fatigue and Damage Tolerance of Friction Stir Welded Joints for Aerospace Applications

    NARCIS (Netherlands)

    Lemmen, H.J.K.

    2010-01-01

    Friction stir welding is a young welding process with high potential to replace riveted joints in aerospace structures like the fuselage. Friction stir welding is a robust process and capable of welding high strength aluminum alloys. Therefore it can lead to both costs and weight savings. To

  15. Influence of shock absorber condition on pavement fatigue using relative damage concept

    Directory of Open Access Journals (Sweden)

    Pablo Kubo

    2015-12-01

    Full Text Available Considering the importance of the road transportation nowadays, concerns related to pavement deterioration and maintenance have become relevant subjects. Especially for commercial vehicles, the vertical dynamic load (characterized by the tire-road interaction is directly related to wear on the road surface. Given this, the main objective of this paper is to analyse effects of vertical loads applied on the flexible pavement, considering the variation of the condition of shock absorbers from a truck's front suspension. The measurements were performed on a rigid truck, with 2 steering front axles, in a durability test track located in Brazil. With a constant load of 6 tons on the front suspension (the maximum allowed load on front axles according to Brazilian legislation, 3 different shock absorber conditions were evaluated: new, used and failed. By applying the relative damage concept, it is possible to conclude that the variation of the shock absorber conditions will significantly affect the vertical load applied on the pavement. Although the results clearly point to a dependent relationship between the load and the condition of the shock absorbers, it is recommended to repeat the same methodology, in future to analyse the influence of other quarter car model variants (such as spring rate, mass and tire spring stiffness.

  16. Provision of wear resistance and fatigue strength of surfaces during electroerosive processing

    Science.gov (United States)

    Fedonin, O. N.; Syanov, S. Yu; Papikyan, A. M.

    2018-03-01

    This article is a generalization of the results of theoretical studies of the effect of erosion control regimes on the operational properties of mold-forming parts of molds. The main problem is the provision of wear resistance and fatigue strength in the electroerosion processing of these types of products. The analysis showed that the fatigue strength is affected by the processing regimes and the coefficient after the erosion treatment. The index of wear resistance is determined both by the treatment modes and by the physical-mechanical properties of the billet materials. To ensure the operational performance of products, it is necessary to establish the physical picture of the processing of complex profile parts by finding the optimum eroding regime.

  17. Investigation of fatigue crack growth rate of Al 5484 ultrafine grained alloy after ECAP process

    Energy Technology Data Exchange (ETDEWEB)

    Brynk, Tomasz; Rasinski, Marcin; Pakiela, Zbigniew; Kurzydlowski, Krzysztof J. [Faculty of Materials Science and Engineering, Warsaw University of Technology (Poland); Olejnik, Lech [Faculty of Production Engineering, Warsaw University of Technology (Poland)

    2010-05-15

    During the last decade equal-channel angular pressing (ECAP) has emerged as a widely used fabrication route of ultrafine-grained (UFG) metals and alloys. Enhanced mechanical properties of UFG materials produced by severe plastic deformation, with a grain size smaller than 1 {mu}m, have been reported in a large number of publications. However, the higher strength does not imply higher resistance to fatigue both high- and low-cyclic. In fact, due to reduced plasticity, higher fatigue crack propagation rates are reported for UFG materials, particularly in low-amplitude range. The aim of this work was to investigate fatigue crack propagation in samples of Al 5483 alloy subjected to ECAP treatment. Because of small dimensions of the coupons processed by ECAP, non-standard, mini-samples were used in a crack propagation tests. Two test procedures were used to estimate stress intensity factor (K). The first was based on optical measurements of crack length from images recorded during the test. The second method was based on digital image correlation (DIC), which was used to determine K value directly from displacement field near the crack tip. Comparison of these two methods is made and the relationship between the intensity of ECAP process (measured in terms of the number of ECAP passes) and fatigue crack propagation rates proposed. In addition to fatigue resistance, the results of tensile tests carried out with mini-samples are presented. Applicability of such samples in the investigations of the mechanical properties of UFG materials is discussed. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Kinetics of Accumulation of Damage in Surface Layers of Lithium-Containing Aluminum Alloys in Fatigue Tests with Rigid Loading Cycle and Corrosive Effect of Environment

    Science.gov (United States)

    Morozova, L. V.; Zhegina, I. P.; Grigorenko, V. B.; Fomina, M. A.

    2017-07-01

    High-resolution methods of metal physics research including electron, laser and optical microscopy are used to study the kinetics of the accumulation of slip lines and bands and the corrosion damage in the plastic zone of specimens of aluminum-lithium alloys 1441 and B-1469 in rigid-cycle fatigue tests under the joint action of applied stresses and corrosive environment. The strain parameters (the density of slip bands, the sizes of plastic zones near fracture, the surface roughness in singled-out zones) and the damage parameters (the sizes of pits and the pitting area) are evaluated.

  19. Application of flaw detection methods for detection of fatigue processes in low-alloyed steel

    Directory of Open Access Journals (Sweden)

    Zbigniew H. śUREK

    2007-01-01

    Full Text Available The paper presents the investigations conducted in the Fraunhofer Institute (IZFP Saarbrücken by use of a BEMI microscope (BEMI= Barkhausenrausch- und Wirbelstrom-Mikroskopie or Barkhausen Noise and Eddy Current Microscopy. The ability to detect cyclic and contact fatigue load influences has been investigated. The measurement amplitudes obtained with Barkhausen Noise and Eddy Current probes havebeen analysed. Correlation of measurement results and material’s condition has been observed in case of the eddy current mode method for frequencies above 2 MHz (for contact-loaded material samples. Detection of material’s fatigue process (at 80 % fatiguelife in the sample subjected to series of high-cyclic loads has been proven to be practically impossible. Application of flaw detection methods in material fatigue tests requires modification of test methods and use of investigation methods relevant to physical parameters of the investigated material. The magnetic leakage field method, which has been abandoned by many researchers, may be of significant use in the material fatigue assessment and may provide new research prospects.

  20. Investigation on effect of laser shock processing on fatigue crack initiation and its growth in aluminum alloy plate

    International Nuclear Information System (INIS)

    Zhang, X.Q.; Li, H.; Yu, X.L.; Zhou, Y.; Duan, S.W.; Li, S.Z.; Huang, Z.L.; Zuo, L.S.

    2015-01-01

    Highlights: • LSP can greatly delay crack formation. • The micro-crack growing processes and its fracture are showed clearly. • Surface topographies and crack initiation locations are displayed. - Abstract: A series of contrasting experiments were carried out to examine the effects of laser shock processing (LSP) on fatigue properties of slot in 7075-T6 aluminum alloy plate. Both side surfaces of slot were subjected to LSP. The surface topographies were observed and the residual stresses were tested. The treated and the un-treated specimens were pulled by the fatigue cyclic loading respectively. The fatigue crack propagating processes were recorded, and the fatigue fracture microscopic morphologies were analyzed by scanning electron microscope (SEM). Experimental results and analyses show that LSP induces micro-dent on surface and squeezes the compressive residual stresses into surface layer of specimen. It can remarkably delay the micro-crack formation, and transfer the location of fatigue crack initiation from top surface to sub-surface. The spacing of fatigue striations on the treated specimen fatigue fracture obviously decreases. Therefore, the fatigue life of specimen after LSP treatment significantly increases

  1. Multiaxial fatigue criteria for AISI 304 and 2-1/4 Cr-1 Mo steel at 5380C with applications to strain-range partitioning and linear summation of creep and fatigue damage

    International Nuclear Information System (INIS)

    Blass, J.J.

    1982-01-01

    An improved multiaxial fatigue failure criterion was developed based on the results of combined axial-torsional strain cycling tests of AISI 304 and 2-1/4 Cr-1 Mo steel conducted at 538 0 C (1000 0 F). The formulation of this criterion involves the shear and normal components of inelastic strain range on the planes of maximum inelastic shear strain range. Optimum values of certain parameters contained in the formulation were obtained for each material by the method of least squares. The ability of this criterion to correlate the test results was compared with that of the usual (Mises) equivalent inelastic strain range criterion. An improved definition of equivalent inelastic strain range resulting from these considerations was used to generalize the theory of Strain Range Partitioning to multiaxial stress-strain conditions and was also applied to the linear summation of creep and fatigue damage

  2. Computer simulation of damage processes during ion implantation

    International Nuclear Information System (INIS)

    Kang, H.J.; Shimizu, R.; Saito, T.; Yamakawa, H.

    1987-01-01

    A new version for the marlowe code, which enables dynamic simulation of damage processes during ion implantation to be performed, has been developed. This simulation code is based on uses of the Ziegler--Biersack--Littmark potential [in Proceedings of the International Engineering Congress on Ion Sources and Ion-Assisted Technology, edited by T. Takagi (Ionic Co., Tokyo, 1983), p. 1861] for elastic scattering and Firsov's equation [O. B. Firsov, Sov. Phys. JETP 61, 1453 (1971)] for electron stopping

  3. Fundamental aspects of brittle damage processes -- discrete systems

    International Nuclear Information System (INIS)

    Krajcinovic, D.; Lubarda, V.

    1993-01-01

    The analysis of cooperative brittle processes are performed on simple discrete models admitting closed form solutions. A connection between the damage and fracture mechanics is derived and utilized to illustrate the relation between two theories. The performed analyses suggest that the stress concentrations (direct interaction between defects) represent a second order effect during the hardening part of the response in the case of disordered solids

  4. A method of creep damage summation based on accumulated strain for the assessment of creep-fatigue endurance

    International Nuclear Information System (INIS)

    Hales, R.

    1983-01-01

    A method of combining long term creep data with relatively short term mechanical behaviour to provide an estimate of creep-fatigue endurance is presented. It is proposed that the creep-fatigue effect in high temperature cyclic deformation is governed by a difference in strain rate around the cycle and the associated variation in ductility with strain rate. (author)

  5. ''Safety rules of fatigue damage for nuclear facilities pressurized equipment at the sizing and the operation stage''

    International Nuclear Information System (INIS)

    Grandemange, J.M.; Faidy, C.

    2001-01-01

    This paper presents the method applied in the nuclear industry in the domain of the fatigue risk safety. It recalls the fatigue curves origins and presents the technical requirements implemented during the design and the construction. It also presents the follow-up of transients in service and the periodical examinations. (A.L.B.)

  6. Characterisation of foreign object damage (FOD) and early fatigue crack growth in laser shock peened Ti-6Al-4V aerofoil specimens

    Energy Technology Data Exchange (ETDEWEB)

    Spanrad, S. [Mechanical Behaviour of Materials Laboratory, Department of Mechanical and Design Engineering, University of Portsmouth (United Kingdom); Tong, J., E-mail: jie.tong@port.ac.uk [Mechanical Behaviour of Materials Laboratory, Department of Mechanical and Design Engineering, University of Portsmouth (United Kingdom)

    2011-02-25

    Research highlights: {yields} A study of deformation in a generic LSPed aerofoil specimen subjected to high speed head-on and 45 deg. impacts, and subsequently fatigue loading. {yields} Characterisation of damage features considering geometry of the projectile, impact angle and impact velocity. {yields} Onset and early crack growth due to FOD in LSPed samples compared to those without LSP subjected to cubical impacts under simulated service loading conditions. - Abstract: Foreign object damage (FOD) has been identified as one of the primary life limiting factors for fan and compressor blades, with the leading edge of aerofoils particularly susceptible to such damage. In this study, a generic aerofoil specimen of Ti-6Al-4V alloy was used. The specimens were treated by laser shock peening (LSP) to generate compressive residual stresses in the leading edge region prior to impact. FOD was simulated by firing a cubical projectile at the leading edge using a laboratory gas gun at 200 m/s, head-on; and at 250 m/s, at an angle of 45 deg. The specimens were then subjected to 4-point bend fatigue testing under high cycle (HCF), low cycle (LCF) and combined LCF and HCF loading conditions. Scanning electron microscopy (SEM) was used to characterise the damage features due to FOD. Crack initiation and early crack growth due to FOD and subsequent fatigue growth were examined in detail. The results were compared between the two impact conditions; and with those from samples without LSP treatment as well as those impacted with spherical projectiles. The results seem to suggest that LSP has improved the crack growth resistance post FOD. Delayed onset of crack initiation was observed in LSPed samples compared to those without LSP under similar loading conditions. Damage features depend on the geometry of the projectile, the impact angle as well as the impact velocity.

  7. Low visual information-processing speed and attention are predictors of fatigue in elementary and junior high school students.

    Science.gov (United States)

    Mizuno, Kei; Tanaka, Masaaki; Fukuda, Sanae; Yamano, Emi; Shigihara, Yoshihito; Imai-Matsumura, Kyoko; Watanabe, Yasuyoshi

    2011-06-14

    Fatigue is a common complaint among elementary and junior high school students, and is known to be associated with reduced academic performance. Recently, we demonstrated that fatigue was correlated with decreased cognitive function in these students. However, no studies have identified cognitive predictors of fatigue. Therefore, we attempted to determine independent cognitive predictors of fatigue in these students. We performed a prospective cohort study. One hundred and forty-two elementary and junior high school students without fatigue participated. They completed a variety of paper-and-pencil tests, including list learning and list recall tests, kana pick-out test, semantic fluency test, figure copying test, digit span forward test, and symbol digit modalities test. The participants also completed computerized cognitive tests (tasks A to E on the modified advanced trail making test). These cognitive tests were used to evaluate motor- and information-processing speed, immediate and delayed memory function, auditory and visual attention, divided and switching attention, retrieval of learned material, and spatial construction. One year after the tests, a questionnaire about fatigue (Japanese version of the Chalder Fatigue Scale) was administered to all the participants. After the follow-up period, we confirmed 40 cases of fatigue among 118 students. In multivariate logistic regression analyses adjusted for grades and gender, poorer performance on visual information-processing speed and attention tasks was associated with increased risk of fatigue. Reduced visual information-processing speed and poor attention are independent predictors of fatigue in elementary and junior high school students. © 2011 Mizuno et al; licensee BioMed Central Ltd.

  8. Low visual information-processing speed and attention are predictors of fatigue in elementary and junior high school students

    Directory of Open Access Journals (Sweden)

    Yamano Emi

    2011-06-01

    Full Text Available Abstract Background Fatigue is a common complaint among elementary and junior high school students, and is known to be associated with reduced academic performance. Recently, we demonstrated that fatigue was correlated with decreased cognitive function in these students. However, no studies have identified cognitive predictors of fatigue. Therefore, we attempted to determine independent cognitive predictors of fatigue in these students. Methods We performed a prospective cohort study. One hundred and forty-two elementary and junior high school students without fatigue participated. They completed a variety of paper-and-pencil tests, including list learning and list recall tests, kana pick-out test, semantic fluency test, figure copying test, digit span forward test, and symbol digit modalities test. The participants also completed computerized cognitive tests (tasks A to E on the modified advanced trail making test. These cognitive tests were used to evaluate motor- and information-processing speed, immediate and delayed memory function, auditory and visual attention, divided and switching attention, retrieval of learned material, and spatial construction. One year after the tests, a questionnaire about fatigue (Japanese version of the Chalder Fatigue Scale was administered to all the participants. Results After the follow-up period, we confirmed 40 cases of fatigue among 118 students. In multivariate logistic regression analyses adjusted for grades and gender, poorer performance on visual information-processing speed and attention tasks was associated with increased risk of fatigue. Conclusions Reduced visual information-processing speed and poor attention are independent predictors of fatigue in elementary and junior high school students.

  9. Development of sacrificial specimen for fatigue damage prediction of structure (2nd report); Kozobutsu no hiro sonsho yochi no tameno giseishikenhen no kaihatsu ( 2 )

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Y.; Huang, F.; Hada, K.; Sato, A.; Hamada, K.; Iwata, M. [Hiroshima Univ. (Japan)

    1998-12-31

    The study aims at applying the sacrificial specimen developed by the authors of the paper on practical structures, the sacrificial specimens are secured to a smooth specimen and a boxing welded joint, and fatigue tests are performed under varying stress amplitude. The load is cyclic 8 stage block load that has load frequency distribution similar to exponential distribution. Then, a fatigue life prediction of structural element is studied based on monitoring results of the sacrificial specimen. The obtained results are as follows. The sacrificial specimen shows steady fatigue property without occurrence of peeling off or buckling even under varying stress amplitude. A limited accumulated damage value of the sacrificial specimen is obtained under the varying stress amplitude. While arranging the crack growth curve of the varying sacrificial specimen in N/Nf, they show almost the same shape not depending on the life. The prediction method of fatigue life of a structure is described based on monitoring results of the sacrificial specimen. 9 refs., 16 figs., 2 tabs.

  10. Damage-induced DNA repair processes in Escherichia coli cells

    International Nuclear Information System (INIS)

    Slezarikova, V.

    1986-01-01

    The existing knowledge is summed up of the response of Escherichia coli cells to DNA damage due to various factors including ultraviolet radiation. So far, three inducible mechanisms caused by DNA damage are known, viz., SOS induction, adaptation and thermal shock induction. Greatest attention is devoted to SOS induction. Its mechanism is described and the importance of the lexA recA proteins is shown. In addition, direct or indirect role is played by other proteins, such as the ssb protein binding the single-strand DNA sections. The results are reported of a study of induced repair processes in Escherichia coli cells repeatedly irradiated with UV radiation. A model of induction by repeated cell irradiation discovered a new role of induced proteins, i.e., the elimination of alkali-labile points in the daughter DNA synthetized on a damaged model. The nature of the alkali-labile points has so far been unclear. In the adaptation process, regulation proteins are synthetized whose production is induced by the presence of alkylation agents. In the thermal shock induction, new proteins synthetize in cells, whose function has not yet been clarified. (E.S.)

  11. Creep-Fatigue Damage Evaluation of a Model Reactor Vessel and Reactor Internals of Sodium Test Facility according to ASME-NH and RCC-MRx Codes

    International Nuclear Information System (INIS)

    Lim, Dong-Won; Lee, Hyeong-Yeon; Eoh, Jae-Hyuk; Son, Seok-Kwon; Kim, Jong-Bum; Jeong, Ji-Young

    2016-01-01

    The objective of the STELLA-2 is to support the specific design approval for PGSFR by synthetic reviews of key safety issues and code validations through the integral effect tests. Due to its high temperature operation in SFRs (and in a testing facility) up to 550 °C, thermally induced creep-fatigue damage is very likely in components including a reactor vessel, reactor internals (interior structures), heat exchangers, pipelines, etc. In this study, structural integrity of the components such as reactor vessel and internals in STELLA-2 has been evaluated against creep-fatigue failures at a concept-design step. As 2D analysis yields far conservative results, a realistic 3D simulation is performed by a commercial software. A design integrity guarding against a creep-fatigue damage failure operating at high temperature was evaluated for the reactor vessel with its internal structure of the STELLA-2. Both the high temperature design codes were used for the evaluation, and results were compared. All the results showed the vessel as a whole is safely designed at the given operating conditions, while the ASME-NH gives a conservative evaluation

  12. Creep-Fatigue Damage Evaluation of a Model Reactor Vessel and Reactor Internals of Sodium Test Facility according to ASME-NH and RCC-MRx Codes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dong-Won; Lee, Hyeong-Yeon; Eoh, Jae-Hyuk; Son, Seok-Kwon; Kim, Jong-Bum; Jeong, Ji-Young [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The objective of the STELLA-2 is to support the specific design approval for PGSFR by synthetic reviews of key safety issues and code validations through the integral effect tests. Due to its high temperature operation in SFRs (and in a testing facility) up to 550 °C, thermally induced creep-fatigue damage is very likely in components including a reactor vessel, reactor internals (interior structures), heat exchangers, pipelines, etc. In this study, structural integrity of the components such as reactor vessel and internals in STELLA-2 has been evaluated against creep-fatigue failures at a concept-design step. As 2D analysis yields far conservative results, a realistic 3D simulation is performed by a commercial software. A design integrity guarding against a creep-fatigue damage failure operating at high temperature was evaluated for the reactor vessel with its internal structure of the STELLA-2. Both the high temperature design codes were used for the evaluation, and results were compared. All the results showed the vessel as a whole is safely designed at the given operating conditions, while the ASME-NH gives a conservative evaluation.

  13. X-ray diffraction study of microstructural changes during fatigue damage initiation in pipe steels: Role of the initial dislocation structure

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, B., E-mail: bianca@lts.coppe.ufrj.br [Laboratory of Mechanics of Lille (LML), UMR CNRS 8107, University Lille 1, Boulevard Paul Langevin, Cité Scientifique, 59655 Villeneuve d' Ascq (France); Lesage, J. [Laboratory of Mechanics of Lille (LML), UMR CNRS 8107, University Lille 1, Boulevard Paul Langevin, Cité Scientifique, 59655 Villeneuve d' Ascq (France); Pasqualino, I. [Subsea Technology Laboratory (LTS), Ocean Engineering Department, COPPE/Federal University of Rio de Janeiro, PO Box 68508, Cidade Universitária, CEP 21945-970, Rio de Janeiro/RJ (Brazil); Bemporad, E. [University of Rome “ROMA TRE”, Mechanical and Industrial Eng. Dept., Via Vasca Navale 79, 00146 Rome (Italy); Benseddiq, N. [Laboratory of Mechanics of Lille (LML), UMR CNRS 8107, University Lille 1, Boulevard Paul Langevin, Cité Scientifique, 59655 Villeneuve d' Ascq (France)

    2013-09-15

    The present work is the second part of an ongoing study of microstructural changes during fatigue damage initiation in pipe steels [B. Pinheiro et al., Mat. Sci. Eng., A 532 (2012) 158–166]. Microdeformations and residual stresses (macrostresses) are evaluated by X-ray diffraction during alternating bending fatigue tests on samples taken from an API 5L X60 grade steel pipe. Microdeformations are evaluated from the full width at half maximum (FWHM) of the diffraction peak and residual stresses are estimated from the peak shift. Here, to understand the role of the initial dislocation structure, annealed samples are considered. As previously found for as-machined samples, the evolution of microdeformations shows three regular successive stages, but now with an increase during the first stage. The amplitude of each stage is accentuated with increasing stress amplitude, while its duration is reduced. Residual stresses show a similar trend, with stages of the same durations than those observed for FWHM, respectively. Additionally, changes in density and distribution of dislocations are observed by transmission electron microscopy combined with the technique of focused ion beam. The results are very encouraging for the development of a future indicator of fatigue damage initiation for pipe steels based on microstructural changes measured by X-ray diffraction.

  14. X-ray diffraction study of microstructural changes during fatigue damage initiation in pipe steels: Role of the initial dislocation structure

    International Nuclear Information System (INIS)

    Pinheiro, B.; Lesage, J.; Pasqualino, I.; Bemporad, E.; Benseddiq, N.

    2013-01-01

    The present work is the second part of an ongoing study of microstructural changes during fatigue damage initiation in pipe steels [B. Pinheiro et al., Mat. Sci. Eng., A 532 (2012) 158–166]. Microdeformations and residual stresses (macrostresses) are evaluated by X-ray diffraction during alternating bending fatigue tests on samples taken from an API 5L X60 grade steel pipe. Microdeformations are evaluated from the full width at half maximum (FWHM) of the diffraction peak and residual stresses are estimated from the peak shift. Here, to understand the role of the initial dislocation structure, annealed samples are considered. As previously found for as-machined samples, the evolution of microdeformations shows three regular successive stages, but now with an increase during the first stage. The amplitude of each stage is accentuated with increasing stress amplitude, while its duration is reduced. Residual stresses show a similar trend, with stages of the same durations than those observed for FWHM, respectively. Additionally, changes in density and distribution of dislocations are observed by transmission electron microscopy combined with the technique of focused ion beam. The results are very encouraging for the development of a future indicator of fatigue damage initiation for pipe steels based on microstructural changes measured by X-ray diffraction

  15. Effect of some types of machining processes on beryllium fatigue strength properties

    International Nuclear Information System (INIS)

    Armbruster, M.

    1977-01-01

    The aim of this work, which is sponsored by the French D.G.R.S.T., is to determine a machining process giving both the highest tensile strength and the highest fatigue limit to beryllium parts. A comparison is made of the effects of : mechanical machining, electro discharge machining, electro-chemical machining, electrolytical and chemical polishing, glass shot peening, on the mechanical strength and fatigue limits of samples taken from hot pressed and extruded rods and from cast ingot sheets, either notched or not as required. Complementary examinations are performed principally by fractographic study. The results show that for beryllium, electrochemical machining followed by glass shot peening gives the best results; however mechanical machining with electrolytical polishing followed by glass shot peening are also satisfactory. (author)

  16. Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties

    Energy Technology Data Exchange (ETDEWEB)

    Semenova, Irina P.; Yakushina, Evgeniya B.; Nurgaleeva, Veronika V.; Valiev, Ruslan Z. [Ufa State Aviation Technical Univ., Ufa (Russian Federation). Inst. of Physics of Advanced Materials

    2009-12-15

    This work is related to the enhancement of the fatigue properties in ultrafine-grained Ti alloys produced by severe plastic deformation techniques (SPD). To process commercially pure Ti Grade 4 and Ti-6Al-4V alloys, combined severe plastic deformation techniques that include equal channel angular pressing and additional thermal and deformation treatments were used. As a result we could produce ultrafine-grained Ti materials with a similar grain size of less than 300-400 nm but different in their shape and grain boundary structure (both low- and high-angle, equilibrium and non-equilibrium grain boundaries). It is shown that tailoring grain boundaries by severe plastic deformation techniques makes it possible to considerably enhance the strength of Ti materials while preserving high ductility. In turn, ultrafine-grained materials with enhanced strength and ductility demonstrate superior fatigue endurance and life.

  17. Ex-situ time-lapse x-ray CT study of 3D micro-structural fatigue damage evolution in uni-directional composites

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Wang, Ying; Zangenberg Hansen, Jens

    2016-01-01

    In this study, the progress of damage under tension-tension fatigue of a uni-directional (UD) glass fibre composite made from a non-crimp fabric is studied using transilluminated white light imaging (TWLI) and X-ray computed tomography (CT). TWLI images are automatically captured throughout...... to initiate already after the first cycle, whereas some grow gradually and others appear suddenly during cycling. The off-axis cracks are observed to saturate after a few thousand cycles. The UD fibre fracture damage in the region observed by X-ray CT is probably already saturated at the first interruption...... point, as no significant change is seen between the two X-ray images. However, the study indicates how TWLI can be used as an initial indicator to locate damage regions at an early stage for the future ex-situ X-ray CT experiments....

  18. Cross-Cultural Study of Information Processing Biases in Chronic Fatigue Syndrome: Comparison of Dutch and UK Chronic Fatigue Patients

    NARCIS (Netherlands)

    Hughes, Alicia M.; Hirsch, Colette R.; Nikolaus, Stephanie; Chalder, Trudie; Knoop, Hans; Moss-Morris, Rona

    2018-01-01

    This study aims to replicate a UK study, with a Dutch sample to explore whether attention and interpretation biases and general attentional control deficits in chronic fatigue syndrome (CFS) are similar across populations and cultures. Thirty eight Dutch CFS participants were compared to 52 CFS and

  19. Mitigation of FOD and Corrosion Fatigue Damage in 17-4 PH Stainless Steel Compressor Blades With Surface Treatment

    National Research Council Canada - National Science Library

    Prevey, Paul S; Jayaraman, N; Ravindranath, Ravi

    2004-01-01

    ... the geometrical conditions of thick section and blade leading edges of compressor blades. The FOD tolerance and corrosion fatigue performance of 17-4PH prepared by low plasticity burnishing (LPB), shot peening (SP...

  20. An assessment of the linear damage summation method for creep-fatigue failure with reference to a cast of type 316 stainless steel tested at 570 deg. C

    International Nuclear Information System (INIS)

    Wareing, J.; Bretherton, I.

    This paper presents preliminary results from the programme for hold period tests on a cast BQ of type 316 stainless steel at 570 deg. C. The results of tensile hold period tests on a relatively low ductility cast of type 316 stainless steel have indicated that the failure mechanism changes from a creep-fatigue interaction failure to a creep dominated failure at low strain levels. An assessment of the linear damage summation approach for failure prediction indicates that it is inappropriate for creep-fatigue interaction failures. For creep dominated fracture, failure occurs when the accumulation relaxation strain exhausts the material ductility i.e. Nsub(f epsilon R)=D. The failure criterion based on a creep summation in terms of time to fracture underestimates life

  1. Rate process analysis of thermal damage in cartilage

    International Nuclear Information System (INIS)

    Diaz, Sergio H; Nelson, J Stuart; Wong, Brian J F

    2003-01-01

    Cartilage laser thermoforming (CLT) is a new surgical procedure that allows in situ treatment of deformities in the head and neck with less morbidity than traditional approaches. While some animal and human studies have shown promising results, the clinical feasibility of CLT depends on preservation of chondrocyte viability, which has not been extensively studied. The present paper characterizes cellular damage due to heat in rabbit nasal cartilage. Damage was modelled as a first order rate process for which two experimentally derived coefficients, A=1.2x10 70 s -1 and E a =4.5x10 5 J mole -1 , were determined by quantifying the decrease in concentration of healthy chondrocytes in tissue samples as a function of exposure time to constant-temperature water baths. After immersion, chondrocytes were enzymatically isolated from the matrix and stained with a two-component fluorescent dye. The dye binds nuclear DNA differentially depending upon chondrocyte viability. A flow cytometer was used to detect differential cell fluorescence to determine the percentage of live and dead cells in each sample. As a result, a damage kinetic model was obtained that can be used to predict the onset, extent and severity of cellular injury to thermal exposure

  2. OXIDATIVE STRESS AND VASCULAR DAMAGE IN HYPOXIA PROCESSES. MALONDIALDEHYDE (MDA AS BIOMARKER FOR OXIDATIVE DAMAGE

    Directory of Open Access Journals (Sweden)

    Muñiz P

    2014-05-01

    Full Text Available Changes in the levels oxidative stress biomarkers are related with different diseases such as ischemia/reperfusion, cardiovascular, renal, aging, etc. One of these biomarkers is the malondialdehyde (MDA generated as resulted of the process of lipid peroxidation. This biomarker is increased under conditions of the oxidative stress. Their levels, have been frequently used to measure plasma oxidative damage to lipids by their atherogenic potential. Its half-life high and their reactivity allows it to act both inside and outside of cells and interaction with proteins and DNA involve their role in different pathophysiological processes. This paper presents an analysis of the use of MDA as a biomarker of oxidative stress and its implications associated pathologies such as cardiovascular diseases ago.

  3. Influences of Processing and Fatigue Cycling on Residual Stresses in a NiCrY-Coated Powder Metallurgy Disk Superalloy

    Science.gov (United States)

    Gabb, T. P.; Rogers, R. B.; Nesbitt, J. A.; Miller, R. A.; Puleo, B. J.; Johnson, D.; Telesman, J.; Draper, S. L.; Locci, I. E.

    2017-11-01

    Oxidation and corrosion can attack superalloy disk surfaces exposed to increasing operating temperatures in some turbine engine environments. Any potential protective coatings must also be resistant to harmful fatigue cracking during service. The objective of this study was to investigate how residual stresses evolve in one such coating. Fatigue specimens of a powder metallurgy-processed disk superalloy were coated with a NiCrY coating, shot peened, and then subjected to fatigue in air at room and high temperatures. The effects of this processing and fatigue cycling on axial residual stresses and other aspects of the coating were assessed. While shot peening did induce beneficial compressive residual stresses in the coating and substrate, these stresses relaxed in the coating with subsequent heating. Several cast alloys having compositions near the coating were subjected to thermal expansion and tensile stress relaxation tests to help explain this response of residual stresses in the coating. For the coated fatigue specimens, this response contributed to earlier cracking of the coating than for the uncoated surface during long intervals of cycling at 760 °C. Yet, substantial compressive residual stresses still remained in the substrate adjacent to the coating, which were sufficient to suppress fatigue cracking there. The coating continued to protect the substrate from hot corrosion pitting, even after fatigue cracks initiated in the coating.

  4. Computer simulation of fatigue under diametrical compression

    OpenAIRE

    Carmona, H. A.; Kun, F.; Andrade Jr., J. S.; Herrmann, H. J.

    2006-01-01

    We study the fatigue fracture of disordered materials by means of computer simulations of a discrete element model. We extend a two-dimensional fracture model to capture the microscopic mechanisms relevant for fatigue, and we simulate the diametric compression of a disc shape specimen under a constant external force. The model allows to follow the development of the fracture process on the macro- and micro-level varying the relative influence of the mechanisms of damage accumulation over the ...

  5. Effect of unit size on thermal fatigue behavior of hot work steel repaired by a biomimetic laser remelting process

    Science.gov (United States)

    Cong, Dalong; Li, Zhongsheng; He, Qingbing; Chen, Dajun; Chen, Hanbin; Yang, Jiuzhou; Zhang, Peng; Zhou, Hong

    2018-01-01

    AISI H13 hot work steel with fatigue cracks was repaired by a biomimetic laser remelting (BLR) process in the form of lattice units with different sizes. Detailed microstructural studies and microhardness tests were carried out on the units. Studies revealed a mixed microstructure containing martensite, retained austenite and carbide particles with ultrafine grain size in units. BLR samples with defect-free units exhibited superior thermal fatigue resistance due to microstructure strengthening, and mechanisms of crack tip blunting and blocking. In addition, effects of unit size on thermal fatigue resistance of BLR samples were discussed.

  6. Thermomechanical fatigue life prediction for several solders

    Science.gov (United States)

    Wen, Shengmin

    Since solder connections operate at high homologous temperature, solders are high temperature materials. This feature makes their mechanical behavior and fatigue phenomena unique. Based on experimental findings, a physical damage mechanism is introduced for solders. The mechanism views the damage process as a series of independent local damage events characterized by the failure of individual grains, while the structural damage is the eventual percolation result of such local events. Fine's dislocation energy density concept and Mura's microcrack initiation theory are adopted to derive the fatigue formula for an individual grain. A physical damage metric is introduced to describe the material with damage. A unified creep and plasticity constitutive model is adopted to simulate the mechanical behavior of solders. The model is cast into a continuum damage mechanics framework to simulate material with damage. The model gives good agreement with the experimental results of 96.5Pb-3.5Sn and 96.5Sn-3.5Ag solders under uniaxial strain-controlled cyclic loading. The model is convenient for implementation into commercial computational packages. Also presented is a fatigue theory with its failure criterion for solders based on physical damage mechanism. By introducing grain orientation into the fatigue formula, an m-N curve (m is Schmid factor) at constant loading condition is suggested for fatigue of grains with different orientations. A solder structure is defined as fatigued when the damage metric reaches a critical threshold, since at this threshold the failed grains may form a cluster and percolate through the structure according to percolation theory. Fatigue data of 96.5Pb-3.5Sn solder bulk specimens under various uniaxial tension tests were analyzed. Results show that the theory gives consistent predictions under broad conditions, while inelastic strain theory does not. The theory is anisotropic with no size limitation to its application, which could be suitable for

  7. Analysis of acoustic emission signals of fatigue crack growth and corrosion processes. Investigation of the possibilities for continuous condition monitoring of transport containers by acoustic emission testing

    International Nuclear Information System (INIS)

    Wachsmuth, Janne

    2016-01-01

    Fatigue crack growth and active corrosion processes are the main causes of structural failures of transport products like road tankers, railway tank cars and ships. To prevent those failures, preventive, time-based maintenance is performed. However, preventive inspections are costly and include the risk of not detecting a defect, which could lead to a failure within the next service period. An alternative is the idea of continuous monitoring of the whole structure by means of acoustic emission testing (AT). With AT, defects within the material shall be detected and repaired directly after their appearance. Acoustic emission testing is an online non-destructive testing method. Acoustic emission (AE) arises from changes within the material and is transported by elastic waves through the material. If the AE event generates enough energy, the elastic wave propagates to the boundaries of the component, produces a displacement in the picometre scale and can be detected by a piezoelectric sensor. The sensor produces an electrical signal. From this AE signal, AE features such as the maximum amplitude or the frequency can be extracted. Methods of signal analysis are used to investigate the time and frequency dependency of signal groups. The purpose of the signal analysis is to connect the AE signal with the originating AE source. If predefined damage mechanisms are identified, referencing the damage condition of the structure is possible. Acoustic emission from events of the actual crack propagation process can for example lead to the crack growth rate or the stress intensity factor, both specific values from fracture mechanics. A new development in the domain of acoustic emission testing is the pattern recognition of AE signals. Specific features are extracted from the AE signals to assign them to their damage mechanisms. In this thesis the AE signals from the damage mechanisms corrosion and fatigue crack growth are compared and analysed. The damage mechanisms were

  8. Role of loading direction on cyclic behaviour characteristics of AM30 extrusion and its fatigue damage modelling

    Energy Technology Data Exchange (ETDEWEB)

    Roostaei, Ali A., E-mail: aaroostaei@uwaterloo.ca; Jahed, Hamid, E-mail: hjahed@uwaterloo.ca

    2016-07-18

    Anisotropic fatigue and cyclic behaviour of AM30 Mg alloy extrusion is investigated by performing fully-reversed strain-controlled tension-compression cyclic tests at strain amplitudes between 0.3% and 2.3%, along extrusion (ED) and transverse (TD) directions. The shapes of half-life hysteresis loops suggest the predominance of slip and twinning/de-twinning mechanisms below and above the strain amplitude of 0.5%, respectively. The twinning/de-twinning occurrence is found to be more extensive during straining along ED, which results in higher asymmetry of hysteresis loops, and thereby, higher induced mean stress. This adversely affects the fatigue resistance and yields to less number of cycles before failure in ED. Optical microscopy and texture analysis are employed to validate the findings. In addition, fracture surfaces are studied by scanning electron microscopy to identify the sources of fatigue crack initiation. Persistent slip bands (PSBs) and twin lamellae interfaces are evidenced as crack initiation sites at low and high strain amplitudes, respectively. Cracks emanated from debonded inclusion interface are also observed. Lastly, estimated fatigue life by Smith-Watson-Topper (SWT) and Jahed-Varvani (JV) fatigue models are compared with experimental life obtained through this study as well as the ones reported in the literature. The JV energy model is proven to yield better life predictions.

  9. Structural integrity of additive materials: Microstructure, fatigue behavior, and surface processing

    Science.gov (United States)

    Book, Todd A.

    Although Additive Manufacturing (AM) offers numerous performance advantages over existing methods, AM structures are not being utilized for critical aerospace and mechanical applications due to uncertainties in their structural integrity as a result of the microstructural variations and defects arising from the AM process itself. Two of these uncertainties are the observed scatter in tensile strength and fatigue lives of direct metal laser sintering (DMLS) parts. With strain localization a precursor for material failure, this research seeks to explore the impact of microstructural variations in DMLS produced materials on strain localization. The first part of this research explores the role of the microstructure in strain localization of DMLS produced IN718 and Ti6Al4V specimens (as-built and post-processed) through the characterization of the linkage between microstructural variations, and the accumulation of plastic strain during monotonic and low cycle fatigue loading. The second part of this research explores the feasibility for the application of select surface processing techniques in-situ during the DMLS build process to alter the microstructure in AlSi10Mg to reduce strain localization and improve material cohesion. This study is based on utilizing experimental observations through the employment of advanced material characterization techniques such as digital image correlation to illustrate the impacts of DMLS microstructural variation.

  10. Fatigue properties of ultra-fine grain Cu–Cr alloy processed by equal-channel angular pressing

    International Nuclear Information System (INIS)

    Wang, Q.J.; Du, Z.Z.; Luo, L.; Wang, W.

    2012-01-01

    Highlights: ► The UFG Cu–Cr alloys processed by ECAP possess high strength and sufficient ductility. ► The ECAPed sample with UFG under strain controlled fatigue exhibited cyclic softening and lower fatigue limit compared to the unECAPed one. ► That cyclic softening of UFG Cu–Cr alloy is associated with some dislocation annihilation and the substructure recovery. ► Shear bands, microcracks and final fracture of UFG Cu–Cr fatigue samples occur predominantly along the shear plane corresponding to the last ECAP. - Abstract: A precipitation-hardening copper based alloy (Cu–0.6 wt.% Cr) was selected and the ultra-fine grain (UFG) microstructure was obtained by equal channel angular pressing (ECAP). The alloys tensile behaviors and fatigue properties were investigated experimentally, the results indicated that the Cu–Cr alloy processed by ECAP possessed high strength and sufficient ductility and the 12-passes ECAPed sample with UFG under strain controlled fatigue exhibited cyclic softening and lower fatigue limit compared to the unECAPed one. Moreover, the shear bands on the surface of cycled samples were also studied by scanning electron microscopy, the results showed that the oriented distribution of defects along the shear plane in the last ECAP processing was one of the major mechanisms of SBs formation.

  11. Fatigue life and damage evolution of martensitic steels for low-pressure steam turbine blades in the VHCF regime; Lebensdauer und Schaedigungsentwicklung martensitischer Staehle fuer Niederdruck-Dampfturbinenschaufeln bei Ermuedungsbeanspruchung im VHCF-Bereich

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, Stephan

    2014-07-01

    Low-pressure steam turbine blades are usually made of martensitic steels with Cr contents between 9 and 12%, which combine good corrosion resistance, high mechanical strength and sufficient ductility. The inhomogeneous flow field behind the vanes generates high-frequency oscillations above 1 kHz. In addition, the blades with lengths up to 1.5 m are operated at rotational speeds up to 3000 rpm, resulting in large centrifugal forces leading to the superposition of extremely high mean stresses. Also resonance oscillations during start-up and shutdown cannot be completely excluded. Currently, the components are designed using high safety factors against S-N curves with an assumed asymptotic fatigue limit above 107 load cycles. Nevertheless, fatigue cracks are observed even at high number of cycles, starting from the blade root without pre-damage by erosion or steam droplet impingement. While fatigue failure usually occurs at the surface, fatigue cracks at very high number of cycles (> 108) initiate at oxides or intermetallic inclusions below the surface. This transition between both failure mechanisms in the Very High-Cycle Fatigue (VHCF) regime is in the focus of numerous current research activities, because numbers of cycles above 108 can be attained in a viable period of time using the recently developed high-frequency testing techniques operated at 20 kHz. Also for wind turbines, gas turbines, bearings, springs, etc. VHCF issues become increasingly important. Within this work, the fatigue life and damage behavior of a martensitic Cr-steel during fatigue loading with and without high mean stresses at number of cycles to failure above 108 was analyzed. On the one hand, the studies gave insights into the relation between fatigue life and fatigue damage evolution of the investigated group of high-strength steels in the very high cycle fatigue regime (up to 2·109). In particular, the influence of high mean stresses on the VHCF behavior (fracture origin, crack growth

  12. Modeling Fatigue Damage Onset and Progression in Composites Using an Element-Based Virtual Crack Closure Technique Combined With the Floating Node Method

    Science.gov (United States)

    De Carvalho, Nelson V.; Krueger, Ronald

    2016-01-01

    A new methodology is proposed to model the onset and propagation of matrix cracks and delaminations in carbon-epoxy composites subject to fatigue loading. An extended interface element, based on the Floating Node Method, is developed to represent delaminations and matrix cracks explicitly in a mesh independent fashion. Crack propagation is determined using an element-based Virtual Crack Closure Technique approach to determine mixed-mode energy release rates, and the Paris-Law relationship to obtain crack growth rate. Crack onset is determined using a stressbased onset criterion coupled with a stress vs. cycle curve and Palmgren-Miner rule to account for fatigue damage accumulation. The approach is implemented in Abaqus/Standard® via the user subroutine functionality. Verification exercises are performed to assess the accuracy and correct implementation of the approach. Finally, it was demonstrated that this approach captured the differences in failure morphology in fatigue for two laminates of identical stiffness, but with layups containing ?deg plies that were either stacked in a single group, or distributed through the laminate thickness.

  13. Emotional conflict processing in adolescent chronic fatigue syndrome: A pilot study using functional magnetic resonance imaging.

    Science.gov (United States)

    Wortinger, Laura Anne; Endestad, Tor; Melinder, Annika Maria D; Øie, Merete Glenne; Sulheim, Dag; Fagermoen, Even; Wyller, Vegard Bruun

    2017-05-01

    Studies of neurocognition suggest that abnormalities in cognitive control contribute to the pathophysiology of chronic fatigue syndrome (CFS) in adolescents, yet these abnormalities remain poorly understood at the neurobiological level. Reports indicate that adolescents with CFS are significantly impaired in conflict processing, a primary element of cognitive control. In this study, we examine whether emotional conflict processing is altered on behavioral and neural levels in adolescents with CFS and a healthy comparison group. Fifteen adolescent patients with CFS and 24 healthy adolescent participants underwent functional magnetic resonance imaging (fMRI) while performing an emotional conflict task that involved categorizing facial affect while ignoring overlaid affect labeled words. Adolescent CFS patients were less able to engage the left amygdala and left midposterior insula (mpINS) in response to conflict than the healthy comparison group. An association between accuracy interference and conflict-related reactivity in the amygdala was observed in CFS patients. A relationship between response time interference and conflict-related reactivity in the mpINS was also reported. Neural responses in the amygdala and mpINS were specific to fatigue severity. These data demonstrate that adolescent CFS patients displayed deficits in emotional conflict processing. Our results suggest abnormalities in affective and cognitive functioning of the salience network, which might underlie the pathophysiology of adolescent CFS.

  14. Initial damage processes for diamond film exposure to hydrogen plasma

    International Nuclear Information System (INIS)

    Deslandes, A.; Guenette, M.C.; Samuell, C.M.; Karatchevtseva, I.; Ionescu, M.; Cohen, D.D.; Blackwell, B.; Corr, C.; Riley, D.P.

    2013-01-01

    Graphical abstract: -- Highlights: • Exposing chemical vapour deposited (CVD) diamond films in a recently constructed device, MAGPIE, specially commissioned to simulate fusion plasma conditions. • Non-diamond material is etched from the diamond. • There is no hydrogen retention observed, which suggests diamond is an excellent candidate for plasma facing materials. • Final structure of the surface is dependent on synergistic effects of etching and ion-induced structural change. -- Abstract: Diamond is considered to be a possible alternative to other carbon based materials as a plasma facing material in nuclear fusion devices due to its high thermal conductivity and resistance to chemical erosion. In this work CVD diamond films were exposed to hydrogen plasma in the MAGnetized Plasma Interaction Experiment (MAGPIE): a linear plasma device at the Australian National University which simulates plasma conditions relevant to nuclear fusion. Various negative sample stage biases of magnitude less than 500 V were applied to control the energies of impinging ions. Characterisation results from SEM, Raman spectroscopy and ERDA are presented. No measureable quantity of hydrogen retention was observed, this is either due to no incorporation of hydrogen into the diamond structure or due to initial incorporation as a hydrocarbon followed by subsequent etching back into the plasma. A model is presented for the initial stages of diamond erosion in fusion relevant hydrogen plasma that involves chemical erosion of non-diamond material from the surface by hydrogen radicals and damage to the subsurface region from energetic hydrogen ions. These results show that the initial damage processes in this plasma regime are comparable to previous studies of the fundamental processes as reported for less extreme plasma such as in the development of diamond films

  15. A novel approach towards fatigue damage prognostics of composite materials utilizing SHM data and stochastic degradation modeling

    NARCIS (Netherlands)

    Loutas, T.; Eleftheroglou, N.

    2016-01-01

    A prognostic framework is proposed in order to estimate the remaining useful life of composite materials under fatigue loading based on acoustic emission data and a sophisticated Non Homogenous Hidden Semi Markov Model. Bayesian neural networks are also utilized as an alternative machine learning

  16. Damage estimates for European and U.S.sites using the U.S. high-cycle fatigue data base

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, H J [Wind Energy Technology, Sandia National Lab., Albuquerque, NM (United States)

    1996-09-01

    This paper uses two high-cycle fatigue data bases, one for typical U.S. blade materials and one for European materials, to analyze the service lifetime of a wind turbine blade subjected to the WISPER load spectrum for northern European sites and the WISPER protocol load spectrum for U.S. wind farm sites. The U.S. data base contains over 2200 data points that were obtained using coupon testing procedures. These data are used to construct a Goodman diagram that is suitable for analyzing wind turbine blades. This result is compared to the Goodman diagram derived from the European fatigue data base FACT. The LIFE2 fatigue analysis code for wind turbines is then used to predict the service lifetime of a turbine blade subjected to the two loading histories. The results of this study indicate that the WISPER load spectrum from northern European sites significantly underestimates the WISPER protocol load spectrum from a U.S. wind farm site, i.e., the WISPER load spectrum significantly underestimates the number and magnitude of the loads observed at a U.S. wind farm site. Further, the analysis demonstrate that the European and the U.S. fatigue material data bases are in general agreement for the prediction of tensile failures. However, for compressive failures, the two data bases are significantly different, with the U.S. data base predicting significantly shorter service lifetimes than the European data base. (au) 14 refs.

  17. Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy

    International Nuclear Information System (INIS)

    Rubio-Gonzalez, C.; Ocana, J.L.; Gomez-Rosas, G.; Molpeceres, C.; Paredes, M.; Banderas, A.; Porro, J.; Morales, M.

    2004-01-01

    Laser shock processing (LSP) or laser shock peening is a new technique for strengthening metals. This process induces a compressive residual stress field which increases fatigue crack initiation life and reduces fatigue crack growth rate. Specimens of 6061-T6 aluminum alloy are used in this investigation. A convergent lens is used to deliver 1.2 J, 8 ns laser pulses by a Q-switch Nd:YAG laser, operating at 10 Hz. The pulses are focused to a diameter of 1.5 mm onto a water-immersed type aluminum samples. Effect of pulse density in the residual stress field is evaluated. Residual stress distribution as a function of depth is assessed by the hole drilling method. It is observed that the higher the pulse density the larger the zone size with compressive residual stress. Densities of 900, 1350 and 2500 pulses/cm 2 with infrared (1064 nm) radiation are used. Pre-cracked compact tension specimens were subjected to LSP process and then tested under cyclic loading with R = 0.1. Fatigue crack growth rate is determined and the effect of LSP process parameters is evaluated. Fatigue crack growth rate is compared in specimens with and without LSP process. In addition fracture toughness is determined in specimens with and without LSP treatment. It is observed that LSP reduces fatigue crack growth and increases fracture toughness in the 6061-T6 aluminum alloy

  18. Effect of Process Parameters on Fatigue and Fracture Behavior of Al-Cu-Mg Alloy after Creep Aging

    Directory of Open Access Journals (Sweden)

    Lihua Zhan

    2018-04-01

    Full Text Available A set of creep aging tests at different aging temperatures and stress levels were carried out for Al-Cu-Mg alloy, and the effects of creep aging on strength and fatigue fracture behavior were studied through tensile tests and fatigue crack propagation tests. The microstructures were further analyzed by using scanning electron microscopy (SEM and transmission electron microscopy (TEM. The results show that temperature and stress can obviously affect the creep behavior, mechanical properties, and fatigue life of Al-Cu-Mg alloy. As the aging temperature increases, the fatigue life of alloy first increases, and then decreases. The microstructure also displays a transition from the Guinier-Preston-Bagaryatsky (GPB zones to the precipitation of S phase in the grain interior. However, the precipitation phases grow up and become coarse at excessive temperatures. Increasing stress can narrow the precipitation-free zone (PFZ at the grain boundary and improve the fatigue life, but overhigh stress can produce the opposite result. In summary, the fatigue life of Al-Cu-Mg alloy can be improved by fine-dispersive precipitation phases and a narrow PFZ in a suitable creep aging process.

  19. Fatigue Resistance of GX12CrMoVNbN9-1 Cast Steel after Ageing Process

    Directory of Open Access Journals (Sweden)

    Stanisław MROZIŃSKI

    2014-12-01

    Full Text Available In the present paper, low cycle fatigue behaviour of GX12CrMoVNbN9-1 (GP91 cast steel is presented. Fatigue tests were performed under isothermal conditions at room temperature and at 550 and 600oC, on five levels of total strain amplitude value ɛac = 0.25÷0.60%. The cast steel subject to investigation was in the as-received condition (after heat treatment and after 8000 hours of ageing at the temperature of 600oC. Performed research has shown an insignificant influence of the ageing process on mechanical properties of GP91 cast steel, determined with the static test of tension. Analysis of the performed tests has proved that GP91 cast steel in the as-received condition and after ageing process was characterized by strong cyclic softening without a clear period of stabilization of the hysteresis loop parameters. The fatigue lifetime curves at each temperature were obtained based on Basquin and Coffin – Manson equations. The process of ageing of GP91 cast steel contributed to a decrease in its fatigue life Nf from a few to a few dozen percent, and the level of fatigue life was dependent on the value of strain amplitude ɛac. It has also been stated that the fatigue life Nf of GP91 cast steel is determined by its plastic properties, and the degree of changes in fatigue life Nf was dependent not only on the temperature of testing, but also on the value of strain amplitude ɛac. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6077

  20. Behaviour and fatigue damage study of cast aluminium alloys; Etude du comportement et de l'endommagement en fatigue d'alliages d'aluminium de fonderie

    Energy Technology Data Exchange (ETDEWEB)

    Barlas, B.

    2004-02-15

    This study is aimed at determining the influence of chemical composition and heat treatment of cast aluminium alloys Al-Si-Cu-Mg on mechanical behaviour and fatigue life of structures. The industrial frame of this study concerns cylinder-heads of high efficiency diesel engines, for Renault and Montupet companies. The experimental means involved in this work are as well microscopic (TEM, microhardness, image analysis), mechanical (LCF and aniso-thermal tests, macro-hardness) and numerical (simulation of the stability of the hardening phases, behaviour and damage model identification, cylinder-head life time calculation). The link between micro and macro approaches is provided by the means of an internal microscopic variable representing thermal aging through coarsening of the precipitates and implemented into the macroscopic model. (author)

  1. Fulgide-based WRE holographic materials: influence of the matrix on the fatigue process

    Science.gov (United States)

    Lessard, Roger A.; Lafond, Christophe; Darderian, Geraldine; Gardette, Jean-Luc; Rivaton, Agnes; Bolte, Michele

    2003-12-01

    The reversible reaction that takes place in the writable, readable, erasable (WRE) photosensitive materials involving fulgides (ABERCHROM 540 and 670) was investigated with a photochemical and holographic approach. It appeared that the fatigue of the photosensitive material was strongly dependent on the properties of the matrix used as a support. This was precisely established both by spectroscopic monitoring (λmax, absorbancemax, photo-stationary state) and by following the diffraction efficiency η values. There was a nice correlation between the evolution of the spectral features of C isomer and of the η values all along the WRE cycles. This combined approach was applied to four different supports: PVK, PMMA, PEPC/PS and epoxy RESIN. So for both fulgides: (1) PVK, frequently used in optics, appears as being the worst one. The starting fulgides were destroyed after only a few WRE cycles. This was assigned to the intrinsic photoaging of PVK whose absorption in UV domain is far from negligible and leads to the formation of radical species able to attack the fulgide. (2) Holograms recorded in PMMA and PEPC/PS present similar behavior with a loss of ~10% after 8 cycles. (3) Epoxy RESIN appears to be a very good candidate for these reversible systems; no fatigue was observed after 40 cycles. It has to be attributed to the matrix in which the detrimental rotation process, giving rise to the non photochromic Z isomer, is strongly inhibited.

  2. High speed rails. Fatigue behaviour

    International Nuclear Information System (INIS)

    Duart, J. M.; Pero-Sanz, J. A.; Verdeja, J. I.

    2005-01-01

    In recent years, passenger train speed and freight train load have increased to enhance efficiency of rail road transportation. These trends have increased the severity of rail service conditions, calling for rails with greater wear resistance, strength and fatigue behaviour. In the United Stated and Europe, track site weld rails are made entirely by aluminothermic process. This work describes the results of experimental study conducted on bending fatigue strength of plain rails and aluminothermic welded rails with preheating procedures (oxipropane and air-induced propane) approved by railways authorities. Compliance with the required fatigue strength shall be ascertained by 4 point pulsating bending test in accordance with European standards by aluminothermic welding in rails. The locati method, based in the empirical Miner's law about the cumulative damage on a fatigue tested material, allows, once known the Wohler curve of the welding process in use to settle the fatigue tensile limit at 50% with only one test. The values obtained at 2.10''6 cycles for plain rails (S f =353 MPa), oxipropane preheated aluminothermic weld rails (S f =225 MPa), and propane-air induced aluminothermic weld rails (S f =210 MPa) are very similar to those resulting from test method stated in the European Standard. From our point of view and due to its ease, speediness and savings, this is the most suitable test to check the quality and compare the aluminothermic processes in use. (Author) 15 refs

  3. Fatigue Load Modeling and Control for Wind Turbines based on Hysteresis Operators

    DEFF Research Database (Denmark)

    Barradas Berglind, Jose de Jesus; Wisniewski, Rafal; Soltani, Mohsen

    2015-01-01

    method based on hysteresis operators, which can be used in control loops. Furthermore, we propose a model predictive control (MPC) strategy that incorporates the online fatigue estimation through the objective function, where the ultimate goal in mind is to reduce the fatigue load of the wind turbine......The focus of this work is on fatigue load modeling and controller design for the wind turbine level. The main purpose is to include a model of the damage effects caused by the fatigue of the wind turbine components in the controller design process. This paper addresses an online fatigue estimation...

  4. Capturing Snapshots of APE1 Processing DNA Damage

    Science.gov (United States)

    Freudenthal, Bret D.; Beard, William A.; Cuneo, Matthew J.; Dyrkheeva, Nadezhda S.; Wilson, Samuel H.

    2015-01-01

    DNA apurinic-apyrimidinic (AP) sites are prevalent non-coding threats to genomic stability and are processed by AP endonuclease 1 (APE1). APE1 incises the AP-site phosphodiester backbone, generating a DNA repair intermediate that is potentially cytotoxic. The molecular events of the incision reaction remain elusive due in part to limited structural information. We report multiple high-resolution human APE1:DNA structures that divulge novel features of the APE1 reaction, including the metal binding site, nucleophile, and arginine clamps that mediate product release. We also report APE1:DNA structures with a T:G mismatch 5′ to the AP-site, representing a clustered lesion occurring in methylated CpG dinucleotides. These reveal that APE1 molds the T:G mismatch into a unique Watson-Crick like geometry that distorts the active site reducing incision. These snapshots provide mechanistic clarity for APE1, while affording a rational framework to manipulate biological responses to DNA damage. PMID:26458045

  5. Cyclic mechanical fatigue in ceramic-ceramic composites: an update

    International Nuclear Information System (INIS)

    Lewis, D. III

    1983-01-01

    Attention is given to cyclic mechanical fatigue effects in a number of ceramics and ceramic composites, including several monolithic ceramics in which significant residual stresses should be present as a result of thermal expansion mismatches and anisotropy. Fatigue is also noted in several BN-containing ceramic matrix-particulate composites and in SiC fiber-ceramic matrix composites. These results suggest that fatigue testing is imperative for ceramics and ceramic composites that are to be used in applications subject to cyclic loading. Fatigue process models are proposed which provide a rationale for fatigue effect observations, but do not as yet provide quantitative results. Fiber composite fatigue damage models indicate that design stresses in these materials may have to be maintained below the level at which fiber pullout occurs

  6. Fatigue behavior in rheocast aluminum 357 suspension arms using the SEED process

    Science.gov (United States)

    Samuel, Ehab; Zheng, Chang-Qing; Bouaicha, Amine; Bouazara, Mohamed

    Extensive studies have been devoted to the use of aluminum alloys in the automotive industry, by virtue of the favourable mechanical properties that can be attained. Moreover, the aluminum casting method employed has also been the subject of scrutiny, given the multitude of casting options available. The present work serves to illustrate the advancements made in the area of rheocasting, using the SEED method, as carried out at the National Research Council Canada — Aluminum Technology Centre. The SEED (Swirled Enthalpy Equilibration Device) process, which relies on heat extraction of the liquid aluminum alloy via mechanical agitation in a confined cylinder to form the semi-solid billet, has already proven successful in producing sound aluminum castings having an excellent combination of strength and ductility. Moreover, fatigue testing on the cast alloy parts has shown enormous potential for this emerging technology.

  7. Fatigue crack growth in Aluminium Alloys

    NARCIS (Netherlands)

    Van Kranenburg, C.

    2010-01-01

    Fatigue is a gradual process of local strength reduction. It is a phenomenon of damage accumulation at stress concentrations caused by fluctuating stresses and/or strains. In metals this results in microscopic cracks. These will start to grow under continued cyclic loading until final failure

  8. Interaction fatigue-creep-environment in an austenitic stainless steel Z2 CND 17-13 (Type 316 L) at 600 and 650 deg C. Microstructural evolution and damage

    International Nuclear Information System (INIS)

    Rezgui, B.

    1982-12-01

    The resistance of steel to continuous fatigue is directly related to its behaviour towards the surroundings (oxidation). This interaction considerably lowers resistance to crack initiation but has no effect on propagation, and rupture is transgranular. Conversely the influence of the environment is negligible under fatigue conditions with a hold time and rupture becomes intergranular whatever the surroudings. Cavities are created inside the material during the hold time and their interaction with each other and with cracks from the surface are the factors responsible for the degradation of fatigue properties. Transgranular rupture initiated in slip bands, which characterises damage by pure fatigue, is gradually replaced by intergranular rupture under fatigue with hold time. Meanwhile a new deformation mode appears: intergranular slip. The longer the hold time the stronger its effect, a tendency offset at high temperature. Hold time, temperature and deformation promote dynamic structural aging and restoration in the material. Since the mechanisms and kinetics of creep fatigue damage are different according to the deformation level and the hold time duration it would not be safe to extrapolate the results [fr

  9. Corrosion and Corrosion Fatigue of Aluminum Alloys: Chemistry, Micromechanics and Reliability

    National Research Council Canada - National Science Library

    Wei, Robert

    1998-01-01

    ... No. F49620-98-1-0198, to further develop a basic mechanistic understanding of the damage evolution processes of localized corrosion and corrosion fatigue crack nucleation and growth in aluminum alloys...

  10. Statistical optimisation techniques in fatigue signal editing problem

    International Nuclear Information System (INIS)

    Nopiah, Z. M.; Osman, M. H.; Baharin, N.; Abdullah, S.

    2015-01-01

    Success in fatigue signal editing is determined by the level of length reduction without compromising statistical constraints. A great reduction rate can be achieved by removing small amplitude cycles from the recorded signal. The long recorded signal sometimes renders the cycle-to-cycle editing process daunting. This has encouraged researchers to focus on the segment-based approach. This paper discusses joint application of the Running Damage Extraction (RDE) technique and single constrained Genetic Algorithm (GA) in fatigue signal editing optimisation.. In the first section, the RDE technique is used to restructure and summarise the fatigue strain. This technique combines the overlapping window and fatigue strain-life models. It is designed to identify and isolate the fatigue events that exist in the variable amplitude strain data into different segments whereby the retention of statistical parameters and the vibration energy are considered. In the second section, the fatigue data editing problem is formulated as a constrained single optimisation problem that can be solved using GA method. The GA produces the shortest edited fatigue signal by selecting appropriate segments from a pool of labelling segments. Challenges arise due to constraints on the segment selection by deviation level over three signal properties, namely cumulative fatigue damage, root mean square and kurtosis values. Experimental results over several case studies show that the idea of solving fatigue signal editing within a framework of optimisation is effective and automatic, and that the GA is robust for constrained segment selection

  11. Statistical optimisation techniques in fatigue signal editing problem

    Energy Technology Data Exchange (ETDEWEB)

    Nopiah, Z. M.; Osman, M. H. [Fundamental Engineering Studies Unit Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM (Malaysia); Baharin, N.; Abdullah, S. [Department of Mechanical and Materials Engineering Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM (Malaysia)

    2015-02-03

    Success in fatigue signal editing is determined by the level of length reduction without compromising statistical constraints. A great reduction rate can be achieved by removing small amplitude cycles from the recorded signal. The long recorded signal sometimes renders the cycle-to-cycle editing process daunting. This has encouraged researchers to focus on the segment-based approach. This paper discusses joint application of the Running Damage Extraction (RDE) technique and single constrained Genetic Algorithm (GA) in fatigue signal editing optimisation.. In the first section, the RDE technique is used to restructure and summarise the fatigue strain. This technique combines the overlapping window and fatigue strain-life models. It is designed to identify and isolate the fatigue events that exist in the variable amplitude strain data into different segments whereby the retention of statistical parameters and the vibration energy are considered. In the second section, the fatigue data editing problem is formulated as a constrained single optimisation problem that can be solved using GA method. The GA produces the shortest edited fatigue signal by selecting appropriate segments from a pool of labelling segments. Challenges arise due to constraints on the segment selection by deviation level over three signal properties, namely cumulative fatigue damage, root mean square and kurtosis values. Experimental results over several case studies show that the idea of solving fatigue signal editing within a framework of optimisation is effective and automatic, and that the GA is robust for constrained segment selection.

  12. Evolution of the microstructure and follow-up of the damage in a duplex steel fatigued in a low number of cycles

    International Nuclear Information System (INIS)

    Martinelli, Ma C; Alvarez, I; Malarria, J.A

    2004-01-01

    This work involves carrying out a follow-up of the surface damage to super duplex SAF 2507 stainless steel, cycle deformed with a total deformation range Δε t = 0.8%, until the first fissures appear and correlate with the structure of dislocations. A thin layer preparation technique for transmission electron microscopy was used for this purpose, which preserves one of the faces of the fatigued test piece containing all the surface information. The dislocation structures, crystallographic characteristics and the initiation of fissures in the deformation bands with the surface damage can be studied and correlated. The mechanical tests were carried out for deformation control with a deformation speed of dε/dt = 3 x 10 -3 s -1 . The tests were done for different numbers of cycles and the surface damage was observed under an optic microscope with the contrasting differential interference technique, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The propagation of the slippage lines on the surface could be observed from the austenitic to the ferritic phase, as well as bands of intense deformation and the formation of persistent slippage bands (PSBs), initiation and propagation of fissures relating the structure of dislocations on the surface and just below this in order to connect the location of the plastic deformation and the beginning of the fissure (CW)

  13. Cross-Cultural Study of Information Processing Biases in Chronic Fatigue Syndrome: Comparison of Dutch and UK Chronic Fatigue Patients.

    Science.gov (United States)

    Hughes, Alicia M; Hirsch, Colette R; Nikolaus, Stephanie; Chalder, Trudie; Knoop, Hans; Moss-Morris, Rona

    2018-02-01

    This study aims to replicate a UK study, with a Dutch sample to explore whether attention and interpretation biases and general attentional control deficits in chronic fatigue syndrome (CFS) are similar across populations and cultures. Thirty eight Dutch CFS participants were compared to 52 CFS and 51 healthy participants recruited from the UK. Participants completed self-report measures of symptoms, functioning, and mood, as well as three experimental tasks (i) visual-probe task measuring attentional bias to illness (somatic symptoms and disability) versus neutral words, (ii) interpretive bias task measuring positive versus somatic interpretations of ambiguous information, and (iii) the Attention Network Test measuring general attentional control. Compared to controls, Dutch and UK participants with CFS showed a significant attentional bias for illness-related words and were significantly more likely to interpret ambiguous information in a somatic way. These effects were not moderated by attentional control. There were no significant differences between the Dutch and UK CFS groups on attentional bias, interpretation bias, or attentional control scores. This study replicated the main findings of the UK study, with a Dutch CFS population, indicating that across these two cultures, people with CFS demonstrate biases in how somatic information is attended to and interpreted. These illness-specific biases appear to be unrelated to general attentional control deficits.

  14. Estimates of time-dependent fatigue behavior of Type 316 stainless steel subject to irradiation damage in fast breeder and fusion power reactor systems

    International Nuclear Information System (INIS)

    Brinkman, C.R.; Liu, K.C.; Grossbeck, M.L.

    1978-01-01

    Cyclic lives obtained from strain-controlled fatigue tests at 593 0 C of specimens irradiated in the experimental breeder reactor II (EBR-II) to a fluence of 1 to 2.63*10 26 neutrons (n)/m 2 (E>0.1 MeV) were compared with predictions based on the method of strain-range partitioning. It was demonstrated that, when appropriate tensile and creep-rupture ductilities were employed, reasonably good estimates of the influence of hold periods and irradiation damage on the fully reversed fatigue life of Type 316 stainless steel could be made. After applicability of this method was demonstrated, ductility values for 20 percent cold-worked Type 316 stainless steel specimens irradiated in a mixed-spectrum fission reactor were used to estimate fusion reactor first-wall lifetime. The ductility values used were from irradiations that simulate the environment of the first wall of a fusion reactor. Neutron wall loadings ranging from 2 to 5 MW/m 2 were used. 27 refs

  15. Experimental evaluation of the primary damage process: neutron energy effects

    Energy Technology Data Exchange (ETDEWEB)

    Goland, A.N.

    1979-01-01

    Experimental evaluation of the neutron energy dependnece of the primary damage stage depends upon a number of theoretical concepts. This state can only be observed after low- or perhaps ambient-temperature, low-fluence irradiations. The primary recoil energy spectrum, which determines the character of the displacement cascades, can be calculated if dosimetry has provided an accurate neutron spectrum. A review of experimental results relating neutron-energy effects shows that damage energy or damage energy cross section has often been a reliable correlation parameter for primary damage state experiments. However, the forthcoming emphasis on higher irradiation temperatures, more complex alloys and microstructural evolution has fostered a search for additional meaningful correlation parameters.

  16. Mental fatigue and impaired response processes: event-related brain potentials in a Go/NoGo task.

    Science.gov (United States)

    Kato, Yuichiro; Endo, Hiroshi; Kizuka, Tomohiro

    2009-05-01

    The effects of mental fatigue on the availability of cognitive resources and associated response-related processes were examined using event-related brain potentials. Subjects performed a Go/NoGo task for 60 min. Reaction time, number of errors, and mental fatigue scores all significantly increased with time spent on the task. The NoGo-P3 amplitude significantly decreased with time on task, but the Go-P3 amplitude was not modulated. The amplitude of error-related negativity (Ne/ERN) also decreased with time on task. These results indicate that mental fatigue attenuates resource allocation and error monitoring for NoGo stimuli. The Go- and NoGo-P3 latencies both increased with time on task, indicative of a delay in stimulus evaluation time due to mental fatigue. NoGo-N2 latency increased with time on task, but NoGo-N2 amplitude was not modulated. The amplitude of response-locked lateralized readiness potential (LRP) significantly decreased with time on task. Mental fatigue appears to slows down the time course of response inhibition, and impairs the intensity of response execution.

  17. 35. Conference of the DVM Working Group on Fracture Processes: Advances in fracture and damage mechanics - simulation methods of fracture mechanics

    International Nuclear Information System (INIS)

    2003-01-01

    Subjects of the meeting were: Simulation of fatigue crack growth in real strucures using FEA (M. Fulland, Paderborn); Modelling of ductile crack growth (W. Brocks, Geesthacht); Advances in non-local modelling of ductile damage (F. Reusch et al., Berlin, Dortmund); Fracture mechanics of ceramics (D. Munz, Karlsruhe); From materials testing to vehicle crash testing (J.G. Blauel, Freiburg); Analytical simulation of crack growth in thin-walled structures (U. Zerbst, Geesthacht); The influence of intrinsic stresses on fatigue crack growth (C. Dalle Donne etc., Cologne, Dortmund, Pisa, and M. Sander, Paderborn); Fracture mechanical strength calculation in case of mixed mode loads on cracks (H.A. Richard, Paderborn); Numeric simulation of intrinsic stresses during welding (C. Veneziano, Freiburg); New research fields of the Fraunhofer-Institut fuer Werkstoffmechanik (P. Gumbsch, Head of the Institute, Freiburg); Modern developments and advances in fracture and damage mechanics; Numeric and experimental simulation of crack propagation and damage processes; Exemplary damage cases; Fracture mechanics in product development; Failure characteristics of lightweight constructional materials and joints [de

  18. Fatigue micro-crack initiation behavior and effect of irradiation damage on it in austenitic stainless steel

    International Nuclear Information System (INIS)

    Nakai, Ryosuke; Sato, Yuki; Nogami, Shuhei; Hasegawa, Akira

    2012-01-01

    The effect of irradiation on slip band formation and growth and micro-crack initiation behavior under low cycle fatigue in SUS316L austenitic stainless steel was investigated using accelerator-based proton irradiation and a low cycle fatigue test at room temperature in air. The micro-crack initiation was observed at slip band, grain boundary, twin boundary, and triple junction regardless of the total strain range and the proton irradiation. In unirradiated specimens, the micro-crack initiation life dropped by 75-90% due to the increase of the plastic strain range. Under the condition the plastic strain range was 0.4%, the micro-crack initiation was observed mainly at the grain boundary. On the other hand, under the condition the plastic strain range was 1.0%, the number fractions of the micro-crack initiation in slip band and twin boundary were increased. In proton-irradiated specimens, the micro-crack initiation life decreased by 50-80% and the micro-crack initiation was observed mainly at slip band and twin boundary. (author)

  19. Mechanical processing of bast fibres: The occurrence of damage and its effect on fibre structure

    DEFF Research Database (Denmark)

    Hänninen, Tuomas; Thygesen, Anders; Mehmood, Shahid

    2012-01-01

    Currently, separation processes used for natural fibres for composite reinforcing textiles cause a significant amount of damage to the fibres. Microscopic analysis showed that industrially processed flax (Linum usitassimium L.) fibres contained significantly more defects than green or retted ones...... to heterogeneous reactivity. Analogous findings were observed in hemp (Cannabis sativa L.) fibre damaged in the laboratory under controlled conditions, emphasising the need to develop extraction and separation processes that minimise mechanical damage to the fibres....

  20. Tensile Creep and Fatigue of Sylramic-iBN Melt-Infiltrated SiC Matrix Composites: Retained Properties, Damage Development, and Failure Mechanisms

    Science.gov (United States)

    Morscher, Greg; Gowayed, yasser; Miller, Robert; Ojard, Greg; Ahmad, Jalees; Santhosh, Unni; John, Reji

    2008-01-01

    An understanding of the elevated temperature tensile creep, fatigue, rupture, and retained properties of ceramic matrix composites (CMC) envisioned for use in gas turbine engine applications are essential for component design and life-prediction. In order to quantify the effect of stress, time, temperature, and oxidation for a state-of-the-art composite system, a wide variety of tensile creep, dwell fatigue, and cyclic fatigue experiments were performed in air at 1204 C for the SiC/SiC CMC system consisting of Sylramic-iBN SiC fibers, BN fiber interphase coating, and slurry-cast melt-infiltrated (MI) SiC-based matrix. Tests were either taken to failure or interrupted. Interrupted tests were then mechanically tested at room temperature to determine the residual properties. The retained properties of most of the composites subjected to tensile creep or fatigue were usually within 20% of the as-produced strength and 10% of the as-produced elastic modulus. It was observed that during creep, residual stresses in the composite are altered to some extent which results in an increased compressive stress in the matrix upon cooling and a subsequent increased stress required to form matrix cracks. Microscopy of polished sections and the fracture surfaces of specimens which failed during stressed-oxidation or after the room-temperature retained property test was performed on some of the specimens in order to quantify the nature and extent of damage accumulation that occurred during the test. It was discovered that the distribution of stress-dependent matrix cracking at 1204 C was similar to the as-produced composites at room temperature; however, matrix crack growth occurred over time and typically did not appear to propagate through thickness except at final failure crack. Failure of the composites was due to either oxidation-induced unbridged crack growth, which dominated the higher stress regime (> 179 MPa) or controlled by degradation of the fibers, probably caused by

  1. Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation

    Czech Academy of Sciences Publication Activity Database

    Fintová, Stanislava; Kunz, Ludvík

    2015-01-01

    Roč. 42, FEB (2015), s. 219-228 ISSN 1751-6161 R&D Projects: GA ČR GAP108/10/2001 Institutional support: RVO:68081723 Keywords : AZ91 magnesium alloy * ECAP * Fatigue * Crack initiation Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.876, year: 2015 http://www.sciencedirect.com/science/article/pii/S1751616114003713

  2. Features of risks, damage claims processing and damage prevention overseas. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Splittgerber, E

    1981-01-01

    In opening up new raw material resources in remote locations and in the erection of industrial installations in overseas countries, manufacturers are often confronted with additional, unusual and hitherto unknown risks which can have considerable influence upon the orderly and timely execution of their projects. In Part I, various risk factors are considered from the experiences of Allianz as technical insurer in foreign damages connected with plant, civil and installation work insurance. The influence of climatic conditions upon damage events is illustrated with examples and the effects of storm, sand storm, flooding and earthquake discussed using a world map of natural dangers. The customs of people from culturally different nations and races, dictated as they often are by religion, must be taken into account by site managers and other staff on the building sites. The necessity for improvisations on building sites far from home and the limits of such improvisations are also discussed.

  3. Some questions regarding the interaction of creep and fatigue

    International Nuclear Information System (INIS)

    James, L.A.

    1975-04-01

    Data are presented from fatigue-crack growth tests conducted on Type 304 S.S. in inert environments at elevated temperatures which show that the thermal-activation noted in similar tests run in air environments is not present in the inert environment. Similar observations from the literature are reviewed, including the observation that the time-dependency noted in tests conducted in elevated temperature air environments is also greatly suppressed in inert environments. These findings suggest that an interaction between the fatigue process and the corrosive air environments is responsible for the thermally activated time-dependent behavior often attributed to creep-fatigue interaction. Data are also presented which show that the fatigue-crack growth behavior of Type 304 S.S. subjected to significant creep damage prior to fatigue testing does not differ appreciably from the behavior of material not subjected to prior creep damage, again indicating minimal interaction between creep and fatigue. It is suggested that in the temperature range where pressure vessels and piping are generally designed to operate (i.e. below about one-half the absolute melting temperature of the alloy), the interaction between creep and fatigue is far less significant than once supposed, and that the major parameter interacting with the fatigue process is that of high-temperature corrosion. (39 references, 12 fig) (auth)

  4. Fatigue damage from random vibration pulse process of tubular structural elements subject to wind

    DEFF Research Database (Denmark)

    Christensen, Claus F.; Ditlevsen, Ove Dalager

    1997-01-01

    In a wide range of the Reynolds number an elastically suspended circular cylinder surrounded by a homogeneous wind velocity field will generate vortex shedding of a frequency that by and large is proportional to the far field wind velocity. However, if the cylinder is free to vibrate, resonance w...

  5. Damage assessment in Braunsbach 2016: data collection and analysis for an improved understanding of damaging processes during flash floods

    Science.gov (United States)

    Laudan, Jonas; Rözer, Viktor; Sieg, Tobias; Vogel, Kristin; Thieken, Annegret H.

    2017-12-01

    Flash floods are caused by intense rainfall events and represent an insufficiently understood phenomenon in Germany. As a result of higher precipitation intensities, flash floods might occur more frequently in future. In combination with changing land use patterns and urbanisation, damage mitigation, insurance and risk management in flash-flood-prone regions are becoming increasingly important. However, a better understanding of damage caused by flash floods requires ex post collection of relevant but yet sparsely available information for research. At the end of May 2016, very high and concentrated rainfall intensities led to severe flash floods in several southern German municipalities. The small town of Braunsbach stood as a prime example of the devastating potential of such events. Eight to ten days after the flash flood event, damage assessment and data collection were conducted in Braunsbach by investigating all affected buildings and their surroundings. To record and store the data on site, the open-source software bundle KoBoCollect was used as an efficient and easy way to gather information. Since the damage driving factors of flash floods are expected to differ from those of riverine flooding, a post-hoc data analysis was performed, aiming to identify the influence of flood processes and building attributes on damage grades, which reflect the extent of structural damage. Data analyses include the application of random forest, a random general linear model and multinomial logistic regression as well as the construction of a local impact map to reveal influences on the damage grades. Further, a Spearman's Rho correlation matrix was calculated. The results reveal that the damage driving factors of flash floods differ from those of riverine floods to a certain extent. The exposition of a building in flow direction shows an especially strong correlation with the damage grade and has a high predictive power within the constructed damage models. Additionally

  6. Compressive Fatigue in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1999-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four...... frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation...

  7. Residual stress evaluation and fatigue life prediction in the welded joint by X-ray diffraction

    International Nuclear Information System (INIS)

    Yoo, Keun Bong; Kim, Jae Hoon

    2009-01-01

    In the fossil power plant, the reliability of the components which consist of the many welded parts depends on the quality of welding. The residual stress is occurred by the heat flux of high temperature during weld process. This decreases the mechanical properties as the strength of fatigue and fracture or occurs the stress corrosion cracking and fatigue fracture. The residual stress of the welded part in the recently constructed power plants has been the cause of a variety of accidents. The objective of this study is measurement of the residual stress by X-ray diffraction method and to estimate the feasibility of this application for fatigue life assessment of the high-temperature pipeline. The materials used for the study is P92 steel for the use of high temperature pipe on super critical condition. The test results were analyzed by the distributed characteristics of residual stresses and the Full Width at Half Maximum intensity (FWHM) in x-ray diffraction intensity curve. Also, X-ray diffraction tests using specimens simulated low cycle fatigue damage were performed in order to analyze fatigue properties when fatigue damage conditions become various stages. As a result of X-ray diffraction tests for specimens simulated fatigue damages, we conformed that the ratio of the FWHM due to fatigue damage has linear relationship with fatigue life ratio algebraically. From this relationships, it was suggested that direct expectation of the life consumption rate was feasible.

  8. Detecting and Predicting Muscle Fatigue during Typing By SEMG Signal Processing and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Elham Ghoochani

    2011-03-01

    Full Text Available Introduction: Repetitive strain injuries are one of the most prevalent problems in occupational diseases. Repetition, vibration and bad postures of the extremities are physical risk factors related to work that can cause chronic musculoskeletal disorders. Repetitive work on a computer with low level contraction requires the posture to be maintained for a long time, which can cause muscle fatigue. Muscle fatigue in shoulders and neck is one of the most prevalent problems reported with computer users especially during typing. Surface electromyography (SEMG signals are used for detecting muscle fatigue as a non-invasive method. Material and Methods: Nine healthy females volunteered for signal recoding during typing. EMG signals were recorded from the trapezius muscle, which is subjected to muscle fatigue during typing.  After signal analysis and feature extraction, detecting and predicting muscle fatigue was performed by using the MLP artificial neural network. Results: Recorded signals were analyzed in time and frequency domains for feature extraction. Results of classification showed that the MLP neural network can detect and predict muscle fatigue during typing with 80.79 % ± 1.04% accuracy. Conclusion: Intelligent classification and prediction of muscle fatigue can have many applications in human factors engineering (ergonomics, rehabilitation engineering and biofeedback equipment for mitigating the injuries of repetitive works.

  9. Investigation of mental fatigue through EEG signal processing based on nonlinear analysis: Symbolic dynamics

    International Nuclear Information System (INIS)

    Azarnoosh, Mahdi; Motie Nasrabadi, Ali; Mohammadi, Mohammad Reza; Firoozabadi, Mohammad

    2011-01-01

    Highlights: Mental fatigue indices’ variation discussed during simple long-term attentive task. Symbolic dynamics of reaction time and EEG signal determine mental state variation. Nonlinear quantifiers such as entropy can display chaotic behaviors of the brain. Frontal and central lobes of the brain are effective in attention investigations. Mental fatigue causes a reduction in the complexity of the brain’s activity. Abstract: To investigate nonlinear analysis of attention physiological indices this study used a simple repetitive attentive task in four consecutive trials that resulted in mental fatigue. Traditional performance indices, such as reaction time, error responses, and EEG signals, were simultaneously recorded to evaluate differences between the trials. Performance indices analysis demonstrated that a selected task leads to mental fatigue. In addition, the study aimed to find a method to determine mental fatigue based on nonlinear analysis of EEG signals. Symbolic dynamics was selected as a qualitative method used to extract some quantitative qualifiers such as entropy. This method was executed on the reaction time of responses, and EEG signals to distinguish mental states. The results revealed that nonlinear analysis of reaction time, and EEG signals of the frontal and central lobes of the brain could differentiate between attention, and occurrence of mental fatigue in trials. In addition, the trend of entropy variation displayed a reduction in the complexity of mental activity as fatigue occurred.

  10. Micromechanical Time-Lapse X-ray CT Study of Fatigue Damage in Uni-Directional Fibre Composites

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Lowe, Tristan; Withers, Philip J.

    2015-01-01

    . The geometry of the cut-out is similar to that which will be used in the time-lapse study. As the micro-mechanical damage mechanisms are small features, it is necessary to obtain a high scan resolution which sets a limit to how large the field of view can be. Therefore, it is necessary to perform several scans...

  11. Processing and filtrating of driver fatigue characteristic parameters based on rough set

    Science.gov (United States)

    Ye, Wenwu; Zhao, Xuyang

    2018-05-01

    With the rapid development of economy, people become increasingly rich, and cars have become a common means of transportation in daily life. However, the problem of traffic safety is becoming more and more serious. And fatigue driving is one of the main causes of traffic accidents. Therefore, it is of great importance for us to study the detection of fatigue driving to improve traffic safety. In the cause of determining whether the driver is tired, the characteristic quantity related to the steering angle of the steering wheel and the characteristic quantity of the driver's pulse are all important indicators. The fuzzy c-means clustering is used to discretize the above indexes. Because the characteristic parameters are too miscellaneous, rough set is used to filtrate these characteristics. Finally, this paper finds out the highest correlation with fatigue driving. It is proved that these selected characteristics are of great significance to the evaluation of fatigue driving.

  12. Assessment of thermal fatigue damage caused by local fluid temperature fluctuation (part I: characteristics of constraint and stress caused by thermal striation and stratification)

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2014-01-01

    Highlights: • The source of the membrane constraint due to local temperature fluctuation was shown. • Thermal fatigue that occurred at a mixing tee and branched elbow was analyzed. • Cracking occurrence was reasonably explained by the constraint and stress conditions. - Abstract: This study was aimed at identifying the constraint conditions under local temperature fluctuation by thermal striping at a mixing tee and by thermal stratification at an elbow pipe branched from the main pipe. Numerical and analytical approaches were made to derive the thermal stress and its fluctuation. It was shown that an inhomogeneous temperature distribution in a straight pipe caused thermal stress due to a membrane constraint even if an external membrane constraint did not act on the pipe. Although the membrane constraint increased the mean stress at the mixing tee, it did not contribute to fluctuation of the thermal stress. On the other hand, the membrane constraint played an important role in the fatigue damage accumulation near the stratification layer of the branched elbow. Based on the constraint and stress conditions analyzed, the characteristics of the cracking observed in actual nuclear power plants were reasonably explained. Namely, at the mixing tee, where thermal crazing has been found, the lack of contribution of the membrane constraint to stress fluctuation caused a stress gradient in the thickness direction and arrested crack growth. On the other hand, at the branched elbow, where axial through-wall cracks have been found, the relatively large hoop stress fluctuation was brought about by movement of the stratified layer together with the membrane constraint even under a relatively low frequency of stress fluctuation

  13. Estimates of time-dependent fatigue behavior of type 316 stainless steel subject to irradiation damage in fast breeder and fusion power reactor systems

    International Nuclear Information System (INIS)

    Brinkman, C.R.; Liu, K.C.; Grossbeck, M.L.

    1979-01-01

    Cyclic lives obtained from strain-controlled fatigue tests at 593 0 C of specimens irraidated in the experimental breeder reactor II (EBR-II) to a fluence of 1 to 2.63 x 10 26 neutrons (n)/m 2 E > 0.1 MeV) were compared with predictions based on the method of strain-range partitioning. It was demonstrated that, when appropriate tensile and creep-rupture ductilities were employed, reasonably good estimates of the influence of hold periods and irradiation damage on the fully reversed fatigue life of Type 316 stainless steel could be made. After applicability of this method was demonstrated, ductility values for 20% cold-worked Type 316 stainless steel specimens irradiated in a mixed-spectrum fission reactor were used to estimate fusion reactor first-wall lifetime. The ductility values used were from irradations that simulate the environment of the first wall of a fusion reactor. Neutron wall loadins ranging from 2 to 5 MW/m 2 were used. Results, although conjectural because of the many assumptions, tended to show that 20% cold-worked Type 316 stainless steel could be used as a first-wall material meeting a 7.5 go 8.5 MW-year/m 2 lifetime goal provided the neutron wall loading does not exceed more than about 2 MW/m 2 . These results were obtained for an air environment, ant it is expected that the actual vacuum environment will extend lifetime beyond 10 MW-year/m 2

  14. Detection of fatigue damage of high and medium pressure rotor by X-ray diffraction method. Survey and research of nondestructive examination of thermal power generation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tatsuo; Suesada, Yasuhiko; Nishioka, Noriaki; Goto, Toru; Ito, Hitomi; Kadoya, Yoshikuni

    1987-03-25

    In recent years, the existing thermal power generation facilities have been required to be operated in securing dependability from the standpoints of the operating conditions which have been getting severer and the demands to use them for longer periods, accordingly it is hoped to establish the diagnostic technology of aged deterioration by the non-destructive examination method for the facilities. In the beginning of 1959 the Kansai Electric Power Co. surveyed the current situation of this technology at various thermal power generation turbine facilities and discovered that concerning the diagnostic technology of aged deterioration by the non-destructive examination method, there remained many matters untouched in the basic research field. The company consequently started a survey and research jointly with Mitsubishi Heavy Industries in the first half of 1959. This report summarizes the research on the detection of aged deterioration due to thermal fatigue of Cr-Mo-V rotor material by the X-ray diffraction method which was conducted during the full fiscal year of 1984 and the first half of FY 1985 as a part of the above joint research. With respect to the conditions for the detection method of thermal fatigue damages of dummy grooves of the high and medium pressure rotor by the application of the X-ray diffraction method, it is preferred to measure a diffraction strength curve of the diffraction surface by using a Co tube as X-ray tube and it is also desirable to use a position sensitive proportional counter tube for X-ray detector. (5 figs, 6 refs)

  15. The Potential of Self-Tempered Martensite and Bainite in Improving the Fatigue Strength of Thermomechanically Processed Steels

    Directory of Open Access Journals (Sweden)

    Krupp Ulrich

    2018-01-01

    Full Text Available In contrast to a two-stage hardening and tempering process, the definition of optimized cooling routes after hot working of low-alloy Cr steel allows the adjustments of high-strength microstructures with a sufficient degree of ductility at the same time without any additional heat-treatment. While compressed air cooling after hot forging of micro-alloyed steel grades leads to the formation of lower bainite with finedispersed cementite platelets, quenching by water spray down to the martensite start temperature results in the formation of martensite, that is self-tempered during the subsequent slow-cooling in air. The precipitation of nano-sized cementite precipitates result in superior mechanical properties with respect to impact and tensile testing. Cyclic deformation and crack propagation tests being carried out using resonance testing (100Hz and ultrasonic fatigue testing (20kHz systems revealed a pronounced increase in fatigue strength by about 150MPa of the self-tempered martensite condition as compared to the bainitic modification. For the latter one, a steady decrease of the fatigue strength is observed rather than the existence of a real fatigue limit.

  16. The thermal fatigue resistance of vermicular cast iron coupling with H13 steel units by cast-in process

    International Nuclear Information System (INIS)

    Wang, Chengtao; Zhou, Hong; Lin, Peng Yu; Sun, Na; Guo, Qingchun; Zhang, Peng; Yu, Jiaxiang; Liu, Yan; Wang, Mingxing; Ren, Luquan

    2010-01-01

    This paper focuses on improving the thermal fatigue resistance on the surface of vermicular cast iron coupling with inserted H13 steel blocks that had different cross sections, by cast-in processing. The microstructure of bionic units was examined by scanning electron microscope. Micro-hardness and thermal fatigue resistance of bionic samples with varied cross sections and spacings were investigated, respectively. Results show that a marked metallurgical bonding zone was produced at interface between the inserted H13 steel block and the parent material - a unique feature of the bionic structure in the vermicular cast iron samples. The micro-hardness of the bionic samples has been significantly improved. Thermal resistance of the samples with the circular cross section was the highest and the bionics sample with spacing of 2 mm spacing had a much longer thermal fatigue life, thus resulting in the improvement for the thermal fatigue life of the bionic samples, due to the efficient preclusion for the generation and propagation of crack at the interface of H13 block and the matrix.

  17. Determination of Bruising Damages of Tomato during Road Transportation Process

    Directory of Open Access Journals (Sweden)

    A Mansouri Alam

    2018-03-01

    Full Text Available Introduction The most important post-harvest mechanical damage is bruising. Bruising occurs during the stages of handling, transporting and packaging due to quasi-static and dynamic loads. Vibrations of tomato fruits during transportation by truck will decrease their quality. More than 2.5 million tons damages have been reported during tomato transportation in Iran. Therefore, it is necessary to recognize different parameters of damages during road transportation in order to detect and prevent bruising injury. Materials and Methods In this study, healthy Super Queen verity of tomatoes devoid of any corrosion and mechanical damage multipliers were used. Aaverage of 7 and 5 pieces of fruit in each length and width, respectively in 13*25*37 cm boxes with a capacity of 8 kg were arranged. The boxes were divided into 2 types of truck suspension (model M2631 AIMCO, manufactured in 2010 with air suspension and Nissan trucks 2400, manufactured in 2010 with suspension spring. Boxes were established in three different heights truck, floor truck, height of middle and top of truck, in addition to two different situation boxes on the front axle (S1 and rear axle (S2. In each situation, three levels of height (H1, floor truck, the truck (H2 and the truck (H3 there. The location of each sample inside the fruit boxes bottom row (Loc1 and top (Loc2 boxes marked with marker. In this study, two types of road, highway asphalt and asphalt secondary road was used for transportation. Trucks and vans had the same distance route about 400 km. Fruits were transferred to Hamadan agricultural college. Rheology lab test was a hit with the pendulum. In this study, the amount of energy absorbed from the index (as a parameter to determine the sensitivity and the fruits bruises were used. Hit test was done after transportation of fruits and transferring those to the laboratory in less than 2 hours. Impact energy products were considered higher than the dynamic submission

  18. Fatigue behavior of ULTIMETRTM alloy: Experiment and theoretical modeling

    Science.gov (United States)

    Jiang, Liang

    ULTIMETRTM alloy is a commercial Co-26Cr-9Ni (weight percent) superalloy, which possesses excellent resistance to both wear and corrosion. In order to extend the structural applications of this alloy and improve the fundamental understanding of the fatigue damage mechanisms, stress- and strain-controlled fatigue tests were performed at various temperatures and in different environments. The stress- and strain-life data were developed for the structural design and engineering applications of this material. Fractographic studies characterized the crack-initiation and propagation behavior of the alloy. Microstructure evolution during fatigue was revealed by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Specifically, it was found that the metastable face-centered-cubic structure of this alloy in the as-received condition could be transformed into a hexagonal-close-packed structure either under the action of plastic deformation at room temperature, or due to the aging and cyclic deformation at intermediate temperatures. This interesting observation constructed a sound basis for the alloy development. The dominant mechanisms, which control the fatigue behavior of ULTIMET alloy, were characterized. High-speed, high-resolution infrared (IR) thermography, as a non-contact, full-field, and nondestructive technique, was used to characterize the damage during fatigue. The temperature variations during each fatigue cycle, which were due to the thermal-elastic-plastic effect, were observed and related to stress-strain analyses. The temperature evolution during fatigue manifested the cumulative fatigue damage process. A constitutive model was developed to predict thermal and mechanical responses of ULTIMET alloy subjected to cyclic deformation. The predicted cyclic stress-strain responses and temperature variations were found to be in good agreement with the experimental results. In addition, a fatigue life prediction model was developed

  19. Modelling probabilistic fatigue crack propagation rates for a mild structural steel

    OpenAIRE

    Correia, J.A.F.O.; de Jesus, A.M.P.; Fernández-Canteli, A.

    2014-01-01

    A class of fatigue crack growth models based on elastic–plastic stress–strain histories at the crack tip region and local strain-life damage models have been proposed in literature. The fatigue crack growth is regarded as a process of continuous crack initializations over successive elementary material blocks, which may be governed by smooth strain-life damage data. Some approaches account for the residual stresses developing at the crack tip in the actual crack driving force asse...

  20. Prediction Of Formability In Sheet Metal Forming Processes Using A Local Damage Model

    International Nuclear Information System (INIS)

    Teixeira, P.; Santos, Abel; Cesar Sa, J.; Andrade Pires, F.; Barata da Rocha, A.

    2007-01-01

    The formability in sheet metal forming processes is mainly conditioned by ductile fracture resulting from geometric instabilities due to necking and strain localization. The macroscopic collapse associated with ductile failure is a result of internal degradation described throughout metallographic observations by the nucleation, growth and coalescence of voids and micro-cracks. Damage influences and is influenced by plastic deformation and therefore these two dissipative phenomena should be coupled at the constitutive level. In this contribution, Lemaitre's ductile damage model is coupled with Hill's orthotropic plasticity criterion. The coupling between damaging and material behavior is accounted for within the framework of Continuum Damage Mechanics (CDM). The resulting constitutive equations are implemented in the Abaqus/Explicit code, for the prediction of fracture onset in sheet metal forming processes. The damage evolution law takes into account the important effect of micro-crack closure, which dramatically decreases the rate of damage growth under compressive paths

  1. Fatigue evaluation algorithms: Review

    Energy Technology Data Exchange (ETDEWEB)

    Passipoularidis, V.A.; Broendsted, P.

    2009-11-15

    A progressive damage fatigue simulator for variable amplitude loads named FADAS is discussed in this work. FADAS (Fatigue Damage Simulator) performs ply by ply stress analysis using classical lamination theory and implements adequate stiffness discount tactics based on the failure criterion of Puck, to model the degradation caused by failure events in ply level. Residual strength is incorporated as fatigue damage accumulation metric. Once the typical fatigue and static properties of the constitutive ply are determined,the performance of an arbitrary lay-up under uniaxial and/or multiaxial load time series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a wind turbine rotor blade construction. Two versions of the algorithm, the one using single-step and the other using incremental application of each load cycle (in case of ply failure) are implemented and compared. Simulation results confirm the ability of the algorithm to take into account load sequence effects. In general, FADAS performs well in predicting life under both spectral and block loading fatigue. (author)

  2. Applications of nonequilibrium melting concept to damage-accumulation processes

    International Nuclear Information System (INIS)

    Lam, N.Q.; Okamoto, P.R.

    1998-01-01

    The authors recent study of crystalline-to-amorphous transformation led to the successful development of a unified thermodynamic description of disorder-induced amorphization and heat-induced melting, based on a generalized version of the Lindemann melting criterion. The generalized criterion requires that the melting temperature of a defective crystal decreases with increasing static atomic disorder. Hence, any crystal can melt at temperatures below the melting point of its perfect crystalline state when driven far from equilibrium by introducing critical amounts of misfitting solute atoms and lattice imperfections, radiation damage, and/or tensile stresses. This conceptual approach to nonequilibrium melting provides new insight into long-standing materials problems such as brittle fracture, embrittlement, and environmentally-induced cracking, for example irradiation-assisted stress corrosion cracking

  3. Development of an in situ fatigue sensor.

    Science.gov (United States)

    2011-01-01

    A prototype in situ fatigue sensor has been designed, constructed and evaluated experimentally for its ability to monitor the accumulation of fatigue damage in a cyclically loaded steel structure, e.g., highway bridge. The sensor consists of multiple...

  4. Flood vulnerability assessment of residential buildings by explicit damage process modelling

    DEFF Research Database (Denmark)

    Custer, Rocco; Nishijima, Kazuyoshi

    2015-01-01

    The present paper introduces a vulnerability modelling approach for residential buildings in flood. The modelling approach explicitly considers relevant damage processes, i.e. water infiltration into the building, mechanical failure of components in the building envelope and damage from water...

  5. Temperature and driving field dependence of fatigue processes in PZT bulk ceramics

    International Nuclear Information System (INIS)

    Glaum, Julia; Granzow, Torsten; Schmitt, Ljubomira Ana; Kleebe, Hans-Joachim; Roedel, Juergen

    2011-01-01

    The temperature- and field-dependent degradation properties of bulk Pb(Zr,Ti)O 3 material (PZT) under a unipolar electric field were investigated. Unipolar cycling leads to the build-up of an internal bias field based on the agglomeration of charges at grain boundaries. A simple model was developed which describes the general dynamics of unipolar fatigue and its dependence on temperature and driving field. Comparing the large and small signal permittivity before and after fatigue led to the conclusion that domain walls became clamped by the agglomerated charges. This clamping effect could be visualized by transmission electron microscopy (TEM). Additionally, the TEM investigations revealed that unipolar fatigue leads to a weakening of the microstructure and to the development of microcracks.

  6. Vacuum ultra-violet damage and damage mitigation for plasma processing of highly porous organosilicate glass dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Marneffe, J.-F. de, E-mail: marneffe@imec.be; Lukaszewicz, M.; Porter, S. B.; Vajda, F.; Rutigliani, V.; Verdonck, P.; Baklanov, M. R. [IMEC v.z.w., 3001 Leuven (Belgium); Zhang, L.; Heyne, M.; El Otell, Z.; Krishtab, M. [IMEC v.z.w., 3001 Leuven (Belgium); Department of Chemistry, KULeuven, 3001 Leuven (Belgium); Goodyear, A.; Cooke, M. [Oxford Instruments Plasma Technology, BS49 4AP Bristol (United Kingdom)

    2015-10-07

    Porous organosilicate glass thin films, with k-value 2.0, were exposed to 147 nm vacuum ultra-violet (VUV) photons emitted in a Xenon capacitive coupled plasma discharge. Strong methyl bond depletion was observed, concomitant with a significant increase of the bulk dielectric constant. This indicates that, besides reactive radical diffusion, photons emitted during plasma processing do impede dielectric properties and therefore need to be tackled appropriately during patterning and integration. The detrimental effect of VUV irradiation can be partly suppressed by stuffing the low-k porous matrix with proper sacrificial polymers showing high VUV absorption together with good thermal and VUV stability. In addition, the choice of an appropriate hard-mask, showing high VUV absorption, can minimize VUV damage. Particular processing conditions allow to minimize the fluence of photons to the substrate and lead to negligible VUV damage. For patterned structures, in order to reduce VUV damage in the bulk and on feature sidewalls, the combination of both pore stuffing/material densification and absorbing hard-mask is recommended, and/or the use of low VUV-emitting plasma discharge.

  7. Development of system based code for integrity of FBR. Fundamental probabilistic approach, Part 1: Model calculation of creep-fatigue damage (Research report)

    International Nuclear Information System (INIS)

    Kawasaki, Nobuchika; Asayama, Tai

    2001-09-01

    Both reliability and safety have to be further improved for the successful commercialization of FBRs. At the same time, construction and operation costs need to be reduced to a same level of future LWRs. To realize compatibility among reliability, safety and, cost, the Structural Mechanics Research Group in JNC started the development of System Based Code for Integrity of FBR. This code extends the present structural design standard to include the areas of fabrication, installation, plant system design, safety design, operation and maintenance, and so on. A quantitative index is necessary to connect different partial standards in this code. Failure probability is considered as a candidate index. Therefore we decided to make a model calculation using failure probability and judge its applicability. We first investigated other probabilistic standards like ASME Code Case N-578. A probabilistic approach in the structural integrity evaluation was created based on these results, and also an evaluation flow was proposed. According to this flow, a model calculation of creep-fatigue damage was performed. This trial calculation was for a vessel in a sodium-cooled FBR. As the result of this model calculation, a crack initiation probability and a crack penetration probability were found to be effective indices. Last we discussed merits of this System Based Code, which are presented in this report. Furthermore, this report presents future development tasks. (author)

  8. Fatigue behaviour of coke drum materials under thermal-mechanical cyclic loading

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2014-01-01

    Full Text Available Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes damage in coke drums in the form of bulging and cracking. There were some studies on the fatigue life estimation for the coke drums, but most of them were based on strain-fatigue life curves at constant temperatures, which do not consider simultaneous cyclic temperature and mechanical loading conditions. In this study, a fatigue testing system is successfully developed to allow performing thermal-mechanical fatigue (TMF test similar to the coke drum loading condition. Two commonly used base and one clad materials of coke drums are then experimentally investigated. In addition, a comparative study between isothermal and TMF lives of these materials is conducted. The experimental findings lead to better understanding of the damage mechanisms occurring in coke drums and more accurate prediction of fatigue life of coke drum materials.

  9. Impact induced damage assessment by means of Lamb wave image processing

    Science.gov (United States)

    Kudela, Pawel; Radzienski, Maciej; Ostachowicz, Wieslaw

    2018-03-01

    The aim of this research is an analysis of full wavefield Lamb wave interaction with impact-induced damage at various impact energies in order to find out the limitation of the wavenumber adaptive image filtering method. In other words, the relation between impact energy and damage detectability will be shown. A numerical model based on the time domain spectral element method is used for modeling of Lamb wave propagation and interaction with barely visible impact damage in a carbon-epoxy laminate. Numerical studies are followed by experimental research on the same material with an impact damage induced by various energy and also a Teflon insert simulating delamination. Wavenumber adaptive image filtering and signal processing are used for damage visualization and assessment for both numerical and experimental full wavefield data. It is shown that it is possible to visualize and assess the impact damage location, size and to some extent severity by using the proposed technique.

  10. Fatigue Reliability of Offshore Wind Turbine Systems

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard

    2012-01-01

    of appropriate partial safety factors / fatigue design factors (FDF) for steel substructures of offshore wind turbines (OWTs). The fatigue life is modeled by the SN approach. Design and limit state equations are established based on the accumulated fatigue damage. The acceptable reliability level for optimal...... fatigue design of OWTs is discussed and results for reliability assessment of typical fatigue critical design of offshore steel support structures are presented....

  11. Nuclear data for analysis of radiation damage processes

    International Nuclear Information System (INIS)

    Aruga, Takeo

    1999-01-01

    Parameters needed to analyze radiation damages for neutron irradiations are presented, taking iron samples irradiated with JMTR neutrons for an example. Special interests have been put on a comparison between results obtained by irradiations for one case with a full neutron spectrum and the other with a Cd-shielded neutron spectrum. A possibility is described that although atomic displacement rates for the two case differ only less than 2%, production rates of freely migrating defects can differ appreciably, due to recoiled atoms by (n, γ) reactions. More over, it is also suggested that although the median energy of PKA, defined as a PKA energy above (or below) which one half of the total atomic displacements are to be produced, may differ only slightly between the two cases, final radiation effects can be significantly different. The effects of charged particles emitted with high energies due to nucleon irradiations are stressed in relation to the significance of defects produced by PKAs with lower energies than several keV, especially for the case of irradiations with highly energetic nucleons as anticipated in GeV proton irradiations. (author)

  12. Nuclear data for analysis of radiation damage processes

    Energy Technology Data Exchange (ETDEWEB)

    Aruga, Takeo [Department of Materials Science Research, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    1999-03-01

    Parameters needed to analyze radiation damages for neutron irradiations are presented, taking iron samples irradiated with JMTR neutrons for an example. Special interests have been put on a comparison between results obtained by irradiations for one case with a full neutron spectrum and the other with a Cd-shielded neutron spectrum. A possibility is described that although atomic displacement rates for the two case differ only less than 2%, production rates of freely migrating defects can differ appreciably, due to recoiled atoms by (n, {gamma}) reactions. More over, it is also suggested that although the median energy of PKA, defined as a PKA energy above (or below) which one half of the total atomic displacements are to be produced, may differ only slightly between the two cases, final radiation effects can be significantly different. The effects of charged particles emitted with high energies due to nucleon irradiations are stressed in relation to the significance of defects produced by PKAs with lower energies than several keV, especially for the case of irradiations with highly energetic nucleons as anticipated in GeV proton irradiations. (author)

  13. Effect of welding processes and consumables on fatigue crack growth behaviour of armour grade quenched and tempered steel joints

    Directory of Open Access Journals (Sweden)

    G. Magudeeswaran

    2014-03-01

    Full Text Available Quenched and Tempered (Q&T steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC in the heat affected zone (HAZ after welding. The use of austenitic stainless steel (ASS consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q&T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic steel (LHF consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. The use of ASS and LHF consumables will lead to distinct microstructures in their respective welds. This microstructural heterogeneity will have a drastic influence in the fatigue crack growth resistance of armour grade Q&T steel welds. Hence, in this investigation an attempt has been made to study the influence of welding consumables and welding processes on fatigue crack growth behaviour of armour grade Q&T Steel joints. Shielded metal arc welding (SMAW and Flux cored arc welding (FCAW were used for fabrication of joints using ASS and LHF consumables. The joints fabricated by SMAW process using LHF consumable exhibited superior fatigue crack growth resistance than all other joints.

  14. Positron lifetime measurements as a non-destructive technique to monitor fatigue damage. Final report, January 1, 1971--June 30, 1978

    International Nuclear Information System (INIS)

    Byrne, J.G.

    1978-06-01

    Positron studies were applied successfully to cyclic fatigue in steel and copper and have shown a capability to nondestructively detect fatigue softening and fatigue hardening. In the case of elastic high cycle fatigue in initially soft steel the fatigue hardening is identified with point defects. For cyclic plastic range, high cycle fatigue cyclic hardening and softening are correlated with changes in dislocation substructure. Positron measurements during the pulse annealing of copper single crystals following electron irradiation at 77 0 K have revealed the formation of multi-vacancy complexes which constitute the precursors of radiation induced voids. Positron studies have been applied to hydrogen embrittlement in 4340 steel and more recently in nickel. The technique can non-destructively detect hydrogen embrittlement and gage its extent. U.S. Patent No. 4064438 was issued on this basis

  15. Damage and service life of nickel-base alloys under thermal-mechanical fatigue stress at different phase positions; Schaedigung und Lebensdauer von Nickelbasislegierungen unter thermisch-mechanischer Ermuedungsbeanspruchung bei verschiedenen Phasenlagen

    Energy Technology Data Exchange (ETDEWEB)

    Guth, Stefan

    2016-07-01

    This work considers the behaviour of two nickel-base alloys (NiCr22Co12Mo9 and MAR-M247 LC) under thermo-mechanical fatigue loading with varying phase angles between mechanical strain and temperature. The investigations focus on the characterisation of microstructures and damage mechanisms as a function of the phase angle. Based on the results, a life prediction model is proposed.

  16. Identification of acoustic emission sources in early stages of fatigue process of Inconel 713LC

    Energy Technology Data Exchange (ETDEWEB)

    Bartkova, Denisa; Vlasic, Frantisek; Mazal, Pavel [Brno Univ. of Technology, Brno (Czech Republic). Faculty of Mechanical Engineering

    2014-11-01

    Inconel 713LC is low carbon variant of Inconel 713 nickel-based cast alloy. The biggest advantage of these alloys is their ability to resist a wide variety of operating conditions (corrosive environment, high temperature, high stresses). Main area of applications is aircraft, energetic, chemical and petrochemical industry etc. In many applications, components undergo cyclic stresses. This study presents results of acoustic emission response of Inconel 713LC during high-cycle fatigue testing. In comparison with low-cycle fatigue, stage of initiation of micro cracks is in high-cycle region much more significant and can take several tens of percent of whole fatigue life. This work is focused on comparison of selected parameters of acoustic emission signal in pre-initiation and initiation stage of fatigue crack creation. Signal data were specified by linear location technique, hence only signal from shallow notch was analysed. Acoustic emission signal was correlated with frequency of load reversals which is a function of specimen's rigidity (modulus). Acoustic emission hits with higher stress were detected in pre-initiation stage whereas initiation stage hits exhibited low stress. Acoustic emission signal measurements are supplemented by fractographic and metallographic analysis.

  17. Subsurface damage mechanism of high speed grinding process in single crystal silicon revealed by atomistic simulations

    International Nuclear Information System (INIS)

    Li, Jia; Fang, Qihong; Zhang, Liangchi; Liu, Youwen

    2015-01-01

    Highlights: • Molecular dynamic model of nanoscale high speed grinding of silicon workpiece has been established. • The effect of grinding speed on subsurface damage and grinding surface integrity by analyzing the chip, dislocation movement, and phase transformation during high speed grinding process are thoroughly investigated. • Subsurface damage is studied by the evolution of surface area at first time for more obvious observation on transition from ductile to brittle. • The hydrostatic stress and von Mises stress by the established analytical model are studied subsurface damage mechanism during nanoscale grinding. - Abstract: Three-dimensional molecular dynamics (MD) simulations are performed to investigate the nanoscale grinding process of single crystal silicon using diamond tool. The effect of grinding speed on subsurface damage and grinding surface integrity by analyzing the chip, dislocation movement, and phase transformation are studied. We also establish an analytical model to calculate several important stress fields including hydrostatic stress and von Mises stress for studying subsurface damage mechanism, and obtain the dislocation density on the grinding subsurface. The results show that a higher grinding velocity in machining brittle material silicon causes a larger chip and a higher temperature, and reduces subsurface damage. However, when grinding velocity is above 180 m s −1 , subsurface damage thickness slightly increases because a higher grinding speed leads to the increase in grinding force and temperature, which accelerate dislocation nucleation and motion. Subsurface damage is studied by the evolution of surface area at first time for more obvious observation on transition from ductile to brittle, that provides valuable reference for machining nanometer devices. The von Mises stress and the hydrostatic stress play an important role in the grinding process, and explain the subsurface damage though dislocation mechanism under high

  18. Vibration analysis and vibration damage assessment in nuclear and process equipment

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.; Yetisir, M.; Smith, B.A.W.

    1997-01-01

    Component failures due to excessive flow-induced vibration are still affecting the performance and reliability of process and nuclear components. The purpose of this paper is to discuss flow-induced vibration analysis and vibration damage prediction. Vibration excitation mechanisms are described with particular emphasis on fluid elastic instability. The dynamic characteristics of process and power equipment are explained. The statistical nature of some parameters, in particular support conditions, is discussed. The prediction of fretting-wear damage is approached from several points-of-view. An energy approach to formulate fretting-wear damage is proposed. (author)

  19. Effect of Deoxidation Process on Inclusion and Fatigue Performance of Spring Steel for Automobile Suspension

    Science.gov (United States)

    Hu, Yang; Chen, Weiqing; Wan, Changjie; Wang, Fangjun; Han, Huaibin

    2018-04-01

    55SiCrA spring steel was smelted in a vacuum induction levitation furnace. The liquid steel was treated by Si deoxidation, Al modification with Ca treatment and Al modification, and the steel samples were obtained with deformable Al2O3-SiO2-CaO-MgO inclusions closely contacted with steel matrix, Al2O3-CaO-CaS-SiO2-MgO inclusions surrounded by small voids or Al2O3(> 80 pct)-SiO2-CaO-MgO inclusions surrounded by big voids, respectively. Effect of three types of inclusions on steel fatigue cracks was studied. The perpendicular and transverse fatigue cracks around the three types of inclusions leading to fracture were found to vary in behavior. Under the applied stress amplitude of 775 MPa, the fatigue lives of the three spring steels decreased from 4.0 × 107 to 3.8 × 107, and to 3.1 × 107 cycles. For the applied stress amplitude of 750 MPa, the fatigue lives of the three spring steels decreased from 5.2 × 107 to 4.1 × 107, and to 3.4 × 107 cycles. Based on the voids around inclusions, the equivalent size of initial fatigue crack has been newly defined as √ {{{area}_{inclusion} }/{(1 - {CC)}}} , where the contraction coefficient CC of inclusion was introduced. A reliable forecast model of the critical size of inclusion leading to fracture was established by the incorporation of actual width b inclusion or diameter d inclusion of internal inclusion; the model prediction was found to be in agreement with experimental results.

  20. Biomechanical models of damage and healing processes for voice health

    DEFF Research Database (Denmark)

    Granados Corsellas, Alba; Brunskog, Jonas; Jacobsen, Finn

    2013-01-01

    the vocal-fold plane are available. This data is used to improve existing continuum biomechanical models of the vocal-folds by analyzing the injury processes. The project is expected to result in methods that objectively demonstrate the impact of high voice-load on voice. A detailed description...

  1. Fatigue failure analysis of V-4Ti-4Cr alloy

    International Nuclear Information System (INIS)

    Aglan, H.; Gan, Y.X.; Grossbeck, M.

    1999-01-01

    In the present work, the fatigue fracture and failure behavior of a V-4Ti-4Cr has been studied. Static tests were conducted to study the overloading behavior and to select the magnitude of the stress level for the fatigue studies. Fatigue tests were performed using single edge notched (SEN) specimens under tension-tension load control conditions. Fatigue crack propagation (FCP) data such as the crack length, number of cycles, and hysteresis loops were recorded to calculate the crack speed, the energy release rate, and the change in work expended on damage formation and dissipative processes within the material. Parameters characterizing the fatigue fracture resistance of V-4Ti-4Cr alloy, namely the specific energy of damage (γ'), and the dissipative coefficient (β'), were determined from the fatigue data using the modified crack layer (MCL) theory. Fracture surface examination using scanning electron microscopy (SEM) revealed ductile failure mechanisms under tensile overloading conditions. The fatigue fracture surface of the V-4Ti-4Cr consists of three distinct regions, corresponding to the threshold, stable and unstable crack propagation stages. (orig.)

  2. A methodology to evaluate the fatigue life of flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Fernando J.M. de; Sousa, Jose Renato M. de; Siqueira, Marcos Q. de; Sagrilo, Luis V.S. [Coordenacao dos Programas de Pos-graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Lemos, Carlos Alberto D. de [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This paper focus on a methodology to perform the fatigue analysis of flexible pipes. This methodology employs functions that convert forces and moments obtained in global analyses into stresses. The stresses are then processed by well-known cycle counting methods, and S-N curves evaluate the damage at several points in the pipe cross-section. Palmgren-Miner linear damage hypothesis is assumed in order to calculate the accumulated fatigue damage. A parametric study on the fatigue life of a flexible pipe employing this methodology is presented. The main points addressed in the study are the influence of friction between layers in the results, the importance of evaluating the fatigue life in various points of the pipe cross-section and the effect of different mean stress levels. The obtained results suggest that the consideration of friction effects strongly influences the fatigue life of flexible risers and these effects have to be accounted both in the global and local analyses of the riser. Moreover, mean stress effects are also significant and at least 8 equally spaced wires in each analyzed section of the riser must be considered in fatigue analyses. (author)

  3. Multi-scale analysis of the fatigue of shape memory alloys

    International Nuclear Information System (INIS)

    Zheng, Lin

    2016-01-01

    Shape Memory Alloy (SMA) is a typical smart material having many applications from aerospace industry, mechanical and civil engineering, to biomedical devices, where the material's fatigue is a big concern. One of the challenging issues in studying the fatigue behaviors of SMA polycrystals is the interaction between the material damage and the martensitic phase transformation which takes place in a macroscopic homogeneous mode or a heterogeneous mode (forming macroscopic patterns (Luders-like bands) due to the localized deformations and localized heating/cooling). Such pattern formation and evolution imply the governing physical mechanisms in the material system such as the fatigue process, but there is still no fatigue study of SMAs by tracing the macro-band patterns and the local material responses. To bridge this gap, systematic tensile fatigue experiments are conducted on pseudo-elastic NiTi polycrystalline strips by in-situ optical observation on the band-pattern evolutions and by tracing the deformation history of the cyclic phase transformation zones where fatigue failure occurs. These experimental results help to better understand the stress- and frequency-dependent fatigue behaviors. Particularly, it is found that the local residual strain rather than the structural nominal/global residual strain is a good indicator on the material's damage leading to the fatigue failure, which is important for understanding and modeling the fatigue process in SMAs. (author)

  4. Failure Analysis of a Sheet Metal Blanking Process Based on Damage Coupling Model

    Science.gov (United States)

    Wen, Y.; Chen, Z. H.; Zang, Y.

    2013-11-01

    In this paper, a blanking process of sheet metal is studied by the methods of numerical simulation and experimental observation. The effects of varying technological parameters related to the quality of products are investigated. An elastoplastic constitutive equation accounting for isotropic ductile damage is implemented into the finite element code ABAQUS with a user-defined material subroutine UMAT. The simulations of the damage evolution and ductile fracture in a sheet metal blanking process have been carried out by the FEM. In order to guarantee computation accuracy and avoid numerical divergence during large plastic deformation, a specified remeshing technique is successively applied when severe element distortion occurs. In the simulation, the evolutions of damage at different stage of the blanking process have been evaluated and the distributions of damage obtained from simulation are in proper agreement with the experimental results.

  5. Processing of hazardous material, or damage treatment method for shallow layer underground storage structure

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Sakaguchi, Takehiko; Nishioka, Yoshihiro.

    1997-01-01

    In radioactive waste processing facilities and shallow layer underground structures for processing hazardous materials, sheet piles having freezing pipes at the joint portions are spiked into soils at the periphery of a damaged portion of the shallow layer underground structure for processing or storing hazardous materials. Liquid nitrogen is injected to the freezing pipes to freeze the joint portions of adjacent sheet piles. With such procedures, continuous waterproof walls are formed surrounding the soils at the peripheries of the damaged portion. Further, freezing pipes are disposed in the surrounding soils, and liquid nitrogen is injected to freeze the soils. The frozen soils are removed, and artificial foundation materials are filled in the space except for the peripheries of the damaged portion after the removal thereof, and liquid suspension is filled in the peripheries of the damaged portion, and restoration steps for closing the damaged portion are applied. Then, the peripheries of the damaged portion are buried again. With such procedures, series of treatments for removing contaminated soils and repairing a damaged portion can be conducted efficiently at a low cost. (T.M.)

  6. Towards the damage evaluation using Gurson-Tvergaard-Needleman (GTN) model for hot forming processes

    Science.gov (United States)

    Imran, Muhammad; Bambach, Markus

    2018-05-01

    In the production of semi-finished metal products, hot forming is used to eliminate the pores and voids from the casting process under compressive stresses and to modify the microstructure for further processing. In the case of caliber and flat rolling processes, tensile stresses occur at certain roll gap ratios which promote pore formation on nonmetallic inclusion. The formation of new pores contributes to ductile damage and reduces the load carrying capacity of the material. In the literature, the damage nucleation and growth during the hot forming process are not comprehensively described. The aim of this study is to understand the damage initiation and growth mechanism during hot forming processes. Hot tensile tests are performed at different temperatures and strain rates for 16MnCrS5 steel. To investigate the influence of geometrical variations on the damage mechanism, specimens with different stress triaxiality ratios are used. Finite element simulations using the Gurson-Tvergaard-Needleman (GTN) damage model are performed to estimate the critical void fraction for the damage initiation and the evolution of the void volume fraction. The results showed that the GTN model underestimates the softening of the material due to the independence of the temperature and the strain rate.

  7. Fatigue Analysis of Large-scale Wind turbine

    Directory of Open Access Journals (Sweden)

    Zhu Yongli

    2017-01-01

    Full Text Available The paper does research on top flange fatigue damage of large-scale wind turbine generator. It establishes finite element model of top flange connection system with finite element analysis software MSC. Marc/Mentat, analyzes its fatigue strain, implements load simulation of flange fatigue working condition with Bladed software, acquires flange fatigue load spectrum with rain-flow counting method, finally, it realizes fatigue analysis of top flange with fatigue analysis software MSC. Fatigue and Palmgren-Miner linear cumulative damage theory. The analysis result indicates that its result provides new thinking for flange fatigue analysis of large-scale wind turbine generator, and possesses some practical engineering value.

  8. Identification of low cycle fatigue parameters

    Directory of Open Access Journals (Sweden)

    Balda M.

    2009-12-01

    Full Text Available The article describes a new approach to the processing of experimental data coming from low-cycle fatigue (LCF tests. The data may be either tables from the standard tests, or a time series of loading processes and corresponding numbers of cycles to damage. A new method and a program for the evaluation of material parameters governing the material behavior under a low cycle loading have been developed. They exploit a minimization procedure for an appropriate criterion function based on differences of measured and evaluated damages.

  9. Process evaluation of a tailored mobile health intervention aiming to reduce fatigue in airline pilots

    Directory of Open Access Journals (Sweden)

    Alwin van Drongelen

    2016-08-01

    Full Text Available Abstract Background MORE Energy is a mobile health intervention which aims to reduce fatigue and improve health in airline pilots. The primary objective of this process evaluation was to assess the reach, dose delivered, compliance, fidelity, barriers and facilitators, and satisfaction of the intervention. The second objective was to investigate the associations of adherence to the intervention with compliance and with participant satisfaction. Thirdly, we investigated differences between the subgroups within the target population. Methods The intervention consisted of a smartphone application, supported by a website. It provided advice on optimal light exposure, sleep, nutrition, and physical activity, tailored to flight and personal characteristics. The reach of the intervention was determined by comparing the intervention group participants and the airline pilots who did not participate. The dose delivered was defined as the total number of participants that was sent an instruction email. Objective compliance was measured through the Control Management System of the application. To determine the fidelity, an extensive log was kept throughout the intervention period. Subjective compliance, satisfaction, barriers, facilitators, and adherence were assessed using online questionnaires. Associations between the extent to which the participants applied the advice in daily life (adherence, compliance, and satisfaction were analysed as well. Finally, outcomes of participants of different age groups and haul types were compared. Results A total of 2222 pilots were made aware of the study. From this group, 502 pilots met the inclusion criteria and did agree to participate. The reach of the study proved to be 22 % and the dose delivered was 99 %. The included pilots were randomized into the intervention group (n = 251 or the control group (n = 251. Of the intervention group participants, 81 % consulted any advice, while 17 % did this during

  10. Process evaluation of a tailored mobile health intervention aiming to reduce fatigue in airline pilots.

    Science.gov (United States)

    van Drongelen, Alwin; Boot, Cécile R L; Hlobil, Hynek; Smid, Tjabe; van der Beek, Allard J

    2016-08-26

    MORE Energy is a mobile health intervention which aims to reduce fatigue and improve health in airline pilots. The primary objective of this process evaluation was to assess the reach, dose delivered, compliance, fidelity, barriers and facilitators, and satisfaction of the intervention. The second objective was to investigate the associations of adherence to the intervention with compliance and with participant satisfaction. Thirdly, we investigated differences between the subgroups within the target population. The intervention consisted of a smartphone application, supported by a website. It provided advice on optimal light exposure, sleep, nutrition, and physical activity, tailored to flight and personal characteristics. The reach of the intervention was determined by comparing the intervention group participants and the airline pilots who did not participate. The dose delivered was defined as the total number of participants that was sent an instruction email. Objective compliance was measured through the Control Management System of the application. To determine the fidelity, an extensive log was kept throughout the intervention period. Subjective compliance, satisfaction, barriers, facilitators, and adherence were assessed using online questionnaires. Associations between the extent to which the participants applied the advice in daily life (adherence), compliance, and satisfaction were analysed as well. Finally, outcomes of participants of different age groups and haul types were compared. A total of 2222 pilots were made aware of the study. From this group, 502 pilots met the inclusion criteria and did agree to participate. The reach of the study proved to be 22 % and the dose delivered was 99 %. The included pilots were randomized into the intervention group (n = 251) or the control group (n = 251). Of the intervention group participants, 81 % consulted any advice, while 17 % did this during four weeks or more. Fidelity was 67 %. The

  11. Fatigue Crack Topography.

    Science.gov (United States)

    1984-01-01

    alloys (2). [--I Fig. 6. Fatigue fracture in Nitrile- butadien rubber ( NBR ). Fig. 7. The characteristic features of fatigue fracture in press moulded...in plastics and even in rubber . It follows therefore, that fatigue fractures must also occur in the mineral layers of our earth or in the rock on...effective until the weakest point yields and forms a crack. To get a feeling for this process, you can imagine that the stressed article is made of rubber

  12. Lipid Replacement Therapy: a Functional Food Approach with New Formulations for Reducing Cellular Oxidative Damage, Cancer-Associated Fatigue and the Adverse Effects of Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Garth L. Nicolson

    2011-04-01

    Full Text Available Backgroud:Cancer-associated fatigue and the chronic adverse effects of cancer therapy can be reduced by Lipid Replacement Therapy (LRT using membrane phospholipid mixtures given as food supplements.Methods:This is a review of the published literature on LRT and its uses.Results: LRT significantly reduced fatigue in cancer patients as well as patients suffering from chronic fatiguing illnesses and other medical conditions. It also reduced the adverse effects of chemotherapy, resulting in improvements in incidence of fatigue, nausea, diarrhea, impaired taste, constipation, insomnia and other quality of life indicators. In other diseases, such as chronic fatigue syndrome, fibromyalgia syndrome and other chronic fatiguing illnesses, LRT reduced fatigue by 35.5-43.1% in different clinical trials and increased mitochondrial function.Conclusions: LRT formulations appear to be useful as non-toxic dietary supplements for direct use or placed in functional foods to reduce fatigue and restore mitochondrial and other cellular membrane functions. Formulations of LRT phospholipids are suitable for addition to variousfood products for the treatment of a variety of chronic illnesses as well as their application inanti-aging and other health supplements and products.

  13. Monitoring of temperature fatigue failure mechanism for polyvinyl alcohol fiber concrete using acoustic emission sensors.

    Science.gov (United States)

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed.

  14. Fatigue approach for addressing environmental effects in fatigue usage calculation

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Paul; Rudolph, Juergen [AREVA GmbH, Erlangen (Germany); Steinmann, Paul [Erlangen-Nuremberg Univ., erlangen (Germany). Chair of Applied Mechanics

    2015-04-15

    Laboratory tests consider simple trapezoidal, triangle, and sinusoidal signals. However, actual plant components are characterized by complex loading patterns and periods of holds. Fatigue tests in water environment show, that the damage from a realistic strain variation or the presence of hold-times within cyclic loading results in an environmental reduction factor (Fen) only half that of a simple waveform. This study proposes a new fatigue approach for addressing environmental effects in fatigue usage calculation for class 1 boiler and pressure vessel reactor components. The currently accepted method of fatigue assessment has been used as a base model and all cycles, which have been comparable with realistic fatigue tests, have been excluded from the code-based fatigue calculation and evaluated directly with the test data. The results presented show that the engineering approach can successfully be integrated in the code-based fatigue assessment. The cumulative usage factor can be reduced considerably.

  15. Fatigue approach for addressing environmental effects in fatigue usage calculation

    International Nuclear Information System (INIS)

    Wilhelm, Paul; Rudolph, Juergen; Steinmann, Paul

    2015-01-01

    Laboratory tests consider simple trapezoidal, triangle, and sinusoidal signals. However, actual plant components are characterized by complex loading patterns and periods of holds. Fatigue tests in water environment show, that the damage from a realistic strain variation or the presence of hold-times within cyclic loading results in an environmental reduction factor (Fen) only half that of a simple waveform. This study proposes a new fatigue approach for addressing environmental effects in fatigue usage calculation for class 1 boiler and pressure vessel reactor components. The currently accepted method of fatigue assessment has been used as a base model and all cycles, which have been comparable with realistic fatigue tests, have been excluded from the code-based fatigue calculation and evaluated directly with the test data. The results presented show that the engineering approach can successfully be integrated in the code-based fatigue assessment. The cumulative usage factor can be reduced considerably.

  16. Analysis of the influence of plastic deformations in fatigue and crack process by numerical simulation

    International Nuclear Information System (INIS)

    Rahimian, Mohammad.

    1981-06-01

    The aim of this work is to analyze, by numerical simulation the characteristics of the stresses and deformations at the bottom of cracks when plasticity is taken into account. This analysis is performed as from theoretical results laid down in the literature and makes it possible to understand the different solutions obtained from Hencky's deformation law or from the incremental theory. The role of plastic deformation is discussed in depth in the study of fatigue cracks. The problems linked to the fixed crack are studied in the first two chapters. The problems linked to the propagation of cracks are discussed in the following chapters. The fourth chapter is an application of the preceding results and knowledge to fatigue [fr

  17. High Frequency Vibration Based Fatigue Testing of Developmental Alloys

    Science.gov (United States)

    Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.

    Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.

  18. Assessment of compressive failure process of cortical bone materials using damage-based model.

    Science.gov (United States)

    Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R

    2017-02-01

    The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome

    Science.gov (United States)

    Mizuno, Kei; Tanaka, Masaaki; Tanabe, Hiroki C.; Joudoi, Takako; Kawatani, Junko; Shigihara, Yoshihito; Tomoda, Akemi; Miike, Teruhisa; Imai-Matsumura, Kyoko; Sadato, Norihiro; Watanabe, Yasuyoshi

    2015-01-01

    The ability to divide one's attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS). We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension) and functional magnetic resonance imaging. Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG), which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension. In addition, in patients, the dorsal anterior cingulate gyrus (dACC) and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively. Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue. PMID:26594619

  20. Microstructure, Mechanical, and Fatigue Strength of Ti-54M Processed by Rotary Swaging

    Science.gov (United States)

    Al-Khazraji, Hasan; El-Danaf, Ehab; Wollmann, Manfred; Wagner, Lothar

    2015-05-01

    TIMETAL 54M is a newly developed (α + β) titanium alloy with nominal composition Ti-5Al-4V-0.6Mo-0.4Fe. The alloy can provide a cost benefit over Ti-6Al-4V due to improved machinability and formability. In the present work, evolution of mechanical properties in terms of tensile and hardness values is investigated as a function of deformation degrees imposed via rotary swaging (RS). Microstructure, mechanical properties, and fatigue performance of Ti-54M are investigated after severe plastic deformation by RS conducted at 850 °C and after being subjected to two different post-swaging annealing conditions. Optical microscopy and scanning electron microscopy using electron back scatter diffraction were utilized to document the evolution of the microstructure. Tensile tests were conducted to characterize mechanical properties. RS, to a true strain of 3.0, is found to lead to a marked ultrafine-grained structure of about 1 μm grain size with low content of high angle grain boundaries (HAGBs). Post-swaging heat treatment at 800 °C followed by air cooling did not change the grain size but exhibited high content of HAGBs. Post-swaging heat treatment at 940 °C followed by furnace cooling resulted in a grain size of about 5 μm and enhanced work-hardening capability and ductility, which resulted in less fatigue notch sensitivity, but at the same time lower fatigue strength at 107 cycles.

  1. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome.

    Science.gov (United States)

    Mizuno, Kei; Tanaka, Masaaki; Tanabe, Hiroki C; Joudoi, Takako; Kawatani, Junko; Shigihara, Yoshihito; Tomoda, Akemi; Miike, Teruhisa; Imai-Matsumura, Kyoko; Sadato, Norihiro; Watanabe, Yasuyoshi

    2015-01-01

    The ability to divide one's attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS). We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension) and functional magnetic resonance imaging. Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG), which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension. In addition, in patients, the dorsal anterior cingulate gyrus (dACC) and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively. Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue.

  2. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Kei Mizuno

    2015-01-01

    Full Text Available The ability to divide one's attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS. We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension and functional magnetic resonance imaging. Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG, which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension. In addition, in patients, the dorsal anterior cingulate gyrus (dACC and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively. Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue.

  3. Roughness Effects on Fretting Fatigue

    Science.gov (United States)

    Yue, Tongyan; Abdel Wahab, Magd

    2017-05-01

    Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.

  4. Numerical simulation of self-piercing riveting process (SRP using continuum damage mechanics modelling

    Directory of Open Access Journals (Sweden)

    Nicola Bonora

    2018-04-01

    Full Text Available The extended Bonora damage model was used to investigate joinability of materials in self-piercing riveting process. This updated model formulation accounts for void nucleation and growth process and shear-controlled damage which is critical for shear fracture sensitive materials. Potential joint configurations with dissimilar materials have been investigated computationally. In particular the possible combination of DP600 steel, which is widely used in the automotive industry, with AL2024-T351, which is known to show shear fracture sensitivity, and oxygen-free pure copper, which is known to fail by void nucleation and growth, have been investigated. Preliminary numerical simulation results indicate that the damage modelling is capable to discriminate potential criticalities occurring in the SPR joining process opening the possibility for process parameters optimization and screening of candidate materials for optimum joint

  5. Study of the fatigue behaviour and damage of a aged duplex stainless steel; Etude du comportement et de l'endommagement en fatigue d'un acier inoxydable austeno-ferritique moule vieilli

    Energy Technology Data Exchange (ETDEWEB)

    Le Roux, J.Ch

    2000-07-01

    Cast duplex stainless steels are commonly used in components of pressurized water reactors primary circuit. When submitted to in-service temperatures embrittlement occurs because of the nucleation and growth of a harder phase in the ferrite by spinodal composition. Macrostructure of this steel (ferritic primary grain size is about 4-5 mm) and embrittlement of ferrite due to aging lead to a very high scattering of mechanical properties for monotonous loadings. We showed that, in spite of this macrostructure, the cyclic behaviour of aged duplex stainless steels fits usual Manson-Coffin law while initial hardening is followed by softening, in part because of the demodulation of the composition. The fatigue crack propagation rate of material follows a Paris law. While crack initiation mainly appears next to the millimetric cast defects, fatigue crack propagation remains a continuous mechanism. Ferritic and austenitic elements break successively (ferrite first breaks by cleavage, then austenite breaks by ductile fatigue). In spite of the fact that the aged ferrite is embrittled, cleavage microcracks, for load levels examined, seldom appear in ferrite at the crack tip and on both sides of the main crack. Effects of cast defects and crystallographic ferrite orientation were also studied. Propagation fatigue crack behaviour was modeled assuming that the crack tip material behaves as if it was submitted to low cycle fatigue loadings. If we consider a homogeneous material, results are in good agreement with experiments. (authors)

  6. Processing of radiation-induced clustered DNA damage generates DSB in mammalian cells

    International Nuclear Information System (INIS)

    Gulston, M.K.; De Lara, C.M.; Davis, E.L.; Jenner, T.J.; O'Neill, P.

    2003-01-01

    Full text: Clustered DNA damage sites, in which two or more lesions are formed within a few helical turns of the DNA after passage of a single radiation track, are signatures of DNA modifications induced by ionizing radiation in mammalian cell. With 60 Co-radiation, the abundance of clustered DNA damage induced in CHO cells is ∼4x that of prompt double strand breaks (DSB) determined by PFGE. Less is known about the processing of non-DSB clustered DNA damage induced in cells. To optimize observation of any additional DSB formed during processing of DNA damage at 37 deg C, xrs-5 cells deficient in non-homologous end joining were used. Surprisingly, ∼30% of the DSB induced by irradiation at 37 deg C are rejoined within 4 minutes in both mutant and wild type cells. No significant mis-repair of these apparent DSB was observed. It is suggested that a class of non-DSB clustered DNA damage is formed which repair correctly within 4 min but, if 'trapped' prior to repair, are converted into DSB during the lysis procedure of PFGE. However at longer times, a proportion of non-DSB clustered DNA damage sites induced by γ-radiation are converted into DSB within ∼30 min following post-irradiation incubation at 37 deg C. The corresponding formation of additional DSB was not apparent in wild type CHO cells. From these observations, it is estimated that only ∼10% of the total yield of non DSB clustered DNA damage sites are converted into DSB through cellular processing. The biological consequences that the majority of non-DSB clustered DNA damage sites are not converted into DSBs may be significant even at low doses, since a finite chance exists of these clusters being formed in a cell by a single radiation track

  7. Estimation of fatigue life using electromechanical impedance technique

    Science.gov (United States)

    Lim, Yee Yan; Soh, Chee Kiong

    2010-04-01

    Fatigue induced damage is often progressive and gradual in nature. Structures subjected to large number of fatigue load cycles will encounter the process of progressive crack initiation, propagation and finally fracture. Monitoring of structural health, especially for the critical components, is therefore essential for early detection of potential harmful crack. Recent advent of smart materials such as piezo-impedance transducer adopting the electromechanical impedance (EMI) technique and wave propagation technique are well proven to be effective in incipient damage detection and characterization. Exceptional advantages such as autonomous, real-time and online, remote monitoring may provide a cost-effective alternative to the conventional structural health monitoring (SHM) techniques. In this study, the main focus is to investigate the feasibility of characterizing a propagating fatigue crack in a structure using the EMI technique as well as estimating its remaining fatigue life using the linear elastic fracture mechanics (LEFM) approach. Uniaxial cyclic tensile load is applied on a lab-sized aluminum beam up to failure. Progressive shift in admittance signatures measured by the piezo-impedance transducer (PZT patch) corresponding to increase of loading cycles reflects effectiveness of the EMI technique in tracing the process of fatigue damage progression. With the use of LEFM, prediction of the remaining life of the structure at different cycles of loading is possible.

  8. Fatigue modeling of materials with complex microstructures

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2011-01-01

    with the phenomenological model of fatigue damage growth. As a result, the fatigue lifetime of materials with complex structures can be determined as a function of the parameters of their structures. As an example, the fatigue lifetimes of wood modeled as a cellular material with multilayered, fiber reinforced walls were...

  9. Decomposition and Precipitation Process During Thermo-mechanical Fatigue of Duplex Stainless Steel

    Czech Academy of Sciences Publication Activity Database

    Weidner, A.; Kolmorgen, R.; Kuběna, Ivo; Kulawinski, D.; Kruml, Tomáš; Biermann, H.

    47A, č. 5 (2016), s. 2112-2124 ISSN 1073-5623 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR GA15-08826S Institutional support: RVO:68081723 Keywords : FE-CR ALLOYS * SPINODAL DECOMPOSITION * COMPUTER-MODELS * ATOMIC-LEVEL * AGING EMBRITTLEMENT * FERRITE * BEHAVIOR * TEMPERATURE Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.874, year: 2016 http://link.springer.com/article/10.1007/s11661-016-3392-z

  10. Monitoring and Failure Analysis of Corroded Bridge Cables under Fatigue Loading Using Acoustic Emission Sensors

    Directory of Open Access Journals (Sweden)

    Hui Li

    2012-03-01

    Full Text Available Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index.

  11. Monitoring and Failure Analysis of Corroded Bridge Cables under Fatigue Loading Using Acoustic Emission Sensors

    Science.gov (United States)

    Li, Dongsheng; Ou, Jinping; Lan, Chengming; Li, Hui

    2012-01-01

    Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE) technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index. PMID:22666009

  12. Application of parallel computing to seismic damage process simulation of an arch dam

    International Nuclear Information System (INIS)

    Zhong Hong; Lin Gao; Li Jianbo

    2010-01-01

    The simulation of damage process of high arch dam subjected to strong earthquake shocks is significant to the evaluation of its performance and seismic safety, considering the catastrophic effect of dam failure. However, such numerical simulation requires rigorous computational capacity. Conventional serial computing falls short of that and parallel computing is a fairly promising solution to this problem. The parallel finite element code PDPAD was developed for the damage prediction of arch dams utilizing the damage model with inheterogeneity of concrete considered. Developed with programming language Fortran, the code uses a master/slave mode for programming, domain decomposition method for allocation of tasks, MPI (Message Passing Interface) for communication and solvers from AZTEC library for solution of large-scale equations. Speedup test showed that the performance of PDPAD was quite satisfactory. The code was employed to study the damage process of a being-built arch dam on a 4-node PC Cluster, with more than one million degrees of freedom considered. The obtained damage mode was quite similar to that of shaking table test, indicating that the proposed procedure and parallel code PDPAD has a good potential in simulating seismic damage mode of arch dams. With the rapidly growing need for massive computation emerged from engineering problems, parallel computing will find more and more applications in pertinent areas.

  13. Actualities on molecular pathogenesis and repairing processes of cerebral damage in perinatal hypoxic-ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Praticò Andrea D

    2010-09-01

    Full Text Available Abstract Hypoxic-ischemic encephalopathy (HIE is the most important cause of cerebral damage and long-term neurological sequelae in the perinatal period both in term and preterm infant. Hypoxic-ischemic (H-I injuries develop in two phases: the ischemic phase, dominated by necrotic processes, and the reperfusion phase, dominated by apoptotic processes extending beyond ischemic areas. Due to selective ischemic vulnerability, cerebral damage affects gray matter in term newborns and white matter in preterm newborns with the typical neuropathological aspects of laminar cortical necrosis in the former and periventricular leukomalacia in the latter. This article summarises the principal physiopathological and biochemical processes leading to necrosis and/or apoptosis of neuronal and glial cells and reports recent insights into some endogenous and exogenous cellular and molecular mechanisms aimed at repairing H-I cerebral damage.

  14. Fatigue damage of steel components

    DEFF Research Database (Denmark)

    Fæster, Søren; Zhang, Xiaodan; Huang, Xiaoxu

    2014-01-01

    Railway rails and the inner ring in roller bearings in wind turbines are both experiencing steel-to-steel contact in small areas with huge loads resulting in extremely high stresses in the base materials......Railway rails and the inner ring in roller bearings in wind turbines are both experiencing steel-to-steel contact in small areas with huge loads resulting in extremely high stresses in the base materials...

  15. Observation of damage process in RC beams under cucle bending by acoustic emission

    International Nuclear Information System (INIS)

    Shigeishi, Mitsuhiro; Ohtsu, Masayasu; Tsuji, Nobuyuki; Yasuoka, Daisuke

    1997-01-01

    Reinforced concrete (RC) structures are generally applied to construction of buildings and bridges, and are imposed on cyclic loading incessantly. It is considered that detected acoustic emission (AE) waveforms are associated with the damage degree and the fracture mechanisms of RC structures. Therefor, the cyclic bending tests are applied to damaged RC beam specimens. To evaluate the interior of the damaged RC beams, the AE source kinematics are determined by 'SiGMA' procedure for AE moment tensor analysis. By using 'SiGMA' procedure, AE source kinematics, such as source locations, crack types, crack orientations and crack motions, can be identified. The results show the applicability to observation of the fracture process under cyclic bending load and evaluation the degree of damage of RC beam.

  16. Effect of continuum damage mechanics on spring back prediction in metal forming processes

    International Nuclear Information System (INIS)

    Nayebi, Ali; Shahabi, Mehdi

    2017-01-01

    The influence of considering the variations in material properties was investigated through continuum damage mechanics according to the Lemaitre isotropic unified damage law to predict the bending force and spring back in V-bending sheet metal forming processes, with emphasis on Finite element (FE) simulation considerations. The material constants of the damage model were calibrated through a uniaxial tensile test with an appropriate and convenient repeating strategy. Holloman’s isotropic and Ziegler’s linear kinematic hardening laws were employed to describe the behavior of a hardening material. To specify the ideal FE conditions for simulating spring back, the effect of the various numerical considerations during FE simulation was investigated and compared with the experimental outcome. Results indicate that considering continuum damage mechanics decreased the predicted bending force and improved the accuracy of spring back prediction.

  17. Damage localization by statistical evaluation of signal-processed mode shapes

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Damkilde, Lars

    2015-01-01

    Due to their inherent ability to provide structural information on a local level, mode shapes and their derivatives are utilized extensively for structural damage identification. Typically, more or less advanced mathematical methods are implemented to identify damage-induced discontinuities in th...... is conducted on the basis of T2-statistics. The proposed method is demonstrated in the context of analytical work with a free-vibrating Euler-Bernoulli beam under noisy conditions.......) and subsequent application of a generalized discrete Teager-Kaiser energy operator (GDTKEO) to identify damage-induced mode shape discontinuities. In order to evaluate whether the identified discontinuities are in fact damage-induced, outlier analysis of principal components of the signal-processed mode shapes...

  18. Complex network models reveal correlations among network metrics, exercise intensity and role of body changes in the fatigue process

    Science.gov (United States)

    Pereira, Vanessa Helena; Gama, Maria Carolina Traina; Sousa, Filipe Antônio Barros; Lewis, Theodore Gyle; Gobatto, Claudio Alexandre; Manchado-Gobatto, Fúlvia Barros

    2015-05-01

    The aims of the present study were analyze the fatigue process at distinct intensity efforts and to investigate its occurrence as interactions at distinct body changes during exercise, using complex network models. For this, participants were submitted to four different running intensities until exhaustion, accomplished in a non-motorized treadmill using a tethered system. The intensities were selected according to critical power model. Mechanical (force, peak power, mean power, velocity and work) and physiological related parameters (heart rate, blood lactate, time until peak blood lactate concentration (lactate time), lean mass, anaerobic and aerobic capacities) and IPAQ score were obtained during exercises and it was used to construction of four complex network models. Such models have both, theoretical and mathematical value, and enables us to perceive new insights that go beyond conventional analysis. From these, we ranked the influences of each node at the fatigue process. Our results shows that nodes, links and network metrics are sensibility according to increase of efforts intensities, been the velocity a key factor to exercise maintenance at models/intensities 1 and 2 (higher time efforts) and force and power at models 3 and 4, highlighting mechanical variables in the exhaustion occurrence and even training prescription applications.

  19. Cyclic fatigue resistance of yttria-stabilized tetragonal zirconia polycrystals with hot isostatic press processing.

    Science.gov (United States)

    Koyama, Taku; Sato, Toru; Yoshinari, Masao

    2012-01-01

    This study investigated the influence of surface roughness and cyclic loading on fatigue resistance in Y-TZP subjected to hot isostatic pressing (HIP). Fifty Y-TZP cylinders 3.0 mm in diameter were divided into Group A (polished by centerless method; TZP-CP) or Group B (blasted and acid-etched: TZP-SB150E). Twenty five cp-titanium cylinders (Ti-SB150E) were used as a control. Static and cyclic tests were carried out according to ISO 14801. The cyclic fatigue test was performed in distilled water at 37°C. Surface morphology and roughness as well as crystal phase on the surfaces were also evaluated. Fracture force under the static test was 1,765N (TZP-CP), 1,220N (TZP-SB150E), and 850 N (yield force, Ti-SB150E). Fracture values under the cyclic test decreased to approximately 70% of those under the static tests. These results indicate that HIPed Y-TZP with a 3.0-mm diameter has sufficient durability for application to dental implants.

  20. Irreversible thermodynamics models and constitutive equations of the irradiation induced deformation and damage accumulating processes

    International Nuclear Information System (INIS)

    Wassilew, C.

    1989-11-01

    This report gives an overall evaluation of several in-reactor deformation and creep-rupture experiments performed in BR-2, FFTF, and Rapsodie on pressurised tubes of the stabilized austenitic stainless steels 1.4970, 1.4981, 1.4988, and the nickel base alloy Hastelloy-X. The irradiation induced deformation processes observed in the components operating in a neutron environment can be divided into two main groups: 1. volume conserving creep and 2. volumetric swelling. Since the observed deformation as well as damage accumulating phenomena are caused by the same constrained generated and free disposable point defects and helium atoms, it is obvious and advisable to analyze, and to model simultaneously the ensemble of the elementary mechanisms and processes effective at the same time. Phenomenological models based on the thermodynamics of irreversible processes have been developed, with the aim of: 1. grasping the partial relationships between the external variables and the response functions (creep, swelling, creep driven swelling, and time to rupture), 2. fathoming the rate-controlling mechanisms, 3. providing insight into the structural details and changes occurring during the deformation and the damage accumulating processes, 4. integrating the damage accumulating processes comprehensively, and 5. formulating the constitutive equations required to describe the elementary processes that generate plastic deformations as well as damage accumulation. (orig./MM)

  1. Thermal fatigue. Materials modelling

    International Nuclear Information System (INIS)

    Siegele, D.; Fingerhuth, J.; Mrovec, M.

    2012-01-01

    In the framework of the ongoing joint research project 'Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behavior under transient thermal-mechanical stress conditions (high cycle fatigue V HCF and low cycle fatigue - LCF) are carried out. The primary objective of the research is the further development of simulation methods applied in safety evaluations of nuclear power plant components. In this context the modeling of crack initiation and growth inside the material structure induced by varying thermal loads are of particular interest. Therefore, three scientific working groups organized in three sub-projects of the joint research project are dealing with numerical modeling and simulation at different levels ranging from atomistic to micromechanics and continuum mechanics, and in addition corresponding experimental data for the validation of the numerical results and identification of the parameters of the associated material models are provided. The present contribution is focused on the development and experimental validation of material models and methods to characterize the damage evolution and the life cycle assessment as a result of thermal cyclic loading. The individual purposes of the subprojects are as following: - Material characterization, Influence of temperature and surface roughness on fatigue endurances, biaxial thermo-mechanical behavior, experiments on structural behavior of cruciform specimens and scatter band analysis (IfW Darmstadt) - Life cycle assessment with micromechanical material models (MPA Stuttgart) - Life cycle assessment with atomistic and damage-mechanical material models associated with material tests under thermal fatigue (Fraunhofer IWM, Freiburg) - Simulation of fatigue crack growth, opening and closure of a short crack under

  2. Mechanical behavior and fatigue in polymeric composites at low temperatures

    International Nuclear Information System (INIS)

    Katz, Y.; Bussiba, A.; Mathias, H.

    1986-01-01

    Advanced fiber reinforced polymeric composite materials are often suggested as structural materials at low temperature. In this study, graphite epoxy and Kevlar-49/epoxy systems were investigated. Fatigue behavior was emphasized after establishing the standard monotonic mechanical properties, including fracture resistance parameters at 77, 190, and 296 K. Tension-tension fatigue crack propagation testing was carried out at nominal constant stress intensity amplitudes using precracked compact tensile specimens. The crack tip damage zone was measured and tracked by an electro-potential device, opening displacement gage, microscopic observation, and acoustic emission activity recording. Fractograhic and metallographic studies were performed with emphasis on fracture morphology and modes, failure processes, and description of sequential events. On the basis of these experimental results, the problem of fatigue resistance, including low temperature effects, is analyzed and discussed. The fundamental concepts of fatigue in composites are assessed, particularly in terms of fracture mechanics methods

  3. Effect of HIP Combined with RHT Process on Creep Damage of DZ125 Superalloy

    Directory of Open Access Journals (Sweden)

    WANG Tian-you

    2017-02-01

    Full Text Available Four different processes of hot isostatic pressing (HIP combined with rejuvenation heat treatments (RHT were adopted to reveal the microstructural evolution of creep damaged DZ125 specimens, finally the mechanical properties were evaluated.The results show that both γ' precipitate degeneration and creep cavities for the creep damaged DZ125 superalloy are found after the pre-endurance damage test.However, the carbided compositions from MC type to M23C6 type or M6C type has not been observed for DZ125.In addition, it is found that the HIP temperature play a dominant role in the cavity healing process for the damaged specimens. The concentrically oriented γ' rafting structure and the incipient melting are observed at 1200℃ and 1250℃ respectively.Meanwhile, it is found that the appropriate HIP schedule adopted can effectively avoid the internal recrystallization for the directionally solidified nickel-based superalloy DZ125. The appropriate HIP schedule combined with RHT process can successfully restore the microstructure induced by creep damage and recover the degraded micro-hardness to the original one, in addition improve the creep rupture life.

  4. Fatigue Performance of Composite Laminates After Low-velocity Impact

    Directory of Open Access Journals (Sweden)

    LIANG Xiao-lin

    2016-12-01

    Full Text Available Compression-compression fatigue tests were carried out on T300/5405 composite laminates after low-velocity impact, compression performance of the laminates with different impact damages was studied together with its fatigue life and damage propagation under different stress levels, then the effects of impact energy, stress level and damage propagation on fatigue life of laminates were discussed. The results indicate that impact damage can greatly reduce the residual strength of laminates; under low fatigue load levels, the higher impact energy is, the shorter the fatigue life of laminates with impact damage will be; damage propagation undergoes two stages during the fatigue test, namely the steady propagation and the rapid propagation, accounting for 80% and 20% of the overall fatigue life, respectively; damage propagation rate decreases with the reduction of stress level.

  5. Studies on fatigue life enhancement of pre-fatigued spring steel specimens using laser shock peening

    International Nuclear Information System (INIS)

    Ganesh, P.; Sundar, R.; Kumar, H.; Kaul, R.; Ranganathan, K.; Hedaoo, P.; Raghavendra, G.; Anand Kumar, S.; Tiwari, P.; Nagpure, D.C.; Bindra, K.S.; Kukreja, L.M.; Oak, S.M.

    2014-01-01

    Highlights: • Laser peening significantly extended fatigue life of pre-fatigued spring steel. • Increase in fatigue life of laser peened specimens was more than 15 times. • Black PVC tape is an effective coating for laser peening of ground surfaces. • Repeat peening repaired local surface melted regions on laser peened surface. • Technique is effective for life extension of in-service automobile parts. - Abstract: SAE 9260 spring steel specimens after enduring 50% of their mean fatigue life were subjected to laser shock peening using an in-house developed 2.5 J/7 ns pulsed Neodymium-doped Yttrium Aluminum Garnet (Nd:YAG) laser for studying their fatigue life enhancement. In the investigated range of process parameters, laser shock peening resulted in the extension of fatigue life of these partly fatigue damaged specimens by more than 15 times. Contributing factors for the enhanced fatigue life of laser peened specimens are: about 400 μm thick compressed surface layer with magnitude of surface stress in the range of −600 to −700 MPa, about 20% increase in surface hardness and unaltered surface finish. For laser peening of ground steel surface, an adhesive-backed black polyvinyl chloride (PVC) tape has been found to be a superior sacrificial coating than conventionally used black paint. The effect of repeated laser peening treatment was studied to repair locally surface melted regions and the treatment has been found to be effective in re-establishing desired compressive stress pattern on the erstwhile tensile-stressed surface

  6. Active-sensing based damage monitoring of airplane wings under low-temperature and continuous loading condition

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jun Young; Jung, Hwee Kwon; Park, Gyu Hae [Dept. of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of); Ha, Jae Seok; Park, Chan Yik [7th R and D Institute, Agency for Denfense Development, Yuseong (Korea, Republic of)

    2016-10-15

    As aircrafts are being operated at high altitude, wing structures experience various fatigue loadings under cryogenic environments. As a result, fatigue damage such as a crack could be develop that could eventually lead to a catastrophic failure. For this reason, fatigue damage monitoring is an important process to ensure efficient maintenance and safety of structures. To implement damage detection in real-world flight environments, a special cooling chamber was built. Inside the chamber, the temperature was maintained at the cryogenic temperature, and harmonic fatigue loading was given to a wing structure. In this study, piezoelectric active-sensing based guided waves were used to detect the fatigue damage. In particular, a beam forming technique was applied to efficiently measure the scattering wave caused by the fatigue damage. The system was used for detection, growth monitoring, and localization of a fatigue crack. In addition, a sensor diagnostic process was also applied to ensure the proper operation of piezoelectric sensors. Several experiments were implemented and the results of the experiments demonstrated that this process could efficiently detect damage in such an extreme environment.

  7. The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation

    International Nuclear Information System (INIS)

    Shikazono, Naoya; Noguchi, Miho; Fujii, Kentaro; Urushibara, Ayumi; Yokoya, Akinari

    2009-01-01

    After living cells are exposed to ionizing radiation, a variety of chemical modifications of DNA are induced either directly by ionization of DNA or indirectly through interactions with water-derived radicals. The DNA lesions include single strand breaks (SSB), base lesions, sugar damage, and apurinic/apyrimidinic sites (AP sites). Clustered DNA damage, which is defined as two or more of such lesions within one to two helical turns of DNA induced by a single radiation track, is considered to be a unique feature of ionizing radiation. A double strand break (DSB) is a type of clustered DNA damage, in which single strand breaks are formed on opposite strands in close proximity. Formation and repair of DSBs have been studied in great detail over the years as they have been linked to important biological endpoints, such as cell death, loss of genetic material, chromosome aberration. Although non-DSB clustered DNA damage has received less attention, there is growing evidence of its biological significance. This review focuses on the current understanding of (1) the yield of non-DSB clustered damage induced by ionizing radiation (2) the processing, and (3) biological consequences of non-DSB clustered DNA damage. (author)

  8. Influence of steel-making process and heat-treatment temperature on the fatigue and fracture properties of pressure vessel steels

    International Nuclear Information System (INIS)

    Koh, S. K.; Na, E. G.; Baek, T. H.; Won, S. Y.; Park, S. J.; Lee, S. W.

    2001-01-01

    In this paper, high strength pressure vessel steels having the same chemical compositions were manufactured by the two different steel-making processes, such as Vacuum Degassing(VD) and Electro-Slag Remelting(ESR) methods. After the steel-making process, they were normalized at 955 deg. C, quenched at 843 .deg. C, and finally tempered at 550 .deg. C or 450 deg. C, resulting in tempered martensitic microstructures with different yielding strengths depending on the tempering conditions. Low-Cycle Fatigue(LCF) tests, Fatigue Crack Growth Rate(FCGR) tests, and fracture toughness tests were performed to investigate the fatigue and fracture behaviors of the pressure vessel steels. In contrast to very similar monotonic, LCF, and FCGR behaviors between VD and ESR steels, a quite difference was noticed in the fracture toughness. Fracture toughness of ESR steel was higher than that of VD steel, being attributed to the removal of impurities in steel-making process

  9. FEM Techniques for High Stress Detection in Accelerated Fatigue Simulation

    Science.gov (United States)

    Veltri, M.

    2016-09-01

    This work presents the theory and a numerical validation study in support to a novel method for a priori identification of fatigue critical regions, with the aim to accelerate durability design in large FEM problems. The investigation is placed in the context of modern full-body structural durability analysis, where a computationally intensive dynamic solution could be required to identify areas with potential for fatigue damage initiation. The early detection of fatigue critical areas can drive a simplification of the problem size, leading to sensible improvement in solution time and model handling while allowing processing of the critical areas in higher detail. The proposed technique is applied to a real life industrial case in a comparative assessment with established practices. Synthetic damage prediction quantification and visualization techniques allow for a quick and efficient comparison between methods, outlining potential application benefits and boundaries.

  10. Damage in Creep Aging Process of an Al-Zn-Mg-Cu Alloy: Experiments and Modeling

    Directory of Open Access Journals (Sweden)

    Chao Lei

    2018-04-01

    Full Text Available In creep age forming (CAF, large integral panel components of high-strength aluminum alloy can be shaped and strengthened under external elastic loading at an elevated temperature through creep deformation and age hardening, simultaneously. However, the high ribbed structure on panel may induce stress concentration, inhomogeneous plastic deformation and even damage evolution on the bending rib, leading to the difficulty in controlling forming precision and material properties. Therefore, the generation and evolution of damage are necessary to be considered in the design of CAF. Taking 7050 aluminum alloy as the case material, the continuous and interrupted creep aging tests at 165 °C and three stress levels (300, 325, and 350 MPa were conducted, and the corresponding material properties, precipitate, and damage microstructures were studied by mechanical properties tests, transmission electron microscope (TEM and scanning electron microscope (SEM characterizations. With the increase of stress level, the creep deformation occurs easier, the precipitates grow up faster, the creep damage occurs earlier, the growth rate and the size of microvoids increase, the mechanical properties decrease more rapidly, and the dominant mechanism of creep fracture changes from shear to microvoid coalescence. To simulate creep aging behavior with damage, a continuum damage mechanics (CDM based model is calibrated and numerically implemented into ABAQUS solver via CREEP subroutine. The CAF of 7050 aluminum alloy panels with different height ribs were conducted by experiment and FE simulation. The forming process presents a typical stress relaxation phenomenon. The creep damage mainly occurs on the bending rib due to the severe stress concentration. With the increase of rib height, the creep strain and damage degree increase, but the springback decreases.

  11. Adrenal Fatigue

    Science.gov (United States)

    ... Search Featured Resource New Mobile App DOWNLOAD Adrenal Fatigue October 2017 Download PDFs English Editors Irina Bancos, MD Additional Resources Mayo Clinic What is adrenal fatigue? The term “adrenal fatigue” has been used to ...

  12. 41 CFR 101-26.307 - Processing overages, shortages, and damages.

    Science.gov (United States)

    2010-07-01

    ... United States, when other than GSA or DOD pays the transportation charges. (b) Reporting discrepancies or..., shortages, and damages. (a) Transportation-type discrepancies shall be processed in accordance with the instructions in subpart 101-40.7 when the discrepancies are the fault of the carrier and occur while the...

  13. Microglia kill amyloid-beta1-42 damaged neurons by a CD14-dependent process

    NARCIS (Netherlands)

    Bate, Clive; Veerhuis, Robert; Eikelenboom, Piet; Williams, Alun

    2004-01-01

    Activated microglia are closely associated with neuronal damage in Alzheimer's disease. In the present study, neurons exposed to low concentrations of amyloid-beta1-42, a toxic fragment of the amyloid-beta protein, were killed by microglia in a process that required cell-cell contact. Pre-treating

  14. Ultraviolet Laser Damage Dependence on Contamination Concentration in Fused Silica Optics during Reactive Ion Etching Process

    Directory of Open Access Journals (Sweden)

    Laixi Sun

    2018-04-01

    Full Text Available The reactive ion etching (RIE process of fused silica is often accompanied by surface contamination, which seriously degrades the ultraviolet laser damage performance of the optics. In this study, we find that the contamination behavior on the fused silica surface is very sensitive to the RIE process which can be significantly optimized by changing the plasma generating conditions such as discharge mode, etchant gas and electrode material. Additionally, an optimized RIE process is proposed to thoroughly remove polishing-introduced contamination and efficiently prevent the introduction of other contamination during the etching process. The research demonstrates the feasibility of improving the damage performance of fused silica optics by using the RIE technique.

  15. Coupling of experimental measurements to study the influence of microscopic defects on the fatigue damage in A319 Al-Si alloy

    Directory of Open Access Journals (Sweden)

    Wang Long

    2014-06-01

    Full Text Available An experimental protocol based on the coupling of kinematic field measurements on the surface and in volume at the microstructure scale has been set up in order to study the influence of the casting microstructure upon the initiation and propagation of cracks in low cycle fatigue. Preliminary applications of this protocol on tensile tests were successful as it allowed tracking the development and localization of plastic deformation and identifying the initiation sites of microcracks during tests in relation with the observed surface and volume microstructures. Application of the proposed protocol to low cycle fatigue is an on-going work.

  16. Cascading processes and interactions in torrent catchments and their influence on the damage pattern

    Science.gov (United States)

    Keiler, Margreth; Gebbers, David

    2014-05-01

    Research on single geomorphological processes during damaging events has a long history; however, comprehensive documentations and analyses of the events have been conducted not until the late 1980s. Thus, for highly damaging events insights about triggering, the evolution and the impacts of processes during an event and the resulting damage were produced. Though, in the majority of cases the processes were studied in a well-defined procedure of one disciplinary focus. These focused studies neglect mutable influences which may alter the sequence of the process or the event. During damaging events multiple geomorphological processes are active which leads to the assumption that they have a certain impact on each other and the course of damaging effect. Consequently, for a comprehensive hazard and risk analysis all processes of a catchment have to be analysed and evaluated quantitatively and qualitatively (MARZOCCHI, 2007). Although the demand for a sophisticated risk management is increasing, the research on interactions as well as on physical vulnerability to multiple hazards, including the different processes impact effects, is still very limited (KAPPES et al., 2010, 2011). The challenges in this field are the quantity of data needed, and furthermore to conduct this kind of analysis is very complex and complicated (KAPPES et al. 2012). Yet, knowledge about possible interactions and resulting impact effects could significantly contribute to the reduction of risk in a region. The objective of this study is to analyse, i) how geomorphological processes interact with each other and with other factors of the surrounding during a damaging event, ii) what influences those interactions have on the resulting damage of the event and iii) whether or not different events are comparable in terms of those interactions and their impacts. To meet these objectives, 15 damaging torrent events, which occurred between 2000 and 2011 in the Bernese Oberland and the Pennine Alps

  17. The influence of rock strength on erosion processes and river morphology in central Arizona: the accumulation of damage from macro-abrasion

    Science.gov (United States)

    Larimer, J. E.; Yanites, B.

    2017-12-01

    River morphology reflects the interaction between the driving forces of erosion and the resisting properties of bedrock that limit erosion. Changes in energy dissipation at the riverbed are indicated by differences in channel geometry. To erode at the same rate, stronger rocks require more energy, and thus, an adjustment in river slope or width is necessary to accomplish this work. Therefore, morphological changes should reflect differences in the rock strength properties most relevant to the dominant erosion process. We investigate this hypothesis by comparing river morphology and rock-strength properties of reaches subject to different processes. Streams in Prescott National Forest, AZ expose bedrock through a variety of lithologies, which provides a natural testing ground. Measurements include channel geometry, surface P-wave velocity, fracture spacing, and bedload grain size distribution of 150 individual reaches, as well as 260 tensile and compressive-strength tests and P-wave velocity of cores up to depths of 20 cm. Based on observations, we infer that fluvial erosion processes in this region generally fall into three domains: (1) grain by grain abrasion, (2) progressive failure by damage accumulation due to bedload impacts or `macro-abrasion', and (3) `plucking' of jointed rocks. We focus analyses on the accumulation of damage from sub-critical stresses that weakens the surface of the bedrock, potentially leading to macroscopic fractures, fatigue, and rock failure. This plays a dual role facilitating the ease with which abrasion removes material and increasing the rate of production of pluck-able particles. We estimate the `damage potential' of saltating bedload using water discharge time-series, sediment transport models and grain size distribution. To determine the resistance to damage accumulation among different rocks, we measure the evolution of damage in core samples under uniaxial loading using strain energy and inherent flaw theory. Preliminary

  18. Top3 processes recombination intermediates and modulates checkpoint activity after DNA damage

    DEFF Research Database (Denmark)

    Mankouri, Hocine W; Hickson, Ian D

    2006-01-01

    Mutation of TOP3 in Saccharomyces cerevisiae causes poor growth, hyperrecombination, and a failure to fully activate DNA damage checkpoints in S phase. Here, we report that overexpression of a dominant-negative allele of TOP3, TOP3(Y356F), which lacks the catalytic (decatenation) activity of Top3......, the catalytic activity of Top3 is not required for DNA damage checkpoint activation, but it is required for normal S-phase progression after DNA damage. We also present evidence that the checkpoint-mediated cell cycle delay and persistence of X-shaped DNA molecules resulting from overexpression of TOP3(Y356F......) are downstream of Rad51 function. We propose that Top3 functions in S phase to both process homologous recombination intermediates and modulate checkpoint activity....

  19. Bone fatigue and its implications for injuries in racehorses.

    Science.gov (United States)

    Martig, S; Chen, W; Lee, P V S; Whitton, R C

    2014-07-01

    Musculoskeletal injuries are a common cause of lost training days and wastage in racehorses. Many bone injuries are a consequence of repeated high loading during fast work, resulting in chronic damage accumulation and material fatigue of bone. The highest joint loads occur in the fetlock, which is also the most common site of subchondral bone injury in racehorses. Microcracks in the subchondral bone at sites where intra-articular fractures and palmar osteochondral disease occur are similar to the fatigue damage detected experimentally after repeated loading of bone. Fatigue is a process that has undergone much study in material science in order to avoid catastrophic failure of engineering structures. The term 'fatigue life' refers to the numbers of cycles of loading that can be sustained before failure occurs. Fatigue life decreases exponentially with increasing load. This is important in horses as loads within the limb increase with increasing speed. Bone adapts to increased loading by modelling to maintain the strains within the bone at a safe level. Bone also repairs fatigued matrix through remodelling. Fatigue injuries develop when microdamage accumulates faster than remodelling can repair. Remodelling of the equine metacarpus is reduced during race training and accelerated during rest periods. The first phase of remodelling is bone resorption, which weakens the bone through increased porosity. A bone that is porous following a rest period may fail earlier than a fully adapted bone. Maximising bone adaptation is an important part of training young racehorses. However, even well-adapted bones accumulate microdamage and require ongoing remodelling. If remodelling inhibition at the extremes of training is unavoidable then the duration of exposure to high-speed work needs to be limited and appropriate rest periods instituted. Further research is warranted to elucidate the effect of fast-speed work and rest on bone damage accumulation and repair. © 2014 EVJ Ltd.

  20. Shot peening as a pre-treatment to anodic oxidation coating process of AW 6082 aluminum for fatigue life improvement

    Czech Academy of Sciences Publication Activity Database

    Hadzima, B.; Nový, F.; Trško, L.; Pastorek, F.; Jambor, M.; Fintová, Stanislava

    2017-01-01

    Roč. 93, 9-12 (2017), s. 3315-3323 ISSN 0268-3768 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Fatigue life * AW 6082 aluminum alloy * Anodizing * Shot peening * Ultrasonic fatigue testing Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.209, year: 2016 https://link.springer.com/content/pdf/10.1007%2Fs00170-017-0776-1.pdf