WorldWideScience

Sample records for fate modelling based

  1. A polynomial based model for cell fate prediction in human diseases.

    Science.gov (United States)

    Ma, Lichun; Zheng, Jie

    2017-12-21

    Cell fate regulation directly affects tissue homeostasis and human health. Research on cell fate decision sheds light on key regulators, facilitates understanding the mechanisms, and suggests novel strategies to treat human diseases that are related to abnormal cell development. In this study, we proposed a polynomial based model to predict cell fate. This model was derived from Taylor series. As a case study, gene expression data of pancreatic cells were adopted to test and verify the model. As numerous features (genes) are available, we employed two kinds of feature selection methods, i.e. correlation based and apoptosis pathway based. Then polynomials of different degrees were used to refine the cell fate prediction function. 10-fold cross-validation was carried out to evaluate the performance of our model. In addition, we analyzed the stability of the resultant cell fate prediction model by evaluating the ranges of the parameters, as well as assessing the variances of the predicted values at randomly selected points. Results show that, within both the two considered gene selection methods, the prediction accuracies of polynomials of different degrees show little differences. Interestingly, the linear polynomial (degree 1 polynomial) is more stable than others. When comparing the linear polynomials based on the two gene selection methods, it shows that although the accuracy of the linear polynomial that uses correlation analysis outcomes is a little higher (achieves 86.62%), the one within genes of the apoptosis pathway is much more stable. Considering both the prediction accuracy and the stability of polynomial models of different degrees, the linear model is a preferred choice for cell fate prediction with gene expression data of pancreatic cells. The presented cell fate prediction model can be extended to other cells, which may be important for basic research as well as clinical study of cell development related diseases.

  2. Choice of pesticide fate models

    International Nuclear Information System (INIS)

    Balderacchi, Matteo; Trevisan, Marco; Vischetti, Costantino

    2006-01-01

    The choice of a pesticide fate model at field scale is linked to the available input data. The article describes the available pesticide fate models at a field scale and the guidelines for the choice of the suitable model as function of the data input requested [it

  3. Making fate and exposure models for freshwater ecotoxicity in life cycle assessment suitable for organic acids and bases.

    Science.gov (United States)

    van Zelm, Rosalie; Stam, Gea; Huijbregts, Mark A J; van de Meent, Dik

    2013-01-01

    Freshwater fate and exposure factors were determined for organic acids and bases, making use of the knowledge on electrical interaction of ionizing chemicals and their sorption to particles. The fate factor represents the residence time in the environment whereas exposure factors equal the dissolved fraction of a chemical. Multimedia fate, exposure, and effect model USES-LCA was updated to take into account the influence of ionization, based upon the acid dissociation constant (pK(a)) of a chemical, and the environmental pH. Freshwater fate (FF) and exposure (XF) factors were determined for 415 acids and 496 bases emitted to freshwater, air, and soil. The relevance of taking account of the degree of ionization of chemicals was tested by determining the ratio (R) of the new vs. fate and exposure factors determined with USES-LCA suitable for neutral chemicals only. Our results show that the majority of freshwater fate and exposure factors of chemicals that are largely ionized in the environment are larger with the ionics model compared to the factors determined with the neutrals model version. R(FF) ranged from 2.4×10(-1) to 1.6×10(1) for freshwater emissions, from 1.2×10(-2) to 2.0×10(4) for soil emissions and from 5.8×10(-2) to 6.0×10(3) for air emissions, and R(XF) from 5.3×10(-1) to 2.2×10(1). Prediction of changed solid-water partitioning, implying a change in runoff and in removal via sedimentation, and prediction of negligible air-water partition coefficient, leading to negligible volatilization were the main contributors to the changes in freshwater fate factors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Simulation-based model checking approach to cell fate specification during Caenorhabditis elegans vulval development by hybrid functional Petri net with extension

    Directory of Open Access Journals (Sweden)

    Ueno Kazuko

    2009-04-01

    Full Text Available Abstract Background Model checking approaches were applied to biological pathway validations around 2003. Recently, Fisher et al. have proved the importance of model checking approach by inferring new regulation of signaling crosstalk in C. elegans and confirming the regulation with biological experiments. They took a discrete and state-based approach to explore all possible states of the system underlying vulval precursor cell (VPC fate specification for desired properties. However, since both discrete and continuous features appear to be an indispensable part of biological processes, it is more appropriate to use quantitative models to capture the dynamics of biological systems. Our key motivation of this paper is to establish a quantitative methodology to model and analyze in silico models incorporating the use of model checking approach. Results A novel method of modeling and simulating biological systems with the use of model checking approach is proposed based on hybrid functional Petri net with extension (HFPNe as the framework dealing with both discrete and continuous events. Firstly, we construct a quantitative VPC fate model with 1761 components by using HFPNe. Secondly, we employ two major biological fate determination rules – Rule I and Rule II – to VPC fate model. We then conduct 10,000 simulations for each of 48 sets of different genotypes, investigate variations of cell fate patterns under each genotype, and validate the two rules by comparing three simulation targets consisting of fate patterns obtained from in silico and in vivo experiments. In particular, an evaluation was successfully done by using our VPC fate model to investigate one target derived from biological experiments involving hybrid lineage observations. However, the understandings of hybrid lineages are hard to make on a discrete model because the hybrid lineage occurs when the system comes close to certain thresholds as discussed by Sternberg and Horvitz in

  5. A multimedia fate model to evaluate the fate of PAHs in Songhua River, China

    International Nuclear Information System (INIS)

    Wang Ce; Feng Yujie; Sun Qingfang; Zhao Shanshan; Gao Peng; Li Bailian

    2012-01-01

    A multimedia fate model coupling dynamic water flow with a level IV fugacity model has been developed and applied to simulate the temporal and spatial fate of Polycyclic Aromatic Hydrocarbons (PAHs) in the Songhua River, China. The model has two components: in the first, the one-dimensional network kinematic wave equation is used to calculate varying water flow and depth. In the second, Fugacity IV equations are implemented to predict contaminant distributions in four environmental media. The estimated concentrations of eight PAHs in Songhua River are obtained, and all simulated results are in acceptable agreement with monitoring data, as verified with the Theil’s inequality coefficient test. The sensitivity of PAH concentration in each environmental phase to input parameters are also evaluated. Our results show the model predicts reasonably accurate contaminant concentrations in natural rivers, and that it can be used to supply necessary information for control and management of water pollution. - Highlights: ► The model used was developed based on kinematic wave equation and level IV fugacity principle. ► The model was applied to describe the fate and transport of organic chemicals in natural river. ► The concentrations of PAHs in water column were satisfactorily simulated when compared with monitoring data. ► Temporal and spatial variability of PAHs concentration among multimedia environmental phases was illustrated. - A dynamic water flow based multimedia fate model is developed to characterize the fate and transport of organic contaminant in natural rivers.

  6. Evaluating the environmental fate of pharmaceuticals using a level III model based on poly-parameter linear free energy relationships

    International Nuclear Information System (INIS)

    Zukowska, Barbara; Breivik, Knut; Wania, Frank

    2006-01-01

    We recently proposed how to expand the applicability of multimedia models towards polar organic chemicals by expressing environmental phase partitioning with the help of poly-parameter linear free energy relationships (PP-LFERs). Here we elaborate on this approach by applying it to three pharmaceutical substances. A PP-LFER-based version of a Level III fugacity model calculates overall persistence, concentrations and intermedia fluxes of polar and non-polar organic chemicals between air, water, soil and sediments at steady-state. Illustrative modeling results for the pharmaceuticals within a defined coastal region are presented and discussed. The model results are highly sensitive to the degradation rate in water and the equilibrium partitioning between organic carbon and water, suggesting that an accurate description of this particular partitioning equilibrium is essential in order to obtain reliable predictions of environmental fate. The PP-LFER based modeling approach furthermore illustrates that the greatest mobility in aqueous phases may be experienced by pharmaceuticals that combines a small molecular size with strong H-acceptor properties

  7. Evaluating the environmental fate of pharmaceuticals using a level III model based on poly-parameter linear free energy relationships

    Energy Technology Data Exchange (ETDEWEB)

    Zukowska, Barbara [Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology, 11/12 G. Narutowicza St., 80-952 Gdansk (Poland); Breivik, Knut [NILU- Norwegian Institute for Air Research, P.O. Box 100, NO-2027 Kjeller (Norway)]. E-mail: knut.breivik@nilu.no; Wania, Frank [Department of Physical and Environmental Sciences, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, Ontario, M1C 1A4 (Canada)

    2006-04-15

    We recently proposed how to expand the applicability of multimedia models towards polar organic chemicals by expressing environmental phase partitioning with the help of poly-parameter linear free energy relationships (PP-LFERs). Here we elaborate on this approach by applying it to three pharmaceutical substances. A PP-LFER-based version of a Level III fugacity model calculates overall persistence, concentrations and intermedia fluxes of polar and non-polar organic chemicals between air, water, soil and sediments at steady-state. Illustrative modeling results for the pharmaceuticals within a defined coastal region are presented and discussed. The model results are highly sensitive to the degradation rate in water and the equilibrium partitioning between organic carbon and water, suggesting that an accurate description of this particular partitioning equilibrium is essential in order to obtain reliable predictions of environmental fate. The PP-LFER based modeling approach furthermore illustrates that the greatest mobility in aqueous phases may be experienced by pharmaceuticals that combines a small molecular size with strong H-acceptor properties.

  8. Modelling Illicit Drug Fate in Sewers for Wastewater-Based Epidemiology

    DEFF Research Database (Denmark)

    Ramin, Pedram

    was found during festival period as compared to normal weekdays. Wastewater-based epidemiology is a truly interdisciplinary approach in which engineering tools, including models developed and tested in this thesis, can be beneficial for the accurate estimation of drug consumption in urban areas........ Sewer systems can be considered as biological reactors, in which the concentration of organic chemicals present in wastewater can be impacted by in-sewer processes during hydraulic residence time. Illicit drug biomarkers, as trace organic chemicals in the range of nanograms to micrograms per liter...... on sorption and transformation of drug biomarkers in raw wastewater and sewer biofilms; and (ii) developing modelling tools – by combining and extending existing modelling frameworks – to predict such processes. To achieve this goal, a substantial part of this thesis was dedicated to the experimental...

  9. A model based on soil structural aspects describing the fate of genetically modified bacteria in soil

    NARCIS (Netherlands)

    Hoeven, van der N.; Elsas, van J.D.; Heijnen, C.E.

    1996-01-01

    A computer simulation model was developed which describes growth and competition of bacteria in the soil environment. In the model, soil was assumed to contain millions of pores of a few different size classes. An introduced bacterial strain, e.g. a genetically modified micro-organism (GEMMO), was

  10. Simulation of the fate of faecal bacteria in estuarine and coastal waters based on a fractionated sediment transport model

    Science.gov (United States)

    Yang, Chen; Liu, Ying

    2017-08-01

    A two-dimensional depth-integrated numerical model is refined in this paper to simulate the hydrodynamics, graded sediment transport process and the fate of faecal bacteria in estuarine and coastal waters. The sediment mixture is divided into several fractions according to the grain size. A bed evolution model is adopted to simulate the processes of the bed elevation change and sediment grain size sorting. The faecal bacteria transport equation includes enhanced source and sink terms to represent bacterial kinetic transformation and disappearance or reappearance due to sediment deposition or re-suspension. A novel partition ratio and dynamic decay rates of faecal bacteria are adopted in the numerical model. The model has been applied to the turbid water environment in the Bristol Channel and Severn estuary, UK. The predictions by the present model are compared with field data and those by non-fractionated model.

  11. Modeling Engineered Nanomaterials (ENMs) Fate and ...

    Science.gov (United States)

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants are limited in their ability to simulate the environmental behavior of nanomaterials due to incomplete understanding and representation of the processes governing nanomaterial distribution in the environment and by scarce empirical data quantifying the interaction of nanomaterials with environmental surfaces. We have updated the Water Quality Analysis Simulation Program (WASP), version S, to incorporate nanomaterials as an explicitly simulated state variable. WASPS now has the capability to simulate nanomaterial fate and transport in surface waters and sediments using heteroaggregation, the kinetic process governing the attachment of nanomaterials to particles and subsequently ENM distribution in the aqueous and sediment phases. Unlike dissolved chemicals which use equilibrium partition coefficients, heteroaggregation consists of a particle collision rate and an attachment efficiency ( lXhet) that generally acts as a one direction process. To demonstrate, we used a derived a het value from sediment attachment studies to parameterize WASP for simulation of multi walled carbon nanotube (MWCNT) transport in Brier Creek, a coastal plain river located in central eastern Georgia, USA and a tr

  12. SimpleTreat: a spreadsheet-based box model to predict the fate of xenobiotics in a municipal waste water treatment plant

    NARCIS (Netherlands)

    Struijs J; van de Meent D; Stoltenkamp J

    1991-01-01

    A non-equilibrium steady state box model is reported, that predicts the fate of new chemicals in a conventional sewage treatment plant from a minimal input data set. The model, written in an electronic spreadsheet (Lotus TM 123), requires a minimum input: some basic properties of the chemical, its

  13. Modelling the Fate of Xenobiotic Trace Chemicals via Wastewater Treatment and Agricultural Resource Reuse

    DEFF Research Database (Denmark)

    Polesel, Fabio

    the comprehension of XTC fate, and thus the predictive capabilities of fate models: (i) at process scale, with a focus on sorption and biological transformation of XTCs in biological treatment systems; (ii) in full-scale WWTPs, assessing the impact of retransformation and WWTP operation on XTC elimination; and (iii......) in integrated WWTP-agricultural systems. Different modelling tools, suiting the specific purposes of our investigations, were developed, extended and/or innovatively applied. Fate models used as reference in this thesis include: the Activated Sludge Modelling framework for Xenobiotics (ASM-X); the generic WWTP...... model SimpleTreat Activity; and the dynamic soil-plant model for fate prediction in agricultural systems. Experimental and model-based observations were combined to assess sorption of ionizable XTCs onto activated sludge and XTC biotransformation in moving bed biofilm reactors (MBBRs). Most XTCs...

  14. Modelling the fate of organic micropollutants in stormwater ponds

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Eriksson, Eva; Ledin, Anna

    2011-01-01

    ). The four simulated organic stormwater MP (iodopropynyl butylcarbamate — IPBC, benzene, glyphosate and pyrene) were selected according to their different urban sources and environmental fate. This ensures that the results can be extended to other relevant stormwater pollutants. All three models use......Urban water managers need to estimate the potential removal of organic micropollutants (MP) in stormwater treatment systems to support MP pollution control strategies. This study documents how the potential removal of organic MP in stormwater treatment systems can be quantified by using multimedia...... models. The fate of four different MP in a stormwater retention pond was simulated by applying two steady-state multimedia fate models (EPI Suite and SimpleBox) commonly applied in chemical risk assessment and a dynamic multimedia fate model (Stormwater Treatment Unit Model for Micro Pollutants — STUMP...

  15. Quantitative microbial risk assessment for spray irrigation of dairy manure based on an empirical fate and transport model

    Science.gov (United States)

    Burch, Tucker R; Spencer, Susan K.; Stokdyk, Joel; Kieke, Burney A; Larson, Rebecca A; Firnstahl, Aaron; Rule, Ana M; Borchardt, Mark A.

    2017-01-01

    BACKGROUND: Spray irrigation for land-applying livestock manure is increasing in the United States as farms become larger and economies of scale make manure irrigation affordable. Human health risks from exposure to zoonotic pathogens aerosolized during manure irrigation are not well understood. OBJECTIVES: We aimed to a) estimate human health risks due to aerosolized zoonotic pathogens downwind of spray-irrigated dairy manure; and b) determine which factors (e.g., distance, weather conditions) have the greatest influence on risk estimates. METHODS: We sampled downwind air concentrations of manure-borne fecal indicators and zoonotic pathogens during 21 full-scale dairy manure irri- gation events at three farms. We fit these data to hierarchical empirical models and used model outputs in a quantitative microbial risk assessment (QMRA) to estimate risk [probability of acute gastrointestinal illness (AGI)] for individuals exposed to spray-irrigated dairy manure containing Campylobacter jejuni, enterohemorrhagic Escherichia coli (EHEC), or Salmonella spp. RESULTS: Median risk estimates from Monte Carlo simulations ranged from 10−5 to 10−2 and decreased with distance from the source. Risk estimates for Salmonella or EHEC-related AGI were most sensitive to the assumed level of pathogen prevalence in dairy manure, while risk estimates for C. jejuni were not sensitive to any single variable. Airborne microbe concentrations were negatively associated with distance and positively associated with wind speed, both of which were retained in models as a significant predictor more often than relative humidity, solar irradiation, or temperature. CONCLUSIONS: Our model-based estimates suggest that reducing pathogen prevalence and concentration in source manure would reduce the risk of AGI from exposure to manure irrigation, and that increasing the distance from irrigated manure (i.e., setbacks) and limiting irrigation to times of low wind speed may also reduce risk.

  16. Fate of pesticides in field ditches: the TOXSWA simulation model

    NARCIS (Netherlands)

    Adriaanse, P.I.

    1996-01-01

    The TOXSWA model describes the fate of pesticides entering field ditches by spray drift, atmospheric deposition, surface run-off, drainage or leaching. It considers four processes: transport, transformation, sorption and volatilization. Analytical andnumerical solutions corresponded well. A sample

  17. Modeling Engineered Nanomaterials (ENMs) Fate and Transport in Aquatic Ecosystems

    Science.gov (United States)

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants...

  18. Assessment of climate change impact on the fates of polycyclic aromatic hydrocarbons in the multimedia environment based on model prediction.

    Science.gov (United States)

    Cai, Juan Juan; Song, Jee Hey; Lee, Yunah; Lee, Dong Soo

    2014-02-01

    The objective was to quantitatively understand the impacts of climate change (CC) under the A1B scenario on the contamination levels of 11 polycyclic aromatic hydrocarbons (PAHs) from pyrogenic sources in the environmental media based on model prediction. To predict the impacts of CC in South Korea, a revised version of KoEFT-PBTs, a dynamic multimedia model for persistent organic pollutants in South Korea, was used. Simulations were conducted for the period from 2000 to 2049 under the A1B scenario with the emission data for 2009 and the results for Seoul and Kangwon were compared to those under no climate change (NCC) scenario. Due to CC, the average of annual or monthly average concentration changes within a factor of two for the PAHs in air, soil and water. Time dependent comparison indicates that the maximum increase induced by CC in the monthly average concentration ranges from 10 to 10(2) in air and water. Change in advective flux due to wind speed difference between A1B and NCC dictates the change of the atmospheric PAHs levels while wet particle deposition due to rain rate difference contributes to some extent to the change of 5 and 6 ring PAHs. Whether the concentration change is positive or not depends primarily on the emission strength of internal sources relative to those in surrounding areas. The CC induced changes in atmospheric depositions and degradation rate in soil play a leading role in the change of soil concentration. In water, runoff and degradation are the key processes to the CC induced concentration change. Both in soil and water, the relative importance of individual key processes varies with PAHs. The difference between the two scenarios in wind speed and in rain rate shows stronger correlations with the concentration change than the temperature change. © 2013 Elsevier B.V. All rights reserved.

  19. Degradation of Fluorotelomer-Based Polymers Contributes to the Global Occurrence of Fluorotelomer Alcohol and Perfluoroalkyl Carboxylates: A Combined Dynamic Substance Flow and Environmental Fate Modeling Analysis.

    Science.gov (United States)

    Li, Li; Liu, Jianguo; Hu, Jianxin; Wania, Frank

    2017-04-18

    Using coupled dynamic substance flow and environmental fate models, CiP-CAFE and BETR-Global, we investigated whether the degradation of side-chain fluorotelomer-based polymers (FTPs), mostly in waste stocks (i.e., landfills and dumps), serves as a long-term source of fluorotelomer alcohols (FTOHs) and perfluoroalkyl carboxylates (PFCAs) to the global environment. The modeling results indicate that, in the wake of the worldwide transition from long-chain to short-chain products, in-use stocks of C8 FTPs will peak and decline afterward, while the in-use stocks of C6 FTPs, and the waste stocks of both FTPs will generally grow. FTP degradation in waste stocks is making an increasing contribution to FTOH generation, the bulk of which readily migrates from waste stocks and degrades into PFCAs in the environment; the remaining part of the generated FTOHs degrade in waste stocks, which makes those stocks reservoirs that slowly release PFCAs into the environment over the long run because of the low leaching rate and extreme persistence of PFCAs. Short-chain FTPs have higher relative release rates of PFCAs from waste stocks than long-chain ones. Estimates of in-use and waste stocks of FTPs were more sensitive to the selected lifespan of finished products, while those of the emissions of FTOHs and PFCAs were more sensitive to the degradation half-life of FTPs in waste stocks. Our preliminary calculations highlight the need for environmentally sound management of obsolete FTP-containing products into the foreseeable future.

  20. Elucidating the in vivo fate of nanocrystals using a physiologically based pharmacokinetic model: a case study with the anticancer agent SNX-2112

    Directory of Open Access Journals (Sweden)

    Dong D

    2015-03-01

    Full Text Available Dong Dong,1* Xiao Wang,1* Huailing Wang,1 Xingwang Zhang,2 Yifei Wang,1 Baojian Wu2 1Guangzhou Jinan Biomedicine Research and Development Center, 2Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Introduction: SNX-2112 is a promising anticancer agent but has poor solubility in both water and oil. In the study reported here, we aimed to develop a nanocrystal formulation for SNX-2112 and to determine the pharmacokinetic behaviors of the prepared nanocrystals. Methods: Nanocrystals of SNX-2112 were prepared using the wet-media milling technique and characterized by particle size, differential scanning calorimetry, drug release, etc. Physiologically based pharmacokinetic (PBPK modeling was undertaken to evaluate the drug’s disposition in rats following administration of drug cosolvent or nanocrystals. Results: The optimized SNX-2112 nanocrystals (with poloxamer 188 as the stabilizer were 203 nm in size with a zeta potential of -11.6 mV. In addition, the nanocrystals showed a comparable release profile to the control (drug cosolvent. Further, the rat PBPK model incorporating the parameters of particulate uptake (into the liver and spleen and of in vivo drug release was well fitted to the experimental data following administration of the drug nanocrystals. The results reveal that the nanocrystals rapidly released drug molecules in vivo, accounting for their cosolvent-like pharmacokinetic behaviors. Due to particulate uptake, drug accumulation in the liver and spleen was significant at the initial time points (within 1 hour. Conclusion: The nanocrystals should be a good choice for the systemic delivery of the poorly soluble drug SNX-2112. Also, our study contributes to an improved understanding of the in vivo fate of nanocrystals. Keywords: intravenous delivery, PBPK, tissue distribution, poloxamer 188

  1. Fate modelling of chemical compounds with incomplete data sets

    DEFF Research Database (Denmark)

    Birkved, Morten; Heijungs, Reinout

    2011-01-01

    Impact assessment of chemical compounds in Life Cycle Impact Assessment (LCIA) and Environmental Risk Assessment (ERA) requires a vast amount of data on the properties of the chemical compounds being assessed. These data are used in multi-media fate and exposure models, to calculate risk levels...... in an approximate way. The idea is that not all data needed in a multi-media fate and exposure model are completely independent and equally important, but that there are physical-chemical and biological relationships between sets of chemical properties. A statistical model is constructed to underpin this assumption...... and other indicators. ERA typically addresses one specific chemical, but in an LCIA, the number of chemicals encountered may be quite high, up to hundreds or thousands. This study explores the development of meta-models, which are supposed to reflect the “true”multi-media fate and exposure model...

  2. Agrochemical fate models applied in agricultural areas from Colombia

    Science.gov (United States)

    Garcia-Santos, Glenda; Yang, Jing; Andreoli, Romano; Binder, Claudia

    2010-05-01

    The misuse application of pesticides in mainly agricultural catchments can lead to severe problems for humans and environment. Especially in developing countries where there is often found overuse of agrochemicals and incipient or lack of water quality monitoring at local and regional levels, models are needed for decision making and hot spots identification. However, the complexity of the water cycle contrasts strongly with the scarce data availability, limiting the number of analysis, techniques, and models available to researchers. Therefore there is a strong need for model simplification able to appropriate model complexity and still represent the processes. We have developed a new model so-called Westpa-Pest to improve water quality management of an agricultural catchment located in the highlands of Colombia. Westpa-Pest is based on the fully distributed hydrologic model Wetspa and a fate pesticide module. We have applied a multi-criteria analysis for model selection under the conditions and data availability found in the region and compared with the new developed Westpa-Pest model. Furthermore, both models were empirically calibrated and validated. The following questions were addressed i) what are the strengths and weaknesses of the models?, ii) which are the most sensitive parameters of each model?, iii) what happens with uncertainties in soil parameters?, and iv) how sensitive are the transfer coefficients?

  3. Modelling the occurrence, transport and fate of pharmaceuticals in wastewater systems

    DEFF Research Database (Denmark)

    Snip, Laura J.P.; Flores Alsina, Xavier; Plósz, Benedek Gy

    2014-01-01

    This paper demonstrates how occurrence, transport and fate of pharmaceuticals at trace levels can be assessed when modelling wastewater treatment systems using two case studies. Firstly, two approaches based on: 1) phenomenology; and, 2) Markov Chains, are developed to describe the dynamics...... approach; and, iii) future pathways to improve the overall modelling of micropollutants...

  4. Modeling the fate transport of cesium in crushed granite

    International Nuclear Information System (INIS)

    Lee, C.B.; Kuo, Y.M.; Hsu, C.N.; Li, M.H.; Cheng, H.P.; Teng, S.P.

    2005-01-01

    Full text of publication follows: In order to assess the safety of a underground radwaste repository, reactive transport models suitable for evaluating the fate and transport of radionuclides need to be established based on experimental observation and analysis. The goal of this study is to construct adequate models simulating the reactive transport of cesium (Cs) in crushed granite through a systematic analysis, where synthetic groundwater (SGW) and synthetic seawater (SSW) were employed as the liquid phase. To build such models, this study applied N 2 -BET, x-ray diffraction (XRD), polar-microscopy/ auto-radiography, and solid-phase digestion for the analysis of granite, kinetic batch tests for the characterization of sorption/desorption of Cs, and multi-stage advection-dispersion column tests for the determination of major transport processes and the calibration/validation of hypothesized reactive transport models. Based on the results of solid phase analysis and batch tests, a two-site Langmuir kinetic model has been determined capable of appropriately describing Cs sorption/desorption under test conditions. From the results of non-reactive HTO column tests, a mobile/immobile transport model was proposed to capture the major transport processes in our column system. However, the combination of the two-site Langmuir model and the mobile/immobile transport model failed to provide numerical breakthrough curves matching the Cs experimental breakthroughs. It implied that our model needs to be further refined. To achieve this, the setup of our column test needs to be modified first to reduce the volume of column connecting space, so that the effect of extra diffusion/dispersion on breakthroughs would be minimized and major transport characteristics can be clearly revealed. Moreover, more investigations on the reaction mechanisms and transport processes of the reactive transport system must be conducted. (authors)

  5. Modelling the fate of persistent organic pollutants in Europe: parameterisation of a gridded distribution model

    International Nuclear Information System (INIS)

    Prevedouros, Konstantinos; MacLeod, Matthew; Jones, Kevin C.; Sweetman, Andrew J.

    2004-01-01

    A regionally segmented multimedia fate model for the European continent is described together with an illustrative steady-state case study examining the fate of γ-HCH (lindane) based on 1998 emission data. The study builds on the regionally segmented BETR North America model structure and describes the regional segmentation and parameterisation for Europe. The European continent is described by a 5 deg. x 5 deg. grid, leading to 50 regions together with four perimetric boxes representing regions buffering the European environment. Each zone comprises seven compartments including; upper and lower atmosphere, soil, vegetation, fresh water and sediment and coastal water. Inter-regions flows of air and water are described, exploiting information originating from GIS databases and other georeferenced data. The model is primarily designed to describe the fate of Persistent Organic Pollutants (POPs) within the European environment by examining chemical partitioning and degradation in each region, and inter-region transport either under steady-state conditions or fully dynamically. A test case scenario is presented which examines the fate of estimated spatially resolved atmospheric emissions of lindane throughout Europe within the lower atmosphere and surface soil compartments. In accordance with the predominant wind direction in Europe, the model predicts high concentrations close to the major sources as well as towards Central and Northeast regions. Elevated soil concentrations in Scandinavian soils provide further evidence of the potential of increased scavenging by forests and subsequent accumulation by organic-rich terrestrial surfaces. Initial model predictions have revealed a factor of 5-10 underestimation of lindane concentrations in the atmosphere. This is explained by an underestimation of source strength and/or an underestimation of European background levels. The model presented can further be used to predict deposition fluxes and chemical inventories, and it

  6. Assessing the environmental fate of selected polybrominated diphenyl ethers in the region surrounding the Zhuoshui River of Taiwan based on an Equilibrium Constant fugacity model

    Science.gov (United States)

    O'Driscoll, Kieran; Doherty, Rory; Robinson, Jill; Chiang, Wen-Son; Kao Kao, Ruey-Chy

    2015-04-01

    Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants that have been in use since the 1970s. They are included in the list of hazardous substances known as persistent organic pollutants (POPs) because they are extremely hazardous to the environment and human health. PBDEs have been extensively used in industry and manufacturing in Taiwan, thus its citizens are at high risk of exposure to these chemicals. An assessment of the environmental fate of these compounds in the Zhuoshui river and Changhua County regions of western Taiwan, and also including the adjacent area of the Taiwan Strait, was conducted for three high risk congeners, BDE-47, -99 and -209, to obtain information regarding the partitioning, advection, transfer and long range transport potential of the PBDEs in order to identify the level of risk posed by the pollutants in this region. The results indicate that large amounts of PBDEs presently reside in all model compartments - air, soil, water, and sediment - with particularly high levels found in air and especially in sediment. The high levels found in sediment, particularly for BDE-209, are significant, since there is the threat of these pollutants entering the food chain, either directly through benthic feeding, or through resuspension and subsequent feeding in the pelagic region of the water column which is a distinct possibility in the strong currents found within the Taiwan Strait. Another important result is that a substantial portion of emissions leave the model domain directly through advection, particularly for BDE-47 (58%) and BDE-209 (75%), thus posing a risk to adjacent communities. Model results were generally in reasonable agreement with available measured concentrations. In air, model concentrations are in reasonably good agreement with available measured values. For both BDE-47 and -99, model concentrations are a factor of 2-3 higher and BDE-209 within the range of measured values. In soil, model results are somewhat

  7. Modeling bistable cell-fate choices in the Drosophila eye: qualitative and quantitative perspectives

    Science.gov (United States)

    Graham, Thomas G. W.; Tabei, S. M. Ali; Dinner, Aaron R.; Rebay, Ilaria

    2010-01-01

    A major goal of developmental biology is to understand the molecular mechanisms whereby genetic signaling networks establish and maintain distinct cell types within multicellular organisms. Here, we review cell-fate decisions in the developing eye of Drosophila melanogaster and the experimental results that have revealed the topology of the underlying signaling circuitries. We then propose that switch-like network motifs based on positive feedback play a central role in cell-fate choice, and discuss how mathematical modeling can be used to understand and predict the bistable or multistable behavior of such networks. PMID:20570936

  8. Developing climatic scenarios for pesticide fate modelling in Europe

    International Nuclear Information System (INIS)

    Blenkinsop, S.; Fowler, H.J.; Dubus, I.G.; Nolan, B.T.; Hollis, J.M.

    2008-01-01

    A climatic classification for Europe suitable for pesticide fate modelling was constructed using a 3-stage process involving the identification of key climatic variables, the extraction of the dominant modes of spatial variability in those variables and the use of k-means clustering to identify regions with similar climates. The procedure identified 16 coherent zones that reflect the variability of climate across Europe whilst maintaining a manageable number of zones for subsequent modelling studies. An analysis of basic climatic parameters for each zone demonstrates the success of the scheme in identifying distinct climatic regions. Objective criteria were used to identify one representative 26-year daily meteorological series from a European dataset for each zone. The representativeness of each series was then verified against the zonal classifications. These new FOOTPRINT climate zones provide a state-of-the-art objective classification of European climate complete with representative daily data that are suitable for use in pesticide fate modelling. - The FOOTPRINT climatic zones provide an objective climatic classification and daily climate series that may be used for the modelling of pesticide fate across Europe

  9. Fate and transport modelling of uranium in Port Hope Harbour

    International Nuclear Information System (INIS)

    Pinilla, C.E.; Garisto, N.; Peters, R.

    2010-01-01

    Fate and transport modelling of contaminants in Port Hope Harbour and near-shore Lake Ontario was undertaken in support of an ecological and human health risk assessment. Uranium concentrations in the Harbour and near-shore Lake Ontario due to groundwater and storm water loadings were estimated with a state-of-the-art 3D hydrodynamic and contaminant transport model (ECOMSED). The hydrodynamic model was simplified to obtain a first estimate of the flow pattern in the Harbour. The model was verified with field data using a tracer (fluoride). The modelling results generally showed good agreement with the tracer field data. (author)

  10. Environmental fate of rice paddy pesticides in a model ecosystem.

    Science.gov (United States)

    Tomizawa, C; Kazano, H

    1979-01-01

    The distribution and metabolic fate of several rice paddy pesticides were evaluated in a modified model ecosystem. Among the three BHC isomers, beta-isomer was the most stable and bioconcentrated in all of the organisms. Alpha- and gamma-isomers were moderately persistent and degraded to some extent during the 33 day period. Disulfoton was relatively persistent due to the transformation to its oxidation products. Pyridaphenthion was fairly biodegradable. N-Phenyl maleic hydrazide derived from the hydrolysis of pyridaphenthion was not detected in the organisms though it was found in the aquarium water after 33 days. Cartap and edifenphos were considerably biodegradable, and the ratio of the conversion to water soluble metabolites was very high. There was a distinct difference in the persistence of Kitazin P and edifenphos in the aquarium water. It appeared that the hydrolysis rate of the pesticides affected their fate in the organisms. PCP appeared to be moderately biodegradable. CNP was considerably stable and stored in the organisms though the concentration in the aquarium water was relatively low. The persistence and distribution of the pesticides in the model ecosystem were dependent on their chemical structures. In spite of the limitation derived from short experimental period, the model ecosystem may be applicable for predicting the environmental fate of pesticides.

  11. OPERA models for predicting physicochemical properties and environmental fate endpoints.

    Science.gov (United States)

    Mansouri, Kamel; Grulke, Chris M; Judson, Richard S; Williams, Antony J

    2018-03-08

    The collection of chemical structure information and associated experimental data for quantitative structure-activity/property relationship (QSAR/QSPR) modeling is facilitated by an increasing number of public databases containing large amounts of useful data. However, the performance of QSAR models highly depends on the quality of the data and modeling methodology used. This study aims to develop robust QSAR/QSPR models for chemical properties of environmental interest that can be used for regulatory purposes. This study primarily uses data from the publicly available PHYSPROP database consisting of a set of 13 common physicochemical and environmental fate properties. These datasets have undergone extensive curation using an automated workflow to select only high-quality data, and the chemical structures were standardized prior to calculation of the molecular descriptors. The modeling procedure was developed based on the five Organization for Economic Cooperation and Development (OECD) principles for QSAR models. A weighted k-nearest neighbor approach was adopted using a minimum number of required descriptors calculated using PaDEL, an open-source software. The genetic algorithms selected only the most pertinent and mechanistically interpretable descriptors (2-15, with an average of 11 descriptors). The sizes of the modeled datasets varied from 150 chemicals for biodegradability half-life to 14,050 chemicals for logP, with an average of 3222 chemicals across all endpoints. The optimal models were built on randomly selected training sets (75%) and validated using fivefold cross-validation (CV) and test sets (25%). The CV Q 2 of the models varied from 0.72 to 0.95, with an average of 0.86 and an R 2 test value from 0.71 to 0.96, with an average of 0.82. Modeling and performance details are described in QSAR model reporting format and were validated by the European Commission's Joint Research Center to be OECD compliant. All models are freely available as an open

  12. SIMAP oil and Orimulsion fate and effects model

    International Nuclear Information System (INIS)

    French, D.P.; Mendelsohn, D.; Rines, H.

    1995-01-01

    SIMAP, ASA's Spill Impact MAPping model system, simulates the physical fates and biological effects of spilled oils and fuels in 3-dimensional space, allow evaluation of the effectiveness of spill response activities, and evaluate probabilities of trajectories and resulting impacts. It may be used for real-time spill simulation, contingency planning, and ecological risk assessments. SIMAP has been verified for oil spills using data from the Exxon Valdez, the August 1993 No. 6 fuel spill in Tampa Bay, the North Cape No. 2 oil spill in RI January 1996, and others. SIMAP has been extended to apply to the alternative fuel Orimulsion trademark by development of algorithms describing the characteristics of this fuel and mechanisms of dispersion if it is spilled. Orimulsion is a mixture of approximately70% bitumen, surfactant, and water (about 30%). This emulsion readily mixes into the water column when it is spilled, as opposed to remaining as a surface slick as do oils. Thus, Orimulsion is tracked in the model as two fractions dispersed in an initial water volume: (1) fuel (bitumen) droplets with attached surfactant, and (2) dissolved low molecular weight aromatics. The toxicity of each component is considered separately and as additive. The model evaluates exposure, toxicity, mortality, and sublethal losses of biota resulting from the spill. Toxic effects are a function of time and temperature of exposure to concentrations, exposure to surface slicks and shoreline oil, and physiological response based on biological classifications. Losses of fish, shellfish, and wildlife are evaluated in the context of natural and harvest mortality rates in the absence of the spill

  13. Building 235-F Goldsim Fate And Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G. A.; Phifer, M. A.

    2012-09-14

    Savannah River National Laboratory (SRNL) personnel, at the request of Area Completion Projects (ACP), evaluated In-Situ Disposal (ISD) alternatives that are under consideration for deactivation and decommissioning (D&D) of Building 235-F and the Building 294-2F Sand Filter. SRNL personnel developed and used a GoldSim fate and transport model, which is consistent with Musall 2012, to evaluate relative to groundwater protection, ISD alternatives that involve either source removal and/or the grouting of portions or all of 235-F. This evaluation was conducted through the development and use of a Building 235-F GoldSim fate and transport model. The model simulates contaminant release from four 235-F process areas and the 294-2F Sand Filter. In addition, it simulates the fate and transport through the vadose zone, the Upper Three Runs (UTR) aquifer, and the Upper Three Runs (UTR) creek. The model is designed as a stochastic model, and as such it can provide both deterministic and stochastic (probabilistic) results. The results show that the median radium activity concentrations exceed the 5 ?Ci/L radium MCL at the edge of the building for all ISD alternatives after 10,000 years, except those with a sufficient amount of inventory removed. A very interesting result was that grouting was shown to basically have minimal effect on the radium activity concentration. During the first 1,000 years grouting may have some small positive benefit relative to radium, however after that it may have a slightly deleterious effect. The Pb-210 results, relative to its 0.06 ?Ci/L PRG, are essentially identical to the radium results, but the Pb-210 results exhibit a lesser degree of exceedance. In summary, some level of inventory removal will be required to ensure that groundwater standards are met.

  14. Building 235-F Goldsim Fate And Transport Model

    International Nuclear Information System (INIS)

    Taylor, G. A.; Phifer, M. A.

    2012-01-01

    Savannah River National Laboratory (SRNL) personnel, at the request of Area Completion Projects (ACP), evaluated In-Situ Disposal (ISD) alternatives that are under consideration for deactivation and decommissioning (D and D) of Building 235-F and the Building 294-2F Sand Filter. SRNL personnel developed and used a GoldSim fate and transport model, which is consistent with Musall 2012, to evaluate relative to groundwater protection, ISD alternatives that involve either source removal and/or the grouting of portions or all of 235-F. This evaluation was conducted through the development and use of a Building 235-F GoldSim fate and transport model. The model simulates contaminant release from four 235-F process areas and the 294-2F Sand Filter. In addition, it simulates the fate and transport through the vadose zone, the Upper Three Runs (UTR) aquifer, and the Upper Three Runs (UTR) creek. The model is designed as a stochastic model, and as such it can provide both deterministic and stochastic (probabilistic) results. The results show that the median radium activity concentrations exceed the 5 ρCi/L radium MCL at the edge of the building for all ISD alternatives after 10,000 years, except those with a sufficient amount of inventory removed. A very interesting result was that grouting was shown to basically have minimal effect on the radium activity concentration. During the first 1,000 years grouting may have some small positive benefit relative to radium, however after that it may have a slightly deleterious effect. The Pb-210 results, relative to its 0.06 ρCi/L PRG, are essentially identical to the radium results, but the Pb-210 results exhibit a lesser degree of exceedance. In summary, some level of inventory removal will be required to ensure that groundwater standards are met

  15. A fate model for nitrogen dynamics in the Scheldt basin

    Science.gov (United States)

    Haest, Pieter Jan; van der Kwast, Johannes; Broekx, Steven; Seuntjens, Piet

    2010-05-01

    The European Union (EU) adopted the Water Framework Directive (WFD) in 2000 ensuring that all aquatic ecosystems meet ‘good ecological status' by 2015. However, the large population density in combination with agricultural and industrial activities in some European river basins pose challenges for river basin managers in meeting this status. The EU financed AQUAREHAB project (FP7) specifically examines the ecological and economic impact of innovative rehabilitation technologies for multi-pressured degraded waters. For this purpose, a numerical spatio-temporal model is developed to evaluate innovative technologies versus conventional measures at the river basin scale. The numerical model describes the nitrogen dynamics in the Scheldt river basin. Nitrogen is examined since nitrate is of specific concern in Belgium, the country comprising the largest area of the Scheldt basin. The Scheldt basin encompasses 20000 km2 and houses over 10 million people. The governing factors describing nitrogen fluxes at this large scale differ from the field scale with a larger uncertainty on input data. As such, the environmental modeling language PCRaster was selected since it was found to provide a balance between process descriptions and necessary input data. The resulting GIS-based model simulates the nitrogen dynamics in the Scheldt basin with a yearly time step and a spatial resolution of 1 square kilometer. A smaller time step is being evaluated depending on the description of the hydrology. The model discerns 4 compartments in the Scheldt basin: the soil, shallow groundwater, deep groundwater and the river network. Runoff and water flow occurs along the steepest slope in all model compartments. Diffuse emissions and direct inputs are calculated from administrative and statistical data. These emissions are geographically defined or are distributed over the domain according to land use and connectivity to the sewer system. The reactive mass transport is described using

  16. Using gridded multimedia model to simulate spatial fate of Benzo[α]pyrene on regional scale.

    Science.gov (United States)

    Liu, Shijie; Lu, Yonglong; Wang, Tieyu; Xie, Shuangwei; Jones, Kevin C; Sweetman, Andrew J

    2014-02-01

    Predicting the environmental multimedia fate is an essential step in the process of assessing the human exposure and health impacts of chemicals released into the environment. Multimedia fate models have been widely applied to calculate the fate and distribution of chemicals in the environment, which can serve as input to a human exposure model. In this study, a grid based multimedia fugacity model at regional scale was developed together with a case study modeling the fate and transfer of Benzo[α]pyrene (BaP) in Bohai coastal region, China. Based on the estimated emission and in-site survey in 2008, the BaP concentrations in air, vegetation, soil, fresh water, fresh water sediment and coastal water as well as the transfer fluxes were derived under the steady-state assumption. The model results were validated through comparison between the measured and modeled concentrations of BaP. The model results indicated that the predicted concentrations of BaP in air, fresh water, soil and sediment generally agreed with field observations. Model predictions suggest that soil was the dominant sink of BaP in terrestrial systems. Flow from air to soil, vegetation and costal water were three major pathways of BaP inter-media transport processes. Most of the BaP entering the sea was transferred by air flow, which was also the crucial driving force in the spatial distribution processes of BaP. The Yellow River, Liaohe River and Daliao River played an important role in the spatial transformation processes of BaP. Compared with advection outflow, degradation was more important in removal processes of BaP. Sensitivities of the model estimates to input parameters were tested. The result showed that emission rates, compartment dimensions, transport velocity and degradation rates of BaP were the most influential parameters for the model output. Monte Carlo simulation was carried out to determine parameter uncertainty, from which the coefficients of variation for the estimated Ba

  17. Simplified fate modelling in respect to ecotoxicological and human toxicological characterisation of emissions of chemical compounds

    DEFF Research Database (Denmark)

    Birkved, Morten; Heijungs, Reinout

    2011-01-01

    The impact assessment of chemical compounds in Life Cycle Impact Assessment (LCIA) and Environmental Risk Assessment (ERA) requires a vast amount of data on the properties of the chemical compounds being assessed. The purpose of the present study is to explore statistical options for reduction...... of the data demand associated with characterisation of chemical emissions in LCIA and ERA.Based on a USEtox™ characterisation factor set consisting of 3,073 data records, multi-dimensional bilinear models for emission compartment specific fate characterisation of chemical emissions were derived by application...... the independent chemical input parameters from the minimum data set, needed for characterisation in USEtox™, according to general availability, importance and relevance for fate factor prediction.Each approach (63% and 75% of the minimum data set needed for characterisation in USEtox™) yielded 66 meta...

  18. Mitochondrial metabolism in early neural fate and its relevance for neuronal disease modeling.

    Science.gov (United States)

    Lorenz, Carmen; Prigione, Alessandro

    2017-12-01

    Modulation of energy metabolism is emerging as a key aspect associated with cell fate transition. The establishment of a correct metabolic program is particularly relevant for neural cells given their high bioenergetic requirements. Accordingly, diseases of the nervous system commonly involve mitochondrial impairment. Recent studies in animals and in neural derivatives of human pluripotent stem cells (PSCs) highlighted the importance of mitochondrial metabolism for neural fate decisions in health and disease. The mitochondria-based metabolic program of early neurogenesis suggests that PSC-derived neural stem cells (NSCs) may be used for modeling neurological disorders. Understanding how metabolic programming is orchestrated during neural commitment may provide important information for the development of therapies against conditions affecting neural functions, including aging and mitochondrial disorders. Copyright © 2017. Published by Elsevier Ltd.

  19. EVALUATION OF THE STATE-OF-THE-ART CONTAMINATED SEDIMENT TRANSPORT AND FATE MODELING SYSTEM

    Science.gov (United States)

    Modeling approaches for evaluating the transport and fate of sediment and associated contaminants are briefly reviewed. The main emphasis is on: 1) the application of EFDC (Environmental Fluid Dynamics Code), the state-of-the-art contaminated sediment transport and fate public do...

  20. Modelling the fate of the Tijuana River discharge plume

    Science.gov (United States)

    van Ormondt, M.; Terrill, E.; Hibler, L. F.; van Dongeren, A. R.

    2010-12-01

    After rainfall events, the Tijuana River discharges excess runoff into the ocean in a highly turbid plume. The runoff waters contain large suspended solids concentrations, as well as high levels of toxic contaminants, bacteria, and hepatitis and enteroviruses. Public health hazards posed by the effluent often result in beach closures for several kilometers northward along the U.S. shoreline. A Delft3D model has been set up to predict the fate of the Tijuana River plume. The model takes into account the effects of tides, wind, waves, salinity, and temperature stratification. Heat exchange with the atmosphere is also included. The model consists of a relatively coarse outer domain and a high-resolution surf zone domain that are coupled with Domain Decomposition. The offshore boundary conditions are obtained from the larger NCOM SoCal model (operated by the US Navy) that spans the entire Southern California Bight. A number of discharge events are investigated, in which model results are validated against a wide range of field measurements in the San Diego Bight. These include HF Radar surface currents, REMUS tracks, drifter deployments, satellite imagery, as well as current and temperature profile measurements at a number of locations. The model is able to reproduce the observed current and temperature patterns reasonably well. Under calm conditions, the model results suggest that the hydrodynamics in the San Diego Bight are largely governed by internal waves. During rainfall events, which are typically accompanied by strong winds and high waves, wind and wave driven currents become dominant. An analysis will be made of what conditions determine the trapping and mixing of the plume inside the surfzone and/or the propagation of the plume through the breakers and onto the coastal shelf. The model is now also running in operational mode. Three day forecasts are made every 24 hours. This study was funded by the Office of Naval Research.

  1. Aquatic pathways model to predict the fate of phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Aaberg, R.L.; Peloquin, R.A.; Strenge, D.L.; Mellinger, P.J.

    1983-04-01

    Organic materials released from energy-related activities could affect human health and the environment. To better assess possible impacts, we developed a model to predict the fate of spills or discharges of pollutants into flowing or static bodies of fresh water. A computer code, Aquatic Pathways Model (APM), was written to implement the model. The computer programs use compartmental analysis to simulate aquatic ecosystems. The APM estimates the concentrations of chemicals in fish tissue, water and sediment, and is therefore useful for assessing exposure to humans through aquatic pathways. The APM will consider any aquatic pathway for which the user has transport data. Additionally, APM will estimate transport rates from physical and chemical properties of chemicals between several key compartments. The major pathways considered are biodegradation, fish and sediment uptake, photolysis, and evaporation. The model has been implemented with parameters for distribution of phenols, an important class of compounds found in the water-soluble fractions of coal liquids. Current modeling efforts show that, in comparison with many pesticides and polyaromatic hydrocarbons (PAH), the lighter phenolics (the cresols) are not persistent in the environment. The properties of heavier molecular weight phenolics (indanols, naphthols) are not well enough understood at this time to make similar judgements. For the twelve phenolics studied, biodegradation appears to be the major pathway for elimination from aquatic environments. A pond system simulation (using APM) of a spill of solvent refined coal (SRC-II) materials indicates that phenol, cresols, and other single cyclic phenolics are degraded to 16 to 25 percent of their original concentrations within 30 hours. Adsorption of these compounds into sediments and accumulation by fish was minor.

  2. BETR global - A geographically-explicit global-scale multimedia contaminant fate model

    International Nuclear Information System (INIS)

    MacLeod, Matthew; Waldow, Harald von; Tay, Pascal; Armitage, James M.; Woehrnschimmel, Henry; Riley, William J.; McKone, Thomas E.; Hungerbuhler, Konrad

    2011-01-01

    We present two new software implementations of the BETR Global multimedia contaminant fate model. The model uses steady-state or non-steady-state mass-balance calculations to describe the fate and transport of persistent organic pollutants using a desktop computer. The global environment is described using a database of long-term average monthly conditions on a 15 o x 15 o grid. We demonstrate BETR Global by modeling the global sources, transport, and removal of decamethylcyclopentasiloxane (D5). - Two new software implementations of the Berkeley-Trent Global Contaminant Fate Model are available. The new model software is illustrated using a case study of the global fate of decamethylcyclopentasiloxane (D5).

  3. Applications of contaminant fate and bioaccumulation models in assessing ecological risks of chemicals: A case study for gasoline hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, Matthew; McKone, Thomas E.; Foster, Karen L.; Maddalena, Randy L.; Parkerton, Thomas F.; Mackay, Don

    2004-02-01

    Mass balance models of chemical fate and transport can be applied in ecological risk assessments for quantitative estimation of concentrations in air, water, soil and sediment. These concentrations can, in turn, be used to estimate organism exposures and ultimately internal tissue concentrations that can be compared to mode-of-action-based critical body residues that correspond to toxic effects. From this comparison, risks to the exposed organism can be evaluated. To illustrate the practical utility of fate models in ecological risk assessments of commercial products, the EQC model and a simple screening level biouptake model including three organisms, (a bird, a mammal and a fish) is applied to gasoline. In this analysis, gasoline is divided into 24 components or ''blocks'' with similar environmental fate properties that are assumed to elicit ecotoxicity via a narcotic mode of action. Results demonstrate that differences in chemical properties and mode of entry into the environment lead to profound differences in the efficiency of transport from emission to target biota. We discuss the implications of these results and insights gained into the regional fate and ecological risks associated with gasoline. This approach is particularly suitable for assessing mixtures of components that have similar modes of action. We conclude that the model-based methodologies presented are widely applicable for screening level ecological risk assessments that support effective chemicals management.

  4. Integrative modelling of the influence of MAPK network on cancer cell fate decision.

    Directory of Open Access Journals (Sweden)

    Luca Grieco

    2013-10-01

    Full Text Available The Mitogen-Activated Protein Kinase (MAPK network consists of tightly interconnected signalling pathways involved in diverse cellular processes, such as cell cycle, survival, apoptosis and differentiation. Although several studies reported the involvement of these signalling cascades in cancer deregulations, the precise mechanisms underlying their influence on the balance between cell proliferation and cell death (cell fate decision in pathological circumstances remain elusive. Based on an extensive analysis of published data, we have built a comprehensive and generic reaction map for the MAPK signalling network, using CellDesigner software. In order to explore the MAPK responses to different stimuli and better understand their contributions to cell fate decision, we have considered the most crucial components and interactions and encoded them into a logical model, using the software GINsim. Our logical model analysis particularly focuses on urinary bladder cancer, where MAPK network deregulations have often been associated with specific phenotypes. To cope with the combinatorial explosion of the number of states, we have applied novel algorithms for model reduction and for the compression of state transition graphs, both implemented into the software GINsim. The results of systematic simulations for different signal combinations and network perturbations were found globally coherent with published data. In silico experiments further enabled us to delineate the roles of specific components, cross-talks and regulatory feedbacks in cell fate decision. Finally, tentative proliferative or anti-proliferative mechanisms can be connected with established bladder cancer deregulations, namely Epidermal Growth Factor Receptor (EGFR over-expression and Fibroblast Growth Factor Receptor 3 (FGFR3 activating mutations.

  5. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  6. Multiphase CFD modeling of nearfield fate of sediment plumes

    DEFF Research Database (Denmark)

    Saremi, Sina; Hjelmager Jensen, Jacob

    2014-01-01

    Disposal of dredged material and the overflow discharge during the dredging activities is a matter of concern due to the potential risks imposed by the plumes on surrounding marine environment. This gives rise to accurately prediction of the fate of the sediment plumes released in ambient waters...

  7. Environmental fate and transport of chemical signatures from buried landmines -- Screening model formulation and initial simulations

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, J.M.; Webb, S.W.

    1997-06-01

    The fate and transport of chemical signature molecules that emanate from buried landmines is strongly influenced by physical chemical properties and by environmental conditions of the specific chemical compounds. Published data have been evaluated as the input parameters that are used in the simulation of the fate and transport processes. A one-dimensional model developed for screening agricultural pesticides was modified and used to simulate the appearance of a surface flux above a buried landmine, estimate the subsurface total concentration, and show the phase specific concentrations at the ground surface. The physical chemical properties of TNT cause a majority of the mass released to the soil system to be bound to the solid phase soil particles. The majority of the transport occurs in the liquid phase with diffusion and evaporation driven advection of soil water as the primary mechanisms for the flux to the ground surface. The simulations provided herein should only be used for initial conceptual designs of chemical pre-concentration subsystems or complete detection systems. The physical processes modeled required necessary simplifying assumptions to allow for analytical solutions. Emerging numerical simulation tools will soon be available that should provide more realistic estimates that can be used to predict the success of landmine chemical detection surveys based on knowledge of the chemical and soil properties, and environmental conditions where the mines are buried. Additional measurements of the chemical properties in soils are also needed before a fully predictive approach can be confidently applied.

  8. Modeling the fate and transport of bacteria in agricultural and pasture lands using APEX

    Science.gov (United States)

    The Agricultural Policy/Environmental eXtender (APEX) model is a whole farm to small watershed scale continuous simulation model developed for evaluating various land management strategies. The current version, APEX0806, does not have the modeling capacity for fecal indicator bacteria fate and trans...

  9. BETR Global - A geographically explicit global-scale multimedia contaminant fate model

    Energy Technology Data Exchange (ETDEWEB)

    Macleod, M.; Waldow, H. von; Tay, P.; Armitage, J. M.; Wohrnschimmel, H.; Riley, W.; McKone, T. E.; Hungerbuhler, K.

    2011-04-01

    We present two new software implementations of the BETR Global multimedia contaminant fate model. The model uses steady-state or non-steady-state mass-balance calculations to describe the fate and transport of persistent organic pollutants using a desktop computer. The global environment is described using a database of long-term average monthly conditions on a 15{sup o} x 15{sup o} grid. We demonstrate BETR Global by modeling the global sources, transport, and removal of decamethylcyclopentasiloxane (D5).

  10. Indirect human exposure assessment of airborne lead deposited on soil via a simplified fate and speciation modelling approach.

    Science.gov (United States)

    Pizzol, Massimo; Bulle, Cécile; Thomsen, Marianne

    2012-04-01

    In order to estimate the total exposure to the lead emissions from a municipal waste combustion plant in Denmark, the indirect pathway via ingestion of lead deposited on soil has to be quantified. Multi-media fate models developed for both Risk Assessment (RA) and Life Cycle Assessment (LCA) can be used for this purpose, but present high uncertainties in the assessment of metal's fate. More sophisticated and metal-specific geochemical models exist, that could lower the uncertainties by e.g. accounting for metal speciation, but they require a large amount of data and are unpractical to combine broadly with other fate and dispersion models. In this study, a Simplified Fate & Speciation Model (SFSM) is presented, that is based on the parsimony principle: "as simple as possible, as complex as needed", and that can be used for indirect human exposure assessment in different context like RA and regionalized LCA. SFSM couples traditional multi-media mass balances with empirical speciation models in a tool that has a simple theoretical framework and that is not data-intensive. The model calculates total concentration, dissolved concentration, and free ion activity of Cd, Cu, Ni, Pb and Zn in different soil layers, after accounting for metal deposition and dispersion. The model is tested for these five metals by using data from peer reviewed literature. Results show good accordance between measured and calculated values (factor of 3). The model is used to predict the human exposure via soil to lead initially emitted into air by the waste combustion plant and both the lead cumulative exposure and intake fraction are calculated. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Climate-based archetypes for the environmental fate assessment of chemicals.

    Science.gov (United States)

    Ciuffo, Biagio; Sala, Serenella

    2013-11-15

    Emissions of chemicals have been on the rise for years, and their impacts are greatly influenced by spatial differentiation. Chemicals are usually emitted locally but their impact can be felt both locally and globally, due to their chemical properties and persistence. The variability of environmental parameters in the emission compartment may affect the chemicals' fate and the exposure at different orders of magnitude. The assessment of the environmental fate of chemicals and the inherent spatial differentiation requires the use of multimedia models at various levels of complexity (from a simple box model to complex computational and high-spatial-resolution models). The objective of these models is to support ecological and human health risk assessment, by reducing the uncertainty of chemical impact assessments. The parameterisation of spatially resolved multimedia models is usually based on scenarios of evaluative environments, or on geographical resolutions related to administrative boundaries (e.g. countries/continents) or landscape areas (e.g. watersheds, eco-regions). The choice of the most appropriate scale and scenario is important from a management perspective, as a balance should be reached between a simplified approach and computationally intensive multimedia models. In this paper, which aims to go beyond the more traditional approach based on scale/resolution (cell, country, and basin), we propose and assess climate-based archetypes for the impact assessment of chemicals released in air. We define the archetypes based on the main drivers of spatial variability, which we systematically identify by adopting global sensitivity analysis techniques. A case study that uses the high resolution multimedia model MAPPE (Multimedia Assessment of Pollutant Pathways in the Environment) is presented. Results of the analysis showed that suitable archetypes should be both climate- and chemical-specific, as different chemicals (or groups of them) have different traits

  12. Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles.

    Science.gov (United States)

    Sani-Kast, Nicole; Scheringer, Martin; Slomberg, Danielle; Labille, Jérôme; Praetorius, Antonia; Ollivier, Patrick; Hungerbühler, Konrad

    2015-12-01

    Engineered nanoparticle (ENP) fate models developed to date - aimed at predicting ENP concentration in the aqueous environment - have limited applicability because they employ constant environmental conditions along the modeled system or a highly specific environmental representation; both approaches do not show the effects of spatial and/or temporal variability. To address this conceptual gap, we developed a novel modeling strategy that: 1) incorporates spatial variability in environmental conditions in an existing ENP fate model; and 2) analyzes the effect of a wide range of randomly sampled environmental conditions (representing variations in water chemistry). This approach was employed to investigate the transport of nano-TiO2 in the Lower Rhône River (France) under numerous sets of environmental conditions. The predicted spatial concentration profiles of nano-TiO2 were then grouped according to their similarity by using cluster analysis. The analysis resulted in a small number of clusters representing groups of spatial concentration profiles. All clusters show nano-TiO2 accumulation in the sediment layer, supporting results from previous studies. Analysis of the characteristic features of each cluster demonstrated a strong association between the water conditions in regions close to the ENP emission source and the cluster membership of the corresponding spatial concentration profiles. In particular, water compositions favoring heteroaggregation between the ENPs and suspended particulate matter resulted in clusters of low variability. These conditions are, therefore, reliable predictors of the eventual fate of the modeled ENPs. The conclusions from this study are also valid for ENP fate in other large river systems. Our results, therefore, shift the focus of future modeling and experimental research of ENP environmental fate to the water characteristic in regions near the expected ENP emission sources. Under conditions favoring heteroaggregation in these

  13. Modelling micro-pollutant fate in wastewater collection and treatment systems: status and challenges

    DEFF Research Database (Denmark)

    Plósz, Benedek G.; Benedetti, L.; Daigger, G. T.

    2013-01-01

    of such models. In brief, we conclude that, in order to predict the contaminant removal in centralised treatment works, considering the dramatic improvement in monitoring and detecting MPs in wastewater, more mechanistic approaches should be used to complement conventional, heuristic and other fate models...

  14. Illustrating sensitivity in environmental fate models using partitioning maps - application to selected contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, T.; Wania, F. [Univ. of Toronto at Scarborough - DPES, Toronto (Canada)

    2004-09-15

    Generic environmental multimedia fate models are important tools in the assessment of the impact of organic pollutants. Because of limited possibilities to evaluate generic models by comparison with measured data and the increasing regulatory use of such models, uncertainties of model input and output are of considerable concern. This led to a demand for sensitivity and uncertainty analyses for the outputs of environmental fate models. Usually, variations of model predictions of the environmental fate of organic contaminants are analyzed for only one or at most a few selected chemicals, even though parameter sensitivity and contribution to uncertainty are widely different for different chemicals. We recently presented a graphical method that allows for the comprehensive investigation of model sensitivity and uncertainty for all neutral organic chemicals simultaneously. This is achieved by defining a two-dimensional hypothetical ''chemical space'' as a function of the equilibrium partition coefficients between air, water, and octanol (K{sub OW}, K{sub AW}, K{sub OA}), and plotting sensitivity and/or uncertainty of a specific model result to each input parameter as function of this chemical space. Here we show how such sensitivity maps can be used to quickly identify the variables with the highest influence on the environmental fate of selected, chlorobenzenes, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), hexachlorocyclohexanes (HCHs) and brominated flame retardents (BFRs).

  15. GLOBOX : A spatially differentiated global fate, intake and effect model for toxicity assessment in LCA

    NARCIS (Netherlands)

    Wegener Sleeswijk, Anneke; Heijungs, Reinout

    GLOBOX is a model for the calculation of spatially differentiated LCA toxicity characterisation factors on a global scale. It can also be used for human and environmental risk assessment. The GLOBOX model contains equations for the calculation of fate, intake and effect factors, and equations for

  16. Fate of acetone in an outdoor model stream in southern Mississippi, U.S.A.

    Science.gov (United States)

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.; Tai, D.Y.

    1988-01-01

    The fate of acetone in water was investigated in an outdoor model stream located in southern Mississippi, U.S.A. Acetone was injected continuously for 32 days resulting in small milligram-perliter concentrations in the stream. Rhodamine-WT dye was injected at the beginning and at the end of the study to determine the time-of-travel and dispersion characteristics of the stream. A 12-h injection of t-butyl alcohol (TBA) was used to determine the volatilization characteristics of the stream. Volatilization controlled the acetone concentration in the stream. Significant bacterial degradation of acetone did not occur, contrary to expectations based on previous laboratory studies. Attempts to induce degradation of the acetone by injecting glucose and a nutrient solution containing bacteria acclimated to acetone were unsuccessful. Possible explanations for the lack of bacterial degradation included a nitrate limitation and a limited residence time in the stream system. ?? 1988.

  17. Review of nitrogen fate models applicable to forest landscapes in the Southern U.S.

    Science.gov (United States)

    D. M. Amatya; C. G. Rossi; A. Saleh; Z. Dai; M. A. Youssef; R. G. Williams; D. D. Bosch; G. M. Chescheir; G. Sun; R. W. Skaggs; C. C. Trettin; E. D. Vance; J. E. Nettles; S. Tian

    2013-01-01

    Assessing the environmental impacts of fertilizer nitrogen (N) used to increase productivity in managed forests is complex due to a wide range of abiotic and biotic factors affecting its forms and movement. Models developed to predict fertilizer N fate (e.g., cycling processes) and water quality impacts vary widely in their design, scope, and potential application. We...

  18. A coupled reaction and transport model for assessing the injection, migration and fate of waste fluids

    International Nuclear Information System (INIS)

    Liu, X.; Ortoleva, P.

    1996-01-01

    The use of reaction-transport modeling for reservoir assessment and management in the context of deep well waste injection is evaluated. The study is based on CIRF.A (Chemical Interaction of Rock and Fluid), a fully coupled multiphase flow, contaminant transport, and fluid and mineral reaction model. Although SWIFT (Sandia Waste-Isolation Flow and Transport Model) is often the numerical model of choice, it can not account for chemical reactions involving rock, wastes, and formation fluids and their effects on contaminant transport, rock permeability and porosity, and the integrity of the reservoir and confining units. CIRF.A can simulate all these processes. Two field cases of waste injection were simulated by CIRF.A. Both observation data and simulation results show mineral precipitation in one case and rock dissolution in another case. Precipitation and dissolution change rock porosity and permeability, and hence the pattern of fluid migration. The model is shown to be invaluable in analyzing near borehole and reservoir-scale effects during waste injection and predicting the 10,000 year fate of the waste plume. The benefits of using underpressured compartments as waste repositories were also demonstrated by CIRF.A simulations

  19. Modeling the transport and fate of radioactive noble gases in very dry desert alluvium: Realistic scenarios

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Donahue, M.E.; Emer, D.F.; Shott, G.J.

    1992-01-01

    US DOE Order 5820.2A (1988) requires that a performance assessment of all new and existing low-level radioactive waste management sites be made. An integral part of every performance assessment is the mathematical modeling of the transport and fate of noble gas radionuclides in the gas phase. Current in depth site characterization of the high desert alluvium in Area 5 of the Nevada Test Site (NTS) is showing that the alluvium is very very dry all the way to the water table (240 meters below land surface). The potential for radioactive noble gas (e.g. Rn-220 and Rn-222) transport to the atmosphere from shallow land burial of Thorium and Uranium waste is very high. Objectives of this modeling effort include: Construct a physics based sits specific noble gas transport model; Include induced advection due to barometric pressure changes at the atmospheric boundary layer (thin) - dry desert alluvium interface; User selected option for use of NOAA barometric pressure or a ''home brewed'' barometric pressure wave made up of up to 15 sinusoids and cosinusoids; Use the model to help make engineering decisions on the design of the burial pits and associated closure caps

  20. Pesticide fate on catchment scale: conceptual modelling of stream CSIA data

    Science.gov (United States)

    Lutz, Stefanie R.; van der Velde, Ype; Elsayed, Omniea F.; Imfeld, Gwenaël; Lefrancq, Marie; Payraudeau, Sylvain; van Breukelen, Boris M.

    2017-10-01

    Compound-specific stable isotope analysis (CSIA) has proven beneficial in the characterization of contaminant degradation in groundwater, but it has never been used to assess pesticide transformation on catchment scale. This study presents concentration and carbon CSIA data of the herbicides S-metolachlor and acetochlor from three locations (plot, drain, and catchment outlets) in a 47 ha agricultural catchment (Bas-Rhin, France). Herbicide concentrations at the catchment outlet were highest (62 µg L-1) in response to an intense rainfall event following herbicide application. Increasing δ13C values of S-metolachlor and acetochlor by more than 2 ‰ during the study period indicated herbicide degradation. To assist the interpretation of these data, discharge, concentrations, and δ13C values of S-metolachlor were modelled with a conceptual mathematical model using the transport formulation by travel-time distributions. Testing of different model setups supported the assumption that degradation half-lives (DT50) increase with increasing soil depth, which can be straightforwardly implemented in conceptual models using travel-time distributions. Moreover, model calibration yielded an estimate of a field-integrated isotopic enrichment factor as opposed to laboratory-based assessments of enrichment factors in closed systems. Thirdly, the Rayleigh equation commonly applied in groundwater studies was tested by our model for its potential to quantify degradation on catchment scale. It provided conservative estimates on the extent of degradation as occurred in stream samples. However, largely exceeding the simulated degradation within the entire catchment, these estimates were not representative of overall degradation on catchment scale. The conceptual modelling approach thus enabled us to upscale sample-based CSIA information on degradation to the catchment scale. Overall, this study demonstrates the benefit of combining monitoring and conceptual modelling of concentration

  1. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    Science.gov (United States)

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  2. CASCADER: An M-chain gas-phase radionuclide transport and fate model

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Emer, D.F.; Shott, G.J.; Donahue, M.E.

    1993-02-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and diffusion. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. CASCADER is a gas-phase, one-space dimensional transport and fate model for M-chain radionuclides in very dry homogeneous or heterogeneous soil. This model contains barometric pressure-induced advection and diffusion together with linear irreversible and linear reversible sorption for each radionuclide. The advection velocity is derived from an embedded air-pumping submodel. The air-pumping submodel is based on an assumption of isothermal conditions, which is driven by barometric pressure. CASCADER allows the concentration of source radionuclides to decay via the classical Bateman chain of simple, first-order kinetic processes. The transported radionuclides also decay via first-order processes while in the soil. A mass conserving, flux-type inlet and exit set of boundary conditions are used. The user must supply the initial distribution for the parent radionuclide in the soil. The initial daughter distribution is found using equilibrium rules. The model is user friendly as it uses a prompt-driven, free-form input. The code is ANSI standard Fortran 77

  3. CASCADER: An m-chain gas-phase radionuclide transport and fate model

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Emer, D.F.; Shott, G.J.; Donahue, M.E.

    1992-06-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes as they are advected and/or dispersed. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. CASCADER is a gas-phase, one space dimensional transport and fate model for an m-chain of radionuclides in very dry soil. This model contains barometric pressure-induced advection and diffusion together with linear irreversible and linear reversible sorption for each radionuclide. The advocation velocity is derived from an embedded air-pumping submodel. The airpumping submodel is based on an assumption of isothermal conditions and is barometric pressure driven. CASCADER allows the concentration of source radionuclides to decay via the classical Bateman chain of simple, first-order kinetic processes. The transported radionuclides also decay via first-order processes while in the soil. A mass conserving, flux-type inlet and exit set of boundary conditions is used. The user must supply the initial distribution for the parent radionuclide in the soil. The initial daughter distribution is found using equilibrium rules. The model is user friendly as it uses a prompt-driven, free-form input. The code is ANSI standard Fortran 77

  4. Development and application of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    Science.gov (United States)

    Hong, E.; Park, Y.; Muirhead, R.; Jeong, J.; Pachepsky, Y. A.

    2017-12-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. Based on calibration and testing results, the APEX with the microbe module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water under various agricultural

  5. Estimating demographic parameters using a combination of known-fate and open N-mixture models.

    Science.gov (United States)

    Schmidt, Joshua H; Johnson, Devin S; Lindberg, Mark S; Adams, Layne G

    2015-10-01

    Accurate estimates of demographic parameters are required to infer appropriate ecological relationships and inform management actions. Known-fate data from marked individuals are commonly used to estimate survival rates, whereas N-mixture models use count data from unmarked individuals to estimate multiple demographic parameters. However, a joint approach combining the strengths of both analytical tools has not been developed. Here we develop an integrated model combining known-fate and open N-mixture models, allowing the estimation of detection probability, recruitment, and the joint estimation of survival. We demonstrate our approach through both simulations and an applied example using four years of known-fate and pack count data for wolves (Canis lupus). Simulation results indicated that the integrated model reliably recovered parameters with no evidence of bias, and survival estimates were more precise under the joint model. Results from the applied example indicated that the marked sample of wolves was biased toward individuals with higher apparent survival rates than the unmarked pack mates, suggesting that joint estimates may be more representative of the overall population. Our integrated model is a practical approach for reducing bias while increasing precision and the amount of information gained from mark-resight data sets. We provide implementations in both the BUGS language and an R package.

  6. Environmental fate and transport analysis with compartment modeling

    National Research Council Canada - National Science Library

    Little, Keith W

    2012-01-01

    .... Discussing various modeling issues in a single volume, this text provides an introduction to a specific numerical modeling technique called the compartment approach and offers a practical user's guide to the GEM...

  7. Modelling the fate of oxidisable organic contaminants in groundwater

    DEFF Research Database (Denmark)

    Barry, D.A.; Prommer, H.; Miller, C.T.

    2002-01-01

    modelling framework is illustrated by pertinent examples, showing the degradation of dissolved organics by microbial activity limited by the availability of nutrients or electron acceptors (i.e., changing redox states), as well as concomitant secondary reactions. Two field-scale modelling examples......Subsurface contamination by organic chemicals is a pervasive environmental problem, susceptible to remediation by natural or enhanced attenuation approaches or more highly engineered methods such as pump-and-treat, amongst others. Such remediation approaches, along with risk assessment...... are discussed, the Vejen landfill (Denmark) and an example where metal contamination is remediated by redox changes wrought by injection of a dissolved organic compound. A summary is provided of current and likely future challenges to modelling of oxidisable organics in the subsurface. (C) 2002 Elsevier Science...

  8. A dynamic contaminant fate model of organic compound: a case study of Nitrobenzene pollution in Songhua River, China.

    Science.gov (United States)

    Wang, Ce; Feng, Yujie; Zhao, Shanshan; Li, Bai-Lian

    2012-06-01

    A one-dimensional dynamic contaminant fate model, coupling kinematic wave flow option with advection-dispersion-reaction equation, has been applied to predict Nitrobenzene pollution emergency in Songhua River, China that occurred on November 13, 2005. The model includes kinetic processes including volatilization, photolysis and biodegradation, and diffusive mass exchange between water column and sediment layer as a function of particles settling and resuspension. Four kinds of quantitative statistical tests, namely Nash-Sutcliffe efficiency, percent bias, ratio of root-mean-square to the standard deviation of monitoring data and Theil's inequality coefficient, are adopted to evaluate model performance. The results generally show that the modeled and detected concentrations exhibit good consistency. Flow velocity in the river is most sensitive parameter to Nitrobenzene concentration in water column based on sensitivity analysis of input parameters. It indicates flow velocity has important impact on both distribution and variance of contaminant concentration. The model performs satisfactory for prediction of organic pollutant fate in Songhua River, with the ability to supply necessary information for pollution event control and early warning, which could be applied to similar long natural rivers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Numerical modelling on fate and transport of petroleum ...

    Indian Academy of Sciences (India)

    present work is to understand the simultaneous mass transfer as well as transport processes fol- lowing the surface spill of benzene in the unsatu- rated zone, aiming at better concentration profiles, which can be useful in risk-based decision mak- ing. The study domain is limited to near-surface environment where soil pores ...

  10. Modeling the fate of polynuclear aromatic hydrocarbons in the rhizosphere

    International Nuclear Information System (INIS)

    Santharam, S.K.; Erickson, L.E.; Fan, L.T.

    1994-01-01

    Polynuclear aromatic hydrocarbons (PAHs) are major contaminants associated with wastes from manufactured gas plants, wood treating operations, and petroleum refining; they are potentially carcinogenic and mutagenic. It has been known that vegetation can enhance the rate and extent of degradation of PAHs in contaminated soil. Plant roots release exudates capable of supplying carbon and energy to microflora for degrading PAHs. It has also been well established that the population of microorganisms in the rhizosphere is significantly greater than that in the non-vegetated soil; these microorganisms are apparently responsible for the enhanced biodegradation of PAHs. A model has been derived for describing the rate of disappearance of a non-aqueous phase contaminant in the rhizosphere, which takes into account dissolution, adsorption, desorption and biodegradation of the contaminant, without neglecting the size distribution of the organic-phase droplets; the rate of biodegradation is expressed in terms of the Monod kinetics. The model is validated with the available experimental data for pyrene

  11. Contaminant fate and transport in the Venice Lagoon: results from a multi-segment multimedia model.

    Science.gov (United States)

    Sommerfreund, J K; Gandhi, N; Diamond, M L; Mugnai, C; Frignani, M; Capodaglio, G; Gerino, M; Bellucci, L G; Giuliani, S

    2010-03-01

    Contaminant loadings to the Venice Lagoon peaked from 1950s-1980s and although they have since declined, contaminant concentrations remain elevated in sediment and seafood. In order to identify the relative importance of contaminant sources, inter-media exchange and removal pathways, a modified 10-segment fugacity/aquivalence-based model was developed for octachlorodibenzodioxin/furan (OCDD/F), PCB-180, Pb and Cu in the Venice Lagoon. Results showed that in-place pollution nearby the industrial area, current industrial discharges, and tributary loadings were the main sources of contaminants to the lagoon, with negligible contributions from the atmosphere. The fate of these contaminants was governed by sediment-water exchange with simultaneous advective transport by water circulation. Contaminants circulated amongst the northern and central basins with a small fraction reaching the far southern basin and the Chioggia inlet. As a consequence, we estimated limited contaminant transfer to the Adriatic Sea, trapping the majority of contaminants in the sediment in this "average" circulation scenario which does not account for periodic flooding events. (c) 2009 Elsevier Inc. All rights reserved.

  12. Georeferenced fate modelling of LAS in the itter stream

    DEFF Research Database (Denmark)

    Schulze, C:; Matthies, M.; Trapp, S.

    1999-01-01

    For the simulation of spatial concentration patterns of 'down-the-drain' chemicals mathematical models were coupled with a Geographic Information System (GIS) to predict concentrations in the receiving surface waters, using the detergent chemicals Linear Alkylbenzenesulfonate (LAS) and Boron and ...... in the riverine water and the water quality parameters TOC and ammonium, This study is closely linked to the ongoing project GREAT-ER. (C) 1999 Elsevier Science Ltd. All rights reserved....

  13. Models for transport and fate of carbon, nutrients and point source released radionuclides to an aquatic ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Kumblad, Linda [Stockholm Univ. (Sweden). Dept. of Systems Ecology; Kautsky, Ulrik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2004-09-01

    In this report three ecosystem models are described in terms of structure, initial data, and results. All models are dynamic, mass-balanced and describe the transport and fate of elements in an open aquatic ecosystem. The models are based on ecologically sound principles, provide model results with high resolution and transparency, and are constrained by the nutrient dynamics of the ecosystem itself. The processes driving the transport in all the models are both the biological processes such as primary production, consumption, respiration and excretion, and abiotic e.g. water exchange and air-sea exchange. The first model, the CNP-model, describes the distribution and fluxes of carbon and nutrients for the coastal ecosystem off Forsmark. The second model, the C-14 model, is an extension of the CNP-model and describes the transport and distribution of hypothetically released C-14 from the underground repository SFR-1 to the ecosystem above. The third model, the RN-model, is a generic radionuclide flow model that models the transport and distribution of radionuclides other than C-14 hypothetically discharged to the ecosystem. The model also analyses the importance of some radionuclide specific mechanisms for the radionuclide flow. The generic radionuclide model is also based on the CNP-model, but has radionuclide specific mechanisms connected to each compartment.

  14. Models for transport and fate of carbon, nutrients and point source released radionuclides to an aquatic ecosystem

    International Nuclear Information System (INIS)

    Kumblad, Linda

    2004-09-01

    In this report three ecosystem models are described in terms of structure, initial data, and results. All models are dynamic, mass-balanced and describe the transport and fate of elements in an open aquatic ecosystem. The models are based on ecologically sound principles, provide model results with high resolution and transparency, and are constrained by the nutrient dynamics of the ecosystem itself. The processes driving the transport in all the models are both the biological processes such as primary production, consumption, respiration and excretion, and abiotic e.g. water exchange and air-sea exchange. The first model, the CNP-model, describes the distribution and fluxes of carbon and nutrients for the coastal ecosystem off Forsmark. The second model, the C-14 model, is an extension of the CNP-model and describes the transport and distribution of hypothetically released C-14 from the underground repository SFR-1 to the ecosystem above. The third model, the RN-model, is a generic radionuclide flow model that models the transport and distribution of radionuclides other than C-14 hypothetically discharged to the ecosystem. The model also analyses the importance of some radionuclide specific mechanisms for the radionuclide flow. The generic radionuclide model is also based on the CNP-model, but has radionuclide specific mechanisms connected to each compartment

  15. Development and evaluation of the bacterial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model.

    Science.gov (United States)

    Hong, Eun-Mi; Park, Yongeun; Muirhead, Richard; Jeong, Jaehak; Pachepsky, Yakov A

    2018-02-15

    The Agricultural Policy/Environmental eXtender (APEX) is a watershed-scale water quality model that includes detailed representation of agricultural management. The objective of this work was to develop a process-based model for simulating the fate and transport of manure-borne bacteria on land and in streams with the APEX model. The bacteria model utilizes manure erosion rates to estimate the amount of edge-of-field bacteria export. Bacteria survival in manure is simulated as a two-stage process separately for each manure application event. In-stream microbial fate and transport processes include bacteria release from streambeds due to sediment resuspension during high flow events, active release from the streambed sediment during low flow periods, bacteria settling with sediment, and survival. Default parameter values were selected from published databases and evaluated based on field observations. The APEX model with the newly developed microbial fate and transport module was applied to simulate fate and transport of the fecal indicator bacterium Escherichia coli in the Toenepi watershed, New Zealand that was monitored for seven years. The stream network of the watershed ran through grazing lands with daily bovine waste deposition. Results show that the APEX with the bacteria module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water as affected by various agricultural practices, evaluating monitoring protocols, and supporting the selection of management practices based on regulations that rely on fecal indicator bacteria concentrations. Published by Elsevier B.V.

  16. Fate of acetone in an outdoor model stream with a nitrate supplement, southern Mississippi, U.S.A.

    Science.gov (United States)

    Rathbun, R.E.; Stephens, D.W.; Tai, D.Y.

    1991-01-01

    The fate of acetone in an outdoor model stream to which nitrate was added as a nutrient supplement was determined. The stream, in southern Mississippi, U.S.A. was 234 m long. Water was supplied to the stream by an artesian well at about 1.21 s-1, resulting in a mean water velocity of about 0.5 m min-1. Acetone was injected continuously for 26 days resulting in concentrations of 20-40 mg l-1. A nitrate solution was injected for 21 days resulting in an instream concentration of about 1.7 mg l-1 at the upstream end of the stream. Rhodamine-WT dye was used to determine the travel time and dispersion characteristics of the stream, and t-butyl alcohol was used to determine the volatilization characteristics. Volatilization controlled the fate of acetone in the model stream. The lack of substantial bacterial degradation of acetone was contrary to expectations based on the results of laboratory degradation studies using model stream water enriched with nitrate. A possible explanation for the lack of significant degradation in the model stream may be the limited 6-h residence time of the acetone in the stream. ?? 1991.

  17. On the fate of the Standard Model at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Luigi Delle; Marzo, Carlo [Università del Salento, Dipartimento di Matematica e Fisica “Ennio De Giorgi' ,Via Arnesano, 73100 Lecce (Italy); INFN - Sezione di Lecce,via Arnesano, 73100 Lecce (Italy); Urbano, Alfredo [SISSA - International School for Advanced Studies,via Bonomea 256, 34136 Trieste (Italy)

    2016-05-10

    In this paper we revisit and update the computation of thermal corrections to the stability of the electroweak vacuum in the Standard Model. At zero temperature, we make use of the full two-loop effective potential, improved by three-loop beta functions with two-loop matching conditions. At finite temperature, we include one-loop thermal corrections together with resummation of daisy diagrams. We solve numerically — both at zero and finite temperature — the bounce equation, thus providing an accurate description of the thermal tunneling. Assuming a maximum temperature in the early Universe of the order of 10{sup 18} GeV, we find that the instability bound excludes values of the top mass M{sub t}≳173.6 GeV, with M{sub h}≃125 GeV and including uncertainties on the strong coupling. We discuss the validity and temperature-dependence of this bound in the early Universe, with a special focus on the reheating phase after inflation.

  18. Modeling Quantum Dot Nanoparticle Fate and Transport in Saturated Porous Media under Varying Flow Conditions

    Science.gov (United States)

    Becker, M. D.; Wang, Y.; Englehart, J.; Pennell, K. D.; Abriola, L. M.

    2010-12-01

    As manufactured nanomaterials become more prevalent in commercial and industrial applications, the development of mathematical models capable of predicting nanomaterial transport and retention in subsurface systems is crucial to assessing their fate and distribution in the environment. A systematic modeling approach based on a modification of clean-bed filtration theory was undertaken to elucidate mechanisms governing the transport and deposition behavior of quantum dots in saturated quartz sand as a function of grain size and flow velocity. The traditional deposition governing equation, which assumes irreversible attachment by a first-order rate (katt), was modified to include a maximum or limiting retention capacity (Smax) and first-order detachment of particles from the solid phase (kdet). Quantum dot mobility experiments were performed in columns packed with three size fractions of Ottawa sand (d50 = 125, 165, and 335 μm) at two different pore-water velocities (0.8 m/d and 7.6 m/d). The CdSe quantum dots in a CdZnS shell and polyacrylic acid coating were negatively charged (zeta potential measured ca. -35 mV) with a hydrodynamic diameter of approximately 30 nm. Fitted values of katt, Smax, and kdet were obtained for each transport and deposition experiment through the implementation of a nonlinear least-squares routine developed to fit the model to experimental breakthrough and retention data via multivariate optimization. Fitted attachment rates and retention capacities increased exponentially with decreasing grain size at both flow rates, while no discernable trend was apparent for the fitted detachment rates. Maximum retention capacity values were plotted against a normalized mass flux expression, which accounts for flow conditions and grain size. A power function fit to the data yielded a dependence that was consistent with a previous study undertaken with fullerene nanoparticles.

  19. Evaluating the Environmental Fate of Short-Chain Chlorinated Paraffins (SCCPs) in the Nordic Environment Using a Dynamic Multimedia Model

    OpenAIRE

    Krogseth, Ingjerd Sunde; Breivik, Knut; Arnot, Jon A; Wania, Frank; Borgen, Anders; Schlabach, Martin

    2013-01-01

    Short chain chlorinated paraffins (SCCPs) raise concerns due to their potential for persistence, bioaccumulation, long-range transport and adverse effects. An understanding of their environmental fate remains limited, partly due to the complexity of the mixture. The purpose of this study was to evaluate whether a mechanistic, integrated, dynamic environmental fate and bioaccumulation multimedia model (CoZMoMAN) can reconcile what is known about environmental emissions and human exposure of SC...

  20. Environmental fate and exposure models: advances and challenges in 21st century chemical risk assessment.

    Science.gov (United States)

    Di Guardo, Antonio; Gouin, Todd; MacLeod, Matthew; Scheringer, Martin

    2018-01-24

    Environmental fate and exposure models are a powerful means to integrate information on chemicals, their partitioning and degradation behaviour, the environmental scenario and the emissions in order to compile a picture of chemical distribution and fluxes in the multimedia environment. A 1995 pioneering book, resulting from a series of workshops among model developers and users, reported the main advantages and identified needs for research in the field of multimedia fate models. Considerable efforts were devoted to their improvement in the past 25 years and many aspects were refined; notably the inclusion of nanomaterials among the modelled substances, the development of models at different spatial and temporal scales, the estimation of chemical properties and emission data, the incorporation of additional environmental media and processes, the integration of sensitivity and uncertainty analysis in the simulations. However, some challenging issues remain and require research efforts and attention: the need of methods to estimate partition coefficients for polar and ionizable chemical in the environment, a better description of bioavailability in different environments as well as the requirement of injecting more ecological realism in exposure predictions to account for the diversity of ecosystem structures and functions in risk assessment. Finally, to transfer new scientific developments into the realm of regulatory risk assessment, we propose the formation of expert groups that compare, discuss and recommend model modifications and updates and help develop practical tools for risk assessment.

  1. Fate modeling of mercury species and fluxes estimation in an urban river

    International Nuclear Information System (INIS)

    Tong, Yindong; Zhang, Wei; Chen, Cen; Chen, Long; Wang, Wentao; Hu, Xindi; Wang, Huanhuan; Hu, Dan; Ou, Langbo; Wang, Xuejun; Wang, Qiguang

    2014-01-01

    The fate and transfer of mercury in urban river is an important environmental concern. In this study, QWASI (Quantitative Water–Air–Sediment Interaction) model was selected to estimate the levels of total mercury and three mercury species in water and sediment, and was used to quantify the fluxes of mercury at water/air and sediment/water interfaces of an urban river. The predicted mercury levels in water and sediments were closed to the measured values. Water inflow, re-suspension of sediment and diffusion from sediment to water are major input sources of mercury in water. The net mercury transfer flux from water to air was 0.16 ng/(m 2 h). At the sediment/water interface, a net total mercury transfer of 1.32 ng/(m 2 h) from water to sediment was seen. In addition to the existing dynamic flux chambers measurement, this model method could provide a new perspective to identify the distribution and transfer of mercury in the urban river. -- Highlights: • QWASI could be a good tool to quantify transfer and fate of mercury in environment. • Distribution and flux of mercury species in an urban river was modeled. • Mercury in water mainly came from water inflow, sediment re-suspension and diffusion. • Net mercury transfer from water to air and sediment were 0.16 and 1.32 ng/(m 2 h). -- Quantitative Water–Air–Sediment Interaction model was used to quantify the transfer and fate of mercury in an urban river

  2. Multimedia fate modeling of perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS) in the shallow lake Chaohu, China.

    Science.gov (United States)

    Kong, Xiangzhen; Liu, Wenxiu; He, Wei; Xu, Fuliu; Koelmans, Albert A; Mooij, Wolf M

    2018-06-01

    Freshwater shallow lake ecosystems provide valuable ecological services to human beings. However, these systems are subject to severe contamination from anthropogenic sources. Per- and polyfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS), are among the contaminants that have received substantial attention, primarily due to abundant applications, environment persistence, and potential threats to ecological and human health. Understanding the environmental behavior of these contaminants in shallow freshwater lake environments using a modeling approach is therefore critical. Here, we characterize the fate, transport and transformation of both PFOA and PFOS in the fifth largest freshwater lake in China (Chaohu) during a two-year period (2013-2015) using a fugacity-based multimedia fate model. A reasonable agreement between the measured and modeled concentrations in various compartments confirms the model's reliability. The model successfully quantifies the environmental processes and identifies the major sources and input pathways of PFOA and PFOS to the Chaohu water body. Sensitivity analysis reveals the critical role of nonlinear Freundlich sorption, which contributes to a variable fraction of the model true uncertainty in different compartments (8.1%-93.6%). Through additional model scenario analyses, we further elucidate the importance of nonlinear Freundlich sorption that is essential for the reliable model performance. We also reveal the distinct composition of emission sources for the two contaminants, as the major sources are indirect soil volatilization and direct release from human activities for PFOA and PFOS, respectively. The present study is expected to provide implications for local management of PFASs pollution in Lake Chaohu and to contribute to developing a general model framework for the evaluation of PFASs in shallow lakes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Assessment of the Environmental Fate of the Herbicides Flufenacet and Metazachlor with the SWAT Model.

    Science.gov (United States)

    Fohrer, Nicola; Dietrich, Antje; Kolychalow, Olga; Ulrich, Uta

    2014-01-01

    This study aims to assess the environmental fate of the commonly used herbicides flufenacet and metazachlor in the Northern German Lowlands with the ecohydrological Soil and Water Assessment Tool (SWAT model) and to test the sensitivity of pesticide-related input parameters on the modeled transport dynamics. The river discharge of the Kielstau watershed was calibrated (Nash-Sutcliffe efficiency [NSE], 0.83; = 0.84) and validated (NSE, 0.76; = 0.77) for a daily time step. The environmental fate of metazachlor (NSE, 0.68; = 0.62) and flufenacet (NSE, 0.13; = 0.51) was simulated adequately. In comparison to metazachlor, the simulated flufenacet concentration and loads show a lower model efficiency due to the weaker simulation of the stream flow. The in-stream herbicide loads were less than 0.01% of the applied amount in the observed time period and thus not in conflict with European Environmental Legislation. The sensitivity analysis showed that, besides the accurate simulation of stream flow, the parameterization of the temporal and spatial distribution of the herbicide application throughout the watershed is the key factor for appropriate modeling results, whereas the physicochemical properties of the pesticides play a minor role in the modeling process. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Monod kinetics rather than a first-order degradation model explains atrazine fate in soil mini-columns: Implications for pesticide fate modelling

    International Nuclear Information System (INIS)

    Cheyns, K.; Mertens, J.; Diels, J.; Smolders, E.; Springael, D.

    2010-01-01

    Pesticide transport models commonly assume first-order pesticide degradation kinetics for describing reactive transport in soil. This assumption was assessed in mini-column studies with associated batch degradation tests. Soil mini-columns were irrigated with atrazine in two intermittent steps of about 30 days separated by 161 days application of artificial rain water. Atrazine concentration in the effluent peaked to that of the influent concentration after initial break-through but sharply decreased while influx was sustained, suggesting a degradation lag phase. The same pattern was displayed in the second step but peak height and percentage of atrazine recovered in the effluent were lower. A Monod model with biomass decay was successfully calibrated to this data. The model was successfully evaluated against batch degradation data and mini-column experiments at lower flow rate. The study suggested that first-order degradation models may underestimate risk of pesticide leaching if the pesticide degradation potential needs amplification during degradation. - Population dynamics of pesticide degrading population should be taken into account when predictions of pesticide fate are made to avoid underestimation of pesticide break-through towards groundwater.

  5. Sediment carbon fate in phreatic karst (Part 1): Conceptual model development

    Science.gov (United States)

    Husic, A.; Fox, J.; Agouridis, C.; Currens, J.; Ford, W.; Taylor, C.

    2017-06-01

    Recent research has paid increased attention to quantifying the fate of carbon pools within fluvial networks, but few, if any, studies consider the fate of sediment organic carbon in fluviokarst systems despite that karst landscapes cover 12% of the earth's land surface. The authors develop a conceptual model of sediment carbon fate in karst terrain with specific emphasis upon phreatic karst conduits, i.e., those located below the groundwater table that have the potential to trap surface-derived sediment and turnover carbon. To assist with their conceptual model development, the authors study a phreatic system and apply a mixture of methods traditional and novel to karst studies, including electrical resistivity imaging, well drilling, instantaneous velocimetry, dye tracing, stage recording, discrete and continuous sediment and water quality sampling, and elemental and stable carbon isotope fingerprinting. Results show that the sediment transport carrying capacity of the phreatic karst water is orders of magnitude less than surface streams during storm-activated periods promoting deposition of fine sediments in the phreatic karst. However, the sediment transport carrying capacity is sustained long after the hydrologic event has ended leading to sediment resuspension and prolonged transport. The surficial fine grained laminae occurs in the subsurface karst system; but unlike surface streams, the light-limited conditions of the subsurface karst promotes constant heterotrophy leading to carbon turnover. The coupling of the hydrological processes leads to a conceptual model that frames phreatic karst as a biologically active conveyor of sediment carbon that recharges degraded organic carbon back to surface streams. For example, fluvial sediment is estimated to lose 30% of its organic carbon by mass during a one year temporary residence within the phreatic karst. It is recommended that scientists consider karst pathways when attempting to estimate organic matter stocks

  6. Sensitivity analysis of the noble gas transport and fate model: CASCADR9

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Barker, L.E.

    1994-03-01

    CASCADR9 is a desert alluvial soil site-specific noble gas transport and fate model. Input parameters for CASCADR9 are: man-made source term, background concentration of radionuclides, radon half-life, soil porosity, period of barometric pressure wave, amplitude of barometric pressure wave, and effective eddy diffusivity. Using average flux, total flow, and radon concentration at the 40 day mark as output parameters, a sensitivity analysis for CASCADR9 is carried out, under a variety of scenarios. For each scenario, the parameter to which output parameters are most sensitive are identified

  7. Evaluating the usefulness of dynamic pollutant fate models for implementing the EU Water Framework Directive.

    Science.gov (United States)

    Gevaert, Veerle; Verdonck, Frederik; Benedetti, Lorenzo; De Keyser, Webbey; De Baets, Bernard

    2009-06-01

    The European Water Framework Directive (WFD) aims at achieving a good ecological and chemical status of surface waters in river basins by 2015. The chemical status is considered good if the Environmental Quality Standards (EQSs) are met for all substances listed on the priority list and eight additional specific emerging substances. To check compliance with these standards, the WFD requires the establishment of monitoring programmes. The minimum measuring frequency for priority substances is currently set at once per month. This can result in non-representative sampling and increased probability of misinterpretation of the surface water quality status. To assist in the classification of the water body, the combined use of monitoring data and pollutant fate models is recommended. More specifically, dynamic models are suggested, as possible exceedance of the quality standards can be predicted by such models. In the presented work, four realistic scenarios are designed and discussed to illustrate the usefulness of dynamic pollutant fate models for implementing the WFD. They comprise a combination of two priority substances and two rivers, representative for Western Europe.

  8. A workshop model simulating fate and effect of drilling muds and cuttings on benthic communities

    Science.gov (United States)

    Auble, Gregor T.; Andrews, Austin K.; Hamilton, David B.; Roelle, James E.; Shoemaker, Thomas G.

    1984-01-01

    Oil and gas exploration and production at marine sites has generated concern over potential environmental impacts resulting from the discharge of spent drilling muds and cuttings. This concern has led to a broad array of publicly and privately sponsored research. This report described a cooperative modeling effort designed to focus information resulting from this research through construction of explicit equations that simulate the potential impacts of discharge drilling fluids (muds) and cuttings on marine communities. The model is the result of collaboration among more than 30 scientists. The principal cooperating organizations were the E.S. Environmental Protection Agency, the U.S. Minerals Management Service, the Offshore Operators Committee, and the Alaska Oil and Gas Association. The overall simulation model can be conceptualized as three connected submodels: Discharge and Plume Fate, Sediment Redistribution, and Benthic Community Effects. On each day of simulation, these submodels are executed in sequence, with flows of information between submodels. The Benthic Community Effects submodel can be further divided into sections that calculate mortality due to burial, mortality due to toxicity, mortality due to resuspension disturbance, and growth of the community. The model represents a series of seven discrete 1-m2 plots at specified distances along a transect in one direction away from a discharge point. It consists of coupled difference equations for which parameter values can easily be set to evaluate different conditions or to examine the sensitivity of output to various assumptions. Sets of parameter values were developed to represent four general cases or scenarios: (1) a shallow (5 m), cold environment with ice cover during a substantial fraction of the year, such as might be encountered in the Beaufort Sea, Alaska; (2) a shallow (20 m), temperate environment, such as might be encountered in the Gulf of Mexico; (3) a deeper (80 m), temperate environment

  9. Analysis of TCE Fate and Transport in Karst Groundwater Systems Using Statistical Mixed Models

    Science.gov (United States)

    Anaya, A. A.; Padilla, I. Y.

    2012-12-01

    Karst groundwater systems are highly productive and provide an important fresh water resource for human development and ecological integrity. Their high productivity is often associated with conduit flow and high matrix permeability. The same characteristics that make these aquifers productive also make them highly vulnerable to contamination and a likely for contaminant exposure. Of particular interest are trichloroethylene, (TCE) and Di-(2-Ethylhexyl) phthalate (DEHP). These chemicals have been identified as potential precursors of pre-term birth, a leading cause of neonatal complications with a significant health and societal cost. Both of these contaminants have been found in the karst groundwater formations in this area of the island. The general objectives of this work are to: (1) develop fundamental knowledge and determine the processes controlling the release, mobility, persistence, and possible pathways of contaminants in karst groundwater systems, and (2) characterize transport processes in conduit and diffusion-dominated flow under base flow and storm flow conditions. The work presented herein focuses on the use of geo-hydro statistical tools to characterize flow and transport processes under different flow regimes, and their application in the analysis of fate and transport of TCE. Multidimensional, laboratory-scale Geo-Hydrobed models (GHM) were used for this purpose. The models consist of stainless-steel tanks containing karstified limestone blocks collected from the karst aquifer formation of northern Puerto Rico. The models integrates a network of sampling wells to monitor flow, pressure, and solute concentrations temporally and spatially. Experimental work entails injecting dissolved CaCl2 tracers and TCE in the upstream boundary of the GHM while monitoring TCE and tracer concentrations spatially and temporally in the limestone under different groundwater flow regimes. Analysis of the temporal and spatial concentration distributions of solutes

  10. Overview of research and development in subsurface fate and transport modeling

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Chehata, M.

    1995-05-01

    The US Department of Energy is responsible for the remediation of over 450 different subsurface-contaminated sites. Contaminant plumes at these sites range in volume from several to millions of cubic yards. The concentration of contaminants also ranges over several orders of magnitude. Contaminants include hazardous wastes such as heavy metals and organic chemicals, radioactive waste including tritium, uranium, and thorium, and mixed waste, which is a combination of hazardous and radioactive wastes. The physical form of the contaminants includes solutes, nonaqueous phase liquids (NAPLs), and vapor phase contaminants such as volatilized organic chemicals and radon. The subject of contaminant fate and transport modeling is multi-disciplinary, involving hydrology, geology, microbiology, chemistry, applied mathematics, computer science, and other areas of expertise. It is an issue of great significance in the United States and around the world. As such, many organizations have substantial programs in this area. In gathering data to prepare this report, a survey was performed of research and development work that is funded by US government agencies to improve the understanding and mechanistic modeling of processes that control contaminant movement through subsurface systems. Government agencies which fund programs that contain fate and transport modeling components include the Environmental Protection Agency, Nuclear Regulatory Commission, Department of Agriculture, Department of Energy, National Science Foundation, Department of Defense, United States Geological Survey, and National Institutes of Health

  11. Modeling the fate of organic micropollutants during river bank filtration (Berlin, Germany).

    Science.gov (United States)

    Henzler, Aline F; Greskowiak, Janek; Massmann, Gudrun

    2014-01-01

    Emerging organic contaminants (EOCs) are frequently detected in urban surface water and the adjacent groundwater and are therefore an increasing problem for potable water quality. River bank filtration (RBF) is a beneficial pretreatment step to improve surface water quality for potable use. Removal is mainly caused by microbial degradation of micropollutants, while sorption retards the transport. The quantification of biodegradation and adsorption parameters for EOCs at field scale is still scarce. In this study, the fate and behavior of a range of organic compounds during RBF were investigated using a two dimensional numerical flow- and transport model. The data base used emanated from a project conducted in Berlin, Germany (NASRI: Natural and Artificial Systems for Recharge and Infiltration). Oxygen isotope signatures and hydraulic head data were used for model calibration. Afterwards, twelve organic micropollutants were simulated with a reactive transport model. Three compounds (primidone, EDTA, and AMDOPH) showed conservative behavior (no biodegradation or sorption). For the nine remaining compounds (1.5 NDSA, AOX, AOI, MTBE, carbamazepine, clindamycin, phenazone, diclofenac and sulfamethoxazole), degradation and/or sorption was observed. 1.5 NDSA and AOX were not sorbed, but slightly degraded with model results for λ=2.25e(-3) 1/d and 2.4e(-3) 1/d. For AOI a λ=0.0106 1/d and R=1 were identified. MTBE could be characterized well assuming R=1 and a low 1st order degradation rate constant (λ=0.0085 1/d). Carbamazepine degraded with a half life time of about 66 days after a threshold value of 0.2-0.3 μg/L was exceeded and retarded slightly (R=1.7). Breakthrough curves of clindamycin, phenazone, diclofenac and sulfamethoxazole could be fitted less well, probably due to the dependency of degradation on temperature and redox conditions, which are highly transient at the RBF site. Conditions range from oxic to anoxic (up to iron-reducing), with the oxic and

  12. Application of SPARROW modeling to understanding contaminant fate and transport from uplands to streams

    Science.gov (United States)

    Ator, Scott; Garcia, Ana Maria.

    2016-01-01

    Understanding spatial variability in contaminant fate and transport is critical to efficient regional water-quality restoration. An approach to capitalize on previously calibrated spatially referenced regression (SPARROW) models to improve the understanding of contaminant fate and transport was developed and applied to the case of nitrogen in the 166,000 km2 Chesapeake Bay watershed. A continuous function of four hydrogeologic, soil, and other landscape properties significant (α = 0.10) to nitrogen transport from uplands to streams was evaluated and compared among each of the more than 80,000 individual catchments (mean area, 2.1 km2) in the watershed. Budgets (including inputs, losses or net change in storage in uplands and stream corridors, and delivery to tidal waters) were also estimated for nitrogen applied to these catchments from selected upland sources. Most (81%) of such inputs are removed, retained, or otherwise processed in uplands rather than transported to surface waters. Combining SPARROW results with previous budget estimates suggests 55% of this processing is attributable to denitrification, 23% to crop or timber harvest, and 6% to volatilization. Remaining upland inputs represent a net annual increase in landscape storage in soils or biomass exceeding 10 kg per hectare in some areas. Such insights are important for planning watershed restoration and for improving future watershed models.

  13. Development and evaluation of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    Science.gov (United States)

    Hong, Eun-Mi; Park, Yongeun; Muirhead, Richard; Pachepsky, Yakov

    2017-04-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. The total number of removed bacteria was set to the concentrations of bacteria in soil-manure mixing layer and eroded manure amount. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. The stream network of the watershed ran through grazing lands with the daily bovine waste deposition. Based on calibration and testing results, the APEX with the microbe module

  14. Validation of an orimulsion spill fates model using observations from field test spills

    International Nuclear Information System (INIS)

    French, D. P.; Rines, H.; Masciangioli, P.

    1997-01-01

    The SIMAP Spill Impact Model system was developed to simulate fates and effects of spilled oil and other fuels in 3-D and time. Orimulsion is a Venezuelan product consisting of 70 per cent bitumen and 30 per cent water which has been shipped to many parts of the world for some time without an accidental spill into coastal or marine waters. In July 1966 two intentional spills of Orimulsion into Carribean waters were made and sampled in detail in order to verify the SIMAP model. Data on physical dispersion was collected at the same time. Data collected in the field was compared with model simulations. Results confirmed SIMAP's ability to predict the increasing dispersion and shearing of the bitumen plume as wind speed increases, as well as the actual field distribution of subsurface and surface bitumen. 17 refs., 7 tabs., 26 figs

  15. Emissions and fate of brominated flame retardants in the indoor environment: A critical review of modelling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Liagkouridis, Ioannis, E-mail: ioannis.liagkouridis@ivl.se [IVL Swedish Environmental Research Institute, P.O. Box 21060, SE 100 31 Stockholm (Sweden); ITM Department of Applied Environmental Science, Stockholm University, SE 106 91 Stockholm (Sweden); Cousins, Ian T. [ITM Department of Applied Environmental Science, Stockholm University, SE 106 91 Stockholm (Sweden); Cousins, Anna Palm [IVL Swedish Environmental Research Institute, P.O. Box 21060, SE 100 31 Stockholm (Sweden)

    2014-09-01

    This review explores the existing understanding and the available approaches to estimating the emissions and fate of semi-volatile organic compounds (SVOCs) and in particular focuses on the brominated flame retardants (BFRs). Volatilisation, an important emission mechanism for the more volatile compounds can be well described using current emission models. More research is needed, however, to better characterise alternative release mechanisms such as direct material–particle partitioning and material abrasion. These two particle-mediated emissions are likely to result in an increased chemical release from the source than can be accounted for by volatilisation, especially for low volatile compounds, and emission models need to be updated in order to account for these. Air–surface partitioning is an important fate process for SVOCs such as BFRs however it is still not well characterised indoors. In addition, the assumption of an instantaneous air–particle equilibrium adopted by current indoor fate models might not be valid for high-molecular weight, strongly sorbing compounds. A better description of indoor particle dynamics is required to assess the effect of particle-associated transport as this will control the fate of low volatile BFRs. We suggest further research steps that will improve modelling precision and increase our understanding of the factors that govern the indoor fate of a wide range of SVOCs. It is also considered that the appropriateness of the selected model for a given study relies on the individual characteristics of the study environment and scope of the study. - Highlights: • Current emission models likely underestimate the release of low volatile BFRs from products. • Material abrasion and direct material–dust partitioning are important, yet understudied emission mechanisms. • Indoor surfaces can be significant sinks, but the mechanism is poorly understood. • Indoor fate of low volatile BFRs is strongly associated with particle

  16. The Impacts of Different Meteorology Data Sets on Nitrogen Fate and Transport in the SWAT Watershed Model

    Science.gov (United States)

    In this study, we investigated how different meteorology data sets impacts nitrogen fate and transport responses in the Soil and Water Assessment Tool (SWAT) model. We used two meteorology data sets: National Climatic Data Center (observed) and Mesoscale Model 5/Weather Research ...

  17. Synthesis, spectroscopic characterization and pH dependent photometric and electrochemical fate of Schiff bases.

    Science.gov (United States)

    Rauf, Abdur; Shah, Afzal; Abbas, Saghir; Rana, Usman Ali; Khan, Salah Ud-Din; Ali, Saqib; Zia-Ur-Rehman; Qureshi, Rumana; Kraatz, Heinz-Bernhard; Belanger-Gariepy, Francine

    2015-03-05

    A new Schiff base, 1-((4-bromophenylimino) methyl) naphthalen-2-ol (BPIMN) was successfully synthesized and characterized by (1)H NMR, (13)C NMR, FTIR and UV-Vis spectroscopy. The results were compared with a structurally related Schiff base, 1-((4-chlorophenylimino) methyl) naphthalen-2-ol (CPIMN). The photometric and electrochemical fate of BPIMN and CPIMN was investigated in a wide pH range. The experimental findings were supported by quantum mechanical approach. The redox mechanistic pathways were proposed on the basis of results obtained electrochemical techniques. Moreover, pH dependent UV-Vis spectroscopy of BPIMN and CPIMN was carried out and the appearance of isosbestic points indicated the existence of these compounds in different tautomeric forms. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Modelling the fate of sulphur-35 in crops. 1. Calibration data

    International Nuclear Information System (INIS)

    Collins, Chris; Cunningham, Nathan

    2005-01-01

    Gas-cooled nuclear power plants in the UK release sulphur-35 during their routine operation. The gas is in the form of COS which can be readily assimilated by vegetation. It is therefore necessary to be able to model the uptake of such releases in order to quantify any potential contamination of the food chain. To develop such models experimental data are required. A series of experiments was undertaken to determine the rate of deposition, the partition and subsequent loss of sulphur-35 in crops exposed to CO 35 S. The mass normalised deposition rate was similar for the range of crops tested, while the partition of the 35 S paralleled the growth of crop components. There was no significant loss of radioactivity other than that expected from radioactive decay. - The deposition, fate and loss of 35 S in crops were quantified following exposure to COS

  19. Metabolic fate of 14-C-fenitrothion in a rice field model ecosystem

    International Nuclear Information System (INIS)

    Nashriyah binti Mat; Nambu, K.; Miyashita, T.; Sakata, S.; Ohshima, M.

    1991-01-01

    Pesticide fenitrothion (Sumithion sup R)is widely used to control rice stem borer and other pests. Its metabolic fate and degradation was studied using the sup 14 C-ring labelled fenitrothion in a model ecosystem consisting of Takarazuka paddy field soil, rice plant (Oryza sativa var. nihonbare), carp fish (Cyprinus carpio L.) and dechlorinated water. Radioactive fenitrothion was applied at a normal rate as used by Japanese farmers and samples of rice plant, fish soil and water were analysed after ten days of application. Fenitrothion was readily metabolized in rice plant and fish and also readily degraded to a number of metabolites in water and flooded soil. Most of the radioactivity applied was found in the soil component of the ecosystem. A trace amount of fenitrooxon, the activated metabolite of fenitrothion was detected only in soil and water. A possible metabolic pathway of fenitrothion in the rice model ecosystem was proposed

  20. A reactive transport model for mercury fate in soil--application to different anthropogenic pollution sources.

    Science.gov (United States)

    Leterme, Bertrand; Blanc, Philippe; Jacques, Diederik

    2014-11-01

    Soil systems are a common receptor of anthropogenic mercury (Hg) contamination. Soils play an important role in the containment or dispersion of pollution to surface water, groundwater or the atmosphere. A one-dimensional model for simulating Hg fate and transport for variably saturated and transient flow conditions is presented. The model is developed using the HP1 code, which couples HYDRUS-1D for the water flow and solute transport to PHREEQC for geochemical reactions. The main processes included are Hg aqueous speciation and complexation, sorption to soil organic matter, dissolution of cinnabar and liquid Hg, and Hg reduction and volatilization. Processes such as atmospheric wet and dry deposition, vegetation litter fall and uptake are neglected because they are less relevant in the case of high Hg concentrations resulting from anthropogenic activities. A test case is presented, assuming a hypothetical sandy soil profile and a simulation time frame of 50 years of daily atmospheric inputs. Mercury fate and transport are simulated for three different sources of Hg (cinnabar, residual liquid mercury or aqueous mercuric chloride), as well as for combinations of these sources. Results are presented and discussed with focus on Hg volatilization to the atmosphere, Hg leaching at the bottom of the soil profile and the remaining Hg in or below the initially contaminated soil layer. In the test case, Hg volatilization was negligible because the reduction of Hg(2+) to Hg(0) was inhibited by the low concentration of dissolved Hg. Hg leaching was mainly caused by complexation of Hg(2+) with thiol groups of dissolved organic matter, because in the geochemical model used, this reaction only had a higher equilibrium constant than the sorption reactions. Immobilization of Hg in the initially polluted horizon was enhanced by Hg(2+) sorption onto humic and fulvic acids (which are more abundant than thiols). Potential benefits of the model for risk management and remediation of

  1. Differential local tissue permissiveness influences the final fate of GPR17-expressing oligodendrocyte precursors in two distinct models of demyelination.

    Science.gov (United States)

    Coppolino, Giusy T; Marangon, Davide; Negri, Camilla; Menichetti, Gianluca; Fumagalli, Marta; Gelosa, Paolo; Dimou, Leda; Furlan, Roberto; Lecca, Davide; Abbracchio, Maria P

    2018-05-01

    Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17-iCreER T2 xCAG-eGFP mice) allowing to follow the final fate of GPR17 + cells by tamoxifen-induced GFP-labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP + cells at damaged areas. However, only in the cuprizone model reacting GFP + cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP + cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor-1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti-inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery. © 2018 The Authors GLIA Published by Wiley Periodicals, Inc.

  2. Erratum: Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment.

    Science.gov (United States)

    Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie

    2010-10-01

    The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. © 2010 SETAC.

  3. Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment.

    Science.gov (United States)

    Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie

    2010-07-01

    The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. (c) 2010 SETAC.

  4. Risk assessment framework of fate and transport models applied to hazardous waste sites

    International Nuclear Information System (INIS)

    Hwang, S.T.

    1993-06-01

    Risk assessment is an increasingly important part of the decision-making process in the cleanup of hazardous waste sites. Despite guidelines from regulatory agencies and considerable research efforts to reduce uncertainties in risk assessments, there are still many issues unanswered. This paper presents new research results pertaining to fate and transport models, which will be useful in estimating exposure concentrations and will help reduce uncertainties in risk assessment. These developments include an approach for (1) estimating the degree of emissions and concentration levels of volatile pollutants during the use of contaminated water, (2) absorption of organic chemicals in the soil matrix through the skin, and (3) steady state, near-field, contaminant concentrations in the aquifer within a waste boundary

  5. Exploring the fate, transport and risk of Perfluorooctane Sulfonate (PFOS) in a coastal region of China using a multimedia model.

    Science.gov (United States)

    Liu, Shijie; Lu, Yonglong; Xie, Shuangwei; Wang, Tieyu; Jones, Kevin C; Sweetman, Andrew J

    2015-12-01

    Perfluorooctane Sulfonate (PFOS) and related substances have been widely applied in both industrial processes and domestic products in China. Exploring the environmental fate and transport of PFOS using modeling methods provides an important link between emission and multimedia diffusion which forms a vital part in the human health risk assessment and chemical management for these substances. In this study, the gridded fugacity based BETR model was modified to make it more suitable to model transfer processes of PFOS in a coastal region, including changes to PFOS partition coefficients to reflect the influence of water salinity on its sorption behavior. The fate and transport of PFOS in the Bohai coastal region of China were simulated under steady state with the modified version of the model. Spatially distributed emissions of PFOS and related substances in 2010 were estimated and used in these simulations. Four different emission scenarios were investigated, in which a range of half-lives for PFOS related substances were considered. Concentrations of PFOS in air, vegetation, soil, fresh water, fresh water sediment and coastal water were derived from the model under the steady-state assumption. The median modeled PFOS concentrations in fresh water, fresh water sediment and soil were 7.20ng/L, 0.39ng/g and 0.21ng/g, respectively, under Emission Scenario 2 (which assumed all PFOS related substances immediately degrade to PFOS) for the whole region, while the maximum concentrations were 47.10ng/L, 4.98ng/g and 2.49ng/g, respectively. Measured concentration data for PFOS in the Bohai coastal region around the year of 2010 were collected from the literature. The reliability of the model results was evaluated by comparing the range of modeled concentrations with the measured data, which generally matched well for the main compartments. Fate and transfer fluxes were derived from the model based on the calculated inventory within the compartments, transfer fluxes between

  6. Modelling the fate of hydrophobic organic contaminants in a boreal forest catchment: A cross disciplinary approach to assessing diffuse pollution to surface waters

    International Nuclear Information System (INIS)

    Bergknut, Magnus; Meijer, Sandra; Halsall, Crispin; Agren, Anneli; Laudon, Hjalmar; Koehler, Stephan; Jones, Kevin C.; Tysklind, Mats; Wiberg, Karin

    2010-01-01

    The fate of hydrophobic organic compounds (HOCs) in soils and waters in a northern boreal catchment was explored through the development of a chemical fate model in a well-characterised catchment system dominated by two land types: forest and mire. Input was based solely on atmospheric deposition, dominated by accumulation in the winter snowpack. Release from soils was governed by the HOC concentration in soil, the soil organic carbon fraction and soil-water DOC content. The modelled export of selected HOCs in surface waters ranged between 11 and 250 ng day -1 during the snow covered period, compared to 200 and 9600 ng/d during snow-melt; highlighting the importance of the snow pack as a source of these chemicals. The predicted levels of HOCs in surface water were in reasonable agreement to a limited set of measured values, although the model tended to over predict concentrations of HOCs for the forested sub-catchment, by over an order of magnitude in the case of hexachlorobenzene and PCB 180. This possibly reflects both the heterogeneity of the forest soils and the complicated and changing hydrology experienced between the different seasons. - The fate of hydrophobic organic contaminants in a boreal forest catchment is connected to the flux of dissolved organic carbon and seasonal deposition.

  7. Exposure levels, environmental fate modelling and human health risk assessment of lindane in Ghana

    International Nuclear Information System (INIS)

    Adu-Kumi, S.

    2011-01-01

    This thesis discusses an innovative approach of combining chemical trace analysis including the use of 13 C-labelled isotopes as internal and recovery standards) with multi-media modelling for assessing health risks of Lindane which is a persistent organic pollutant (POP) and a commercial formulated insecticide also known as Gamma-hexachlorocyclohexane (γ-HCH). Samples studied were background air, human breast milk, and edible fish (tilapia and catfish). The investigations focused on the exposure of the general population. For the first time levels and seasonal variation of Lindane, α-HCH and β-HCH in background air of Lake Bosumtwi, Kwabenya and East Legon in Ghana were studied with polyurethane foam based passive air samplers. Lindane (average concentration 53 pg m -3 ) was measured in all samples with (i) gas chromatography-mass spectrometer (GC-MS) and (ii) gas chromatography-mass spectrometer operated in electron ionization mode (GC-EI-MS). Agricultural application and revolatilisation from soils were main primary and secondary sources of HCH releases. Levels and variation of Lindane, α-HCH and β-HCH in pooled and individual human breast milk samples collected from lactating mothers countrywide were determined using a high-resolution gas chromatography interfaced with a high-resolution gas chromatography interfaced with a high-resolution mass spectrometer (HRGC-HRMS). This constitutes the first comprehensive nationwide human breast milk study of assessing risks of HCHs for the general population of Ghana. Mothers were selected from three major cities (Accra, Kumasi and Tamale) and three rural communities (Ada, Jachie/Pramso and Tolon) representing the Southern, Middle and Northern sectors respectively. The results of the study showed that the general population of Ghana is widely exposed to HCHs although the current levels are generally low; and also suggest that the usage pattern and exposure levels of Lindane vary among the various regions in Ghana.

  8. Modeling fate and transport of fecally-derived microorganisms at the watershed scale: state of the science and future opportunities

    Science.gov (United States)

    Natural waters provide habitats for various groups of fecal indicator organisms (FIOs) and pathogenic microorganisms originating from animal manures and animal waste. A number of watershed modeling works have been carried out to have a better understanding to the fate and transport of fecal indicato...

  9. Fate of nano- and microplastic in freshwater systems: A modeling study

    NARCIS (Netherlands)

    Besseling, Ellen; Quik, Joris T.K.; Sun, Muzhi; Koelmans, Bart

    2017-01-01

    Riverine transport to the marine environment is an important pathway for microplastic. However, information on fate and transport of nano- and microplastic in freshwater systems is lacking. Here we present scenario studies on the fate and transport of nano-to millimetre sized spherical particles

  10. A modified QWASI model for fate and transport modeling of mercury between the water-ice-sediment in Lake Ulansuhai.

    Science.gov (United States)

    Liu, Yu; Li, Changyou; Anderson, Bruce; Zhang, Sheng; Shi, Xiaohong; Zhao, Shengnan

    2017-06-01

    Mercury contamination from industrial and agricultural drainage into lakes and rivers is a growing concern in Northern China. Lake Ulansuhai, located in Hetao irrigation district in Inner Mongolia, is the only sink for the all industrial and agricultural drainage and sole outlet for this district to the Yellow River, which is one of the main source of drinking water for the numerous cities and towns downstream. Because Ulansuahi is ice-covered during winter, the QWASI model was modified by adding an ice equation to get a more accurate understanding of the fate and transport of mercury within the lake. Both laboratory and field tests were carried out during the ice growth period. The aquivalence and mass balance approaches were used to develop the modified QWASI + ice model. The margins of error between the modelled and the measured average concentrations of Hg in ice, water, and sediment were 30%, 26.2%, and 19.8% respectively. These results suggest that the new QWASI + ice model could be used to more accurately represent the fate and transport of mercury in the seasonally ice-covered lakes, during the ice growth period. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Fate of pollutants

    International Nuclear Information System (INIS)

    Chapta, S.C.; Boyer, J.M.

    1990-01-01

    A literature review is presented of the fate of pollutants in sediment and water systems. Topics of discussion include the following: modeling, observations, and general studies; chlorinated xenobiotic chemicals; nonchlorinated xenobiotic chemicals; pesticides; heavy metals; and radionuclides

  12. Modelling of uranium inputs and its fate in soil; Modellierung von Uraneintraegen aus Duengern und ihr Verbleib im Boden

    Energy Technology Data Exchange (ETDEWEB)

    Achatz, M. [Bundesamt fuer Strahlenschutz, Berlin (Germany); Urso, L. [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany)

    2016-07-01

    87 % of mineral phosphate fertilizers are produced of sedimentary rock phosphate, which generally contains heavy metals, like uranium. The solution and migration behavior of uranium is apart from its redox ratio, determined by its pH conditions as well as its ligand quality and quantity. A further important role in sorption is played by soil components like clay minerals, pedogenic oxides and soil organic matter. To provide a preferably detailed speciation model of U in soil several physical and chemical components have to be included to be able to state distribution coefficients (k{sub D}) and sorption processes. The model of Hormann and Fischer served as the basis of modelling uranium mobility in soil by using the program PhreeqC. The usage of real soil and soil water measurements may contribute to identify factors and processes influencing the mobility of uranium under preferably realistic conditions. Additionally, the assessment of further predictions towards uranium migration in soil can be made based on a modelling with PhreeqC. The modelling of uranium inputs and its fate in soil can help to elucidate the human caused occurrence or geogenic origin of uranium in soil.

  13. A reactive transport model for mercury fate in contaminated soil--sensitivity analysis.

    Science.gov (United States)

    Leterme, Bertrand; Jacques, Diederik

    2015-11-01

    We present a sensitivity analysis of a reactive transport model of mercury (Hg) fate in contaminated soil systems. The one-dimensional model, presented in Leterme et al. (2014), couples water flow in variably saturated conditions with Hg physico-chemical reactions. The sensitivity of Hg leaching and volatilisation to parameter uncertainty is examined using the elementary effect method. A test case is built using a hypothetical 1-m depth sandy soil and a 50-year time series of daily precipitation and evapotranspiration. Hg anthropogenic contamination is simulated in the topsoil by separately considering three different sources: cinnabar, non-aqueous phase liquid and aqueous mercuric chloride. The model sensitivity to a set of 13 input parameters is assessed, using three different model outputs (volatilized Hg, leached Hg, Hg still present in the contaminated soil horizon). Results show that dissolved organic matter (DOM) concentration in soil solution and the binding constant to DOM thiol groups are critical parameters, as well as parameters related to Hg sorption to humic and fulvic acids in solid organic matter. Initial Hg concentration is also identified as a sensitive parameter. The sensitivity analysis also brings out non-monotonic model behaviour for certain parameters.

  14. Watershed-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs)

    International Nuclear Information System (INIS)

    Ligaray, Mayzonee; Baek, Sang Soo; Kwon, Hye-Ok; Choi, Sung-Deuk; Cho, Kyung Hwa

    2016-01-01

    PAHs are potentially carcinogenic substances that are persistent in the environment. Increasing concentrations of PAHs were observed due to rapid urbanization, thus; monitoring PAHs concentrations is necessary. However, it is expensive to conduct intensive monitoring activities of a large number of PAHs. This study addressed this issue by developing a multimedia model coupled with a hydrological model (i.e., Soil and Water Assessment Tool (SWAT)) for Taehwa River (TR) watershed in Ulsan, the industrial capital of South Korea. The hydrologic module of the SWAT was calibrated, and further used to simulate the fate and transport of PAHs in soil and waterbody. The model demonstrated that the temporal or seasonal variation of PAHs in soil and waterbody can be well reproduced. Meanwhile, the spatial distribution of PAHs showed that urban areas in TR watershed have the highest PAH loadings compared to rural areas. Sensitivity analyses of the PAH soil and PAH water parameters were also able to determine the critical processes in TR watershed: degradation, deposition, volatilization, and wash off mechanism. We hope that this model will be able to aid the stakeholders in: regulating PAH concentrations emitted by various sources; and also apply the model to other Persistent Organic Pollutants (POPs).

  15. Watershed-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs)

    Energy Technology Data Exchange (ETDEWEB)

    Ligaray, Mayzonee; Baek, Sang Soo [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919 (Korea, Republic of); Kwon, Hye-Ok [Disaster Scientific Investigation Division, National Disaster Management Research Institute, 365 Jongga-ro Jung-gu, Ulsan 44538 (Korea, Republic of); Choi, Sung-Deuk, E-mail: sdchoi@unist.ac.kr [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919 (Korea, Republic of); Cho, Kyung Hwa, E-mail: khcho@unist.ac.kr [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919 (Korea, Republic of)

    2016-12-15

    PAHs are potentially carcinogenic substances that are persistent in the environment. Increasing concentrations of PAHs were observed due to rapid urbanization, thus; monitoring PAHs concentrations is necessary. However, it is expensive to conduct intensive monitoring activities of a large number of PAHs. This study addressed this issue by developing a multimedia model coupled with a hydrological model (i.e., Soil and Water Assessment Tool (SWAT)) for Taehwa River (TR) watershed in Ulsan, the industrial capital of South Korea. The hydrologic module of the SWAT was calibrated, and further used to simulate the fate and transport of PAHs in soil and waterbody. The model demonstrated that the temporal or seasonal variation of PAHs in soil and waterbody can be well reproduced. Meanwhile, the spatial distribution of PAHs showed that urban areas in TR watershed have the highest PAH loadings compared to rural areas. Sensitivity analyses of the PAH soil and PAH water parameters were also able to determine the critical processes in TR watershed: degradation, deposition, volatilization, and wash off mechanism. We hope that this model will be able to aid the stakeholders in: regulating PAH concentrations emitted by various sources; and also apply the model to other Persistent Organic Pollutants (POPs).

  16. Modeling Fate and Transport of Rotavirus in Surface Flow by Integrating WEPP and a Pathogen Transport Model

    Science.gov (United States)

    Bhattarai, R.; Kalita, P. K.; Davidson, P. C.; Kuhlenschmidt, M. S.

    2012-12-01

    More than 3.5 million people die each year from a water related diseases in this world. Every 20 seconds, a child dies from a water-related illness. Even in a developed country like the United States, there have been at least 1870 outbreaks associated with drinking water during the period of 1920 to 2002, causing 883,806 illnesses. Most of these outbreaks are resulted due to the presence of microbial pathogens in drinking water. Rotavirus infection has been recognized as the most common cause of diarrhea in young children throughout the world. Laboratory experiments conducted at the University of Illinois have demonstrated that recovery of rotavirus has been significantly affected by climatic and soil-surface conditions like slope, soil types, and ground cover. The objective of this study is to simulate the fate and transport of Rotavirus in overland and near-surface flow using a process-based model. In order to capture the dynamics of sediment-bound pathogens, the Water Erosion Prediction Project (WEPP) is coupled with the pathogen transport model. Transport of pathogens in overland flow can be simulated mathematically by including terms for the concentration of the pathogens in the liquid phase (in suspension or free-floating) and the solid phase (adsorbed to the fine solid particles like clay and silt). Advection, adsorption, and decay processes are considered. The mass balance equations are solved using numerical technique to predict spatial and temporal changes in pathogen concentrations in two phases. Outputs from WEPP simulations (flow velocity, depth, saturated conductivity and the soil particle fraction exiting in flow) are transferred as input for the pathogen transport model. Three soil types and three different surface cover conditions have been used in the experimental investigations. Results from these conditions have been used in calibrating and validating the simulation results. Bare surface conditions have produced very good agreement between

  17. Application of SELECT and SWAT models to simulate source load, fate, and transport of fecal bacteria in watersheds.

    Science.gov (United States)

    Ranatunga, T.

    2017-12-01

    Modeling of fate and transport of fecal bacteria in a watershed is a processed based approach that considers releases from manure, point sources, and septic systems. Overland transport with water and sediments, infiltration into soils, transport in the vadose zone and groundwater, die-off and growth processes, and in-stream transport are considered as the other major processes in bacteria simulation. This presentation will discuss a simulation of fecal indicator bacteria source loading and in-stream conditions of a non-tidal watershed (Cedar Bayou Watershed) in South Central Texas using two models; Spatially Explicit Load Enrichment Calculation Tool (SELECT) and Soil and Water Assessment Tool (SWAT). Furthermore, it will discuss a probable approach of bacteria source load reduction in order to meet the water quality standards in the streams. The selected watershed is listed as having levels of fecal indicator bacteria that posed a risk for contact recreation and wading by the Texas Commission of Environmental Quality (TCEQ). The SELECT modeling approach was used in estimating the bacteria source loading from land categories. Major bacteria sources considered were, failing septic systems, discharges from wastewater treatment facilities, excreta from livestock (Cattle, Horses, Sheep and Goat), excreta from Wildlife (Feral Hogs, and Deer), Pet waste (mainly from Dogs), and runoff from urban surfaces. The estimated source loads from SELECT model were input to the SWAT model, and simulate the bacteria transport through the land and in-stream. The calibrated SWAT model was then used to estimate the indicator bacteria in-stream concentrations for future years based on regional land use, population and household forecast (up to 2040). Based on the reductions required to meet the water quality standards in-stream, the corresponding required source load reductions were estimated.

  18. Nitrogen Fate in a Phreatic Fluviokarst Watershed: a Stable Isotope, Sediment Tracing, and Numerical Modeling Approach

    Science.gov (United States)

    Husic, A.; Fox, J.; Ford, W. I., III; Agouridis, C.; Currens, J. C.; Taylor, C. J.

    2017-12-01

    Sediment tracing tools provide an insight into provenance, fate, and transport of sediment and, when coupled to stable isotopes, can elucidate in-stream biogeochemical processes. Particulate nitrogen fate in fluviokarst systems is a relatively unexplored area of research partially due to the complex hydrodynamics at play in karst systems. Karst topography includes turbulent conduits that transport groundwater and contaminants at speeds more typical of open channel flows than laminar Darcian flows. While it is accepted that karst hydro-geomorphology represents a hybrid surface-subsurface system for fluid, further investigation is needed to determine whether, and to what extent, karst systems behave like surface agricultural streams or porous media aquifers with respect to their role in nitrogen cycling. Our objective is to gain an understanding of in-conduit nitrogen processes and their effect on net nitrogen-exports from karst springs to larger waterbodies. The authors apply water, sediment, carbon, and nitrogen tracing techniques to analyze water for nitrate, sediment carbon and nitrogen, and stable sediment nitrogen isotope (δ15N). Thereafter, a new numerical model is formulated that: simulates dissolved inorganic nitrogen and sediment nitrogen transformations in the phreatic karst conduit; couples carbon turnover and nitrogen transformations in the model structure; and simulates the nitrogen stable isotope mass balance for the dissolved and sediment phases. Nitrogen tracing data results show a significant increase in δ15N of sediment nitrogen at the spring outlet relative to karst inputs indicating the potential for isotope fractionation during dissolved N uptake by bed sediments in the conduit and during denitrification within bed sediments. The new numerical modeling structure is then used to reproduce the data results and provide an estimate of the relative dominance of N uptake and denitrification within the surficial sediments of the karst conduit system

  19. A multimedia fate and chemical transport modeling system for pesticides: II. Model evaluation

    International Nuclear Information System (INIS)

    Li Rong; Yang Fuquan; Sloan, James J; Trevor Scholtz, M

    2011-01-01

    Pesticides have adverse health effects and can be transported over long distances to contaminate sensitive ecosystems. To address problems caused by environmental pesticides we developed a multimedia multi-pollutant modeling system, and here we present an evaluation of the model by comparing modeled results against measurements. The modeled toxaphene air concentrations for two sites, in Louisiana (LA) and Michigan (MI), are in good agreement with measurements (average concentrations agree to within a factor of 2). Because the residue inventory showed no soil residues at these two sites, resulting in no emissions, the concentrations must be caused by transport; the good agreement between the modeled and measured concentrations suggests that the model simulates atmospheric transport accurately. Compared to the LA and MI sites, the measured air concentrations at two other sites having toxaphene soil residues leading to emissions, in Indiana and Arkansas, showed more pronounced seasonal variability (higher in warmer months); this pattern was also captured by the model. The model-predicted toxaphene concentration fraction on particles (0.5-5%) agrees well with measurement-based estimates (3% or 6%). There is also good agreement between modeled and measured dry (1:1) and wet (within a factor of less than 2) depositions in Lake Ontario. Additionally this study identified erroneous soil residue data around a site in Texas in a published US toxaphene residue inventory, which led to very low modeled air concentrations at this site. Except for the erroneous soil residue data around this site, the good agreement between the modeled and observed results implies that both the US and Mexican toxaphene soil residue inventories are reasonably good. This agreement also suggests that the modeling system is capable of simulating the important physical and chemical processes in the multimedia compartments.

  20. A novel modeling tool with multi-stressor functionality for organic contaminant transport and fate in the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Undeman, E., E-mail: emma.undeman@itm.su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Department of Applied Environmental Science, Stockholm University, 11418 Stockholm (Sweden); Gustafsson, E., E-mail: erik.gustafsson@su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Gustafsson, B.G., E-mail: bo.gustafsson@su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden)

    2014-11-01

    The coupled physical–biogeochemical model BALTSEM, previously used to assess nutrient/carbon cycles and eutrophication in the Baltic Sea, has been expanded to include algorithms for calculations of organic contaminant environmental transport and fate. This novel model version (BALTSEM-POP) is evaluated for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and hexachlorobenzene (HCB) in Baltic Sea surface water and sediment. Modeled dissolved concentrations are usually within a factor of 2–4 of observed concentrations, however with larger deviations for furans. Calculated concentrations in particulate organic matter are less accurate (within factors of 1–700), likely due to errors in estimated pelagic biomass, particulate matter–water partitioning, and large natural variability in field data. Concentrations in sediments are usually predicted within a factor of 6. The good performance of the model illustrates its usefulness for exploration of contaminant fate in response to variations in nutrient input and climatic conditions in the Baltic Sea marine environment. - Highlights: • A new model for organic chemical transport and fate in the Baltic Sea is presented. • Physical and biogeochemical processes are linked to organic contaminant transport. • The model is evaluated for PCBs, HCB and PCDD/Fs. • The model can predict dissolved concentrations within a factor of ca 2–4. • Predictions for concentrations in particulate matter and sediment are less accurate.

  1. Prediction of overall persistence and long-range transport potential with multimedia fate models: robustness and sensitivity of results

    International Nuclear Information System (INIS)

    Fenner, Kathrin; Scheringer, Martin; Hungerbuehler, Konrad

    2004-01-01

    The hazard indicators persistence (P) and long-range transport potential (LRTP) are used in chemicals assessment to characterize chemicals with regard to the temporal and spatial extent of their environmental exposure. They are often calculated based on the results of multimedia fate models. The environmental and substance-specific input parameters of such models are subject to a range of methodological uncertainties and also influenced by natural variability. We employed probabilistic uncertainty analysis to quantify variance in P and LRTP predictions for chemicals with different partitioning and transport behavior. Variance found in the results is so large that it prevents a clear distinction between chemicals. Additionally, only small improvements are observed when evaluating the results relative to a benchmark chemical. This can be explained by the dominance of substance-specific parameters and the only small direct influence of environmental parameters on P and LRTP as model outcomes. The findings underline the importance of learning how environmental conditions cause variability in substance behavior for improved substance ranking and classification. - Environmental conditions cause variability in substance behavior which need to be considered in chemical ranking schemes

  2. Transcriptional regulation of lineage commitment--a stochastic model of cell fate decisions.

    Directory of Open Access Journals (Sweden)

    Jose Teles

    Full Text Available Molecular mechanisms employed by individual multipotent cells at the point of lineage commitment remain largely uncharacterized. Current paradigms span from instructive to noise-driven mechanisms. Of considerable interest is also whether commitment involves a limited set of genes or the entire transcriptional program, and to what extent gene expression configures multiple trajectories into commitment. Importantly, the transient nature of the commitment transition confounds the experimental capture of committing cells. We develop a computational framework that simulates stochastic commitment events, and affords mechanistic exploration of the fate transition. We use a combined modeling approach guided by gene expression classifier methods that infers a time-series of stochastic commitment events from experimental growth characteristics and gene expression profiling of individual hematopoietic cells captured immediately before and after commitment. We define putative regulators of commitment and probabilistic rules of transition through machine learning methods, and employ clustering and correlation analyses to interrogate gene regulatory interactions in multipotent cells. Against this background, we develop a Monte Carlo time-series stochastic model of transcription where the parameters governing promoter status, mRNA production and mRNA decay in multipotent cells are fitted to experimental static gene expression distributions. Monte Carlo time is converted to physical time using cell culture kinetic data. Probability of commitment in time is a function of gene expression as defined by a logistic regression model obtained from experimental single-cell expression data. Our approach should be applicable to similar differentiating systems where single cell data is available. Within our system, we identify robust model solutions for the multipotent population within physiologically reasonable values and explore model predictions with regard to

  3. Metals fate and transport modelling in streams and watersheds: state of the science and USEPA workshop review

    Science.gov (United States)

    Caruso, B.S.; Cox, T.J.; Runkel, Robert L.; Velleux, M.L.; Bencala, Kenneth E.; Nordstrom, D. Kirk; Julien, P.Y.; Butler, B.A.; Alpers, Charles N.; Marion, A.; Smith, Kathleen S.

    2008-01-01

    Metals pollution in surface waters from point and non-point sources (NPS) is a widespread problem in the United States and worldwide (Lofts et al., 2007; USEPA, 2007). In the western United States, metals associated with acid mine drainage (AMD) from hardrock mines in mountainous areas impact aquatic ecosystems and human health (USEPA, 1997a; Caruso and Ward, 1998; Church et al., 2007). Metals fate and transport modelling in streams and watersheds is sometimes needed for assessment and restoration of surface waters, including mining-impacted streams (Runkel and Kimball, 2002; Caruso, 2003; Velleux et al., 2006). The Water Quality Analysis Simulation Program (WASP; Wool et al., 2001), developed by the US Environmental Protection Agency (USEPA), is an example of a model used for such analyses. Other approaches exist and appropriate model selection depends on site characteristics, data availability and modelling objectives. However, there are a wide range of assumptions, input parameters, data requirements and gaps, and calibration and validation issues that must be addressed by model developers, users and decision makers. Despite substantial work on model development, their successful application has been more limited because they are not often used by decision makers for stream and watershed assessment and restoration. Bringing together scientists, model developers, users and decision makers should stimulate the development of appropriate models and improve the applicability of their results. To address these issues, the USEPA Office of Research and Development and Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming) hosted a workshop in Denver, Colorado on February 13–14, 2007. The workshop brought together approximately 35 experts from government, academia and consulting to address the state of the art for modelling metals fate and transport, knowledge gaps and future directions in metals modelling. It focused on modelling metals in high

  4. Modeling Fate and Transport of Fecal Coliform Bacteria Using SWAT 2005 (Case Study: Jajrood River Watershed, Iran)

    Science.gov (United States)

    Maghrebi, M.; Tajrishy, M.

    2010-12-01

    Jajrood River watershed is one of the main drinking water resources of the capital city of Tehran, Iran. In addition it has been available as many recreational usages especially in the warm months. As a result of being located near one of the crowded cities of the world, a variety of microbial pollutions is commonly perceived in the Jajrood River. Among them, there are strong concerns about fecal coliform bacteria concentration. This article aimed to model fate and transport of fecal coliform bacteria in Jajrood River watershed using Soil and Water Assessment Tool (SWAT) model version 2005. Potential pollutant sources in the study area were detected and quantified for modeling purposes. In spite of being lack of knowledge about bacteria die-off rate in small river bodies, as well as in other watershed-based forms, fecal coliform bacteria die-off rates were estimated using both laboratory and field data investigations with some simplifications. The SWAT model was calibrated over an extended time period (1997-2002) for this watershed. The river flow calibrated using SUFI-2 software and resulted in a very good outputs (R2=0.82, E=0.81). Furthermore SWAT model was validated over January 2003 to September 2005 in the study area and has resulted in good outputs (R2=0.61, E=0.57). This research illustrates SWAT 2005 capability to model fecal coliform bacteria in a populated watershed, and deals with most of watershed microbial pollution sources that are usually observed in developing countries. Fecal coliform concentration simulation results were mostly in the same order in comparison with real data. However, Differences were judged to be related to lack of input data. In this article different aspects of SWAT capabilities for modeling of fecal coliform bacteria concentration will be reviewed and it will present new insights in bacteria modeling procedures especially for mountainous, high populated and small sized watersheds.

  5. Modeling seasonal redox dynamics and the corresponding fate of the pharmaceutical residue phenazone during artificial recharge of groundwater.

    Science.gov (United States)

    Greskowiak, Janek; Prommer, Henning; Massmann, Gudrun; Nützmann, Gunnar

    2006-11-01

    Reactive multicomponent transport modeling was used to investigate and quantify the factors that affect redox zonation and the fate of the pharmaceutical residue phenazone during artificial recharge of groundwater at an infiltration site in Berlin, Germany. The calibrated model and the corresponding sensitivity analysis demonstrated thattemporal and spatial redox zonation at the study site was driven by seasonally changing, temperature-dependent organic matter degradation rates. Breakthrough of phenazone at monitoring wells occurred primarily during the warmer summer months, when anaerobic conditions developed. Assuming a redox-sensitive phenazone degradation behavior the model results provided an excellent agreement between simulated and measured phenazone concentrations. Therefore, the fate of phenazone was shown to be indirectly controlled by the infiltration water temperature through its effect on the aquifer's redox conditions. Other factors such as variable residence times appeared to be of less importance.

  6. Arms race between selfishness and policing: two-trait quantitative genetic model for caste fate conflict in eusocial Hymenoptera.

    Science.gov (United States)

    Dobata, Shigeto

    2012-12-01

    Policing against selfishness is now regarded as the main force maintaining cooperation, by reducing costly conflict in complex social systems. Although policing has been studied extensively in social insect colonies, its coevolution against selfishness has not been fully captured by previous theories. In this study, I developed a two-trait quantitative genetic model of the conflict between selfish immature females (usually larvae) and policing workers in eusocial Hymenoptera over the immatures' propensity to develop into new queens. This model allows for the analysis of coevolution between genomes expressed in immatures and workers that collectively determine the immatures' queen caste fate. The main prediction of the model is that a higher level of polyandry leads to a smaller fraction of queens produced among new females through caste fate policing. The other main prediction of the present model is that, as a result of arms race, caste fate policing by workers coevolves with exaggerated selfishness of the immatures achieving maximum potential to develop into queens. Moreover, the model can incorporate genetic correlation between traits, which has been largely unexplored in social evolution theory. This study highlights the importance of understanding social traits as influenced by the coevolution of conflicting genomes. © 2012 The Author. Evolution© 2012 The Society for the Study of Evolution.

  7. BETR-World: a geographically explicit model of chemical fate: application to transport of α-HCH to the Arctic

    International Nuclear Information System (INIS)

    Toose, L.; Woodfine, D.G.; MacLeod, M.; Mackay, D.; Gouin, J.

    2004-01-01

    The Berkeley-Trent (BETR)-World model, a 25 compartment, geographically explicit fugacity-based model is described and applied to evaluate the transport of chemicals from temperate source regions to receptor regions (such as the Arctic). The model was parameterized using GIS and an array of digital data on weather, oceans, freshwater, vegetation and geo-political boundaries. This version of the BETR model framework includes modification of atmospheric degradation rates by seasonally variable hydroxyl radical concentrations and temperature. Degradation rates in all other compartments vary with seasonally changing temperature. Deposition to the deep ocean has been included as a loss mechanism. A case study was undertaken for α-HCH. Dynamic emission scenarios were estimated for each of the 25 regions. Predicted environmental concentrations showed good agreement with measured values for the northern regions in air, and fresh and oceanic water and with the results from a previous model of global chemical fate. Potential for long-range transport and deposition to the Arctic region was assessed using a Transfer Efficiency combined with estimated emissions. European regions and the Orient including China have a high potential to contribute α-HCH contamination in the Arctic due to high rates of emission in these regions despite low Transfer Efficiencies. Sensitivity analyses reveal that the performance and reliability of the model is strongly influenced by parameters controlling degradation rates. - A geographically explicit multi-compartment model is applied to the transport of α-HCH to the Arctic, showing Europe and the Orient are key sources

  8. Modelling the geochemical fate and transport of wastewater-derived phosphorus in contrasting groundwater systems

    Science.gov (United States)

    Spiteri, Claudette; Slomp, Caroline P.; Regnier, Pierre; Meile, Christof; Van Cappellen, Philippe

    2007-06-01

    A 1D reactive transport model (RTM) is used to obtain a mechanistic understanding of the fate of phosphorus (P) in the saturated zone of two contrasting aquifer systems. We use the field data from two oxic, electron donor-poor, wastewater-impacted, sandy Canadian aquifers, (Cambridge and Muskoka sites) as an example of a calcareous and non-calcareous groundwater system, respectively, to validate our reaction network. After approximately 10 years of wastewater infiltration, P is effectively attenuated within the first 10 m downgradient of the source mainly through fast sorption onto calcite and Fe oxides. Slow, kinetic sorption contributes further to P removal, while precipitation of phosphate minerals (strengite, hydroxyapatite) is quantitatively unimportant in the saturated zone. Nitrogen (N) dynamics are also considered, but nitrate behaves essentially as a conservative tracer in both systems. The model-predicted advancement of the P plume upon continued wastewater discharge at the calcareous site is in line with field observations. Model results suggest that, upon removal of the wastewater source, the P plume at both sites will persist for at least 20 years, owing to desorption of P from aquifer solids and the slow rate of P mineral precipitation. Sensitivity analyses for the non-calcareous scenario (Muskoka) illustrate the importance of the sorption capacity of the aquifer solids for P in modulating groundwater N:P ratios in oxic groundwater. The model simulations predict the breakthrough of groundwater with high P concentrations and low N:P ratios after 17 years at 20 m from the source for an aquifer with low sorption capacity (< 0.02% w/w Fe(OH) 3). In this type of system, denitrification plays a minor role in lowering the N:P ratios because it is limited by the availability of labile dissolved organic matter.

  9. Oceanographic and behavioural assumptions in models of the fate of coral and coral reef fish larvae.

    Science.gov (United States)

    Wolanski, Eric; Kingsford, Michael J

    2014-09-06

    A predictive model of the fate of coral reef fish larvae in a reef system is proposed that combines the oceanographic processes of advection and turbulent diffusion with the biological process of horizontal swimming controlled by olfactory and auditory cues within the timescales of larval development. In the model, auditory cues resulted in swimming towards the reefs when within hearing distance of the reef, whereas olfactory cues resulted in the larvae swimming towards the natal reef in open waters by swimming against the concentration gradients in the smell plume emanating from the natal reef. The model suggested that the self-seeding rate may be quite large, at least 20% for the larvae of rapidly developing reef fish species, which contrasted with a self-seeding rate less than 2% for non-swimming coral larvae. The predicted self-recruitment rate of reefs was sensitive to a number of parameters, such as the time at which the fish larvae reach post-flexion, the pelagic larval duration of the larvae, the horizontal turbulent diffusion coefficient in reefal waters and the horizontal swimming behaviour of the fish larvae in response to auditory and olfactory cues, for which better field data are needed. Thus, the model suggested that high self-seeding rates for reef fish are possible, even in areas where the 'sticky water' effect is minimal and in the absence of long-term trapping in oceanic fronts and/or large-scale oceanic eddies or filaments that are often argued to facilitate the return of the larvae after long periods of drifting at sea. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. A unified framework for modelling sediment fate from source to sink and its interactions with reef systems over geological times.

    Science.gov (United States)

    Salles, Tristan; Ding, Xuesong; Webster, Jody M; Vila-Concejo, Ana; Brocard, Gilles; Pall, Jodie

    2018-03-27

    Understanding the effects of climatic variability on sediment dynamics is hindered by limited ability of current models to simulate long-term evolution of sediment transfer from source to sink and associated morphological changes. We present a new approach based on a reduced-complexity model which computes over geological time: sediment transport from landmasses to coasts, reworking of marine sediments by longshore currents, and development of coral reef systems. Our framework links together the main sedimentary processes driving mixed siliciclastic-carbonate system dynamics. It offers a methodology for objective and quantitative sediment fate estimations over regional and millennial time-scales. A simulation of the Holocene evolution of the Great Barrier Reef shows: (1) how high sediment loads from catchments erosion prevented coral growth during the early transgression phase and favoured sediment gravity-flows in the deepest parts of the northern region basin floor (prior to 8 ka before present (BP)); (2) how the fine balance between climate, sea-level, and margin physiography enabled coral reefs to thrive under limited shelf sedimentation rates after ~6 ka BP; and, (3) how since 3 ka BP, with the decrease of accommodation space, reduced of vertical growth led to the lateral extension of reefs consistent with available observational data.

  11. Fate of challenge schistosomula in the murine anti-schistosome vaccine model

    International Nuclear Information System (INIS)

    Von Lichtenberg, F.; Correa-Oliveira, R.; Sher, A.

    1985-01-01

    Mice exposed to irradiated cercariae of Schistosoma mansoni develop a partial resistance to subsequent parasite challenge. In this study the authors utilized histopathologic methods to investigate the fate of both the immunizing and challenge cercariae in C57BL/6J mice. After immunization by percutaneous infection, a large number of the 50 Kr irradiated organisms could be detected in tissue sections of lung. However, as early as 2 weeks after immunization, the majority of these schistosomula apparently had died, leaving residual inflammatory foci. The numbers of these foci then gradually declined during the next 4 weeks of examination. Cercarial challenge of mice vaccinated 4 weeks previously provoked an intense eosinophil-enriched inflammatory response in percutaneously exposed ear pinnae. Despite these pronounced tissue reactions, no evidence of significant parasite damage or attrition was detected in this migration site. In contrast, schistosomula arriving in the lungs of vaccinated mice produced a greater number of residual inflammatory foci than did larvae appearing in the lungs of normal mice. In addition, challenge schistosomula were cleared from the lungs of vaccinated mice at a slower rate than they were from the lungs of control mice. These observations suggest that the lung is a major site of parasite attrition for both immunizing and challenge infections in the mouse irradiated vaccine model

  12. Model ecosystem determination of the metabolic and environmental fate of tetrachloro-DDT

    International Nuclear Information System (INIS)

    Cole, R.B.; Metcalf, R.L.

    1987-01-01

    A potential hazardous waste site investigation was conducted by the Environmental Protection Agency to determine whether ground water, surface water, or area soils and sediments were contaminated as a result of waster water discharges or improper solid waste disposal practices of a pesticide manufacturer. One of the compounds discharged into the environment was 1,1,1,2-tetrachloro-2,2-bis(p-chlorophenyl)ethane, commonly referred to as tetrachloro-DDT. Unlike a great many of the DDT analogs, tetrachloro-DDT has come under only limited scrutiny, mainly because it was dismissed as having poor insecticidal properties relative to DDT and other analogs. Its metabolism in ingesting organisms, and degradative pathways in the environment have consequently been left uncertain. This model ecosystem study was undertaken to examine the unanswered questions concerning the metabolic and environmental fate of tetrachloro-DDT. The relevance of this study pertains to disposal practices of pesticide manufacturers who use tetrachloro-DDT as a product precursor

  13. Nitrogen fate model for gas-phase ammonia-enhanced in situ bioventing

    International Nuclear Information System (INIS)

    Marshall, T.R.

    1995-01-01

    Subsurface bioremediation of contaminants is sometimes limited by the availability of nitrogen. Introduction of gaseous ammonia to the subsurface is a feasible and economical approach to enhance biodegradation in some environments. A gaseous nutrient source may be a practical option for sites where surface application of liquid nutrients is not possible, such as sites with shallow groundwater or sites with surface operations. A conceptual nitrogen fate model was developed to provide remediation scientists and engineers with some practical guidelines in the use of ammonia-enhanced bioventing. Ammonia supplied to the subsurface dissolves readily in soil moisture and sorbs strongly to soil particles. The ammonium ion is the preferred nutrient form of many microorganisms. Some of the ammonia will be converted to nitrate by ammonia-oxidizing organisms. Field monitoring data from an operating ammonia-enhanced bioventing remediation site for diesel fuel contamination are presented. Conservative additions of ammonia promoted appreciable increases in evolved carbon dioxide and rate of oxygen utilization. An overabundance of added ammonia promoted formation of methane from likely anaerobic hydrocarbon degradation in the presence of nitrate as the electron acceptor

  14. Sources, fate, and transport of nitrogen and phosphorus in the Chesapeake Bay watershed-An empirical model

    Science.gov (United States)

    Ator, Scott W.; Brakebill, John W.; Blomquist, Joel D.

    2011-01-01

    Spatially Referenced Regression on Watershed Attributes (SPARROW) was used to provide empirical estimates of the sources, fate, and transport of total nitrogen (TN) and total phosphorus (TP) in the Chesapeake Bay watershed, and the mean annual TN and TP flux to the bay and in each of 80,579 nontidal tributary stream reaches. Restoration efforts in recent decades have been insufficient to meet established standards for water quality and ecological conditions in Chesapeake Bay. The bay watershed includes 166,000 square kilometers of mixed land uses, multiple nutrient sources, and variable hydrogeologic, soil, and weather conditions, and bay restoration is complicated by the multitude of nutrient sources and complex interacting factors affecting the occurrence, fate, and transport of nitrogen and phosphorus from source areas to streams and the estuary. Effective and efficient nutrient management at the regional scale in support of Chesapeake Bay restoration requires a comprehensive understanding of the sources, fate, and transport of nitrogen and phosphorus in the watershed, which is only available through regional models. The current models, Chesapeake Bay nutrient SPARROW models, version 4 (CBTN_v4 and CBTP_v4), were constructed at a finer spatial resolution than previous SPARROW models for the Chesapeake Bay watershed (versions 1, 2, and 3), and include an updated timeframe and modified sources and other explantory terms.

  15. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Guangguo, Ying [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia)], E-mail: guang-guo.ying@gig.ac.cn; Xiangyang, Yu [CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia); Food Safety Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Kookana, Rai S [CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia)

    2007-12-15

    Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan 'does not degrade fast' with its primary biodegradation half-life of 'weeks' and ultimate biodegradation half-life of 'months'. Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period. - Triclocarban and triclosan can be degraded by microbial processes in aerobic soil, but will persist in anaerobic soil.

  16. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling

    International Nuclear Information System (INIS)

    Ying Guangguo; Yu Xiangyang; Kookana, Rai S.

    2007-01-01

    Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan 'does not degrade fast' with its primary biodegradation half-life of 'weeks' and ultimate biodegradation half-life of 'months'. Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period. - Triclocarban and triclosan can be degraded by microbial processes in aerobic soil, but will persist in anaerobic soil

  17. The linear interplay of intrinsic and extrinsic noises ensures a high accuracy of cell fate selection in budding yeast

    Science.gov (United States)

    Li, Yongkai; Yi, Ming; Zou, Xiufen

    2014-01-01

    To gain insights into the mechanisms of cell fate decision in a noisy environment, the effects of intrinsic and extrinsic noises on cell fate are explored at the single cell level. Specifically, we theoretically define the impulse of Cln1/2 as an indication of cell fates. The strong dependence between the impulse of Cln1/2 and cell fates is exhibited. Based on the simulation results, we illustrate that increasing intrinsic fluctuations causes the parallel shift of the separation ratio of Whi5P but that increasing extrinsic fluctuations leads to the mixture of different cell fates. Our quantitative study also suggests that the strengths of intrinsic and extrinsic noises around an approximate linear model can ensure a high accuracy of cell fate selection. Furthermore, this study demonstrates that the selection of cell fates is an entropy-decreasing process. In addition, we reveal that cell fates are significantly correlated with the range of entropy decreases. PMID:25042292

  18. A pollution fate and transport model application in a semi-arid region: Is some number better than no number?

    Science.gov (United States)

    Özcan, Zeynep; Başkan, Oğuz; Düzgün, H Şebnem; Kentel, Elçin; Alp, Emre

    2017-10-01

    Fate and transport models are powerful tools that aid authorities in making unbiased decisions for developing sustainable management strategies. Application of pollution fate and transport models in semi-arid regions has been challenging because of unique hydrological characteristics and limited data availability. Significant temporal and spatial variability in rainfall events, complex interactions between soil, vegetation and topography, and limited water quality and hydrological data due to insufficient monitoring network make it a difficult task to develop reliable models in semi-arid regions. The performances of these models govern the final use of the outcomes such as policy implementation, screening, economical analysis, etc. In this study, a deterministic distributed fate and transport model, SWAT, is applied in Lake Mogan Watershed, a semi-arid region dominated by dry agricultural practices, to estimate nutrient loads and to develop the water budget of the watershed. To minimize the discrepancy due to limited availability of historical water quality data extensive efforts were placed in collecting site-specific data for model inputs such as soil properties, agricultural practice information and land use. Moreover, calibration parameter ranges suggested in the literature are utilized during calibration in order to obtain more realistic representation of Lake Mogan Watershed in the model. Model performance is evaluated using comparisons of the measured data with 95%CI for the simulated data and comparison of unit pollution load estimations with those provided in the literature for similar catchments, in addition to commonly used evaluation criteria such as Nash-Sutcliffe simulation efficiency, coefficient of determination and percent bias. These evaluations demonstrated that even though the model prediction power is not high according to the commonly used model performance criteria, the calibrated model may provide useful information in the comparison of the

  19. Ocean Dredged Material Disposal Site (ODMDS) Authorization and Short-Term FATE (STFATE) Model Analysis: 2014-2015 Working Group Findings Report

    Science.gov (United States)

    2016-03-01

    fractions A grain size or sieve analysis typically yields the mass fraction of each particle size class after dispersing all of the material. However...ER D C TR -1 6- 2 Ocean Dredged Material Disposal Site (ODMDS) Authorization and Short-Term FATE (STFATE) Model Analysis 2014 – 2015...Term FATE (STFATE) Model Analysis 2014 – 2015 Working Group Findings Report Jase D. Ousley Coastal and Hydraulics Laboratory U.S. Army Engineer

  20. Modelling the fate of sulphur-35 in crops. 2. Development and validation of the CROPS-35 model

    International Nuclear Information System (INIS)

    Collins, Chris; Cunningham, Nathan

    2005-01-01

    Gas-cooled nuclear power plants in the UK release sulphur-35 during their routine operation, which can be readily assimilated by vegetation. It is therefore necessary to be able to model the uptake of such releases in order to quantify any potential contamination of the food chain. A model is described which predicts the concentration of 35 S in crop components following an aerial gaseous release. Following deposition the allocation to crop components is determined by an export function from a labile pool, the leaves, to those components growing most actively post exposure. The growth rates are determined by crop growth data, which is also used to determine the concentration. The loss of activity is controlled by radioactive decay only. The paper describes the calibration and the validation of the model. To improve the model, further experimental work is required particularly on the export kinetics of 35 S. It may be possible to adapt such a modelling approach to the prediction of crop content for gaseous releases of 3 H and 14 C from nuclear facilities. - The calibration and validation of a model for the prediction of the fate of 35 S in vegetation is described

  1. Modeling of geo-material durability and contaminant fate in recycling or disposal of industrial and radioactive waste

    International Nuclear Information System (INIS)

    De Windt, L.

    2011-01-01

    This report deals with the HYTEC model, coupling chemical and hydrodynamic processes, and its application to the recycling of inorganic wastes and the disposal of hazardous and radioactive wastes. A common feature is the assessment of geo-material durability while submitted to chemical disturbances by their industrial or natural environment and, reciprocally, the quantification of contaminant fate in soils and aquifers. Research papers in a first section numerically oriented, HYTEC is validated by means of an intercomparison exercise based on oxidative UO 2 dissolution and the subsequent migration of U species in subsurface environments. A numerical approach of leaching tests is also discussed. Several researches based on HYTEC follows. The evolution of the cement/clay interface is simulated in the framework of the multi-barrier system of radioactive waste disposal and the Tournemire engineering analog; discriminating between the physical and chemical key processes. The physico-chemical processes of cement biodegradation by fungi are investigated with a focus on acidic hydrolysis and complexation by biogenic carboxylic acids. Modeling of source-terms and ageing with respect to contaminant migration is discussed in the case of the chemical alteration of spent fuel pellets under disposal conditions by considering radiolytic dissolution, inhibiting effect and radioactive decay, and by analyzing the effect of fractures on the containment properties of subsurface disposal facilities of stabilized/solidified waste. Leaching lab experiments applied to steel slag and the chemical evolution of leachate from MSWI sub-bases of two pilot roads over 10 years are eventually modelled to better estimate the environmental impact of such recycling scenarios. On-going research In the straight lines of the modeling of radioactive waste disposal, a first perspective is to investigate the transient states driven by thermal gradient and water re-saturation of the near-field barriers and

  2. The environmental fate of polybrominated diphenyl ethers in the centre of Stockholm - Assessment using a multimedia fugacity model

    Energy Technology Data Exchange (ETDEWEB)

    Palm, Anna

    2001-01-01

    A local-scale assessment of the environmental fate of three congeners of polybrominated diphenyl ethers (PBDEs) has been performed for the centre of Stockholm. The partitioning properties and main transport processes of these congeners in Stockholm are identified using a site-specific multimedia fugacity model, called CeStoc, that was developed and parameterized for the area of interest. CeStoc was based on level III and IV fugacity models. Five compartments were included: air, water, soil, sediment and an organic film covering the impervious surfaces in the city. The model was satisfactory calibrated with the PAH fluoranthene, before it was run for the compounds of interest. Validation with environmental levels of PBDEs was made where possible, showing reasonable agreement with model results. According to the CeStoc results, the majority of the PBDEs emitted are transported out of the region through air advection, implying that Stockholm may act as a source for chemical release to other regions. The largest sink for PBDEs in Stockholm is soil, closely followed by sediment, the two compartments together accounting for about 98 % of the total amount remaining in the system. The degree of bromination does not seem to have a large impact on the environmental distribution in this area, but further research on e.g. physical-chemical properties is necessary before this can be finally concluded. Predicted concentrations of individual PBDE congeners in sediment and water lie in the same range as measured levels of individual PCB-congeners, indicating that PBDEs could have an environmental impact of about the same size as the PCBs.

  3. Modeling the Transport and Fate of Fecal Pollution and Nutrients of Miyun Reservoir

    Science.gov (United States)

    Liu, L.; Fu, X.; Wang, G.

    2009-12-01

    Miyun Reservoir, a mountain valley reservoir, is located 100 km northeast of Beijing City. Besides the functions of flood control, irrigation and fishery for Beijing area, Miyun Reservoir is the main drinking water storage for Beijing city. The water quality is therefore of great importance. Recently, the concentration of fecal pollution and nutrients in the reservoir are constantly rising to arrest the attention of Beijing municipality. Fecal pollution from sewage is a significant public health concern due to the known presence of human viruses and parasites in these discharges. To investigate the transport and fate of the fecal pollution and nutrients at Miyun reservoir and the health risks associated with drinking and fishery, the reservoir and two tributaries, Chaohe river and Baihe river discharging into it are being examined for bacterial, nutrients and other routine pollution. To understand the relative importance of different processes influencing pollution transport and inactivation, a finite-element model of surf-zone hydrodynamics (coupled with models for temperature, fecal pollution, nutrients and other routine contaminants) is used. The developed models are being verified by the observed water quality data including water temperature, conductivities and dissolved oxygen from the reservoir and its tributaries. Different factors impacting the inactivation of fecal pollution and the transport of nutrients such as water temperature, sedimentation, sunlight insolation are evaluated for Miyun reservoir by a sensitivity analysis analogized from the previous research of Lake Michigan (figure 1, indicating that solar insolation dominates the inactivation of E. Coli, an indicator of fecal pollution, Liu et al. 2006). The calibrated modeling system can be used to temporally and spatially simulate and predict the variation of the concentration of fecal pollution and nutrients of Miyun reservoir. Therefore this research can provide a forecasting tool for the

  4. Transient Cnp expression by early progenitors causes Cre-Lox-based reporter lines to map profoundly different fates.

    Science.gov (United States)

    Tognatta, Reshmi; Sun, Wenjing; Goebbels, Sandra; Nave, Klaus-Armin; Nishiyama, Akiko; Schoch, Susanne; Dimou, Leda; Dietrich, Dirk

    2017-02-01

    NG2 expressing oligodendroglial precursor cells are ubiquitous in the central nervous system and the only cell type cycling throughout life. Previous fate mapping studies have remained inconsistent regarding the question whether NG2 cells are capable of generating certain types of neurons. Here, we use CNP-Cre mice to map the fate of a sub-population of NG2 cells assumed to be close to differentiation. When crossing these mice with the ROSA26/YFP Cre-reporter line we discovered large numbers of reporter-expressing pyramidal neurons in the piriform and dorsal cortex. In contrast, when using Z/EG reporter mice to track the fate of Cnp-expressing NG2 cells only oligodendroglial cells were found reporter positive. Using BrdU-based birth dating protocols and inducible NG2CreER:ROSA26/YFP mice we show that YFP positive neurons are generated from radial glial cells and that these radial glial cells display temporary and low level activity of certain oligodendroglial genes sufficient to recombine the Cre-inducible reporter gene in ROSA26/YFP but not in Z/EG mice. Taken together, we did not obtain evidence for generation of neurons from NG2 cells. Our results suggest that with an appropriate reporter system Cnp activity can be used to define a proliferative subpopulation of NG2 cells committed to generate oligodendrocytes. However, the strikingly different results obtained from ROSA26/YFP versus Z/EG mice demonstrate that the choice of Cre-reporter line can be of crucial importance for fate mapping studies and other applications of the Cre-lox technology. GLIA 2017;65:342-359. © 2016 Wiley Periodicals, Inc.

  5. Investigating Particle Transport and Fate in the Sacramento–San Joaquin Delta Using a Particle-Tracking Model

    Directory of Open Access Journals (Sweden)

    Wim J. Kimmerer

    2008-02-01

    Full Text Available Movements of pelagic organisms in the tidal freshwater regions of estuaries are sensitive to the movements of water. In the Sacramento-San Joaquin Delta—the tidal freshwater reach of the San Francisco Estuary—such movements are key to losses of fish and other organisms to entrainment in large water-export facilities. We used the Delta Simulation Model-2 hydrodynamic model and its particle tracking model to examine the principal determinants of entrainment losses to the export facilities and how movement of fish through the Delta may be influenced by flow. We modeled 936 scenarios for 74 different conditions of flow, diversions, tides, and removable barriers to address seven questions regarding hydrodynamics and entrainment risk in the Delta. Tide had relatively small effects on fate and residence time of particles. Release location and hydrology interacted to control particle fate and residence time. The ratio of flow into the export facilities to freshwater flow into the Delta (export:inflow or EI ratio was a useful predictor of entrainment probability if the model were allowed to run long enough to resolve particles’ ultimate fate. Agricultural diversions within the Delta increased total entrainment losses and altered local movement patterns. Removable barriers in channels of the southern Delta and gates in the Delta Cross Channel in the northern Delta had minor effects on particles released in the rivers above these channels. A simulation of losses of larval delta smelt showed substantial cumulative losses depending on both inflow and export flow. A simulation mimicking mark–recapture experiments on Chinook salmon smolts suggested that both inflow and export flow may be important factors determining survival of salmon in the upper estuary. To the extent that fish behave passively, this model is probably suitable for describing Delta-wide movement, but it is less suitable for smaller scales or alternative configurations of the Delta.

  6. Sediment transport modelling in the Gulf of Lion with the perspective of studying the fate of radionuclides originated by the Rhone River

    International Nuclear Information System (INIS)

    Dufois, Francois

    2008-01-01

    Among the various contaminants introduced in the environment, artificial radionuclides appear particularly important to consider because of their chemical toxicity and / or of their radio-toxicity. Some radionuclides present a high affinity with particles so that the study of the sediment dynamics is a useful preliminary to the study of their dispersion on the open sea. This thesis is focused on the fate of sediments in the Gulf of Lion (NW Mediterranean sea) and in particular on the impact of the Rhone River, which is the main source of particulate matter in the Gulf of Lion. In order to study the sediment transport mechanisms on various space and time scales, this thesis is based on mathematical modelling. The hydro-sedimentary model set up in the Gulf of Lion, which takes into account the gathered effect of waves and currents, was supported by recent hydro-sedimentary data analyses. CARMA (winter 2006/2007) and SCOPE (winter 2007/2008) experiments were used to better understand the physical processes which control the sediment transport on the Rhone pro-delta and to validate the model. The period of the centennial Rhone River flood of December 2003 was also simulated in order to determine the impact of such extreme events on the fate of sediments. Both observations and simulations of the studied periods highlight the high capacity of erosion and transport induced by south-eastern storms on the pro-delta

  7. Mathematical modelling of oil spill fate and transport in the marine environment incorporating biodegradation kinetics of oil droplets

    Science.gov (United States)

    Spanoudaki, Katerina

    2016-04-01

    Oil biodegradation by native bacteria is one of the most important natural processes that can attenuate the environmental impacts of marine oil spills. However, very few numerical models of oil spill fate and transport include biodegradation kinetics of spilled oil. Furthermore, in models where biodegradation is included amongst the oil transformation processes simulated, it is mostly represented as a first order decay process neglecting the effect of several important parameters that can limit biodegradation rate, such as oil composition and oil droplets-water interface. To this end, the open source numerical model MEDSKIL-II, which simulates oil spill fate and transport in the marine environment, has been modified to include biodegradation kinetics of oil droplets dispersed in the water column. MEDSLIK-II predicts the transport and weathering of oil spills following a Lagrangian approach for the solution of the advection-diffusion equation. Transport is governed by the 3D sea currents and wave field provided by ocean circulation models. In addition to advective and diffusive displacements, the model simulates several physical and chemical processes that transform the oil (evaporation, emulsification, dispersion in the water column, adhesion to coast). The fate algorithms employed in MEDSLIK-II consider the oil as a uniform substance whose properties change as the slick weathers, an approach that can lead to reduced accuracy, especially in the estimation of oil evaporation and biodegradation. Therefore MEDSLIK-II has been modified by adopting the "pseudo-component" approach for simulating weathering processes. Spilled oil is modelled as a relatively small number of discrete, non-interacting components (pseudo-components). Chemicals in the oil mixture are grouped by physical-chemical properties and the resulting pseudo-component behaves as if it were a single substance with characteristics typical of the chemical group. The fate (evaporation, dispersion

  8. Fate and transport of mercury in soil systems : a numerical model in HP1 and sensitivity analysis

    Science.gov (United States)

    Leterme, Bertrand; Jacques, Diederik

    2013-04-01

    Mercury (Hg) poses threats for human health and the environment, notably due to its persistence and its ability to bioaccumulate in ecosystems. Anthropogenic activities are major contributors of mercury release to soils. Main sources of contamination include manufacturing (chlor-alkali plants, manometer spill), mine tailings from mercury, gold and silver mining industries, wood preservation. The objective of this study was to develop a reactive transport model for simulating mercury fate and transport in the unsaturated zone, and to gain insight in the fate and transport of Hg following anthropogenic soil contamination. The present work is done in the framework of the IMaHg project, which aims at providing recommendations to improve management of sites contaminated by mercury within the SNOWMAN funding framework. A model of mercury fate and transport in soil systems was developed using the reactive transport code HP1 (Jacques and Šimůnek, 2010). The geochemical database THERMODDEM (Blanc et al., 2012) is used, augmented with some speciation data from (Skyllberg, 2012). The main processes accounted for in the model are : Hg aqueous speciation (including complexation with dissolved organic matter (DOM) - humic and fulvic acids, and thiol groups), Hg sorption to solid organic matter (SOM), dissolution of solid phase Hg (e.g. cinnabar HgS(s)), dissolution of Hg non-aqueous liquid phase (NAPL), sunlight-driven Hg(II) reduction to Hg(0), Hg(0) diffusion in the gas phase and volatilization, DOM sorption to soil minerals. Colloid facilitated transport is implicitly accounted for by solute transport of Hg-DOM complexes. Because we focused on soil systems having a high Hg contamination, some processes showing relatively smaller Hg fluxes could be neglected such as vegetation uptake and atmospheric wet and dry deposition. NAPL migration and entrapment is not modelled, as pollution is assumed to be historical and only residual NAPL to be present. Mercury methylation and

  9. Evaluating the environmental fate of short-chain chlorinated paraffins (SCCPs) in the Nordic environment using a dynamic multimedia model.

    Science.gov (United States)

    Krogseth, Ingjerd S; Breivik, Knut; Arnot, Jon A; Wania, Frank; Borgen, Anders R; Schlabach, Martin

    2013-12-01

    Short chain chlorinated paraffins (SCCPs) raise concerns due to their potential for persistence, bioaccumulation, long-range transport and adverse effects. An understanding of their environmental fate remains limited, partly due to the complexity of the mixture. The purpose of this study was to evaluate whether a mechanistic, integrated, dynamic environmental fate and bioaccumulation multimedia model (CoZMoMAN) can reconcile what is known about environmental emissions and human exposure of SCCPs in the Nordic environment. Realistic SCCP emission scenarios, resolved by formula group, were estimated and used to predict the composition and concentrations of SCCPs in the environment and the human food chain. Emissions at the upper end of the estimated range resulted in predicted total concentrations that were often within a factor of 6 of observations. Similar model performance for a complex group of organic contaminants as for the well-known polychlorinated biphenyls strengthens the confidence in the CoZMoMAN model and implies a relatively good mechanistic understanding of the environmental fate of SCCPs. However, the degree of chlorination predicted for SCCPs in sediments, fish, and humans was higher than observed and poorly established environmental half-lives and biotransformation rate constants contributed to the uncertainties in the predicted composition and ∑SCCP concentrations. Improving prediction of the SCCP composition will also require better constrained estimates of the composition of SCCP emissions. There is, however, also large uncertainty and lack of coherence in the existing observations, and better model-measurement agreement will require improved analytical methods and more strategic sampling. More measurements of SCCP levels and compositions in samples from background regions are particularly important.

  10. Comparison of three pesticide fate models for two herbicides leaching under field conditions in a maize cropping system

    Science.gov (United States)

    Marin-Benito, Jesus Maria; Pot, Valérie; Alletto, Lionel; Mamy, Laure; Bedos, Carole; van den Berg, Erik; Barriuso, Enrique; Benoit, Pierre

    2014-05-01

    Losses of pesticides from agricultural soils may influence the quality of groundwater. Therefore, numerous models were developed to assess the transfer of pesticides from the soil surface to groundwater after their application to an agricultural field. Our objective was thus to compare the ability of three pesticide fate models to describe the behavior of water, and S-metolachlor (SMOC) and mesotrione (MES) herbicides as observed under field conditions in a maize monoculture system. Simulations were based on field experimentations set up in Toulouse area (France). The tested scenario focused on a conventional maize monoculture and included two irrigated cropping periods with a fallow period managed with bare soil. SMOC was sprayed annually at 1.25 and 1.52 kg a.i./ha in 2011 and 2012, respectively, while MES was only applied in 2012 but twice, at 0.150 kg a.i./ha. Simulations were performed with the PRZM, PEARL and MACRO models parameterized with field, laboratory, and literature data, and pedotransfer functions. The results of simulations were compared with soil tension, water content and percolation data monitored at different depths in 2011-2012. The comparison of the results obtained by the three models indicated that PRZM was not able to simulate properly the water dynamic in the soil profile and for example, it predicted that microporosity was always saturated at 1 m-depth. On the contrary, PEARL and MACRO simulated quite well the observed water behavior (water pressure head and volumetric water content) at 20 and 50 cm-depth during the irrigated cropping period of 2012. However, simulated soil moisture and water pressure were overestimated before the rainfall event of 20 May 2012. MACRO and PEARL simulations generally showed similar water flow dynamics for the whole period at the three depths. Neither the dynamic nor the total amount of percolated water was correctly simulated by any model. The three models overestimated the total water volume leached at 1 m

  11. A hybrid mathematical modeling approach of the metabolic fate of a fluorescent sphingolipid analogue to predict cancer chemosensitivity.

    Science.gov (United States)

    Molina-Mora, J A; Kop-Montero, M; Quirós-Fernández, I; Quiros, S; Crespo-Mariño, J L; Mora-Rodríguez, R A

    2018-04-13

    Sphingolipid (SL) metabolism is a complex biological system that produces and transforms ceramides and other molecules able to modulate other cellular processes, including survival or death pathways key to cell fate decisions. This signaling pathway integrates several types of stress signals, including chemotherapy, into changes in the activity of its metabolic enzymes, altering thereby the cellular composition of bioactive SLs. Therefore, the SL pathway is a promising sensor of chemosensitivity in cancer and a target hub to overcome resistance. However, there is still a gap in our understanding of how chemotherapeutic drugs can disturb the SL pathway in order to control cellular fate. We propose to bridge this gap by a systems biology approach to integrate i) a dynamic model of SL analogue (BODIPY-FL fluorescent-sphingomyelin analogue, SM-BOD) metabolism, ii) a Gaussian mixture model (GMM) of the fluorescence features to identify how the SL pathway senses the effect of chemotherapy and iii) a fuzzy logic model (FLM) to associate SL composition with cell viability by semi-quantitative rules. Altogether, this hybrid model approach was able to predict the cell viability of double experimental perturbations with chemotherapy, indicating that the SL pathway is a promising sensor to design strategies to overcome drug resistance in cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    International Nuclear Information System (INIS)

    Li Rong; Yang Fuquan; Sloan, James J; Scholtz, M Trevor

    2011-01-01

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  13. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Li Rong; Yang Fuquan; Sloan, James J [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Scholtz, M Trevor, E-mail: sloanj@connect.uwaterloo.ca [ORTECH Environmental, 2395 Speakman Drive, Mississauga, ON L5K 1B3 (Canada)

    2011-07-15

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  14. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    Science.gov (United States)

    Li, Rong; Scholtz, M. Trevor; Yang, Fuquan; Sloan, James J.

    2011-07-01

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  15. Evaluating officially reported polycyclic aromatic hydrocarbon emissions in the Athabasca oil sands region with a multimedia fate model

    Science.gov (United States)

    Parajulee, Abha; Wania, Frank

    2014-01-01

    Emissions of organic substances with potential toxicity to humans and the environment are a major concern surrounding the rapid industrial development in the Athabasca oil sands region (AOSR). Although concentrations of polycyclic aromatic hydrocarbons (PAHs) in some environmental samples have been reported, a comprehensive picture of organic contaminant sources, pathways, and sinks within the AOSR has yet to be elucidated. We sought to use a dynamic multimedia environmental fate model to reconcile the emissions and residue levels reported for three representative PAHs in the AOSR. Data describing emissions to air compiled from two official sources result in simulated concentrations in air, soil, water, and foliage that tend to fall close to or below the minimum measured concentrations of phenanthrene, pyrene, and benzo(a)pyrene in the environment. Accounting for evaporative emissions (e.g., from tailings pond disposal) provides a more realistic representation of PAH distribution in the AOSR. Such indirect emissions to air were found to be a greater contributor of PAHs to the AOSR atmosphere relative to reported direct emissions to air. The indirect pathway transporting uncontrolled releases of PAHs to aquatic systems via the atmosphere may be as significant a contributor of PAHs to aquatic systems as other supply pathways. Emission density estimates for the three PAHs that account for tailings pond disposal are much closer to estimated global averages than estimates based on the available emissions datasets, which fall close to the global minima. Our results highlight the need for improved accounting of PAH emissions from oil sands operations, especially in light of continued expansion of these operations. PMID:24596429

  16. Large-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs) in multimedia over China

    Science.gov (United States)

    Huang, Y.; Liu, M.; Wada, Y.; He, X.; Sun, X.

    2017-12-01

    In recent decades, with rapid economic growth, industrial development and urbanization, expanding pollution of polycyclic aromatic hydrocarbons (PAHs) has become a diversified and complicated phenomenon in China. However, the availability of sufficient monitoring activities for PAHs in multi-compartment and the corresponding multi-interface migration processes are still limited, especially at a large geographic area. In this study, we couple the Multimedia Fate Model (MFM) to the Community Multi-Scale Air Quality (CMAQ) model in order to consider the fugacity and the transient contamination processes. This coupled dynamic contaminant model can evaluate the detailed local variations and mass fluxes of PAHs in different environmental media (e.g., air, surface film, soil, sediment, water and vegetation) across different spatial (a county to country) and temporal (days to years) scales. This model has been applied to a large geographical domain of China at a 36 km by 36 km grid resolution. The model considers response characteristics of typical environmental medium to complex underlying surface. Results suggest that direct emission is the main input pathway of PAHs entering the atmosphere, while advection is the main outward flow of pollutants from the environment. In addition, both soil and sediment act as the main sink of PAHs and have the longest retention time. Importantly, the highest PAHs loadings are found in urbanized and densely populated regions of China, such as Yangtze River Delta and Pearl River Delta. This model can provide a good scientific basis towards a better understanding of the large-scale dynamics of environmental pollutants for land conservation and sustainable development. In a next step, the dynamic contaminant model will be integrated with the continental-scale hydrological and water resources model (i.e., Community Water Model, CWatM) to quantify a more accurate representation and feedbacks between the hydrological cycle and water quality at

  17. Multimedia fate modeling and risk assessment of a commonly used azole fungicide climbazole at the river basin scale in China.

    Science.gov (United States)

    Zhang, Qian-Qian; Ying, Guang-Guo; Chen, Zhi-Feng; Liu, You-Sheng; Liu, Wang-Rong; Zhao, Jian-Liang

    2015-07-01

    Climbazole is an antidandruff active ingredient commonly used in personal care products, but little is known about its environmental fate. The aim of this study was to evaluate the fate of climbazole in water, sediment, soil and air compartments of the whole China by using a level III multimedia fugacity model. The usage of climbazole was calculated to be 345 t in the whole China according to the market research data, and after wastewater treatment a total emission of 245 t was discharged into the receiving environment with approximately 93% into the water compartment and 7% into the soil compartment. The developed fugacity model was successfully applied to estimate the contamination levels and mass inventories of climbazole in various environmental compartments of the river basins in China. The predicted environmental concentration ranges of climbazole were: 0.20-367 ng/L in water, and 0.009-25.2 ng/g dry weight in sediment. The highest concentration was mainly found in Haihe River basin and the lowest was in basins of Tibet and Xinjiang regions. The mass inventory of climbazole in the whole China was estimated to be 294 t, with 6.79% in water, 83.7% in sediment, 9.49% in soil, and 0.002% in air. Preliminary risk assessment showed high risks in sediment posed by climbazole in 2 out of 58 basins in China. The medium risks in water and sediment were mostly concentrated in north China. To the best of our knowledge, it is the first report on the emissions and multimedia fate of climbazole in the river basins of the whole China. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A model library for dynamic transport and fate of micropollutants in integrated urban wastewater and stormwater systems

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Benedetti, Lorenzo; Gevaert, Veerle

    2014-01-01

    by using substance inherent properties, following an approach commonly used in large-scale MP multimedia fate and transport models. The chosen level of complexity ensures a low data requirement and minimizes the need for field measurements. Next to a synthesis of model applications, a didactic example......The increasing efforts in reducing the emission of micropollutants (MP) into the natural aquatic environment require the development of modelling tools to support the decision making process. This article presents a library of dynamic modelling tools for estimating MP fluxes within Integrated Urban...... Wastewater and Stormwater system (IUWS – including drainage network, stormwater treatment units, wastewater treatment plants, sludge treatment, and the receiving water body). The models are developed by considering the high temporal variability of the processes taking place in the IUWS, providing a basis...

  19. A coupled modelling effort to study the fate of contaminated sediments downstream of the Coles Hill deposit, Virginia, USA

    Directory of Open Access Journals (Sweden)

    C. F. Castro-Bolinaga

    2015-03-01

    Full Text Available This paper presents the preliminary results of a coupled modelling effort to study the fate of tailings (radioactive waste-by product downstream of the Coles Hill uranium deposit located in Virginia, USA. The implementation of the overall modelling process includes a one-dimensional hydraulic model to qualitatively characterize the sediment transport process under severe flooding conditions downstream of the potential mining site, a two-dimensional ANSYS Fluent model to simulate the release of tailings from a containment cell located partially above the local ground surface into the nearby streams, and a one-dimensional finite-volume sediment transport model to examine the propagation of a tailings sediment pulse in the river network located downstream. The findings of this investigation aim to assist in estimating the potential impacts that tailings would have if they were transported into rivers and reservoirs located downstream of the Coles Hill deposit that serve as municipal drinking water supplies.

  20. The role of pesticide fate modelling in a prevention-led approach to potable water quality management

    Science.gov (United States)

    Dolan, Tom; Pullan, Stephanie; Whelan, Mick; Parsons, David

    2013-04-01

    Diffuse inputs from agriculture are commonly the main source of pesticide contamination in surface water and may have implications for the quality of treated drinking water. After privatisation in 1991, UK water companies primarily focused on the provision of sufficient water treatment to reduce the risk of non-compliance with the European Drinking Water Directive (DWD), under which all pesticide concentrations must be below 0.1µg/l and UK Water Supply Regulations for the potable water they supply. Since 2000, Article 7 of the Water Framework Directive (WFD) has begun to drive a prevention-led approach to compliance with the DWD. As a consequence water companies are now more interested in the quality of 'raw' (untreated) water at the point of abstraction. Modelling (based upon best available estimates of cropping, pesticide use, weather conditions, pesticide characteristics, and catchment characteristics) and monitoring of raw water quality can both help to determine the compliance risks associated with the quality of this 'raw' water resource. This knowledge allows water companies to prioritise active substances for action in their catchments, and is currently used in many cases to support the design of monitoring programmes for pesticide active substances. Additional value can be provided if models are able to help to identify the type and scale of catchment management interventions required to achieve DWD compliance for pesticide active substances through pollution prevention at source or along transport pathways. These questions were explored using a simple catchment-scale pesticide fate and transport model. The model employs a daily time-step and is semi-lumped with calculations performed for soil type and crop combinations, weighted by their proportions within the catchment. Soil properties are derived from the national soil database and the model can, therefore, be applied to any catchment in England and Wales. Various realistic catchment management

  1. Pathogen Transport and Fate Modeling in the Upper Salem River Watershed Using SWAT Model

    Science.gov (United States)

    SWAT (Soil and Water Assessment Tool) is a dynamic watershed model that is applied to simulate the impact of land management practices on water quality over a continuous period. The Upper Salem River, located in Salem County New Jersey, is listed by the New Jersey Department of ...

  2. Use of colony-based bacterial strain typing for tracking the fate of Lactobacillus strains during human consumption

    Directory of Open Access Journals (Sweden)

    Drevinek Pavel

    2009-12-01

    Full Text Available Abstract Background The Lactic Acid Bacteria (LAB are important components of the healthy gut flora and have been used extensively as probiotics. Understanding the cultivable diversity of LAB before and after probiotic administration, and being able to track the fate of administered probiotic isolates during feeding are important parameters to consider in the design of clinical trials to assess probiotic efficacy. Several methods may be used to identify bacteria at the strain level, however, PCR-based methods such as Random Amplified Polymorphic DNA (RAPD are particularly suited to rapid analysis. We examined the cultivable diversity of LAB in the human gut before and after feeding with two Lactobacillus strains, and also tracked the fate of these two administered strains using a RAPD technique. Results A RAPD typing scheme was developed to genetically type LAB isolates from a wide range of species, and optimised for direct application to bacterial colony growth. A high-throughput strategy for fingerprinting the cultivable diversity of human faeces was developed and used to determine: (i the initial cultivable LAB strain diversity in the human gut, and (ii the fate of two Lactobacillus strains (Lactobacillus salivarius NCIMB 30211 and Lactobacillus acidophilus NCIMB 30156 contained within a capsule that was administered in a small-scale human feeding study. The L. salivarius strain was not cultivated from the faeces of any of the 12 volunteers prior to capsule administration, but appeared post-feeding in four. Strains matching the L. acidophilus NCIMB 30156 feeding strain were found in the faeces of three volunteers prior to consumption; after taking the Lactobacillus capsule, 10 of the 12 volunteers were culture positive for this strain. The appearance of both Lactobacillus strains during capsule consumption was statistically significant (p Conclusion We have shown that genetic strain typing of the cultivable human gut microbiota can be

  3. Modelling the Fate of Ionizable Trace Organic Chemicals from Consumption to Food Crops

    DEFF Research Database (Denmark)

    Polesel, Fabio; Plósz, Benedek G.; Trapp, Stefan

    In this study, we developed and applied a simulation tool to comprehensively predict the fate of three ionizable trace chemicals (triclosan—TCS, furosemide—FUR, ciprofloxacin—CIP) from human consumption/excretion up to the accumulation in wheat, following application of sewage sludge or irrigation...... with river water. Highest translocation to wheat (4.3 μg kgDW-1 in grain) was calculated for FUR, being more significant with irrigation (>45% of emission to soil) than with sludge application (

  4. Metabolic fate of endogenous molecular damage: Urinary glutathione conjugates of DNA-derived base propenals as markers of inflammation.

    Science.gov (United States)

    Jumpathong, Watthanachai; Chan, Wan; Taghizadeh, Koli; Babu, I Ramesh; Dedon, Peter C

    2015-09-01

    Although mechanistically linked to disease, cellular molecules damaged by endogenous processes have not emerged as significant biomarkers of inflammation and disease risk, due in part to poor understanding of their pharmacokinetic fate from tissue to excretion. Here, we use systematic metabolite profiling to define the fate of a common DNA oxidation product, base propenals, to discover such a biomarker. Based on known chemical reactivity and metabolism in liver cell extracts, 15 candidate metabolites were identified for liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS) quantification in urine and bile of rats treated with thymine propenal (Tp). Analysis of urine revealed three metabolites (6% of Tp dose): thymine propenoate and two mercapturate derivatives of glutathione conjugates. Bile contained an additional four metabolites (22% of Tp dose): cysteinylglycine and cysteine derivatives of glutathione adducts. A bis-mercapturate was observed in urine of untreated rats and increased approximately three- to fourfold following CCl4-induced oxidative stress or treatment with the DNA-cleaving antitumor agent, bleomycin. Systematic metabolite profiling thus provides evidence for a metabolized DNA damage product as a candidate biomarker of inflammation and oxidative stress in humans.

  5. Fate of polycyclic aromatic hydrocarbons from the North Pacific to the Arctic: Field measurements and fugacity model simulation.

    Science.gov (United States)

    Ke, Hongwei; Chen, Mian; Liu, Mengyang; Chen, Meng; Duan, Mengshan; Huang, Peng; Hong, Jiajun; Lin, Yan; Cheng, Shayen; Wang, Xuran; Huang, Mengxue; Cai, Minggang

    2017-10-01

    Polycyclic aromatic hydrocarbons (PAHs) have accumulated ubiquitously inArctic environments, where re-volatilization of certain organic pollutants as a result of climate change has been observed. To investigate the fate of semivolatile organic compounds in the Arctic, dissolved PAHs in the surface seawaters from the temperate Pacific Ocean to the Arctic Ocean, as well as a water column in the Arctic Ocean, were collected during the 4th Chinese National Arctic Research Expedition in summer 2010. The total concentrations of seven dissolved PAHs in surface water ranged from 1.0 to 5.1 ng L -1 , decreasing with increasing latitude. The vertical profile of PAHs in the Arctic Ocean was generally characteristic of surface enrichment and depth depletion, which emphasized the role of vertical water stratification and particle settling processes. A level III fugacity model was developed in the Bering Sea under steady state assumption. Model results quantitatively simulated the transfer processes and fate of PAHs in the air and water compartments, and highlighted a summer air-to-sea flux of PAHs in the Bering Sea, which meant that the ocean served as a sink for PAHs, at least in summer. Acenaphthylene and acenaphthene reached equilibrium in air-water diffusive exchange, and any perturbation, such as a rise in temperature, might lead to disequilibrium and remobilize these compounds from their Arctic reservoirs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Pesticide fate at regional scale: Development of an integrated model approach and application

    Science.gov (United States)

    Herbst, M.; Hardelauf, H.; Harms, R.; Vanderborght, J.; Vereecken, H.

    As a result of agricultural practice many soils and aquifers are contaminated with pesticides. In order to quantify the side-effects of these anthropogenic impacts on groundwater quality at regional scale, a process-based, integrated model approach was developed. The Richards’ equation based numerical model TRACE calculates the three-dimensional saturated/unsaturated water flow. For the modeling of regional scale pesticide transport we linked TRACE with the plant module SUCROS and with 3DLEWASTE, a hybrid Lagrangian/Eulerian approach to solve the convection/dispersion equation. We used measurements, standard methods like pedotransfer-functions or parameters from literature to derive the model input for the process model. A first-step application of TRACE/3DLEWASTE to the 20 km 2 test area ‘Zwischenscholle’ for the period 1983-1993 reveals the behaviour of the pesticide isoproturon. The selected test area is characterised by an intense agricultural use and shallow groundwater, resulting in a high vulnerability of the groundwater to pesticide contamination. The model results stress the importance of the unsaturated zone for the occurrence of pesticides in groundwater. Remarkable isoproturon concentrations in groundwater are predicted for locations with thin layered and permeable soils. For four selected locations we used measured piezometric heads to validate predicted groundwater levels. In general, the model results are consistent and reasonable. Thus the developed integrated model approach is seen as a promising tool for the quantification of the agricultural practice impact on groundwater quality.

  7. Survey and discussion of models applicable to the transport and fate thrust area of the Department of Energy Chemical and Biological Nonproliferation Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The availability and easy production of toxic chemical and biological agents by domestic and international terrorists pose a serious threat to US national security, especially to civilian populations in and around urban areas. To address this threat, the Department of Energy (DOE) has established the Chemical and Biological Nonproliferation Program (CBNP) with the goal of focusing the DOE`s technical resources and expertise on capabilities to deny, deter, mitigate and respond to clandestine releases of chemical and biological agents. With the intent to build on DOE core competencies, the DOE has established six technology thrust areas within the CBNP Program: Biological Information Resources; Point Sensor Systems; Stand-off Detection; Transport and Fate; Decontamination; and Systems Analysis and Integration. The purpose of the Transport and Fate Thrust is to accurately predict the dispersion, concentration and ultimate fate of chemical and biological agents released into the urban and suburban environments and has two major goals: (1) to develop an integrated and validated state-of-the-art atmospheric transport and fate modeling capability for chemical and biological agent releases within the complex urban environment from the regional scale down to building and subway interiors, and (2) to apply this modeling capability in a broad range of simulation case studies of chemical and biological agent release scenarios in suburban, urban and confined (buildings and subways) environments and provide analysis for the incident response user community. Sections of this report discuss subway transport and fate models; buildings interior transport and fate modeling; models for flow and transport around buildings; and local-regional meteorology and dispersion models.

  8. Predictions by the multimedia environmental fate model SimpleBox compared to field data: Intermedia concentration ratios of two phthalate esters

    NARCIS (Netherlands)

    Struijs J; Peijnenburg WJGM; ECO

    2003-01-01

    The multimedia environmental fate model SimpleBox is applied to compute steady-state concentration ratios with the aim to harmonize environmetal quality objectives of air, water, sediment and soil. In 1995 the Dutch Health Council recommended validation of the model. Several activities were

  9. PATHOGEN TRANSPORT AND FATE MODELING IN THE UPPER SALEM RIVER WATERSHED USING SWAT MODEL - PEER-REVIEWED JOURNAL ARTICLE

    Science.gov (United States)

    Simulation of the fate and transport of pathogen contamination was conducted with SWAT for the Upper Salem River Watershed, located in Salem County, New Jersey. This watershed is 37 km2 and land uses are predominantly agricultural. The watershed drains to a 32 km str...

  10. Fate of polybrominated diphenyl ethers during cooking of fish in a new model cooking apparatus and a household microwave.

    Science.gov (United States)

    Bendig, Paul; Hägele, Florian; Blumenstein, Marina; Schmidt, Jasmin; Vetter, Walter

    2013-07-10

    Fish is a major source of human exposure to polybrominated diphenyl ethers (PBDEs). Because fish is mainly consumed after cooking, this measure may alter the pattern and amounts of PBDEs that are finally consumed. To investigate this issue, we developed a model cooking apparatus consisting of a small glass bowl and a beaker glass with an exhaust fitted with a polyurethane foam filter connected to a water jet pump. In this model cooking apparatus, fish (1 g) and/or sunflower oil (0.2/0.4 g) spiked with three PBDE congeners was cooked for 30 min. Small amounts of the semi-volatile PBDEs were evaporated from the fish (BDE-47 cooking apparatus proved to be well-suited to study the fate of polyhalogenated compounds in fish during cooking.

  11. Models for transport and fate of carbon, nutrients and radionuclides in the aquatic ecosystem at Oeregrundsgrepen

    International Nuclear Information System (INIS)

    Erichsen, Anders Christian; Moehlenberg, Flemming; Closter, Rikke Margrethe; Sandberg, Johannes

    2010-06-01

    The aim of the work was to provide supplementary input to the risk assessment of a planned final nuclear waste repository at Forsmark. The main deliverable was a computed water exchange between basins in the Forsmark marine area for the period 6500 BC to 9000 AD - based on the hydrodynamic modelling - to be used as input to the landscape dose model. In addition and what is described in this report, a second deliverable was development and application of high-resolution models for the marine ecosystem and radionuclide processes. The purpose of this deliverable was to illustrate the spatial and temporal variation in important processes and parameters, while constituting a complement to previous modelling approaches and providing supporting information to discussions of the marine ecosystem, parameters and variation (see Chapter 4 and 6).To this end, a hydrodynamic model of high temporal and spatial resolution was constructed and calibrated for the Forsmark area. An ecosystem model was then developed and coupled to the hydrodynamic model. In turn, a detailed radionuclide model was coupled to the ecosystem model to provide detailed predictions of radionuclide transport and accumulation in the coastal ecosystem. The ecosystem and radionuclide models were developed in the equation solver MIKE ECOLab that links seamless to the MIKE3 FM hydrodynamic model. The 'standard' ECOLab ecosystem model was extended with six biological state variables, perennial macroalgae, benthic herbivors, detritus feeders, planktivorus fish and, benthic predators representing the relict isopod Saduria and cod. In contrast to the ecosystem model, the radionuclide model was developed from scratch but building on the structure of the ecosystem model and using the output (process rates linking state variables) from the ecosystem model as input to the radionuclide model. Both the ecosystem model and the radionuclide model were run for several years (5-8 years) to bring state variables into quasi

  12. Models for transport and fate of carbon, nutrients and radionuclides in the aquatic ecosystem at Oeregrundsgrepen

    Energy Technology Data Exchange (ETDEWEB)

    Erichsen, Anders Christian; Moehlenberg, Flemming; Closter, Rikke Margrethe; Sandberg, Johannes [DHI, Hoersholm (Denmark)

    2010-06-15

    The aim of the work was to provide supplementary input to the risk assessment of a planned final nuclear waste repository at Forsmark. The main deliverable was a computed water exchange between basins in the Forsmark marine area for the period 6500 BC to 9000 AD - based on the hydrodynamic modelling - to be used as input to the landscape dose model. In addition and what is described in this report, a second deliverable was development and application of high-resolution models for the marine ecosystem and radionuclide processes. The purpose of this deliverable was to illustrate the spatial and temporal variation in important processes and parameters, while constituting a complement to previous modelling approaches and providing supporting information to discussions of the marine ecosystem, parameters and variation (see Chapter 4 and 6).To this end, a hydrodynamic model of high temporal and spatial resolution was constructed and calibrated for the Forsmark area. An ecosystem model was then developed and coupled to the hydrodynamic model. In turn, a detailed radionuclide model was coupled to the ecosystem model to provide detailed predictions of radionuclide transport and accumulation in the coastal ecosystem. The ecosystem and radionuclide models were developed in the equation solver MIKE ECOLab that links seamless to the MIKE3 FM hydrodynamic model. The 'standard' ECOLab ecosystem model was extended with six biological state variables, perennial macroalgae, benthic herbivors, detritus feeders, planktivorus fish and, benthic predators representing the relict isopod Saduria and cod. In contrast to the ecosystem model, the radionuclide model was developed from scratch but building on the structure of the ecosystem model and using the output (process rates linking state variables) from the ecosystem model as input to the radionuclide model. Both the ecosystem model and the radionuclide model were run for several years (5-8 years) to bring state variables into quasi

  13. Differential local tissue permissiveness influences the final fate of GPR17‐expressing oligodendrocyte precursors in two distinct models of demyelination

    Science.gov (United States)

    Coppolino, Giusy T.; Marangon, Davide; Negri, Camilla; Menichetti, Gianluca; Fumagalli, Marta; Gelosa, Paolo; Dimou, Leda; Furlan, Roberto; Lecca, Davide

    2018-01-01

    Abstract Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17‐iCreERT2xCAG‐eGFP mice) allowing to follow the final fate of GPR17+ cells by tamoxifen‐induced GFP‐labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP+ cells at damaged areas. However, only in the cuprizone model reacting GFP+ cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP+ cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor‐1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti‐inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery. PMID:29424466

  14. Modeling the Fate of Expiratory Aerosols and the Associated Infection Risk in an Aircraft Cabin Environment

    DEFF Research Database (Denmark)

    Wan, M.P.; To, G.N.S.; Chao, C.Y.H.

    2009-01-01

    to estimate the risk of infection by contact. The environmental control system (ECS) in a cabin creates air circulation mainly in the lateral direction, making lateral dispersions of aerosols much faster than longitudinal dispersions. Aerosols with initial sizes under 28 m in diameter can stay airborne......The transport and deposition of polydispersed expiratory aerosols in an aircraft cabin were simulated using a Lagrangian-based model validated by experiments conducted in an aircraft cabin mockup. Infection risk by inhalation was estimated using the aerosol dispersion data and a model was developed...

  15. Modeling fates and impacts for bio-economic analysis of hypothetical oil spill scenarios in San Francisco Bay

    International Nuclear Information System (INIS)

    French McCay, D.; Whittier, N.; Sankaranarayanan, S.; Jennings, J.; Etkin, D.S.

    2002-01-01

    The oil spill risks associated with four submerged rock pinnacles near Alcatraz Island in San Francisco Bay are being evaluated by the United States Army Corps of Engineers. Oil spill modeling has been conducted for a hypothetical oil spill to determine biological impacts, damages to natural resources and response costs. The scenarios are hypothetical vessel grounding on the pinnacles. The SIMAP modeling software by the Applied Science Associates was used to model 3 spill sizes (20, 50 and 95 percentile by volume) and 4 types of oil (gasoline, diesel, heavy fuel oil, and crude oil). The frequency distribution of oil fates and impacts was determined by first running each scenario in stochastic mode. The oil fates and biological effects of the spills were the focus of this paper. It was shown that diesel and crude oil spills would have greater impacts in the water column than heavy fuel or gasoline because gasoline is more volatile and less toxic and because heavy oil spills would be small in volume. It was determined that the major impacts and damage to birds would be low due to the high dilution potential of the bay. It was also noted that dispersants would be very effective in reducing impacts on wildlife and the shoreline. These results are being used to evaluate the cost-benefit analysis of removing the rocks versus the risk of an oil spill. The work demonstrates a statistically quantifiable method to estimate potential impacts that could be used in ecological risk assessment and cost-benefit analysis. 15 refs., 13 tabs., 11 figs

  16. Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria.

    Science.gov (United States)

    Lönnberg, Tapio; Svensson, Valentine; James, Kylie R; Fernandez-Ruiz, Daniel; Sebina, Ismail; Montandon, Ruddy; Soon, Megan S F; Fogg, Lily G; Nair, Arya Sheela; Liligeto, Urijah; Stubbington, Michael J T; Ly, Lam-Ha; Bagger, Frederik Otzen; Zwiessele, Max; Lawrence, Neil D; Souza-Fonseca-Guimaraes, Fernando; Bunn, Patrick T; Engwerda, Christian R; Heath, William R; Billker, Oliver; Stegle, Oliver; Haque, Ashraful; Teichmann, Sarah A

    2017-03-03

    Differentiation of naïve CD4 + T cells into functionally distinct T helper subsets is crucial for the orchestration of immune responses. Due to extensive heterogeneity and multiple overlapping transcriptional programs in differentiating T cell populations, this process has remained a challenge for systematic dissection in vivo . By using single-cell transcriptomics and computational analysis using a temporal mixtures of Gaussian processes model, termed GPfates, we reconstructed the developmental trajectories of Th1 and Tfh cells during blood-stage Plasmodium infection in mice. By tracking clonality using endogenous TCR sequences, we first demonstrated that Th1/Tfh bifurcation had occurred at both population and single-clone levels. Next, we identified genes whose expression was associated with Th1 or Tfh fates, and demonstrated a T-cell intrinsic role for Galectin-1 in supporting a Th1 differentiation. We also revealed the close molecular relationship between Th1 and IL-10-producing Tr1 cells in this infection. Th1 and Tfh fates emerged from a highly proliferative precursor that upregulated aerobic glycolysis and accelerated cell cycling as cytokine expression began. Dynamic gene expression of chemokine receptors around bifurcation predicted roles for cell-cell in driving Th1/Tfh fates. In particular, we found that precursor Th cells were coached towards a Th1 but not a Tfh fate by inflammatory monocytes. Thus, by integrating genomic and computational approaches, our study has provided two unique resources, a database www.PlasmoTH.org, which facilitates discovery of novel factors controlling Th1/Tfh fate commitment, and more generally, GPfates, a modelling framework for characterizing cell differentiation towards multiple fates.

  17. Models for transport and fate of carbon, nutrients and radionuclides in the aquatic ecosystem at Oeregrundsgrepen

    Energy Technology Data Exchange (ETDEWEB)

    Erichsen, Anders Christian; Moehlenberg, Flemming; Closter, Rikke Margrethe; Sandberg, Johannes (DHI, Hoersholm (Denmark))

    2010-06-15

    The aim of the work was to provide supplementary input to the risk assessment of a planned final nuclear waste repository at Forsmark. The main deliverable was a computed water exchange between basins in the Forsmark marine area for the period 6500 BC to 9000 AD - based on the hydrodynamic modelling - to be used as input to the landscape dose model. In addition and what is described in this report, a second deliverable was development and application of high-resolution models for the marine ecosystem and radionuclide processes. The purpose of this deliverable was to illustrate the spatial and temporal variation in important processes and parameters, while constituting a complement to previous modelling approaches and providing supporting information to discussions of the marine ecosystem, parameters and variation (see Chapter 4 and 6).To this end, a hydrodynamic model of high temporal and spatial resolution was constructed and calibrated for the Forsmark area. An ecosystem model was then developed and coupled to the hydrodynamic model. In turn, a detailed radionuclide model was coupled to the ecosystem model to provide detailed predictions of radionuclide transport and accumulation in the coastal ecosystem. The ecosystem and radionuclide models were developed in the equation solver MIKE ECOLab that links seamless to the MIKE3 FM hydrodynamic model. The 'standard' ECOLab ecosystem model was extended with six biological state variables, perennial macroalgae, benthic herbivors, detritus feeders, planktivorus fish and, benthic predators representing the relict isopod Saduria and cod. In contrast to the ecosystem model, the radionuclide model was developed from scratch but building on the structure of the ecosystem model and using the output (process rates linking state variables) from the ecosystem model as input to the radionuclide model. Both the ecosystem model and the radionuclide model were run for several years (5-8 years) to bring state variables into

  18. Fate of the sunscreen compound oxybenzone in Cyperus alternifolius based hydroponic culture: Uptake, biotransformation and phytotoxicity.

    Science.gov (United States)

    Chen, Feiran; Huber, Christian; Schröder, Peter

    2017-09-01

    Oxybenzone (OBZ), a common ingredient in sunscreens and personal care products, has been frequently detected in effluents from municipal wastewater treatment plants and also in surface waters. OBZ is an emerging contaminant due to its adverse impacts on marine/aquatic ecosystems. To investigate the removal and degradation capacity of phytotreatment for OBZ, the common wetland plant species Cyperus alternifolius L. was exposed to this compound at 5, 25 and 50 μM for 120 h, respectively. Continuous uptake by roots and accumulation in plant tissues was observed over the exposure time, and depletion of spiked OBZ from the aqueous medium exceeded 73.9 ± 9.1% after 120 h. Similar to its fate in mammalian cells, OBZ is activated in a phase I reaction resulting in the hydroxylated metabolite 2,4-dihydroxybenzophenone (DHB). Independently, two phase II metabolites were identified as oxybenzone-glucoside (OBZ-Glu) and oxybenzone-(6-O-malonyl)-glucoside (OBZ-Mal-Glu) by LC-MS/MS. Formation of these metabolites increased over the experimental period. To our knowledge this is the first time that DHB, OBZ-Glu and OBZ-Mal-Glu are shown to be formed in higher plant tissues. Furthermore, plant defense systems-antioxidative enzymes (SOD, CAT, APOX and POX) were found to be elevated to counteract stress caused by exposure to OBZ. This study presents the huge potential of aquatic plants to cope with benzophenone type UV filters in contaminated water bodies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Summer nitrogenous nutrient transport and its fate in the Taiwan Strait: A coupled physical-biological modeling approach

    Science.gov (United States)

    Wang, Jia; Hong, Huasheng; Jiang, Yuwu; Chai, Fei; Yan, Xiao-Hai

    2013-09-01

    In order to understand the fate of nutrients in the Taiwan Strait during summer, we built a coupled physical-biological numerical ocean model, which can capture the basic hydrographic and biological features within the strait. The nutrient that we chose to model is dissolved inorganic nitrogen (DIN). The model includes individual reservoirs for nitrate (NO3) and ammonium (NH4). Both the observational evidence and model results show that NO3 in the strait originates primarily from the upwelling subsurface water in the northern South China Sea (SCS) that enters the strait via the eastern and western routes separated by the Taiwan Bank. The coupled physical and biological effects on the NO3 transport at these two routes are highlighted in the study. For the western route, the shallow topography and the coastal upwelling intensify the biological uptake of NO3 in the whole water column. Consequently, the nitrogenous contribution by this route is mainly in form of the particulate organic nitrogen (PON). In contrast, NO3 is transported conservatively below the nitricline at the deep eastern route, contributing the whole NO3 supply in the TWS. The model estimates the fluxes of DIN and PON into the TWS, from the northern SCS, are 1.8 and 4 kmol s-1, respectively. Over half (˜1 kmol s-1) of the DIN is synthesized into PON by the phytoplankton in the strait. Overall, this study estimates the physical and biological effects on the nutrient transport in the TWS during summer.

  20. Modeling the fate and end-of-life phase of engineered nanomaterials in the Japanese construction sector.

    Science.gov (United States)

    Suzuki, Shinya; Part, Florian; Matsufuji, Yasushi; Huber-Humer, Marion

    2018-02-01

    To date construction materials that contain engineered nanomaterials (ENMs) are available at the markets, but at the same time very little is known about their environmental fate. Therefore, this study aimed at modeling the potential fate of ENMs by using the example of the Japanese construction sector and by conducting a dynamic material flow analysis. Expert interviews and national reports revealed that about 3920-4660 tons of ENMs are annually used for construction materials in Japan. Nanoscale TiO 2 , SiO 2 , Al 2 O 3 and carbon black have already been applied for decades to wall paints, road markings or concrete. The dynamic material flow model indicates that in 2016 about 95% of ENMs, which have been used since their year of market penetration, remained in buildings, whereas only 5% ended up in the Japanese waste management system or were diffusely released into the environment. Considering the current Japanese waste management system, ENMs were predicted to end up in recycled materials (40-47%) or in landfills (36-41%). It was estimated that only a small proportion was used in agriculture (5-7%, as ENM-containing sewage sludges) or was diffusely released into soils, surface waters or the atmosphere (5-19%). The results indicate that ENM release predominantly depend on their specific applications and characteristics. The model also highlights the importance of adequate collection and treatment of ENM-containing wastes. In future, similar dynamic flow models for other countries should consider, inasmuch as available, historical data on ENM production (e.g. like declaration reports that are annually published by relevant public authorities or associations), as such input data is very important regarding data reliability in order to decrease uncertainties and to continuously improve model accuracy. In addition, more environmental monitoring studies that aim at the quantification of ENM release and inadvertent transfer, particularly triggered by waste treatment

  1. Behaviour and fate radionuclides in soils. Mathematical modelling and experimental investigations

    International Nuclear Information System (INIS)

    Rovdan, E.N.

    2003-01-01

    The uncontrolled release of radionuclides as result of Chernobyl accident has led to contamination of 23% of territory of Republic of Belarus. Soil has high capacity to adsorb radionuclides and their intensive sorption provides the creation of a long-lived radionuclide source in a terrestrial environment. In the management of the contaminated areas and application of a countermeasure strategy it is extremely important to know the environmental mechanisms governing the behaviour of radionuclides in soils. Basic attention in the work is paid to the study of 137 Cs and 90 Sr because they are the main radionuclides from the view point of radioactive danger in polluted areas. The main features and processes that control radionuclide behaviour in soil have been analysed. On the basis of natural researches, lab test and mathematical modelling the impact of physical-chemical factors and the soil component composition changes upon the radionuclides migration and sorption in natural dispersed systems (peat, sand, bentonite, kaolin, sapropel) has been investigated. The investigations done allowed to substantiate the mathematical models of the radionuclides migration in the regions of positive and negative temperatures, to develop methods of experimental identification of main transfer characteristics and to compile a data base for these models. (orig.)

  2. A first European scale multimedia fate modelling of BDE-209 from 1970 to 2020.

    Science.gov (United States)

    Earnshaw, Mark R; Jones, Kevin C; Sweetman, Andy J

    2015-01-01

    The European Variant Berkeley Trent (EVn-BETR) multimedia fugacity model is used to test the validity of previously derived emission estimates and predict environmental concentrations of the main decabromodiphenyl ether congener, BDE-209. The results are presented here and compared with measured environmental data from the literature. Future multimedia concentration trends are predicted using three emission scenarios (Low, Realistic and High) in the dynamic unsteady state mode covering the period 1970-2020. The spatial and temporal distributions of emissions are evaluated. It is predicted that BDE-209 atmospheric concentrations peaked in 2004 and will decline to negligible levels by 2025. Freshwater concentrations should have peaked in 2011, one year after the emissions peak with sediment concentrations peaking in 2013. Predicted atmospheric concentrations are in good agreement with measured data for the Realistic (best estimate of emissions) and High (worst case scenario) emission scenarios. The Low emission scenario consistently underestimates measured data. The German unilateral ban on the use of DecaBDE in the textile industry is simulated in an additional scenario, the effects of which are mainly observed within Germany with only a small effect on the surrounding areas. Overall, the EVn-BTER model predicts atmospheric concentrations reasonably well, within a factor of 5 and 1.2 for the Realistic and High emission scenarios respectively, providing partial validation for the original emission estimate. Total mean MEC:PEC shows the High emission scenario predicts the best fit between air, freshwater and sediment data. An alternative spatial distribution of emissions is tested, based on higher consumption in EBFRIP member states, resulting in improved agreement between MECs and PECs in comparison with the Uniform spatial distribution based on population density. Despite good agreement between modelled and measured point data, more long-term monitoring datasets are

  3. Estimating emissions of PFOS and PFOA to the Danube River catchment and evaluating them using a catchment-scale chemical transport and fate model

    International Nuclear Information System (INIS)

    Lindim, C.; Cousins, I.T.; Gils, J. van

    2015-01-01

    Novel approaches for estimating the emissions of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) to surface waters are explored. The Danube River catchment is used to investigate emissions contributing to riverine loads of PFOS and PFOA and to verify the accuracy of estimates using a catchment-scale dynamic fugacity-based chemical transport and fate model (STREAM-EU; Spatially and Temporally Resolved Exposure Assessment Model for European basins). Model accuracy evaluation performed by comparing STREAM-EU predicted concentrations and monitoring data for the Danube and its tributaries shows that the best estimates for PFOS and PFOA emissions in the Danube region are obtained by considering the combined contributions of human population, wealth (based on local gross domestic product (GDP)) and wastewater treatment. Human population alone cannot explain the levels of PFOS and PFOA found in the Danube catchment waters. Introducing wealth distribution information in the form of local GDPs improves emission estimates markedly, likely by better representing emissions resulting from consumer trends, industrial and commercial sources. For compounds such as PFOS and PFOA, whose main sink and transport media is the aquatic compartment, a major source to freshwater are wastewater treatment plants. Introducing wastewater treatment information in the emission estimations also further improves emission estimates. - Highlights: • Novel approaches for estimating PFOS/PFOA emissions to surface waters are explored. • Human population alone cannot explain the levels of PFOS/PFOA found in the Danube. • Best estimates are obtained when considering population, wealth and WWTP together.

  4. Polycyclic aromatic hydrocarbons - fate and long-range atmospheric transport studied using a global model, EMAC-SVOC

    Science.gov (United States)

    Octaviani, Mega; Tost, Holger; Lammel, Gerhard

    2017-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are emitted by incomplete combustion from fossil fuel, vehicles, and biomass burning. They may persist in environmental compartments, pose a health hazard and may bio accumulate along food chains. The ECHAM/MESSy Atmospheric Chemistry (EMAC) model had been used to simulate global tropospheric, stratospheric chemistry and climate. In this study, we improve the model to include simulations of the transport and fate of semi-volatile organic compounds (SVOC). The EMAC-SVOC model takes into account essential environmental processes including gas-particle partitioning, dry and wet deposition, chemical and bio-degradation, and volatilization from sea surface, soils, vegetation, and snow. The model was evaluated against observational data in the Arctic, mid-latitudes, and tropics, and further applied to study total environmental lifetime and long-range transport potential (LRTP) of PAHs. We selected four compounds for study, spanning a wide range of volatility, i.e., phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene. Several LRTP indicators were investigated, including the Arctic contamination potential, meridional spreading, and zonal and meridional fluxes to remote regions.

  5. Tracing the fate of sulfamethoxazole and its metabolites in subsurface: conceptualization and modelling

    Science.gov (United States)

    Rodriguez-Escales, Paula; Sanchez-Vila, Xavier

    2016-04-01

    The degradation of low adsorptive SMX in subsurface porous media is spatially and temporally variable. It depends on various environmental factors such as in situ redox potential, availability of nutrients, local soil characteristics, and temperature. Its degradation is better under anoxic conditions and by co-metabolism processes. In this work, we first develop a conceptual model of degradation of SMX under different redox conditions (denitrification and iron reducing conditions), characterizing the metabolite formation in each condition, and second, we construct a mathematical model that allows reproducing different experiments of SMX degradation reported in the literature. The model was validated using the experimental data from Barbieri et al. (2012), Nödler et al. (2012) and Mohatt et al. (2011). The model reproduces the reversible degradation of SMX under the presence of nitrous acid as an intermediate product of denitrification (it is the conjugate acid of nitrite), as well as, the metabolite formation (4-nitro-SMX and desamino SMX). In those experiments degradation was mediated by the transient formation of a diazonium cation, which was considered responsible of the substitution of the amine radical by a nitro radical, forming the 4-nitro-SMX. On the other hand, both the diazonium compound and the methanol present in the experiment produced a deamination in the SMX, producing desamino-SMX. The formation of these metabolites was unstable and they were retransformed to SMX. Concerning the iron conditions, SMX was degraded due to the oxidation of iron (Fe2+), which was previously oxidized from goethite due to the degradation of a pool of labile organic carbon. As the oxidation of iron occurred on the goethite surface, the best model to reproduce the SMX reduction was a power law rate. Our work is an attempt to properly formulate the degradation process of an emerging compound considering the real degradation mechanisms, rather than using an upscaled black

  6. Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling.

    Science.gov (United States)

    Grzybek, Maciej; Golonko, Aleksandra; Walczak, Marta; Lisowski, Pawel

    2017-03-01

    The reprogramming of human induced pluripotent stem cells (hiPSCs) proceeds in a stepwise manner with reprogramming factors binding and epigenetic composition changes during transition to maintain the epigenetic landscape, important for pluripotency. There arises a question as to whether the aberrant epigenetic state after reprogramming leads to epigenetic defects in induced stem cells causing unpredictable long term effects in differentiated cells. In this review, we present a comprehensive view of epigenetic alterations accompanying reprogramming, cell maintenance and differentiation as factors that influence applications of hiPSCs in stem cell based technologies. We conclude that sample heterogeneity masks DNA methylation signatures in subpopulations of cells and thus believe that beside a genetic evaluation, extensive epigenomic screening should become a standard procedure to ensure hiPSCs state before they are used for genome editing and differentiation into neurons of interest. In particular, we suggest that exploitation of the single-cell composition of the epigenome will provide important insights into heterogeneity within hiPSCs subpopulations to fast forward development of reliable hiPSC-based analytical platforms in neurological disorders modelling and before completed hiPSC technology will be implemented in clinical approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Modeling reveals bistability and low-pass filtering in the network module determining blood stem cell fate.

    Directory of Open Access Journals (Sweden)

    Jatin Narula

    2010-05-01

    Full Text Available Combinatorial regulation of gene expression is ubiquitous in eukaryotes with multiple inputs converging on regulatory control elements. The dynamic properties of these elements determine the functionality of genetic networks regulating differentiation and development. Here we propose a method to quantitatively characterize the regulatory output of distant enhancers with a biophysical approach that recursively determines free energies of protein-protein and protein-DNA interactions from experimental analysis of transcriptional reporter libraries. We apply this method to model the Scl-Gata2-Fli1 triad-a network module important for cell fate specification of hematopoietic stem cells. We show that this triad module is inherently bistable with irreversible transitions in response to physiologically relevant signals such as Notch, Bmp4 and Gata1 and we use the model to predict the sensitivity of the network to mutations. We also show that the triad acts as a low-pass filter by switching between steady states only in response to signals that persist for longer than a minimum duration threshold. We have found that the auto-regulation loops connecting the slow-degrading Scl to Gata2 and Fli1 are crucial for this low-pass filtering property. Taken together our analysis not only reveals new insights into hematopoietic stem cell regulatory network functionality but also provides a novel and widely applicable strategy to incorporate experimental measurements into dynamical network models.

  8. Environmental fate and ecotoxicological risk of the antibiotic sulfamethoxazole across the Katari catchment (Bolivian Altiplano) : application of the GREAT-ER model

    OpenAIRE

    Archundia, D.; Boithias, Laurie; Duwig, Céline; Morel, M. C.; Aviles, G. F.; Martins, J. M. F.

    2018-01-01

    Antibiotics are emergent contaminants that can induce adverse effects in terrestrial and aquatic organisms. The surface water compartment is of particular concern as it receives direct waste water discharge. Modeling is highlighted as an essential tool to understand the fate and behavior of these compounds and to assess their eco-toxicological risk. This study aims at testing the ability of the GREAT-ER model in simulating sulfamethoxazole (SMX) concentrations in the surface waters of the ari...

  9. Fat emulsions based on structured lipids (1,3-specific triglycerides): an investigation of the in vivo fate.

    Science.gov (United States)

    Hedeman, H; Brøndsted, H; Müllertz, A; Frokjaer, S

    1996-05-01

    Structured lipids (1,3-specific triglycerides) are new chemical entities made by enzymatic transesterification of the fatty acids in the 1,3 positions of the triglyceride. The purpose of this study is to characterize structured lipids with either short chain fatty acids or medium chain fatty acids in the 1,3 positions with regard to their hydrophobicity, and investigate the in vivo fate in order to evaluate the potential of structured lipids as core material in fat emulsions used as parenteral drug delivery system. The lipids were characterized by employing reversed phase high performance liquid chromatography. The biodistribution of radioactively labeled emulsions was studied in rats. By employing high performance liquid chromatography a rank order of the hydrophobicities of the lipids could be given, with the triglycerides containing long chain fatty acids being the most hydrophobic and the structured lipid with short chain fatty acids in the 1,3 positions the least. When formulated as fat emulsions, the emulsion based on structured lipids with short fatty acids in the 1,3 positions was removed slower from the general blood circulation compared to emulsions based on lipids with long chain fatty acids in the 1,3 positions. The type of core material influences the in vivo circulation time of fat emulsions.

  10. Impact of multi-layer soil model on the simulation of persistent organic pollutant fate at european scale

    International Nuclear Information System (INIS)

    Loizeau, Vincent

    2014-01-01

    Persistent Organic Pollutants (POPs) are toxic substances that bio-accumulate in the food chain. Once emitted in the atmosphere, they are transported by the wind and deposited on soil. Since they are persistent, they can be re-emitted from soil to atmosphere by volatilization and travel over very long distances. This process is called grasshopper effect. Thus, POPs may be found at significant levels far from their emission source. It is necessary to understand the transport and fate of these pollutants in order to support the decision making process and reduce human exposure to POPs. Regulations over the last decades lead to a decrease of anthropogenic emissions and subsequent decrease of atmospheric concentration. In this context, the soil is no longer a sink of POPs but can be a source to the atmosphere. Many numeric models aim to study the behavior of POPs in the environment. Most of them consider soil compartment as a homogeneous box, leading to an underestimation of re-emissions. Then, it appears of great importance to develop more realistic soil models. The objective of my thesis was to develop such a model, with vertical transport within the soil. This model was evaluated against measured concentration soil profile. We also conducted a sensitivity analysis to identify the key parameters involved in the process of re-emissions. Then, the soil model was coupled with an atmospheric transport model. A case study was finally undertaken to estimate the impacts of re-emissions on global-mass balance of POPs at European scale. (author) [fr

  11. Sequential use of the STICS crop model and of the MACRO pesticide fate model to simulate pesticides leaching in cropping systems.

    Science.gov (United States)

    Lammoglia, Sabine-Karen; Moeys, Julien; Barriuso, Enrique; Larsbo, Mats; Marín-Benito, Jesús-María; Justes, Eric; Alletto, Lionel; Ubertosi, Marjorie; Nicolardot, Bernard; Munier-Jolain, Nicolas; Mamy, Laure

    2017-03-01

    The current challenge in sustainable agriculture is to introduce new cropping systems to reduce pesticides use in order to reduce ground and surface water contamination. However, it is difficult to carry out in situ experiments to assess the environmental impacts of pesticide use for all possible combinations of climate, crop, and soils; therefore, in silico tools are necessary. The objective of this work was to assess pesticides leaching in cropping systems coupling the performances of a crop model (STICS) and of a pesticide fate model (MACRO). STICS-MACRO has the advantage of being able to simulate pesticides fate in complex cropping systems and to consider some agricultural practices such as fertilization, mulch, or crop residues management, which cannot be accounted for with MACRO. The performance of STICS-MACRO was tested, without calibration, from measurements done in two French experimental sites with contrasted soil and climate properties. The prediction of water percolation and pesticides concentrations with STICS-MACRO was satisfactory, but it varied with the pedoclimatic context. The performance of STICS-MACRO was shown to be similar or better than that of MACRO. The improvement of the simulation of crop growth allowed better estimate of crop transpiration therefore of water balance. It also allowed better estimate of pesticide interception by the crop which was found to be crucial for the prediction of pesticides concentrations in water. STICS-MACRO is a new promising tool to improve the assessment of the environmental risks of pesticides used in cropping systems.

  12. Re-generation of tissue about an animal-based scaffold: AMS studies of the fate of the scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Rickey, Frank A. E-mail: far@physics.purdue.edu; Elmore, David; Hillegonds, Darren; Badylak, Stephen; Record, Rae; Simmons-Byrd, Abby

    2000-10-01

    Small intestinal submucosa (SIS) is an unusual tissue, which shows great promise for the repair of damaged tissues in humans. When the SIS is used as a surgical implant, the porcine-derived material is not rejected by the host immune system, and in fact stimulates the constructive re-modeling of damaged tissue. In dogs, these SIS scaffolds have been used to grow new arteries, tendons, and urinary bladders. Moreover, the SIS scaffold tissue seems to disappear from the implant region after a few months. The fate of this SIS tissue is of considerable importance if it is to be used in human tissue repair. SIS is obtained from pigs. We have labeled the SIS in several pigs by intraveneous administration of {sup 14}C enriched proline from the age of three weeks until they reach market weight. The prepared SIS was then implanted in dogs as scaffolds for urinary bladder patches. During the remaining life of each dog, blood, urine and feces samples were collected on a regular schedule. AMS analyses of these specimens were performed to measure the elimination rate of the SIS. At different intervals, the dogs were sacrificed. Tissue samples were analyzed by AMS to determine the whole-body distribution of the labeled SIS.

  13. It is the economy, stupid! Projecting the fate of fish populations using ecological-economic modeling.

    Science.gov (United States)

    Quaas, Martin F; Reusch, Thorsten B H; Schmidt, Jörn O; Tahvonen, Olli; Voss, Rudi

    2016-01-01

    Four marine fish species are among the most important on the world market: cod, salmon, tuna, and sea bass. While the supply of North American and European markets for two of these species - Atlantic salmon and European sea bass - mainly comes from fish farming, Atlantic cod and tunas are mainly caught from wild stocks. We address the question what will be the status of these wild stocks in the midterm future, in the year 2048, to be specific. Whereas the effects of climate change and ecological driving forces on fish stocks have already gained much attention, our prime interest is in studying the effects of changing economic drivers, as well as the impact of variable management effectiveness. Using a process-based ecological-economic multispecies optimization model, we assess the future stock status under different scenarios of change. We simulate (i) technological progress in fishing, (ii) increasing demand for fish, and (iii) increasing supply of farmed fish, as well as the interplay of these driving forces under different scenarios of (limited) fishery management effectiveness. We find that economic change has a substantial effect on fish populations. Increasing aquaculture production can dampen the fishing pressure on wild stocks, but this effect is likely to be overwhelmed by increasing demand and technological progress, both increasing fishing pressure. The only solution to avoid collapse of the majority of stocks is institutional change to improve management effectiveness significantly above the current state. We conclude that full recognition of economic drivers of change will be needed to successfully develop an integrated ecosystem management and to sustain the wild fish stocks until 2048 and beyond. © 2015 John Wiley & Sons Ltd.

  14. Source-Flux-Fate Modelling of Priority Pollutants in Stormwater Systems

    DEFF Research Database (Denmark)

    Vezzaro, Luca

    quality management. The thesis provides a framework for the trustworthy application of models to estimate PP fluxes from their sources, and through stormwater drainage systems, and to the sink. This fills a knowledge gap regarding stormwater PP and it supplies urban water managers with modelling tools......The increasing focus on management of stormwater Priority Pollutants (PP) enhances the role of mathematical models as support for the assessment of stormwater quality control strategies. This thesis investigates and presents modelling approaches that are suitable to simulate PP fluxes across...... stormwater systems, supporting the development of pollution control strategies. This is obtained by analyzing four study areas: (i) catchment characterization, (ii) pollutant release and transport models, (iii) stormwater treatment models, and (iv) combination of the above into an integrated model. Given...

  15. A model assessment of polychlorinated dibenzo-p-dioxin and dibenzofuran sources and fate in the Baltic Sea.

    Science.gov (United States)

    Armitage, James M; McLachlan, Michael S; Wiberg, Karin; Jonsson, Per

    2009-06-01

    The contamination of the Baltic Sea with polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) has resulted in restrictions on the marketing and consumption of Baltic Sea fish, making this a priority environmental issue in the European Union. To date there is no consensus on the relative importance of different sources of PCDD/Fs to the Baltic Sea, and hence no consensus on how to address this issue. In this work we synthesized the available information to create a PCDD/F budget for the Baltic Sea, focusing on the two largest basins, the Bothnian Sea and the Baltic Proper. The non-steady state multimedia fate and transport model POPCYCLING-Baltic was employed, using recent data for PCDD/F concentrations in air and sediment as boundary conditions. The PCDD/F concentrations in water predicted by the model were in good agreement with recent measurements. The budget demonstrated that atmospheric deposition was the dominant source of PCDD/Fs to the basins as a whole. This conclusion was supported by a statistical comparison of the PCDD/F congener patterns in surface sediments from accumulation bottoms with the patterns in ambient air, bulk atmospheric deposition, and a range of potential industrial sources. Prospective model simulations indicated that the PCDD/F concentrations in the water column will continue to decrease in the coming years due to the slow response of the Baltic Sea system to falling PCDD/F inputs in the last decades, but that the decrease would be more pronounced if ambient air concentrations were to drop further in the future, for instance as a result of reduced emissions. The study illustrates the usefulness of using monitoring data and multimedia models in an integrated fashion to address complex organic contaminant issues.

  16. Use of a watershed model to characterize the fate and transport of fluometuron, a soil-applied cotton herbicide, in surface water

    Science.gov (United States)

    Coupe, R.H.

    2007-01-01

    The Soil and Water Assessment Tool (SWAT) was used to characterize the fate and transport of fluometuron (a herbicide used on cotton) in the Bogue Phalia Basin in northwestern Mississippi, USA. SWAT is a basin-scale watershed model, able to simulate hydrological, chemical, and sediment transport processes. After adjustments to a few parameters (specifically the SURLAG variable, the runoff curve number, Manning's N for overland flow, soil available water capacity, and the base-flow alpha factor) the SWAT model fit the observed streamflow well (the Coefficient of Efficiency and R2 were greater than 60). The results from comparing observed fluometuron concentrations with simulated concentrations were reasonable. The simulated concentrations (which were daily averages) followed the pattern of observed concentrations (instantaneous values) closely, but could be off in magnitude at times. Further calibration might have improved the fit, but given the uncertainties in the input data, it was not clear that any improvement would be due to a better understanding of the input variables. ?? 2007 Taylor & Francis.

  17. Continuous-time modeling of cell fate determination in Arabidopsis flowers

    Directory of Open Access Journals (Sweden)

    Angenent Gerco C

    2010-07-01

    Full Text Available Abstract Background The genetic control of floral organ specification is currently being investigated by various approaches, both experimentally and through modeling. Models and simulations have mostly involved boolean or related methods, and so far a quantitative, continuous-time approach has not been explored. Results We propose an ordinary differential equation (ODE model that describes the gene expression dynamics of a gene regulatory network that controls floral organ formation in the model plant Arabidopsis thaliana. In this model, the dimerization of MADS-box transcription factors is incorporated explicitly. The unknown parameters are estimated from (known experimental expression data. The model is validated by simulation studies of known mutant plants. Conclusions The proposed model gives realistic predictions with respect to independent mutation data. A simulation study is carried out to predict the effects of a new type of mutation that has so far not been made in Arabidopsis, but that could be used as a severe test of the validity of the model. According to our predictions, the role of dimers is surprisingly important. Moreover, the functional loss of any dimer leads to one or more phenotypic alterations.

  18. Review and assessment of models used to predict the fate of radionuclides in lakes

    International Nuclear Information System (INIS)

    Monte, Luigi; Brittain, John E.; Haakanson, Lars; Heling, Rudie; Smith, Jim T.; Zheleznyak, Mark

    2003-01-01

    A variety of models for predicting the behaviour of radionuclides in fresh water ecosystems have been developed and tested during recent decades within the framework of many international research projects. These models have been implemented in Computerised Decision Support Systems (CDSS) for assisting the appropriate management of fresh water bodies contaminated by radionuclides. The assessment of the state-of-the-art and the consolidation of these CDSSs has been envisaged, by the scientific community, as a primary necessity for the rationalisation of the sector. The classification of the approaches of the various models, the determination of their essential features, the identification of similarities and differences among them and the definition of their application domains are all essential for the harmonisation of the existing CDSSs and for the possible development and improvement of reference models that can be widely applied in different environmental conditions. The present paper summarises the results of the assessment and evaluation of models for predicting the behaviour of radionuclides in lacustrine ecosystems. Such models were developed and tested within major projects financed by the European Commission during its 4th Framework Programme (1994-1998). The work done during the recent decades by many modellers at an international level has produced some consolidated results that are widely accepted by most experts. Nevertheless, some new results have arisen from recent studies and certain model improvements are still necessary

  19. Environmental fate model for ultra-low-volume insecticide applications used for adult mosquito management

    Science.gov (United States)

    Schleier, Jerome J.; Peterson, Robert K.D.; Irvine, Kathryn M.; Marshall, Lucy M.; Weaver, David K.; Preftakes, Collin J.

    2012-01-01

    One of the more effective ways of managing high densities of adult mosquitoes that vector human and animal pathogens is ultra-low-volume (ULV) aerosol applications of insecticides. The U.S. Environmental Protection Agency uses models that are not validated for ULV insecticide applications and exposure assumptions to perform their human and ecological risk assessments. Currently, there is no validated model that can accurately predict deposition of insecticides applied using ULV technology for adult mosquito management. In addition, little is known about the deposition and drift of small droplets like those used under conditions encountered during ULV applications. The objective of this study was to perform field studies to measure environmental concentrations of insecticides and to develop a validated model to predict the deposition of ULV insecticides. The final regression model was selected by minimizing the Bayesian Information Criterion and its prediction performance was evaluated using k-fold cross validation. Density of the formulation and the density and CMD interaction coefficients were the largest in the model. The results showed that as density of the formulation decreases, deposition increases. The interaction of density and CMD showed that higher density formulations and larger droplets resulted in greater deposition. These results are supported by the aerosol physics literature. A k-fold cross validation demonstrated that the mean square error of the selected regression model is not biased, and the mean square error and mean square prediction error indicated good predictive ability.

  20. Avoiding a fate worse than death: an argument for legalising voluntary physician-based euthanasia.

    Science.gov (United States)

    Werren, Julia; Yuksel, Necef; Smith, Saxon

    2012-09-01

    The legalisation of voluntary physician-based euthanasia is currently the subject of much political, social and ethical debate and there is evidence in Australia of growing support for its implementation. In addressing many of the issues that surround legalisation, the article looks at some overseas jurisdictions that have legalised euthanasia to determine whether the social, political and ethical concerns prominent in the Australian debate have proved problematic in other jurisdictions. In addition, the article examines the report on the Dying with Dignity Bill 2009 (Tas) which commented extensively on the issues relating to voluntary physician-based euthanasia.

  1. The fate of task-irrelevant visual motion: perceptual load versus feature-based attention.

    Science.gov (United States)

    Taya, Shuichiro; Adams, Wendy J; Graf, Erich W; Lavie, Nilli

    2009-11-18

    We tested contrasting predictions derived from perceptual load theory and from recent feature-based selection accounts. Observers viewed moving, colored stimuli and performed low or high load tasks associated with one stimulus feature, either color or motion. The resultant motion aftereffect (MAE) was used to evaluate attentional allocation. We found that task-irrelevant visual features received less attention than co-localized task-relevant features of the same objects. Moreover, when color and motion features were co-localized yet perceived to belong to two distinct surfaces, feature-based selection was further increased at the expense of object-based co-selection. Load theory predicts that the MAE for task-irrelevant motion would be reduced with a higher load color task. However, this was not seen for co-localized features; perceptual load only modulated the MAE for task-irrelevant motion when this was spatially separated from the attended color location. Our results suggest that perceptual load effects are mediated by spatial selection and do not generalize to the feature domain. Feature-based selection operates to suppress processing of task-irrelevant, co-localized features, irrespective of perceptual load.

  2. Modelling the fate of marine debris along a complex shoreline: Lessons from the Great Barrier Reef

    Science.gov (United States)

    Critchell, K.; Grech, A.; Schlaefer, J.; Andutta, F. P.; Lambrechts, J.; Wolanski, E.; Hamann, M.

    2015-12-01

    The accumulation of floating anthropogenic debris in marine and coastal areas has environmental, economic, aesthetic, and human health impacts. Until now, modelling the transport of such debris has largely been restricted to the large-scales of open seas. We used oceanographic modelling to identify potential sites of debris accumulation along a rugged coastline with headlands, islands, rocky coasts and beaches. Our study site was the Great Barrier Reef World Heritage Area that has an emerging problem with debris accumulation. We found that the classical techniques of modelling the transport of floating debris models are only moderately successful due to a number of unknowns or assumptions, such as the value of the wind drift coefficient, the variability of the oceanic forcing and of the wind, the resuspension of some floating debris by waves, and the poorly known relative contribution of floating debris from urban rivers and commercial and recreational shipping. Nevertheless the model was successful in reproducing a number of observations such as the existence of hot spots of accumulation. The orientation of beaches to the prevailing wind direction affected the accumulation rate of debris. The wind drift coefficient and the exact timing of the release of the debris at sea affected little the movement of debris originating from rivers but it affected measurably that of debris originating from ships. It was thus possible to produce local hotspot maps for floating debris, especially those originating from rivers. Such modelling can be used to inform local management decisions, and it also identifies likely priority research areas to more reliably predict the trajectory and landing points of floating debris.

  3. Mathematical Modeling of Fate and Transport of Aqueous Species in Stormflow Entering Infiltration Basin.

    Science.gov (United States)

    Massoudieh, A.; Sengor, S. S.; Meyer, S.; Ginn, T. R.

    2004-12-01

    The State of California is evaluating the role of passive stormwater detention facilities for the purpose of attenuating potential dissolved and suspended chemical species that may originate in roadway runoff of rainfall. The engineering design of such infiltration basins requires tools to quantify their performance as recipients of stormwater runoff from roadways, and as filters of aqueous chemical species. For this purpose a one-dimensional unsaturated flow and transport model is developed to estimate the efficiency of storm-water infiltration basins in treating roadway generated metallic and organic pollutants. Kinematic wave approximation is used along with van Genuchten water retention model to simulate water percolation thorough the infiltration basin. For metals a Langmuir type nonlinear competitive sorption isotherm is used for transport of chemicals and a kinetic reversible linear sorption model is considered for organics. The model is applied to known roadway born metallic contaminations such as copper, zinc, lead, chromium, nickel and cadmium, as well as organic species such as diazinon, diuron, ghlyphosate and pyrene, for several representative soil and precipitation condition for California within a period of five years. Representative soil parameters and precipitation patterns are extracted from frequency distributions extracted from a recent study. In addition sensitivity analysis has been done to evaluate the effect of soil property values on the performance of infiltration basins. The results can be used to evaluate the performance of infiltration basins in improving the water quality as well as being used in providing guidelines in design and maintenance of infiltration basins.

  4. Comparative modeling analyses of Cs-137 fate in the rivers impacted by Chernobyl and Fukushima accidents

    Energy Technology Data Exchange (ETDEWEB)

    Zheleznyak, M.; Kivva, S. [Institute of Environmental Radioactivity, Fukushima University (Japan)

    2014-07-01

    The consequences of two largest nuclear accidents of the last decades - at Chernobyl Nuclear Power Plant (ChNPP) (1986) and at Fukushima Daiichi NPP (FDNPP) (2011) clearly demonstrated that radioactive contamination of water bodies in vicinity of NPP and on the waterways from it, e.g., river- reservoir water after Chernobyl accident and rivers and coastal marine waters after Fukushima accident, in the both cases have been one of the main sources of the public concerns on the accident consequences. The higher weight of water contamination in public perception of the accidents consequences in comparison with the real fraction of doses via aquatic pathways in comparison with other dose components is a specificity of public perception of environmental contamination. This psychological phenomenon that was confirmed after these accidents provides supplementary arguments that the reliable simulation and prediction of the radionuclide dynamics in water and sediments is important part of the post-accidental radioecological research. The purpose of the research is to use the experience of the modeling activities f conducted for the past more than 25 years within the Chernobyl affected Pripyat River and Dnieper River watershed as also data of the new monitoring studies in Japan of Abukuma River (largest in the region - the watershed area is 5400 km{sup 2}), Kuchibuto River, Uta River, Niita River, Natsui River, Same River, as also of the studies on the specific of the 'water-sediment' {sup 137}Cs exchanges in this area to refine the 1-D model RIVTOX and 2-D model COASTOX for the increasing of the predictive power of the modeling technologies. The results of the modeling studies are applied for more accurate prediction of water/sediment radionuclide contamination of rivers and reservoirs in the Fukushima Prefecture and for the comparative analyses of the efficiency of the of the post -accidental measures to diminish the contamination of the water bodies. Document

  5. Meta-modeling of the pesticide fate model MACRO for groundwater exposure assessments using artificial neural networks

    Science.gov (United States)

    Stenemo, Fredrik; Lindahl, Anna M. L.; Gärdenäs, Annemieke; Jarvis, Nicholas

    2007-08-01

    Several simple index methods that use easily accessible data have been developed and included in decision-support systems to estimate pesticide leaching across larger areas. However, these methods often lack important process descriptions (e.g. macropore flow), which brings into question their reliability. Descriptions of macropore flow have been included in simulation models, but these are too complex and demanding for spatial applications. To resolve this dilemma, a neural network simulation meta-model of the dual-permeability macropore flow model MACRO was created for pesticide groundwater exposure assessment. The model was parameterized using pedotransfer functions that require as input the clay and sand content of the topsoil and subsoil, and the topsoil organic carbon content. The meta-model also requires the topsoil pesticide half-life and the soil organic carbon sorption coefficient as input. A fully connected feed-forward multilayer perceptron classification network with two hidden layers, linked to fully connected feed-forward multilayer perceptron neural networks with one hidden layer, trained on sub-sets of the target variable, was shown to be a suitable meta-model for the intended purpose. A Fourier amplitude sensitivity test showed that the model output (the 80th percentile average yearly pesticide concentration at 1 m depth for a 20 year simulation period) was sensitive to all input parameters. The two input parameters related to pesticide characteristics (i.e. soil organic carbon sorption coefficient and topsoil pesticide half-life) were the most influential, but texture in the topsoil was also quite important since it was assumed to control the mass exchange coefficient that regulates the strength of macropore flow. This is in contrast to models based on the advection-dispersion equation where soil texture is relatively unimportant. The use of the meta-model is exemplified with a case-study where the spatial variability of pesticide leaching is

  6. Chloride ion transport and fate in oilfield wastewater reuse by interval dynamic multimedia aquivalence model.

    Science.gov (United States)

    Hu, Y; Zhang, C; Wang, D Z; Wen, J Y; Chen, M H; Li, Y

    2013-01-01

    A surface flow constructed wetland was built up to dispose of oilfield wastewater with a high level of inorganic salt ions. Chlorine ion (Cl(-)) was selected as an indicator of soil secondary salinization, and an interval dynamic multimedia aquivalence (IDMA) model was developed to investigate the dynamic multimedia environmental (air, water, soil, flora, and groundwater) effects of Cl(-) in the wastewater irrigation process between 2002 and 2020. The modeled Cl(-) concentrations were in good agreement with the measured ones, as indicated by the interval average logarithmic residual errors (IALREs) being generally lower than 0.5 logarithmic units. The model results showed that the temporal trends of Cl(-) concentrations in the multimedia environments represented a relatively steady state. More than 97.00% of the mass exchange was finished between soil and groundwater compartments, and Cl(-) finally outputted the environmental system by the pathways of advection outflows in the water (71.03%) and groundwater (24.02%). Soil (59.17%) was the dominant sink of Cl(-). It was revealed that the high level of Cl(-) in oilfield wastewater was well treated by the constructed wetland, and there was not a significant environmental effect of soil secondary salinization in the oilfield wastewater reused for the constructed wetland irrigation.

  7. The Fate of the Red Cells: Insights from Two Models of Severe Malarial Anemia

    Science.gov (United States)

    2011-03-07

    Diagnosis of malaria is generally performed with a blood smear or by rapid diagnostic tests. The WHO recommends artemisinin-based combination therapy (ACT...phosphatides, lecithin and sphingomyelin. J.Immunol. 1974;112:2135- 2147. 77. Ebenbichler CF, Thielens NM, Vornhagen R et al. Human immunodeficiency...of host responses to blood- stage malaria by interleukin-12: from therapy to adjuvant activity. Microbes.Infect. 2001;3:49-59. 148. Feng C

  8. Fate of bone marrow mesenchymal stromal cells following autologous transplantation in a rabbit model of osteonecrosis.

    Science.gov (United States)

    Sugaya, Hisashi; Mishima, Hajime; Gao, Ran; Kaul, Sunil C; Wadhwa, Renu; Aoto, Katsuya; Li, Meihua; Yoshioka, Tomokazu; Ogawa, Takeshi; Ochiai, Naoyuki; Yamazaki, Masashi

    2016-02-01

    Internalizing quantum dots (i-QDs) are a useful tool for tracking cells in vivo in models of tissue regeneration. We previously synthesized i-QDs by conjugating QDs with a unique internalizing antibody against a heat shock protein 70 family stress chaperone. In the present study, i-QDs were used to label rabbit mesenchymal stromal cells (MSCs) that were then transplanted into rabbits to assess differentiation potential in an osteonecrosis model. The i-QDs were taken up by bone marrow-derived MSCs collected from the iliac of 12-week-old Japanese white rabbits that were positive for cluster of differentiation (CD)81 and negative for CD34 and human leukocyte antigen DR. The average rate of i-QD internalization was 93.3%. At 4, 8, 12, and 24 weeks after transplantation, tissue repair was evaluated histologically and by epifluorescence and electron microscopy. The i-QDs were detected at the margins of the drill holes and in the necrotized bone trabecular. There was significant colocalization of the i-QD signal in transplanted cells and markers of osteoblast and mineralization at 4, 8, and 12 weeks post-transplantation, while i-QDs were detected in areas of mineralization at 12 and 24 weeks post-transplantation. Moreover, i-QDs were observed in osteoblasts in regenerated tissue by electron microscopy, demonstrating that the tissue was derived from transplanted cells. These results indicate that transplanted MSCs can differentiate into osteoblasts and induce tissue repair in an osteonecrosis model and can be tracked over the long term by i-QD labeling. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  9. CASCADER: An m-chain gas-phase radionuclide transport and fate model

    International Nuclear Information System (INIS)

    Cawlfield, D.E.; Been, K.B.; Emer, D.F.; Lindstrom, F.T.; Shott, G.J.

    1993-06-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and/or diffusion. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. This is volume two to the CASCADER series, titled CASCADR8. It embodies the concepts presented in volume one of this series. To properly understand how the CASCADR8 model works, the reader should read volume one first. This volume presents the input and output file structure for CASCADR8, and a set of realistic scenarios for buried sources of radon gas

  10. CASCADER: An M-chain gas-phase radionuclide transport and fate model

    International Nuclear Information System (INIS)

    Cawlfield, D.E.; Emer, D.F.; Lindstrom, F.T.; Shott, G.J.

    1993-09-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and/or dispersion. Additionally during the transport of parent and daughter radionuclides in soil, radionuclide decay may occur. This version of CASCADER called CASCADR9 starts with the concepts presented in volumes one and three of this series. For a proper understanding of how the model works, the reader should read volume one first. Also presented in this volume is a set of realistic scenarios for buried sources of radon gas, and the input and output file structure for CASCADER9

  11. Fate of bone marrow stromal cells in a syngenic model of bone formation.

    Science.gov (United States)

    Boukhechba, Florian; Balaguer, Thierry; Bouvet-Gerbettaz, Sébastien; Michiels, Jean-François; Bouler, Jean-Michel; Carle, Georges F; Scimeca, Jean-Claude; Rochet, Nathalie

    2011-09-01

    Bone marrow stromal cells (BMSCs) have been demonstrated to induce bone formation when associated to osteoconductive biomaterials and implanted in vivo. Nevertheless, their role in bone reconstruction is not fully understood and rare studies have been conducted to follow their destiny after implantation in syngenic models. The aim of the present work was to use sensitive and quantitative methods to track donor and recipient cells after implantation of BMSCs in a syngenic model of ectopic bone formation. Using polymerase chain reaction (PCR) amplification of the Sex determining Region Y (Sry) gene and in situ hybridization of the Y chromosome in parallel to histological analysis, we have quantified within the implants the survival of the donor cells and the colonization by the recipient cells. The putative migration of the BMSCs in peripheral organs was also analyzed. We show here that grafted cells do not survive more than 3 weeks after implantation and might migrate in peripheral lymphoid organs. These cells are responsible for the attraction of host cells within the implants, leading to the centripetal colonization of the biomaterial by new bone.

  12. The fate of sulphur in the Cu-based Chemical Looping with Oxygen Uncoupling (CLOU) Process

    International Nuclear Information System (INIS)

    Adánez-Rubio, Iñaki; Abad, Alberto; Gayán, Pilar; García-Labiano, Francisco; Diego, Luis F. de; Adánez, Juan

    2014-01-01

    Highlights: • 15 h of CLOU experiments using lignite were carried out in a continuously unit. • The sulphur split between fuel- and air-reactor streams in the process was analysed. • Most of the sulphur introduced with the fuel exits as SO 2 at the fuel-reactor. • The use of a carbon separation system to reduce the S emission was evaluated. • Coals with high S content can be burnt in a CLOU process with a Cu-based material. - Abstract: The Chemical Looping with Oxygen Uncoupling (CLOU) process is a type of Chemical Looping Combustion (CLC) technology that allows the combustion of solid fuels with air, as with conventional combustion, through the use of oxygen carriers that release gaseous oxygen inside the fuel reactor. The aim of this work was to study the behaviour of the sulphur present in fuel during CLOU combustion. Experiments using lignite as fuel were carried out in a continuously operated 1.5 kW th CLOU unit during more than 15 h. Particles containing 60 wt.% CuO on MgAl 2 O 4 , prepared by spray drying, were used as the oxygen carrier in the CLOU process. The temperature in the fuel reactor varied between 900 and 935 °C. CO 2 capture, combustion efficiency and the sulphur split between fuel and air reactor streams in the process were analysed. Complete combustion of the fuel to CO 2 and H 2 O was found in all experiments. Most of the sulphur introduced with the fuel exited as SO 2 at the fuel reactor outlet, although a small amount of SO 2 was measured at the air reactor outlet. The SO 2 concentration in the air reactor exit flow decreased as the temperature in the fuel reactor increased. A carbon capture efficiency of 97.6% was achieved at 935 °C, with 87.9 wt.% of the total sulphur exiting as SO 2 in the fuel reactor. Both the reactivity and oxygen transport capacity of the oxygen carrier were unaffected during operation with a high sulphur content fuel, and agglomeration problems did not occur. Predictions were calculated regarding the use

  13. Fecal bacteria in the rivers of the Seine drainage network (France): sources, fate and modelling.

    Science.gov (United States)

    Servais, Pierre; Garcia-Armisen, Tamara; George, Isabelle; Billen, Gilles

    2007-04-01

    in different types of rivers within the watershed showing, in summer conditions, no major difference in the mortality rates in small and large rivers. As a result of these studies, a module describing the dynamics of fecal bacteria has been developed and embedded within a hydro-ecological model describing the functioning of the rivers of the whole watershed (the SENEQUE model). Once validated, such a model can be used for testing predictive scenarios and thus can be a very useful tool for the management of microbiological water quality at the scale of the whole basin.

  14. Frozen into stripes: fate of the critical Ising model after a quench.

    Science.gov (United States)

    Blanchard, T; Picco, M

    2013-09-01

    In this article we study numerically the final state of the two-dimensional ferromagnetic critical Ising model after a quench to zero temperature. Beginning from equilibrium at T_{c}, the system can be blocked in a variety of infinitely long lived stripe states in addition to the ground state. Similar results have already been obtained for an infinite temperature initial condition and an interesting connection to exact percolation crossing probabilities has emerged. Here we complete this picture by providing an example of stripe states precisely related to initial crossing probabilities for various boundary conditions. We thus show that this is not specific to percolation but rather that it depends on the properties of spanning clusters in the initial state.

  15. Fate of Staphylococcus aureus in radiation sterilized model food systems simulating dairy products

    International Nuclear Information System (INIS)

    Sulebele, G.A.; Kamat, M.Y.

    1976-01-01

    Gamma irradiation was successfully employed for the development of sterile model food systems simulating dairy products such as pedha and cottage cheese which were inoculated with enterotoxigenic S.aureus S-6 and FR1-100 either individually or in association with S.epidermids and other mixed flora comprising of gram-positive, gram-negative and lactic bacteria and stored at 4 and 35 degC for 6-8 weeks. Pedha failed to support growth of S.aureus while cottage cheese favoured profuse growth of the pathogen. S.epidermidis exhibited a synergistic effect on the growth of S.aureus in cottage cheese. Baired-Parker's medium showed very poor recovery of S.aureus which necessitated the development of a new selective medium for the enumeration of staphylococci in processed foods. (author)

  16. Qualitatively Modeling solute fate and transport across scales in an agricultural catchment with diverse lithology

    Science.gov (United States)

    Wayman, C. R.; Russo, T. A.; Li, L.; Forsythe, B.; Hoagland, B.

    2017-12-01

    As part of the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) project, we have collected geochemical and hydrological data from several subcatchments and four monitoring sites on the main stem of Shaver's Creek, in Huntingon county, Pennsylvania. One subcatchment (0.43 km2) is under agricultural land use, and the monitoring locations on the larger Shaver's Creek (up to 163 km2) drain watersheds with 0 to 25% agricultural area. These two scales of investigation, coupled with advances made across the SSHCZO on multiple lithologies allow us to extrapolate from the subcatchment to the larger watershed. We use geochemical surface and groundwater data to estimate the solute and water transport regimes within the catchment, and to show how lithology and land use are major controls on ground and surface water quality. One area of investigation includes the transport of nutrients between interflow and regional groundwater, and how that connectivity may be reflected in local surface waters. Water and nutrient (Nitrogen) isotopes, will be used to better understand the relative contributions of local and regional groundwater and interflow fluxes into nearby streams. Following initial qualitative modeling, multiple hydrologic and nutrient transport models (e.g. SWAT and CYCLES/PIHM) will be evaluated from the subcatchment to large watershed scales. We will evaluate the ability to simulate the contributions of regional groundwater versus local groundwater, and also impacts of agricultural land management on surface water quality. Improving estimations of groundwater contributions to stream discharge will provide insight into how much agricultural development can impact stream quality and nutrient loading.

  17. A Model Study of the Photochemical Fate of As(III in Paddy-Water

    Directory of Open Access Journals (Sweden)

    Luca Carena

    2017-03-01

    Full Text Available The APEX (Aqueous Photochemistry of Environmentally-occurring Xenobiotics software previously developed by one of us was used to model the photochemistry of As(III in paddy-field water, allowing a comparison with biotic processes. The model included key paddy-water variables, such as the shielding effect of the rice canopy on incident sunlight and its monthly variations, water pH, and the photochemical parameters of the chromophoric dissolved organic matter (CDOM occurring in paddy fields. The half-life times (t1/2 of As(III photooxidation to As(V would be ~20–30 days in May. In contrast, the photochemical oxidation of As(III would be much slower in June and July due to rice-canopy shading of radiation because of plant growth, despite higher sunlight irradiance. At pH < 8 the photooxidation of As(III would mainly be accounted for by reaction with transient species produced by irradiated CDOM (here represented by the excited triplet states 3CDOM*, neglecting the possibly more important reactions with poorly known species such as the phenoxy radicals and, to a lesser extent, with the hydroxyl radicals (HO•. However, the carbonate radicals (CO3•− could be key photooxidants at pH > 8.5 provided that the paddy-water 3CDOM* is sufficiently reactive toward the oxidation of CO32−. In particular, if paddy-water 3CDOM* oxidizes the carbonate anion with a second-order reaction rate constant near (or higher than 106 M−1·s−1, the photooxidation of As(III could be quite fast at pH > 8.5. Such pH conditions can be produced by elevated photosynthetic activity that consumes dissolved CO2.

  18. Metabolic fate of poly-(lactic-co-glycolic acid)-based curcumin nanoparticles following oral administration.

    Science.gov (United States)

    Harigae, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Taiki; Inoue, Nao; Kimura, Fumiko; Ikeda, Ikuo; Miyazawa, Teruo

    2016-01-01

    Curcumin (CUR), the main polyphenol in turmeric, is poorly absorbed and rapidly metabolized following oral administration, which severely curtails its bioavailability. Poly-(lactic-co-glycolic acid)-based CUR nanoparticles (CUR-NP) have recently been suggested to improve CUR bioavailability, but this has not been fully verified. Specifically, no data are available about curcumin glucuronide (CURG), the major metabolite of CUR found in the plasma following oral administration of CUR-NP. Herein, we investigated the absorption and metabolism of CUR-NP and evaluated whether CUR-NP improves CUR bioavailability. Following oral administration of CUR-NP in rats, we analyzed the plasma and organ distribution of CUR and its metabolites using high-performance liquid chromatography-tandem mass spectrometry. To elucidate the mechanism of increased intestinal absorption of CUR-NP, we prepared mixed micelles comprised of phosphatidylcholine and bile salts and examined the micellar solubility of CUR-NP. Additionally, we investigated the cellular incorporation of the resultant micelles into differentiated Caco-2 human intestinal cells. Following in vivo administration of CUR-NP, CUR was effectively absorbed and present mainly as CURG in the plasma which contained significant amounts of the metabolite compared with other organs. Thus, CUR-NP increased intestinal absorption of CUR rather than decreasing metabolic degradation and conversion to other metabolites. In vitro, CUR encapsulated in CUR-NP was solubilized in mixed micelles; however, whether the micelles contained CUR or CUR-NP had little influence on cellular uptake efficiency. Therefore, we suggest that the high solubilization capacity of CUR-NP in mixed micelles, rather than cellular uptake efficiency, explains the high intestinal absorption of CUR-NP in vivo. These findings provide a better understanding of the bioavailability of CUR and CUR-NP following oral administration. To improve the bioavailability of CUR, future

  19. Metabolic fate of poly-(lactic-co-glycolic acid-based curcumin nanoparticles following oral administration

    Directory of Open Access Journals (Sweden)

    Harigae T

    2016-06-01

    Full Text Available Takahiro Harigae,1 Kiyotaka Nakagawa,1 Taiki Miyazawa,2 Nao Inoue,3 Fumiko Kimura,1 Ikuo Ikeda,3 Teruo Miyazawa4,5 1Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan; 2Vascular Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA; 3Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, 4Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center, 5Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan Purpose: Curcumin (CUR, the main polyphenol in turmeric, is poorly absorbed and rapidly metabolized following oral administration, which severely curtails its bioavailability. Poly-(lactic-co-glycolic acid-based CUR nanoparticles (CUR-NP have recently been suggested to improve CUR bioavailability, but this has not been fully verified. Specifically, no data are available about curcumin glucuronide (CURG, the major metabolite of CUR found in the plasma following oral administration of CUR-NP. Herein, we investigated the absorption and metabolism of CUR-NP and evaluated whether CUR-NP improves CUR bioavailability.Methods: Following oral administration of CUR-NP in rats, we analyzed the plasma and organ distribution of CUR and its metabolites using high-performance liquid chromatography-tandem mass spectrometry. To elucidate the mechanism of increased intestinal absorption of CUR-NP, we prepared mixed micelles comprised of phosphatidylcholine and bile salts and examined the micellar solubility of CUR-NP. Additionally, we investigated the cellular incorporation of the resultant micelles into differentiated Caco-2 human intestinal cells.Results: Following in vivo administration of CUR-NP, CUR was effectively absorbed and present mainly as CURG in the plasma which contained significant amounts of the metabolite compared with

  20. Modelling impact of climate change on atmospheric transport and fate of persistent organic pollutants in the Arctic

    Science.gov (United States)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Silver, J. D.; Brandt, J.

    2015-03-01

    The Danish Eulerian Hemispheric Model (DEHM) was applied to investigate how projected climate changes will affect the atmospheric transport of 13 persistent organic pollutants (POPs) to the Artic and their environmental fate within the Arctic. Two sets of simulations were performed, one with initial environmental concentrations from a 20 year spin-up simulation and one with initial environmental concentrations set to zero. Each set of simulations consisted of two ten-year time slices representing the present (1990-2000) and future (2090-2100) climate conditions. The same POP emissions were applied in all simulations to ensure that the difference in predicted concentrations for each set of simulations only arises from the difference in climate input. DEHM was driven using meteorological input from the global circulation model, ECHAM/MPI-OM, simulating the SRES A1B climate scenario. Under the applied climate and emission scenarios, the total mass of all compounds was predicted to be up to 20% higher across the Northern Hemisphere. The mass of HCHs within the Arctic was predicted to be up to 39% higher, whereas the change in mass of the PCBs was predicted to range from 14% lower to 17% higher depending on the congener and the applied initial environmental concentrations. The results of this study also indicate that contaminants with no or a short emission history will be more rapidly transported to and build up in the arctic environment in a future warmer climate. The process that dominates the environmental behaviour of POPs in the Arctic under a future warmer climate scenario is the shift in mass of POPs from the surface media to the atmosphere induced by the higher mean temperature. This is to some degree counteracted by higher degradation rates also following the higher mean temperature. The more dominant of these two processes depend on the physical-chemical properties of the compounds. Previous model studies have predicted that the effect of a changed climate on

  1. Modelling the impact of climate change on the atmospheric transport and the fate of persistent organic pollutants in the Arctic

    Science.gov (United States)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Silver, J. D.; Brandt, J.

    2015-06-01

    The Danish Eulerian Hemispheric Model (DEHM) was applied to investigate how projected climate changes will affect the atmospheric transport of 13 persistent organic pollutants (POPs) to the Arctic and their environmental fate within the Arctic. Three sets of simulations were performed, one with present day emissions and initial environmental concentrations from a 20-year spin-up simulation, one with present day emissions and with initial environmental concentrations set to zero and one without emissions but with initial environmental concentrations from the 20-year spin-up simulation. Each set of simulations consisted of two 10-year time slices representing the present (1990-2000) and future (2090-2100) climate conditions. DEHM was driven using meteorological input from the global circulation model, ECHAM/MPI-OM, simulating the SRES (Special Report on Emissions Scenarios) A1B climate scenario. Under the applied climate and emission scenarios, the total mass of all compounds was predicted to be up to 55 % lower across the Northern Hemisphere at the end of the 2090s than in the 1990s. The mass of HCHs within the Arctic was predicted to be up to 38 % higher, whereas the change in mass of the PCBs was predicted to range from 38 % lower to 17 % higher depending on the congener and the applied initial environmental concentrations. The results of this study also indicate that contaminants with no or a short emission history will be more rapidly transported to and build up in the arctic environment in a future warmer climate. The process that dominates the environmental behaviour of POPs in the Arctic under a future warmer climate scenario is the shift in mass of POPs from the surface media to the atmosphere induced by the higher mean temperature. This is to some degree counteracted by higher degradation rates also following the higher mean temperature. The more dominant of these two processes depends on the physical-chemical properties of the compounds. Previous model

  2. Theoretically exploring direct and indirect chemical effects across ecological and exposure scenarios using mechanistic fate and effects modelling

    NARCIS (Netherlands)

    Laender, de F.; Morselli, M.; Baveco, H.; Brink, van den P.J.; Guardo, Di A.

    2015-01-01

    Predicting ecosystem response to chemicals is a complex problem in ecotoxicology and a challenge for risk assessors. The variables potentially influencing chemical fate and exposure define the exposure scenario while the variables determining effects at the ecosystem level define the ecological

  3. Modeling The Fate of Sumatran Elephants in Bukit Tigapuluh Indonesia: Research Needs & Implications for Population Management

    Directory of Open Access Journals (Sweden)

    Alexander Markus Moßbrucker

    2016-01-01

    Full Text Available The critically endangered Sumatran elephant persists in mainly small and isolated populations that may require intensive management to be viable in the long term. Population Viability Analysis (PVA provides the opportunity to evaluate conservation strategies and objectives prior to implementation, which can be very valuable for site managers by supporting their decision making process. This study applies PVA to a local population of Sumatran elephants roaming the Bukit Tigapuluh landscape, Sumatra, with the main goal to explore the impact of pre-selected conservation measures and population scenarios on both population growth rate and extinction probability. Sensitivity testing revealed considerable parameter uncertainties that should be addressed by targeted research projects in order to improve the predictive power of the baseline population model. Given that further habitat destruction can be prevented, containing illegal killings appears to be of highest priority among the tested conservation measures and represents a mandatory pre-condition for activities addressing inbreeding depression such as elephant translocation or the establishment of a conservation corridor.

  4. Modeling the fate of p,p'-DDT in water and sediment of two typical estuarine bays in South China: Importance of fishing vessels' inputs.

    Science.gov (United States)

    Fang, Shu-Ming; Zhang, Xianming; Bao, Lian-Jun; Zeng, Eddy Y

    2016-05-01

    Antifouling paint applied to fishing vessels is the primary source of dichloro-diphenyl-trichloroethane (DDT) to the coastal marine environments of China. With the aim to provide science-based support of potential regulations on DDT use in antifouling paint, we utilized a fugacity-based model to evaluate the fate and impact of p,p'-DDT, the dominant component of DDT mixture, in Daya Bay and Hailing Bay, two typical estuarine bays in South China. The emissions of p,p'-DDT from fishing vessels to the aquatic environments of Hailing Bay and Daya Bay were estimated as 9.3 and 7.7 kg yr(-1), respectively. Uncertainty analysis indicated that the temporal variability of p,p'-DDT was well described by the model if fishing vessels were considered as the only direct source, i.e., fishing vessels should be the dominant source of p,p'-DDT in coastal bay areas of China. Estimated hazard quotients indicated that sediment in Hailing Bay posed high risk to the aquatic system, and it would take at least 21 years to reduce the hazards to a safe level. Moreover, p,p'-DDT tends to migrate from water to sediment in the entire Hailing Bay and Daya Bay. On the other hand, our previous research indicated that p,p'-DDT was more likely to migrate from sediment to water in the maricultured zones located in shallow waters of these two bays, where fishing vessels frequently remain. These findings suggest that relocating mariculture zones to deeper waters would reduce the likelihood of farmed fish contamination by p,p'-DDT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Fate of Lactococcus lactis starter cultures during late ripening in cheese models.

    Science.gov (United States)

    Ruggirello, Marianna; Cocolin, Luca; Dolci, Paola

    2016-10-01

    The presence of Lactococcus lactis, commonly employed as starter culture, was, recently, highlighted and investigated during late cheese ripening. Thus, the main goal of the present study was to assess the persistence and viability of this microorganism throughout manufacturing and ripening of model cheeses. Eight commercial starters, constituted of L. lactis subsp. lactis and L. lactis subsp. cremoris, were inoculated in pasteurized milk in order to manufacture miniature cheeses, ripened for six months. Samples were analysed at different steps (milk after inoculum, curd after cutting, curd after pressing and draining, cheese immediately after salting and cheese at 7, 15, 30, 60, 90, 120, 150 and 180 days of ripening) and submitted to both culture-dependent (traditional plating on M17) and -independent analysis (reverse transcription-quantitative PCR). On the basis of direct RNA analysis, L. lactis populations were detected in all miniature cheeses up to the sixth month of ripening, confirming the presence of viable cells during the whole ripening process, including late stages. Noteworthy, L. lactis was detected by RT-qPCR in cheese samples also when traditional plating failed to indicate its presence. This discrepancy could be explain with the fact that lactococci, during ripening process, enter in a stressed physiological state (viable not culturable, VNC), which might cause their inability to grow on synthetic medium despite their viability in cheese matrix. Preliminary results obtained by "resuscitation" assays corroborated this hypothesis and 2.5% glucose enrichment was effective to recover L. lactis cells in VNC state. The capability of L. lactis to persist in late ripening, and the presence of VNC cells which are known to shift their catabolism to peptides and amino acids consumption, suggests a possible technological role of this microorganism in cheese ripening with a possible impact on flavour formation. Copyright © 2016 Elsevier Ltd. All rights

  6. Modeling climate diversity, tidal dynamics and the fate of volatiles on TRAPPIST-1 planets

    Science.gov (United States)

    Turbet, Martin; Bolmont, Emeline; Leconte, Jeremy; Forget, François; Selsis, Franck; Tobie, Gabriel; Caldas, Anthony; Naar, Joseph; Gillon, Michaël

    2018-05-01

    TRAPPIST-1 planets are invaluable for the study of comparative planetary science outside our solar system and possibly habitability. Both transit timing variations (TTV) of the planets and the compact, resonant architecture of the system suggest that TRAPPIST-1 planets could be endowed with various volatiles today. First, we derived from N-body simulations possible planetary evolution scenarios, and show that all the planets are likely in synchronous rotation. We then used a versatile 3D global climate model (GCM) to explore the possible climates of cool planets around cool stars, with a focus on the TRAPPIST-1 system. We investigated the conditions required for cool planets to prevent possible volatile species to be lost permanently by surface condensation, irreversible burying or photochemical destruction. We also explored the resilience of the same volatiles (when in condensed phase) to a runaway greenhouse process. We find that background atmospheres made of N2, CO, or O2 are rather resistant to atmospheric collapse. However, even if TRAPPIST-1 planets were able to sustain a thick background atmosphere by surviving early X/EUV radiation and stellar wind atmospheric erosion, it is difficult for them to accumulate significant greenhouse gases like CO2, CH4, or NH3. CO2 can easily condense on the permanent nightside, forming CO2 ice glaciers that would flow toward the substellar region. A complete CO2 ice surface cover is theoretically possible on TRAPPIST-1g and h only, but CO2 ices should be gravitationally unstable and get buried beneath the water ice shell in geologically short timescales. Given TRAPPIST-1 planets large EUV irradiation (at least 103 × Titan's flux), CH4 and NH3 are photodissociated rapidly and are thus hard to accumulate in the atmosphere. Photochemical hazes could then sedimentate and form a surface layer of tholins that would progressively thicken over the age of the TRAPPIST-1 system. Regarding habitability, we confirm that few bars of CO2

  7. Scandinavian belief in fate

    Directory of Open Access Journals (Sweden)

    Åke Ström

    1967-02-01

    Full Text Available In point of principle, Christianity does not give room for any belief in fate. Astrology, horoscopes, divination, etc., are strictly rejected. Belief in fate never disappeared in Christian countries, nor did it in Scandinavia in Christian times. Especially in folklore we can find it at any period: People believed in an implacable fate. All folklore is filled up with this belief in destiny. Nobody can escape his fate. The future lies in the hands of fate, and the time to come takes its form according to inscrutable laws. The pre-Christian period in Scandinavia, dominated by pagan Norse religion, and the secularized epoch of the 20th century, however, show more distinctive and more widespread beliefs in fate than does the Christian period. The present paper makes a comparison between these forms of belief.

  8. Developing and applying a site-specific multimedia fate model to address ecological risk of oxytetracycline discharged with aquaculture effluent in coastal waters off Jangheung, Korea.

    Science.gov (United States)

    Kim, Woojung; Lee, Yunho; Kim, Sang Don

    2017-11-01

    The overuse of oxytetracycline (OTC) in aquaculture has become a problem because of its chronic toxic effects on marine ecosystems. The present study assessed the ecological risk of OTC in the coastal waters near the Jangheung Flatfish Farm using a site-specific multimedia fate model to analyze exposure. Before the model was applied, its performance was validated by comparing it with field data. The coastal waters in the testbed were sampled and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by solid-phase extraction (SPE). The concentrations of OTC measured varied from 7.05 to 95.39ng/L. The results of validating the models showed that the site-specific multimedia fate model performed better (root mean square error (RMSE): 24.217, index of agreement (IOA): 0.739) than conventional fugacity approaches. This result demonstrated the utility of this model in supporting effective future management of aquaculture effluent. The results of probabilistic risk assessment indicated that OTC from aquaculture effluent did not cause adverse effects, even in a maximum-use scenario. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Human population intake fractions and environmental fate factors of toxic pollutants in life cycle impact assessment

    NARCIS (Netherlands)

    Huijbregts, M.A.J.; Struijs, Jaap; Goedkoop, Mark; Heijungs, Reinout; Jan Hendriks, A.; Van De Meent, Dik

    2005-01-01

    The present paper outlines an update of the fate and exposure part of the fate, exposure and effects model USES-LCA. The new fate and exposure module of USES-LCA was applied to calculate human population intake fractions and fate factors of the freshwater, marine and terrestrial environment for 3393

  10. Identification of TCE and PCE sorption and biodegradation parameters in a sandy aquifer for fate and transport modelling: batch and column studies.

    Science.gov (United States)

    Kret, E; Kiecak, A; Malina, G; Nijenhuis, I; Postawa, A

    2015-07-01

    The main aim of this study was to determine the sorption and biodegradation parameters of trichloroethene (TCE) and tetrachloroethene (PCE) as input data required for their fate and transport modelling in a Quaternary sandy aquifer. Sorption was determined based on batch and column experiments, while biodegradation was investigated using the compound-specific isotope analysis (CSIA). The aquifer materials medium (soil 1) to fine (soil 2) sands and groundwater samples came from the representative profile of the contaminated site (south-east Poland). The sorption isotherms were approximately linear (TCE, soil 1, K d = 0.0016; PCE, soil 1, K d = 0.0051; PCE, soil 2, K d = 0.0069) except for one case in which the best fitting was for the Langmuir isotherm (TCE, soil 2, K f = 0.6493 and S max = 0.0145). The results indicate low retardation coefficients (R) of TCE and PCE; however, somewhat lower values were obtained in batch compared to column experiments. In the column experiments with the presence of both contaminants, TCE influenced sorption of PCE, so that the R values for both compounds were almost two times higher. Non-significant differences in isotope compositions of TCE and PCE measured in the observation points (δ(13)C values within the range of -23.6 ÷ -24.3‰ and -26.3 ÷-27.7‰, respectively) indicate that biodegradation apparently is not an important process contributing to the natural attenuation of these contaminants in the studied sandy aquifer.

  11. Characterization and simulation of fate and transport of selected volatile organic compounds in the vicinities of the Hadnot Point Industrial Area and landfill: Chapter A Supplement 6 in Analyses and historical reconstruction of groundwater flow, contaminant fate and transport, and distribution of drinking water within the service areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina

    Science.gov (United States)

    Jones, L. Elliott; Suárez-Soto, René J.; Anderson, Barbara A.; Maslia, Morris L.

    2013-01-01

    This supplement of Chapter A (Supplement 6) describes the reconstruction (i.e. simulation) of historical concentrations of tetrachloroethylene (PCE), trichloroethylene (TCE), and benzene3 in production wells supplying water to the Hadnot Base (USMCB) Camp Lejeune, North Carolina (Figure S6.1). A fate and transport model (i.e., MT3DMS [Zheng and Wang 1999]) was used to simulate contaminant migration from source locations through the groundwater system and to estimate mean contaminant concentrations in water withdrawn from water-supply wells in the vicinity of the Hadnot Point Industrial Area (HPIA) and the Hadnot Point landfill (HPLF) area.4 The reconstructed contaminant concentrations were subsequently input into a flow-weighted, materials mass balance (mixing) model (Masters 1998) to estimate monthly mean concentrations of the contaminant in finished water 5 at the HPWTP (Maslia et al. 2013). The calibrated fate and transport models described herein were based on and used groundwater velocities derived from groundwater-flow models that are described in Suárez-Soto et al. (2013). Information data pertinent to historical operations of water-supply wells are described in Sautner et al. (2013) and Telci et al. (2013).

  12. "Fate: The short film"

    OpenAIRE

    Maya Quintana, Jennifer

    2014-01-01

    "Fate: The Short Film" is a four minute short film which reflects the idea that nobody can escape from the fate. It has a good picture and sound quality with an understandable message for all public and with the collaboration of actors, filmmaker, stylist, script advisor and media technician.

  13. Final Report Coupling in silico microbial models with reactive transport models to predict the fate of contaminants in the subsurface.

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R.

    2012-10-31

    This project successfully accomplished its goal of coupling genome-scale metabolic models with hydrological and geochemical models to predict the activity of subsurface microorganisms during uranium bioremediation. Furthermore, it was demonstrated how this modeling approach can be used to develop new strategies to optimize bioremediation. The approach of coupling genome-scale metabolic models with reactive transport modeling is now well enough established that it has been adopted by other DOE investigators studying uranium bioremediation. Furthermore, the basic principles developed during our studies will be applicable to much broader investigations of microbial activities, not only for other types of bioremediation, but microbial metabolism in diversity of environments. This approach has the potential to make an important contribution to predicting the impact of environmental perturbations on the cycling of carbon and other biogeochemical cycles.

  14. Methods of Monitoring Cell Fate and Tissue Growth in Three-Dimensional Scaffold-Based Strategies for In Vitro Tissue Engineering.

    Science.gov (United States)

    Leferink, Anne M; van Blitterswijk, Clemens A; Moroni, Lorenzo

    2016-08-01

    In the field of tissue engineering, there is a need for methods that allow assessing the performance of tissue-engineered constructs noninvasively in vitro and in vivo. To date, histological analysis is the golden standard to retrieve information on tissue growth, cellular distribution, and cell fate on tissue-engineered constructs after in vitro cell culture or on explanted specimens after in vivo applications. Yet, many advances have been made to optimize imaging techniques for monitoring tissue-engineered constructs with a sub-mm or μm resolution. Many imaging modalities have first been developed for clinical applications, in which a high penetration depth has been often more important than lateral resolution. In this study, we have reviewed the current state of the art in several imaging approaches that have shown to be promising in monitoring cell fate and tissue growth upon in vitro culture. Depending on the aimed tissue type and scaffold properties, some imaging methods are more applicable than others. Optical methods are mostly suited for transparent materials such as hydrogels, whereas magnetic resonance-based methods are mostly applied to obtain contrast between hard and soft tissues regardless of their transparency. Overall, this review shows that the field of imaging in scaffold-based tissue engineering is developing at a fast pace and has the potential to overcome the limitations of destructive endpoint analysis.

  15. Spatio-temporal Model of Endogenous ROS and Raft-Dependent WNT/Beta-Catenin Signaling Driving Cell Fate Commitment in Human Neural Progenitor Cells

    Science.gov (United States)

    Haack, Fiete; Lemcke, Heiko; Ewald, Roland; Rharass, Tareck; Uhrmacher, Adelinde M.

    2015-01-01

    Canonical WNT/β-catenin signaling is a central pathway in embryonic development, but it is also connected to a number of cancers and developmental disorders. Here we apply a combined in-vitro and in-silico approach to investigate the spatio-temporal regulation of WNT/β-catenin signaling during the early neural differentiation process of human neural progenitors cells (hNPCs), which form a new prospect for replacement therapies in the context of neurodegenerative diseases. Experimental measurements indicate a second signal mechanism, in addition to canonical WNT signaling, being involved in the regulation of nuclear β-catenin levels during the cell fate commitment phase of neural differentiation. We find that the biphasic activation of β-catenin signaling observed experimentally can only be explained through a model that combines Reactive Oxygen Species (ROS) and raft dependent WNT/β-catenin signaling. Accordingly after initiation of differentiation endogenous ROS activates DVL in a redox-dependent manner leading to a transient activation of down-stream β-catenin signaling, followed by continuous auto/paracrine WNT signaling, which crucially depends on lipid rafts. Our simulation studies further illustrate the elaborate spatio-temporal regulation of DVL, which, depending on its concentration and localization, may either act as direct inducer of the transient ROS/β-catenin signal or as amplifier during continuous auto-/parcrine WNT/β-catenin signaling. In addition we provide the first stochastic computational model of WNT/β-catenin signaling that combines membrane-related and intracellular processes, including lipid rafts/receptor dynamics as well as WNT- and ROS-dependent β-catenin activation. The model’s predictive ability is demonstrated under a wide range of varying conditions for in-vitro and in-silico reference data sets. Our in-silico approach is realized in a multi-level rule-based language, that facilitates the extension and modification of the

  16. Coupling a continuous watershed-scale microbial fate and transport model with a stochastic dose-response model to estimate risk of illness in an urban watershed.

    Science.gov (United States)

    Liao, Hehuan; Krometis, Leigh-Anne H; Kline, Karen

    2016-05-01

    Within the United States, elevated levels of fecal indicator bacteria (FIB) remain the leading cause of surface water-quality impairments requiring formal remediation plans under the federal Clean Water Act's Total Maximum Daily Load (TMDL) program. The sufficiency of compliance with numerical FIB criteria as the targeted endpoint of TMDL remediation plans may be questionable given poor correlations between FIB and pathogenic microorganisms and varying degrees of risk associated with exposure to different fecal pollution sources (e.g. human vs animal). The present study linked a watershed-scale FIB fate and transport model with a dose-response model to continuously predict human health risks via quantitative microbial risk assessment (QMRA), for comparison to regulatory benchmarks. This process permitted comparison of risks associated with different fecal pollution sources in an impaired urban watershed in order to identify remediation priorities. Results indicate that total human illness risks were consistently higher than the regulatory benchmark of 36 illnesses/1000 people for the study watershed, even when the predicted FIB levels were in compliance with the Escherichia coli geometric mean standard of 126CFU/100mL. Sanitary sewer overflows were associated with the greatest risk of illness. This is of particular concern, given increasing indications that sewer leakage is ubiquitous in urban areas, yet not typically fully accounted for during TMDL development. Uncertainty analysis suggested the accuracy of risk estimates would be improved by more detailed knowledge of site-specific pathogen presence and densities. While previous applications of the QMRA process to impaired waterways have mostly focused on single storm events or hypothetical situations, the continuous modeling framework presented in this study could be integrated into long-term water quality management planning, especially the United States' TMDL program, providing greater clarity to watershed

  17. Mass Transfer Behavior of Perfluorinated Chemicals in Saturated Clay-rich Sands: A Laboratory-based Study on Fate and Transport in Groundwater and Sediments

    Science.gov (United States)

    Greenberg, R. R.; Tick, G. R.; Abbott, J. B., III; Carroll, K. C.

    2017-12-01

    Perfluoroalkyl substances (PFAS) are a class of emerging contaminants that pose a threat to the human health and the quality of groundwater, surface water, and drinking water supplies. This study aims to elucidate the primary physicochemical factors controlling the fate and transport of the PFAS contaminants, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), in groundwater. Physicochemical processes of intercalation, adsorption, and desorption were investigated for the retention of PFAS at different initial aqueous-phase concentrations in modified-natural sediments composed of sand (40/50 accusand; foc = 0.04% unmodified) with low, medium, and high organic carbon contents (foc = 10, 20, and 50%) and various pre-conditioned clay-fractions. Diffusional mass-transfer limitations were evaluated based on initial PFAS concentration, specific clay structure, and resulting contaminant intercalation (d-spacing changes). A series of short- (48 hr), medium- (7 day) and long-term (30 day) batch and column experiments were conducted to determine physicochemical processes as a function of compound chemistry, sediment geochemistry, sorbent crystalline structure, and contaminant/sediment contact-time. Physicochemical parameters, PFAS concentrations, and sediment characterization were conducted using high performance liquid chromatography (HPLC), X-ray diffraction (XRD), and furnace combustion analytical techniques. The results of PFAS contaminant transport, under the different conditions tested, provide a scientific contribution with application to the development of improved risk assessments, predictions of fate and transport, and more effective remediation strategies for emerging perfluorinated contaminants in soil and groundwater.

  18. Base Station Performance Model

    OpenAIRE

    Walsh, Barbara; Farrell, Ronan

    2005-01-01

    At present the testing of power amplifiers within base station transmitters is limited to testing at component level as opposed to testing at the system level. While the detection of catastrophic failure is possible, that of performance degradation is not. This paper proposes a base station model with respect to transmitter output power with the aim of introducing system level monitoring of the power amplifier behaviour within the base station. Our model reflects the expe...

  19. Ultimate fate of constrained voters

    International Nuclear Information System (INIS)

    Vazquez, F; Redner, S

    2004-01-01

    We examine the ultimate fate of individual opinions in a socially interacting population of leftists, centrists and rightists. In an elemental interaction between agents, a centrist and a leftist can both become centrists or both become leftists with equal rates (and similarly for a centrist and a rightist). However leftists and rightists do not interact. This interaction step between pairs of agents is applied repeatedly until the system can no longer evolve. In the mean-field limit, we determine the exact probability that the system reaches consensus (either leftist, rightist or centrist) or a frozen mixture of leftists and rightists as a function of the initial composition of the population. We also determine the mean time until the final state is reached. Some implications of our results for the ultimate fate in a limit of the Axelrod model are discussed

  20. Ultimate fate of constrained voters

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, F [Department of Physics, Center for BioDynamics, Boston University, Boston, MA 02215 (United States); Redner, S [Department of Physics, Center for Polymer Studies, Boston University, Boston, MA 02215 (United States)

    2004-09-03

    We examine the ultimate fate of individual opinions in a socially interacting population of leftists, centrists and rightists. In an elemental interaction between agents, a centrist and a leftist can both become centrists or both become leftists with equal rates (and similarly for a centrist and a rightist). However leftists and rightists do not interact. This interaction step between pairs of agents is applied repeatedly until the system can no longer evolve. In the mean-field limit, we determine the exact probability that the system reaches consensus (either leftist, rightist or centrist) or a frozen mixture of leftists and rightists as a function of the initial composition of the population. We also determine the mean time until the final state is reached. Some implications of our results for the ultimate fate in a limit of the Axelrod model are discussed.

  1. REDUCING UNCERTAINTIES IN MODEL PREDICTIONS VIA HISTORY MATCHING OF CO2 MIGRATION AND REACTIVE TRANSPORT MODELING OF CO2 FATE AT THE SLEIPNER PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chen

    2015-03-31

    An important question for the Carbon Capture, Storage, and Utility program is “can we adequately predict the CO2 plume migration?” For tracking CO2 plume development, the Sleipner project in the Norwegian North Sea provides more time-lapse seismic monitoring data than any other sites, but significant uncertainties still exist for some of the reservoir parameters. In Part I, we assessed model uncertainties by applying two multi-phase compositional simulators to the Sleipner Benchmark model for the uppermost layer (Layer 9) of the Utsira Sand and calibrated our model against the time-lapsed seismic monitoring data for the site from 1999 to 2010. Approximate match with the observed plume was achieved by introducing lateral permeability anisotropy, adding CH4 into the CO2 stream, and adjusting the reservoir temperatures. Model-predicted gas saturation, CO2 accumulation thickness, and CO2 solubility in brine—none were used as calibration metrics—were all comparable with the interpretations of the seismic data in the literature. In Part II & III, we evaluated the uncertainties of predicted long-term CO2 fate up to 10,000 years, due to uncertain reaction kinetics. Under four scenarios of the kinetic rate laws, the temporal and spatial evolution of CO2 partitioning into the four trapping mechanisms (hydrodynamic/structural, solubility, residual/capillary, and mineral) was simulated with ToughReact, taking into account the CO2-brine-rock reactions and the multi-phase reactive flow and mass transport. Modeling results show that different rate laws for mineral dissolution and precipitation reactions resulted in different predicted amounts of trapped CO2 by carbonate minerals, with scenarios of the conventional linear rate law for feldspar dissolution having twice as much mineral trapping (21% of the injected CO2) as scenarios with a Burch-type or Alekseyev et al.–type rate law for feldspar dissolution (11%). So far, most reactive transport modeling (RTM) studies for

  2. CAirTOX: A compartment model for assessing the fate of and human exposure to toxic-chemical emissions to air

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.

    1993-10-01

    CAirTOX has been developed as a spreadsheet model to assist in making a risk assessment of toxic air emissions. With CAirTOX, one can address how contaminants released to an air basin can lead to contamination of soil, food, surface water, and sediments. The modeling effort includes a multimedia transport and transformation model, exposure scenario models, and efforts to quantify uncertainty in multimedia, multiple-pathway exposure assessments. The multimedia transport and transformation model is a steady-state, but non-equilibrium model that can be used to assess concentrations of contaminants released continuously to air. In Part 1, the authors describe the multimedia transport and transformation model used to determine the fate of air emissions. In Part 2, they describe inputs and data needs for CAirTOX and the development of a set of landscape factors, which can be used to represent regional air basin/water-shed systems in California. In Part 3, they describe the multiple-pathway exposure scenarios and exposure algorithms. In Part 4, they compare the HRA approach and results and the CAirTOX exposure equations. In Part 5, they consider model sensitivity and uncertainty to determine how variability and uncertainty in model inputs affects the precision, accuracy, and credibility of the model output.

  3. Imaging long-term fate of intramyocardially implanted mesenchymal stem cells in a porcine myocardial infarction model.

    Directory of Open Access Journals (Sweden)

    Emerson C Perin

    Full Text Available The long-term fate of stem cells after intramyocardial delivery is unknown. We used noninvasive, repetitive PET/CT imaging with [(18F]FEAU to monitor the long-term (up to 5 months spatial-temporal dynamics of MSCs retrovirally transduced with the sr39HSV1-tk gene (sr39HSV1-tk-MSC and implanted intramyocardially in pigs with induced acute myocardial infarction. Repetitive [(18F]FEAU PET/CT revealed a biphasic pattern of sr39HSV1-tk-MSC dynamics; cell proliferation peaked at 33-35 days after injection, in periinfarct regions and the major cardiac lymphatic vessels and lymph nodes. The sr39HSV1-tk-MSC-associated [(18F]FEAU signals gradually decreased thereafter. Cardiac lymphography studies using PG-Gd-NIRF813 contrast for MRI and near-infrared fluorescence imaging showed rapid clearance of the contrast from the site of intramyocardial injection through the subepicardial lymphatic network into the lymphatic vessels and periaortic lymph nodes. Immunohistochemical analysis of cardiac tissue obtained at 35 and 150 days demonstrated several types of sr39HSV1-tk expressing cells, including fibro-myoblasts, lymphovascular cells, and microvascular and arterial endothelium. In summary, this study demonstrated the feasibility and sensitivity of [(18F]FEAU PET/CT imaging for long-term, in-vivo monitoring (up to 5 months of the fate of intramyocardially injected sr39HSV1-tk-MSC cells. Intramyocardially transplanted MSCs appear to integrate into the lymphatic endothelium and may help improve myocardial lymphatic system function after MI.

  4. Monitoring and modeling the fate of commonly used pesticides in surface water of the Lower Mekong Delta

    Science.gov (United States)

    van Toan, Pham; Sebesvari, Zita; Loan, Vo Phuong Hong; Renaud, Fabrice

    2010-05-01

    Introduction: The Lower Mekong Delta, one of the largest agricultural areas in Southeast Asia, has been reported to be increasingly polluted by agrochemicals since the beginning of the transformation processes in Vietnamese economy and specifically in the agricultural sector in 1986 (MRCS, 2007; Dasgupta et al., 2005; Dung, 2003; Phuong, 2003). Although pesticides have contributed significantly to enhancing agricultural productivity, these agrochemicals also have created risks to human health and environment (Margni, 2001; Phuong, 2003; Dasgupta et al., 2005) and lead to value loss of water resources (Phuong, 2003). While prohibited persistent organic pollutants such as HCHs and DDTs, were monitored and still detected in the Lower Mekong Delta in recent studies (Minh et al., 2007, Carvalho et al., 2008) little data exist on water pollution by recently used pesticides in the Delta. Aiming to fill this information gap, a study comprising three components was set up at two study sites of the Delta. Pesticide use and management was investigated through surveys and participatory rural appraisals with farmers; pesticide residue concentrations were determined in field outflows, connected irrigation canals and in drinking water and finally pesticide fate was predicted by using a coupled MIKE 11/ MIKE SHE model. This abstract focuses on the work done in the field of pesticide monitoring. The western study site (An Long Commune, Dong Thap province) represented an agricultural pattern with two intensive paddy rice crops per year and was heavily affected by flood in the rainy season. The second site located in the central part of the Delta (Ba Lang ward, Can Tho City) was characterized by a mix of paddy rice, vegetables and fruit trees. Fifteen pesticide compounds (buprofezin, butachlor, cypermethrin, difenozonazol, α-endosulfan, β-endosulfan, endosulfan-sulfate, fenobucarb, fipronil, hexaconazol, isoprothiolane, pretilachlor, profenofos, propanil, and propiconazol) were

  5. Web Based VRML Modelling

    NARCIS (Netherlands)

    Kiss, S.; Sarfraz, M.

    2004-01-01

    Presents a method to connect VRML (Virtual Reality Modeling Language) and Java components in a Web page using EAI (External Authoring Interface), which makes it possible to interactively generate and edit VRML meshes. The meshes used are based on regular grids, to provide an interaction and modeling

  6. Coupling a continuous watershed-scale microbial fate and transport model with a stochastic dose-response model to estimate risk of illness in an urban watershed

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Hehuan, E-mail: hehuan86@vt.edu [Department of Biological Systems Engineering, Virginia Tech, 155 Ag Quad Lane, Blacksburg, VA 24061 (United States); Krometis, Leigh-Anne H. [Department of Biological Systems Engineering, Virginia Tech, 155 Ag Quad Lane, Blacksburg, VA 24061 (United States); Kline, Karen [Department of Biological Systems Engineering, Virginia Tech, 155 Ag Quad Lane, Blacksburg, VA 24061 (United States); Center for Watershed Studies, Virginia Tech, 155 Ag Quad Lane, Blacksburg, VA 24061 (United States)

    2016-05-01

    Within the United States, elevated levels of fecal indicator bacteria (FIB) remain the leading cause of surface water-quality impairments requiring formal remediation plans under the federal Clean Water Act's Total Maximum Daily Load (TMDL) program. The sufficiency of compliance with numerical FIB criteria as the targeted endpoint of TMDL remediation plans may be questionable given poor correlations between FIB and pathogenic microorganisms and varying degrees of risk associated with exposure to different fecal pollution sources (e.g. human vs animal). The present study linked a watershed-scale FIB fate and transport model with a dose-response model to continuously predict human health risks via quantitative microbial risk assessment (QMRA), for comparison to regulatory benchmarks. This process permitted comparison of risks associated with different fecal pollution sources in an impaired urban watershed in order to identify remediation priorities. Results indicate that total human illness risks were consistently higher than the regulatory benchmark of 36 illnesses/1000 people for the study watershed, even when the predicted FIB levels were in compliance with the Escherichia coli geometric mean standard of 126 CFU/100 mL. Sanitary sewer overflows were associated with the greatest risk of illness. This is of particular concern, given increasing indications that sewer leakage is ubiquitous in urban areas, yet not typically fully accounted for during TMDL development. Uncertainty analysis suggested the accuracy of risk estimates would be improved by more detailed knowledge of site-specific pathogen presence and densities. While previous applications of the QMRA process to impaired waterways have mostly focused on single storm events or hypothetical situations, the continuous modeling framework presented in this study could be integrated into long-term water quality management planning, especially the United States' TMDL program, providing greater clarity to

  7. Coupling a continuous watershed-scale microbial fate and transport model with a stochastic dose-response model to estimate risk of illness in an urban watershed

    International Nuclear Information System (INIS)

    Liao, Hehuan; Krometis, Leigh-Anne H.; Kline, Karen

    2016-01-01

    Within the United States, elevated levels of fecal indicator bacteria (FIB) remain the leading cause of surface water-quality impairments requiring formal remediation plans under the federal Clean Water Act's Total Maximum Daily Load (TMDL) program. The sufficiency of compliance with numerical FIB criteria as the targeted endpoint of TMDL remediation plans may be questionable given poor correlations between FIB and pathogenic microorganisms and varying degrees of risk associated with exposure to different fecal pollution sources (e.g. human vs animal). The present study linked a watershed-scale FIB fate and transport model with a dose-response model to continuously predict human health risks via quantitative microbial risk assessment (QMRA), for comparison to regulatory benchmarks. This process permitted comparison of risks associated with different fecal pollution sources in an impaired urban watershed in order to identify remediation priorities. Results indicate that total human illness risks were consistently higher than the regulatory benchmark of 36 illnesses/1000 people for the study watershed, even when the predicted FIB levels were in compliance with the Escherichia coli geometric mean standard of 126 CFU/100 mL. Sanitary sewer overflows were associated with the greatest risk of illness. This is of particular concern, given increasing indications that sewer leakage is ubiquitous in urban areas, yet not typically fully accounted for during TMDL development. Uncertainty analysis suggested the accuracy of risk estimates would be improved by more detailed knowledge of site-specific pathogen presence and densities. While previous applications of the QMRA process to impaired waterways have mostly focused on single storm events or hypothetical situations, the continuous modeling framework presented in this study could be integrated into long-term water quality management planning, especially the United States' TMDL program, providing greater clarity to watershed

  8. Integrated fate modeling for exposure assessment of produced water on the Sable Island Bank (Scotian shelf, Canada).

    Science.gov (United States)

    Berry, Jody A; Wells, Peter G

    2004-10-01

    Produced water is the largest waste discharge from the production phase of oil and gas wells. Produced water is a mixture of reservoir formation water and production chemicals from the separation process. This creates a chemical mixture that has several components of toxic concern, ranging from heavy metals to soluble hydrocarbons. Analysis of potential environmental effects from produced water in the Sable Island Bank region (NS, Canada) was conducted using an integrated modeling approach according to the ecological risk assessment framework. A hydrodynamic dispersion model was used to describe the wastewater plume. A second fugacity-based model was used to describe the likely plume partitioning in the local environmental media of water, suspended sediment, biota, and sediment. Results from the integrated modeling showed that the soluble benzene and naphthalene components reach chronic no-effect concentration levels at a distance of 1.0 m from the discharge point. The partition modeling indicated that low persistence was expected because of advection forces caused by tidal currents for the Sable Island Bank system. The exposure assessment for the two soluble hydrocarbon components suggests that the risks of adverse environmental effects from produced water on Sable Island Bank are low.

  9. Regional long-term model of radioactivity dispersion and fate in the Northwestern Pacific and adjacent seas: application to the Fukushima Dai-ichi accident

    International Nuclear Information System (INIS)

    Maderich, V.; Bezhenar, R.; Heling, R.; With, G. de; Jung, K.T.; Myoung, J.G.; Cho, Y.-K.; Qiao, F.; Robertson, L.

    2014-01-01

    The compartment model POSEIDON-R was modified and applied to the Northwestern Pacific and adjacent seas to simulate the transport and fate of radioactivity in the period 1945–2010, and to perform a radiological assessment on the releases of radioactivity due to the Fukushima Dai-ichi accident for the period 2011–2040. The model predicts the dispersion of radioactivity in the water column and in sediments, the transfer of radionuclides throughout the marine food web, and subsequent doses to humans due to the consumption of marine products. A generic predictive dynamic food-chain model is used instead of the biological concentration factor (BCF) approach. The radionuclide uptake model for fish has as a central feature the accumulation of radionuclides in the target tissue. The three layer structure of the water column makes it possible to describe the vertical structure of radioactivity in deep waters. In total 175 compartments cover the Northwestern Pacific, the East China and Yellow Seas and the East/Japan Sea. The model was validated from 137 Cs data for the period 1945–2010. Calculated concentrations of 137 Cs in water, bottom sediments and marine organisms in the coastal compartment, before and after the accident, are in close agreement with measurements from the Japanese agencies. The agreement for water is achieved when an additional continuous flux of 3.6 TBq y −1 is used for underground leakage of contaminated water from the Fukushima Dai-ichi NPP, during the three years following the accident. The dynamic food web model predicts that due to the delay of the transfer throughout the food web, the concentration of 137 Cs for piscivorous fishes returns to background level only in 2016. For the year 2011, the calculated individual dose rate for Fukushima Prefecture due to consumption of fishery products is 3.6 μSv y −1 . Following the Fukushima Dai-ichi accident the collective dose due to ingestion of marine products for Japan increased in 2011 by a

  10. Model Based Temporal Reasoning

    Science.gov (United States)

    Rabin, Marla J.; Spinrad, Paul R.; Fall, Thomas C.

    1988-03-01

    Systems that assess the real world must cope with evidence that is uncertain, ambiguous, and spread over time. Typically, the most important function of an assessment system is to identify when activities are occurring that are unusual or unanticipated. Model based temporal reasoning addresses both of these requirements. The differences among temporal reasoning schemes lies in the methods used to avoid computational intractability. If we had n pieces of data and we wanted to examine how they were related, the worst case would be where we had to examine every subset of these points to see if that subset satisfied the relations. This would be 2n, which is intractable. Models compress this; if several data points are all compatible with a model, then that model represents all those data points. Data points are then considered related if they lie within the same model or if they lie in models that are related. Models thus address the intractability problem. They also address the problem of determining unusual activities if the data do not agree with models that are indicated by earlier data then something out of the norm is taking place. The models can summarize what we know up to that time, so when they are not predicting correctly, either something unusual is happening or we need to revise our models. The model based reasoner developed at Advanced Decision Systems is thus both intuitive and powerful. It is currently being used on one operational system and several prototype systems. It has enough power to be used in domains spanning the spectrum from manufacturing engineering and project management to low-intensity conflict and strategic assessment.

  11. Predicting the fate of micropollutants during wastewater treatment: Calibration and sensitivity analysis.

    Science.gov (United States)

    Baalbaki, Zeina; Torfs, Elena; Yargeau, Viviane; Vanrolleghem, Peter A

    2017-12-01

    The presence of micropollutants in the environment and their toxic impacts on the aquatic environment have raised concern about their inefficient removal in wastewater treatment plants. In this study, the fate of micropollutants of four different classes was simulated in a conventional activated sludge plant using a bioreactor micropollutant fate model coupled to a settler model. The latter was based on the Bürger-Diehl model extended for the first time to include micropollutant fate processes. Calibration of model parameters was completed by matching modelling results with full-scale measurements (i.e. including aqueous and particulate phase concentrations of micropollutants) obtained from a 4-day sampling campaign. Modelling results showed that further biodegradation takes place in the sludge blanket of the settler for the highly biodegradable caffeine, underlining the need for a reactive settler model. The adopted Monte Carlo based calibration approach also provided an overview of the model's global sensitivity to the parameters. This analysis showed that for each micropollutant and according to the dominant fate process, a different set of one or more parameters had a significant impact on the model fit, justifying the selection of parameter subsets for model calibration. A dynamic local sensitivity analysis was also performed with the calibrated parameters. This analysis supported the conclusions from the global sensitivity and provided guidance for future sampling campaigns. This study expands the understanding of micropollutant fate models when applied to different micropollutants, in terms of global and local sensitivity to model parameters, as well as the identifiability of the parameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Homology of the cranial vault in birds: new insights based on embryonic fate-mapping and character analysis

    Science.gov (United States)

    Maddin, Hillary C.; Piekarski, Nadine; Sefton, Elizabeth M.; Hanken, James

    2016-08-01

    Bones of the cranial vault appear to be highly conserved among tetrapod vertebrates. Moreover, bones identified with the same name are assumed to be evolutionarily homologous. However, recent developmental studies reveal a key difference in the embryonic origin of cranial vault bones between representatives of two amniote lineages, mammals and birds, thereby challenging this view. In the mouse, the frontal is derived from cranial neural crest (CNC) but the parietal is derived from mesoderm, placing the CNC-mesoderm boundary at the suture between these bones. In the chicken, this boundary is located within the frontal. This difference and related data have led several recent authors to suggest that bones of the avian cranial vault are misidentified and should be renamed. To elucidate this apparent conflict, we fate-mapped CNC and mesoderm in axolotl to reveal the contributions of these two embryonic cell populations to the cranial vault in a urodele amphibian. The CNC-mesoderm boundary in axolotl is located between the frontal and parietal bones, as in the mouse but unlike the chicken. If, however, the avian frontal is regarded instead as a fused frontal and parietal (i.e. frontoparietal) and the parietal as a postparietal, then the cranial vault of birds becomes developmentally and topologically congruent with those of urodeles and mammals. This alternative hypothesis of cranial vault homology is also phylogenetically consistent with data from the tetrapod fossil record, where frontal, parietal and postparietal bones are present in stem lineages of all extant taxa, including birds. It further implies that a postparietal may be present in most non-avian archosaurs, but fused to the parietal or supraoccipital as in many extant mammals.

  13. Comparison of Atmospheric Travel Distances of Several PAHs Calculated by Two Fate and Transport Models (The Tool and ELPOS with Experimental Values Derived from a Peat Bog Transect

    Directory of Open Access Journals (Sweden)

    Sabine Thuens

    2014-05-01

    Full Text Available Multimedia fate and transport models are used to evaluate the long range transport potential (LRTP of organic pollutants, often by calculating their characteristic travel distance (CTD. We calculated the CTD of several polycyclic aromatic hydrocarbons (PAHs and metals using two models: the OECD POV& LRTP Screening Tool (The Tool, and ELPOS. The absolute CTDs of PAHs estimated with the two models agree reasonably well for predominantly particle-bound congeners, while discrepancies are observed for more volatile congeners. We test the performance of the models by comparing the relative ranking of CTDs with the one of experimentally determined travel distances (ETDs. ETDs were estimated from historical deposition rates of pollutants to peat bogs in Eastern Canada. CTDs and ETDs of PAHs indicate a low LRTP. To eliminate the high influence on specific model assumptions and to emphasize the difference between the travel distances of single PAHs, ETDs and CTDs were analyzed relative to the travel distances of particle-bound compounds. The ETDs determined for PAHs, Cu, and Zn ranged from 173 to 321 km with relative uncertainties between 26% and 46%. The ETDs of two metals were shorter than those of the PAHs. For particle-bound PAHs the relative ETDs and CTDs were similar, while they differed for Chrysene.

  14. Estimating fate and transport of multiple contaminants in the vadose zone using a multi-layered soil column and three-phase equilibrium partitioning model

    International Nuclear Information System (INIS)

    Rucker, Gregory G.

    2007-01-01

    Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and pollute drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminants. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: decay processes, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use. (authors)

  15. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo.

    Science.gov (United States)

    Pei, Weike; Feyerabend, Thorsten B; Rössler, Jens; Wang, Xi; Postrach, Daniel; Busch, Katrin; Rode, Immanuel; Klapproth, Kay; Dietlein, Nikolaus; Quedenau, Claudia; Chen, Wei; Sauer, Sascha; Wolf, Stephan; Höfer, Thomas; Rodewald, Hans-Reimer

    2017-08-24

    Developmental deconvolution of complex organs and tissues at the level of individual cells remains challenging. Non-invasive genetic fate mapping has been widely used, but the low number of distinct fluorescent marker proteins limits its resolution. Much higher numbers of cell markers have been generated using viral integration sites, viral barcodes, and strategies based on transposons and CRISPR-Cas9 genome editing; however, temporal and tissue-specific induction of barcodes in situ has not been achieved. Here we report the development of an artificial DNA recombination locus (termed Polylox) that enables broadly applicable endogenous barcoding based on the Cre-loxP recombination system. Polylox recombination in situ reaches a practical diversity of several hundred thousand barcodes, allowing tagging of single cells. We have used this experimental system, combined with fate mapping, to assess haematopoietic stem cell (HSC) fates in vivo. Classical models of haematopoietic lineage specification assume a tree with few major branches. More recently, driven in part by the development of more efficient single-cell assays and improved transplantation efficiencies, different models have been proposed, in which unilineage priming may occur in mice and humans at the level of HSCs. We have introduced barcodes into HSC progenitors in embryonic mice, and found that the adult HSC compartment is a mosaic of embryo-derived HSC clones, some of which are unexpectedly large. Most HSC clones gave rise to multilineage or oligolineage fates, arguing against unilineage priming, and suggesting coherent usage of the potential of cells in a clone. The spreading of barcodes, both after induction in embryos and in adult mice, revealed a basic split between common myeloid-erythroid development and common lymphocyte development, supporting the long-held but contested view of a tree-like haematopoietic structure.

  16. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo

    Science.gov (United States)

    Rössler, Jens; Wang, Xi; Postrach, Daniel; Busch, Katrin; Rode, Immanuel; Klapproth, Kay; Dietlein, Nikolaus; Quedenau, Claudia; Chen, Wei; Sauer, Sascha; Wolf, Stephan; Höfer, Thomas; Rodewald, Hans-Reimer

    2017-01-01

    Developmental deconvolution of complex organs and tissues at the level of individual cells remains challenging. Non-invasive genetic fate mapping1 has been widely used, but the low number of distinct fluorescent marker proteins limits its resolution. Much higher numbers of cell markers have been generated using viral integration sites2, viral barcodes3, and strategies based on transposons4 and CRISPR/Cas9 genome editing5; however, temporal and tissue-specific induction of barcodes in situ has not been achieved. Here we report the development of an artificial DNA recombination locus (termed Polylox) that enables broadly applicable endogenous barcoding based on the Cre-loxP recombination system6,7. Polylox recombination in situ reaches a practical diversity of several hundred thousand barcodes, allowing tagging of single cells. We have used this experimental system, combined with fate mapping, to assess haematopoietic stem cell (HSC) fates in vivo. Classical models of haematopoietic lineage specification assume a tree with few major branches. More recently, driven in part by the development of more efficient single-cell assays and improved transplantation efficiencies, different models have been proposed, in which unilineage priming may occur in mice and humans at the level of HSCs8–10. We have introduced barcodes into HSC progenitors in embryonic mice, and found that the adult HSC compartment is a mosaic of embryo-derived HSC clones, some of which are unexpectedly large. Most HSC clones gave rise to multilineage or oligolineage fates, arguing against unilineage priming, and suggesting coherent usage of the potential of cells in a clone. The spreading of barcodes, both after induction in embryos and in adult mice, revealed a basic split between common myeloid-erythroid development and common lymphocyte development, supporting the long-held but contested view of a tree-like haematopoietic structure. PMID:28813413

  17. Cell fate determination in the Caenorhabditis elegans epidermal lineages

    NARCIS (Netherlands)

    Soete, G.A.J.

    2007-01-01

    The starting point for this work was to use the hypodermal seam of C. elegans as a model system to study cell fate determination. Even though the seam is a relatively simple developmental system, the mechanisms that control cell fate determination in the seam lineages are connected in a highly

  18. Skull base tumor model.

    Science.gov (United States)

    Gragnaniello, Cristian; Nader, Remi; van Doormaal, Tristan; Kamel, Mahmoud; Voormolen, Eduard H J; Lasio, Giovanni; Aboud, Emad; Regli, Luca; Tulleken, Cornelius A F; Al-Mefty, Ossama

    2010-11-01

    Resident duty-hours restrictions have now been instituted in many countries worldwide. Shortened training times and increased public scrutiny of surgical competency have led to a move away from the traditional apprenticeship model of training. The development of educational models for brain anatomy is a fascinating innovation allowing neurosurgeons to train without the need to practice on real patients and it may be a solution to achieve competency within a shortened training period. The authors describe the use of Stratathane resin ST-504 polymer (SRSP), which is inserted at different intracranial locations to closely mimic meningiomas and other pathological entities of the skull base, in a cadaveric model, for use in neurosurgical training. Silicone-injected and pressurized cadaveric heads were used for studying the SRSP model. The SRSP presents unique intrinsic metamorphic characteristics: liquid at first, it expands and foams when injected into the desired area of the brain, forming a solid tumorlike structure. The authors injected SRSP via different passages that did not influence routes used for the surgical approach for resection of the simulated lesion. For example, SRSP injection routes included endonasal transsphenoidal or transoral approaches if lesions were to be removed through standard skull base approach, or, alternatively, SRSP was injected via a cranial approach if the removal was planned to be via the transsphenoidal or transoral route. The model was set in place in 3 countries (US, Italy, and The Netherlands), and a pool of 13 physicians from 4 different institutions (all surgeons and surgeons in training) participated in evaluating it and provided feedback. All 13 evaluating physicians had overall positive impressions of the model. The overall score on 9 components evaluated--including comparison between the tumor model and real tumor cases, perioperative requirements, general impression, and applicability--was 88% (100% being the best possible

  19. The on scene command and control system (OSC2) : an integrated incident command system (ICS) forms-database management system and oil spill trajectory and fates model

    International Nuclear Information System (INIS)

    Anderson, E.; Galagan, C.; Howlett, E.

    1998-01-01

    The On Scene Command and Control (OSC 2 ) system is an oil spill modeling tool which was developed to combine Incident Command System (ICS) forms, an underlying database, an integrated geographical information system (GIS) and an oil spill trajectory and fate model. The first use of the prototype OSC 2 system was at a PREP drill conducted at the U.S. Coast Guard Marine Safety Office, San Diego, in April 1998. The goal of the drill was to simulate a real-time response over a 36-hour period using the Unified Command System. The simulated spill was the result of a collision between two vessels inside San Diego Bay that caused the release of 2,000 barrels of fuel oil. The hardware component of the system which was tested included three notebook computers, two laser printers, and a poster printer. The field test was a success but it was not a rigorous test of the system's capabilities. The map display was useful in quickly setting up the ICS divisions and groups and in deploying resources. 6 refs., 1 tab., 5 figs

  20. PCPF-M model for simulating the fate and transport of pesticides and their metabolites in rice paddy field.

    Science.gov (United States)

    Boulange, Julien; Malhat, Farag; Thuyet, Dang Quoc; Watanabe, Hirozumi

    2017-12-01

    The PCPF-1 model was improved for forecasting the fate and transport of metabolites in addition to parent compounds in rice paddies. In the new PCPF-M model, metabolites are generated from the dissipation of pesticide applied in rice paddies through hydrolysis, photolysis and biological degradations. The methodology to parameterize the model was illustrated using two scenarios for which uncertainty and sensitivity analyses were also conducted. In a batch degradation experiment, the hourly forecasted concentrations of fipronil and its metabolites in paddy water were very accurate. In a field-scale experiment, the hourly forecasted concentrations of fipronil in paddy water and paddy soil were accurate while the corresponding daily forecasted concentrations of metabolites were adequate. The major contributors to the variation of the forecasted metabolite concentrations in paddy water and paddy soil were the formation fractions of the metabolites. The influence of uncertainty included in input parameters on the forecasted metabolite concentration was high during the peak concentration of metabolite in paddy water. In contrast, in paddy soil, the metabolite concentrations forecasted several days after the initial pesticide application were sensitive to the uncertainty incorporated in the input parameters. The PCPF-M model simultaneously forecasts the concentrations of a parent pesticide and up to three metabolites. The model was validated using fipronil and two of its metabolites in paddy water and paddy soil. The model can be used in the early stage of the pesticide registration process and in risk assessment analysis for the evaluation of pesticide exposure. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Radionuclide fate and effects

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The studies reported here deal with the full range of contaminant behavior and fate, from the initial physicochemical factors that govern radionuclide availability in terrestrial and aquatic environments to studies of contaminant transport by biological means. By design, we focus more on the biologically and chemically mediated transport processes and food-chain pathways than on the purely physical forms of contaminant transport, such as transport by wind and water

  2. Development and application of a catchment scale pesticide fate and transport model for use in drinking water risk assessment.

    Science.gov (United States)

    Pullan, S P; Whelan, M J; Rettino, J; Filby, K; Eyre, S; Holman, I P

    2016-09-01

    This paper describes the development and application of IMPT (Integrated Model for Pesticide Transport), a parameter-efficient tool for predicting diffuse-source pesticide concentrations in surface waters used for drinking water supply. The model was applied to a small UK headwater catchment with high frequency (8h) pesticide monitoring data and to five larger catchments (479-1653km(2)) with sampling approximately every 14days. Model performance was good for predictions of both flow (Nash Sutcliffe Efficiency generally >0.59 and PBIAS water resources to support operational and strategic risk assessments. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. What determines PCB concentrations in soils in rural and urban areas? Insights from a multi-media fate model for Switzerland as a case study.

    Science.gov (United States)

    Glüge, Juliane; Bogdal, Christian; Scheringer, Martin; Hungerbühler, Konrad

    2016-04-15

    Polychlorinated biphenyls (PCBs) are banned worldwide under the Stockholm Convention on Persistent Organic Pollutants. However, PCBs are still emitted in appreciable amounts from remaining primary sources in urban areas or landfills and are ubiquitous environmental contaminants, inter alia in soil and air. Concentrations of PCBs have been measured in various media by numerous studies worldwide. However, monitoring data do not always provide quantitative information about transport processes between different media, deposition fluxes to ground, or distribution of PCBs between environmental compartments. Also future trends in environmental contamination by PCBs cannot be predicted from monitoring data, but such information is highly relevant for decision-makers. Here, we present a new regionally resolved dynamic multimedia mass balance model for Switzerland to investigate the origin of PCBs in air and to investigate their long-term fate and mass balance in the environment. The model was validated with existing field data for PCBs. We find that advective inflow of PCBs from outside Switzerland into the atmospheric boundary layer is responsible for 80% of PCBs present in air in Switzerland, whereas Swiss emissions cause the remaining 20%. Furthermore, we show that the atmospheric deposition of the higher-chlorinated PCBs is dominated by particle-bound deposition, whereas the deposition of the lower-chlorinated PCBs is a combination of particle-bound and gaseous deposition. The volume fraction of particles in air is in both cases an important factor driving the deposition of PCBs to ground and, thus, contributing to the higher concentrations of PCBs generally observed in populated and polluted areas. Regional emissions influence the deposition fluxes only to a limited extent. We also find that secondary emissions from environmental reservoirs do not exceed primary emissions for all PCB congeners until at least 2036. Finally, we use our model to evaluate the effect of

  4. Data worth and prediction uncertainty for pesticide transport and fate models in Nebraska and Maryland, United States

    Science.gov (United States)

    Nolan, Bernard T.; Malone, Robert W.; Doherty, John E.; Barbash, Jack E.; Ma, Liwang; Shaner, Dale L.

    2015-01-01

    BACKGROUND Complex environmental models are frequently extrapolated to overcome data limitations in space and time, but quantifying data worth to such models is rarely attempted. The authors determined which field observations most informed the parameters of agricultural system models applied to field sites in Nebraska (NE) and Maryland (MD), and identified parameters and observations that most influenced prediction uncertainty. RESULTS The standard error of regression of the calibrated models was about the same at both NE (0.59) and MD (0.58), and overall reductions in prediction uncertainties of metolachlor and metolachlor ethane sulfonic acid concentrations were 98.0 and 98.6% respectively. Observation data groups reduced the prediction uncertainty by 55–90% at NE and by 28–96% at MD. Soil hydraulic parameters were well informed by the observed data at both sites, but pesticide and macropore properties had comparatively larger contributions after model calibration. CONCLUSIONS Although the observed data were sparse, they substantially reduced prediction uncertainty in unsampled regions of pesticide breakthrough curves. Nitrate evidently functioned as a surrogate for soil hydraulic data in well-drained loam soils conducive to conservative transport of nitrogen. Pesticide properties and macropore parameters could most benefit from improved characterization further to reduce model misfit and prediction uncertainty.   

  5. Multimedia fate and source apportionment of polycyclic aromatic hydrocarbons in a coking industry city in Northern China

    International Nuclear Information System (INIS)

    Wang, Y.L.; Xia, Z.H.; Liu, D.; Qiu, W.X.; Duan, X.L.; Wang, R.; Liu, W.J.; Zhang, Y.H.; Wang, D.; Tao, S.; Liu, W.X.

    2013-01-01

    A steady state Level III fate model was established and applied to quantify source–receptor relationship in a coking industry city in Northern China. The local emission inventory of PAHs, as the model input, was acquired based on energy consumption and emission factors. The model estimations were validated by measured data and indicated remarkable variations in the paired isomeric ratios. When a rectification factor, based on the receptor-to-source ratio, was calculated by the fate model, the quantitatively verified molecular diagnostic ratios provided reasonable results of local PAH emission sources. Due to the local ban and measures on small scale coking activities implemented from the beginning of 2004, the model calculations indicated that the local emission amount of PAHs in 2009 decreased considerably compared to that in 2003. -- Highlights: •A steady-state fate model could well elucidate the multimedia fate of PAHs. •A rectification factor for correcting the paired isomeric ratio was calculated. •The corrected isomeric ratios were successfully applied to source apportionment. -- Based on multimedia model correction, the specific isomeric ratios could provide reasonable apportionments for the local PAHs emission sources

  6. Modelling the influence of intermittent rain events on long-term fate and transport of organic air pollutants

    DEFF Research Database (Denmark)

    Jolliet, Olivier; Hauschild, Michael Zwicky

    2005-01-01

    through wet deposition, and an underestimation of travel distances, leading to the following questions: How strong is the influence of the intermittent character of rain on concentrations, residence times, deposited fractions and characteristic transport distances of different substances in air......The deposition of particles and substances in air is under strong influence of the precipitation patterns of the atmosphere. Most multimedia models, like type III Mackay models, treat rain as a continuous phenomenon. This may cause severe overestimation of the substance removal from the atmosphere......? Is there an expression which can provide an accurate approximation to be used in steady state multimedia models? Assuming a periodically intermittent rain, the mass of an emitted substance which is present in the air compartment is calculated as a function of the deposition rate constants during dry and wet periods...

  7. Examination of the uncertainty in contaminant fate and transport modeling: a case study in the Venice Lagoon.

    Science.gov (United States)

    Sommerfreund, J; Arhonditsis, G B; Diamond, M L; Frignani, M; Capodaglio, G; Gerino, M; Bellucci, L; Giuliani, S; Mugnai, C

    2010-03-01

    A Monte Carlo analysis is used to quantify environmental parametric uncertainty in a multi-segment, multi-chemical model of the Venice Lagoon. Scientific knowledge, expert judgment and observational data are used to formulate prior probability distributions that characterize the uncertainty pertaining to 43 environmental system parameters. The propagation of this uncertainty through the model is then assessed by a comparative analysis of the moments (central tendency, dispersion) of the model output distributions. We also apply principal component analysis in combination with correlation analysis to identify the most influential parameters, thereby gaining mechanistic insights into the ecosystem functioning. We found that modeled concentrations of Cu, Pb, OCDD/F and PCB-180 varied by up to an order of magnitude, exhibiting both contaminant- and site-specific variability. These distributions generally overlapped with the measured concentration ranges. We also found that the uncertainty of the contaminant concentrations in the Venice Lagoon was characterized by two modes of spatial variability, mainly driven by the local hydrodynamic regime, which separate the northern and central parts of the lagoon and the more isolated southern basin. While spatial contaminant gradients in the lagoon were primarily shaped by hydrology, our analysis also shows that the interplay amongst the in-place historical pollution in the central lagoon, the local suspended sediment concentrations and the sediment burial rates exerts significant control on the variability of the contaminant concentrations. We conclude that the probabilistic analysis presented herein is valuable for quantifying uncertainty and probing its cause in over-parameterized models, while some of our results can be used to dictate where additional data collection efforts should focus on and the directions that future model refinement should follow. (c) 2009 Elsevier Inc. All rights reserved.

  8. The fate of pelagic CaCO3 production in a high CO2 ocean: a model study

    Directory of Open Access Journals (Sweden)

    C. Ethe

    2007-07-01

    Full Text Available This model study addresses the change in pelagic calcium carbonate production (CaCO3, as calcite in the model and dissolution in response to rising atmospheric CO2. The parameterization of CaCO3 production includes a dependency on the saturation state of seawater with respect to calcite. It was derived from laboratory and mesocosm studies on particulate organic and inorganic carbon production in Emiliania huxleyi as a function of pCO2. The model predicts values of CaCO3 production and dissolution in line with recent estimates. The effect of rising pCO2 on CaCO3 production and dissolution was quantified by means of model simulations forced with atmospheric CO2 increasing at a rate of 1% per year from 286 ppm to 1144 ppm over a 140 year time-period. The simulation predicts a decrease of CaCO3 production by 27%. The combined change in production and dissolution of CaCO3 yields an excess uptake of CO2 from the atmosphere by the ocean of 5.9 GtC over the period of 140 years.

  9. Modeling the fate of nitrogen on the catchment scale using a spatially explicit hydro-biogeochemical simulation system

    Science.gov (United States)

    Klatt, S.; Butterbach-Bahl, K.; Kiese, R.; Haas, E.; Kraus, D.; Molina-Herrera, S. W.; Kraft, P.

    2015-12-01

    The continuous growth of the human population demands an equally growing supply for fresh water and food. As a result, available land for efficient agriculture is constantly diminishing which forces farmers to cultivate inferior croplands and intensify agricultural practices, e.g., increase the use of synthetic fertilizers. This intensification of marginal areas in particular will cause a dangerous rise in nitrate discharge into open waters or even drinking water resources. In order to reduce the amount of nitrate lost by surface runoff or lateral subsurface transport, bufferstrips have proved to be a valuable means. Current laws, however, promote rather static designs (i.e., width and usage) even though a multitude of factors, e.g., soil type, slope, vegetation and the nearby agricultural management, determines its effectiveness. We propose a spatially explicit modeling approach enabling to assess the effects of those factors on nitrate discharge from arable lands using the fully distributed hydrology model CMF coupled to the complex biogeochemical model LandscapeDNDC. Such a modeling scheme allows to observe the displacement of dissolved nutrients in both vertical and horizontal directions and serves to estimate both their uptake by the vegetated bufferstrip and loss to the environment. First results indicate a significant reduction of nitrate loss in the presence of a bufferstrip (2.5 m). We show effects induced by various buffer strip widths and plant cover on the nitrate retention.

  10. Assessing the fate of nutrients and carbon in the bioenergy chain through the modeling of biomass growth and conversion.

    Science.gov (United States)

    François, Jessica; Fortin, Mathieu; Patisson, Fabrice; Dufour, Anthony

    2014-12-02

    A forest growth model was coupled to a model of combined heat and power (CHP) production in a gasification plant developed in Aspen Plus. For a given production, this integrated forest-to-energy model made it possible to predict the annual flows in wood biomass, carbon, and nutrients, including N, S, P, and K, from the forest to the air emissions (NOx, SOx, PAH, etc.) and ash flows. We simulated the bioenergy potential of pure even-aged high-forest stands of European beech, an abundant forest type in Northeastern France. Two forest management practices were studied, a standard-rotation and a shorter-rotation scenario, along with two wood utilizations: with or without fine woody debris (FWD) harvesting. FWD harvesting tended to reduce the forested area required to supply the CHP by 15–22% since larger amounts of energy wood were available for the CHP process, especially in the short-rotation scenario. Because less biomass was harvested, the short-rotation scenario with FWD decreased the nutrient exports per hectare and year by 4–21% compared to standard practices but increased the amount of N, S, and P in the CHP process by 2–9%. This increase in the input nutrient flows had direct consequences on the inorganic air emissions, thus leading to additional NOx and SO2 emissions. This model is a valuable tool for assessing the life cycle inventories of the entire bioenergy chain.

  11. Modelling the fate of six common pharmaceuticals in a small stream: quantification of attenuation and retention in different stream-specific environments

    Science.gov (United States)

    Riml, Joakim; Wörman, Anders; Kunkel, Uwe; Radke, Michael

    2013-04-01

    Detection of pharmaceutical residues in streaming waters is common in urbanized areas. Although the occurrence and source of these micropollutants is known, their behavior in these aquatic ecosystems is still only partly understood. Specifically, quantitative information of biogeochemical processes in stream-specific environments where predominant reactions occur is often missing. In an attempt to address this knowledge gap, we performed simultaneous tracer tests in Säva Brook, Sweden, with bezafibrate, clofibric acid, diclofenac, ibuprofen, metoprolol and naproxen, as well as with the more inert solutes uranine and Rhodamine WT. The breakthrough curves at five successive sampling stations along a 16 km long stream reach were evaluated using a coupled physical-biogeochemical model framework containing surface water transport together with a representation of transient storage in slow/immobile zones of the stream. The multi-tracer experiment opens for decoupling of hydrological and biogeochemical contribution to the fate, and by linking impact and sensitivity analyses to relative significance of model parameters the most important processes for each contaminant were elucidated. Specifically for Säva Brook, the proposed methodology revealed that the pharmaceutical-contaminated stream water remained in the storage zones for times corresponding to 5-25% of the flow time of the stream. Furthermore, the results indicate a great variability in terms of predominant biogeochemical processes between the different contaminants. Rapid reactions occurring in the transient storage zone attenuated both ibuprofen and clofibric acid, and we conclude that a major degradation pathway for these contaminants was biodegradation in the hyporheic zone. In contrast, bezafibrate, metoprolol, and naproxen were mainly affected by sorption both in the storage zone and the main channel, while diclofenac displayed negligible effects of biogeochemical reactions.

  12. Fate of Carbohydrates and Lignin during Composting and Mycelium Growth of Agaricus bisporus on Wheat Straw Based Compost

    Science.gov (United States)

    Jurak, Edita; Punt, Arjen M.; Arts, Wim; Kabel, Mirjam A.; Gruppen, Harry

    2015-01-01

    In wheat straw based composting, enabling growth of Agaricus bisporus mushrooms, it is unknown to which extent the carbohydrate-lignin matrix changes and how much is metabolized. In this paper we report yields and remaining structures of the major components. During the Phase II of composting 50% of both xylan and cellulose were metabolized by microbial activity, while lignin structures were unaltered. During A. bisporus’ mycelium growth (Phase III) carbohydrates were only slightly consumed and xylan was found to be partially degraded. At the same time, lignin was metabolized for 45% based on pyrolysis GC/MS. Remaining lignin was found to be modified by an increase in the ratio of syringyl (S) to guaiacyl (G) units from 0.5 to 0.7 during mycelium growth, while fewer decorations on the phenolic skeleton of both S and G units remained. PMID:26436656

  13. Skin Stem Cell Hypotheses and Long Term Clone Survival - Explored Using Agent-based Modelling

    OpenAIRE

    Li, X.; Upadhyay, A.K.; Bullock, A.J.; Dicolandrea, T.; Xu, J.; Binder, R.L.; Robinson, M.K.; Finlay, D.R.; Mills, K.J.; Bascom, C.C.; Kelling, C.K.; Isfort, R.J.; Haycock, J.W.; MacNeil, S.; Smallwood, R.H.

    2013-01-01

    Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epiderm...

  14. Logic programming to predict cell fate patterns and retrodict genotypes in organogenesis.

    Science.gov (United States)

    Hall, Benjamin A; Jackson, Ethan; Hajnal, Alex; Fisher, Jasmin

    2014-09-06

    Caenorhabditis elegans vulval development is a paradigm system for understanding cell differentiation in the process of organogenesis. Through temporal and spatial controls, the fate pattern of six cells is determined by the competition of the LET-23 and the Notch signalling pathways. Modelling cell fate determination in vulval development using state-based models, coupled with formal analysis techniques, has been established as a powerful approach in predicting the outcome of combinations of mutations. However, computing the outcomes of complex and highly concurrent models can become prohibitive. Here, we show how logic programs derived from state machines describing the differentiation of C. elegans vulval precursor cells can increase the speed of prediction by four orders of magnitude relative to previous approaches. Moreover, this increase in speed allows us to infer, or 'retrodict', compatible genomes from cell fate patterns. We exploit this technique to predict highly variable cell fate patterns resulting from dig-1 reduced-function mutations and let-23 mosaics. In addition to the new insights offered, we propose our technique as a platform for aiding the design and analysis of experimental data. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Simplified fate, exposure and effect modelling of chemical compounds in the case of lacking complete assessment data sets

    DEFF Research Database (Denmark)

    Birkved, Morten; Heijungs, R; Olsen, Stig Irving

    2004-01-01

    availability limitations to select key parameters that explain much of the variance and at the same time are relatively easily available. Further, PLSR was used to derive linear SBM models. In further investigations multiple linear regression (MLR) will be used to derive predictive equations for SBM...... characterisation factors. The result of this will be tested on common sense and environmental knowledge and a mechanistically understandable SBM will be developed by rounding off the coefficients of the regression equations. Preliminary results including PLSR derived linear SBM’s of this work is presented........g. in terms of how the input parameters enter the regression equation. In the absence of a final OMNIITOX BM a model of similar complexity USES-LCA, has been used as surrogate BM. We have applied partial least square of latent structure regression (PLSR) and combined insights from this with knowledge on data...

  16. Characterising the fate of nitrogenous waste from the sea-cage aquaculture of spiny lobsters using numerical modelling.

    Science.gov (United States)

    Lee, Soxi; Hartstein, Neil D; Jeffs, Andrew

    2015-06-01

    Although the aquaculture of spiny lobsters has been expanding since the 1970s, very little is known about the potential environmental impacts on water quality of this activity. This study quantified the production of dissolved inorganic nitrogen (DIN) from Australasian red spiny lobsters, Jasus edwardsii, in the laboratory, and these data were then used in a numerical model to predict the dispersal pattern of DIN from a hypothetical commercial spiny lobster farm for a coastal site where such a farm would typically be located. Modelling scenarios were set up with combinations of two different stocking densities (3 and 5 kg m(-3)), two different diets (mussels and moist artificial diet) and three different feed conversion ratios (FCR = 3, 5 and 28). DIN excretion rate from unfed lobsters in the laboratory on average was 1.10 ± 0.12 μg N g(-1) h(-1) while feeding lobsters on mussels and artificial diet increased DIN excretion significantly by around eightfold and twofold, respectively. Ammonia was consistently the dominant contributor to measured DIN output from lobsters. Modelling results indicated that the mean elevated DIN from a hypothetical farm where the lobsters were fed with mussels ranged from 7 up to 20 μg N L(-1) with increasing stocking density and FCR and was 30-150 % higher than the mean elevated DIN resulting from lobsters fed with artificial diet. Overall, the results indicated that DIN output from the hypothetical spiny lobster sea-cage farming is unlikely to be problematic using the FCR, stocking density, and the number of cages modelled at the coastal site in this study. Furthermore, feeding lobsters with artificial diet can help maintain a lower DIN output than seafood, such as mussels or trash fish.

  17. Elucidating the Role of CaMKK in Cell Cycle and Cell Fate using a C. elegans model

    Science.gov (United States)

    2000-07-01

    domain) or the Aspergillus homologue, anCaMKB (48% overall)(Figure 2). To functionally compare the C. elegans proteins with their mammalian homologues...subunit on the yeast proteome . EMBO J 18, 4157-68 (1999). 14 19. H. Tokumitsu et aL, Substrate recognition by Ca2+/Calmodulin-dependent protein kinase...2 Nicholas School of the Environment Duke University, Durham, NC 27710 Ethan@Duke.Edu In a variety of models, from Xenopus oocytes to Aspergillus to

  18. A threshold model for receptor tyrosine kinase signaling specificity and cell fate determination [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Allen Zinkle

    2018-06-01

    Full Text Available Upon ligand engagement, the single-pass transmembrane receptor tyrosine kinases (RTKs dimerize to transmit qualitatively and quantitatively different intracellular signals that alter the transcriptional landscape and thereby determine the cellular response. The molecular mechanisms underlying these fundamental events are not well understood. Considering recent insights into the structural biology of fibroblast growth factor signaling, we propose a threshold model for RTK signaling specificity in which quantitative differences in the strength/longevity of ligand-induced receptor dimers on the cell surface lead to quantitative differences in the phosphorylation of activation loop (A-loop tyrosines as well as qualitative differences in the phosphorylation of tyrosines mediating substrate recruitment. In this model, quantitative differences on A-loop tyrosine phosphorylation result in gradations in kinase activation, leading to the generation of intracellular signals of varying amplitude/duration. In contrast, qualitative differences in the pattern of tyrosine phosphorylation on the receptor result in the recruitment/activation of distinct substrates/intracellular pathways. Commensurate with both the dynamics of the intracellular signal and the types of intracellular pathways activated, unique transcriptional signatures are established. Our model provides a framework for engineering clinically useful ligands that can tune receptor dimerization stability so as to bias the cellular transcriptome to achieve a desired cellular output.

  19. A transport and fate model of C-14 in a bay of the Baltic Sea at SFR. Today and in future

    International Nuclear Information System (INIS)

    Kumblad, L.

    2001-06-01

    The environmental transport and fate of a hypothetical release of radioactive carbon-14 from SFR-1 (the final repository for radioactive operational waste) was investigated using an ecosystem modelling approach. The approach involved identification, quantification and dynamic modelling of the main flows and storages of carbon both in the physical environment and in the food web. Carbon-14 was in the model introduced into the food web via photosynthesising organisms. Contamination of the aquatic ecosystem above SFR-1 was then assessed assuming a release of 5.13 x 10 7 Bq/year for 1,000 years. Modelling results were used to estimate steady-state C-14 concentrations in biota, exposure (Gy) of biota and dose (Sv) to humans consuming contaminated organisms both if the discharge occurred today (2000 AD)and if it occurred in the future (4000 AD). Since the modelled area is characterised by a fast water exchange, most of the discharged C-14 was flushed out of the system more or less immediately (99.8% and 98.4% at 2000 AD and 4000 AD, respectively). However, a small fraction of the discharge was assimilated by primary producers (0.18% and 2.11%), which enabled subsequent transfer of C-14 to organisms at higher trophic levels (e.g. fish, seals and humans). The exported C-14 from the area was diluted to very low concentrations in the large recipient outside. Estimated exposures were very low, and differed significantly among the studied biota (17.2 x 10 -12 to 2.3 x 10 -6 Gy). In general the highest exposures were observed in benthic plants and benthic grazers followed by fish and benthos. Humans consuming large quantities of locally produced food (e.g.fish, mussels and algae) will receive an exposure in case of C-14 contamination. Estimated doses to humans were approximately 10-100 nSv per year, which is significantly lower than restrictions by the authorities. The developed model was also used to evaluate implications of various assumptions concerning the route of C-14

  20. Regional long-term model of radioactivity dispersion and fate in the Northwestern Pacific and adjacent seas: application to the Fukushima Dai-ichi accident.

    Science.gov (United States)

    Maderich, V; Bezhenar, R; Heling, R; de With, G; Jung, K T; Myoung, J G; Cho, Y-K; Qiao, F; Robertson, L

    2014-05-01

    The compartment model POSEIDON-R was modified and applied to the Northwestern Pacific and adjacent seas to simulate the transport and fate of radioactivity in the period 1945-2010, and to perform a radiological assessment on the releases of radioactivity due to the Fukushima Dai-ichi accident for the period 2011-2040. The model predicts the dispersion of radioactivity in the water column and in sediments, the transfer of radionuclides throughout the marine food web, and subsequent doses to humans due to the consumption of marine products. A generic predictive dynamic food-chain model is used instead of the biological concentration factor (BCF) approach. The radionuclide uptake model for fish has as a central feature the accumulation of radionuclides in the target tissue. The three layer structure of the water column makes it possible to describe the vertical structure of radioactivity in deep waters. In total 175 compartments cover the Northwestern Pacific, the East China and Yellow Seas and the East/Japan Sea. The model was validated from (137)Cs data for the period 1945-2010. Calculated concentrations of (137)Cs in water, bottom sediments and marine organisms in the coastal compartment, before and after the accident, are in close agreement with measurements from the Japanese agencies. The agreement for water is achieved when an additional continuous flux of 3.6 TBq y(-1) is used for underground leakage of contaminated water from the Fukushima Dai-ichi NPP, during the three years following the accident. The dynamic food web model predicts that due to the delay of the transfer throughout the food web, the concentration of (137)Cs for piscivorous fishes returns to background level only in 2016. For the year 2011, the calculated individual dose rate for Fukushima Prefecture due to consumption of fishery products is 3.6 μSv y(-1). Following the Fukushima Dai-ichi accident the collective dose due to ingestion of marine products for Japan increased in 2011 by a

  1. A transport and fate model of C-14 in a bay of the Baltic Sea at SFR. Today and in future

    Energy Technology Data Exchange (ETDEWEB)

    Kumblad, L. [Stockholm Univ. (Sweden). Dept. of Systems Ecology

    2001-06-01

    The environmental transport and fate of a hypothetical release of radioactive carbon-14 from SFR-1 (the final repository for radioactive operational waste) was investigated using an ecosystem modelling approach. The approach involved identification, quantification and dynamic modelling of the main flows and storages of carbon both in the physical environment and in the food web. Carbon-14 was in the model introduced into the food web via photosynthesising organisms. Contamination of the aquatic ecosystem above SFR-1 was then assessed assuming a release of 5.13 x 10{sup 7} Bq/year for 1,000 years. Modelling results were used to estimate steady-state C-14 concentrations in biota, exposure (Gy) of biota and dose (Sv) to humans consuming contaminated organisms both if the discharge occurred today (2000 AD)and if it occurred in the future (4000 AD). Since the modelled area is characterised by a fast water exchange, most of the discharged C-14 was flushed out of the system more or less immediately (99.8% and 98.4% at 2000 AD and 4000 AD, respectively). However, a small fraction of the discharge was assimilated by primary producers (0.18% and 2.11%), which enabled subsequent transfer of C-14 to organisms at higher trophic levels (e.g. fish, seals and humans). The exported C-14 from the area was diluted to very low concentrations in the large recipient outside. Estimated exposures were very low, and differed significantly among the studied biota (17.2 x 10{sup -12} to 2.3 x 10{sup -6} Gy). In general the highest exposures were observed in benthic plants and benthic grazers followed by fish and benthos. Humans consuming large quantities of locally produced food (e.g.fish, mussels and algae) will receive an exposure in case of C-14 contamination. Estimated doses to humans were approximately 10-100 nSv per year, which is significantly lower than restrictions by the authorities. The developed model was also used to evaluate implications of various assumptions concerning the

  2. Evaluating the fate of organic compounds in the Cameroon ...

    African Journals Online (AJOL)

    ISHIOMA

    A level III fugacity model was developed to evaluate the fate of chemicals in the Cameroon ... environment, quantify intermedia transfer processes and the major loss ... perform baseline exposure and risk assessment of chemicals used in ...

  3. Prediction of the fate of radioactive material in the South Pacific Ocean using a global high-resolution ocean model

    International Nuclear Information System (INIS)

    Hazell, Douglas R.; England, Matthew H.

    2003-01-01

    We investigate the release of radioactive contaminants from Moruroa Atoll in a global high-resolution off-line model. The spread of tracer is studied in a series of simulations with varying release depths and time-scales, and into ocean velocity fields corresponding to long-term annual mean, seasonal, and interannually varying scenarios. In the instantaneous surface release scenarios we find that the incorporation of a seasonal cycle greatly influences tracer advection, with maximum concentrations still found within the French Polynesia region after 10 years. In contrast, the maximum trace is located in the southeast Pacific when long-term annual mean fields are used. This emphasizes the importance of the seasonal cycle in models of pollution dispersion on large scales. We further find that during an El Nino/Southern Oscillation (ENSO) event reduced currents in the region of Moruroa Atoll result in increased concentrations of radioactive material in French Polynesia, as direct flushing from the source is reduced. In terms of the sensitivity to tracer release time-rates, we find that a gradual input results in maximum concentrations in the near vicinity of French Polynesia. This contrasts the instantaneous-release scenarios, which see maximum concentrations and tracer spread across much of the South Pacific Ocean. For example, in as little as seven years radioactive contamination can reach the east coast of Australia diluted by only a factor of 1000 of the initial concentration. A comparison of results is made with previous studies. Overall, we find much higher concentrations of radionuclides in the South Pacific than has previously been predicted using coarser-resolution models

  4. Modeling the fate of antibiotic resistance genes and class 1 integrons during thermophilic anaerobic digestion of municipal wastewater solids.

    Science.gov (United States)

    Burch, Tucker R; Sadowsky, Michael J; LaPara, Timothy M

    2015-10-19

    This study investigated the use of thermophilic anaerobic digestion for removing antibiotic resistance genes (ARGs) from residual municipal wastewater solids. Four laboratory-scale anaerobic digesters were operated in 8-day batch cycles at temperatures of 40, 56, 60, and 63 °C. Two tetracycline resistance genes (tet(W) and tet(X)), a fluoroquinolone resistance gene (qnrA), the integrase gene of class 1 integrons (intI1), 16S rRNA genes of all Bacteria, and 16S rRNA genes of methanogens were quantified using real-time quantitative PCR. ARG and intI1 quantities decreased at all temperatures and were described well by a modified form of the Collins-Selleck disinfection kinetic model. The magnitudes of Collins-Selleck kinetic parameters were significantly greater at thermophilic temperatures compared to 40 °C, but few statistically significant differences were observed among these parameters for the thermophilic anaerobic digesters. This model allows for the direct comparison of different operating conditions (e.g., temperature) on anaerobic digestion performance in mitigating the quantity of ARGs in wastewater solids and could be used to design full-scale anaerobic digesters to specifically treat for ARGs as a "pollutant" of concern.

  5. Do environmental dynamics matter in fate models? Exploring scenario dynamics for a terrestrial and an aquatic system.

    Science.gov (United States)

    Morselli, Melissa; Terzaghi, Elisa; Di Guardo, Antonio

    2018-01-24

    Nowadays, there is growing interest in inserting more ecological realism into risk assessment of chemicals. On the exposure evaluation side, this can be done by studying the complexity of exposure in the ecosystem, niche partitioning, e.g. variation of the exposure scenario. Current regulatory predictive approaches, to ensure simplicity and predictive ability, generally keep the scenario as static as possible. This could lead to under or overprediction of chemical exposure depending on the chemical and scenario simulated. To account for more realistic exposure conditions, varying temporally and spatially, additional scenario complexity should be included in currently used models to improve their predictive ability. This study presents two case studies (a terrestrial and an aquatic one) in which some polychlorinated biphenyls (PCBs) were simulated with the SoilPlusVeg and ChimERA models to show the importance of scenario variation in time (biotic and abiotic compartments). The results outlined the importance of accounting for planetary boundary layer variation and vegetation dynamics to accurately predict air concentration changes and the timing of chemical dispersion from the source in terrestrial systems. For the aquatic exercise, the results indicated the need to account for organic carbon forms (particulate and dissolved organic carbon) and vegetation biomass dynamics. In both cases the range of variation was up to two orders of magnitude depending on the congener and scenario, reinforcing the need for incorporating such knowledge into exposure assessment.

  6. Controlling gene networks and cell fate with precision-targeted DNA-binding proteins and small-molecule-based genome readers.

    Science.gov (United States)

    Eguchi, Asuka; Lee, Garrett O; Wan, Fang; Erwin, Graham S; Ansari, Aseem Z

    2014-09-15

    Transcription factors control the fate of a cell by regulating the expression of genes and regulatory networks. Recent successes in inducing pluripotency in terminally differentiated cells as well as directing differentiation with natural transcription factors has lent credence to the efforts that aim to direct cell fate with rationally designed transcription factors. Because DNA-binding factors are modular in design, they can be engineered to target specific genomic sequences and perform pre-programmed regulatory functions upon binding. Such precision-tailored factors can serve as molecular tools to reprogramme or differentiate cells in a targeted manner. Using different types of engineered DNA binders, both regulatory transcriptional controls of gene networks, as well as permanent alteration of genomic content, can be implemented to study cell fate decisions. In the present review, we describe the current state of the art in artificial transcription factor design and the exciting prospect of employing artificial DNA-binding factors to manipulate the transcriptional networks as well as epigenetic landscapes that govern cell fate.

  7. Monitoring and Modeling the Fate and Transport of Nitrate in the Vadose Zone beneath a Suwannee River Basin Vegetable Farm

    Science.gov (United States)

    Albert, M. A.; Graham, W. D.; Graetz, D.

    2002-05-01

    The Suwannee River basin has received much attention in recent years due to increased nitrogen levels in the groundwater-fed rivers of the basin that could seriously affect the welfare of this ecosystem. Nitrogen levels have increased from 0.1mg/l NO3-N to more than 5 mg/L NO3-N in many springs in the Suwannee Basin over the past 40 years. Nitrate concentrations in the Suwannee River itself have been increasing at the rate of .02 mg/L per year over the past 20 years. Suwannee River nitrate loads increase from 2300 kg/day to 6000 kg/day over a 33 mile stretch of the river between Dowling Park and Branford, Florida. Within this stretch of river, 89% of the nitrate loading appeared to come from the lower two-thirds, where agriculture is the dominant land use. The objective of this research is to monitor and model the impacts of alternative nutrient and water management practices on soil water quality, groundwater quality and crop yield at a commercial vegetable farm in the Suwannee River Basin. Groundwater monitoring wells, suction lysimeters, soil cores and TDR probes are used to monitor water and nitrogen transport at the site. Periodic plant biomass sampling is conducted to determine nitrogen uptake by the plants and to estimate crop yield. Field data show that two-thirds of the nitrogen applied to the spring 2001 potato crop leached to groundwater due to excessive irrigation and poor nitrogen uptake efficiency by the potatoes. The DSSAT35-Potato Crop model and the LEACHM vadose-zone model were calibrated for the spring 2001 potato crop and used to predict nitrogen leaching and crop yield for alternative management practices. Simulation results show that by reducing the duration of irrigation, reducing the fertilizer application rate, and improving the timing of fertilizer applications, nitrogen leaching can be reduced by approximately 50% while maintaining acceptable crop yields. Results of this project will ultimately be used to develop best management practices

  8. Cell fate determination dynamics in bacteria

    Science.gov (United States)

    Kuchina, Anna; Espinar, Lorena; Cagatay, Tolga; Garcia-Ojalvo, Jordi; Suel, Gurol

    2010-03-01

    The fitness of an organism depends on many processes that serve the purpose to adapt to changing environment in a robust and coordinated fashion. One example of such process is cellular fate determination. In the presence of a variety of alternative responses each cell adopting a particular fate represents a ``choice'' that must be tightly regulated to ensure the best survival strategy for the population taking into account the broad range of possible environmental challenges. We investigated this problem in the model organism B.Subtilis which under stress conditions differentiates terminally into highly resistant spores or initiates an alternative transient state of competence. The dynamics underlying cell fate choice remains largely unknown. We utilize quantitative fluorescent microscopy to track the activities of genes involved in these responses on a single-cell level. We explored the importance of temporal interactions between competing cell fates by re- engineering the differentiation programs. I will discuss how the precise dynamics of cellular ``decision-making'' governed by the corresponding biological circuits may enable cells to adjust to diverse environments and determine survival.

  9. Studies of the fate of sulfur trioxide in coal-fired utility boilers based on modified selected condensation methods.

    Science.gov (United States)

    Cao, Yan; Zhou, Hongcang; Jiang, Wu; Chen, Chien-Wei; Pan, Wei-Ping

    2010-05-01

    The formation of sulfur trioxide (SO(3)) in coal-fired utility boilers can have negative effects on boiler performance and operation, such as fouling and corrosion of equipment, efficiency loss in the air preheater (APH), increase in stack opacity, and the formation of PM(2.5). Sulfur trioxide can also compete with mercury when bonding with injected activated carbons. Tests in a lab-scale reactor confirmed there are major interferences between fly ash and SO(3) during SO(3) sampling. A modified SO(3) procedure to maximize the elimination of measurement biases, based on the inertial-filter-sampling and the selective-condensation-collecting of SO(3), was applied in SO(3) tests in three full-scale utility boilers. For the two units burning bituminous coal, SO(3) levels starting at 20 to 25 ppmv at the inlet to the selective catalytic reduction (SCR), increased slightly across the SCR, owing to catalytic conversion of SO(2) to SO(3,) and then declined in other air pollutant control device (APCD) modules downstream to approximately 5 ppmv and 15 ppmv at the two sites, respectively. In the unit burning sub-bituminous coal, the much lower initial concentration of SO(3) estimated to be approximately 1.5 ppmv at the inlet to the SCR was reduced to about 0.8 ppmv across the SCR and to about 0.3 ppmv at the exit of the wet flue gas desulfurization (WFGD). The SO(3) removal efficiency across the WFGD scrubbers at the three sites was generally 35% or less. Reductions in SO(3) across either the APH or the dry electrostatic precipitator (ESP) in units burning high-sulfur bituminous coal were attributed to operating temperatures being below the dew point of SO(3).

  10. Occurrence and fate of pharmaceutically active compounds in the largest municipal wastewater treatment plant in Southwest China: mass balance analysis and consumption back-calculated model.

    Science.gov (United States)

    Yan, Qing; Gao, Xu; Huang, Lei; Gan, Xiu-Mei; Zhang, Yi-Xin; Chen, You-Peng; Peng, Xu-Ya; Guo, Jin-Song

    2014-03-01

    The occurrence and fate of twenty-one pharmaceutically active compounds (PhACs) were investigated in different steps of the largest wastewater treatment plant (WWTP) in Southwest China. Concentrations of these PhACs were determined in both wastewater and sludge phases by a high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Results showed that 21 target PhACs were present in wastewater and 18 in sludge. The calculated total mass load of PhACs per capita to the influent, the receiving water and sludge were 4.95mgd(-1)person(-1), 889.94μgd(-1)person(-1) and 78.57μgd(-1)person(-1), respectively. The overall removal efficiency of the individual PhACs ranged from "negative removal" to almost complete removal. Mass balance analysis revealed that biodegradation is believed to be the predominant removal mechanism, and sorption onto sludge was a relevant removal pathway for quinolone antibiotics, azithromycin and simvastatin, accounting for 9.35-26.96% of the initial loadings. However, the sorption of the other selected PhACs was negligible. The overall pharmaceutical consumption in Chongqing, China, was back-calculated based on influent concentration by considering the pharmacokinetics of PhACs in humans. The back-estimated usage was in good agreement with usage of ofloxacin (agreement ratio: 72.5%). However, the back-estimated usage of PhACs requires further verification. Generally, the average influent mass loads and back-calculated annual per capita consumption of the selected antibiotics were comparable to or higher than those reported in developed countries, while the case of other target PhACs was opposite. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Ethoprophos fate on soil-water interface and effects on non-target terrestrial and aquatic biota under Mediterranean crop-based scenarios.

    Science.gov (United States)

    Leitão, Sara; Moreira-Santos, Matilde; Van den Brink, Paul J; Ribeiro, Rui; José Cerejeira, M; Sousa, José Paulo

    2014-05-01

    The present study aimed to assess the environmental fate of the insecticide and nematicide ethoprophos in the soil-water interface following the pesticide application in simulated maize and potato crops under Mediterranean agricultural conditions, particularly of irrigation. Focus was given to the soil-water transfer pathways (leaching and runoff), to the pesticide transport in soil between pesticide application (crop row) and non-application areas (between crop rows), as well as to toxic effects of the various matrices on terrestrial and aquatic biota. A semi-field methodology mimicking a "worst-case" ethoprophos application (twice the recommended dosage for maize and potato crops: 100% concentration v/v) in agricultural field situations was used, in order to mimic a possible misuse by the farmer under realistic conditions. A rainfall was simulated under a slope of 20° for both crop-based scenarios. Soil and water samples were collected for the analysis of pesticide residues. Ecotoxicity of soil and aquatic samples was assessed by performing lethal and sublethal bioassays with organisms from different trophic levels: the collembolan Folsomia candida, the earthworm Eisenia andrei and the cladoceran Daphnia magna. Although the majority of ethoprophos sorbed to the soil application area, pesticide concentrations were detected in all water matrices illustrating pesticide transfer pathways of water contamination between environmental compartments. Leaching to groundwater proved to be an important transfer pathway of ethoprophos under both crop-based scenarios, as it resulted in high pesticide concentration in leachates from Maize (130µgL(-1)) and Potato (630µgL(-1)) crop scenarios, respectively. Ethoprophos application at the Potato crop scenario caused more toxic effects on terrestrial and aquatic biota than at the Maize scenario at the recommended dosage and lower concentrations. In both crop-based scenarios, ethoprophos moved with the irrigation water flow to the

  12. Investigating the Toxicity and Environmental Fate of Graphene Nanomaterials

    Science.gov (United States)

    The Hersam Laboratory at Northwestern University works with the Center for Environmental Implications of Nanotechnology and the United States Environmental Protection Agency to study the toxicity and environmental fate of emergent nanomaterials, specifically carbon-based nanomate...

  13. Glioma cell fate decisions mediated by Dll1-Jag1-Fringe in Notch1 signaling pathway.

    Science.gov (United States)

    Shi, Xiaofei; Wang, Ruiqi

    2017-09-21

    The Notch family of proteins plays a vital role in determining cell fates, such as proliferation, differentiation, and apoptosis. It has been shown that Notch1 and its ligands, Dll1 and Jag1, are overexpressed in many glioma cell lines and primary human gliomas. The roles of Notch1 in some cancers have been firmly established, and recent data implicate that it plays important roles in glioma cell fate decisions. This paper focuses on devising a specific theoretical framework that incorporates Dll1, Jag1, and Fringe in Notch1 signaling pathway to explore their functional roles of these proteins in glioma cells in the tumorigenesis and progression of human gliomas, and to study how glioma cell fate decisions are modulated by both trans-activation and cis-inhibition. This paper presents a computational model for Notch1 signaling pathway in glioma cells. Based on the bifurcation analysis of the model, we show that how the glioma cell fate decisions are modulated by both trans-activation and cis-inhibition mediated by the Fringe protein, providing insight into the design and control principles of the Notch signaling system and the gliomas. This paper presents a computational model for Notch1 signaling pathway in glioma cells based on intertwined dynamics with cis-inhibition and trans-activation involving the proteins Notch1, Dll1, Jag1, and Fringe. The results show that how the glioma cell fate transitions are performed by the Notch1 signaling. Transition from grade III ∼ IV with significantly high Notch1 to grade I ∼ II with high Notch1, and then to normal cells by repressing the Fringe levels or decreasing the strength of enhancement induced by Fringe.

  14. Fate of pollutants post treatment of acid mine drainage with basic oxygen furnace slag: Validation of experimental results with a geochemical model

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2017-01-01

    Full Text Available (PRK) for the remediation of acid mine drainage. J. Hazard. Mater. 301, 332–341. Madzivire, G., Gitari, W.M., Vadapalli, V.R.K., Ojumu, T.V., Petrik, L.F., 2011. Fate of sulphate removed during the treatment of circumneutral mine water and acid mine...

  15. Modeling the long-term fate of agricultural nitrate in groundwater in the San Joaquin Valley, California

    Science.gov (United States)

    Chapelle, Francis H.; Campbell, Bruce G.; Widdowson, Mark A.; Landon, Mathew K.

    2013-01-01

    (POC) are the primary electron donors driving active denitrification in groundwater. The purpose of this chapter is to use a numerical mass balance modeling approach to quantitatively compare sources of electron donors (DOC, POC) and electron acceptors (dissolved oxygen, nitrate, and ferric iron) in order to assess the potential for denitrification to attenuate nitrate migration in the Central Valley aquifer.

  16. Model-Based Reasoning

    Science.gov (United States)

    Ifenthaler, Dirk; Seel, Norbert M.

    2013-01-01

    In this paper, there will be a particular focus on mental models and their application to inductive reasoning within the realm of instruction. A basic assumption of this study is the observation that the construction of mental models and related reasoning is a slowly developing capability of cognitive systems that emerges effectively with proper…

  17. Modelling of migration and fate of selected persistent organic pollutants in the Gulf of Gdansk and the Vistula catchment (Poland): selected results from the EU ELOISE EuroCat project

    Science.gov (United States)

    Zukowska, Barbara; Pacyna, Jozef; Namiesnik, Jacek

    2005-02-01

    The ELOISE EU EuroCat project integrated natural and social sciences to link the impacts affecting the coastal sea to the human activities developed along the catchments. In EuroCat project river catchments' changes and their impact on the inflow area were analysed. The information was linked with environmental models. The part of the EU ELOISE EuroCat project focusing on the Vistula River catchment and the Baltic Sea costal zone was named VisCat. Within the framework of the EU ELOISE EuroCat - VisCat project, CoZMo-POP (Coastal Zone Model for Persistent Organic Pollutants), a non-steady-state multicompartmental mass balance model of long-term chemical fate in the coastal environment or the drainage basin of a large lake environment was used. The model is parameterised and tested herein to simulate the long-term fate and distribution of selected HCHs (hexachlorocyclohexanes) and PCBs (polychlorinated biphenyls) in the Gulf of Gdansk and the Vistula River drainage basin environment. The model can also be used in the future to predict future concentrations in relation to various emission scenarios and in management of economic development and regulations of substance-emission to this environment. However, this would require more extensive efforts in the future on model parameterisation and validation in order to increase the confidence in current model outputs.

  18. Modeling the Environmental Fate of Graphene Oxide and Its Phototransformation Products in Brier Creek Watershed Using the Water Quality Analysis Simulation Program 8 (WASP8)

    Science.gov (United States)

    Han, Y.; Bouchard, D.; Chang, X.; Hsieh, H. S.; Knightes, C. D.; Spear, J.; Zepp, R. G.

    2017-12-01

    The production of graphene-family nanoparticles (GFNs) appreciably increased in recent years. Among GFNs, graphene oxide (GO) is one of the most highly studied members due to its inexpensive synthesis cost compared to graphene, its stability in aqueous media and its broad application. However, GO also has been found to be the most toxic among GFNs. Lab studies showed that GO undergoes phototransformation in surface waters, resulting in products that include reduced GO (rGO) and polycyclic aromatic hydrocarbons (PAHs). Due to technical and analytical limitations, it is still difficult to conduct in-situ measurement of GO and rGO concentrations released in the environment, and it is of utmost importance to establish a model that can predict their environmental exposure concentrations in the environment. In this study, we develop a fate and transport model to predict time-dependent environmental exposure concentrations of GO for the Brier Creek Watershed in the GA coastal plain. We investigate the influence of sunlight radiation on the distribution of GO and its phototransformation products in the watershed over a 20-year period using the most updated Water Quality Analysis Simulation Program (WASP8). Flow rate, sediment transport data and sunlight radiation data are input into WASP8, and WASP8 is used to internally calculate a GO phototransformation rate and productions of rGO and PAHs. Heteroaggregation coefficients of GO and rGO with suspended solids were measured in an EPA laboratory, and then input into WASP8. GO and rGO concentrations in the watershed are calculated by WASP8. Mass fraction results show that GO is the predominant species among GO derived species, which account for 99% of the mass throughout the whole watershed of interest, while rGO species, including free rGO and rGO heteroaggregated to suspended solids, only account for 1%. We also found that almost all free GO and rGO are present in water column due to their extremely low settling velocity. r

  19. Model-based Software Engineering

    DEFF Research Database (Denmark)

    Kindler, Ekkart

    2010-01-01

    The vision of model-based software engineering is to make models the main focus of software development and to automatically generate software from these models. Part of that idea works already today. But, there are still difficulties when it comes to behaviour. Actually, there is no lack in models...

  20. Fate of antibiotic resistance genes and its drivers during anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment.

    Science.gov (United States)

    Zhang, Junya; Chen, Meixue; Sui, Qianwen; Wang, Rui; Tong, Juan; Wei, Yuansong

    2016-10-01

    In this study, anaerobic digestion of mono-SS, MW-SS:FW and SS:MW-FW was investigated to understand the fate of ARGs and its drivers. Anaerobic digestion was effective for the reduction of metal resistance genes (MRGs), and could reduce the abundance of blaOXA-1, sulI and tetG, while sulII in co-digestion and blaTEM and ereA only in MW-SS. ARGs reduction could be partly attributed to the reduction of co-selective pressure from heavy metals reflected by MRGs. However, the abundance of mefA/E, ermB, ermF, tetM and tetX increased significantly. Anaerobic co-digestion, especially for MW-SS, could reduce total ARGs abundance compared with mono-SS, and evolution of bacterial community was the main driver for the fate of ARGs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Principles of models based engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dolin, R.M.; Hefele, J.

    1996-11-01

    This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.

  2. Data for developing metamodels to assess the fate, transport, and bioaccumulation of organic chemicals in rivers. Chemicals have log Kow ranging from 3 to 14, and rivers have mean annual discharges ranging from 1.09 to 3240 m3/s.

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset was developed to demonstrate how metamodels of high resolution, process-based models that simulate the fate, transport, and bioaccumulation of organic...

  3. Risk based modelling

    International Nuclear Information System (INIS)

    Chapman, O.J.V.; Baker, A.E.

    1993-01-01

    Risk based analysis is a tool becoming available to both engineers and managers to aid decision making concerning plant matters such as In-Service Inspection (ISI). In order to develop a risk based method, some form of Structural Reliability Risk Assessment (SRRA) needs to be performed to provide a probability of failure ranking for all sites around the plant. A Probabilistic Risk Assessment (PRA) can then be carried out to combine these possible events with the capability of plant safety systems and procedures, to establish the consequences of failure for the sites. In this way the probability of failures are converted into a risk based ranking which can be used to assist the process of deciding which sites should be included in an ISI programme. This paper reviews the technique and typical results of a risk based ranking assessment carried out for nuclear power plant pipework. (author)

  4. Fate of trace pollutants during the production of methylesters based on waste-edible fats; Verbleib von Spurenschadstoffen bei der Methylesterherstellung aus Altspeisefett im Technikumsmassstab

    Energy Technology Data Exchange (ETDEWEB)

    Falk, O.; Meyer-Pittroff, R. [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Energie- und Umwelttechnik der Lebensmittelindustrie; Wichmann, H.; Jopke, P.; Schmidt-Naedler, C.; Matthies, B.; Bahadir, M. [Technische Univ. Braunschweig (Germany). Inst. fuer Oekologische Chemie und Abfallanalytik

    2004-07-01

    Aims and Scope. In Germany, 120,000 tons per year of waste edible fats are collected from the catering and the food industry. Until recently, these fats have widely been used as a nutritional additive for poultry and other animals fodder. Due to the BSE crisis and some affairs based on dioxins in feeding stuff, waste fats are now barely used as fodder. Currently, these fats substitute fresh vegetable oils in the chemical industry and are used as raw material for the production of biodiesel. Therefore, alternative fields of application are required. In this context, the Deutsche Bundesstiftung Umwelt (DBU) is sponsoring a joint research project which deals with the production and testing of cooling lubricants based on monoesters made from waste edible fats. Methods. In a first step, characteristics and quality of waste-edible fats of different origins were chemically analysed and monitored. The investigations covered the following fat specific parameters: total contamination, sulphate ash, water content, peroxide number, iodine value, kinematical viscosity, neutralisation number (free fatty acids) and fatty acid spectra. In the next step, a process development/optimisation was carried out for the production of methylesters based on the raw material waste fat, leading to the construction of a pilot plant. To investigate the fate of trace pollutants during the production process of waste-fat methylester, samples were systematically contaminated with polcyclic aromatic hydrocarbons, polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and the elements Al, Cd, Cr, Cu, Ni, P, Pb, Sn, and Zn. These contaminated fat samples were transesterified, in laboratory scale. The primary and by-products were analysed subsequently. Results. Valuable hints on the design of the technical process of fatty acid methylester production based on waste edible fats were gained by regarding the fat specific parameters. For example, filtration and

  5. Model-based consensus

    NARCIS (Netherlands)

    Boumans, M.; Martini, C.; Boumans, M.

    2014-01-01

    The aim of the rational-consensus method is to produce "rational consensus", that is, "mathematical aggregation", by weighing the performance of each expert on the basis of his or her knowledge and ability to judge relevant uncertainties. The measurement of the performance of the experts is based on

  6. Model-based consensus

    NARCIS (Netherlands)

    Boumans, Marcel

    2014-01-01

    The aim of the rational-consensus method is to produce “rational consensus”, that is, “mathematical aggregation”, by weighing the performance of each expert on the basis of his or her knowledge and ability to judge relevant uncertainties. The measurement of the performance of the experts is based on

  7. A subset of osteoblasts expressing high endogenous levels of PPARgamma switches fate to adipocytes in the rat calvaria cell culture model.

    Directory of Open Access Journals (Sweden)

    Yuji Yoshiko

    2010-07-01

    Full Text Available Understanding fate choice and fate switching between the osteoblast lineage (ObL and adipocyte lineage (AdL is important to understand both the developmental inter-relationships between osteoblasts and adipocytes and the impact of changes in fate allocation between the two lineages in normal aging and certain diseases. The goal of this study was to determine when during lineage progression ObL cells are susceptible to an AdL fate switch by activation of endogenous peroxisome proliferator-activated receptor (PPARgamma.Multiple rat calvaria cells within the ObL developmental hierarchy were isolated by either fractionation on the basis of expression of alkaline phosphatase or retrospective identification of single cell-derived colonies, and treated with BRL-49653 (BRL, a synthetic ligand for PPARgamma. About 30% of the total single cell-derived colonies expressed adipogenic potential (defined cytochemically when BRL was present. Profiling of ObL and AdL markers by qRT-PCR on amplified cRNA from over 160 colonies revealed that BRL-dependent adipogenic potential correlated with endogenous PPARgamma mRNA levels. Unexpectedly, a significant subset of relatively mature ObL cells exhibited osteo-adipogenic bipotentiality. Western blotting and immunocytochemistry confirmed that ObL cells co-expressed multiple mesenchymal lineage determinants (runt-related transcription factor 2 (Runx2, PPARgamma, Sox9 and MyoD which localized in the cytoplasm initially, and only Runx2 translocated to the nucleus during ObL progression. Notably, however, some cells exhibited both PPARgamma and Runx2 nuclear labeling with concomitant upregulation of expression of their target genes with BRL treatment.We conclude that not only immature but a subset of relatively mature ObL cells characterized by relatively high levels of endogenous PPARgamma expression can be switched to the AdL. The fact that some ObL cells maintain capacity for adipogenic fate selection even at relatively

  8. Activity-based DEVS modeling

    DEFF Research Database (Denmark)

    Alshareef, Abdurrahman; Sarjoughian, Hessam S.; Zarrin, Bahram

    2018-01-01

    architecture and the UML concepts. In this paper, we further this work by grounding Activity-based DEVS modeling and developing a fully-fledged modeling engine to demonstrate applicability. We also detail the relevant aspects of the created metamodel in terms of modeling and simulation. A significant number......Use of model-driven approaches has been increasing to significantly benefit the process of building complex systems. Recently, an approach for specifying model behavior using UML activities has been devised to support the creation of DEVS models in a disciplined manner based on the model driven...... of the artifacts of the UML 2.5 activities and actions, from the vantage point of DEVS behavioral modeling, is covered in details. Their semantics are discussed to the extent of time-accurate requirements for simulation. We characterize them in correspondence with the specification of the atomic model behavior. We...

  9. Fate of Gases generated from Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasulu, M.; Francis, A. J. [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of); Francis, A. J. [Brookhaven National Laboratory, New York (United States)

    2013-05-15

    The backfill materials such as cement, bentonite or crushed rock are used as engineered barriers against groundwater infiltration and radionuclide transport. Gas generation from radioactive wastes is attributed to radiolysis, corrosion of metals, and degradation of organic materials. Corrosion of steel drums and biodegradation of organic materials in L/ILW can generate gas which causes pressure build up and has the potential to compromise the integrity of waste containers and release the radionuclides and other contaminants into the environment. Performance assessment therefore requires a detailed understanding of the source and fate of gas generation and transport within the disposal system. Here we review the sources and fate of various type of gases generated from nuclear wastes and repositories. Studies on modeling of the fate and transport of repository gases primarily deal with hydrogen and CO{sub 2}. Although hydrogen and carbon dioxide are the major gases of concern, microbial transformations of these gases in the subterranean environments could be significant. Metabolism of hydrogen along with the carbon dioxide results in the formation of methane, low molecular weight organic compounds and cell biomass and thus could affect the total inventory in a repository environment. Modeling studies should take into consideration of both the gas generation and consumption processes over the long-term.

  10. Model complexity and choice of model approaches for practical simulations of CO2 injection, migration, leakage and long-term fate

    Energy Technology Data Exchange (ETDEWEB)

    Celia, Michael A. [Princeton Univ., NJ (United States)

    2016-12-30

    This report documents the accomplishments achieved during the project titled “Model complexity and choice of model approaches for practical simulations of CO2 injection,migration, leakage and long-term fate” funded by the US Department of Energy, Office of Fossil Energy. The objective of the project was to investigate modeling approaches of various levels of complexity relevant to geologic carbon storage (GCS) modeling with the goal to establish guidelines on choice of modeling approach.

  11. The secondary drying and the fate of organic solvents for spray dried dispersion drug product.

    Science.gov (United States)

    Hsieh, Daniel S; Yue, Hongfei; Nicholson, Sarah J; Roberts, Daniel; Schild, Richard; Gamble, John F; Lindrud, Mark

    2015-05-01

    To understand the mechanisms of secondary drying of spray-dried dispersion (SDD) drug product and establish a model to describe the fate of organic solvents in such a product. The experimental approach includes characterization of the SDD particles, drying studies of SDD using an integrated weighing balance and mass spectrometer, and the subsequent generation of the drying curve. The theoretical approach includes the establishment of a Fickian diffusion model. The kinetics of solvent removal during secondary drying from the lab scale to a bench scale follows Fickian diffusion model. Excellent agreement is obtained between the experimental data and the prediction from the modeling. The diffusion process is dependent upon temperature. The key to a successful scale up of the secondary drying is to control the drying temperature. The fate of primary solvents including methanol and acetone, and their potential impurity such as benzene can be described by the Fickian diffusion model. A mathematical relationship based upon the ratio of diffusion coefficient was established to predict the benzene concentration from the fate of the primary solvent during the secondary drying process.

  12. Event-Based Conceptual Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    The paper demonstrates that a wide variety of event-based modeling approaches are based on special cases of the same general event concept, and that the general event concept can be used to unify the otherwise unrelated fields of information modeling and process modeling. A set of event......-based modeling approaches are analyzed and the results are used to formulate a general event concept that can be used for unifying the seemingly unrelated event concepts. Events are characterized as short-duration processes that have participants, consequences, and properties, and that may be modeled in terms...... of information structures. The general event concept can be used to guide systems analysis and design and to improve modeling approaches....

  13. Fate of plant protection products in soilless cultivations after drip irrigation: measured vs. modelled concentrations : Interpretation of the 2014 experiment with the Substance Emission Model

    NARCIS (Netherlands)

    van der Linden AMA; Hoogsteen MJJ; Boesten JJTA; van Os EA; Wipfler EL; MIL; LGW

    2017-01-01

    The Greenhouse Emission Model has recently been adopted as a model package for assessing emissions to and concentrations in groundwater and surface water after use of plant protection products in greenhouse crops. Stakeholders advised that the model be tested against experimental data. In

  14. HMM-based Trust Model

    DEFF Research Database (Denmark)

    ElSalamouny, Ehab; Nielsen, Mogens; Sassone, Vladimiro

    2010-01-01

    Probabilistic trust has been adopted as an approach to taking security sensitive decisions in modern global computing environments. Existing probabilistic trust frameworks either assume fixed behaviour for the principals or incorporate the notion of ‘decay' as an ad hoc approach to cope...... with their dynamic behaviour. Using Hidden Markov Models (HMMs) for both modelling and approximating the behaviours of principals, we introduce the HMM-based trust model as a new approach to evaluating trust in systems exhibiting dynamic behaviour. This model avoids the fixed behaviour assumption which is considered...... the major limitation of existing Beta trust model. We show the consistency of the HMM-based trust model and contrast it against the well known Beta trust model with the decay principle in terms of the estimation precision....

  15. Modeling Guru: Knowledge Base for NASA Modelers

    Science.gov (United States)

    Seablom, M. S.; Wojcik, G. S.; van Aartsen, B. H.

    2009-05-01

    Modeling Guru is an on-line knowledge-sharing resource for anyone involved with or interested in NASA's scientific models or High End Computing (HEC) systems. Developed and maintained by the NASA's Software Integration and Visualization Office (SIVO) and the NASA Center for Computational Sciences (NCCS), Modeling Guru's combined forums and knowledge base for research and collaboration is becoming a repository for the accumulated expertise of NASA's scientific modeling and HEC communities. All NASA modelers and associates are encouraged to participate and provide knowledge about the models and systems so that other users may benefit from their experience. Modeling Guru is divided into a hierarchy of communities, each with its own set forums and knowledge base documents. Current modeling communities include those for space science, land and atmospheric dynamics, atmospheric chemistry, and oceanography. In addition, there are communities focused on NCCS systems, HEC tools and libraries, and programming and scripting languages. Anyone may view most of the content on Modeling Guru (available at http://modelingguru.nasa.gov/), but you must log in to post messages and subscribe to community postings. The site offers a full range of "Web 2.0" features, including discussion forums, "wiki" document generation, document uploading, RSS feeds, search tools, blogs, email notification, and "breadcrumb" links. A discussion (a.k.a. forum "thread") is used to post comments, solicit feedback, or ask questions. If marked as a question, SIVO will monitor the thread, and normally respond within a day. Discussions can include embedded images, tables, and formatting through the use of the Rich Text Editor. Also, the user can add "Tags" to their thread to facilitate later searches. The "knowledge base" is comprised of documents that are used to capture and share expertise with others. The default "wiki" document lets users edit within the browser so others can easily collaborate on the

  16. Structure-Based Turbulence Model

    National Research Council Canada - National Science Library

    Reynolds, W

    2000-01-01

    .... Maire carried out this work as part of his Phi) research. During the award period we began to explore ways to simplify the structure-based modeling so that it could be used in repetitive engineering calculations...

  17. The fate of accreting white dwarfs: type I supernovae vs. collapse

    International Nuclear Information System (INIS)

    Nomoto, Ken'ichi

    1986-01-01

    The fate of accreting white dwarfs is examined with respect to thermonuclear explosion or collapse. The paper was presented to the conference on ''The early universe and its evolution'', Erice, Italy 1986. Effects of accretion and the fate of white dwarfs, models for type 1a and 1b supernovae, collapse induced by carbon deflagration at high density, and fate of double white dwarfs, are all discussed. (U.K.)

  18. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.

    Science.gov (United States)

    Scholtz, M T; Bidleman, T F

    2007-05-01

    In the first part of this paper, a simple coupled dynamic soil-atmosphere model for studying the gaseous exchange of pesticide soil residues with the atmosphere is described and evaluated by comparing model results with published measurements of pesticide concentrations in air and soil. In Part II, the model is used to study the concentration profiles of pesticide residues in both undisturbed and annually tilled agricultural soils. Future trends are estimated for the measured air and soil concentrations of lindane and six highly persistent pesticides (toxaphene, p,p'-DDE, dieldrin, cis- and trans-chlordane and trans-nonachlor) over a twenty-year period due to volatilization and leaching into the deeper soil. Wet deposition and particle associated pesticide deposition (that increase soil residue concentrations) and soil erosion, degradation in the soil (other than for lindane) and run-off in precipitation are not considered in this study. Estimates of the rain deposition fluxes are reported that show that, other than for lindane, net volatilization fluxes greatly exceed rain deposition fluxes. The model shows that the persistent pesticides studied are highly immobile in soil and that loss of these highly persistent residues from the soil is by volatilization rather than leaching into the deeper soil. The soil residue levels of these six pesticides are currently sources of net volatilization to the atmosphere and will remain so for many years. The maximum rate of volatilization from the soil was simulated by setting the atmospheric background concentration to zero; these simulations show that the rates of volatilization will not be significantly increased since soil resistance rather than the atmospheric concentration controls the volatilization rates. Annual tilling of the soils increases the volatilization loss to the atmosphere. Nonetheless, the model predicts that, if only air-soil exchange is considered, more than 76% of current persistent pesticide residues

  19. Event-Based Conceptual Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2009-01-01

    The purpose of the paper is to obtain insight into and provide practical advice for event-based conceptual modeling. We analyze a set of event concepts and use the results to formulate a conceptual event model that is used to identify guidelines for creation of dynamic process models and static...... information models. We characterize events as short-duration processes that have participants, consequences, and properties, and that may be modeled in terms of information structures. The conceptual event model is used to characterize a variety of event concepts and it is used to illustrate how events can...... be used to integrate dynamic modeling of processes and static modeling of information structures. The results are unique in the sense that no other general event concept has been used to unify a similar broad variety of seemingly incompatible event concepts. The general event concept can be used...

  20. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 3. Computer Based Modelling and Simulation - Modelling Deterministic Systems. N K Srinivasan. General Article Volume 6 Issue 3 March 2001 pp 46-54. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Model-based machine learning.

    Science.gov (United States)

    Bishop, Christopher M

    2013-02-13

    Several decades of research in the field of machine learning have resulted in a multitude of different algorithms for solving a broad range of problems. To tackle a new application, a researcher typically tries to map their problem onto one of these existing methods, often influenced by their familiarity with specific algorithms and by the availability of corresponding software implementations. In this study, we describe an alternative methodology for applying machine learning, in which a bespoke solution is formulated for each new application. The solution is expressed through a compact modelling language, and the corresponding custom machine learning code is then generated automatically. This model-based approach offers several major advantages, including the opportunity to create highly tailored models for specific scenarios, as well as rapid prototyping and comparison of a range of alternative models. Furthermore, newcomers to the field of machine learning do not have to learn about the huge range of traditional methods, but instead can focus their attention on understanding a single modelling environment. In this study, we show how probabilistic graphical models, coupled with efficient inference algorithms, provide a very flexible foundation for model-based machine learning, and we outline a large-scale commercial application of this framework involving tens of millions of users. We also describe the concept of probabilistic programming as a powerful software environment for model-based machine learning, and we discuss a specific probabilistic programming language called Infer.NET, which has been widely used in practical applications.

  2. Assessing the transport and fate of bioengineered microorganisms in the environment

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Palumbo, A.V.

    1985-01-01

    We review the methods currently available for quantifying the transport and fate of microbes in atmospheric and aqueous media and assess their adequacy for purposes of risk assessment. We review the literature on transport and fate of microorganisms, including studies of: (1) pathways of migration, (2) the survival of microorganisms during transport and fate. In addition, we review the transport and fate models that have been used in environmental risk assessments for radionuclides and toxic chemicals and evaluate their applicability to the problem of assessing environmental risks of bioengineered microorganisms

  3. Cluster Based Text Classification Model

    DEFF Research Database (Denmark)

    Nizamani, Sarwat; Memon, Nasrullah; Wiil, Uffe Kock

    2011-01-01

    We propose a cluster based classification model for suspicious email detection and other text classification tasks. The text classification tasks comprise many training examples that require a complex classification model. Using clusters for classification makes the model simpler and increases...... the accuracy at the same time. The test example is classified using simpler and smaller model. The training examples in a particular cluster share the common vocabulary. At the time of clustering, we do not take into account the labels of the training examples. After the clusters have been created......, the classifier is trained on each cluster having reduced dimensionality and less number of examples. The experimental results show that the proposed model outperforms the existing classification models for the task of suspicious email detection and topic categorization on the Reuters-21578 and 20 Newsgroups...

  4. A powerful transgenic tool for fate mapping and functional analysis of newly generated neurons

    Directory of Open Access Journals (Sweden)

    Vogt Weisenhorn Daniela M

    2010-12-01

    Full Text Available Abstract Background Lack of appropriate tools and techniques to study fate and functional integration of newly generated neurons has so far hindered understanding of neurogenesis' relevance under physiological and pathological conditions. Current analyses are either dependent on mitotic labeling, for example BrdU-incorporation or retroviral infection, or on the detection of transient immature neuronal markers. Here, we report a transgenic mouse model (DCX-CreERT2 for time-resolved fate analysis of newly generated neurons. This model is based on the expression of a tamoxifen-inducible Cre recombinase under the control of a doublecortin (DCX promoter, which is specific for immature neuronal cells in the CNS. Results In the DCX-CreERT2 transgenic mice, expression of CreERT2 was restricted to DCX+ cells. In the CNS of transgenic embryos and adult DCX-CreERT2 mice, tamoxifen administration caused the transient translocation of CreERT2 to the nucleus, allowing for the recombination of loxP-flanked sequences. In our system, tamoxifen administration at E14.5 resulted in reporter gene activation throughout the developing CNS of transgenic embryos. In the adult CNS, neurogenic regions were the primary sites of tamoxifen-induced reporter gene activation. In addition, reporter expression could also be detected outside of neurogenic regions in cells physiologically expressing DCX (e.g. piriform cortex, corpus callosum, hypothalamus. Four weeks after recombination, the vast majority of reporter-expressing cells were found to co-express NeuN, revealing the neuronal fate of DCX+ cells upon maturation. Conclusions This first validation demonstrates that our new DCX-CreERT2 transgenic mouse model constitutes a powerful tool to investigate neurogenesis, migration and their long-term fate of neuronal precursors. Moreover, it allows for a targeted activation or deletion of specific genes in neuronal precursors and will thereby contribute to unravel the molecular

  5. Cell fate regulation in the shoot meristem.

    Science.gov (United States)

    Laux, T; Mayer, K F

    1998-04-01

    The shoot meristem is a proliferative centre containing pluripotent stem cells that are the ultimate source of all cells and organs continuously added to the growing shoot. The progeny of the stem cells have two developmental options, either to renew the stem cell population or to leave the meristem and to differentiate, possibly according to signals from more mature tissue. The destiny of each cell depends on its position within the dynamic shoot meristem. Genetic data suggest a simple model in which graded positional information is provided by antagonistic gene functions and is interpreted by genes which regulate cell fate.

  6. Graph Model Based Indoor Tracking

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Lu, Hua; Yang, Bin

    2009-01-01

    The tracking of the locations of moving objects in large indoor spaces is important, as it enables a range of applications related to, e.g., security and indoor navigation and guidance. This paper presents a graph model based approach to indoor tracking that offers a uniform data management...

  7. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE. Computer Based ... universities, and later did system analysis, ... sonal computers (PC) and low cost software packages and tools. They can serve as useful learning experience through student projects. Models are .... Let us consider a numerical example: to calculate the velocity of a trainer aircraft ...

  8. [The tragic fate of physicians].

    Science.gov (United States)

    Ohry, Avi

    2013-10-01

    Physicians and surgeons were always involved in revolutions, wars and political activities, as well as in various medical humanities. Tragic fate met these doctors, whether in the Russian prisons gulags, German labor or concentration camps, pogroms or at the hands of the Inquisition.

  9. Fate of acetone in water

    Science.gov (United States)

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.

    1982-01-01

    The physical, chemical, and biological processes that might affect the concentration of acetone in water were investigated in laboratory studies. Processes considered included volatilization, adsorption by sediments, photodecomposition, bacterial degradation, and absorption by algae and molds. It was concluded that volatilization and bacterial degradation were the dominant processes determining the fate of acetone in streams and rivers. ?? 1982.

  10. Model-based sensor diagnosis

    International Nuclear Information System (INIS)

    Milgram, J.; Dormoy, J.L.

    1994-09-01

    Running a nuclear power plant involves monitoring data provided by the installation's sensors. Operators and computerized systems then use these data to establish a diagnostic of the plant. However, the instrumentation system is complex, and is not immune to faults and failures. This paper presents a system for detecting sensor failures using a topological description of the installation and a set of component models. This model of the plant implicitly contains relations between sensor data. These relations must always be checked if all the components are functioning correctly. The failure detection task thus consists of checking these constraints. The constraints are extracted in two stages. Firstly, a qualitative model of their existence is built using structural analysis. Secondly, the models are formally handled according to the results of the structural analysis, in order to establish the constraints on the sensor data. This work constitutes an initial step in extending model-based diagnosis, as the information on which it is based is suspect. This work will be followed by surveillance of the detection system. When the instrumentation is assumed to be sound, the unverified constraints indicate errors on the plant model. (authors). 8 refs., 4 figs

  11. Characterization of the Flow Field and Wind Speed Profiles in Microbalance Wind Tunnels for Measurement of Agent Fate

    National Research Council Canada - National Science Library

    Weber, Daniel J; Molnar, John W; Scudder, Mary K; Shuely, Wendel

    2005-01-01

    An important goal is to model chemical warfare agent fate on environmental and interior surfaces and therefore, rigorously measured evaporation and desorption rates are required to develop equations...

  12. Using integrated environmental modeling to automate a process-based Quantitative Microbial Risk Assessment

    Science.gov (United States)

    Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, an...

  13. Using Integrated Environmental Modeling to Automate a Process-Based Quantitative Microbial Risk Assessment (presentation)

    Science.gov (United States)

    Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, and...

  14. Noninvasive Assessment of Cell Fate and Biology in Transplanted Mesenchymal Stem Cells.

    Science.gov (United States)

    Franchi, Federico; Rodriguez-Porcel, Martin

    2017-01-01

    Recently, molecular imaging has become a conditio sine qua non for cell-based regenerative medicine. Developments in molecular imaging techniques, such as reporter gene technology, have increasingly enabled the noninvasive assessment of the fate and biology of cells after cardiovascular applications. In this context, bioluminescence imaging is the most commonly used imaging modality in small animal models of preclinical studies. Here, we present a detailed protocol of a reporter gene imaging approach for monitoring the viability and biology of Mesenchymal Stem Cells transplanted in a mouse model of myocardial ischemia reperfusion injury.

  15. Developmental fate and lineage commitment of singled mouse blastomeres.

    Science.gov (United States)

    Lorthongpanich, Chanchao; Doris, Tham Puay Yoke; Limviphuvadh, Vachiranee; Knowles, Barbara B; Solter, Davor

    2012-10-01

    The inside-outside model has been invoked to explain cell-fate specification of the pre-implantation mammalian embryo. Here, we investigate whether cell-cell interaction can influence the fate specification of embryonic blastomeres by sequentially separating the blastomeres in two-cell stage mouse embryos and continuing separation after each cell division throughout pre-implantation development. This procedure eliminates information provided by cell-cell interaction and cell positioning. Gene expression profiles, polarity protein localization and functional tests of these separated blastomeres reveal that cell interactions, through cell position, influence the fate of the blastomere. Blastomeres, in the absence of cell contact and inner-outer positional information, have a unique pattern of gene expression that is characteristic of neither inner cell mass nor trophectoderm, but overall they have a tendency towards a 'trophectoderm-like' gene expression pattern and preferentially contribute to the trophectoderm lineage.

  16. Bion and C.G. Jung. How did the container-contained model find its thinker? The fate of a cryptomnesia.

    Science.gov (United States)

    Maier, Christian

    2016-04-01

    This paper investigates the possible impact of C.G. Jung's Tavistock Lectures on Bion's concept of the living container. In the first part of the paper, the author offers clues pointing to such an essential impact, which can be found in text passages as well as in the facts of the Bion-Beckett case, up to and including Bion's first publication of 'The imaginary twin'. The author suggests that cryptomnesia is the result of repression targeting a highly cathected author's communication which functions like a deep interpretation for the recipient, whose new theory then is a return of the repressed content as well as a transformation of it. The second part of the paper investigates the fate of the assumed cryptomnesia. From this point of view Bion's concept of the container in itself appears to be the result of growth in the container-contained mode. Finally the author deals with the question whether cryptomnesia in psychoanalytical literature can frequently be seen as the result of psychic growth. © 2016, The Society of Analytical Psychology.

  17. Model-based security testing

    OpenAIRE

    Schieferdecker, Ina; Großmann, Jürgen; Schneider, Martin

    2012-01-01

    Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security...

  18. Fate factors and emission flux estimates for emerging contaminants in surface waters

    Directory of Open Access Journals (Sweden)

    Hoa T. Trinh

    2016-01-01

    Full Text Available Pharmaceuticals, personal care products, hormones, and wastewater products are emerging environmental concerns for manifold reasons, including the potential of some compounds found in these products for endocrine disruption at a very low chronic exposure level. The environmental occurrences and sources of these contaminants in the water, soil, sediment and biota in European nations and the United States are well documented. This work reports a screening-level emission and fate assessment of thirty compounds, listed in the National Reconnaissance of the United States Geological Survey (USGS, 1999–2000 as the most frequently detected organic wastewater contaminants in U.S. streams and rivers. Estimations of the surface water fate factors were based on Level II and Level III multimedia fugacity models for a 1000 km2 model environment, the size of a typical county in the eastern United States. The compounds are categorized into three groups based upon the sensitivity of their predicted surface water fate factors to uncertainties in their physicochemical property values and the landscape parameters. The environmental fate factors, mass distributions, and loss pathways of all of the compounds are strongly affected by their assumed modes of entry into the environment. It is observed that for thirteen of the thirty organic wastewater contaminants most commonly detected in surface waters, conventional treatment strategies may be ineffective for their removal from wastewater effluents. The surface water fate factors predicted by the fugacity models were used in conjunction with the surface water concentrations measured in the USGS reconnaissance to obtain emission flux estimates for the compounds into U.S. streams and rivers. These include estimated fluxes of 6.8 × 10−5 to 0.30 kg/h km2 for the biomarker coprostanol; 1.7 × 10−5 to 6.5 × 10−5 kg/h km2 for the insect repellent N,N-diethyltoluamide; and 4.3 × 10−6 to 3.1 × 10−5 kg/h km2 for

  19. Model-Based Security Testing

    Directory of Open Access Journals (Sweden)

    Ina Schieferdecker

    2012-02-01

    Full Text Available Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.

  20. The Fate of ZnO Nanoparticles Administered to Human Bronchial Epithelial Cells

    Science.gov (United States)

    Gilbert, Benjamin; Fakra, Sirine C.; Xia, Tian; Pokhrel, Suman; Mädler, Lutz; Nel, André E.

    2014-01-01

    A particular challenge for nanotoxicology is the evaluation of the biological fate and toxicity of nanomaterials that dissolve in aqueous fluids. Zinc oxide nanomaterials are of particular concern because dissolution leads to release of the toxic divalent zinc ion. Although dissolved zinc ions have been implicated in ZnO cytotoxicity, direct identification of the chemical form of zinc taken up by cells exposed to ZnO nanoparticles, and its intracellular fate, has not yet been achieved. We combined high resolution X-ray spectromicroscopy and high elemental sensitivity X-ray microprobe analyses to determine the fate of ZnO and less soluble iron-doped ZnO nanoparticles following exposure to cultures of human bronchial epithelial cells, BEAS-2B. We complemented two-dimensional X-ray imaging methods with atomic force microscopy of cell surfaces to distinguish between nanoparticles that were transported inside the cells from those that adhered to the cell exterior. The data suggest cellular uptake of ZnO nanoparticles is a mechanism of zinc accumulation in cells. Following uptake, ZnO nanoparticles dissolved completely generating intracellular Zn2+ complexed by molecular ligands. These results corroborate a model for ZnO nanoparticle toxicity that is based on nanoparticle uptake followed by intracellular dissolution. PMID:22646753

  1. Concentration Sensing by the Moving Nucleus in Cell Fate Determination: A Computational Analysis.

    Directory of Open Access Journals (Sweden)

    Varun Aggarwal

    Full Text Available During development of the vertebrate neuroepithelium, the nucleus in neural progenitor cells (NPCs moves from the apex toward the base and returns to the apex (called interkinetic nuclear migration at which point the cell divides. The fate of the resulting daughter cells is thought to depend on the sampling by the moving nucleus of a spatial concentration profile of the cytoplasmic Notch intracellular domain (NICD. However, the nucleus executes complex stochastic motions including random waiting and back and forth motions, which can expose the nucleus to randomly varying levels of cytoplasmic NICD. How nuclear position can determine daughter cell fate despite the stochastic nature of nuclear migration is not clear. Here we derived a mathematical model for reaction, diffusion, and nuclear accumulation of NICD in NPCs during interkinetic nuclear migration (INM. Using experimentally measured trajectory-dependent probabilities of nuclear turning, nuclear waiting times and average nuclear speeds in NPCs in the developing zebrafish retina, we performed stochastic simulations to compute the nuclear trajectory-dependent probabilities of NPC differentiation. Comparison with experimentally measured nuclear NICD concentrations and trajectory-dependent probabilities of differentiation allowed estimation of the NICD cytoplasmic gradient. Spatially polarized production of NICD, rapid NICD cytoplasmic consumption and the time-averaging effect of nuclear import/export kinetics are sufficient to explain the experimentally observed differentiation probabilities. Our computational studies lend quantitative support to the feasibility of the nuclear concentration-sensing mechanism for NPC fate determination in zebrafish retina.

  2. Evaluating the fate of organic compounds in the Cameroon ...

    African Journals Online (AJOL)

    Furthermore, a sensitivity analysis was performed to identify the key input parameters. Model simulations indicated significant differences in the fate of the chemicals that could be explained by the variation in physical-chemical properties. The log KOW, emission rate to water (EW), volume of the water compartment (VW) and ...

  3. Environmental fate of pesticides applied on coffee crops in ...

    African Journals Online (AJOL)

    The aim of this paper was evaluate the environmental fate of pesticides applied in coffee crops in southeast of Brazil, using the level I fugacity model. Chemical and physical characteristics of the pesticides were considered in different environmental compartments and applied fugacity equations. The preliminary evaluation ...

  4. Specifying pancreatic endocrine cell fates.

    Science.gov (United States)

    Collombat, Patrick; Hecksher-Sørensen, Jacob; Serup, Palle; Mansouri, Ahmed

    2006-07-01

    Cell replacement therapy could represent an attractive alternative to insulin injections for the treatment of diabetes. However, this approach requires a thorough understanding of the molecular switches controlling the specification of the different pancreatic cell-types in vivo. These are derived from an apparently identical pool of cells originating from the early gut endoderm, which are successively specified towards the pancreatic, endocrine, and hormone-expressing cell lineages. Numerous studies have outlined the crucial roles exerted by transcription factors in promoting the cell destiny, defining the cell identity and maintaining a particular cell fate. This review focuses on the mechanisms regulating the morphogenesis of the pancreas with particular emphasis on recent findings concerning the transcription factor hierarchy orchestrating endocrine cell fate allocation.

  5. Crowdsourcing Based 3d Modeling

    Science.gov (United States)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  6. CROWDSOURCING BASED 3D MODELING

    Directory of Open Access Journals (Sweden)

    A. Somogyi

    2016-06-01

    Full Text Available Web-based photo albums that support organizing and viewing the users’ images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  7. Issues in practical model-based diagnosis

    NARCIS (Netherlands)

    Bakker, R.R.; Bakker, R.R.; van den Bempt, P.C.A.; van den Bempt, P.C.A.; Mars, Nicolaas; Out, D.-J.; Out, D.J.; van Soest, D.C.; van Soes, D.C.

    1993-01-01

    The model-based diagnosis project at the University of Twente has been directed at improving the practical usefulness of model-based diagnosis. In cooperation with industrial partners, the research addressed the modeling problem and the efficiency problem in model-based reasoning. Main results of

  8. Environmental risk assessment of selected organic chemicals based on TOC test and QSAR estimation models.

    Science.gov (United States)

    Chi, Yulang; Zhang, Huanteng; Huang, Qiansheng; Lin, Yi; Ye, Guozhu; Zhu, Huimin; Dong, Sijun

    2018-02-01

    Environmental risks of organic chemicals have been greatly determined by their persistence, bioaccumulation, and toxicity (PBT) and physicochemical properties. Major regulations in different countries and regions identify chemicals according to their bioconcentration factor (BCF) and octanol-water partition coefficient (Kow), which frequently displays a substantial correlation with the sediment sorption coefficient (Koc). Half-life or degradability is crucial for the persistence evaluation of chemicals. Quantitative structure activity relationship (QSAR) estimation models are indispensable for predicting environmental fate and health effects in the absence of field- or laboratory-based data. In this study, 39 chemicals of high concern were chosen for half-life testing based on total organic carbon (TOC) degradation, and two widely accepted and highly used QSAR estimation models (i.e., EPI Suite and PBT Profiler) were adopted for environmental risk evaluation. The experimental results and estimated data, as well as the two model-based results were compared, based on the water solubility, Kow, Koc, BCF and half-life. Environmental risk assessment of the selected compounds was achieved by combining experimental data and estimation models. It was concluded that both EPI Suite and PBT Profiler were fairly accurate in measuring the physicochemical properties and degradation half-lives for water, soil, and sediment. However, the half-lives between the experimental and the estimated results were still not absolutely consistent. This suggests deficiencies of the prediction models in some ways, and the necessity to combine the experimental data and predicted results for the evaluation of environmental fate and risks of pollutants. Copyright © 2016. Published by Elsevier B.V.

  9. Dynamic analysis of the combinatorial regulation involving transcription factors and microRNAs in cell fate decisions.

    Science.gov (United States)

    Yan, Fang; Liu, Haihong; Liu, Zengrong

    2014-01-01

    P53 and E2F1 are critical transcription factors involved in the choices between different cell fates including cell differentiation, cell cycle arrest or apoptosis. Recent experiments have shown that two families of microRNAs (miRNAs), p53-responsive miR34 (miRNA-34 a, b and c) and E2F1-inducible miR449 (miRNA-449 a, b and c) are potent inducers of these different fates and might have an important role in sensitizing cancer cells to drug treatment and tumor suppression. Identifying the mechanisms responsible for the combinatorial regulatory roles of these two transcription factors and two miRNAs is an important and challenging problem. Here, based in part on the model proposed in Tongli Zhang et al. (2007), we developed a mathematical model of the decision process and explored the combinatorial regulation between these two transcription factors and two miRNAs in response to DNA damage. By analyzing nonlinear dynamic behaviors of the model, we found that p53 exhibits pulsatile behavior. Moreover, a comparison is given to reveal the subtle differences of the cell fate decision process between regulation and deregulation of miR34 on E2F1. It predicts that miR34 plays a critical role in promoting cell cycle arrest. In addition, a computer simulation result also predicts that the miR449 is necessary for apoptosis in response to sustained DNA damage. In agreement with experimental observations, our model can account for the intricate regulatory relationship between these two transcription factors and two miRNAs in the cell fate decision process after DNA damage. These theoretical results indicate that miR34 and miR449 are effective tumor suppressors and play critical roles in cell fate decisions. The work provides a dynamic mechanism that shows how cell fate decisions are coordinated by two transcription factors and two miRNAs. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology and Clinical Implications. Guest Editor: Yudong Cai

  10. Simulation of Reactive Constituent Fate and Transport in Hydrologic Simulator GSSHA

    National Research Council Canada - National Science Library

    Downer, Charles W

    2009-01-01

    The purpose of this System-Wide Water Resources Program (SWWRP) technical note is to describe the new fate and transport routines in the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model...

  11. Sensor-based interior modeling

    International Nuclear Information System (INIS)

    Herbert, M.; Hoffman, R.; Johnson, A.; Osborn, J.

    1995-01-01

    Robots and remote systems will play crucial roles in future decontamination and decommissioning (D ampersand D) of nuclear facilities. Many of these facilities, such as uranium enrichment plants, weapons assembly plants, research and production reactors, and fuel recycling facilities, are dormant; there is also an increasing number of commercial reactors whose useful lifetime is nearly over. To reduce worker exposure to radiation, occupational and other hazards associated with D ampersand D tasks, robots will execute much of the work agenda. Traditional teleoperated systems rely on human understanding (based on information gathered by remote viewing cameras) of the work environment to safely control the remote equipment. However, removing the operator from the work site substantially reduces his efficiency and effectiveness. To approach the productivity of a human worker, tasks will be performed telerobotically, in which many aspects of task execution are delegated to robot controllers and other software. This paper describes a system that semi-automatically builds a virtual world for remote D ampersand D operations by constructing 3-D models of a robot's work environment. Planar and quadric surface representations of objects typically found in nuclear facilities are generated from laser rangefinder data with a minimum of human interaction. The surface representations are then incorporated into a task space model that can be viewed and analyzed by the operator, accessed by motion planning and robot safeguarding algorithms, and ultimately used by the operator to instruct the robot at a level much higher than teleoperation

  12. Reconstructing the regulatory circuit of cell fate determination in yeast mating response.

    Science.gov (United States)

    Shao, Bin; Yuan, Haiyu; Zhang, Rongfei; Wang, Xuan; Zhang, Shuwen; Ouyang, Qi; Hao, Nan; Luo, Chunxiong

    2017-07-01

    Massive technological advances enabled high-throughput measurements of proteomic changes in biological processes. However, retrieving biological insights from large-scale protein dynamics data remains a challenging task. Here we used the mating differentiation in yeast Saccharomyces cerevisiae as a model and developed integrated experimental and computational approaches to analyze the proteomic dynamics during the process of cell fate determination. When exposed to a high dose of mating pheromone, the yeast cell undergoes growth arrest and forms a shmoo-like morphology; however, at intermediate doses, chemotropic elongated growth is initialized. To understand the gene regulatory networks that control this differentiation switch, we employed a high-throughput microfluidic imaging system that allows real-time and simultaneous measurements of cell growth and protein expression. Using kinetic modeling of protein dynamics, we classified the stimulus-dependent changes in protein abundance into two sources: global changes due to physiological alterations and gene-specific changes. A quantitative framework was proposed to decouple gene-specific regulatory modes from the growth-dependent global modulation of protein abundance. Based on the temporal patterns of gene-specific regulation, we established the network architectures underlying distinct cell fates using a reverse engineering method and uncovered the dose-dependent rewiring of gene regulatory network during mating differentiation. Furthermore, our results suggested a potential crosstalk between the pheromone response pathway and the target of rapamycin (TOR)-regulated ribosomal biogenesis pathway, which might underlie a cell differentiation switch in yeast mating response. In summary, our modeling approach addresses the distinct impacts of the global and gene-specific regulation on the control of protein dynamics and provides new insights into the mechanisms of cell fate determination. We anticipate that our

  13. Neural fate decisions mediated by combinatorial regulation of Hes1 and miR-9.

    Science.gov (United States)

    Li, Shanshan; Liu, Yanwei; Liu, Zengrong; Wang, Ruiqi

    2016-01-01

    In the nervous system, Hes1 shows an oscillatory manner in neural progenitors but a persistent one in neurons. Many models involving Hes1 have been provided for the study of neural differentiation but few of them take the role of microRNA into account. It is known that a microRNA, miR-9, plays crucial roles in modulating Hes1 oscillations. However, the roles of miR-9 in controlling Hes1 oscillations and inducing transition between different cell fates still need to be further explored. Here we provide a mathematical model to show the interaction between miR-9 and Hes1, with the aim of understanding how the Hes1 oscillations are produced, how they are controlled, and further, how they are terminated. Based on the experimental findings, the model demonstrates the essential roles of Hes1 and miR-9 in regulating the dynamics of the system. In particular, the model suggests that the balance between miR-9 and Hes1 plays important roles in the choice between progenitor maintenance and neural differentiation. In addition, the synergistic (or antagonistic) effects of several important regulations are investigated so as to elucidate the effects of combinatorial regulation in neural decision-making. Our model provides a qualitative mechanism for understanding the process in neural fate decisions regulated by Hes1 and miR-9.

  14. Differential Geometry Based Multiscale Models

    Science.gov (United States)

    Wei, Guo-Wei

    2010-01-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that

  15. Differential geometry based multiscale models.

    Science.gov (United States)

    Wei, Guo-Wei

    2010-08-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are

  16. PRZM-3, A MODEL FOR PREDICTING PESTICIDE AND NITROGEN FATE IN THE CROP ROOT AND UNSATURATED SOIL ZONES: USER'S MANUAL FOR RELEASE 3.12.2

    Science.gov (United States)

    This publication contains documentation for the PRZM-3 model. PRZM-3 is the most recent version of a modeling system that links two subordinate models, PRZM and VADOFT, in order to predict pesticide transport and transformation down through the crop root and unsaturated soil zone...

  17. Observation-Based Modeling for Model-Based Testing

    NARCIS (Netherlands)

    Kanstrén, T.; Piel, E.; Gross, H.G.

    2009-01-01

    One of the single most important reasons that modeling and modelbased testing are not yet common practice in industry is the perceived difficulty of making the models up to the level of detail and quality required for their automated processing. Models unleash their full potential only through

  18. Integrated fate and toxicity assessment for site contaminants

    International Nuclear Information System (INIS)

    MacDonell, Margaret; Peterson, John; Finster, Molly; Douglas, R.

    2007-01-01

    Understanding the fate and toxicity of environmental contaminants is essential to framing practical management decisions. Forms and bioavailable concentrations often change over time due to natural physical, chemical, and biological processes. For some sites, hundreds of contaminants may be of initial interest, and even small projects can involve a substantial number of contaminants. With multiple assessments common, attention to effectiveness and efficiency is important, and integrating fate and toxicity information provides a valuable way to focus the analyses. Fate assessments help identify what forms may be present where and when, while toxicity information indicates what health effects could result if people were exposed. The integration process is illustrated by an application for the Hanford site, to support long-term management decisions for the cesium and strontium capsules. Fate data, health-based benchmarks, and related toxicity information were effectively combined to indicate performance targets for chemicals and radionuclides identified for capsule leachate that could migrate to groundwater. More than 50 relevant benchmarks and toxicity context were identified for 15 of the 17 study contaminants; values for chronic drinking water exposure provided the common basis for selected indicators. For two chemicals, toxicity information was identified from the scientific literature to guide the performance targets. (authors)

  19. Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers

    Science.gov (United States)

    Wood, Deborah; Crocket, Kirsty; Brand, Tim; Stutter, Marc; Wilson, Clare; Schröder, Christian

    2016-04-01

    Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers Wood, D.A¹, Crocket, K², Brand, T², Stutter, M³, Wilson, C¹ & Schröder, C¹ ¹Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA ²Scottish Association for Marine Science, University of the Highlands and Islands, Dunbeg, Oban, PA37 1QA ³James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH The biogeochemical iron cycle exerts significant control on the carbon cycle¹. Iron is a limiting nutrient in large areas of the world's oceans and its bioavailability controls CO2 uptake by marine photosynthesizing microorganisms. While atmospheric iron inputs to the open ocean have been extensively measured, global river inputs have likely been underestimated because most major world rivers exhibit extensive iron removal by flocculation and sedimentation during seawater mixing. Iron minerals and organic matter mutually stabilise each other², which results in a 'rusty carbon sink' in sediments³ on the one hand but may also enhance transport beyond the salinity gradient on the other. Humic-rich, high latitude rivers have a higher iron-carrying capacity⁴-⁶ but are underrepresented in iron flux calculations. The West Coast sea lochs in Scotland are fed by predominantly peatland drainage catchments, and the rivers entering the sea lochs carry a high load of organic matter. The short distance between many of these catchments and the coastal ocean facilitates source-to-sea research investigating transport, fate and mineralogy of iron-bearing colloids providing a good analogue for similar high latitude fjordic systems. We use SeaFAST+ICP-MS and Mössbauer spectroscopy to survey trace metal concentrations, with emphasis on iron concentrations, speciation and mineralogy, across salinity gradients. In combination with ultra-filtration techniques, this allows

  20. Environmental fate and behaviour of nanomaterials

    DEFF Research Database (Denmark)

    Hartmann, Nanna Isabella Bloch; Skjolding, Lars Michael; Hansen, Steffen Foss

    In the current report, the existing knowledge on the fate of nanomaterials in the environment is reviewed and the major knowledge gaps are identified.......In the current report, the existing knowledge on the fate of nanomaterials in the environment is reviewed and the major knowledge gaps are identified....

  1. Guide to APA-Based Models

    Science.gov (United States)

    Robins, Robert E.; Delisi, Donald P.

    2008-01-01

    In Robins and Delisi (2008), a linear decay model, a new IGE model by Sarpkaya (2006), and a series of APA-Based models were scored using data from three airports. This report is a guide to the APA-based models.

  2. 14th congress of combustion by-products and their health effects-origin, fate, and health effects of combustion-related air pollutants in the coming era of bio-based energy sources.

    Science.gov (United States)

    Weidemann, Eva; Andersson, Patrik L; Bidleman, Terry; Boman, Christoffer; Carlin, Danielle J; Collina, Elena; Cormier, Stephania A; Gouveia-Figueira, Sandra C; Gullett, Brian K; Johansson, Christer; Lucas, Donald; Lundin, Lisa; Lundstedt, Staffan; Marklund, Stellan; Nording, Malin L; Ortuño, Nuria; Sallam, Asmaa A; Schmidt, Florian M; Jansson, Stina

    2016-04-01

    The 14th International Congress on Combustion By-Products and Their Health Effects was held in Umeå, Sweden from June 14th to 17th, 2015. The Congress, mainly sponsored by the National Institute of Environmental Health Sciences Superfund Research Program and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, focused on the "Origin, fate and health effects of combustion-related air pollutants in the coming era of bio-based energy sources". The international delegates included academic and government researchers, engineers, scientists, policymakers and representatives of industrial partners. The Congress provided a unique forum for the discussion of scientific advances in this research area since it addressed in combination the health-related issues and the environmental implications of combustion by-products. The scientific outcomes of the Congress included the consensus opinions that: (a) there is a correlation between human exposure to particulate matter and increased cardiac and respiratory morbidity and mortality; (b) because currently available data does not support the assessment of differences in health outcomes between biomass smoke and other particulates in outdoor air, the potential human health and environmental impacts of emerging air-pollution sources must be addressed. Assessment will require the development of new approaches to characterize combustion emissions through advanced sampling and analytical methods. The Congress also concluded the need for better and more sustainable e-waste management and improved policies, usage and disposal methods for materials containing flame retardants.

  3. Assessment of nitrate pollution in the Grand Morin aquifers (France): Combined use of geostatistics and physically based modeling

    Energy Technology Data Exchange (ETDEWEB)

    Flipo, Nicolas [Centre de Geosciences, UMR Sisyphe, ENSMP, 35 rue Saint-Honore, F-77305 Fontainebleau (France)]. E-mail: nicolas.flipo@ensmp.fr; Jeannee, Nicolas [Geovariances, 49 bis, avenue Franklin Roosevelt, F-77212 Avon (France); Poulin, Michel [Centre de Geosciences, UMR Sisyphe, ENSMP, 35 rue Saint-Honore, F-77305 Fontainebleau (France); Even, Stephanie [Centre de Geosciences, UMR Sisyphe, ENSMP, 35 rue Saint-Honore, F-77305 Fontainebleau (France); Ledoux, Emmanuel [Centre de Geosciences, UMR Sisyphe, ENSMP, 35 rue Saint-Honore, F-77305 Fontainebleau (France)

    2007-03-15

    The objective of this work is to combine several approaches to better understand nitrate fate in the Grand Morin aquifers (2700 km{sup 2}), part of the Seine basin. CAWAQS results from the coupling of the hydrogeological model NEWSAM with the hydrodynamic and biogeochemical model of river PROSE. CAWAQS is coupled with the agronomic model STICS in order to simulate nitrate migration in basins. First, kriging provides a satisfactory representation of aquifer nitrate contamination from local observations, to set initial conditions for the physically based model. Then associated confidence intervals, derived from data using geostatistics, are used to validate CAWAQS results. Results and evaluation obtained from the combination of these approaches are given (period 1977-1988). Then CAWAQS is used to simulate nitrate fate for a 20-year period (1977-1996). The mean nitrate concentrations increase in aquifers is 0.09 mgN L{sup -1} yr{sup -1}, resulting from an average infiltration flux of 3500 kgN.km{sup -2} yr{sup -1}. - Combined use of geostatistics and physically based modeling allows assessment of nitrate concentrations in aquifer systems.

  4. Assessment of nitrate pollution in the Grand Morin aquifers (France): Combined use of geostatistics and physically based modeling

    International Nuclear Information System (INIS)

    Flipo, Nicolas; Jeannee, Nicolas; Poulin, Michel; Even, Stephanie; Ledoux, Emmanuel

    2007-01-01

    The objective of this work is to combine several approaches to better understand nitrate fate in the Grand Morin aquifers (2700 km 2 ), part of the Seine basin. CAWAQS results from the coupling of the hydrogeological model NEWSAM with the hydrodynamic and biogeochemical model of river PROSE. CAWAQS is coupled with the agronomic model STICS in order to simulate nitrate migration in basins. First, kriging provides a satisfactory representation of aquifer nitrate contamination from local observations, to set initial conditions for the physically based model. Then associated confidence intervals, derived from data using geostatistics, are used to validate CAWAQS results. Results and evaluation obtained from the combination of these approaches are given (period 1977-1988). Then CAWAQS is used to simulate nitrate fate for a 20-year period (1977-1996). The mean nitrate concentrations increase in aquifers is 0.09 mgN L -1 yr -1 , resulting from an average infiltration flux of 3500 kgN.km -2 yr -1 . - Combined use of geostatistics and physically based modeling allows assessment of nitrate concentrations in aquifer systems

  5. Fate of microplastics and mesoplastics carried by surface currents and wind waves: A numerical model approach in the Sea of Japan.

    Science.gov (United States)

    Iwasaki, Shinsuke; Isobe, Atsuhiko; Kako, Shin'ichiro; Uchida, Keiichi; Tokai, Tadashi

    2017-08-15

    A numerical model was established to reproduce the oceanic transport processes of microplastics and mesoplastics in the Sea of Japan. A particle tracking model, where surface ocean currents were given by a combination of a reanalysis ocean current product and Stokes drift computed separately by a wave model, simulated particle movement. The model results corresponded with the field survey. Modeled results indicated the micro- and mesoplastics are moved northeastward by the Tsushima Current. Subsequently, Stokes drift selectively moves mesoplastics during winter toward the Japanese coast, resulting in increased contributions of mesoplastics south of 39°N. Additionally, Stokes drift also transports micro- and mesoplastics out to the sea area south of the subpolar front where the northeastward Tsushima Current carries them into the open ocean via the Tsugaru and Soya straits. Average transit time of modeled particles in the Sea of Japan is drastically reduced when including Stokes drift in the model. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. The Fate of Neutron Star Binary Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Piro, Anthony L. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Giacomazzo, Bruno [Physics Department, University of Trento, via Sommarive 14, I-38123 Trento (Italy); Perna, Rosalba, E-mail: piro@carnegiescience.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2017-08-01

    Following merger, a neutron star (NS) binary can produce roughly one of three different outcomes: (1) a stable NS, (2) a black hole (BH), or (3) a supramassive, rotationally supported NS, which then collapses to a BH following angular momentum losses. Which of these fates occur and in what proportion has important implications for the electromagnetic transient associated with the mergers and the expected gravitational wave (GW) signatures, which in turn depend on the high density equation of state (EOS). Here we combine relativistic calculations of NS masses using realistic EOSs with Monte Carlo population synthesis based on the mass distribution of NS binaries in our Galaxy to predict the distribution of fates expected. For many EOSs, a significant fraction of the remnants are NSs or supramassive NSs. This lends support to scenarios in which a quickly spinning, highly magnetized NS may be powering an electromagnetic transient. This also indicates that it will be important for future GW observatories to focus on high frequencies to study the post-merger GW emission. Even in cases where individual GW events are too low in signal to noise to study the post merger signature in detail, the statistics of how many mergers produce NSs versus BHs can be compared with our work to constrain the EOS. To match short gamma-ray-burst (SGRB) X-ray afterglow statistics, we find that the stiffest EOSs are ruled out. Furthermore, many popular EOSs require a significant fraction of ∼60%–70% of SGRBs to be from NS–BH mergers rather than just binary NSs.

  7. Rule-based decision making model

    International Nuclear Information System (INIS)

    Sirola, Miki

    1998-01-01

    A rule-based decision making model is designed in G2 environment. A theoretical and methodological frame for the model is composed and motivated. The rule-based decision making model is based on object-oriented modelling, knowledge engineering and decision theory. The idea of safety objective tree is utilized. Advanced rule-based methodologies are applied. A general decision making model 'decision element' is constructed. The strategy planning of the decision element is based on e.g. value theory and utility theory. A hypothetical process model is built to give input data for the decision element. The basic principle of the object model in decision making is division in tasks. Probability models are used in characterizing component availabilities. Bayes' theorem is used to recalculate the probability figures when new information is got. The model includes simple learning features to save the solution path. A decision analytic interpretation is given to the decision making process. (author)

  8. Skin Stem Cell Hypotheses and Long Term Clone Survival – Explored Using Agent-based Modelling

    Science.gov (United States)

    Li, X.; Upadhyay, A. K.; Bullock, A. J.; Dicolandrea, T.; Xu, J.; Binder, R. L.; Robinson, M. K.; Finlay, D. R.; Mills, K. J.; Bascom, C. C.; Kelling, C. K.; Isfort, R. J.; Haycock, J. W.; MacNeil, S.; Smallwood, R. H.

    2013-01-01

    Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epidermis. The model simulated the growth and maintenance of the epidermis over three years. The offspring of each proliferative cell was traced. While all lineages were preserved in asymmetric division, the vast majority were lost when assuming populational asymmetry. The third hypothesis provided the most reliable mechanism for self-renewal by preserving genetic heterogeneity in quiescent stem cells, and also inherent mechanisms for skin ageing and the accumulation of genetic mutation. PMID:23712735

  9. Skin stem cell hypotheses and long term clone survival--explored using agent-based modelling.

    Science.gov (United States)

    Li, X; Upadhyay, A K; Bullock, A J; Dicolandrea, T; Xu, J; Binder, R L; Robinson, M K; Finlay, D R; Mills, K J; Bascom, C C; Kelling, C K; Isfort, R J; Haycock, J W; MacNeil, S; Smallwood, R H

    2013-01-01

    Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epidermis. The model simulated the growth and maintenance of the epidermis over three years. The offspring of each proliferative cell was traced. While all lineages were preserved in asymmetric division, the vast majority were lost when assuming populational asymmetry. The third hypothesis provided the most reliable mechanism for self-renewal by preserving genetic heterogeneity in quiescent stem cells, and also inherent mechanisms for skin ageing and the accumulation of genetic mutation.

  10. Modelling the reworking effects of bioturbation on the incorporation of radionuclides into the sediment column: implications for the fate of particle-reactive radionuclides in Irish Sea sediments

    International Nuclear Information System (INIS)

    Cournane, S.; Leon Vintro, L.; Mitchell, P.I.

    2010-01-01

    A microcosm laboratory experiment was conducted to determine the impact of biological reworking by the ragworm Nereis diversicolor on the redistribution of particle-bound radionuclides deposited at the sediment-water interface. Over the course of the 40-day experiment, as much as 35% of a 137 Cs-labelled particulate tracer deposited on the sediment surface was redistributed to depths of up to 11 cm by the polychaete. Three different reworking models were employed to model the profiles and quantify the biodiffusion and biotransport coefficients: a gallery-diffuser model, a continuous sub-surface egestion model and a biodiffusion model. Although the biodiffusion coefficients obtained for each model were quite similar, the continuous sub-surface egestion model provided the best fit to the data. The average biodiffusion coefficient, at 1.8 ± 0.9 cm 2 y -1 , is in good agreement with the values quoted by other workers on the bioturbation effects of this polychaete species. The corresponding value for the biotransport coefficient was found to be 0.9 ± 0.4 cm y -1 . The effects of non-local mixing were incorporated in a model to describe the temporal evolution of measured 99 Tc and 60 Co radionuclide sediment profiles in the eastern Irish Sea, influenced by radioactive waste discharged from the Sellafield reprocessing plant. Reworking conditions in the sediment column were simulated by considering an upper mixed layer, an exponentially decreasing diffusion coefficient, and appropriate biotransport coefficients to account for non-local mixing. The diffusion coefficients calculated from the 99 Tc and 60 Co cores were in the range 2-14 cm 2 y -1 , which are consistent with the values found by other workers in the same marine area, while the biotransport coefficients were similar to those obtained for a variety of macrobenthic organisms in controlled laboratories and field studies. -- Research highlights: →N. diversicolor redistributes up to 35% particle

  11. Fate and transport of furrow-applied granular tefluthrin and seed-coated clothianidin insecticides: Comparison of field-scale observations and model estimates.

    Science.gov (United States)

    Huff Hartz, Kara E; Edwards, Tracye M; Lydy, Michael J

    2017-09-01

    The transport of agricultural insecticides to water bodies may create risk of exposure to non-target organisms. Similarly, widespread use of furrow-applied and seed-coated insecticides may increase risk of exposure, yet accessible exposure models are not easily adapted for furrow application, and only a few examples of model validation of furrow-applied insecticides exist using actual field data. The goal of the current project was to apply an exposure model, the Pesticide in Water Calculator (PWC), to estimate the concentrations of two in-furrow insecticides applied to maize: the granular pyrethroid, tefluthrin, and the seed-coated neonicotinoid, clothianidin. The concentrations of tefluthrin and clothianidin in surface runoff water, sampled from a field in central Illinois (USA), were compared to the PWC modeled pesticide concentrations in surface runoff. The tefluthrin concentrations were used to optimize the application method in the PWC, and the addition of particulate matter and guttation droplets improved the models prediction of clothianidin concentrations. Next, the tefluthrin and clothianidin concentrations were calculated for a standard farm pond using both the optimized application method and the application methods provided in PWC. Estimated concentrations in a standard farm pond varied by a factor of 100 for tefluthrin and 50 for clothianidin depending on the application method used. The addition of guttation droplets and particulate matter to the model increased the annual clothianidin concentration in a standard farm pond by a factor of 1.5, which suggested that these transport routes should also be considered when assessing neonicotinoid exposure.

  12. Aging of Dissolved Copper and Copper-based Nanoparticles in Five Different Soils: Short-term Kinetics vs. Long-term Fate

    Science.gov (United States)

    With the growing availability and use of copper-based nanomaterials (Cu-NMs), there is increasing concern regarding their release and potential impact on the environment. In this study, the short term (≤5 d) aging profile and the long-term (135 d) speciation of dissolved Cu, cop...

  13. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination.

    Science.gov (United States)

    Gravett, M R; Hopkins, F B; Self, A J; Webb, A J; Timperley, C M; Riches, J R

    2014-08-01

    In the event of alleged use of organophosphorus nerve agents, all kinds of environmental samples can be received for analysis. These might include decontaminated and charred matter collected from the site of a suspected chemical attack. In other scenarios, such matter might be sampled to confirm the site of a chemical weapon test or clandestine laboratory decontaminated and burned to prevent discovery. To provide an analytical capability for these contingencies, we present a preliminary investigation of the effect of accelerant-based fire and liquid decontamination on soil contaminated with the nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). The objectives were (a) to determine if VX or its degradation products were detectable in soil after an accelerant-based fire promoted by aviation fuel, including following decontamination with Decontamination Solution 2 (DS2) or aqueous sodium hypochlorite, (b) to develop analytical methods to support forensic analysis of accelerant-soaked, decontaminated and charred soil and (c) to inform the design of future experiments of this type to improve analytical fidelity. Our results show for the first time that modern analytical techniques can be used to identify residual VX and its degradation products in contaminated soil after an accelerant-based fire and after chemical decontamination and then fire. Comparison of the gas chromatography-mass spectrometry (GC-MS) profiles of VX and its impurities/degradation products from contaminated burnt soil, and burnt soil spiked with VX, indicated that the fire resulted in the production of diethyl methylphosphonate and O,S-diethyl methylphosphonothiolate (by an unknown mechanism). Other products identified were indicative of chemical decontamination, and some of these provided evidence of the decontaminant used, for example, ethyl 2-methoxyethyl methylphosphonate and bis(2-methoxyethyl) methylphosphonate following decontamination with DS2. Sample preparation

  14. Model-based DSL frameworks

    NARCIS (Netherlands)

    Ivanov, Ivan; Bézivin, J.; Jouault, F.; Valduriez, P.

    2006-01-01

    More than five years ago, the OMG proposed the Model Driven Architecture (MDA™) approach to deal with the separation of platform dependent and independent aspects in information systems. Since then, the initial idea of MDA evolved and Model Driven Engineering (MDE) is being increasingly promoted to

  15. Development and evaluation of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    Science.gov (United States)

    Microbial contamination of waters in agricultural watershed is the critical public health issue. The watershed-scale model has been proven to be one of the candidate tools for predicting microbial water quality and evaluating management practices. The Agricultural Policy/Environmental eXtender (APEX...

  16. Model based design introduction: modeling game controllers to microprocessor architectures

    Science.gov (United States)

    Jungwirth, Patrick; Badawy, Abdel-Hameed

    2017-04-01

    We present an introduction to model based design. Model based design is a visual representation, generally a block diagram, to model and incrementally develop a complex system. Model based design is a commonly used design methodology for digital signal processing, control systems, and embedded systems. Model based design's philosophy is: to solve a problem - a step at a time. The approach can be compared to a series of steps to converge to a solution. A block diagram simulation tool allows a design to be simulated with real world measurement data. For example, if an analog control system is being upgraded to a digital control system, the analog sensor input signals can be recorded. The digital control algorithm can be simulated with the real world sensor data. The output from the simulated digital control system can then be compared to the old analog based control system. Model based design can compared to Agile software develop. The Agile software development goal is to develop working software in incremental steps. Progress is measured in completed and tested code units. Progress is measured in model based design by completed and tested blocks. We present a concept for a video game controller and then use model based design to iterate the design towards a working system. We will also describe a model based design effort to develop an OS Friendly Microprocessor Architecture based on the RISC-V.

  17. EPR-based material modelling of soils

    Science.gov (United States)

    Faramarzi, Asaad; Alani, Amir M.

    2013-04-01

    In the past few decades, as a result of the rapid developments in computational software and hardware, alternative computer aided pattern recognition approaches have been introduced to modelling many engineering problems, including constitutive modelling of materials. The main idea behind pattern recognition systems is that they learn adaptively from experience and extract various discriminants, each appropriate for its purpose. In this work an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR). EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial tests are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well-known conventional material models and it is shown that EPR-based models can provide a better prediction for the behaviour of soils. The main benefits of using EPR-based material models are that it provides a unified approach to constitutive modelling of all materials (i.e., all aspects of material behaviour can be implemented within a unified environment of an EPR model); it does not require any arbitrary choice of constitutive (mathematical) models. In EPR-based material models there are no material parameters to be identified. As the model is trained directly from experimental data therefore, EPR-based material models are the shortest route from experimental research (data) to numerical modelling. Another advantage of EPR-based constitutive model is that as more experimental data become available, the quality of the EPR prediction can be improved by learning from the additional data, and therefore, the EPR model can become more effective and robust. The developed EPR-based material models can be incorporated in finite element (FE) analysis.

  18. Synchrotron-based nu-XRF mapping and mu-FTIR microscopy enable to look into the fate and effects of tattoo pigments in human skin

    OpenAIRE

    Schreiver , Ines; Hesse , Bernhard; Seim , Christian; Castillo-Michel , Hiram; Villanova , Julie; Laux , Peter; Dreiack , Nadine; Penning , Randolf; Tucoulou , Remi; Cotte , Marine; Luch , Andreas

    2017-01-01

    International audience; The increasing prevalence of tattoos provoked safety concerns with respect to particle distribution and effects inside the human body. We used skin and lymphatic tissues from human corpses to address local biokinetics by means of synchrotron X-ray fluorescence (XRF) techniques at both the micro (mu) and nano (nu) scale. Additional advanced mass spectrometry-based methodology enabled to demonstrate simultaneous transport of organic pigments, heavy metals and titanium di...

  19. Integration of Simulink Models with Component-based Software Models

    DEFF Research Database (Denmark)

    Marian, Nicolae

    2008-01-01

    Model based development aims to facilitate the development of embedded control systems by emphasizing the separation of the design level from the implementation level. Model based design involves the use of multiple models that represent different views of a system, having different semantics...... of abstract system descriptions. Usually, in mechatronics systems, design proceeds by iterating model construction, model analysis, and model transformation. Constructing a MATLAB/Simulink model, a plant and controller behavior is simulated using graphical blocks to represent mathematical and logical...... constraints. COMDES (Component-based Design of Software for Distributed Embedded Systems) is such a component-based system framework developed by the software engineering group of Mads Clausen Institute for Product Innovation (MCI), University of Southern Denmark. Once specified, the software model has...

  20. Improving Agent Based Modeling of Critical Incidents

    Directory of Open Access Journals (Sweden)

    Robert Till

    2010-04-01

    Full Text Available Agent Based Modeling (ABM is a powerful method that has been used to simulate potential critical incidents in the infrastructure and built environments. This paper will discuss the modeling of some critical incidents currently simulated using ABM and how they may be expanded and improved by using better physiological modeling, psychological modeling, modeling the actions of interveners, introducing Geographic Information Systems (GIS and open source models.

  1. Models for Rational Number Bases

    Science.gov (United States)

    Pedersen, Jean J.; Armbruster, Frank O.

    1975-01-01

    This article extends number bases to negative integers, then to positive rationals and finally to negative rationals. Methods and rules for operations in positive and negative rational bases greater than one or less than negative one are summarized in tables. Sample problems are explained and illustrated. (KM)

  2. The principle of locality: Effectiveness, fate, and challenges

    International Nuclear Information System (INIS)

    Doplicher, Sergio

    2010-01-01

    The special theory of relativity and quantum mechanics merge in the key principle of quantum field theory, the principle of locality. We review some examples of its 'unreasonable effectiveness' in giving rise to most of the conceptual and structural frame of quantum field theory, especially in the absence of massless particles. This effectiveness shows up best in the formulation of quantum field theory in terms of operator algebras of local observables; this formulation is successful in digging out the roots of global gauge invariance, through the analysis of superselection structure and statistics, in the structure of the local observable quantities alone, at least for purely massive theories; but so far it seems unfit to cope with the principle of local gauge invariance. This problem emerges also if one attempts to figure out the fate of the principle of locality in theories describing the gravitational forces between elementary particles as well. An approach based on the need to keep an operational meaning, in terms of localization of events, of the notion of space-time, shows that, in the small, the latter must loose any meaning as a classical pseudo-Riemannian manifold, locally based on Minkowski space, but should acquire a quantum structure at the Planck scale. We review the geometry of a basic model of quantum space-time and some attempts to formulate interaction of quantum fields on quantum space-time. The principle of locality is necessarily lost at the Planck scale, and it is a crucial open problem to unravel a replacement in such theories which is equally mathematically sharp, namely, a principle where the general theory of relativity and quantum mechanics merge, which reduces to the principle of locality at larger scales. Besides exploring its fate, many challenges for the principle of locality remain; among them, the analysis of superselection structure and statistics also in the presence of massless particles, and to give a precise mathematical

  3. Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria

    OpenAIRE

    L?nnberg, Tapio; Svensson, Valentine; James, Kylie R.; Fernandez-Ruiz, Daniel; Sebina, Ismail; Montandon, Ruddy; Soon, Megan S. F.; Fogg, Lily G.; Nair, Arya Sheela; Liligeto, Urijah; Stubbington, Michael J. T.; Ly, Lam-Ha; Bagger, Frederik Otzen; Zwiessele, Max; Lawrence, Neil D.

    2017-01-01

    Differentiation of na?ve CD4+ T cells into functionally distinct T helper subsets is crucial for the orchestration of immune responses. Due to extensive heterogeneity and multiple overlapping transcriptional programs in differentiating T cell populations, this process has remained a challenge for systematic dissection in vivo. By using single-cell transcriptomics and computational analysis using a temporal mixtures of Gaussian processes model, termed GPfates, we reconstructed the developmenta...

  4. Cell Fate of Müller Cells During Photoreceptor Regeneration in an N-Methyl-N-nitrosourea-Induced Retinal Degeneration Model of Zebrafish.

    Science.gov (United States)

    Ogai, Kazuhiro; Hisano, Suguru; Sugitani, Kayo; Koriyama, Yoshiki; Kato, Satoru

    2016-01-01

    Zebrafish can regenerate several organs such as the tail fin, heart, central nervous system, and photoreceptors. Very recently, a study has demonstrated the photoreceptor regeneration in the alkylating agent N-methyl-N-nitrosourea (MNU)-induced retinal degeneration (RD) zebrafish model, in which whole photoreceptors are lost within a week after MNU treatment and then regenerated within a month. The research has also shown massive proliferation of Müller cells within a week. To address the question of whether proliferating Müller cells are the source of regenerating photoreceptors, which remains unknown in the MNU-induced zebrafish RD model, we employed a BrdU pulse-chase technique to label the proliferating cells within a week after MNU treatment. As a result of the BrdU pulse-chase technique, a number of BrdU(+) cells were observed in the outer nuclear layer as well as the inner nuclear layer. This implies that regenerating photoreceptors are derived from proliferating Müller cells in the zebrafish MNU-induced RD model.

  5. ALM-FATES: Using dynamic vegetation and demography to capture changes in forest carbon cycling and competition at the global scale

    Science.gov (United States)

    Holm, J. A.; Knox, R. G.; Koven, C.; Riley, W. J.; Bisht, G.; Fisher, R.; Christoffersen, B. O.; Dietze, M.; Chambers, J. Q.

    2017-12-01

    The inclusion of dynamic vegetation demography in Earth System Models (ESMs) has been identified as a critical step in moving ESMs towards more realistic representations of plant ecology and the processes that govern climatically important fluxes of carbon, energy, and water. Successful application of dynamic vegetation models, and process-based approaches to simulate plant demography, succession, and response to disturbances without climate envelopes at the global scale is a challenging endeavor. We integrated demographic processes using the Functionally-Assembled Terrestrial Ecosystem Simulator (FATES) in the newly developed ACME Land Model (ALM). We then use an ALM-FATES globally gridded simulation for the first time to investigate plant functional type (PFT) distributions and dynamic turnover rates. Initial global simulations successfully include six interacting and competing PFTs (ranging from tropical to boreal, evergreen, deciduous, needleleaf and broadleaf); including more PFTs is planned. Global maps of net primary productivity, leaf area index, and total vegetation biomass by ALM-FATES matched patterns and values when compared to CLM4.5-BGC and MODIS estimates. We also present techniques for PFT parameterization based on the Predictive Ecosystem Analyzer (PEcAn), field based turnover rates, improved PFT groupings based on trait-tradeoffs, and improved representation of multiple canopy positions. Finally, we applied the improved ALM-FATES model at a central Amazon tropical and western U.S. temperate sites and demonstrate improvements in predicted PFT size- and age-structure and regional distribution. Results from the Amazon tropical site investigate the ability and magnitude of a tropical forest to act as a carbon sink by 2100 with a doubling of CO2, while results from the temperate sites investigate the response of forest mortality with increasing droughts.

  6. A first-generation physiologically based pharmacokinetic (PBPK) model of alpha-tocopherol in human influenza vaccine adjuvant.

    Science.gov (United States)

    Tegenge, Million A; Mitkus, Robert J

    2015-04-01

    Alpha (α)-tocopherol is a component of a new generation of squalene-containing oil-in-water (SQ/W) emulsion adjuvants that have been licensed for use in certain influenza vaccines. Since regulatory pharmacokinetic studies are not routinely required for influenza vaccines, the in vivo fate of this vaccine constituent is largely unknown. In this study, we constructed a physiologically based pharmacokinetic (PBPK) model for emulsified α-tocopherol in human adults and infants. An independent sheep PBPK model was also developed to inform the local preferential lymphatic transfer and for the purpose of model evaluation. The PBPK model predicts that α-tocopherol will be removed from the injection site within 24h and rapidly transfer predominantly into draining lymph nodes. A much lower concentration of α-tocopherol was estimated to peak in plasma within 8h. Any systemically absorbed α-tocopherol was predicted to accumulate slowly in adipose tissue, but not in other tissues. Model evaluation and uncertainty analyses indicated acceptable fit, with the fraction of dose taken up into the lymphatics as most influential on plasma concentration. In summary, this study estimates the in vivo fate of α-tocopherol in adjuvanted influenza vaccine, may be relevant in explaining its immunodynamics in humans, and informs current regulatory risk-benefit analyses. Published by Elsevier Inc.

  7. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    Science.gov (United States)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  8. Fate of para-toluenesulfonamide (p-TSA) in groundwater under anoxic conditions: modelling results from a field site in Berlin (Germany).

    Science.gov (United States)

    Meffe, Raffaella; Kohfahl, Claus; Hamann, Enrico; Greskowiak, Janek; Massmann, Gudrun; Dünnbier, Uwe; Pekdeger, Asaf

    2014-01-01

    This article reports on a field modelling study to investigate the processes controlling the plume evolution of para-toluenesulfonamide (p-TSA) in anoxic groundwater in Berlin, Germany. The organic contaminant p-TSA originates from the industrial production process of plasticisers, pesticides, antiseptics and drugs and is of general environmental concern for urban water management. Previous laboratory studies revealed that p-TSA is degradable under oxic conditions, whereas it appears to behave conservatively in the absence of oxygen (O2). p-TSA is ubiquitous in the aquatic environment of Berlin and present in high concentrations (up to 38 μg L(-1)) in an anoxic aquifer downgradient of a former sewage farm, where groundwater is partly used for drinking water production. To obtain refined knowledge of p-TSA transport and degradation in an aquifer at field scale, measurements of p-TSA were carried out at 11 locations (at different depths) between 2005 and 2010. Comparison of chloride (Cl(-)) and p-TSA field data showed that p-TSA has been retarded in the same manner as Cl(-). To verify the transport behaviour under field conditions, a two-dimensional transport model was setup, applying the dual-domain mass transfer approach in the model sector corresponding to an area of high aquifer heterogeneity. The distribution of Cl(-) and p-TSA concentrations from the site was reproduced well, confirming that both compounds behave conservatively and are subjected to retardation due to back diffusion from water stagnant zones. Predictive simulations showed that without any remediation measures, the groundwater quality near the drinking water well galleries will be affected by high p-TSA loads for about a hundred years.

  9. PV panel model based on datasheet values

    DEFF Research Database (Denmark)

    Sera, Dezso; Teodorescu, Remus; Rodriguez, Pedro

    2007-01-01

    This work presents the construction of a model for a PV panel using the single-diode five-parameters model, based exclusively on data-sheet parameters. The model takes into account the series and parallel (shunt) resistance of the panel. The equivalent circuit and the basic equations of the PV cell....... Based on these equations, a PV panel model, which is able to predict the panel behavior in different temperature and irradiance conditions, is built and tested....

  10. Traceability in Model-Based Testing

    Directory of Open Access Journals (Sweden)

    Mathew George

    2012-11-01

    Full Text Available The growing complexities of software and the demand for shorter time to market are two important challenges that face today’s IT industry. These challenges demand the increase of both productivity and quality of software. Model-based testing is a promising technique for meeting these challenges. Traceability modeling is a key issue and challenge in model-based testing. Relationships between the different models will help to navigate from one model to another, and trace back to the respective requirements and the design model when the test fails. In this paper, we present an approach for bridging the gaps between the different models in model-based testing. We propose relation definition markup language (RDML for defining the relationships between models.

  11. Firm Based Trade Models and Turkish Economy

    Directory of Open Access Journals (Sweden)

    Nilüfer ARGIN

    2015-12-01

    Full Text Available Among all international trade models, only The Firm Based Trade Models explains firm’s action and behavior in the world trade. The Firm Based Trade Models focuses on the trade behavior of individual firms that actually make intra industry trade. Firm Based Trade Models can explain globalization process truly. These approaches include multinational cooperation, supply chain and outsourcing also. Our paper aims to explain and analyze Turkish export with Firm Based Trade Models’ context. We use UNCTAD data on exports by SITC Rev 3 categorization to explain total export and 255 products and calculate intensive-extensive margins of Turkish firms.

  12. Lévy-based growth models

    DEFF Research Database (Denmark)

    Jónsdóttir, Kristjana Ýr; Schmiegel, Jürgen; Jensen, Eva Bjørn Vedel

    2008-01-01

    In the present paper, we give a condensed review, for the nonspecialist reader, of a new modelling framework for spatio-temporal processes, based on Lévy theory. We show the potential of the approach in stochastic geometry and spatial statistics by studying Lévy-based growth modelling of planar o...... objects. The growth models considered are spatio-temporal stochastic processes on the circle. As a by product, flexible new models for space–time covariance functions on the circle are provided. An application of the Lévy-based growth models to tumour growth is discussed....

  13. Distributed Prognostics Based on Structural Model Decomposition

    Data.gov (United States)

    National Aeronautics and Space Administration — Within systems health management, prognostics focuses on predicting the remaining useful life of a system. In the model-based prognostics paradigm, physics-based...

  14. Fate of chemical warfare agents and toxic indutrial chemicals in landfills

    DEFF Research Database (Denmark)

    Bartelt-Hunt, D.L.; Barlaz, M.A.; Knappe, D.R.U.

    2006-01-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs......], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from...... CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis halflives. Monte Carlo simulations were performed to assess...

  15. Provenance and fate of arsenic and other solutes in the Chaco-Pampean Plain of the Andean foreland, Argentina: From perspectives of hydrogeochemical modeling and regional tectonic setting

    Science.gov (United States)

    Raychowdhury, Nilasree; Mukherjee, Abhijit; Bhattacharya, Prosun; Johannesson, Karen; Bundschuh, Jochen; Sifuentes, Gabriela Bejarano; Nordberg, Erika; Martin, Raúl A.; Storniolo, Angel del Rosario

    2014-10-01

    Extensive arsenic (As) enriched groundwater is known to occur in the aquifers of the Chaco-Pampean Plain of Argentina. Previous studies speculated that the As mobilization in these groundwaters was a direct result of their elevated pH and oxidative conditions. The volcanic glass layers present in the aquifer matrix were hypothesized as one of the possible sources of As to the groundwaters. Here, we examine the groundwater chemistry of the Santiago del Estero province of Chaco-Pampean Plains of Argentina, and test these hypotheses by using hydrogeochemical modeling within the framework of the regional geologic-tectonic setting. The study area is located in the active foreland of the Andean orogenic belt, which forms a continental arc setting, and is dotted with several hot springs. Rhyolitic volcanic glass fragments derived from arc volcanism are abundant within the aeolian-fluvial aquifer sediments, and are related to the paleo-igneous extrusion in the vicinity. Hydrogeochemical analyses show that the groundwater is in predominantly oxidative condition. In addition, some of the groundwaters exhibit very high Na, Cl- and SO42- concentrations. It is hypothesized in this study that the groundwater chemistry has largely evolved by dissolution of rhyolitic volcanic glass fragments contained within the aquifer sediments along with mixing with saline surface waters from, adjoining salinas, which are thought to be partially evaporated remnants of a paleo inland sea. Flow path modeling, stability diagrams, and thermodynamic analyses undertaken in this study indicate that the dominant evolutionary processes include ion exchange reactions, chemical weathering of silicate and evaporites, in monosialitization-dominated weathering. Geochemical modeling predicts that plagioclase feldspar and volcanic glass are the major solids phases that contribute metal cations and dissolved silica to the local groundwaters. Co-influxed oxyanions, with similar ionic radii and structure (e.g. Mo

  16. Fate of accreting white dwarfs: Type I supernovae vs collapse

    International Nuclear Information System (INIS)

    Nomoto, Ken'ichi.

    1986-01-01

    The final fate of accreting C + O white dwarfs is either thermonuclear explosion or collapse, if the white dwarf mass grows to the Chandrasekhar mass. We discuss how the fate depends on the initial mass, age, composition of the white dwarf and the mass accretion rate. Relatively fast accretion leads to a carbon deflagration at low central density that gives rise to a Type Ia supernova. Slower accretion induces a helium detonation that could be observed as a Type Ib supernova. If the initial mass of the C + O white dwarf is larger than 1.2 Msub solar, a carbon deflagration starts at high central density and induces a collapse of the white dwarf to form a neutron star. We examine the critical condition for which a carbon deflagration leads to collapse, not explosion. For the case of explosion, we discuss to what extent the nucleosynthesis models are consistent with spectra of Type Ia and Ib supernovae. 61 refs., 18 figs

  17. The Chemical Aquatic Fate and Effects database (CAFE), a tool that supports assessments of chemical spills in aquatic environments.

    Science.gov (United States)

    Bejarano, Adriana C; Farr, James K; Jenne, Polly; Chu, Valerie; Hielscher, Al

    2016-06-01

    The Chemical Aquatic Fate and Effects (CAFE) database is a centralized repository that allows for rapid and unrestricted access to data. Information in CAFE is integrated into a user-friendly tool with modules containing fate and effects data for 32 377 and 4498 chemicals, respectively. Toxicity data are summarized in the form of species sensitivity distributions (SSDs) with associated 1st and 5th percentile hazard concentrations (HCs). An assessment of data availability relative to reported chemical incidents showed that CAFE had fate and toxicity data for 32 and 20 chemicals, respectively, of 55 chemicals reported in the US National Response Center database (2000-2014), and fate and toxicity data for 86 and 103, respectively, of 205 chemicals reported by the National Oceanic and Atmospheric Administration (2003-2014). Modeled environmental concentrations of 2 hypothetical spills (acrylonitrile, 625 barrels; and denatured ethanol, 857 barrels) were used to demonstrate CAFE's practical application. Most species in the 24-h SSD could be potentially impacted by acrylonitrile and denatured ethanol during the first 35 min and 15 h post spill, respectively, with concentrations falling below their HC5s (17 mg/L and 2676 mg/L) at 45 min and 60 h post spill, respectively. Comparisons of CAFE-based versus published HC5 values for 100 chemicals showed that nearly half of values were within a 2-fold difference, with a relatively small number of comparisons exceeding a 10-fold difference. The development of CAFE facilitates access to relevant environmental information, with potential uses likely expanding beyond those related to assessment of spills in aquatic environments. Environ Toxicol Chem 2016;35:1576-1586. © 2015 SETAC. © 2015 SETAC.

  18. Hydro-dam - A nature-based solution or an ecological problem: The fate of the Tonlé Sap Lake.

    Science.gov (United States)

    Lin, Zihan; Qi, Jiaguo

    2017-10-01

    Recent proliferation of hydro-dams was one of the nature-based solutions to meet the increasing demand for energy and food in the Lower Mekong River Basin (LMRB). While construction of these hydro-dams generated some hydropower and facilitated expansion of irrigated lands, it also significantly altered the basin-wide hydrology and subsequently impacted wetland ecosystems. Unintended adverse consequences of ecosystem services from lakes and wetlands offset the intended gains in hydroelectricity and irrigated agriculture. The trade-offs between gains in energy and food production and losses in aquatic ecosystem services were perceived to be significant but knowledge of the magnitude, spatial extent, and type of ecosystem services change is lacking and, therefore, the question whether the hydro-dam is an optimized solution or a potential ecological problem remains unanswered. In this study, as the first step to answer this question and using the Tonlé Sap Lake as an example, we quantified one of the impacts of hydro-dams on lake ecosystem's phenology in terms of open water area, a critical ecological characteristic that affects lake systems' fish production, biodiversity, and livelihoods of the local communities. We used the MODIS-NDVI time series, forecast function and the Mann-Kendall trend test method to first quantify the open water area, analyzed its changes over time, and then performed correlation analysis with climate variables to disentangle dam impacts. The results showed reduced hydro-periods, diminishing lake seasonality and a declining trend in Tonlé Sap Lake open water area over the past 15 years. These changes were insignificantly related to climatic influence during the same period. It is concluded that basin-wide hydro-dam construction and associated agricultural irrigation were deemed to be the primary cause of these ecological changes. Further analyses of changes in the lake's ecosystem services, including provision and cultural services, need to

  19. Model Validation in Ontology Based Transformations

    Directory of Open Access Journals (Sweden)

    Jesús M. Almendros-Jiménez

    2012-10-01

    Full Text Available Model Driven Engineering (MDE is an emerging approach of software engineering. MDE emphasizes the construction of models from which the implementation should be derived by applying model transformations. The Ontology Definition Meta-model (ODM has been proposed as a profile for UML models of the Web Ontology Language (OWL. In this context, transformations of UML models can be mapped into ODM/OWL transformations. On the other hand, model validation is a crucial task in model transformation. Meta-modeling permits to give a syntactic structure to source and target models. However, semantic requirements have to be imposed on source and target models. A given transformation will be sound when source and target models fulfill the syntactic and semantic requirements. In this paper, we present an approach for model validation in ODM based transformations. Adopting a logic programming based transformational approach we will show how it is possible to transform and validate models. Properties to be validated range from structural and semantic requirements of models (pre and post conditions to properties of the transformation (invariants. The approach has been applied to a well-known example of model transformation: the Entity-Relationship (ER to Relational Model (RM transformation.

  20. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the

  1. Model-based version management system framework

    International Nuclear Information System (INIS)

    Mehmood, W.

    2016-01-01

    In this paper we present a model-based version management system. Version Management System (VMS) a branch of software configuration management (SCM) aims to provide a controlling mechanism for evolution of software artifacts created during software development process. Controlling the evolution requires many activities to perform, such as, construction and creation of versions, identification of differences between versions, conflict detection and merging. Traditional VMS systems are file-based and consider software systems as a set of text files. File based VMS systems are not adequate for performing software configuration management activities such as, version control on software artifacts produced in earlier phases of the software life cycle. New challenges of model differencing, merge, and evolution control arise while using models as central artifact. The goal of this work is to present a generic framework model-based VMS which can be used to overcome the problem of tradition file-based VMS systems and provide model versioning services. (author)

  2. Model-based internal wave processing

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.; Chambers, D.H.

    1995-06-09

    A model-based approach is proposed to solve the oceanic internal wave signal processing problem that is based on state-space representations of the normal-mode vertical velocity and plane wave horizontal velocity propagation models. It is shown that these representations can be utilized to spatially propagate the modal (dept) vertical velocity functions given the basic parameters (wave numbers, Brunt-Vaisala frequency profile etc.) developed from the solution of the associated boundary value problem as well as the horizontal velocity components. Based on this framework, investigations are made of model-based solutions to the signal enhancement problem for internal waves.

  3. Investigation of the Factors Influencing Volatile Chemical Fate During Steady-state Accretion on Wet-growing Hail

    Science.gov (United States)

    Michael, R. A.; Stuart, A. L.

    2007-12-01

    Phase partitioning during freezing affects the transport and distribution of volatile chemical species in convective clouds. This consequently can have impacts on tropospheric chemistry, air quality, pollutant deposition, and climate change. Here, we discuss the development, evaluation, and application of a mechanistic model for the study and prediction of volatile chemical partitioning during steady-state hailstone growth. The model estimates the fraction of a chemical species retained in a two-phase freezing hailstone. It is based upon mass rate balances over water and solute for accretion under wet-growth conditions. Expressions for the calculation of model components, including the rates of super-cooled drop collection, shedding, evaporation, and hail growth were developed and implemented based on available cloud microphysics literature. Solute fate calculations assume equilibrium partitioning at air-liquid and liquid-ice interfaces. Currently, we are testing the model by performing mass balance calculations, sensitivity analyses, and comparison to available experimental data. Application of the model will improve understanding of the effects of cloud conditions and chemical properties on the fate of dissolved chemical species during hail growth.

  4. Gradient-based model calibration with proxy-model assistance

    Science.gov (United States)

    Burrows, Wesley; Doherty, John

    2016-02-01

    Use of a proxy model in gradient-based calibration and uncertainty analysis of a complex groundwater model with large run times and problematic numerical behaviour is described. The methodology is general, and can be used with models of all types. The proxy model is based on a series of analytical functions that link all model outputs used in the calibration process to all parameters requiring estimation. In enforcing history-matching constraints during the calibration and post-calibration uncertainty analysis processes, the proxy model is run for the purposes of populating the Jacobian matrix, while the original model is run when testing parameter upgrades; the latter process is readily parallelized. Use of a proxy model in this fashion dramatically reduces the computational burden of complex model calibration and uncertainty analysis. At the same time, the effect of model numerical misbehaviour on calculation of local gradients is mitigated, this allowing access to the benefits of gradient-based analysis where lack of integrity in finite-difference derivatives calculation would otherwise have impeded such access. Construction of a proxy model, and its subsequent use in calibration of a complex model, and in analysing the uncertainties of predictions made by that model, is implemented in the PEST suite.

  5. Opinion dynamics model based on quantum formalism

    Energy Technology Data Exchange (ETDEWEB)

    Artawan, I. Nengah, E-mail: nengahartawan@gmail.com [Theoretical Physics Division, Department of Physics, Udayana University (Indonesia); Trisnawati, N. L. P., E-mail: nlptrisnawati@gmail.com [Biophysics, Department of Physics, Udayana University (Indonesia)

    2016-03-11

    Opinion dynamics model based on quantum formalism is proposed. The core of the quantum formalism is on the half spin dynamics system. In this research the implicit time evolution operators are derived. The analogy between the model with Deffuant dan Sznajd models is discussed.

  6. Uncertanity Analysis in Parameter Estimation of Coupled Bacteria-Sediment Fate and Transport in Streams

    Science.gov (United States)

    Massoudieh, A.; Le, T.; Pachepsky, Y. A.

    2014-12-01

    E. coli is widely used as an fecal indicator bacteria in streams. It has been shown that the interaction between sediments and the bacteria is an important factor in determining its fate and transport in water bodies. In this presentation parameter estimation and uncertainty analysis of a mechanistic model of bacteria-sediment interaction respectively using a hybrid genetic algorithm and Makov-Chain Monte Carlo (MCMC) approach will be presented. The physically-based model considers the advective-dispersive transport of sediments as well as both free-floating and sediment-associated bacteria in the water column and also the fate and transport of bacteria in the bed sediments in a small stream. The bed sediments are treated as a distributed system which allows modeling the evolution of the vertical distribution of bacteria as a result of sedimentation and resuspension, diffusion and bioturbation in the sediments. One-dimensional St. Venant's equation is used to model flow in the stream. The model is applied to sediment and E. coli concentration data collected during a high flow event in a small stream historically receiving agricultural runoff. Measured total suspended sediments and total E. coli concentrations in the water column at three sections of the stream are used for the parameter estimation. The data on the initial distribution of E. coli in the sediments was available and was used as the initial conditions. The MCMC method is used to estimate the joint probability distribution of model parameters including sediment deposition and erosion rates, critical shear stress for deposition and erosion, attachment and detachment rate constants of E. coli to/from sediments and also the effective diffusion coefficients of E. coli in the bed sediments. The uncertainties associated with the estimated parameters are quantified via the MCMC approach and the correlation between the posterior distribution of parameters have been used to assess the model adequacy and

  7. Agent-based modeling of sustainable behaviors

    CERN Document Server

    Sánchez-Maroño, Noelia; Fontenla-Romero, Oscar; Polhill, J; Craig, Tony; Bajo, Javier; Corchado, Juan

    2017-01-01

    Using the O.D.D. (Overview, Design concepts, Detail) protocol, this title explores the role of agent-based modeling in predicting the feasibility of various approaches to sustainability. The chapters incorporated in this volume consist of real case studies to illustrate the utility of agent-based modeling and complexity theory in discovering a path to more efficient and sustainable lifestyles. The topics covered within include: households' attitudes toward recycling, designing decision trees for representing sustainable behaviors, negotiation-based parking allocation, auction-based traffic signal control, and others. This selection of papers will be of interest to social scientists who wish to learn more about agent-based modeling as well as experts in the field of agent-based modeling.

  8. Individual fates of mesenchymal stem cells in vitro

    Directory of Open Access Journals (Sweden)

    Drasdo Dirk

    2010-05-01

    Full Text Available Abstract Background In vitro cultivated stem cell populations are in general heterogeneous with respect to their expression of differentiation markers. In hematopoietic progenitor populations, this heterogeneity has been shown to regenerate within days from isolated subpopulations defined by high or low marker expression. This kind of plasticity has been suggested to be a fundamental feature of mesenchymal stem cells (MSCs as well. Here, we study MSC plasticity on the level of individual cells applying a multi-scale computer model that is based on the concept of noise-driven stem cell differentiation. Results By simulation studies, we provide detailed insight into the kinetics of MSC organisation. Monitoring the fates of individual cells in high and low oxygen culture, we calculated the average transition times of individual cells into stem cell and differentiated states. We predict that at low oxygen the heterogeneity of a MSC population with respect to differentiation regenerates from any selected subpopulation in about two days. At high oxygen, regeneration becomes substantially slowed down. Simulation results on the composition of the functional stem cell pool of MSC populations suggest that most of the cells that constitute this pool originate from more differentiated cells. Conclusions Individual cell-based models are well-suited to provide quantitative predictions on essential features of the spatio-temporal organisation of MSC in vitro. Our predictions on MSC plasticity and its dependence on the environment motivate a number of in vitro experiments for validation. They may contribute to a better understanding of MSC organisation in vitro, including features of clonal expansion, environmental adaptation and stem cell ageing.

  9. Fate of 14C-labelled compounds in marine environment

    International Nuclear Information System (INIS)

    Kale, S.P.; Raghu, K.; Sherkhane, P.D.; Murthy, N.B.K.

    1999-01-01

    Model ecosystems have played an important role in predicting environmental behavior of agrochemicals. The microcosms used in these studies generally include soil units containing usual biotic components common for that ecosystem. In present studies, scope of two such ecosystems has been extended to study the fate of 14 C-labelled pesticides in marine environment. 14 C-labelled pesticides used in these studies were chlorpyrifos, DDT and HCH. Two systems were developed in laboratory simulating marine environment to study the fate of these pesticides. The first system was developed in an all glass aquarium tank with marine sediments, seawater, clams and algae and is referred to as marine ecosystem. The second system was developed to permit the total 14 C-mass balance studies. It contained marine sediments under moist (60% water holding capacity) or flooded conditions and it is referred to as continuous flow system. Fate of 14 C-DDT was studied in marine ecosystem while degradation of 14 C-chlorpyrifos and 14 C-HCH was studied in continuous flow system. 14 C-DDT did not bioaccumulate in clams while at the end of 60 days 50% of the applied 14 C-activity was present in sediment fraction of marine ecosystem. 14 C-HCH degradation showed about 22-26% mineralization while 45-55% of the applied activity was recovered as organic volatiles. No significant bound residues were formed. 14 C-chorpyrifos underwent considerable degradation in marine environment. TCP was the major degradation product. (author)

  10. Chemicals as the Sole Transformers of Cell Fate.

    Science.gov (United States)

    Ebrahimi, Behnam

    2016-05-30

    Forced expression of lineage-specific transcription factors in somatic cells can result in the generation of different cell types in a process named direct reprogramming, bypassing the pluripotent state. However, the introduction of transgenes limits the therapeutic applications of the produced cells. Numerous small-molecules have been introduced in the field of stem cell biology capable of governing self-renewal, reprogramming, transdifferentiation and regeneration. These chemical compounds are versatile tools for cell fate conversion toward desired outcomes. Cell fate conversion using small-molecules alone (chemical reprogramming) has superiority over arduous traditional genetic techniques in several aspects. For instance, rapid, transient, and reversible effects in activation and inhibition of functions of specific proteins are of the profits of small-molecules. They are cost-effective, have a long half-life, diversity on structure and function, and allow for temporal and flexible regulation of signaling pathways. Additionally, their effects could be adjusted by fine-tuning concentrations and combinations of different small-molecules. Therefore, chemicals are powerful tools in cell fate conversion and study of stem cell and chemical biology in vitro and in vivo. Moreover, transgene-free and chemical-only transdifferentiation approaches provide alternative strategies for the generation of various cell types, disease modeling, drug screening, and regenerative medicine. The current review gives an overview of the recent findings concerning transdifferentiation by only small-molecules without the use of transgenes.

  11. Model-based Abstraction of Data Provenance

    DEFF Research Database (Denmark)

    Probst, Christian W.; Hansen, René Rydhof

    2014-01-01

    to bigger models, and the analyses adapt accordingly. Our approach extends provenance both with the origin of data, the actors and processes involved in the handling of data, and policies applied while doing so. The model and corresponding analyses are based on a formal model of spatial and organisational......Identifying provenance of data provides insights to the origin of data and intermediate results, and has recently gained increased interest due to data-centric applications. In this work we extend a data-centric system view with actors handling the data and policies restricting actions....... This extension is based on provenance analysis performed on system models. System models have been introduced to model and analyse spatial and organisational aspects of organisations, to identify, e.g., potential insider threats. Both the models and analyses are naturally modular; models can be combined...

  12. Modeling radiocesium transport from a river catchment based on a physically-based distributed hydrological and sediment erosion model.

    Science.gov (United States)

    Kinouchi, Tsuyoshi; Yoshimura, Kazuya; Omata, Teppei

    2015-01-01

    The accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) in March 2011 resulted in the deposition of large quantities of radionuclides, such as (134)Cs and (137)Cs, over parts of eastern Japan. Since then high levels of radioactive contamination have been detected in large areas, including forests, agricultural land, and residential areas. Due to the strong adsorption capability of radiocesium to soil particles, radiocesium migrates with eroded sediments, follows the surface flow paths, and is delivered to more populated downstream regions and eventually to the Pacific Ocean. It is therefore important to understand the transport of contaminated sediments in the hydrological system and to predict changes in the spatial distribution of radiocesium concentrations by taking the land-surface processes related to sediment migration into consideration. In this study, we developed a distributed model to simulate the transport of water and contaminated sediment in a watershed hydrological system, and applied this model to a partially forested mountain catchment located in an area highly contaminated by the radioactive fallout. Observed discharge, sediment concentration, and cesium concentration measured from June 2011 until December 2012 were used for calibration of model parameters. The simulated discharge and sediment concentration both agreed well with observed values, while the cesium concentration was underestimated in the initial period following the accident. This result suggests that the leaching of radiocesium from the forest canopy, which was not considered in the model, played a significant role in its transport from the catchment. Based on the simulation results, we quantified the long-term fate of radiocesium over the study area and estimated that the effective half-life of (137)Cs deposited in the study area will be approximately 22 y due to the export of contaminated sediment by land-surface processes, and the amount of (137)Cs remaining in the

  13. Hematopoietic stem cell fate through metabolic control.

    Science.gov (United States)

    Ito, Kyoko; Ito, Keisuke

    2018-05-25

    Hematopoietic stem cells (HSCs) maintain a quiescent state in the bone marrow to preserve their self-renewal capacity, but also undergo cell divisions as required. Organelles such as the mitochondria sustain cumulative damage during these cell divisions, and this damage may eventually compromise the cells' self-renewal capacity. HSC divisions result in either self-renewal or differentiation, with the balance between the two directly impacting hematopoietic homeostasis; but the heterogeneity of available HSC-enriched fractions, together with the technical challenges of observing HSC behavior, has long hindered the analysis of individual HSCs, and prevented the elucidation of this process. However, recent advances in genetic models, metabolomics analyses and single-cell approaches have revealed the contributions made to HSC self-renewal by metabolic cues, mitochondrial biogenesis, and autophagy/mitophagy, which have highlighted mitochondrial quality as a key control factor in the equilibrium of HSCs. A deeper understanding of precisely how specific modes of metabolism control HSC fate at the single cell level is therefore not only of great biological interest, but will have clear clinical implications for the development of therapies for hematological disease. Copyright © 2018. Published by Elsevier Inc.

  14. CEAI: CCM based Email Authorship Identification Model

    DEFF Research Database (Denmark)

    Nizamani, Sarwat; Memon, Nasrullah

    2013-01-01

    In this paper we present a model for email authorship identification (EAI) by employing a Cluster-based Classification (CCM) technique. Traditionally, stylometric features have been successfully employed in various authorship analysis tasks; we extend the traditional feature-set to include some...... more interesting and effective features for email authorship identification (e.g. the last punctuation mark used in an email, the tendency of an author to use capitalization at the start of an email, or the punctuation after a greeting or farewell). We also included Info Gain feature selection based...... reveal that the proposed CCM-based email authorship identification model, along with the proposed feature set, outperforms the state-of-the-art support vector machine (SVM)-based models, as well as the models proposed by Iqbal et al. [1, 2]. The proposed model attains an accuracy rate of 94% for 10...

  15. Exploring the fate of liposomes in the intestine by dynamic in vitro lipolysis

    DEFF Research Database (Denmark)

    Parmentier, Johannes; Thomas, Nicky; Müllertz, Anette

    2012-01-01

    precipitation was detected during the lipolysis assay, despite pronounced lipolytic degradation and change in vesicle size. In conclusion, the tested dynamic in vitro lipolysis model is suitable for the assessment of liposome stability in the intestine. Furthermore, liposomes might be a useful alternative......Liposomes are generally well tolerated drug delivery systems with a potential use for the oral route. However, little is known about the fate of liposomes during exposure to the conditions in the gastro-intestinal tract (GIT). To gain a better understanding of liposome stability in the intestine......, a dynamic in vitro lipolysis model, which so far has only been used for the in vitro characterisation of other lipid-based drug delivery systems, was applied to different liposomal formulations. Liposome size and phospholipid (PL) digestion were determined as two markers for liposome stability. In addition...

  16. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  17. Measurement-based reliability/performability models

    Science.gov (United States)

    Hsueh, Mei-Chen

    1987-01-01

    Measurement-based models based on real error-data collected on a multiprocessor system are described. Model development from the raw error-data to the estimation of cumulative reward is also described. A workload/reliability model is developed based on low-level error and resource usage data collected on an IBM 3081 system during its normal operation in order to evaluate the resource usage/error/recovery process in a large mainframe system. Thus, both normal and erroneous behavior of the system are modeled. The results provide an understanding of the different types of errors and recovery processes. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model the system behavior. A sensitivity analysis is performed to investigate the significance of using a semi-Markov process, as opposed to a Markov process, to model the measured system.

  18. Culturicon model: A new model for cultural-based emoticon

    Science.gov (United States)

    Zukhi, Mohd Zhafri Bin Mohd; Hussain, Azham

    2017-10-01

    Emoticons are popular among distributed collective interaction user in expressing their emotion, gestures and actions. Emoticons have been proved to be able to avoid misunderstanding of the message, attention saving and improved the communications among different native speakers. However, beside the benefits that emoticons can provide, the study regarding emoticons in cultural perspective is still lacking. As emoticons are crucial in global communication, culture should be one of the extensively research aspect in distributed collective interaction. Therefore, this study attempt to explore and develop model for cultural-based emoticon. Three cultural models that have been used in Human-Computer Interaction were studied which are the Hall Culture Model, Trompenaars and Hampden Culture Model and Hofstede Culture Model. The dimensions from these three models will be used in developing the proposed cultural-based emoticon model.

  19. The fate of the earth. 5. ed.

    International Nuclear Information System (INIS)

    Schell, J.

    1982-01-01

    As a result of thorough investigations and based upon the latest findings of scientific research work, this book ''Fate of the Earth'' quite drastically illustrates the manifold and horrible ways mankind and numberless other creatures will have to suffer before perishing in the wake of the pollution of nature and atmosphere for an unforeseeable time, should it happen one day that even only part of the existing nuclear weapons potential of 20.000 megatons of TNT be used at any spot of this world. In view of this global threat, every one of us has to do his bit in trying to safeguard the future of our world. The author discusses all important scientific, political and moral perspectives to be taken into account not only by the superpowers but literally by all states and all people in the face of a possible nuclear holocaust. Presenting his doubts whether the concept of deterrence will in future suffice to prevent a third world war, he implores us, the inhabitants of this planet, to wake up and act before it will be too late. (orig./HSCH) [de

  20. Integration of Simulink Models with Component-based Software Models

    Directory of Open Access Journals (Sweden)

    MARIAN, N.

    2008-06-01

    Full Text Available Model based development aims to facilitate the development of embedded control systems by emphasizing the separation of the design level from the implementation level. Model based design involves the use of multiple models that represent different views of a system, having different semantics of abstract system descriptions. Usually, in mechatronics systems, design proceeds by iterating model construction, model analysis, and model transformation. Constructing a MATLAB/Simulink model, a plant and controller behavior is simulated using graphical blocks to represent mathematical and logical constructs and process flow, then software code is generated. A Simulink model is a representation of the design or implementation of a physical system that satisfies a set of requirements. A software component-based system aims to organize system architecture and behavior as a means of computation, communication and constraints, using computational blocks and aggregates for both discrete and continuous behavior, different interconnection and execution disciplines for event-based and time-based controllers, and so on, to encompass the demands to more functionality, at even lower prices, and with opposite constraints. COMDES (Component-based Design of Software for Distributed Embedded Systems is such a component-based system framework developed by the software engineering group of Mads Clausen Institute for Product Innovation (MCI, University of Southern Denmark. Once specified, the software model has to be analyzed. One way of doing that is to integrate in wrapper files the model back into Simulink S-functions, and use its extensive simulation features, thus allowing an early exploration of the possible design choices over multiple disciplines. The paper describes a safe translation of a restricted set of MATLAB/Simulink blocks to COMDES software components, both for continuous and discrete behavior, and the transformation of the software system into the S

  1. Physics Based Modeling of Compressible Turbulance

    Science.gov (United States)

    2016-11-07

    AFRL-AFOSR-VA-TR-2016-0345 PHYSICS -BASED MODELING OF COMPRESSIBLE TURBULENCE PARVIZ MOIN LELAND STANFORD JUNIOR UNIV CA Final Report 09/13/2016...on the AFOSR project (FA9550-11-1-0111) entitled: Physics based modeling of compressible turbulence. The period of performance was, June 15, 2011...by ANSI Std. Z39.18 Page 1 of 2FORM SF 298 11/10/2016https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll PHYSICS -BASED MODELING OF COMPRESSIBLE

  2. Ground-Based Telescope Parametric Cost Model

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  3. Probabilistic reasoning for assembly-based 3D modeling

    KAUST Repository

    Chaudhuri, Siddhartha; Kalogerakis, Evangelos; Guibas, Leonidas; Koltun, Vladlen

    2011-01-01

    Assembly-based modeling is a promising approach to broadening the accessibility of 3D modeling. In assembly-based modeling, new models are assembled from shape components extracted from a database. A key challenge in assembly-based modeling

  4. Fate and Transport of Nanoparticles in Porous Media: A Numerical Study

    Science.gov (United States)

    Taghavy, Amir

    Understanding the transport characteristics of NPs in natural soil systems is essential to revealing their potential impact on the food chain and groundwater. In addition, many nanotechnology-based remedial measures require effective transport of NPs through soil, which necessitates accurate understanding of their transport and retention behavior. Based upon the conceptual knowledge of environmental behavior of NPs, mathematical models can be developed to represent the coupling of processes that govern the fate of NPs in subsurface, serving as effective tools for risk assessment and/or design of remedial strategies. This work presents an innovative hybrid Eulerian-Lagrangian modeling technique for simulating the simultaneous reactive transport of nanoparticles (NPs) and dissolved constituents in porous media. Governing mechanisms considered in the conceptual model include particle-soil grain, particle-particle, particle-dissolved constituents, and particle- oil/water interface interactions. The main advantage of this technique, compared to conventional Eulerian models, lies in its ability to address non-uniformity in physicochemical particle characteristics. The developed numerical simulator was applied to investigate the fate and transport of NPs in a number of practical problems relevant to the subsurface environment. These problems included: (1) reductive dechlorination of chlorinated solvents by zero-valent iron nanoparticles (nZVI) in dense non-aqueous phase liquid (DNAPL) source zones; (2) reactive transport of dissolving silver nanoparticles (nAg) and the dissolved silver ions; (3) particle-particle interactions and their effects on the particle-soil grain interactions; and (4) influence of particle-oil/water interface interactions on NP transport in porous media.

  5. Fate of chemical warfare agents and toxic industrial chemicals in landfills.

    Science.gov (United States)

    Bartelt-Hunt, Shannon L; Barlaz, Morton A; Knappe, Detlef R U; Kjeldsen, Peter

    2006-07-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in MSW landfills was predicted with a mathematical model. Five blister agents [sulfur mustard (HD), nitrogen mustard (HN-2), lewisite (L), ethyldichloroarsine (ED), and phosgene oxime (CX)], eight nerve agents [tabun (GA), sarin (GB), soman (GD), GE, GF, VX, VG, and VM], one riot-control agent [CS], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis half-lives. Monte Carlo simulations were performed to assess the influence of uncertainty in model input parameters on CWA/TIC fate predictions. Correlation analyses showed that uncertainty in hydrolysis rate constants was the primary contributor to variance of CWA fate predictions, while uncertainty in the Henry's Law constant and landfill gas-production rate accounted for most of the variance of TIC fate predictions. CWA hydrolysates were more persistent than the parent CWAs, but limited information is available on abiotic or biotic transformation rates for these chemicals.

  6. Model-Based Motion Tracking of Infants

    DEFF Research Database (Denmark)

    Olsen, Mikkel Damgaard; Herskind, Anna; Nielsen, Jens Bo

    2014-01-01

    Even though motion tracking is a widely used technique to analyze and measure human movements, only a few studies focus on motion tracking of infants. In recent years, a number of studies have emerged focusing on analyzing the motion pattern of infants, using computer vision. Most of these studies...... are based on 2D images, but few are based on 3D information. In this paper, we present a model-based approach for tracking infants in 3D. The study extends a novel study on graph-based motion tracking of infants and we show that the extension improves the tracking results. A 3D model is constructed...

  7. Base Flow Model Validation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The program focuses on turbulence modeling enhancements for predicting high-speed rocket base flows. A key component of the effort is the collection of high-fidelity...

  8. Chemical Transformation System: Cloud Based Cheminformatic Services to Support Integrated Environmental Modeling

    Science.gov (United States)

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not co...

  9. Chemical Transformation System: Cloud Based Cheminformatic Services to Support Integrated Environmental Modeling (proceedings)

    Science.gov (United States)

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not co...

  10. A probabilistic graphical model based stochastic input model construction

    International Nuclear Information System (INIS)

    Wan, Jiang; Zabaras, Nicholas

    2014-01-01

    Model reduction techniques have been widely used in modeling of high-dimensional stochastic input in uncertainty quantification tasks. However, the probabilistic modeling of random variables projected into reduced-order spaces presents a number of computational challenges. Due to the curse of dimensionality, the underlying dependence relationships between these random variables are difficult to capture. In this work, a probabilistic graphical model based approach is employed to learn the dependence by running a number of conditional independence tests using observation data. Thus a probabilistic model of the joint PDF is obtained and the PDF is factorized into a set of conditional distributions based on the dependence structure of the variables. The estimation of the joint PDF from data is then transformed to estimating conditional distributions under reduced dimensions. To improve the computational efficiency, a polynomial chaos expansion is further applied to represent the random field in terms of a set of standard random variables. This technique is combined with both linear and nonlinear model reduction methods. Numerical examples are presented to demonstrate the accuracy and efficiency of the probabilistic graphical model based stochastic input models. - Highlights: • Data-driven stochastic input models without the assumption of independence of the reduced random variables. • The problem is transformed to a Bayesian network structure learning problem. • Examples are given in flows in random media

  11. Shaken, Not Stirred: How Tidal Advection and Dispersion Mechanisms Rather Than Turbulent Mixing Impact the Movement and Fate of Aquatic Constituents and Fish in the California Central Valley

    Science.gov (United States)

    Sridharan, V. K.; Fong, D.; Monismith, S. G.; Jackson, D.; Russel, P.; Pope, A.; Danner, E.; Lindley, S. T.

    2016-12-01

    River deltas worldwide - home to nearly a billion people, thousands of species of flora and fauna, and economies worth trillions of dollars - have experienced massive ecosystem decline caused by urbanization, pollution, and water withdrawals. Habitat restoration in these systems is imperative not only for preserving endangered biomes, but also in sustaining human demand for freshwater and long term commercial viability. The sustainable management of heavily engineered, multi-use, branched tidal estuaries such as the Sacramento-San Joaquin Delta (henceforth, the Delta) requires utilizing physical transport and mixing process models. These inform us about the movement and fate of water quality constituents and aquatic organisms. This study identifies and quantifies the effects of various hydrodynamic mechanisms in the Delta across multiple spatio-temporal scales. A particle tracking model with accurate channel junction physics and an agent based model with realistic biological hypotheses of fish behavior were developed to study the movement and fate of tracers (surrogates for water quality constituents) and fish in the Delta. Simulations performed with these models were used to (1) determine the transport pathways through the Delta, (2) quantify the magnitude of transport and mixing processes along those pathways, and (3) describe the effects of physical stressors on fates of juvenile salmon. The Delta is largely dominated by large spatial scale advection by river flows, tidal pumping, and significantly increased dispersion through chaos due to the interaction of tidal flows with channel junctions. The movement and fate of simulated tracers and juvenile salmon are governed largely by the water diversion and pumping operations, transport pathways and chaotic tidal mixing mechanisms along those pathways. There is also a significant effect of predation on fish. These transport pathway and mechanistic dependencies indicate that restoration efforts which are harmonious

  12. Springer handbook of model-based science

    CERN Document Server

    Bertolotti, Tommaso

    2017-01-01

    The handbook offers the first comprehensive reference guide to the interdisciplinary field of model-based reasoning. It highlights the role of models as mediators between theory and experimentation, and as educational devices, as well as their relevance in testing hypotheses and explanatory functions. The Springer Handbook merges philosophical, cognitive and epistemological perspectives on models with the more practical needs related to the application of this tool across various disciplines and practices. The result is a unique, reliable source of information that guides readers toward an understanding of different aspects of model-based science, such as the theoretical and cognitive nature of models, as well as their practical and logical aspects. The inferential role of models in hypothetical reasoning, abduction and creativity once they are constructed, adopted, and manipulated for different scientific and technological purposes is also discussed. Written by a group of internationally renowned experts in ...

  13. Econophysics of agent-based models

    CERN Document Server

    Aoyama, Hideaki; Chakrabarti, Bikas; Chakraborti, Anirban; Ghosh, Asim

    2014-01-01

    The primary goal of this book is to present the research findings and conclusions of physicists, economists, mathematicians and financial engineers working in the field of "Econophysics" who have undertaken agent-based modelling, comparison with empirical studies and related investigations. Most standard economic models assume the existence of the representative agent, who is “perfectly rational” and applies the utility maximization principle when taking action. One reason for this is the desire to keep models mathematically tractable: no tools are available to economists for solving non-linear models of heterogeneous adaptive agents without explicit optimization. In contrast, multi-agent models, which originated from statistical physics considerations, allow us to go beyond the prototype theories of traditional economics involving the representative agent. This book is based on the Econophys-Kolkata VII Workshop, at which many such modelling efforts were presented. In the book, leading researchers in the...

  14. Agent-based modelling of cholera diffusion

    NARCIS (Netherlands)

    Augustijn-Beckers, Petronella; Doldersum, Tom; Useya, Juliana; Augustijn, Dionysius C.M.

    2016-01-01

    This paper introduces a spatially explicit agent-based simulation model for micro-scale cholera diffusion. The model simulates both an environmental reservoir of naturally occurring V.cholerae bacteria and hyperinfectious V. cholerae. Objective of the research is to test if runoff from open refuse

  15. Approximation Algorithms for Model-Based Diagnosis

    NARCIS (Netherlands)

    Feldman, A.B.

    2010-01-01

    Model-based diagnosis is an area of abductive inference that uses a system model, together with observations about system behavior, to isolate sets of faulty components (diagnoses) that explain the observed behavior, according to some minimality criterion. This thesis presents greedy approximation

  16. Probabilistic Model-based Background Subtraction

    DEFF Research Database (Denmark)

    Krüger, Volker; Anderson, Jakob; Prehn, Thomas

    2005-01-01

    is the correlation between pixels. In this paper we introduce a model-based background subtraction approach which facilitates prior knowledge of pixel correlations for clearer and better results. Model knowledge is being learned from good training video data, the data is stored for fast access in a hierarchical...

  17. Model-based testing for software safety

    NARCIS (Netherlands)

    Gurbuz, Havva Gulay; Tekinerdogan, Bedir

    2017-01-01

    Testing safety-critical systems is crucial since a failure or malfunction may result in death or serious injuries to people, equipment, or environment. An important challenge in testing is the derivation of test cases that can identify the potential faults. Model-based testing adopts models of a

  18. Predictor-Based Model Reference Adaptive Control

    Science.gov (United States)

    Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.

    2010-01-01

    This paper is devoted to the design and analysis of a predictor-based model reference adaptive control. Stable adaptive laws are derived using Lyapunov framework. The proposed architecture is compared with the now classical model reference adaptive control. A simulation example is presented in which numerical evidence indicates that the proposed controller yields improved transient characteristics.

  19. Agent-Based Modeling in Systems Pharmacology.

    Science.gov (United States)

    Cosgrove, J; Butler, J; Alden, K; Read, M; Kumar, V; Cucurull-Sanchez, L; Timmis, J; Coles, M

    2015-11-01

    Modeling and simulation (M&S) techniques provide a platform for knowledge integration and hypothesis testing to gain insights into biological systems that would not be possible a priori. Agent-based modeling (ABM) is an M&S technique that focuses on describing individual components rather than homogenous populations. This tutorial introduces ABM to systems pharmacologists, using relevant case studies to highlight how ABM-specific strengths have yielded success in the area of preclinical mechanistic modeling.

  20. Using model-based screening to help discover unknown environmental contaminants.

    Science.gov (United States)

    McLachlan, Michael S; Kierkegaard, Amelie; Radke, Michael; Sobek, Anna; Malmvärn, Anna; Alsberg, Tomas; Arnot, Jon A; Brown, Trevor N; Wania, Frank; Breivik, Knut; Xu, Shihe

    2014-07-01

    Of the tens of thousands of chemicals in use, only a small fraction have been analyzed in environmental samples. To effectively identify environmental contaminants, methods to prioritize chemicals for analytical method development are required. We used a high-throughput model of chemical emissions, fate, and bioaccumulation to identify chemicals likely to have high concentrations in specific environmental media, and we prioritized these for target analysis. This model-based screening was applied to 215 organosilicon chemicals culled from industrial chemical production statistics. The model-based screening prioritized several recognized organosilicon contaminants and generated hypotheses leading to the selection of three chemicals that have not previously been identified as potential environmental contaminants for target analysis. Trace analytical methods were developed, and the chemicals were analyzed in air, sewage sludge, and sediment. All three substances were found to be environmental contaminants. Phenyl-tris(trimethylsiloxy)silane was present in all samples analyzed, with concentrations of ∼50 pg m(-3) in Stockholm air and ∼0.5 ng g(-1) dw in sediment from the Stockholm archipelago. Tris(trifluoropropyl)trimethyl-cyclotrisiloxane and tetrakis(trifluoropropyl)tetramethyl-cyclotetrasiloxane were found in sediments from Lake Mjøsa at ∼1 ng g(-1) dw. The discovery of three novel environmental contaminants shows that models can be useful for prioritizing chemicals for exploratory assessment.

  1. Gradient based filtering of digital elevation models

    DEFF Research Database (Denmark)

    Knudsen, Thomas; Andersen, Rune Carbuhn

    We present a filtering method for digital terrain models (DTMs). The method is based on mathematical morphological filtering within gradient (slope) defined domains. The intention with the filtering procedure is to improbé the cartographic quality of height contours generated from a DTM based...

  2. Néron Models and Base Change

    DEFF Research Database (Denmark)

    Halle, Lars Halvard; Nicaise, Johannes

    Presenting the first systematic treatment of the behavior of Néron models under ramified base change, this book can be read as an introduction to various subtle invariants and constructions related to Néron models of semi-abelian varieties, motivated by concrete research problems and complemented...... on Néron component groups, Edixhoven’s filtration and the base change conductor of Chai and Yu, and we study these invariants using various techniques such as models of curves, sheaves on Grothendieck sites and non-archimedean uniformization. We then apply our results to the study of motivic zeta functions...

  3. Information modelling and knowledge bases XXV

    CERN Document Server

    Tokuda, T; Jaakkola, H; Yoshida, N

    2014-01-01

    Because of our ever increasing use of and reliance on technology and information systems, information modelling and knowledge bases continue to be important topics in those academic communities concerned with data handling and computer science. As the information itself becomes more complex, so do the levels of abstraction and the databases themselves. This book is part of the series Information Modelling and Knowledge Bases, which concentrates on a variety of themes in the important domains of conceptual modeling, design and specification of information systems, multimedia information modelin

  4. In situ fate and partitioning of waterborne perfluoroalkyl acids (PFAAs) in the Youngsan and Nakdong River Estuaries of South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seongjin [School of Earth and Environmental Sciences, Seoul National University, Seoul (Korea, Republic of); Khim, Jong Seong, E-mail: jskocean@snu.ac.kr [School of Earth and Environmental Sciences, Seoul National University, Seoul (Korea, Republic of); Park, Jinsoon [School of Earth and Environmental Sciences, Seoul National University, Seoul (Korea, Republic of); Kim, Minhee; Kim, Woong-Ki; Jung, Jinho; Hyun, Seunghun; Kim, Jeong-Gyu [Division of Environmental Science and Ecological Engineering, Korea University, Seoul (Korea, Republic of); Lee, Hyojin; Choi, Heeseon J. [Department of Environmental Chemistry and Ecology, GeoSystem Research Corporation, Gunpo (Korea, Republic of); Codling, Garry [Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK (Canada); Giesy, John P. [Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK (Canada); Department of Zoology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI (United States); Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, SAR (China)

    2013-02-15

    Concentrations, distributions, fate, and partitioning of perfluoroalkyl acids (PFAAs) were investigated in surface water (n = 34) collected from the Youngsan and Nakdong River Estuaries of South Korea. Thirteen individual PFAAs in water and suspended solids (SS) were quantified by use of HPLC–MS/MS. PFAAs were detected in all samples, which indicated that they were widely distributed in the study area. Greater concentrations of PFAAs were found at some inland sites which seemed to be affected by direct input from point sources, such as wastewater treatment plants, and/or indirect diffusive sources, such as surface runoff. Spatial distributions of PFAAs in estuaries along transects toward the open sea demonstrated that these chemicals were transported to the outer region primarily by water discharged during the rainy season. Field-based partition coefficients (K{sub d}) for long-chain PFAAs (C ≥ 8) were significantly correlated with salinity (r{sup 2} = 0.48 to 0.73, p < 0.01); K{sub d} values increased exponentially as a function of salinity. Due to the ‘salting-out’ effect, PFAAs were largely scavenged by adsorption onto SS and/or sediments in estuarine environments. In addition, values for K{sub d} of those PFAAs were directly proportional to the number of carbon atoms in the PFAAs. Salting constants of selected PFAAs were notably greater than those of other environmental organic contaminants, which indicated that adsorption of PFAAs is largely associated with salinity. Overall, the results of the present study will provide better understanding of the fate and transport of PFAAs in the zone of salinity boundary that can be used for developing fate models of PFAAs in the coastal marine environment. - Highlights: ► In situ fate and partitioning of PFAAs were described along salinity gradients in estuaries. ► Salinity was found to be the key factor controlling adsorption of waterborne PFAAs. ► The K{sub d} for longer-chain PFAAs (C ≥ 8) increased as

  5. Fate of Pyrethroids in Farmland Ponds

    DEFF Research Database (Denmark)

    Mogensen, B. B.; Sørensen, P. B.; Stuer-Lauridsen, F.

    Pyrethroids constitute a group of widely used insecticides, which are toxic to aquatic organisms. This report presents the results from a 2-year study of the fate of pyrethroids in ponds, i.e. their distribution in the water column, the sediment and the surface microlayer respectively. The measur......Pyrethroids constitute a group of widely used insecticides, which are toxic to aquatic organisms. This report presents the results from a 2-year study of the fate of pyrethroids in ponds, i.e. their distribution in the water column, the sediment and the surface microlayer respectively...

  6. Energy based prediction models for building acoustics

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2012-01-01

    In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...... on underlying basic assumptions, such as diffuse fields, high modal overlap, resonant field being dominant, etc., and the consequences of these in terms of limitations in the theory and in the practical use of the models....

  7. A subchannel based annular flow dryout model

    International Nuclear Information System (INIS)

    Hammouda, Najmeddine; Cheng, Zhong; Rao, Yanfei F.

    2016-01-01

    Highlights: • A modified annular flow dryout model for subchannel thermalhydraulic analysis. • Implementation of the model in Canadian subchannel code ASSERT-PV. • Assessment of the model against tube CHF experiments. • Assessment of the model against CANDU-bundle CHF experiments. - Abstract: This paper assesses a popular tube-based mechanistic critical heat flux model (Hewitt and Govan’s annular flow model (based on the model of Whalley et al.), and modifies and implements the model for bundle geometries. It describes the results of the ASSERT subchannel code predictions using the modified model, as applied to a single tube and the 28-element, 37-element and 43-element (CANFLEX) CANDU bundles. A quantitative comparison between the model predictions and experimental data indicates good agreement for a wide range of flow conditions. The comparison has resulted in an overall average error of −0.15% and an overall root-mean-square error of 5.46% with tube data representing annular film dryout type critical heat flux, and in an overall average error of −0.9% and an overall RMS error of 9.9% with Stern Laboratories’ CANDU-bundle data.

  8. Biological fate, transport, and ecotoxicity of toxic and hazardous waste in the Mississippi River Basin

    International Nuclear Information System (INIS)

    Abdelghani, A.; Hartley, W.; Bart, H.; Ide, C.; Ellgaard, E.; Sherry, T.; Devall, M.; Thien, L.; Horner, E.; Mizell, M.

    1993-01-01

    The objective of the cluster investigators is to develop a dynamic model for the evaluation of the biological fate, transport, and ecotoxicity from multiple chemical contamination of the Mississippi River Basin. To develop this environmental model, FY 93-94 most of cluster investigators focused on Devil's Swamp Site (DSS), a cypress swamp which lies just Northwest of Baton Rouge, Louisiana, adjacent to the Mississippi River. The DSS which includes a man-made lake has contaminated sediment, water and biota. The DSS receives flood water from the Mississippi River during high flow periods and the Baton Rouge Bayou drains through the DSS. The DSS receives toxic substances and hazardous waste from a wide variety of surrounding industrial operations including an abandoned hazardous waste disposal facility. In addition, some investigators studied Bayou Trepangnier. This research cluster will continue studying Devil Swamp. The large number of investigators in this cluster resulted from incorporating related research proposals based on reviewer recommendations. The specific aims of the cluster for the first year were to conduct a physical, chemical, ecological survey and baseline toxicological characterization of the DSS from existing databases maintained by State and federal agencies, field studies (assessment) of sediment, air, water and biota, and laboratory screening studios. This assessment will provide critical information and focus for the next two years in-depth studies of critical transport and fate processes, ecotoxicity, biomarkers of effect, and uptake, metabolism and distribution of toxicants. The primary significant outcome of the cluster researchers will be the development of an ecological risk assessment model combining biotic and physical/chemical variables for DSS with a projection of model reliability and accuracy for use at other typical Mississippi River Basin sites

  9. Multi-Domain Modeling Based on Modelica

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2016-01-01

    Full Text Available With the application of simulation technology in large-scale and multi-field problems, multi-domain unified modeling become an effective way to solve these problems. This paper introduces several basic methods and advantages of the multidisciplinary model, and focuses on the simulation based on Modelica language. The Modelica/Mworks is a newly developed simulation software with features of an object-oriented and non-casual language for modeling of the large, multi-domain system, which makes the model easier to grasp, develop and maintain.It This article shows the single degree of freedom mechanical vibration system based on Modelica language special connection mechanism in Mworks. This method that multi-domain modeling has simple and feasible, high reusability. it closer to the physical system, and many other advantages.

  10. SEP modeling based on global heliospheric models at the CCMC

    Science.gov (United States)

    Mays, M. L.; Luhmann, J. G.; Odstrcil, D.; Bain, H. M.; Schwadron, N.; Gorby, M.; Li, Y.; Lee, K.; Zeitlin, C.; Jian, L. K.; Lee, C. O.; Mewaldt, R. A.; Galvin, A. B.

    2017-12-01

    Heliospheric models provide contextual information of conditions in the heliosphere, including the background solar wind conditions and shock structures, and are used as input to SEP models, providing an essential tool for understanding SEP properties. The global 3D MHD WSA-ENLIL+Cone model provides a time-dependent background heliospheric description, into which a spherical shaped hydrodynamic CME can be inserted. ENLIL simulates solar wind parameters and additionally one can extract the magnetic topologies of observer-connected magnetic field lines and all plasma and shock properties along those field lines. An accurate representation of the background solar wind is necessary for simulating transients. ENLIL simulations also drive SEP models such as the Solar Energetic Particle Model (SEPMOD) (Luhmann et al. 2007, 2010) and the Energetic Particle Radiation Environment Module (EPREM) (Schwadron et al. 2010). The Community Coordinated Modeling Center (CCMC) is in the process of making these SEP models available to the community and offering a system to run SEP models driven by a variety of heliospheric models available at CCMC. SEPMOD injects protons onto a sequence of observer field lines at intensities dependent on the connected shock source strength which are then integrated at the observer to approximate the proton flux. EPREM couples with MHD models such as ENLIL and computes energetic particle distributions based on the focused transport equation along a Lagrangian grid of nodes that propagate out with the solar wind. The coupled SEP models allow us to derive the longitudinal distribution of SEP profiles of different types of events throughout the heliosphere. The coupled ENLIL and SEP models allow us to derive the longitudinal distribution of SEP profiles of different types of events throughout the heliosphere. In this presentation we demonstrate several case studies of SEP event modeling at different observers based on WSA-ENLIL+Cone simulations.

  11. NASA Software Cost Estimation Model: An Analogy Based Estimation Model

    Science.gov (United States)

    Hihn, Jairus; Juster, Leora; Menzies, Tim; Mathew, George; Johnson, James

    2015-01-01

    The cost estimation of software development activities is increasingly critical for large scale integrated projects such as those at DOD and NASA especially as the software systems become larger and more complex. As an example MSL (Mars Scientific Laboratory) developed at the Jet Propulsion Laboratory launched with over 2 million lines of code making it the largest robotic spacecraft ever flown (Based on the size of the software). Software development activities are also notorious for their cost growth, with NASA flight software averaging over 50% cost growth. All across the agency, estimators and analysts are increasingly being tasked to develop reliable cost estimates in support of program planning and execution. While there has been extensive work on improving parametric methods there is very little focus on the use of models based on analogy and clustering algorithms. In this paper we summarize our findings on effort/cost model estimation and model development based on ten years of software effort estimation research using data mining and machine learning methods to develop estimation models based on analogy and clustering. The NASA Software Cost Model performance is evaluated by comparing it to COCOMO II, linear regression, and K-­ nearest neighbor prediction model performance on the same data set.

  12. Identification of walking human model using agent-based modelling

    Science.gov (United States)

    Shahabpoor, Erfan; Pavic, Aleksandar; Racic, Vitomir

    2018-03-01

    The interaction of walking people with large vibrating structures, such as footbridges and floors, in the vertical direction is an important yet challenging phenomenon to describe mathematically. Several different models have been proposed in the literature to simulate interaction of stationary people with vibrating structures. However, the research on moving (walking) human models, explicitly identified for vibration serviceability assessment of civil structures, is still sparse. In this study, the results of a comprehensive set of FRF-based modal tests were used, in which, over a hundred test subjects walked in different group sizes and walking patterns on a test structure. An agent-based model was used to simulate discrete traffic-structure interactions. The occupied structure modal parameters found in tests were used to identify the parameters of the walking individual's single-degree-of-freedom (SDOF) mass-spring-damper model using 'reverse engineering' methodology. The analysis of the results suggested that the normal distribution with the average of μ = 2.85Hz and standard deviation of σ = 0.34Hz can describe human SDOF model natural frequency. Similarly, the normal distribution with μ = 0.295 and σ = 0.047 can describe the human model damping ratio. Compared to the previous studies, the agent-based modelling methodology proposed in this paper offers significant flexibility in simulating multi-pedestrian walking traffics, external forces and simulating different mechanisms of human-structure and human-environment interaction at the same time.

  13. The Fate of Exomoons when Planets Scatter

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    Four examples of close-encounter outcomes: a) the moon stays in orbit around its host, b) the moon is captured into orbit around its perturber, c) and d) the moon is ejected from the system from two different starting configurations. [Adapted from Hong et al. 2018]Planet interactions are thought to be common as solar systems are first forming and settling down. A new study suggests that these close encounters could have a significant impact on the moons of giant exoplanets and they may generate a large population of free-floating exomoons.Chaos in the SystemIn the planetplanet scattering model of solar-system formation, planets are thought to initially form in closely packed systems. Over time, planets in a system perturb each other, eventually entering an instability phase during which their orbits cross and the planets experience close encounters.During this scattering process, any exomoons that are orbiting giant planets can be knocked into unstable orbits directly by close encounters with perturbing planets. Exomoons can also be disturbed if their host planets properties or orbits change as a consequence of scattering.Led by Yu-Cian Hong (Cornell University), a team of scientists has now explored the fate of exomoons in planetplanet scattering situations using a suite of N-body numerical simulations.Chances for SurvivalHong and collaborators find that the vast majority roughly 80 to 90% of exomoons around giant planets are destabilized during scattering and dont survive in their original place in the solar system. Fates of these destabilized exomoons include:moon collision with the star or a planet,moon capture by the perturbing planet,moon ejection from the solar system,ejection of the entire planetmoon system from the solar system, andmoon perturbation onto a new heliocentric orbit as a planet.Unsurprisingly, exomoons that have close-in orbits and those that orbit larger planets are the most likely to survive close encounters; as an example, exomoons on

  14. The Fate of Unstable Circumbinary Planets

    Science.gov (United States)

    Kohler, Susanna

    2016-03-01

    What happens to Tattooine-like planets that are instead in unstable orbits around their binary star system? A new study examines whether such planets will crash into a host star, get ejected from the system, or become captured into orbit around one of their hosts.Orbit Around a DuoAt this point we have unambiguously detected multiple circumbinary planets, raising questions about these planets formation and evolution. Current models suggest that it is unlikely that circumbinary planets would be able to form in the perturbed environment close their host stars. Instead, its thought that the planets formed at a distance and then migrated inwards.One danger such planets face when migrating is encountering ranges of radii where their orbits become unstable. Two scientists at the University of Chicago, Adam Sutherland and Daniel Fabrycky, have studied what happens when circumbinary planets migrate into such a region and develop unstable orbits.Producing Rogue PlanetsTime for planets to either be ejected or collide with one of the two stars, as a function of the planets starting distance (in AU) from the binary barycenter. Colors represent different planetary eccentricities. [Sutherland Fabrycky 2016]Sutherland and Fabrycky used N-body simulations to determine the fates of planets orbiting around a star system consisting of two stars a primary like our Sun and a secondary roughly a tenth of its size that are separated by 1 AU.The authors find that the most common fate for a circumbinary planet with an unstable orbit is ejection from the system; over 80% of unstable planets were ejected. This has interesting implications: if the formation of circumbinary planets is common, this mechanism could be filling the Milky Way with a population of free-floating, rogue planets that no longer are associated with their host star.The next most common outcome for unstable planets is collision with one of their host stars (most often the secondary), resulting inaccretion of the planet

  15. Fate of Yang-Mills black hole in early Universe

    Energy Technology Data Exchange (ETDEWEB)

    Nakonieczny, Lukasz; Rogatko, Marek [Institute of Physics Maria Curie-Sklodowska University 20-031 Lublin, pl. Marii Curie-Sklodowskiej 1 (Poland)

    2013-02-21

    According to the Big Bang Theory as we go back in time the Universe becomes progressively hotter and denser. This leads us to believe that the early Universe was filled with hot plasma of elementary particles. Among many questions concerning this phase of history of the Universe there are questions of existence and fate of magnetic monopoles and primordial black holes. Static solution of Einstein-Yang-Mills system may be used as a toy model for such a black hole. Using methods of field theory we will show that its existence and regularity depend crucially on the presence of fermions around it.

  16. Understanding the fate of merging supermassive black holes

    International Nuclear Information System (INIS)

    Campanelli, Manuela

    2005-01-01

    Understanding the fate of merging supermassive black holes in galactic mergers, and the gravitational wave emission from this process, are important LISA science goals. To this end, we present results from numerical relativity simulations of binary black hole mergers using the so-called Lazarus approach to model gravitational radiation from these events. In particular, we focus here on some recent calculations of the final spin and recoil velocity of the remnant hole formed at the end of a binary black hole merger process, which may constrain the growth history of massive black holes at the core of galaxies and globular clusters

  17. A model evaluation checklist for process-based environmental models

    Science.gov (United States)

    Jackson-Blake, Leah

    2015-04-01

    the conceptual model on which it is based. In this study, a number of model structural shortcomings were identified, such as a lack of dissolved phosphorus transport via infiltration excess overland flow, potential discrepancies in the particulate phosphorus simulation and a lack of spatial granularity. (4) Conceptual challenges, as conceptual models on which predictive models are built are often outdated, having not kept up with new insights from monitoring and experiments. For example, soil solution dissolved phosphorus concentration in INCA-P is determined by the Freundlich adsorption isotherm, which could potentially be replaced using more recently-developed adsorption models that take additional soil properties into account. This checklist could be used to assist in identifying why model performance may be poor or unreliable. By providing a model evaluation framework, it could help prioritise which areas should be targeted to improve model performance or model credibility, whether that be through using alternative calibration techniques and statistics, improved data collection, improving or simplifying the model structure or updating the model to better represent current understanding of catchment processes.

  18. Concentrations and fate of decamethylcyclopentasiloxane (D(5)) in the atmosphere.

    Science.gov (United States)

    McLachlan, Michael S; Kierkegaard, Amelie; Hansen, Kaj M; van Egmond, Roger; Christensen, Jesper H; Skjøth, Carsten A

    2010-07-15

    Decamethylcyclopentasiloxane (D(5)) is a volatile compound used in personal care products that is released to the atmosphere in large quantities. Although D(5) is currently under consideration for regulation, there have been no field investigations of its atmospheric fate. We employed a recently developed, quality assured method to measure D(5) concentration in ambient air at a rural site in Sweden. The samples were collected with daily resolution between January and June 2009. The D(5) concentration ranged from 0.3 to 9 ng m(-3), which is 1-3 orders of magnitude lower than previous reports. The measured data were compared with D(5) concentrations predicted using an atmospheric circulation model that included both OH radical and D(5) chemistry. The model was parametrized using emissions estimates and physical chemical properties determined in laboratory experiments. There was good agreement between the measured and modeled D(5) concentrations. The results show that D(5) is clearly subject to long-range atmospheric transport, but that it is also effectively removed from the atmosphere via phototransformation. Atmospheric deposition has little influence on the atmospheric fate. The good agreement between the model predictions and the field observations indicates that there is a good understanding of the major factors governing D(5) concentrations in the atmosphere.

  19. Estuarine Human Activities Modulate the Fate of Changjiang-derived Materials in Adjacent Seas

    Science.gov (United States)

    WU, H.

    2017-12-01

    Mega constructions have been built in many river estuaries, but their environmental consequences in the adjacent coastal oceans were often overlooked. This issue was addressed with an example of the Changjiang River Estuary, which was recently built with massive navigation and reclamation constructions in recent years. Based on the model validations against cruises data and the numerical scenario experiments, it is shown that the estuarine constructions profoundly affected the fates of riverine materials in an indeed large offshore area. This is because estuarine dynamics are highly sensitive to their bathymetries. Previously, the Three Gorges Dam (TGD) was thought to be responsible for some offshore environmental changes through modulating the river plume extension, but here we show that its influences are secondary. Since the TGD and the mega estuarine constructions were built during the similar period, their influences might be confused.

  20. National, holistic, watershed-scale approach to understand the sources, transport, and fate of agricultural chemicals

    Science.gov (United States)

    Capel, P.D.; McCarthy, K.A.; Barbash, J.E.

    2008-01-01

    This paper is an introduction to the following series of papers that report on in-depth investigations that have been conducted at five agricultural study areas across the United States in order to gain insights into how environmental processes and agricultural practices interact to determine the transport and fate of agricultural chemicals in the environment. These are the first study areas in an ongoing national study. The study areas were selected, based on the combination of cropping patterns and hydrologic setting, as representative of nationally important agricultural settings to form a basis for extrapolation to unstudied areas. The holistic, watershed-scale study design that involves multiple environmental compartments and that employs both field observations and simulation modeling is presented. This paper introduces the overall study design and presents an overview of the hydrology of the five study areas. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  1. Arginine and Polyamines Fate in Leishmania Infection

    Science.gov (United States)

    Muxel, Sandra M.; Aoki, Juliana I.; Fernandes, Juliane C. R.; Laranjeira-Silva, Maria F.; Zampieri, Ricardo A.; Acuña, Stephanie M.; Müller, Karl E.; Vanderlinde, Rubia H.; Floeter-Winter, Lucile M.

    2018-01-01

    Leishmania is a protozoan parasite that alternates its life cycle between the sand fly and the mammalian host macrophages, involving several environmental changes. The parasite responds to these changes by promoting a rapid metabolic adaptation through cellular signaling modifications that lead to transcriptional and post-transcriptional gene expression regulation and morphological modifications. Molecular approaches such as gene expression regulation, next-generation sequencing (NGS), microRNA (miRNA) expression profiling, in cell Western blot analyses and enzymatic activity profiling, have been used to characterize the infection of murine BALB/c and C57BL/6 macrophages, as well as the human monocytic cell-lineage THP-1, with Leishmania amazonensis wild type (La-WT) or arginase knockout (La-arg-). These models are being used to elucidate physiological roles of arginine and polyamines pathways and the importance of arginase for the establishment of the infection. In this review, we will describe the main aspects of Leishmania-host interaction, focusing on the arginine and polyamines pathways and pointing to possible targets to be used for prognosis and/or in the control of the infection. The parasite enzymes, arginase and nitric oxide synthase-like, have essential roles in the parasite survival and in the maintenance of infection. On the other hand, in mammalian macrophages, defense mechanisms are activated inducing alterations in the mRNA, miRNA and enzymatic profiles that lead to the control of infection. Furthermore, the genetic background of both parasite and host are also important to define the fate of infection. PMID:29379478

  2. Nonlinear system modeling based on bilinear Laguerre orthonormal bases.

    Science.gov (United States)

    Garna, Tarek; Bouzrara, Kais; Ragot, José; Messaoud, Hassani

    2013-05-01

    This paper proposes a new representation of discrete bilinear model by developing its coefficients associated to the input, to the output and to the crossed product on three independent Laguerre orthonormal bases. Compared to classical bilinear model, the resulting model entitled bilinear-Laguerre model ensures a significant parameter number reduction as well as simple recursive representation. However, such reduction still constrained by an optimal choice of Laguerre pole characterizing each basis. To do so, we develop a pole optimization algorithm which constitutes an extension of that proposed by Tanguy et al.. The bilinear-Laguerre model as well as the proposed pole optimization algorithm are illustrated and tested on a numerical simulations and validated on the Continuous Stirred Tank Reactor (CSTR) System. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Detection, Occurrence and Fate of Emerging Contaminants in Agricultural Environments

    Science.gov (United States)

    Cassada, David A.; Bartelt–Hunt, Shannon L.; Li, Xu; D’Alessio, Matteo; Zhang, Yun; Zhang, Yuping; Sallach, J. Brett

    2018-01-01

    A total of 59 papers published in 2015 were reviewed ranging from detailed descriptions of analytical methods, to fate and occurrence studies, to ecological effects and sampling techniques for a wide variety of emerging contaminants likely to occur in agricultural environments. New methods and studies on veterinary pharmaceuticals, steroids, antibiotic resistance genes in agricultural environments continue to expand our knowledge base on the occurrence and potential impacts of these compounds. This review is divided into the following sections: Introduction, Analytical Methods, Steroid Hormones, Pharmaceutical Contaminants, Transformation Products, and “Antibiotic Resistance, Drugs, Bugs and Genes”. PMID:27620078

  4. SLS Navigation Model-Based Design Approach

    Science.gov (United States)

    Oliver, T. Emerson; Anzalone, Evan; Geohagan, Kevin; Bernard, Bill; Park, Thomas

    2018-01-01

    The SLS Program chose to implement a Model-based Design and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team has been responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for the navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1-B design, the additional GPS Receiver hardware is managed as a DMM at the vehicle design level. This paper provides a discussion of the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the Navigation components. These include composing system requirements, requirements verification, model development, model verification and validation, and modeling and analysis approaches. The Model-based Design and Requirements approach does not reduce the effort associated with the design process versus previous processes used at Marshall Space Flight Center. Instead, the approach takes advantage of overlap between the requirements development and management process, and the design and analysis process by efficiently combining the control (i.e. the requirement) and the design mechanisms. The design mechanism is the representation of the component behavior and performance in design and analysis tools. The focus in the early design process shifts from the development and

  5. Néron Models and Base Change

    DEFF Research Database (Denmark)

    Halle, Lars Halvard; Nicaise, Johannes

    Presenting the first systematic treatment of the behavior of Néron models under ramified base change, this book can be read as an introduction to various subtle invariants and constructions related to Néron models of semi-abelian varieties, motivated by concrete research problems and complemented...... with explicit examples. Néron models of abelian and semi-abelian varieties have become an indispensable tool in algebraic and arithmetic geometry since Néron introduced them in his seminal 1964 paper. Applications range from the theory of heights in Diophantine geometry to Hodge theory. We focus specifically...... on Néron component groups, Edixhoven’s filtration and the base change conductor of Chai and Yu, and we study these invariants using various techniques such as models of curves, sheaves on Grothendieck sites and non-archimedean uniformization. We then apply our results to the study of motivic zeta functions...

  6. Business Models for NFC based mobile payments

    OpenAIRE

    Johannes Sang Un Chae; Jonas Hedman

    2015-01-01

    Purpose: The purpose of the paper is to develop a business model framework for NFC based mobile payment solutions consisting of four mutually interdepended components: the value service, value network, value architecture, and value finance. Design: Using a comparative case study method, the paper investigates Google Wallet and ISIS Mobile Wallet and their underlying business models. Findings: Google Wallet and ISIS Mobile Wallet are focusing on providing an enhanced customer experienc...

  7. Quality Model Based on Cots Quality Attributes

    OpenAIRE

    Jawad Alkhateeb; Khaled Musa

    2013-01-01

    The quality of software is essential to corporations in making their commercial software. Good or poorquality to software plays an important role to some systems such as embedded systems, real-time systems,and control systems that play an important aspect in human life. Software products or commercial off theshelf software are usually programmed based on a software quality model. In the software engineeringfield, each quality model contains a set of attributes or characteristics that drives i...

  8. A Multiagent Based Model for Tactical Planning

    Science.gov (United States)

    2002-10-01

    Pub. Co. 1985. [10] Castillo, J.M. Aproximación mediante procedimientos de Inteligencia Artificial al planeamiento táctico. Doctoral Thesis...been developed under the same conceptual model and using similar Artificial Intelligence Tools. We use four different stimulus/response agents in...The conceptual model is built on base of the Agents theory. To implement the different agents we have used Artificial Intelligence techniques such

  9. Evolutionary modeling-based approach for model errors correction

    Directory of Open Access Journals (Sweden)

    S. Q. Wan

    2012-08-01

    Full Text Available The inverse problem of using the information of historical data to estimate model errors is one of the science frontier research topics. In this study, we investigate such a problem using the classic Lorenz (1963 equation as a prediction model and the Lorenz equation with a periodic evolutionary function as an accurate representation of reality to generate "observational data."

    On the basis of the intelligent features of evolutionary modeling (EM, including self-organization, self-adaptive and self-learning, the dynamic information contained in the historical data can be identified and extracted by computer automatically. Thereby, a new approach is proposed to estimate model errors based on EM in the present paper. Numerical tests demonstrate the ability of the new approach to correct model structural errors. In fact, it can actualize the combination of the statistics and dynamics to certain extent.

  10. Model-based testing for embedded systems

    CERN Document Server

    Zander, Justyna; Mosterman, Pieter J

    2011-01-01

    What the experts have to say about Model-Based Testing for Embedded Systems: "This book is exactly what is needed at the exact right time in this fast-growing area. From its beginnings over 10 years ago of deriving tests from UML statecharts, model-based testing has matured into a topic with both breadth and depth. Testing embedded systems is a natural application of MBT, and this book hits the nail exactly on the head. Numerous topics are presented clearly, thoroughly, and concisely in this cutting-edge book. The authors are world-class leading experts in this area and teach us well-used

  11. Model Based Control of Reefer Container Systems

    DEFF Research Database (Denmark)

    Sørensen, Kresten Kjær

    This thesis is concerned with the development of model based control for the Star Cool refrigerated container (reefer) with the objective of reducing energy consumption. This project has been carried out under the Danish Industrial PhD programme and has been financed by Lodam together with the Da......This thesis is concerned with the development of model based control for the Star Cool refrigerated container (reefer) with the objective of reducing energy consumption. This project has been carried out under the Danish Industrial PhD programme and has been financed by Lodam together...

  12. Least-squares model-based halftoning

    Science.gov (United States)

    Pappas, Thrasyvoulos N.; Neuhoff, David L.

    1992-08-01

    A least-squares model-based approach to digital halftoning is proposed. It exploits both a printer model and a model for visual perception. It attempts to produce an 'optimal' halftoned reproduction, by minimizing the squared error between the response of the cascade of the printer and visual models to the binary image and the response of the visual model to the original gray-scale image. Conventional methods, such as clustered ordered dither, use the properties of the eye only implicitly, and resist printer distortions at the expense of spatial and gray-scale resolution. In previous work we showed that our printer model can be used to modify error diffusion to account for printer distortions. The modified error diffusion algorithm has better spatial and gray-scale resolution than conventional techniques, but produces some well known artifacts and asymmetries because it does not make use of an explicit eye model. Least-squares model-based halftoning uses explicit eye models and relies on printer models that predict distortions and