WorldWideScience

Sample records for fat thigh muscle

  1. Differentiation of fat, muscle, and edema in thigh MRIs using random forest classification

    Science.gov (United States)

    Kovacs, William; Liu, Chia-Ying; Summers, Ronald M.; Yao, Jianhua

    2016-03-01

    There are many diseases that affect the distribution of muscles, including Duchenne and fascioscapulohumeral dystrophy among other myopathies. In these disease cases, it is important to quantify both the muscle and fat volumes to track the disease progression. There has also been evidence that abnormal signal intensity on the MR images, which often is an indication of edema or inflammation can be a good predictor for muscle deterioration. We present a fully-automated method that examines magnetic resonance (MR) images of the thigh and identifies the fat, muscle, and edema using a random forest classifier. First the thigh regions are automatically segmented using the T1 sequence. Then, inhomogeneity artifacts were corrected using the N3 technique. The T1 and STIR (short tau inverse recovery) images are then aligned using landmark based registration with the bone marrow. The normalized T1 and STIR intensity values are used to train the random forest. Once trained, the random forest can accurately classify the aforementioned classes. This method was evaluated on MR images of 9 patients. The precision values are 0.91+/-0.06, 0.98+/-0.01 and 0.50+/-0.29 for muscle, fat, and edema, respectively. The recall values are 0.95+/-0.02, 0.96+/-0.03 and 0.43+/-0.09 for muscle, fat, and edema, respectively. This demonstrates the feasibility of utilizing information from multiple MR sequences for the accurate quantification of fat, muscle and edema.

  2. NMR imaging estimates of muscle volume and intramuscular fat infiltration in the thigh: variations with muscle, gender, and age.

    Science.gov (United States)

    Hogrel, Jean-Yves; Barnouin, Yoann; Azzabou, Noura; Butler-Browne, Gillian; Voit, Thomas; Moraux, Amélie; Leroux, Gaëlle; Behin, Anthony; McPhee, Jamie S; Carlier, Pierre G

    2015-06-01

    Muscle mass is particularly relevant to follow during aging, owing to its link with physical performance and autonomy. The objectives of this work were to assess muscle volume (MV) and intramuscular fat (IMF) for all the muscles of the thigh in a large population of young and elderly healthy individuals using magnetic resonance imaging (MRI) to test the effect of gender and age on MV and IMF and to determine the best representative slice for the estimation of MV and IMF. The study enrolled 105 healthy young (range 20-30 years) and older (range 70-80 years) subjects. MRI scans were acquired along the femur length using a three-dimension three-point Dixon proton density-weighted gradient echo sequence. MV and IMF were estimated from all the slices. The effects of age and gender on MV and IMF were assessed. Predictive equations for MV and IMF were established using a single slice at various femur levels for each muscle in order to reduce the analysis process. MV was decreased with aging in both genders, particularly in the quadriceps femoris. IMF was largely increased with aging in men and, to a lesser extent, in women. Percentages of MV decrease and IMF increase with aging varied according to the muscle. Predictive equations to predict MV and IMF from single slices are provided and were validated. This study is the first one to provide muscle volume and intramuscular fat infiltration in all the muscles of the thigh in a large population of young and elderly healthy subjects.

  3. HIV Infection Is Associated with Increased Fatty Infiltration of the Thigh Muscle with Aging Independent of Fat Distribution.

    Science.gov (United States)

    Natsag, Javzandulam; Erlandson, Kristine M; Sellmeyer, Deborah E; Haberlen, Sabina A; Margolick, Joseph; Jacobson, Lisa P; Palella, Frank J; Koletar, Susan L; Lake, Jordan E; Post, Wendy S; Brown, Todd T

    2017-01-01

    Lower muscle density on computed tomography (CT) provides a measure of fatty infiltration of muscle, an aspect of muscle quality that has been associated with metabolic abnormalities, weakness, decreased mobility, and increased fracture risk in older adults. We assessed the cross-sectional relationship between HIV serostatus, age, thigh muscle attenuation, and thigh muscle cross-sectional area (CSA). Mean CT-quantified Hounsfield units (HU) of the thigh muscle bundle and CSA were evaluated in 368 HIV-infected and 145 HIV-uninfected men enrolled in the Multicenter AIDS Cohort Study (MACS) Cardiovascular Substudy using multivariable linear regression. Models all were adjusted for HIV serostatus, age, race, and body mass index (BMI); each model was further adjusted for covariates that differed by HIV serostatus, including insulin resistance, hepatitis C, malignancy, smoking, alcohol use, and self-reported limitation in physical activity. HIV-infected men had greater thigh muscle CSA (pmuscle density (pMuscle density remained lower in HIV-infected men (p = 0.001) when abdominal visceral adiposity, and thigh subcutaneous adipose tissue area were substituted for BMI in a multivariable model. Muscle density decreased by 0.16 HU per year (pincreasing age among the HIV-infected men, but not in the HIV-uninfected men (HIV x age interaction -0.20 HU; p = 0.002). HIV-infected men had lower thigh muscle density compared to HIV-uninfected men, and a more pronounced decline with increasing age, indicative of greater fatty infiltration. These findings suggest that lower muscle quality among HIV-infected persons may be a risk factor for impairments in physical function with aging.

  4. Fat Replacement of Paraspinal Muscles with Aging in Healthy Adults.

    Science.gov (United States)

    Dahlqvist, Julia R; Vissing, Christoffer R; Hedermann, Gitte; Thomsen, Carsten; Vissing, John

    2017-03-01

    The aims of this study were to investigate the age-related changes in fatty replacement and cross-sectional area (CSA) of cervical, thoracic, and lumbar paraspinal muscles versus leg muscles in healthy adults and to test for association between muscle fat fraction and lifestyle factors. Fifty-three healthy adults (24-76 yr) were included. Dixon magnetic resonance imaging technique was used to determine CSA and to quantify the fat fraction of paraspinal and leg muscles. Muscle CSA and fat fractions were tested for association with age and muscle strength. The fat fractions were also tested for association with sex, body mass index (BMI), physical activity, and lower back pain. Both paraspinal and leg fat fractions correlated directly with age (P fat fraction was higher in paraspinal than leg muscles. The age-related increase in fat fraction was higher in paraspinal muscles than leg muscles (P muscles did not correlate with age. Knee extension strength correlated with fat fraction (P muscle strength of hip muscles, thigh muscles, and anterior calf muscles correlated with CSA (P fat fraction (P fat fraction (P fat fraction and physical activity or lower back pain. The paraspinal muscles were more susceptible to age-related changes than leg muscles. Further, men had significantly lower fat fractions in lumbar paraspinal muscles, and BMI was positively associated with thigh, but not paraspinal, fat fraction.

  5. Effectiveness of thigh-to-thigh current path for the measurement of abdominal fat in bioelectrical impedance analysis.

    Science.gov (United States)

    Hong, Ki Hwan; Lim, Yong Gyu; Park, Kwang Suk

    2009-12-01

    We present a new method measuring body impedance using a thigh-to-thigh current path, which can reflect the abdominal fat portion more sensitively and can be conveniently applied during the daily use on a toilet seat. Two pairs of electrodes were installed on a toilet seat to provide current and to permit voltage measurement through a thigh-to-thigh current path. The effectiveness of the method was compared with conventional foot-to-foot and hand-to-foot current paths by simulation and by experiments referenced to computed tomography (CT) image analysis. Body impedance using three different current paths was measured, and abdominal CT images were acquired for eight subjects. Measured body impedances were compared with the visceral to subcutaneous fat ratio (VF/SF) calculated from the CT-determined abdominal fat volume. The thigh-to-thigh current path was about 75% more sensitive in abdominal fat measurement than the conventional current paths in simulation experiments and displayed a higher VF/SF correlation (r = 0.768) than the foot-to-foot (r = 0.425) and hand-to-foot (r = 0.497) current paths.

  6. Knee Joint Loading in Knee Osteoarthritis: Influence of Abdominal and Thigh Fat

    National Research Council Canada - National Science Library

    MESSIER, STEPHEN P; BEAVERS, DANIEL P; LOESER, RICHARD F; CARR, J JEFFERY; KHAJANCHI, SHUBHAM; LEGAULT, CLAUDINE; NICKLAS, BARBARA J; HUNTER, DAVID J; DEVITA, PAUL

    2014-01-01

    PURPOSEUsing three separate models that included total body mass, total lean and total fat mass, and abdominal and thigh fat as independent measures, we determined their association with knee joint...

  7. Association between Thigh Muscle Volume and Leg Muscle Power in Older Women.

    Directory of Open Access Journals (Sweden)

    Ulrich Lindemann

    Full Text Available The construct of sarcopenia is still discussed with regard to best appropriate measures of muscle volume and muscle function. The aim of this post-hoc analysis of a cross-sectional experimental study was to investigate and describe the hierarchy of the association between thigh muscle volume and measurements of functional performance in older women. Thigh muscle volume of 68 independently living older women (mean age 77.6 years was measured via magnetic resonance imaging. Isometric strength was assessed for leg extension in a movement laboratory in sitting position with the knee flexed at 90° and for hand grip. Maximum and habitual gait speed was measured on an electronic walk way. Leg muscle power was measured during single leg push and during sit-to-stand performance. Thigh muscle volume was associated with sit-to-stand performance power (r = 0.628, leg push power (r = 0.550, isometric quadriceps strength (r = 0.442, hand grip strength (r = 0.367, fast gait speed (r = 0.291, habitual gait speed (r = 0.256, body mass index (r = 0.411 and age (r = -0.392. Muscle power showed the highest association with thigh muscle volume in healthy older women. Sit-to-stand performance power showed an even higher association with thigh muscle volume compared to single leg push power.

  8. Association between Thigh Muscle Volume and Leg Muscle Power in Older Women.

    Science.gov (United States)

    Lindemann, Ulrich; Mohr, Christian; Machann, Juergen; Blatzonis, Konstantinos; Rapp, Kilian; Becker, Clemens

    2016-01-01

    The construct of sarcopenia is still discussed with regard to best appropriate measures of muscle volume and muscle function. The aim of this post-hoc analysis of a cross-sectional experimental study was to investigate and describe the hierarchy of the association between thigh muscle volume and measurements of functional performance in older women. Thigh muscle volume of 68 independently living older women (mean age 77.6 years) was measured via magnetic resonance imaging. Isometric strength was assessed for leg extension in a movement laboratory in sitting position with the knee flexed at 90° and for hand grip. Maximum and habitual gait speed was measured on an electronic walk way. Leg muscle power was measured during single leg push and during sit-to-stand performance. Thigh muscle volume was associated with sit-to-stand performance power (r = 0.628), leg push power (r = 0.550), isometric quadriceps strength (r = 0.442), hand grip strength (r = 0.367), fast gait speed (r = 0.291), habitual gait speed (r = 0.256), body mass index (r = 0.411) and age (r = -0.392). Muscle power showed the highest association with thigh muscle volume in healthy older women. Sit-to-stand performance power showed an even higher association with thigh muscle volume compared to single leg push power.

  9. Gluteus medius and thigh muscles electromyography during load carrying walking

    Directory of Open Access Journals (Sweden)

    Petr Šťastný

    2015-11-01

    Full Text Available This study compares the electromyographic (EMG peak amplitude changes of gluteus medius (Gmed, vastus medialis (VMO, vastus lateralis (VL and biceps femoris (BF during load carrying walking due to the increased load. The percentage of maximum isometric voluntary contractions (%MVIC of both limbs and 3D kinematic of lower limbs were detected on eighteen resistance-trained men (mean age ± SD, 31 ± 3.4 years while carrying loads of 25, 50 and 75% of their body mass (BM. The repeated measurement ANOVA was used to evaluate the differences in muscles %MVIC and 3D kinematics at all load conditions. Significant differences were found for Gmed %MVIC (F3,99 = 19.8, p < 0.001. Gmed activity was significantly different between load carrying walking with 25% of BM (mean ± SD, 20 ± 12%MVIC, 50% of BM (32 ± 17%MVIC and 75% of BM (45 ± 26%MVIC condition. Differences were found in hip flexion at Gmed EMG peak (F3,96 = 14, p < 0.001, between 25% of BM (18 ± 11° and 50% of BM (29 ± 7°. No significant differences were found for thigh muscles, when thigh muscle activity did not exceed 30%MVIC even at 75% of BM condition. Load carrying walking is an exercise which activates Gmed more than thigh muscles. This exercise increases the Gmed activity along with increased loads and it should be regarded as a complex Gmed strengthening exercise. This exercise is recommended for strengthening the Gmed with low activation of VL and VMO.

  10. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons

    NARCIS (Netherlands)

    Visser, M.; Goodpaster, B.H.; Kritchevsky, S.B.; Newman, A.B.; Nevitt, M.C.; Rubin, S.M.; Simonsick, E.M.; Harris, T.B.

    2005-01-01

    .05). Among men and women, associations were similar for blacks and whites. CONCLUSION: Lower muscle mass (smaller cross-sectional thigh muscle area), greater fat infiltration into the muscle, and lower knee extensor muscle strength are associated with increased risk of mobility loss in older men

  11. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons

    NARCIS (Netherlands)

    Visser, M.; Goodpaster, B.H.; Kritchevsky, S.B.; Newman, A.B.; Nevitt, M.C.; Rubin, S.M.; Simonsick, E.M.; Harris, T.B.

    2005-01-01

    .05). Among men and women, associations were similar for blacks and whites. CONCLUSION: Lower muscle mass (smaller cross-sectional thigh muscle area), greater fat infiltration into the muscle, and lower knee extensor muscle strength are associated with increased risk of mobility loss in older men an

  12. Subcutaneous Thigh Fat Assessment: A Comparison of Skinfold Calipers and Ultrasound Imaging

    Science.gov (United States)

    Selkow, Noelle M.; Pietrosimone, Brian G.; Saliba, Susan A.

    2011-01-01

    Abstract Context: Skinfold calipers (SC) typically are used to determine subcutaneous fat thicknesses. Identifying the exact separation of muscle and fat can complicate measurements. Ultrasound imaging (USI) might provide a better technique for analyzing subcutaneous fat thicknesses. Objective: To compare measurements from SC and USI in assessing subcutaneous thigh fat thickness. Design: Descriptive laboratory study. Setting: Laboratory. Patients and Other Participants: Twenty healthy adults (13 men, 7 women; age  =  26.9 ± 5.4 years, height  =  173.9 ± 7.3 cm, mass  =  77.4 ± 16.1 kg) participated. Intervention(s): Participants were seated in 90° of knee flexion and 85° of trunk extension. A standardized template was used to identify measurement sites over the vastus medialis obliquus (VMO), distal rectus femoris (dRF), proximal rectus femoris (pRF), and vastus lateralis (VL). Three measurements at each of the 4 sites were made in random order and were averaged for each measurement tool by the same investigator. Main Outcome Measure(s): Fat thickness was measured in millimeters with SC and USI. Measurements at each site were compared using Pearson product moment correlations and Bland-Altman plots. Results: Strong correlations between measures were found at the VMO (r  =  .90, P thicknesses compared with USI. Limits of agreement, as illustrated by the Bland-Altman plots, were fairly wide at each site: from −3.38 mm to 7.74 mm at the VMO, from −3.04 mm to 6.52 mm at the dRF, from −1.53 mm to 8.87 mm at the pRF, and from −3.73 mm to 8.15 mm at the VL. All plots except for the VL demonstrated increasing overestimation via the SC as fat thicknesses increased. Conclusions: We found strong correlations between the SC and USI; however, the large limits of agreement and increasing mean differences with larger fat thicknesses were a concern in terms of using this tool. When measuring subcutaneous fat thickness of the thigh, SC tended

  13. KNEE-JOINT LOADING IN KNEE OSTEOARTHRITIS: INFLUENCE OF ABDOMINAL AND THIGH FAT

    Science.gov (United States)

    Messier, Stephen P.; Beavers, Daniel P.; Loeser, Richard F.; Carr, J. Jeffery; Khajanchi, Shubham; Legault, Claudine; Nicklas, Barbara J.; Hunter, David J.; DeVita, Paul

    2014-01-01

    Purpose Using three separate models that included total body mass, total lean and total fat mass, and abdominal and thigh fat as independent measures, we determined their association with knee-joint loads in older overweight and obese adults with knee osteoarthritis (OA). Methods Fat depots were quantified using computed tomography and total lean and fat mass determined with dual energy x-ray absorptiometry in 176 adults (age = 66.3 yr., BMI = 33.5 kg·m−2) with radiographic knee OA. Knee moments and joint bone-on-bone forces were calculated using gait analysis and musculoskeletal modeling. Results Higher total body mass was significantly associated (p ≤ 0.0001) with greater knee compressive and shear forces, compressive and shear impulses (p < 0.0001), patellofemoral forces (p< 0.006), and knee extensor moments (p = 0.003). Regression analysis with total lean and total fat mass as independent variables revealed significant positive associations of total fat mass with knee compressive (p = 0.0001), shear (p < 0.001), and patellofemoral forces (p = 0.01) and knee extension moment (p = 0.008). Gastrocnemius and quadriceps forces were positively associated with total fat mass. Total lean mass was associated with knee compressive force (p = 0.002). A regression model that included total thigh and total abdominal fat found both were significantly associated with knee compressive and shear forces (p ≤ 0.04). Thigh fat was associated with the knee abduction (p = 0.03) and knee extension moment (p = 0.02). Conclusions Thigh fat, consisting predominately of subcutaneous fat, had similar significant associations with knee joint forces as abdominal fat despite its much smaller volume and could be an important therapeutic target for people with knee OA. PMID:25133996

  14. Comparison of MRI and DXA to measure muscle size and age-related atrophy in thigh muscles.

    Science.gov (United States)

    Maden-Wilkinson, T M; Degens, H; Jones, D A; McPhee, J S

    2013-09-01

    Magnetic resonance imaging (MRI) and dual-energy x-ray absorptiometry (DXA) were used to examine the thigh lean mass in young and old men and women. A whole-body DXA scan was used to estimate thigh lean mass in young (20 men; 22.4±3.1y; 18 women; 22.1±2.0y) and older adults (25 men; 72.3±4.9y; 28 women; 72.0±4.5y). Thigh lean mass determined with a thigh scan on the DXA or full thigh MRI scans were compared. Although the thigh lean mass quantified by DXA and MRI in young and older participants were correlated (R(2)=0.88; pmuscles in the older than young individuals, while the other thigh muscles were only 18% smaller. DXA underestimates the age-related loss of thigh muscle mass in comparison to MRI. The quadriceps muscles were more susceptible to age-related atrophy compared with other thigh muscles.

  15. Return to play after thigh muscle injury in elite football players: implementation and validation of the Munich muscle injury classification

    Science.gov (United States)

    Ekstrand, Jan; Askling, Carl; Magnusson, Henrik; Mithoefer, Kai

    2013-01-01

    Background Owing to the complexity and heterogeneity of muscle injuries, a generally accepted classification system is still lacking. Aims To prospectively implement and validate a novel muscle injury classification and to evaluate its predictive value for return to professional football. Methods The recently described Munich muscle injury classification was prospectively evaluated in 31 European professional male football teams during the 2011/2012 season. Thigh muscle injury types were recorded by team medical staff and correlated to individual player exposure and resultant time-loss. Results In total, 393 thigh muscle injuries occurred. The muscle classification system was well received with a 100% response rate. Two-thirds of thigh muscle injuries were classified as structural and were associated with longer lay-off times compared to functional muscle disorders (pinjuries) with increasing lay-off time associated with more severe structural injury. Median lay-off time of functional disorders was 5–8 days without significant differences between subgroups. There was no significant difference in the absence time between anterior and posterior thigh injuries. Conclusions The Munich muscle classification demonstrates a positive prognostic validity for return to play after thigh muscle injury in professional male football players. Structural injuries are associated with longer average lay-off times than functional muscle disorders. Subclassification of structural injuries correlates with return to play, while subgrouping of functional disorders shows less prognostic relevance. Functional disorders are often underestimated clinically and require further systematic study. PMID:23645834

  16. Dietary oxidized poultry offal fat: broiler performance and oxidative stability of thigh meat during chilled storage

    Directory of Open Access Journals (Sweden)

    AMC Racanicci

    2008-03-01

    Full Text Available Two experiments were conducted to evaluate the effects of dietary oxidized poultry offal fat on the performance of broilers and on the oxidative stability of dark chicken meat. One hundred and sixty male chicks were fed a corn-soybean meal diet containing 4% fresh or oxidized poultry fat from 10 to 47 days of age. Fresh fat was stored frozen until diets were produced, and oxidized fat was obtained by electrical heating (110 to 120 ºC. Birds were slaughtered at 47 days of age, and carcass characteristics were measured. Skinless and deboned thigh meat was stored chilled during 12 days, and samples were periodically collected to assess their quality and oxidative stability. Dietary oxidized fat did not affect bird performance or carcass characteristics. During chilled storage, meat color (L*, a* and b* was not affected by dietary treatments; however, TBARS (Thiobarbituric Acid Reactive Substances values were higher (P<0.05 in thigh meat from chickens fed the oxidized fat, indicating that oxidative stability was adversely affected.

  17. Neuromuscular properties of the thigh muscles in patients with Ehlers-Danlos syndrome

    NARCIS (Netherlands)

    Gerrits, K.H.; Voermans, N.C.; Haan, A. de; Engelen, B.G. van

    2013-01-01

    INTRODUCTION: Ehlers-Danlos syndrome (EDS), a connective tissue disorder, may lead to impaired contractile function of lower limb muscles. METHODS: To test this hypothesis and to understand the possible mechanisms involved, isometric function of the thigh muscles was investigated at different joint

  18. Neuromuscular electrical stimulation attenuates thigh skeletal muscles atrophy but not trunk muscles after spinal cord injury.

    Science.gov (United States)

    Gorgey, Ashraf S; Dolbow, David R; Cifu, David X; Gater, David R

    2013-08-01

    The current study examined the effects of 12weeks of surface neuromuscular electrical stimulation (NMES) and ankle weights on the cross-sectional areas (CSAs) of three thigh [Gracilis (Gra), Sartorious (Sar) and Adductor (Add)] as well as two trunk [hip flexor (HF) and back extensor (BE)] muscle groups in men with spinal cord injury (SCI). Seven individuals with chronic motor complete SCI were randomly assigned into a resistance training +diet (RT+diet; n=4) or diet control (n=3) groups. The RT+diet group underwent twice weekly training with surface NMES and ankle weights for 12weeks. Training composed of four sets of 10 repetitions of leg extension exercise while sitting in their wheelchairs. Both groups were asked to monitor their dietary intake. Magnetic resonance images were captured before and after 12weeks of interventions. Gra muscle CSA showed no change before and after interventions. A significant interaction (P=0.001) was noted between both groups as result of 9% increase and 10% decrease in the Gra muscle CSA of the RT+diet and diet groups, respectively. Sar muscle CSA increased [1.7±0.4-2.5±0.5cm(2); P=0.029] in the RT+diet group with no change [2.9±1.4-2.6±1.3cm(2)] in the diet group; with interaction noted between both groups (P=0.002). Analysis of covariance indicated that Add muscle CSA was 38% greater in the RT+diet compared to the diet group (P=0.025) after 12weeks; a trend of interaction was also noted between both groups (P=0.06). HF and BE muscle groups showed no apparent changes in CSA in both groups. The results suggested that surface NMES can delay the process of progressive skeletal muscle atrophy after chronic SCI. However, the effects are localized to the trained thigh muscles and do not extend to the proximal trunk muscles.

  19. ¹³C MRS reveals a small diurnal variation in the glycogen content of human thigh muscle.

    Science.gov (United States)

    Takahashi, Hideyuki; Kamei, Akiko; Osawa, Takuya; Kawahara, Takashi; Takizawa, Osamu; Maruyama, Katsuya

    2015-06-01

    There is marked diurnal variation in the glycogen content of skeletal muscles of animals, but few studies have addressed such variations in human muscles. (13)C MRS can be used to noninvasively measure the glycogen content of human skeletal muscle, but no study has explored the diurnal variations in this parameter. This study aimed to investigate whether a diurnal variation in glycogen content occurs in human muscles and, if so, to what extent it can be identified using (13)C MRS. Six male volunteers were instructed to maintain their normal diet and not to perform strenuous exercise for at least 3 days before and during the experiment. Muscle glycogen and blood glucose concentrations were measured six times in 24 h under normal conditions in these subjects. The glycogen content in the thigh muscle was determined noninvasively by natural abundance (13)C MRS using a clinical MR system at 3 T. Nutritional analysis revealed that the subjects' mean carbohydrate intake was 463 ± 137 g, being approximately 6.8 ± 2.4 g/kg body weight. The average sleeping time was 5.9 ± 1.0 h. The glycogen content in the thigh muscle at the starting point was 64.8 ± 20.6 mM. Although absolute and relative individual variations in muscle glycogen content were 7.0 ± 2.1 mM and 11.3 ± 4.6%, respectively, no significant difference in glycogen content was observed among the different time points. This study demonstrates that normal food intake (not fat and/or carbohydrate rich), sleep and other daily activities have a negligible influence on thigh muscle glycogen content, and that the diurnal variation of the glycogen content in human muscles is markedly smaller than that in animal muscles. Moreover, the present results also support the reproducibility and availability of (13)C MRS for the evaluation of the glycogen content in human muscles. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Broiler chicken thigh and breast muscle responses to cold stress during simulated transport before slaughter.

    Science.gov (United States)

    Dadgar, S; Crowe, T G; Classen, H L; Watts, J M; Shand, P J

    2012-06-01

    The effect of acute cold exposure was assessed on broiler physiology, breast and thigh muscle metabolites, and meat quality. In total, 160 male birds at ages of 5 and 6 wk were exposed to temperatures of -9 to -15°C (cold stressed) and +20°C (control) in a simulated transport chamber for 3 h before slaughter followed by 0 or 2 h of lairage. Bird physiology parameters, including core body temperature, live shrink, blood glucose, and muscle temperature, were assessed. Core body temperature was monitored every minute using i-Button data loggers, and live shrink and blood glucose were assessed. Total glucose and lactate concentrations at 30 h postmortem, as well as ultimate pH (pH(u)), color, and water-holding attributes were evaluated on pectoralis major muscle of breast and iliotibialis muscle of thigh. Birds were grouped based on their microclimate temperature to control and cold-stressed groups (0 to -8, -8 to -11, and -11 to -14°C). Significant (P muscle temperatures were observed at simulated transport temperatures below 0°C. In addition, higher (P muscle was almost depleted of glycogen reserve compared with a significant but small reduction in breast muscle glycogen when exposure temperature was below -8°C. Similarly, much greater effects were observed on thigh pH(u) and quality attributes compared with breast. In addition, 84% incidence of the dark, firm, dry quality defect was observed in thigh meat (pH(u) > 6.4, L* 6.1, L* muscle was affected more severely than breast muscle by exposure to cold temperatures before slaughter.

  1. 'Serious thigh muscle strains': beware the intramuscular tendon which plays an important role in difficult hamstring and quadriceps muscle strains.

    Science.gov (United States)

    Brukner, Peter; Connell, David

    2016-02-01

    Why do some hamstring and quadriceps strains take much longer to repair than others? Which injuries are more prone to recurrence? Intramuscular tendon injuries have received little attention as an element in 'muscle strain'. In thigh muscles, such as rectus femoris and biceps femoris, the attached tendon extends for a significant distance within the muscle belly. While the pathology of most muscle injures occurs at a musculotendinous junction, at first glance the athlete appears to report pain within a muscle belly. In addition to the musculotendinous injury being a site of pathology, the intramuscular tendon itself is occasionally injured. These injuries have a variety of appearances on MRIs. There is some evidence that these injuries require a prolonged rehabilitation time and may have higher recurrence rates. Therefore, it is important to recognise the tendon component of a thigh 'muscle strain'.

  2. B1-insensitive T2 mapping of healthy thigh muscles using a T2-prepared 3D TSE sequence.

    Science.gov (United States)

    Klupp, Elisabeth; Weidlich, Dominik; Schlaeger, Sarah; Baum, Thomas; Cervantes, Barbara; Deschauer, Marcus; Kooijman, Hendrik; Rummeny, Ernst J; Zimmer, Claus; Kirschke, Jan S; Karampinos, Dimitrios C

    2017-01-01

    To propose a T2-prepared 3D turbo spin echo (T2prep 3D TSE) sequence for B1-insensitive skeletal muscle T2 mapping and compare its performance with 2D and 3D multi-echo spin echo (MESE) for T2 mapping in thigh muscles of healthy subjects. The performance of 2D MESE, 3D MESE and the proposed T2prep 3D TSE in the presence of transmit B1 and B0 inhomogeneities was first simulated. The thigh muscles of ten young and healthy subjects were then scanned on a 3 T system and T2 mapping was performed using the three sequences. Transmit B1-maps and proton density fat fraction (PDFF) maps were also acquired. The subjects were scanned three times to assess reproducibility. T2 values were compared among sequences and their sensitivity to B1 inhomogeneities was compared to simulation results. Correlations were also determined between T2 values, PDFF and B1. The left rectus femoris muscle showed the largest B1 deviations from the nominal value (from 54.2% to 92.9%). Significant negative correlations between T2 values and B1 values were found in the left rectus femoris muscle for 3D MESE (r = -0.72, pvariation (RMSCVs) were equal to 3.5% in T2prep 3D TSE, 2.6% in 3D MESE and 2.4% in 2D MESE. Significant differences between T2 values of 3D sequences (T2prep 3D TSE and 3D MESE) and 2D MESE were found in all muscles with the highest values for 2D MESE (pmuscle T2 mapping.

  3. Electromyographic analysis of thigh muscles during track cycling on a velodrome.

    Science.gov (United States)

    Watanabe, Kohei; Sato, Takayuki; Mukaimoto, Takahiro; Takashima, Wataru; Yamagishi, Michio; Nishiyama, Tetsunari

    2016-08-01

    We aimed to investigate neuromuscular activation of thigh muscles during track cycling at various speeds. Eight male competitive cyclists volunteered to participate in this study. Surface electromyography of the vastus lateralis, biceps femoris and adductor magnus muscles of the bilateral legs was recorded during track cycling on velodromes with a 250-m track. The participants were instructed to maintain three different lap times: 20, 18 and 16 s. The average rectified value (ARV) was calculated from the sampled surface electromyography. Significantly higher ARVs were observed in the right compared to left leg for the biceps femoris muscle during both straight and curved sections at 18- and 16-s lap times (P muscle, significant changes in ARVs during the recovery phase with an increase in speed were seen in the right leg only (P muscles (P > 0.05). From our findings, it was suggested that during track cycling on a velodrome the laterality of the biceps femoris muscle activity is a key strategy to regulate the speed, and fixed neuromuscular strategies are adopted between straight and curved sections for thigh muscles.

  4. Chromium levels in insulin-sensitive tissues and the thigh bone are modulated by prednisolone and high-fat diets in mice.

    Science.gov (United States)

    Chen, Po-Wen; Lin, Chang; Chen, Chung-De; Chen, Wen-Ying; Mao, Frank Chiahung

    2013-04-01

    Glucocorticoids (GCs) are often prescribed in clinics but many adverse effects are also attributed to GCs. It is important to determine the role of GCs in the development of those adverse effects. Here, we investigated the impact of GCs on trivalent chromium (Cr) distribution in animals. Cr has been proposed to be important for proper insulin sensitivity, and deficits may lead to disruption of metabolism. For comparison, the effect of a high-fat diet on Cr modulation was also evaluated. C57BL/6JNarl mice were fed regular or high-fat diets for 12 weeks and further grouped for treatment with prednisolone or saline. Cr levels in tissues were determined 12 h after the treatments. Interestingly, prednisolone treatment led to significantly reduced Cr levels in fat tissue in mice fed regular diets; compared to the high-fat diet alone, prednisolone plus the high-fat diet led to a further reduction in Cr levels in the liver, muscle, and fat. Notably, a single dose of prednisolone was linked with elevated Cr levels in the thigh bones of mice fed by either regular or high-fat diets. In conclusion, this report has provided evidence that prednisolone in combination with a high-fat diet effects modulation of Cr levels in selected tissues.

  5. Discrepancies between Skinned Single Muscle Fibres and Whole Thigh Muscle Function Characteristics in Young and Elderly Human Subjects

    Directory of Open Access Journals (Sweden)

    Hyunseok Jee

    2016-01-01

    Full Text Available We aimed to analyse the mechanical properties of skinned single muscle fibres derived from the vastus lateralis (VL muscle in relation to those of the whole intact thigh muscle and to compare any difference between young and older adults. Sixteen young men (29.25±4.65 years, 11 older men (71.45±2.94 years, 11 young women (29.64±4.88 years, and 7 older women (67.29±1.70 years were recruited. In vivo analyses were performed for mechanical properties such as isokinetic performance, isometric torque, and power. Specific force and maximum shortening velocity (Vo were measured with single muscle fibres. Sex difference showed greater impact on the functional properties of both the whole muscle (p<0.01 and single muscle fibres than aging (p<0.05. Sex difference, rather than aging, yielded more remarkable differences in gross mechanical properties in the single muscle fibre study in which significant differences between young men and young women were found only in the cross-sectional area and Vo (p<0.05. Age and sex differences reflect the mechanical properties of both single muscle fibres and whole thigh muscle, with the whole muscle yielding more prominent functional properties.

  6. The use of MRI to evaluate posterior thigh muscle activity and damage during nordic hamstring exercise.

    Science.gov (United States)

    Mendiguchia, Jurdan; Arcos, Asier L; Garrues, Mirian A; Myer, Gregory D; Yanci, Javier; Idoate, Fernando

    2013-12-01

    The aim of this study was to investigate the effects of the Nordic hamstring exercise on the biceps femoris long head (BFlh), biceps femoris short head (BFsh), semitendinosus (SMT), and semimembranosus (SMM) muscles. The Nordic hamstring strengthening exercise has been widely used in injury prevention, yet not much is known about the site-specific activation of this exercise on different muscles of the thigh. Eight male national-level referees were assigned to a Nordic hamstring exercise protocol (5 sets of 8 repetitions). Magnetic resonance imaging (MRI) of the subjects' thighs was performed before, within 3 minutes after, and repeated again 72 hours after the exercise intervention. Fifteen axial scans of the thigh interspaced by a distance of 1 of 15 right femur length were obtained from the level of 1 of 15 Lf to 15 of 15 Lf. The MRI data were analyzed for signal intensity changes. After 72 hours, significant changes in transverse (spin-spin) relaxation time signal intensity and cross-sectional area were maintained distally at BFsh cranial portion and concretely at the nondominant limb, whereas no significant changes were observed in transverse (spin-spin) relaxation time signal intensity at BFlh, SMM, or SMT. This study demonstrated that the Nordic hamstring exercise did not result in a uniform response (training stimulus) neither interhamstring (dominant vs. nondominant) nor intrahamstring muscles (same leg) and was better suited for loading proximal BFsh.

  7. Progression and variation of fatty infiltration of the thigh muscles in Duchenne muscular dystrophy, a muscle magnetic resonance imaging study.

    Science.gov (United States)

    Li, Wenzhu; Zheng, Yiming; Zhang, Wei; Wang, Zhaoxia; Xiao, Jiangxi; Yuan, Yun

    2015-05-01

    The purpose of this study was to assess the progression and variation of fatty infiltration of the thigh muscles of Duchenne muscular dystrophy patients. Muscle magnetic resonance imaging was used to measure the degree of fatty infiltration of the thigh muscles of 171 boys with Duchenne muscular dystrophy (mean age, 6.09 ± 2.30 years). Fatty infiltration was assigned using a modified Mercuri's scale 0-5 (normal-severe). The gluteus maximus and adductor magnus were affected in patients less than two years old, followed by the biceps femoris. Quadriceps and semimembranosus were first affected at the age of five to six years; the sartorius, gracilis and adductor longus remained apparently unaffected until seven years of age. Fatty infiltration of all the thigh muscles developed rapidly after seven years of age. The standard deviation of the fatty infiltration scores ranged from 2.41 to 4.87 before five years old, and from 6.84 to 11.66 between six and ten years old. This study provides evidence of highly variable degrees of fatty infiltration in children of different ages with Duchenne muscular dystrophy, and indicates that fatty infiltration progresses more quickly after seven years of age. These findings may be beneficial for the selection of therapeutic regimens and the analysis of future clinical trials. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Associations of fat and muscle tissue with cognitive status in older adults: the AGES-Reykjavik Study.

    Science.gov (United States)

    Spauwen, Peggy J J; Murphy, Rachel A; Jónsson, Pálmi V; Sigurdsson, Sigurdur; Garcia, Melissa E; Eiriksdottir, Gudny; van Boxtel, Martin P J; Lopez, Oscar L; Gudnason, Vilmundur; Harris, Tamara B; Launer, Lenore J

    2017-03-01

    studies on the association of dementia with specific body composition (BC) components are scarce. Our aim was to investigate associations of BC measures with different levels of cognitive function in late-life. we studied 5,169 participants (mean age 76 years, 42.9% men) in the AGES-Reykjavik Study of whom 485 (9.4%) were diagnosed with mild cognitive impairment (MCI) and 307 (5.9%) with dementia. Visceral fat, abdominal and thigh subcutaneous fat, and thigh muscle were assessed by computed tomography. MCI and dementia were based on clinical assessment and a consensus meeting; those without MCI or dementia were categorised as normal. Multinomial regression models assessed the associations stratified by sex and in additional analyses by midlife body mass index (BMI). among women, there was a decreased likelihood of dementia per SD increase in abdominal subcutaneous fat (OR 0.72; 95% CI: 0.59-0.88), thigh subcutaneous fat (0.81; 0.67-0.98) and thigh muscle (0.63; 0.52-0.76), but not visceral fat, adjusting for demographics, vascular risk factors, stroke and depression. Inverse associations of fat with dementia were attenuated by weight change from midlife and were strongest in women with midlife BMI increase in thigh muscle was associated with a decreased likelihood of dementia (0.75; 0.61-0.92). BC was not associated with MCI in men or women. a higher amount of abdominal and thigh subcutaneous fat were associated with a lower likelihood of dementia in women only, while more thigh muscle was associated with a lower likelihood of dementia in men and women.

  9. A rare case of aberrant quadriceps muscle anatomy preventing anterolateral thigh flap harvest

    Directory of Open Access Journals (Sweden)

    Eugene Omakobia

    2016-03-01

    Full Text Available The anterolateral thigh (ALT flap is now widely established as a versatile flap which can provide ample amounts of skin, muscle and fascia to construct a variety of defects following major head and neck surgery. However, its use remains cautious due to well documented variations in its vascular anatomy for which this flap is notorious. What is less well known is the effect of variations in quadriceps muscle anatomy on the success of flap harvest. Here, we report a unique case in which fusion of the vastus intermedius (V.I and vastus lateralis (V.L muscles precluded ALT flap harvest. We also advise on appropriate management should similar cases be encountered. To our knowledge this is the first reported case of its kind in the English language literature.

  10. Elderly oarsmen have larger trunk and thigh muscles and greater strength than age-matched untrained men.

    Science.gov (United States)

    Asaka, Meiko; Usui, Chiyoko; Ohta, Megumi; Takai, Yohei; Fukunaga, Tetsuo; Higuchi, Mitsuru

    2010-04-01

    To evaluate whether regularly performed rowing exercise affects the trunk muscles size and function, and to examine the effect of rowing exercise on thigh muscle size and function in elderly rowers, we compared the cross-sectional area (CSA) and strength of these muscles in elderly male rowers and in age-matched untrained men. Participants were 16 elderly rowing-trained men (ROW age, 67.8 +/- 2.3 years) and 18 elderly untrained men (CON 66.2 +/- 3.0 years). CSA was measured by MRI in the trunk and thigh muscles. Isometric trunk flexion force and leg extension power were measured. ROW had a 20% larger total trunk muscle CSA than CON (P muscles did not differ significantly between CON and ROW. In ROW, the CSA was 13% larger in the total thigh muscles (P leg extension power was 43% higher than in CON (P muscles, especially psoas major and that it improves thigh muscle size and function in elderly men.

  11. Heterogeneous recruitment of quadriceps muscle portions and fibre types during moderate intensity knee-extensor exercise: effect of thigh occlusion

    DEFF Research Database (Denmark)

    Krustrup, Peter; Söderlund, Karin; Relu, Mihai U.;

    2009-01-01

    The involvement of quadriceps femoris muscle portions and fibre type recruitment was studied during submaximal knee-extensor exercise without and with thigh occlusion (OCC) and compared with responses during intense exercise. Six healthy male subjects performed 90-s of moderate exercise without...... (MOD; 29+/-4 W) and with thigh OCC, and moderate exercise followed by 90-s of intense exercise (HI; 65+/-8 W). Temperatures were continuously measured in m. vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF) and successive muscle biopsies were obtained from VL. During MOD, muscle...

  12. Hypoxia affects tissue oxygenation differently in the thigh and calf muscles during incremental running.

    Science.gov (United States)

    Osawa, Takuya; Arimitsu, Takuma; Takahashi, Hideyuki

    2017-08-17

    The present study was performed to determine the impact of hypoxia on working muscle oxygenation during incremental running, and to compare tissue oxygenation between the thigh and calf muscles. Nine distance runners and triathletes performed incremental running tests to exhaustion under normoxic and hypoxic conditions (fraction of inspired oxygen = 0.15). Peak pulmonary oxygen uptake ([Formula: see text]) and tissue oxygen saturation (StO2) were measured simultaneously in both the vastus lateralis and medial gastrocnemius. Hypoxia significantly decreased peak running speed and [Formula: see text] (p incremental running, StO2 in the vastus lateralis decreased almost linearly, and the rate of decrease from warm-up (180 m min(-1)) to [Formula: see text] was significantly greater than in the medial gastrocnemius under both normoxic and hypoxic conditions (p incremental running.

  13. Magnetic resonance imaging, ultrasound and real-time ultrasound elastography of the thigh muscles in congenital muscle dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Drakonaki, Eleni E. [University of Crete, Radiology Department, Heraklion (Greece); Allen, Gina M. [Green Templeton College, Oxford (United Kingdom)

    2010-04-15

    Congenital muscle dystrophy includes a range of genetic disorders characterized by muscle weakness and contractures. We report the magnetic resonance (MR), ultrasound (US) and real-time sonoelastography (RTE) imaging findings of the thigh muscles of a 15-year-old boy with Bethlem myopathy diagnosed with clinical, electromyographic and histopathological criteria. Ultrasound and MR showed hyperechoic appearance and high signal intensity on T1- and T2-weighted sequences respectively at the periphery of the vastus lateralis and the long head of the biceps femoris muscles, and at a central area within the rectus femoris muscles. RTE was employed to examine the elastic properties of the muscle. The elastograms were presented as colour-coded maps superimposed on the B-mode images and revealed that the elastographic pattern correlated with the MR and US pattern of involvement. The abnormal muscle areas were stiffer (blue) than the normal-appearing areas (green), a finding that probably correlates with the presence of dystrophic collagen at the affected areas. This report suggests that RTE could be used as an additional imaging tool to evaluate the pattern of muscle changes in congenital myopathy. Further studies are needed to investigate the specificity and clinical value of RTE in the diagnosis and monitoring of neuromuscular disease. (orig.)

  14. Effects of Aerobic Exercise Intensity on Abdominal and Thigh Adipose Tissue and Skeletal Muscle Attenuation in Overweight Women with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Ji Yeon Jung

    2012-06-01

    Full Text Available BackgroundWe investigated the effects of exercise intensity on abdominal and mid-thigh adipose tissue, attenuation of skeletal muscle, and insulin sensitivity in overweight women with type 2 diabetes mellitus (T2DM.MethodsTwenty-eight patients were randomly assigned to control (CG, n=12, moderate intensity exercise (MEG, n=8, or vigorous intensity exercise (VEG, n=8 group. Subjects in both exercise groups completed a 12-week exercise program (MEG, 3.6 to 5.2 METs; VEG, ≥5.2 METs that was monitored by accelerometers. We assessed body mass index (BMI, total fat area (TFA, visceral fat area (VFA, subcutaneous fat area (SFA, mid-thigh intramuscular adipose tissue (TIMAT, total skeletal muscle (TTM, low density skeletal muscle (TLDM, and normal density skeletal muscle (TNDM using computed tomography, and measured insulin sensitivity with an insulin tolerance test (KITT, before and after the intervention.ResultsAt baseline, the mean age was 53.8±7.9 years, duration of diabetes was 3.8±2.3 years, and BMI was 26.6±2.6 kg/m2. After 12 weeks, the percent change (%C in BMI, TIMAT, and TLDM were not different among three groups. However, %C in TFA and VFA were significantly reduced in MEG compared to CG (P=0.026 and P=0.008, respectively. %C SFA was significantly reduced in VEG compared to CG (P=0.038 and %C TTM, TNDM, and KITT were significantly increased in VEG compared to the CG (P=0.044, P=0.007, and P=0.016, respectively.ConclusionAlthough there was no difference in the change in BMI among groups, TFA and VFA were more reduced in MEG, and only VEG increased TTM, TNDM, and insulin sensitivity compared to CG.

  15. Mutability of bifunctional thigh muscle activity in pedaling due to contralateral leg force generation.

    Science.gov (United States)

    Kautz, S A; Brown, D A; Van der Loos, H F M; Zajac, F E

    2002-09-01

    Locomotion requires uninterrupted transitions between limb extension and flexion. The role of contralateral sensorimotor signals in executing smooth transitions is little understood even though their participation is crucial to bipedal walking. However, elucidating neural interlimb coordinating mechanisms in human walking is difficult because changes to contralateral sensorimotor activity also affect the ipsilateral mechanics. Pedaling, conversely, is ideal for studying bilateral coordination because ipsilateral mechanics can be independently controlled. In pedaling, the anterior and posterior bifunctional thigh muscles develop needed anterior and posterior crank forces, respectively, to dominate the flexion-to-extension and extension-to-flexion transitions. We hypothesized that contralateral sensorimotor activity substantially contributes to the appropriate activation of these bifunctional muscles during the limb transitions. Bilateral pedal forces and surface electromyograms (EMGs) from four thigh muscles were collected from 15 subjects who pedaled with their right leg against a right-crank servomotor, which emulated the mechanical load experienced in conventional two-legged coupled-crank pedaling. In one pedaling session, the contralateral (left) leg pseudo-pedaled (i.e., EMG activity and pedal forces were pedaling-like, but pedal force was not allowed to affect crank rotation). In other sessions, the mechanically decoupled contralateral leg was first relaxed and then produced rhythmic isometric force trajectories during either leg flexion or one of the two limb transitions of the pedaling leg. With contralateral force production in the extension-to-flexion transition (predominantly by the hamstrings), rectus femoris activity and work output increased in the pedaling leg during its flexion-to-extension transition, which occurs simultaneously with contralateral extension-to-flexion in conventional pedaling. Similarly, with contralateral force production in the

  16. Skeletal muscle hypertrophy and decreased intramuscular fat after unilateral resistance training in spinal cord injury: case report.

    Science.gov (United States)

    Gorgey, Ashraf S; Shepherd, Collin

    2010-01-01

    Skeletal muscle atrophy is a common adaptation after spinal cord injury (SCI) that results in numerous health-related complications. Neuromuscular electrical stimulation (NMES) has been recognized as an effective tool, which attenuates atrophy and evokes hypertrophy. To investigate the effects of NMES resistance training (RT) on individual muscle groups and adipose tissue of the right thigh after stimulation of the knee extensor muscle group in a man with chronic SCI. A 22-year-old man with a complete SCI sustained in a motorcycle accident 5 years prior to participation in this study. The participant underwent training twice a week for 12 weeks, including unilateral progressive RT of the right knee extensor muscle group using NMES and ankle weights. The stimulation was applied to knee extensors while the participant was sitting in his wheelchair. A series of T1-weighted magnetic resonance images were acquired for the whole right thigh prior to and after training. Skeletal muscle cross-sectional areas were measured of the whole thigh, knee extensors, hip adductors, hamstrings, and sartorius and gracilis muscle groups. Additionally, intramuscular fat and subcutaneous fat of the thigh were measured. At the end of 12 weeks, the participant was able to lift 17 lbs during full knee extension. Average skeletal muscle cross-sectional areas increased in all of the measured muscle groups (12%-43%). Hypertrophy ranging from 30% to 112% was detected in multiaxial slices after the NMES RT protocol. Intramuscular fat decreased by more than 50% and subcutaneous fat increased by 24%. Unilateral NMES RT protocol evoked hypertrophy in the knee extensor and adjacent skeletal muscle groups and was associated with a reduction in intramuscular fat in a person with a chronic SCI. Additionally, subcutaneous adipose tissue cross-sectional areas increased in response to RT.

  17. Fatty acids profile of breast and thigh muscles of broiler chickens fed diets with propolis and probiotics

    Directory of Open Access Journals (Sweden)

    Lenka TREMBECKÁ

    2016-12-01

    Full Text Available The aim of the study was to assess the effect of supplying propolis extract separately and propolis extract together with probiotics based on Lactobacillus fermentum on fatty acids (FA composition of the most valuable parts of chicken carcass. Diets enriched with 400 mg propolis extract per 1 kg of feed mixture and 400 mg propolis extract per 1 kg of feed mixture plus 3.3 g probiotic preparation added to drinking water (E1 and E2 groups, respectively were given to broiler chickens throughout a 42-d growth period. After slaughter, the FA profiles of breast and thigh samples were determined. Both supplemented diets decreased the total amount of saturated FA (SFA, mainly because of the myristic (C14:0 and stearic (C18:0 acid contents in both breast and thigh muscles. However, a significant decrease (P ≤ 0.05 in SFA was confirmed only in thigh muscle. Supplementation with propolis together with probiotics (E2 significantly increased (P ≤ 0.05 monounsaturated FA (MUFA contents in breast muscle. Particularly oleic acid (C18:1 cis contributed to an overall increase in MUFA. A rise (P ≤ 0.05 in polyunsaturated FA (PUFA in breast muscle was, however, associated with the dietary supplementation of propolis extract separately (E1. A similar trend (P  0.05 for MUFA and PUFA levels was also observed in thigh muscle. Of all PUFAs detected in breast and thigh muscles, linoleic acid (C18:2 cis was found at the highest levels. Its levels varied from 11.34 to 12.02 g*100 g-1 and from 11.05 to 11.82 g*100 g-1 in breast and thigh muscles, respectively. The highest level (P ≤ 0.05 of linoleic acid was observed in group E1. Comparing breast with thigh muscle, the breast was demonstrated to contain more SFA and PUFA, but less MUFA proportions. Although the n-3 PUFA:n-6 PUFA ratio was similar among the treatments in both breast and thigh muscles, n-6 PUFA:n-3 PUFA ratio has been showed to be a significantly lower (P ≤ 0.05 in thigh muscle, with the lowest

  18. Multiple muscular variations including tenuissimus and tensor fasciae suralis muscles in the posterior thigh of a human case.

    Science.gov (United States)

    Arakawa, Takamitsu; Kondo, Takahiro; Tsutsumi, Masahiro; Watanabe, Yuko; Terashima, Toshio; Miki, Akinori

    2017-09-01

    The posterior thigh muscles on the right side of an 81-year-old male cadaver had multiple variations, denoted muscles I-IV. Muscle I originated from the posteromedial surface of the greater trochanter and divided into two muscle bellies. These muscle bellies fused with the long head of the biceps femoris and were innervated by two branches from muscular branches of the semitendinosus and the long head of the biceps. Muscle II separated from the medial surface of the long head of the biceps in the proximal third and fused with the semitendinosus in the distal fourth. Muscle III was a biventer muscle. Its superior belly separated from the medial surface of the long head of the biceps in the distal third. The inferior belly of this muscle fused with the posterior surface of the crural fascia and was innervated by the tibial nerve. Muscle IV separated from the adductor magnus muscle, passed between the long and short heads of the biceps, fused with the inferior belly of muscle III, and was innervated by the muscular branch of the common fibular nerve to the short head of the biceps. Peeling off the epineurium of the muscular branches to the inferior belly of muscle III showed that this nerve fascicle divided from the common trunk with branches to the gastrocnemius and soleus muscles. The inferior bellies of muscle III and muscle IV were thought to be equivalent to the tensor fasciae suralis and tenuissimus muscles, respectively.

  19. Thigh muscle size and vascular function after blood flow-restricted elastic band training in older women

    Science.gov (United States)

    Yasuda, Tomohiro; Fukumura, Kazuya; Tomaru, Takanobu; Nakajima, Toshiaki

    2016-01-01

    We examined the effect of elastic band training with blood flow restriction (BFR) on thigh muscle size and vascular function in older women. Older women were divided into three groups: low-intensity elastic band BFR training (BFR-Tr, n = 10), middleto high-intensity elastic band training (MH-Tr, n = 10), and no training (Ctrl, n = 10) groups. BFR-Tr and MH-Tr groups performed squat and knee extension exercises using elastic band, 2 days/week for 12 weeks. During BFR-Tr exercise session, subjects wore pressure cuffs around the most proximal region of both thighs. The following measurements were taken before (pre) and 3-5 days after (post) the final training session: MRI-measured muscle cross-sectional area (CSA) at mid-thigh, maximum voluntary isometric contraction (MVIC) of knee extension, central systolic blood pressure (c-SBP), central-augmentation index (c-AIx), cardio-ankle vascular index testing (CAVI), ankle-brachial pressure index (ABI). Quadriceps muscle CSA (6.9%) and knee extension MVIC (13.7%) were increased (p muscle CSA as well as maximal muscle strength, but does not decrease vascular function in older women. PMID:27244884

  20. Validity of estimating muscle and fat volume from a single MRI section in older adults with sarcopenia and sarcopenic obesity.

    Science.gov (United States)

    Yang, Y X; Chong, M S; Lim, W S; Tay, L; Yew, S; Yeo, A; Tan, C H

    2017-05-01

    To determine if there is a correlation between the cross-sectional areas (CSAs) in a single section and the volumes of muscles and fat in the thigh of sarcopenic and sarcopenic obesity (SO) populations using magnetic resonance imaging (MRI), and to assess the correlation between thigh MRI data and patient health status, i.e., normal, obese, sarcopenia, and SO. One hundred and ninety community-dwelling older adults were recruited and categorised into four subgroups based on Asian established criteria: normal, obese, sarcopenia, and SO. MRI images were acquired and muscles, subcutaneous fat (SF), and intermuscular fat (IMF) were automatically segmented in the thighs. Volumes of muscles and fat were calculated for the middle third of the thigh, while CSAs were assessed using a single section at 50% femur length. Correlation between CSA and volume were significantly high (pobesity, sarcopenia, and SO (polder adults and correlates closely with the clinical criteria for sarcopenia and SO. This has the potential to greatly reduce costs, scan time, and post-processing time in clinical practice for the prediction of these conditions. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  1. Ablation of advanced tongue cancer and mobile tongue reconstruction by using a sensitive anterolateral thigh and vastus lateralis muscle free flap

    National Research Council Canada - National Science Library

    Tuhar; Zamfirescu, D; Gheorghiță, C; Slăvescu, D; Frunză, A; Lascăr, I

    2015-01-01

    .... The anterior lateral thigh flap sensitive myocutaneous (ALTF) with vastus lateralis muscle was used to reconstruct the oral defect in a patient undergoing total glossectomy with laryngeal preservation for T4 tongue cancer...

  2. Accurate, in vivo NIR measurement of skeletal muscle oxygenation through fat

    Science.gov (United States)

    Jin, Chunguang; Zou, Fengmei; Ellerby, Gwenn E. C.; Scott, Peter; Peshlov, Boyan; Soller, Babs R.

    2010-02-01

    Noninvasive near infrared (NIR) spectroscopic measurement of muscle oxygenation requires the penetration of light through overlying skin and fat layers. We have previously demonstrated a dual-light source design and orthogonalization algorithm that corrects for inference from skin absorption and fat scattering. To achieve accurate muscle oxygen saturation (SmO2) measurement, one must select the appropriate source-detector distance (SD) to completely penetrate the fat layer. Methods: Six healthy subjects were supine for 15min to normalize tissue oxygenation across the body. NIR spectra were collected from the calf, shoulder, lower and upper thigh muscles with long SD distances of 30mm, 35mm, 40mm and 45mm. Spectral preprocessing with the short SD (3mm) spectrum preceded SmO2 calculation with a Taylor series expansion method. Three-way ANOVA was used to compare SmO2 values over varying fat thickness, subjects and SD distances. Results: Overlying fat layers varied in thickness from 4.9mm to 19.6mm across all subjects. SmO2 measured at the four locations were comparable for each subject (p=0.133), regardless of fat thickness and SD distance. SmO2 (mean+/-std dev) measured at calf, shoulder, low and high thigh were 62+/-3%, 59+/-8%, 61+/-2%, 61+/-4% respectively for SD distance of 30mm. In these subjects no significant influence of SD was observed (p=0.948). Conclusions: The results indicate that for our sensor design a 30mm SD is sufficient to penetrate through a 19mm fat layer and that orthogonalization with short SD effectively removed spectral interference from fat to result in a reproducible determination of SmO2.

  3. Spontaneous Thigh Compartment Syndrome

    Directory of Open Access Journals (Sweden)

    Khan, Sameer K

    2011-02-01

    Full Text Available A young man presented with a painful and swollen thigh, without any history of trauma, illness, coagulopathic medication or recent exertional exercise. Preliminary imaging delineated a haematoma in the anterior thigh, without any fractures or muscle trauma. Emergent fasciotomies were performed. No pathology could be identified intra-operatively, or on follow-up imaging. A review of thigh compartment syndromes described in literature is presented in a table. Emergency physicians and traumatologists should be cognisant of spontaneous atraumatic presentations of thigh compartment syndrome, to ensure prompt referral and definitive management of this limb-threatening condition. [West J Emerg Med. 2011;12(1:134-138].

  4. Impact of Weight Loss on Physical Function with Changes in Strength, Muscle Mass, and Muscle Fat Infiltration in Overweight to Moderately Obese Older Adults: A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Adam J. Santanasto

    2011-01-01

    Full Text Available Purpose. Evaluate the effects of weight loss on muscle mass and area, muscle fat infiltration, strength, and their association with physical function. Methods. Thirty-six overweight to moderately obese, sedentary older adults were randomized into either a physical activity plus weight loss (PA+WL or physical activity plus successful aging health education (PA+SA program. Measurements included body composition by dual-energy X-ray absorptiometry, computerized tomography, knee extensor strength, and short physical performance battery (SPPB. Results. At 6 months, PA+WL lost greater thigh fat and muscle area compared to PA+SA. PA+WL lost 12.4% strength; PA+SA lost 1.0%. Muscle fat infiltration decreased significantly in PA+WL and PA+SA. Thigh fat area decreased 6-fold in comparison to lean area in PA+WL. Change in total SPPB score was strongly inversely correlated with change in fat but not with change in lean or strength. Conclusion. Weight loss resulted in additional improvements in function over exercise alone, primarily due to loss of body fat.

  5. Competitive athletic participation, thigh muscle strength, and bone density in elite senior athletes and controls.

    Science.gov (United States)

    McCrory, Jean L; Salacinski, Amanda J; Hunt Sellhorst, Sarah E; Greenspan, Susan L

    2013-11-01

    The relationship between participation in highly competitive exercise, thigh muscle strength, and regional and total body bone mineral density (BMD) in elite senior athletes and healthy elderly controls was investigated. One hundred and four elite senior athletes (age: 72.6 ± 6.4 years, height: 168.7 ± 8.6 cm, mass: 72.6 ± 13.5 kg, 57 male:47 female) and 79 healthy controls (age: 75.4 ± 5.6 years, height: 170.8 ± 25.5 cm, mass: 79.5 ± 11.7 kg, 46 male:33 female) participated in this cross-sectional study. Vitamin D and calcium intake were assessed via a recall survey. Isometric knee extension and flexion peak torque were measured via a custom strength measurement device. Total body and regional BMD of the hip, radius, and spine were assessed with a dual-energy x-ray absorptiometer. For each BMD site assessed, multivariate linear regression analysis was performed in 4 steps (α = 0.10) to examine the contribution of (a) age, sex, bodyweight, and calcium and vitamin D intake; (b) group (elite senior athlete, control); (c) knee extension peak torque; and (d) knee flexion peak torque on BMD. Sex, age, bodyweight, and calcium and vitamin D intake explained a significant amount of variance in BMD in each site. Group was not significant. Knee extension peak torque explained an additional 3.8% of the variance in hip BMD (p = 0.06). Knee flexion peak torque was not correlated to BMD at any of the sites assessed. In conclusion, participation in highly competitive athletics was not related to total body or regional BMD. Age, sex, bodyweight, and vitamin D and calcium intake were significantly related to BMD at all the sites assessed. Quadriceps strength contributed slightly to hip BMD. Our results imply that participation in highly competitive senior athletics does not have a protective effect on BMD, perhaps because of a lower bodyweight or other confounding factors.

  6. Noninvasive quantification of postocclusive reactive hyperemia in mouse thigh muscle by near-infrared diffuse correlation spectroscopy.

    Science.gov (United States)

    Cheng, Ran; Zhang, Xiaoyan; Daugherty, Alan; Shin, Hainsworth; Yu, Guoqiang

    2013-10-20

    Many vasculature-related diseases affecting skeletal muscle function have been studied in mouse models. Noninvasive quantification of muscle blood flow responses during postocclusive reactive hyperemia (PORH) is often used to evaluate vascular function in human skeletal muscles. However, blood flow measurements during PORH in small skeletal muscles of mice are rare due to the lack of appropriate technologies coupled with the challenge of measurement setup resulting from the lack of large enough test sites. In this study, we explored adapting diffuse correlation spectroscopy (DCS) for noninvasive measurement of the relative changes of blood flow (rBF) in mouse thigh muscles during PORH. A small fiber-optic probe was designed and glued on the mouse thigh to reduce the motion artifact induced by the occlusion procedure. Arterial occlusion was created by tying a polyvinyl chloride (PVC) tube around the mouse thigh while the muscle rBF was continuously monitored by DCS to ensure the success of the occlusion. After 5 min, the occlusion was rapidly released by severing the PVC tube using a cautery pen. Typical rBF responses during PORH were observed in all mice (n=7), which are consistent with those observed by arterial-spin-labeled magnetic resonance imaging (ASL-MRI) as reported in the literature. On average, rBF values from DCS during occlusion were lower than 10% (3.1±2.2%) of the baseline values (assigning 100%), indicating the success of arterial occlusion in all mice. Peak values of rBF during PORH measured by the DCS (357.6±36.3%) and ASL-MRI (387.5±150.0%) were also similar whereas the values of time-to-peak (the time duration from the end of occlusion to the peak rBF) were quite different (112.6±35.0  s versus 48.0±27.0  s). Simultaneous measurements by these two techniques are needed to identify the factors that may cause such discrepancy. This study highlights the utility of DCS technology to quantitatively evaluate tissue blood flow responses

  7. "Target" and "Sandwich" Signs in Thigh Muscles have High Diagnostic Values for Collagen Ⅵ-related Myopathies

    Institute of Scientific and Technical Information of China (English)

    Jun Fu; Yi-Ming Zheng; Su-Qin Jin; Jun-Fei Yi; Xiu-Juan Liu; He Lyn; Zhao-Xia Wang

    2016-01-01

    Background:Collagen Ⅵ-related myopathies are autosomal dominant and recessive hereditary myopathies,mainly including Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM).Muscle magnetic resonance imaging (MRI) has been widely used to diagnosis muscular disorders.The purpose of this study was to evaluate the diagnostic value of thigh muscles MRI for collagen Ⅵ-related myopathies.Methods:Eleven patients with collagen Ⅵ gene mutation-related myopathies were enrolled in this study.MRI of the thigh muscles was performed in all patients with collagen Ⅵ gene mutation-related myopathies and in 361 patients with other neuromuscular disorders (disease controls).Tl-weighted images were used to assess fatty infiltration of the muscles using a modified Mercuri's scale.We assessed the sensitivity and specificity of the MRI features of collagen Ⅵ-related myopathies.The relationship between fatty infiltration of muscles and specific collagen Ⅵ gene mutations was also investigated.Results:Eleven patients with collagen Ⅵ gene mutation-related myopathies included six UCMD patients and five BM patients.There was no significant difference between UCMD and BM patients in the fatty infiltration of each thigh muscle except sartorius (P =0.033);therefore,we combined the UCMD and BM data.Mean fatty infiltration scores were 3.1 and 3.0 in adductor magnus and gluteus maximus,while the scores were 1.3,1.3,and 1.5 in gracilis,adductor longus,and sartorius,respectively.A "target" sign in rectus femoris (RF) was present in seven cases,and a "sandwich" sign in vastus lateralis (VL) was present in ten cases.The "target" and "sandwich" signs had sensitivities of 63.6% and 90.9% and specificities of 97.3% and 96.9% for the diagnosis of collagen Ⅵ-related myopathies,respectively.Fatty infiltration scores were 2.0-3.0 in seven patients with mutations in the triple-helical domain,and 1.0-1.5 in three of four patients with mutations in the N-or C-domain of the

  8. The Influence of Different Vegetable Oils on Some ω-3 Polyunsaturated Fatty Acids from Thigh and Abdominal Fat of Broilers

    Directory of Open Access Journals (Sweden)

    Dragoş Sorin Fota

    2011-05-01

    Full Text Available Energy sources, especialy vegetable oils, added to the combined fodder can segnificantly modefy the fatty acids profile of the chicken feed, thus through its control the fatty acids profile of the carcases can be modefied, through enrichment in some fatty acids. In this respect an experiment was coduced on broilers, made up of three experimental groups, fed with a combined base fodder (corn and soybean meal in which 2% of different energy sources were added (sunflower oil, soybean oil, linseed oil. At the end of the 42 days growing period, using gaz cromatography, the fatty acids profile, % of fatty acids in 100 g product (EPA,DPA, DHA, Σ SFA, Σ MUFA, Σ PUFA from the studied cut pieces, were determined. The results obtained after statistc processing and interpretation of the data, showed the fact that regarding the fatty acids profile in chicken thigh and abdominal fat we can observe variations, what denotes that the fatty acids profile can be influenced by dietary factors, the quantity being yet determined by the participation % of the energy sources (vegetable oils, but also by the fatty acids content of the participating raw materials.

  9. Muscle adiposity and body fat distribution in type 1 and type 2 diabetes: varying relationships according to diabetes type.

    Science.gov (United States)

    Dubé, M C; Joanisse, D R; Prud'homme, D; Lemieux, S; Bouchard, C; Pérusse, L; Lavoie, C; Weisnagel, S J

    2006-12-01

    To compare the relationships between markers of total and regional adiposity with muscle fat infiltration in type 1 diabetic and type 2 diabetic subjects and their respective nondiabetic controls, and to document these relationships in type 1 diabetic subjects. Cross-sectional study. In total, 86 healthy, with type 1 diabetes, type 2 diabetes or control subjects. Each diabetic group was matched for age, sex and body mass index with its respective nondiabetic control group. Measures of body composition (hydrodensitometry), fat distribution (waist circumference, abdominal and mid-thigh computed tomography scans) and blood lipid profiles were assessed. Low attenuation mid-thigh muscle surface correlated similarly with markers of adiposity and body composition in all groups, regardless of diabetes status, except for visceral adipose tissue and waist circumference. Indeed, relationships between visceral adiposity and muscle adiposity were significantly stronger in type 2 vs type 1 diabetic subjects (P<0.05 for comparison of slopes). In addition, in well-controlled type 1 diabetic subjects (mean HbA(1c) of 6.8%), daily insulin requirements tended to correlate with low attenuation mid-thigh muscle surface, a specific component of fat-rich muscle (r=0.36, P=0.08), but not with glycemic control (HbA(1c)). This study suggests that the relationship of central adiposity and muscle adiposity is modulated by diabetes status and is stronger in the insulin resistant diabetes type (type 2 diabetes). In well-controlled nonobese type 1 diabetic subjects, the relationship between muscle fat accumulation and insulin sensitivity was also maintained.

  10. Fat Replacement of Paraspinal Muscles with Aging in Healthy Adults

    DEFF Research Database (Denmark)

    Dahlqvist, Julia R; Vissing, Christoffer R; Hedermann, Gitte

    2017-01-01

    with sex, BMI, physical activity and lower back pain. RESULTS: Both paraspinal and leg fat fractions correlated directly with age (p... fat fraction (pphysical activity or lower back pain. CONCLUSION: The paraspinal muscles were more susceptible to age-related changes than leg muscles. Further, men had significantly lower fat fractions in lumbar paraspinal muscles and BMI.......0001). The CSA of the muscles did not correlate with age. Knee extension strength correlated with fat fraction (pSex was associated with lumbar paraspinal fat fraction (p

  11. Automatic Fat Segmentation Method on Thigh MRI%腿部磁共振图像自动分割算法研究

    Institute of Scientific and Technical Information of China (English)

    吴水才; 姜佩杰; 杨春兰; 阮祥燕

    2012-01-01

    提出利用期望最大值分割算法的结果对水平集算法进行改进,实现腿部磁共振图像脂肪和其他组织的自动分割.实验结果表明,该方法能较好地分割出腿部皮下脂肪组织、肌肉间脂肪组织及其他组织.%Fat research of thigh is very valuable in the diagnosis of metabolic syndrome and metabolic dysfunction.However,it is more difficult to segment the subcutaneous fat and intermuscular fat in MRI images because of connected regions.The result of expectation maximization algorithm is used to improve level-set algorithm and realize automatic MRI image segmentation.Results show that the subcutaneous fat tissue,intermuscular fat tissue,and other tissues of thigh can be successfully segmented with the method.

  12. Muscle-skeletal model of the thigh: a tool for understanding the biomechanics of gait in patients with cerebral palsy

    Science.gov (United States)

    Ravera, Emiliano Pablo; Catalfamo Formento, Paola Andrea; José Crespo, Marcos; Andrés Braidot, Ariel

    2011-12-01

    Cerebral Palsy represents the most common cause of physical disability in modern world and within the pediatrics orthopedics units. The gait analysis provides great contributions to the understanding of gait disorders in CP. Giving a more comprehensive treatment plan, including or excluding surgical procedures that can potentially decrease the number of surgical interventions in the life of these patients. Recommendations for orthopedic surgery may be based on a quantitative description of how to alter the properties probably muscle force generation, and how this affects the action of the muscle to determine how these muscles, impaired by disease or surgery, contributing to the movement of the segments of the limb during crouch gait. So the causes and appropriate treatment of gait abnormalities are difficult to determine because the movements generated by the muscular forces of these patients are not clearly understood. A correct determination of the etiology of abnormal patterns of the knee is the key to select the appropriate therapy, presenting a major challenge at present since there is no theoretical basis to determine the biomechanical causes of abnormal gait of these patients. The potential and necessity of using correct biomechanical models that consistently study the abnormalities becomes clear. Reinforcing and correcting a simple gait analysis and eliminating the unknowns when selecting the appropriate treatment is crucial in clinical settings. In this paper a computer muscle-skeletal model is proposed. The model represents a person's thigh simulating the six most representative muscles and joints of the hip and knee. In this way you can have a better understanding of gait abnormalities present in these patients. So the quality of these estimates of individual muscle dynamics facilitate better understanding of the biomechanics of gait pathologies helping to reach better diagnosis prior to surgery and rehabilitation treatments.

  13. Diffusion-Tensor Imaging of Thigh Muscles in Duchenne Muscular Dystrophy: Correlation of Apparent Diffusion Coefficient and Fractional Anisotropy Values With Fatty Infiltration.

    Science.gov (United States)

    Li, Gui Dian; Liang, Ying Yin; Xu, Ping; Ling, Jian; Chen, Ying Ming

    2016-04-01

    The purpose of this study is to investigate the correlation of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values with fatty infiltration in the thigh muscles of patients with Duchenne muscular dystrophy (DMD) using diffusion-tensor imaging (DTI). Twenty-one boys with DMD were recruited. The grade of fatty infiltration and the ADC and FA values of four thigh muscles (rectus femoris, semitendinosus, sartorius, and gracilis) were measured, and the FA and ADC values were compared with the grade of fatty infiltration. Twenty age-matched healthy boys were enrolled as the control group. The differences in the ADC and FA values of the thigh muscles between patients with DMD and the control group were compared. The patients with DMD showed lower FA values and higher ADC values in all measured muscles when compared with the control group. The FA and ADC values were correlated with the grade of fatty infiltration. For the rectus femoris muscle, r = -0.753 and p = 0.007 for FA, and r = 0.685 and p = 0.001 for ADC. For the semitendinosus muscle, r = -0.621 and p = 0.041 for FA, and r = 0.705 and p = 0.021 for ADC. For the sartorius muscle, r = -0.662 and p = 0.027 for FA, and r = 0.701 and p = 0.017 for ADC. For the gracilis muscle, r = -0.618 and p = 0.043 for FA, and r = 0.695 and p = 0.022 for ADC. Damage to the thigh muscles in patients with DMD can be detected by ADC and FA values using DTI. DTI can be used to assess the severity of the disease.

  14. Influence of Anterior Cruciate Ligament Tear on Thigh Muscle Strength and Hamstring-to-Quadriceps Ratio: A Meta-Analysis.

    Science.gov (United States)

    Kim, Hyun-Jung; Lee, Jin-Hyuck; Ahn, Sung-Eun; Park, Min-Ji; Lee, Dae-Hee

    2016-01-01

    Theoretical compensation after anterior cruciate ligament (ACL) tear could cause quadriceps weakness and hamstring activation, preventing anterior tibial subluxation and affecting the expected hamstring-to-quadriceps ratio. Although quadriceps weakness often occurs after ACL tears, it remains unclear whether hamstring strength and hamstring-to-quadriceps ratio increase in ACL deficient knees. This meta-analysis compared the isokinetic muscle strength of quadriceps and hamstring muscles, and the hamstring-to-quadriceps ratio, of the injured and injured limbs of patients with ACL tears. This meta-analysis included all studies comparing isokinetic thigh muscle strengths and hamstring-to-quadriceps ratio in the injured and uninjured legs of patients with ACL tear, without or before surgery. Thirteen studies were included in the meta-analysis. Quadriceps and hamstring strengths were 22.3 N∙m (95% CI: 15.2 to 29.3 N∙m; Pmuscles of patients with ACL tear, with the decrease in quadriceps strength being 3-fold greater. These uneven reductions slightly increase the hamstring-to-quadriceps ratio in ACL deficient knees.

  15. Quantitative ultrasound tissue characterization in shoulder and thigh muscles – a new approach

    DEFF Research Database (Denmark)

    Nielsen, P.K.; Jensen, B.R.; Darvann, Tron Andre

    2006-01-01

    Background: The echogenicity patterns of ultrasound scans contain information of tissue composition in muscles. The aim was: ( 1) to develop a quantitative ultrasound image analysis to characterize tissue composition in terms of intensity and structure of the ultrasound images, and ( 2) to use...... the method for characterization of ultrasound images of the supraspinatus muscle, and the vastus lateralis muscle. Methods: Computerized texture analyses employing first-order and higher-order grey-scale statistics were developed to objectively characterize ultrasound images of m. supraspinatus and m. vastus...... lateralis from 9 healthy participants. Results: The mean grey-scale intensity was higher in the vastus lateralis muscle ( p muscle ( average value of middle measuring site 51.4 compared to 35.0). Furthermore, the number of spatially connected and homogeneous regions ( blobs...

  16. MRI findings, patterns of disease distribution, and muscle fat fraction calculation in five patients with Charcot-Marie-Tooth type 2 F disease

    Energy Technology Data Exchange (ETDEWEB)

    Gaeta, Michele; Mileto, Achille; Minutoli, Fabio; Settineri, Nicola; Donato, Rocco; Ascenti, Giorgio; Blandino, Alfredo [Policlinico ' ' G. Martino' ' , Dipartimento di Scienze Radiologiche, Messina (Italy); Mazzeo, Anna; Di Leo, Rita [Policlinico ' ' G. Martino' ' , Dipartimento di Neuroscienze, Scienze Psichiatriche ed Anestesiologiche, Messina (Italy)

    2012-05-15

    To describe the magnetic resonance imaging (MRI) pattern of muscle involvement and disease progression in five patients with late-onset Charcot-Marie-Tooth (CMT) disease type 2 F, due to a previously unknown mutation. Five patients (three males, two females) underwent MRI of the lower limbs to define the pattern of muscle involvement and evaluate the muscle fat fraction (MFF) of residual thigh muscle with gradient-echo (GRE) dual-echo dual-flip angle technique. Evaluation of fatty infiltration both by visual inspection and MFF calculation was performed. A proximal-to-distal gradient of muscle involvement was depicted in male patients with extensive muscle wasting of lower legs, less severe impairment of distal thigh muscles, and sparing of proximal thigh muscles. A peculiar phenotype finding was that no or only slight muscle abnormalities could be found in the two female patients. We described the pattern of muscle involvement and disease progression in a family with CMT disease type 2 F. GRE dual-echo dual-flip angle MRI technique is a valuable technique to obtain a rapid quantification of MFF. (orig.)

  17. Fat content of hip muscles: an anteroposterior gradient.

    Science.gov (United States)

    Daguet, Edouard; Jolivet, Erwan; Bousson, Valérie; Boutron, Carole; Dahmen, Natacha; Bergot, Catherine; Vicaut, Eric; Laredo, Jean-Denis

    2011-10-19

    Despite the importance of the hip muscles in protecting against hip fracture and in the outcome of hip arthroplasty, the variability in their fat content has not been previously studied. Our objectives were to evaluate the variability in the fat content of the hip muscles in a population without myopathy or a need for hip surgery with the use of computed tomography (CT), to study the relationship between hip muscle fat content and physical performance, and to identify medical conditions and lifestyle habits associated with an increase in hip muscle fat content. Ten normal subjects without a relevant medical history and ninety-nine consecutive nonsurgical patients without myopathy (age, twenty-one to ninety-four years) underwent a nonenhanced CT scan of the pelvis. Patients were asked to perform physical tests (six-meter walk, repeated chair stands, and Trendelenburg test), and their level of physical activity and medical history were recorded. Evaluation of the fat content of the hip muscles was based on the analysis of four reproducible and representative CT slices with use of custom software. The fat content varied among the muscles, with an anteroposterior gradient from the hip flexors (mean, 2%) to the hip extensors (mean, 10%). This gradient increased after fifty years of age. Fat content also varied considerably among patients. Higher fat content was associated with poorer performance on physical tests, even after adjustment for the cross-sectional area of the muscle (p fat content was also associated with greater age, higher body-mass index, and lower physical activity (p fat content of individuals without myopathy or a need for hip surgery should be useful for comparison with future studies of specific populations of patients, such as those with muscle weakness secondary to hip fracture or hip surgery. Simple lifestyle changes such as dietary restriction, increased physical activity, and vitamin D supplementation may decrease muscle fat content and improve

  18. Influence of Anterior Cruciate Ligament Tear on Thigh Muscle Strength and Hamstring-to-Quadriceps Ratio: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Hyun-Jung Kim

    Full Text Available Theoretical compensation after anterior cruciate ligament (ACL tear could cause quadriceps weakness and hamstring activation, preventing anterior tibial subluxation and affecting the expected hamstring-to-quadriceps ratio. Although quadriceps weakness often occurs after ACL tears, it remains unclear whether hamstring strength and hamstring-to-quadriceps ratio increase in ACL deficient knees. This meta-analysis compared the isokinetic muscle strength of quadriceps and hamstring muscles, and the hamstring-to-quadriceps ratio, of the injured and injured limbs of patients with ACL tears. This meta-analysis included all studies comparing isokinetic thigh muscle strengths and hamstring-to-quadriceps ratio in the injured and uninjured legs of patients with ACL tear, without or before surgery. Thirteen studies were included in the meta-analysis. Quadriceps and hamstring strengths were 22.3 N∙m (95% CI: 15.2 to 29.3 N∙m; P<0.001 and 7.4 N∙m (95% CI: 4.3 to 10.5 N∙m; P<0.001 lower, respectively, on the injured than on the uninjured side. The mean hamstring-to-quadriceps ratio was 4% greater in ACL deficient than in uninjured limbs (95% CI: 1.7% to 6.3%; P<0.001. Conclusively, Decreases were observed in both the quadriceps and hamstring muscles of patients with ACL tear, with the decrease in quadriceps strength being 3-fold greater. These uneven reductions slightly increase the hamstring-to-quadriceps ratio in ACL deficient knees.

  19. Quantifying fat and lean muscle in the lower legs of women with knee osteoarthritis using two different MRI systems.

    Science.gov (United States)

    Beattie, Karen; Davison, Michael J; Noseworthy, Michael; Adachi, Jonathan D; Maly, Monica R

    2016-06-01

    Decreased muscle mass and increased fat mass are commonly seen in the thighs of individuals with knee osteoarthritis (OA). Despite the role of calf muscles in activities of daily living and knee mechanics, little work has investigated calf changes in knee OA. Unlike the thigh, muscle and fat in the lower leg can be imaged using a peripheral magnetic resonance imaging (MRI) scanner. We aimed to assess agreement between subcutaneous fat, intermuscular fat (IMF), intramuscular fat (intraMF), and lean muscle volumes acquired using a peripheral 1.0T as compared to a reference whole-body 3.0T MRI scanner. A calf MRI scan from each scanner was acquired from twenty women >55 years with knee OA. The different tissues were segmented on each of ten axial slices for every participant using SliceOmatic 5.0 (Tomovision, Magog, QC). Tissue volumes were determined for each outcome. Agreement between tissue volumes from the two scanners was assessed using intraclass correlation (ICC(2,1)) coefficients, standard error, and Bland-Altman plots. Agreement between tissue volumes was strong to very strong, with ICCs ranging from 0.842 to 0.991 for all outcomes. However, wide confidence intervals for IMF and intraMF suggest there is less confidence in agreement with segmentation of images from the 1.0T scanner generally underestimating fat volume relative to the 3.0T scanner. The 3.0T's superior between-tissue contrast likely resulted in more accurate segmentation of IMF and intraMF compared to the 1.0T scanner. Comparisons of tissue volume between studies using different scanners/sequences should be interpreted cautiously.

  20. Analysis of thigh muscle stiffness from childhood to adulthood using magnetic resonance elastography (MRE) technique.

    Science.gov (United States)

    Debernard, Laëtitia; Robert, Ludovic; Charleux, Fabrice; Bensamoun, Sabine F

    2011-10-01

    Magnetic resonance elastography has been performed in healthy and pathological muscles in order to provide clinicians with quantitative muscle stiffness data. However, there is a lack of data on pediatric muscle. Therefore, the present work studies age-related changes of the mechanical properties. 26 healthy subjects composed of 7 children (8-12 years), 9 young adults (24-29 years) and 10 middle-aged adults (53-58 years) underwent a magnetic resonance elastography test. Shear modulus (μ) and its spatial distribution, as well as the attenuation coefficient (α) were measured on the vastus medialis muscle at rest and at contracted conditions (10% and 20% of the maximum voluntary contraction) for each group. The shear modulus linearly increases with the degree of contraction for young adults while it is maximum at 10% of the maximum voluntary contraction for children (μ_(children_10%)=14.9kPa (SD 2.18)) and middle-aged adults (μ_(middle-aged_10%)=10.42kPa (SD 1.38)). Mapping of shear modulus revealed a diffuse distribution of colors reflecting differences in muscle physiological activity as a function of age. The attenuation coefficient showed a similar behavior for all groups, i.e. a decrease from the relaxed to the contracted states. This study demonstrates that the magnetic resonance elastography technique is sensitive enough to detect changes in muscle mechanical properties for children, middle-aged and young adults and could provide clinicians with a muscle reference data base as a function of age, improving the diagnosis of muscular dystrophy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Influence of muscle fiber type composition on early fat accumulation under high-fat diet challenge.

    Science.gov (United States)

    Hua, Ning; Takahashi, Hirokazu; Yee, Grace M; Kitajima, Yoichiro; Katagiri, Sayaka; Kojima, Motoyasu; Anzai, Keizo; Eguchi, Yuichiro; Hamilton, James A

    2017-01-01

    To investigate whether differences in muscle fiber types affect early-stage fat accumulation, under high fat diet challenge in mice. Twelve healthy male C57BL/6 mice experienced with short-term (6 weeks) diet treatment for the evaluation of early pattern changes in muscular fat. The mice were randomly divided into two groups: high fat diet (n = 8) and normal control diet (n = 4). Extra- and intra-myocellular lipid (EMCL and IMCL) in lumbar muscles (type I fiber predominant) and tibialis anterior (TA) muscle (type II fiber predominant) were determined using magnetic resonance spectroscopy (MRS). Correlation of EMCL, IMCL and their ratio between TA and lumbar muscles was evaluated. EMCL increased greatly in both muscle types after high fat diet. IMCL in TA and lumbar muscles increased to a much lower extent, with a slightly greater increase in TA muscles. EMCLs in the 2 muscles were positively correlated (r = 0.84, p = 0.01), but IMCLs showed a negative relationship (r = -0.84, p = 0.01). In lumbar muscles, high fat diet significantly decreased type I fiber while it increased type II fiber (all p≤0.001). In TA muscle, there was no significant fiber type shifting (p>0.05). Under short-time high fat diet challenge, lipid tends to initially accumulate extra-cellularly. In addition, compared to type II dominant muscle, Type I dominant muscle was less susceptible to IMCL accumulation but more to fiber type shifting. These phenomena might reflect compensative responses of skeletal muscle to dietary lipid overload in order to regulate metabolic homeostasis.

  2. Subcutaneous fat accumulation in early infancy is more strongly associated with motor development and delay than muscle growth.

    Science.gov (United States)

    Kanazawa, H; Kawai, M; Niwa, F; Hasegawa, T; Iwanaga, K; Ohata, K; Tamaki, A; Heike, T

    2014-06-01

    Physical growth in neurologically healthy preterm infants affects motor development. This study investigated the separate relationships between muscle and fat in infancy and later motor development and physical growth. Muscle thickness and subcutaneous fat thickness of the anterior thigh were measured using ultrasound images obtained from neurologically healthy preterm infants at birth, 3, 6, 12 and 18 months' corrected age. We also obtained the Pediatric Evaluation of Disability Inventory and Alberta Infant Motor Scale scores at 18 months' corrected age to assess motor ability and motor delay. Thirty preterm infants completed the study protocol. There was a significant positive correlation between motor ability and increments in subcutaneous fat thickness during the first 3 and 6 months' corrected age (r = 0.48 and 0.40, p muscle thickness growth in any of the periods. A secondary, logistic regression analysis showed that increments in subcutaneous fat thickness during the first 3 months were a protective factor for motor delay. Subcutaneous fat accumulation in early infancy is more strongly associated with motor development and delay than muscle growth. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  3. Influence of exercise loading on magnetic resonance image texture of thigh soft tissues.

    Science.gov (United States)

    Sikiö, Minna; Harrison, Lara C V; Nikander, Riku; Ryymin, Pertti; Dastidar, Prasun; Eskola, Hannu J; Sievänen, Harri

    2014-09-01

    Adaptation to exercise training can affect bone marrow adiposity; muscle-fat distribution; and muscle volume, strength and architecture. The objective of this study was to identify exercise-load-associated differences in magnetic resonance image textures of thigh soft tissues between various athlete groups and non-athletes. Ninety female athletes representing five differently loading sport types (high impact, odd impact, high magnitude, repetitive low impact and repetitive non-impact), and 20 non-athletic clinically healthy female controls underwent magnetic resonance imaging. Five thigh muscles, subcutaneous fat and femoral bone marrow were analysed with co-occurrence matrix-based quantitative texture analysis at two anatomical levels of the dominant leg. Compared with the controls thigh muscle textures differed especially in high-impact and odd-impact exercise-loading groups. However, all sports appeared to modulate muscle textures to some extent. Fat tissue was found different among the low-impact group, and bone marrow was different in the high-impact group when compared to the controls. Exercise loading was associated with textural variation in magnetic resonance images of thigh soft tissues. Texture analysis proved a potential method for detecting apparent structural differences in the muscle, fat and bone marrow.

  4. Evaluation of enzymatically treated Artemisia annua L. on growth performance, meat quality, and oxidative stability of breast and thigh muscles in broilers.

    Science.gov (United States)

    Wan, X L; Song, Z H; Niu, Y; Cheng, K; Zhang, J F; Ahmad, H; Zhang, L L; Wang, T

    2017-04-01

    An experiment was conducted to evaluate the effects of including enzymatically treated Artemisia annua L. (EA) in broiler diets on growth performance, meat quality, and oxidative stability of breast and thigh muscles. A total of 256 one-d-old Arbor Acres broiler chicks were randomly allotted into four groups with eight replicates of eight birds each. Broilers in the four groups were offered basal diet supplemented with 0.0, 0.5, 1.0, and 1.5 g/kg EA during the 42-d experiment, respectively. The ADG, ADFI, and feed/gain ratio (F:G) were measured at 42 d of age. Breast and thigh muscle samples from eight birds per treatment were obtained at 42 d to determine meat quality, free radical scavenging activity, and lipid peroxidation. All treatment groups had similar ADG, ADFI, and F:G during the 42 d experiment (P > 0.05). Drip loss at 24 h and shearing force of breast muscle were linearly (P muscle followed the same fashion. The supplementation of EA quadratically increased 2, 2-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) (P = 0.004) and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) (P = 0.035) free radical scavenging activities in breast muscle, and linearly (P muscle. Increasing levels of EA linearly (P muscle samples during 15 d of storage at 4°C. The results indicated that EA supplementation improved meat quality and oxidative stability of breast and thigh muscles in broilers. The inclusion level of 1.0 g/kg EA in broiler diet was recommended. © 2016 Poultry Science Association Inc.

  5. Aflatoxin B1 residues in imported and local broiler, s breast and thigh muscle in Kurdistan region

    Directory of Open Access Journals (Sweden)

    E.P. Candlan

    2015-06-01

    Full Text Available Residues of Aflatoxins and their metabolites might be present in meat and other products of animals receiving Aflatoxin contaminated feeds which could subsequently create health problems in man. Eighty nine imported (Iran/Khosh pokht; (Turkey/Yam-tapilic, Lades, Senplic, Kapidac, Kozoa, Oznesilpilic and (Brazil, hilal, Sadia, and 90 locally produced (Hoshiar poultry farm, Nihad poultry farm, Hokar poultry farm, Mansoor poultry farm, AL-Shimal poultry house, Mardin poultry house and AL-Eetimad poultry slaughterhouse broiler breast and thigh muscle samples were examined for residual Aflatoxin B1 using ELIZA test. Results revealed that out of 89 imported samples only 21 (23.59% were positive, but only 2 (2.24% were rejected, while the remaining 87 samples (97.75% were acceptable. Concerning the local samples, results showed that 19 samples (21.11% were positive, but 10 (11.11% were rejected, while the remaining 80 samples (88.88% were accepted. The public health importance of residual AFB1 in broiler meat samples was discussed.

  6. Haemodynamic responses to exercise, ATP infusion and thigh compression in humans: insight into the role of muscle mechanisms on cardiovascular function

    DEFF Research Database (Denmark)

    Gonzalez-Alonso, J.; Mortensen, S.P.; Jeppesen, Tina Dysgaard

    2008-01-01

    The muscle pump and muscle vasodilatory mechanism are thought to play important roles in increasing and maintaining muscle perfusion and cardiac output ((.)Q) during exercise, but their actual contributions remain uncertain. To evaluate the role of the skeletal muscle pump and vasodilatation...... thigh compressions at rest and during passive and voluntary exercise (n=7). Incremental exercise resulted in progressive increases in leg blood flow (DeltaLBF 7.4 +/- 0.7 l min(-1)), cardiac output (Delta (.)Q 8.7 +/- 0.7 l min(-1)), mean arterial pressure (DeltaMAP 51 +/- 5 mmHg), and leg and systemic.......Further, its contribution to muscle and systemic peak exercise hyperaemia appears to be minimal in comparison to the effects of muscle vasodilatation Udgivelsesdato: 2008/5/1...

  7. Kinesiology Tape or Compression Sleeve Applied to the Thigh Does Not Improve Balance or Muscle Activation Before or Following Fatigue.

    Science.gov (United States)

    Cavanaugh, M Tyler; Quigley, Patrick J; Hodgson, Daniel D; Reid, Jonathan C; Behm, David G

    2016-07-01

    Cavanaugh, MT, Quigley, PJ, Hodgson, DD, Reid, JC, and Behm, DG. Kinesiology tape or compression sleeve applied to the thigh does not improve balance or muscle activation before or following fatigue. J Strength Cond Res 30(7): 1992-2000, 2016-Compression sleeves (CS) and kinesiology tape (KT) are purported to enhance proprioception, however, there is substantial conflict in the literature. Because the beneficial effects of CS and KT are more evident in the literature with recovery, the objective of this study was to examine the effects of CS and KT on balance under acute nonfatigued and postfatigued conditions. Using a within-subject, repeated-measures design, 12 university participants (5 females and 7 males) performed in a random order CS, KT, and Control conditions. Two trials of each test were conducted before the application of CS or KT (pretest 1), immediately after the application (pretest 2), with posttests at 1 and 10 minutes after 4 sets of unilateral Bulgarian squats to failure (1 minute rest between sets). Tests included a Y balance test (measures: distance reached by nondominant foot in anterior, posterior lateral, and posterior medial directions) and drop jump landing balance test from a 50-cm platform (measures: ground reaction force, electromyography, and center of pressure). The fatigue protocol induced 25.3% decrease in unilateral squat repetitions from set 1 to set 4. There were no significant condition main effects or interactions for any balance measure or EMG before or after fatigue. In conclusion, independent of fatigue, there was no significant effect of CS or KT on balance outcomes immediately and up to 10 minutes following the fatiguing intervention. Thus, nonfatigued or muscles weakened by fatigue did not benefit from CS and KT application.

  8. Effect of supplemental fermented Ginkgo biloba leaves at different levels on growth performance, meat quality, and antioxidant status of breast and thigh muscles in broiler chickens.

    Science.gov (United States)

    Niu, Y; Wan, X L; Zhang, X H; Zhao, L G; He, J T; Zhang, J F; Zhang, L L; Wang, T

    2017-04-01

    The present study was conducted to investigate the influence of dietary supplementation with different levels of fermented Ginkgo biloba leaves (FGBL) on growth performance, slaughter performance, meat quality, antioxidant enzyme capacity, and free radical scavenging activities of muscles in broiler chickens. A total of 648 one-d-old broiler chickens were randomly allocated into six dietary treatments, including control group (CON group: basal diet), FGBL1, FGBL2, FGBL3, FGBL4, and FGBL5 groups (basal diet containing 1.5, 2.5, 3.5, 4.5, and 5.5 g/kg FGBL, respectively). Body weight gain and feed intake were recorded at 1, 21, and 42 d. At 42 d, 2 birds from each replicate were slaughtered. The results indicated that 3.5 g/kg FGBL diet significantly increased (P muscle, cooking loss in thigh muscle and lower 24 h and 48 h drip loss in both breast and thigh muscles than those of other groups. Furthermore, birds in the FGBL3 and FGBL4 groups increased (P muscles, and the scavenging activities of 2,2΄-azino-bis (3-ethylbenzothiazoline-6-sulfonic) acid radical, OH•, and O2•- in thigh muscle, decreased (P muscle, as compared to the CON group. In conclusion, FGBL had the potential to improve the growth performance, meat quality and antioxidant status of broiler chickens. The optimal dose in the present study of FGBL in broiler diets was from 3.5 to 4.5 g/kg. © 2016 Poultry Science Association Inc.

  9. Type and intensity of activity and risk of mobility limitation: the mediating role of muscle parameters

    NARCIS (Netherlands)

    Visser, M.; Simonsick, E.M.; Colbert, L.H.; Brach, J.S.; Rubin, S.M.; Kritchevsky, S.B.; Newman, A.B.; Harris, T.B.

    2005-01-01

    2,719 kcal/wk of total physical activity). The study outcome, incident mobility limitation, was defined as two consecutive, semiannual self-reports of any difficulty walking one quarter of a mile or climbing 10 steps. Thigh muscle area, thigh muscle attenuation (a marker of fat infiltration in muscl

  10. Quantitative Assessment of Fat Infiltration in the Rotator Cuff Muscles using water-fat MRI

    Science.gov (United States)

    Nardo, Lorenzo; Karampinos, Dimitrios C.; Lansdown, Drew A.; Carballido-Gamio, Julio; Lee, Sonia; Maroldi, Roberto; Ma, C. Benjamin; Link, Thomas M.; Krug, Roland

    2013-01-01

    Purpose To evaluate a chemical shift-based fat quantification technique in the rotator cuff muscles in comparison with the semi-quantitative Goutallier fat infiltration classification (GC) and to assess their relationship with clinical parameters. Materials and Methods The shoulders of 57 patients were imaged using a 3T MR scanner. The rotator cuff muscles were assessed for fat infiltration using GC by two radiologists and an orthopedic surgeon. Sequences included oblique-sagittal T1-, T2- and proton density-weighted fast spin echo, and six-echo gradient echo. The iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) was used to measure fat fraction. Pain and range of motion of the shoulder were recorded. Results Fat fraction values were significantly correlated with GC grades (p0.9) showing consistent increase with GC grades (grade=0, 0%–5.59%; grade=1, 1.1%–9.70%; grade=2, 6.44%–14.86%; grade=3, 15.25%–17.77%; grade=4, 19.85%–29.63%). A significant correlation between fat infiltration of the subscapularis muscle quantified with IDEAL versus a) deficit in internal rotation (Spearman Rank Correlation Coefficient=0.39, 95% CI 0.13–0.60, pquantitative fat infiltration measures of the supraspinatus muscle were significantly correlated with a deficit in abduction (Spearman Rank Correlation Coefficient=0.45, 95% CI 0.20–0.60, p<0.01). Conclusion We concluded that an accurate and highly reproducible fat quantification in the rotator cuff muscles using water-fat MRI techniques is possible and significantly correlates with shoulder pain and range of motion. PMID:24115490

  11. Quantitative assessment of fat infiltration in the rotator cuff muscles using water-fat MRI.

    Science.gov (United States)

    Nardo, Lorenzo; Karampinos, Dimitrios C; Lansdown, Drew A; Carballido-Gamio, Julio; Lee, Sonia; Maroldi, Roberto; Ma, C Benjamin; Link, Thomas M; Krug, Roland

    2014-05-01

    To evaluate a chemical shift-based fat quantification technique in the rotator cuff muscles in comparison with the semiquantitative Goutallier fat infiltration classification (GC) and to assess their relationship with clinical parameters. The shoulders of 57 patients were imaged using a 3T MR scanner. The rotator cuff muscles were assessed for fat infiltration using GC by two radiologists and an orthopedic surgeon. Sequences included oblique-sagittal T1-, T2-, and proton density-weighted fast spin echo, and six-echo gradient echo. The iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) was used to measure fat fraction. Pain and range of motion of the shoulder were recorded. Fat fraction values were significantly correlated with GC grades (P 0.9) showing consistent increase with GC grades (grade = 0, 0%-5.59%; grade = 1, 1.1%-9.70%; grade = 2, 6.44%-14.86%; grade = 3, 15.25%-17.77%; grade = 4, 19.85%-29.63%). A significant correlation between fat infiltration of the subscapularis muscle quantified with IDEAL versus 1) deficit in internal rotation (Spearman Rank Correlation Coefficient [SRC] = 0.39, 95% confidence interval [CI] 0.13-0.60, P fat infiltration measures of the supraspinatus muscle were significantly correlated with a deficit in abduction (SRC coefficient = 0.45, 95% CI 0.20-0.60, P fat quantification in the rotator cuff muscles using water-fat magnetic resonance imaging (MRI) techniques is possible and significantly correlates with shoulder pain and range of motion. Copyright © 2013 Wiley Periodicals, Inc.

  12. AMPK Subunit Expression Regulates Intramuscular Fat Content and Muscle Fiber Type in Chickens

    Institute of Scientific and Technical Information of China (English)

    Ye YANG; Jiao SONG; Ruiqi FU; Yanfa SUN; Jie WEN

    2015-01-01

    The objective of this study was to assess the role of AMPK in intramus-cular fat (IMF) and fiber type in chicken muscle. The chickens were slaughtered and their muscles were col ected at the ages of 4, 8, and 16 weeks so as to de-termine the IMF contents, as wel as the expression levels of AMPK subunits, regu-lators of adipogenesis. In addition, the myosin heavy chains (MyHCs) in thigh mus-cle tissues were also measured. The results showed that the IMF contents in 16-week old chickens were higher than those in 4 and 8-week-old chickens (P<0.05). The expression levels of fatty acid synthase (FAS) and fatty aicd translocase CD36 (FAT/CD36) mRNA were increased significantly in samples col ected at the ages of 4 and 16 weeks (P<0.05). The expression levels of MyHC IIa and IIb differed sig-nificantly among al the developmental stages (P<0.05). The AMPKα2, AMPKγ1, and AMPKγ3 mRNA levels were dramatical y decreased with the increase of age (P<0.05). To examine the role of AMPK in adipogenesis regulation, the SV cel s were cultured in an adipogenesis medium and treated with AICAR and Compound C respectively, the specific activator and inhibit of AMPK. The Compound C induced dramatical y a greater expression of C/EBPβ, SREBP1 and PPARγ (P<0.05). In conclusion, the expression of AMPKα2, AMPKγ1, and AMPKγ3 mRNA is signifi-cantly correlated with the adipogenesis in skeletal muscle of chickens.

  13. Myostatin--the holy grail for muscle, bone, and fat?

    Science.gov (United States)

    Buehring, B; Binkley, N

    2013-12-01

    Myostatin, a member of the transforming growth factor beta (TGF-β) superfamily, was first described in 1997. Since then, myostatin has gained growing attention because of the discovery that myostatin inhibition leads to muscle mass accrual. Myostatin not only plays a key role in muscle homeostasis, but also affects fat and bone. This review will focus on the impact of myostatin and its inhibition on muscle mass/function, adipose tissue and bone density/geometry in humans. Although existing data are sparse, myostatin inhibition leads to increased lean mass and 1 study found a decrease in fat mass and increase in bone formation. In addition, myostatin levels are increased in sarcopenia, cachexia and bed rest whereas they are increased after resistance training, suggesting physiological regulatory of myostatin. Increased myostatin levels have also been found in obesity and levels decrease after weight loss from caloric restriction. Knowledge on the relationship of myostatin with bone is largely based on animal data where elevated myostatin levels lead to decreased BMD and myostatin inhibition improved BMD. In summary, myostatin appears to be a key factor in the integrated physiology of muscle, fat, and bone. It is unclear whether myostatin directly affects fat and bone, or indirectly via muscle. Whether via direct or indirect effects, myostatin inhibition appears to increase muscle and bone mass and decrease fat tissue-a combination that truly appears to be a holy grail. However, at this time, human data for both efficacy and safety are extremely limited. Moreover, whether increased muscle mass also leads to improved function remains to be determined. Ultimately potential beneficial effects of myostatin inhibition will need to be determined based on hard outcomes such as falls and fractures.

  14. Mid-thigh cortical bone structural parameters, muscle mass and strength, and association with lower limb fractures in older men and women (AGES-Reykjavik Study).

    Science.gov (United States)

    Johannesdottir, Fjola; Aspelund, Thor; Siggeirsdottir, Kristin; Jonsson, Brynjolfur Y; Mogensen, Brynjolfur; Sigurdsson, Sigurdur; Harris, Tamara B; Gudnason, Vilmundur G; Lang, Thomas F; Sigurdsson, Gunnar

    2012-05-01

    In a cross-sectional study we investigated the relationship between muscle and bone parameters in the mid-thigh in older people using data from a single axial computed tomographic section through the mid-thigh. Additionally, we studied the association of these variables with incident low-trauma lower limb fractures. A total of 3,762 older individuals (1,838 men and 1,924 women), aged 66-96 years, participants in the AGES-Reykjavik study, were studied. The total cross-sectional muscular area and knee extensor strength declined with age similarly in both sexes. Muscle parameters correlated most strongly with cortical area and total shaft area (adjusted for age, height, and weight) but explained lower limb fractures. Small muscular area, low knee extensor strength, large MA, low cortical thickness, and high BR were significantly associated with fractures in both sexes. Our results show that bone and muscle loss proceed at different rates and with different gender patterns.

  15. Haemodynamic responses to exercise, ATP infusion and thigh compression in humans: insight into the role of muscle mechanisms on cardiovascular function.

    Science.gov (United States)

    González-Alonso, José; Mortensen, Stefan P; Jeppesen, Tina D; Ali, Leena; Barker, Horace; Damsgaard, Rasmus; Secher, Niels H; Dawson, Ellen A; Dufour, Stéphane P

    2008-05-01

    The muscle pump and muscle vasodilatory mechanism are thought to play important roles in increasing and maintaining muscle perfusion and cardiac output ((.)Q) during exercise, but their actual contributions remain uncertain. To evaluate the role of the skeletal muscle pump and vasodilatation on cardiovascular function during exercise, we determined leg and systemic haemodynamic responses in healthy men during (1) incremental one-legged knee-extensor exercise, (2) step-wise femoral artery ATP infusion at rest, (3) passive exercise (n=10), (4)femoral vein or artery ATP infusion (n=6), and (5) cyclic thigh compressions at rest and during passive and voluntary exercise (n=7). Incremental exercise resulted in progressive increases in leg blood flow (DeltaLBF 7.4 +/- 0.7 l min(-1)), cardiac output (Delta (.)Q 8.7 +/- 0.7 l min(-1)), mean arterial pressure (DeltaMAP 51 +/- 5 mmHg), and leg and systemic oxygen delivery and (.)VO2 . Arterial ATP infusion resulted in similar increases in (.)Q , LBF, and systemic and leg oxygen delivery, but central venous pressure and muscle metabolism remained unchanged and MAP was reduced. In contrast,femoral vein ATP infusion did not alter LBF, (.)Q or MAP. Passive exercise also increased blood flow (DeltaLBF 0.7 +/- 0.1 l min(-1)), yet the increase in muscle and systemic perfusion, unrelated to elevations in aerobic metabolism, accounted only for approximately 5% of peak exercise hyperaemia.Likewise, thigh compressions alone or in combination with passive exercise increased blood flow (DeltaLBF 0.5-0.7 l min(-1)) without altering (.)Q, MAP or (.)VO2. These findings suggest that the skeletal muscle pump is not obligatory for sustaining venous return, central venous pressure,stroke volume and (.)Q or maintaining muscle blood flow during one-legged exercise in humans.Further, its contribution to muscle and systemic peak exercise hyperaemia appears to be minimal in comparison to the effects of muscle vasodilatation.

  16. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ∼40 and ∼1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed...... in systemic lipolysis. Adipose tissue lipolysis and fatty acid kinetics were unchanged with rhIL-6 compared with saline infusion. Conversely, rhIL-6 infusion caused an increase in skeletal muscle unidirectional fatty acid and glycerol release, indicative of an increase in lipolysis. The increased lipolysis...... in muscle could account for the systemic changes. Skeletal muscle signaling increased after 1 h of rhIL-6 infusion, indicated by a fourfold increase in the phosphorylated signal transducer and activator of transcription (STAT) 3-to-STAT3 ratio, whereas no changes in phosphorylated AMP-activated protein...

  17. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ~40 and ~1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed...... in systemic lipolysis. Adipose tissue lipolysis and fatty acid kinetics were unchanged with rhIL-6 compared with saline infusion. Conversely, rhIL-6 infusion caused an increase in skeletal muscle unidirectional fatty acid and glycerol release, indicative of an increase in lipolysis. The increased lipolysis...... in muscle could account for the systemic changes. Skeletal muscle signaling increased after 1 h of rhIL-6 infusion, indicated by a fourfold increase in the phosphorylated signal transducer and activator of transcription (STAT) 3-to-STAT3 ratio, whereas no changes in phosphorylated AMP-activated protein...

  18. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    Interleukin (IL)-6 is chronically elevated in type 2 diabetes but also during exercise. However, the exact metabolic role, and hence the physiological significance, has not been elucidated. The objective of this study was to investigate the in vivo effect of recombinant human (rh) IL-6 on human fat...... and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ~40 and ~1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed...... in systemic lipolysis. Adipose tissue lipolysis and fatty acid kinetics were unchanged with rhIL-6 compared with saline infusion. Conversely, rhIL-6 infusion caused an increase in skeletal muscle unidirectional fatty acid and glycerol release, indicative of an increase in lipolysis. The increased lipolysis...

  19. Acute Effects of Constant-Angle and Constant-Torque Static Stretching on Passive Stiffness of the Posterior Hip and Thigh Muscles in Healthy, Young and Old Men.

    Science.gov (United States)

    Palmer, Ty B

    2017-07-24

    The purpose of this study was to examine the acute effects of constant-angle (CA) and constant-torque (CT) static stretching on passive stiffness of the posterior hip and thigh muscles in healthy, young and old men. Fifteen young (25±3 years) and 15 old (71±4 years) men underwent 2 passive straight-leg raise (SLR) assessments before and after 8 min of CA and CT stretching using an isokinetic dynamometer. Passive stiffness was calculated during each SLR as the slope of the final 10% of the angle-torque curve. The results indicated that passive stiffness decreased from pre- to post-stretching for both treatments (P≤0.001-0.002) and age groups (P≤0.001-0.046); however, greater decreases were observed for the CT than the CA stretching (P=0.045) and for the old than the young men (Pstretching. These findings suggest that holding stretches at a constant tension may be a more effective strategy for altering passive stiffness of the posterior hip and thigh muscles. The greater stretch-induced stiffness decreases observed for the older men provide support that acute static stretching may be particularly effective for reducing stiffness in the elderly. As a result, it may be advantageous to prescribe static stretching prior to exercise for older adults, as this may be used to elicit substantial declines in passive stiffness, which could help reduce the risk of subsequent injury events in this population.

  20. Skeletal muscle fat metabolism after exercise in humans: influence of fat availability.

    Science.gov (United States)

    Kimber, Nicholas E; Cameron-Smith, David; McGee, Sean L; Hargreaves, Mark

    2013-06-01

    The mechanisms facilitating increased skeletal muscle fat oxidation following prolonged, strenuous exercise remain poorly defined. The aim of this study was to examine the influence of plasma free fatty acid (FFA) availability on intramuscular malonyl-CoA concentration and the regulation of whole-body fat metabolism during a 6-h postexercise recovery period. Eight endurance-trained men performed three trials, consisting of 1.5 h high-intensity and exhaustive exercise, followed by infusion of saline, saline + nicotinic acid (NA; low FFA), or Intralipid and heparin [high FFA (HFA)]. Muscle biopsies were obtained at the end of exercise (0 h) and at 3 and 6 h in recovery. Ingestion of NA suppressed the postexercise plasma FFA concentration throughout recovery (P increase in whole-body fat oxidation during the 6-h period for HFA (52.2 ± 4.8 g) relative to NA (38.4 ± 3.1 g; P muscle malonyl-CoA and acetyl-CoA carboxylase (ACC)β phosphorylation, suggesting mechanisms other than phosphorylation-mediated changes in ACC activity may have a role in regulating fat metabolism in human skeletal muscle during postexercise recovery. Despite marked changes in plasma FFA availability, no significant changes in intramuscular triglyceride concentrations were detected. These data suggest that the regulation of postexercise skeletal muscle fat oxidation in humans involves factors other than the 5'AMP-activated protein kinase-ACCβ-malonyl-CoA signaling pathway, although malonyl-CoA-mediated regulation cannot be excluded completely in the acute recovery period.

  1. Impaired mitochondrial fat oxidation induces adaptive remodeling of muscle metabolism.

    Science.gov (United States)

    Wicks, Shawna E; Vandanmagsar, Bolormaa; Haynie, Kimberly R; Fuller, Scott E; Warfel, Jaycob D; Stephens, Jacqueline M; Wang, Miao; Han, Xianlin; Zhang, Jingying; Noland, Robert C; Mynatt, Randall L

    2015-06-23

    The correlations between intramyocellular lipid (IMCL), decreased fatty acid oxidation (FAO), and insulin resistance have led to the hypothesis that impaired FAO causes accumulation of lipotoxic intermediates that inhibit muscle insulin signaling. Using a skeletal muscle-specific carnitine palmitoyltransferase-1 KO model, we show that prolonged and severe mitochondrial FAO inhibition results in increased carbohydrate utilization, along with reduced physical activity; increased circulating nonesterified fatty acids; and increased IMCLs, diacylglycerols, and ceramides. Perhaps more importantly, inhibition of mitochondrial FAO also initiates a local, adaptive response in muscle that invokes mitochondrial biogenesis, compensatory peroxisomal fat oxidation, and amino acid catabolism. Loss of its major fuel source (lipid) induces an energy deprivation response in muscle coordinated by signaling through AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) to maintain energy supply for locomotion and survival. At the whole-body level, these adaptations result in resistance to obesity.

  2. Repair of a soft tissue defect of medial malleolus with cross-leg bridge free transfer of anterolateral thigh muscle flap: a case report

    Directory of Open Access Journals (Sweden)

    ZHANG Gong-lin

    2012-11-01

    Full Text Available 【Abstract】A 38-year-old man sustained a traffic accident injury to his right medial malleolus and leg. It was an open fracture of the right tibia and fibula accompanied by a large soft tissue defect of the right medial malleolus sized 12 cm×4 cm. Doppler examination revealed that the tibialis posterior vessel was occluded due to thrombosis. The anterior tibial artery was patent. Three weeks after injury, the left anterolateral thigh muscle flap was harvested and transplanted to the right medial malleolus defect area for repair of the soft tissue defect, and an end-to-side anasto-mosis was performed between the posterior tibial vessel of the contralateral leg and the muscle flap’s vascular pedicle. A split thickness free skin graft was used to cover the muscle flap and around the flap’s vascular pedicle. The vascular pedicle was cut off after 28 days and the muscle flap sur-vived completely. After 3-year follow-up postoperatively, the right tibia and fibula fractures were confirmed healing radiologically. The posterior tibial artery of contralateral leg was patent by clinical and Doppler examinations. This tech-nique can be used to preserve the flow and patency of re-cipient arteries. Key words: Surgical flaps; Soft tissue injuries; Leg injuries; Wound healing

  3. Repair of a soft tissue defect of medial malleolus with cross-leg bridge free transfer of anterolateral thigh muscle flap: a case report

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gong-lin; CHEN Ke-ming; ZHANG Jun-hua; WANG Shi-yong

    2012-01-01

    A 38-year-old man sustained a traffic accident injury to his right medial malleolus and leg.It was an open fracture of the right tibia and fibula accompanied by a large soft tissue defect of the right medial malleolus sized 12 cm×4 cm.Doppler examination revealed that the tibialis posterior vessel was occluded due to thrombosis.The anterior tibial artery was patent.Three weeks after injury,the left anterolateral thigh muscle flap was harvested and transplanted to the right medial malleolus defect area for repair of the soft tissue defect,and an end-to-side anastomosis was performed between the posterior tibial vessel of the contralateral leg and the muscle flap's vascular pedicle.A split thickness free skin graft was used to cover the muscle flap and around the flap's vascular pedicle.The vascular pedicle was cut off after 28 days and the muscle flap survived completely.After 3-year follow-up postoperatively,the right tibia and fibula fractures were confirmed healing radiologically.The posterior tibial artery of contralateral leg was patent by clinical and Doppler examinations.This technique can be used to preserve the flow and patency of recipient arteries.

  4. Lower physical activity is associated with fat infiltration within skeletal muscle in young girls

    Science.gov (United States)

    Fat infiltration within skeletal muscle is strongly associated with obesity, type 2 diabetes mellitus, and metabolic syndrome. Lower physical activity may be a risk factor for greater fat infiltration within skeletal muscle, although whether lower physical activity is associated with fat infiltrati...

  5. Muscle Quality and Muscle Fat Infiltration in Relation to Incident Mobility Disability and Gait Speed Decline: the Age, Gene/Environment Susceptibility-Reykjavik Study.

    Science.gov (United States)

    Reinders, Ilse; Murphy, Rachel A; Koster, Annemarie; Brouwer, Ingeborg A; Visser, Marjolein; Garcia, Melissa E; Launer, Lenore J; Siggeirsdottir, Kristin; Eiriksdottir, Gudny; Jonsson, Palmi V; Gudnason, Vilmundur; Harris, Tamara B

    2015-08-01

    Aging is associated with increased risk of reduced mobility. However, data on muscle components in relation to subjective and objective indicators of disability is limited. Data were from 2,725 participants (43% men) aged 74.8±4.7 years from the AGES-Reykjavik Study. At baseline, maximal isometric thigh strength (dynamometer chair), and midthigh muscle area and muscle fat infiltration were assessed with computed tomography. Usual 6 m gait speed and mobility disability were assessed at baseline and after 5.2±0.3 years. Incident mobility disability was defined as having much difficulty or unable to walk 500 m or climb-up 10 steps. A decrease of ≥0.1 m/s in gait speed was considered clinically relevant. Greater strength and area were protective for mobility disability risk and gait speed decline. After adjustment for other muscle components, greater strength was independently associated with lower mobility disability risk in women odds ratios (OR) 0.78 (95% CI 0.62, 0.99), and lower decline in gait speed risk among both men OR 0.64 (0.54, 0.76), and women OR 0.72 (0.62, 0.82). Larger muscle area was independently associated with lower mobility disability risk in women OR 0.67 (0.52, 0.87) and lower decline in gait speed risk in men OR 0.74 (0.61, 0.91). Greater muscle strength and area were independently associated with 15-30% decreased risk of mobility disability in women and gait speed decline in men. Among women, greater muscle strength was also associated with lower risk of gait speed decline. Interventions aimed at maintaining muscle strength and area in old age might delay functional decline. Published by Oxford University Press on behalf of the Gerontological Society of America 2015.

  6. Dietary conjugated linoleic acid modify gene expression in liver, muscles, and fat tissues of finishing pigs

    DEFF Research Database (Denmark)

    Tous, Nuria; Theil, Peter Kappel; Lauridsen, Charlotte

    2012-01-01

    in these tissues, except for SM intermuscular fat. Dietary CLA increased PPARγ in LT muscle (P fat. Transcription of genes related to FA synthesis was reduced by CLA in SM muscle and liver (SREBP1......, both P muscle and reduced (P increased (P muscle and intermuscular fat. Saturated FA were increased in all studied tissues (P ... (LPL), delta-6-desaturase (D6D), and stearoyl CoA desaturase (SCD) were determined by real-time PCR in longissimus thoracis (LT) and semimembranosus (SM) muscles, LT subcutaneous and SM intermuscular fat, and in the liver. Fatty acid (FA) composition was analyzed using gas chromatography...

  7. Thigh-calf contact force measurements in deep knee flexion.

    NARCIS (Netherlands)

    Zelle, J.G.; Barink, M.; Loeffen, R.; Waal Malefijt, M.C. de; Verdonschot, N.J.J.

    2007-01-01

    BACKGROUND: Knee models often do not contain thigh-calf contact which occurs in deep knee flexion. Thigh-calf contact is expected to reduce muscle forces and thereby affects internal stresses in the knee joint. The purpose of this study was to measure thigh-calf contact forces. Two deep knee flexion

  8. Structured Light Scanning of Skin, Muscle and Fat

    DEFF Research Database (Denmark)

    Wilm, Jakob; Jensen, Sebastian Hoppe Nesgaard; Aanæs, Henrik

    of error that various encoding strategies show, and propose an error correcting model, which can bring down the measurement bias considerably. Samples of raw and unprocessed pig tissue were used with the number of sampled surface points Nmeat = 1.2 * 106, Nskin = 4.0 * 106 and Nfat = 2.1 * 106 from 8......We investigate the quality of structured light 3D scanning on pig skin, muscle and fat. These particular materials are interesting in a number of industrial and medical use-cases, and somewhat challenging because they exhibit subsurface light scattering. Our goal therefor is to quantify the amount...

  9. Patellar bracing affects sEMG activity of leg and thigh muscles during stance phase in patellofemoral pain syndrome.

    Science.gov (United States)

    Salarie Sker, Fatemeh; Anbarian, Mehrdad; Yazdani, Amir H; Hesari, Pouria; Babaei-Ghazani, Arash

    2017-06-29

    Decreases in patellofemoral pain symptoms with bracing treatment have been established; but, the mechanisms remain unclear. The purpose of this study was to determine the immediate and long-term effects of the patellar bracing on electromyography (EMG) activity of the Vastus Medialis (VM) and Lateralis (VL), Rectus Femoris, lateral Gastrocnemius, Biceps Femoris and Semitendinosus (ST) muscles during level walking. 12 eligible women aged 20-30 years with diagnosis of patellofemoral pain participated in the before and after study. Intervention consisted of 8 weeks of patellar bracing. First, patients were tested without brace, then with a brace, and finally eight weeks later without a brace. Surface EMG activation of the selected muscles during level walking was recorded. After eight weeks of patellar bracing, EMG activity of VM muscle was significantly higher when compared to first session without brace (p=0.011) at mid-stance sub-phase. Additionally, EMG activity of ST muscle during first session with brace was significantly lower when compared to first session without brace at mid-stance sub-phase (without brace) (p=0.012). EMG activity of VM muscle after eight weeks of patellar bracing was significantly higher than the first session without brace at late stance and preswing sub-phase (p=0.013). Long-term wearing of patellar bracing increases EMG activity of VM during mid-stance and late stance and preswing sub-phases of gait and immediate effect of patellar brace is decrease of EMG activity of ST muscle during mid-stance. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Lipid-mediated muscle insulin resistance: different fat, different pathways?

    Science.gov (United States)

    Ritter, Olesja; Jelenik, Tomas; Roden, Michael

    2015-08-01

    Increased dietary fat intake and lipolysis result in excessive lipid availability, which relates to impaired insulin sensitivity. Over the last years, several mechanisms possibly underlying lipid-mediated insulin resistance evolved. Lipid intermediates such as diacylglycerols (DAG) associate with changes in insulin sensitivity in many models. DAG activate novel protein kinase C (PKC) isoforms followed by inhibitory serine phosphorylation of insulin receptor substrate 1 (IRS1). Activation of Toll-like receptor 4 (TLR4) raises another lipid class, ceramides (CER), which induce pro-inflammatory pathways and lead to inhibition of Akt phosphorylation. Inhibition of glucosylceramide and ganglioside synthesis results in improved insulin sensitivity and increased activatory tyrosine phosphorylation of IRS1 in the muscle. Incomplete fat oxidation can increase acylcarnitines (ACC), which in turn stimulate pro-inflammatory pathways. This review analyzed the effects of lipid metabolites on insulin action in skeletal muscle of humans and rodents. Despite the evidence for the association of both DAG and CER with insulin resistance, its causal relevance may differ depending on the subcellular localization and the tested cohorts, e.g., athletes. Nevertheless, recent data indicate that individual lipid species and their degree of fatty acid saturation, particularly membrane and cytosolic C18:2 DAG, specifically activate PKCθ and induce both acute lipid-induced and chronic insulin resistance in humans.

  11. Distinct disease phases in muscles of facioscapulohumeral dystrophy patients identified by MR detected fat infiltration.

    Science.gov (United States)

    Janssen, Barbara H; Voet, Nicoline B M; Nabuurs, Christine I; Kan, Hermien E; de Rooy, Jacky W J; Geurts, Alexander C; Padberg, George W; van Engelen, Baziel G M; Heerschap, Arend

    2014-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an untreatable disease, characterized by asymmetric progressive weakness of skeletal muscle with fatty infiltration. Although the main genetic defect has been uncovered, the downstream mechanisms causing FSHD are not understood. The objective of this study was to determine natural disease state and progression in muscles of FSHD patients and to establish diagnostic biomarkers by quantitative MRI of fat infiltration and phosphorylated metabolites. MRI was performed at 3T with dedicated coils on legs of 41 patients (28 men/13 women, age 34-76 years), of which eleven were re-examined after four months of usual care. Muscular fat fraction was determined with multi spin-echo and T1 weighted MRI, edema by TIRM and phosphorylated metabolites by 3D (31)P MR spectroscopic imaging. Fat fractions were compared to clinical severity, muscle force, age, edema and phosphocreatine (PCr)/ATP. Longitudinal intramuscular fat fraction variation was analyzed by linear regression. Increased intramuscular fat correlated with age (pmuscle strength (pMuscles were nearly dichotomously divided in those with high and with low fat fraction, with only 13% having an intermediate fat fraction. The intramuscular fat fraction along the muscle's length, increased from proximal to distal. This fat gradient was the steepest for intermediate fat infiltrated muscles (0.07±0.01/cm, pmuscles in this intermediate phase showed a decreased PCr/ATP (pincrease in fatty infiltration over time (0.18±0.15/year, pfat infiltration as biomarker for diseased muscles, the intramuscular fat distribution needs to be taken into account. Our results indicate that healthy individual leg muscles become diseased by entering a progressive phase with distal fat infiltration and altered energy metabolite levels. Fat replacement then relatively rapidly spreads over the whole muscle.

  12. Contraction-induced skeletal muscle FAT/CD36 trafficking and FA uptake is AMPK independent

    DEFF Research Database (Denmark)

    Jeppesen, Jacob; Albers, Peter Hjorth; Rose, Adam John

    2011-01-01

    translocation and fatty acid uptake in response to muscle contractions was investigated in the perfused rat hindlimb. Exercise induced a similar increase in skeletal muscle cell surface membrane FAT/CD36 content in WT (+34%) and AMPK KD (+37%) mice. In contrast, AICAR only induced an increase in cell surface...... FAT/CD36 content in WT (+29%) mice. Furthermore, in the perfused rat hindlimb, muscle contraction induced a rapid (1 min, +15%) and sustained (10 min, +24%) FAT/CD36 relocation to cell surface membranes. The increase in cell surface FAT/CD36 protein content with muscle contractions associated...... with increased fatty acid uptake, both in EDL and SOL muscle from WT and AMPK KD mice and in the perfused rat hindlimb. This suggests that AMPK is not essential in regulation of FAT/CD36 translocation and fatty acid uptake in skeletal muscle during contractions. However, AMPK could be important in regulation...

  13. Contraction-induced skeletal muscle FAT/CD36 trafficking and FA uptake is AMPK independent.

    Science.gov (United States)

    Jeppesen, J; Albers, P H; Rose, A J; Birk, J B; Schjerling, P; Dzamko, N; Steinberg, G R; Kiens, B

    2011-04-01

    The aim of this study was to investigate the molecular mechanisms regulating FA translocase CD36 (FAT/CD36) translocation and FA uptake in skeletal muscle during contractions. In one model, wild-type (WT) and AMP-dependent protein kinase kinase dead (AMPK KD) mice were exercised or extensor digitorum longus (EDL) and soleus (SOL) muscles were contracted, ex vivo. In separate studies, FAT/CD36 translocation and FA uptake in response to muscle contractions were investigated in the perfused rat hindlimb. Exercise induced a similar increase in skeletal muscle cell surface membrane FAT/CD36 content in WT (+34%) and AMPK KD (+37%) mice. In contrast, 5-aminoimidazole-4-carboxamide ribonucleoside only induced an increase in cell surface FAT/CD36 content in WT (+29%) mice. Furthermore, in the perfused rat hindlimb, muscle contraction induced a rapid (1 min, +15%) and sustained (10 min, +24%) FAT/CD36 relocation to cell surface membranes. The increase in cell surface FAT/CD36 protein content with muscle contractions was associated with increased FA uptake, both in EDL and SOL muscle from WT and AMPK KD mice and in the perfused rat hindlimb. This suggests that AMPK is not essential in regulation of FAT/CD36 translocation and FA uptake in skeletal muscle during contractions. However, AMPK could be important in regulation of FAT/CD36 distribution in other physiological situations.

  14. Quantifying thigh muscle co-activation during isometric knee extension contractions: within- and between-session reliability.

    Science.gov (United States)

    Katsavelis, Dimitrios; Threlkeld, A Joseph

    2014-08-01

    Muscle co-activation around the knee is important during ambulation and balance. The wide range of methodological approaches for the quantification of co-activation index (CI) makes comparisons across studies and populations difficult. The present study determined within- and between-session reliability of different methodological approaches for the quantification of the CI of the knee extensor and flexor muscles during maximum voluntary isometric contractions (MVICs). Eight healthy volunteers participated in two repeated testing sessions. A series of knee extension MVICs of the dominant leg with concomitant torque and electromyographic (EMG) recordings were captured. CI was calculated utilizing different analytical approaches. Intraclass correlation coefficient (ICC) showed that within-session measures displayed higher reliability (ICC>0.861) and lower variability (Coefficient of variation; CV24.2%). A selection of a 500ms or larger window of RMS EMG activity around the PT delivered more reliable and less variable results than other approaches. Our findings suggest that the CI can provide a reliable measure for comparisons among conditions and is best utilized for within-session experimental designs.

  15. Effect of addition of pollen and propolis to feeding mixtures during the production of broiler chickens ROSS 308 to the colour of thigh and breast muscle and pH determination

    Directory of Open Access Journals (Sweden)

    Hana Šulcerová

    2011-01-01

    Full Text Available The aim of this study was to verify influence of pollen and propolis added to the feeding mixture in the diet of broiler chickens Ross 308 to colour breast and thigh muscles in relation to pH values. A total of 198 units 1 day-old Ross 308 hybrid combinations divided into 6 groups according to the feeding mixtures were investigated on meat quality characteristics changes. Muscle colour of breasts and thighs was measured and compared with pH in three times, pH1, pH2 and pHult. Feeding with various additions to feeding mixtures for chicken showed small impact of low content (200 or 300 mg.kg−1 propolis to meat quality characteristics. Higher effect on breast quality was found in group with 400 mg.kg−1 pollen addition to feed, there was faster and deeper postmortal process level found, although without negative impact on meat quality. Meat colour and muscle pH of chicken in this experiment was pale and had low ultimate pH. In these parameters were found correlation. Chicken meat of this experimental animals was paler and had the lowest ultimate pH, altough in group with higher addition it wasn’t confirmed. Raw meat breast pH was significantly lower than thigh muscles in all measurement time. Various feeding especially pollen had significant impact on breast colour which was paler although without negative displays attended of pH decline. Significant relationships are between breast and thigh L*a*b* values and pH1 respectively.

  16. Hemin improves insulin sensitivity in skeletal muscle in high fat-fed mice.

    Science.gov (United States)

    Ju, Tae-Jin; Kwon, Woo-Young; Kim, Yong-Woon; Kim, Jong-Yeon; Kim, Yong-Dae; Lee, In-Kyu; Park, So-Young

    2014-01-01

    The present study examined whether hemin could prevent the development of high-fat diet-induced insulin resistance in the liver and skeletal muscle using a hyperinsulinemic-euglycemic clamp. A four-week high-fat feeding to mice increased the body weight, fat mass, and plasma levels of insulin and lipid, which were reduced by hemin. High-fat diet reduced whole body glucose uptake, which were increased by hemin. Insulin-stimulated hepatic glucose production (HGP) was increased by high-fat diet, but hemin had no significant effect on HGP. Skeletal muscle glucose uptake was reduced by high-fat diet, and hemin normalized the glucose uptake. High-fat diet increased triglyceride levels and mRNA levels of lipogenic enzymes, and decreased mRNA levels of enzymes involved in lipid β-oxidation, which was reversed by hemin. Phosphorylated AMP-activated protein kinase levels were increased in the skeletal muscle of high fat-fed hemin-injected mice. High-fat diet reduced mRNA levels of antioxidant enzymes and increased mRNA levels of inflammatory cytokines and nitrotyrosine levels, which was normalized by hemin in the skeletal muscle. However, hemin had no significant effect on these factors in the liver. These results suggest that hemin prevents the development of high-fat diet-induced insulin resistance by increased insulin sensitivity in the skeletal muscle.

  17. Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain?

    DEFF Research Database (Denmark)

    Kjær, Per; Bendix, Tom; Sorensen, Joan Solgaard

    2007-01-01

    Because training of the lumbar muscles is a commonly recommended intervention in low back pain (LBP), it is important to clarify whether lumbar muscle atrophy is related to LBP. Fat infiltration seems to be a late stage of muscular degeneration, and can be measured in a non-invasive manner using...... magnetic resonance imaging. The purpose of this study was to investigate if fat infiltration in the lumbar multifidus muscles (LMM) is associated with LBP in adults and adolescents....

  18. Consumption of sucrose and high-fructose corn syrup does not increase liver fat or ectopic fat deposition in muscles.

    Science.gov (United States)

    Bravo, Stephen; Lowndes, Joshua; Sinnett, Stephanie; Yu, Zhiping; Rippe, James

    2013-06-01

    It has been postulated that fructose-induced triglyceride synthesis is augmented when accompanied by glucose. Chronic elevations could lead to excess fat accumulation in the liver and ectopic fat deposition in muscles, which in turn could contribute to the induction of abnormalities in glucose homeostasis, insulin resistance, and the subsequent development of type 2 diabetes. Our objective was to evaluate the effect of the addition of commonly consumed fructose- and (or) glucose-containing sugars in the usual diet on liver fat content and intramuscular adipose tissue. For 10 weeks, 64 individuals (mean age, 42.16 ± 11.66 years) consumed low-fat milk sweetened with either high-fructose corn syrup (HFCS) or sucrose; the added sugar matched consumption levels of fructose in the 25th, 50th, and 90th percentiles of the population. The fat content of the liver was measured with unenhanced computed tomography imaging, and the fat content of muscle was assessed with magnetic resonance imaging. When the 6 HFCS and sucrose groups were averaged, there was no change over the course of 10 weeks in the fat content of the liver (13.32% ± 10.49% vs. 13.21% ± 10.75%; p > 0.05), vastus lateralis muscle (3.07 ± 0.74 g per 100 mL vs. 3.15 ± 0.84 g per 100 mL; p > 0.05), or gluteus maximus muscle (4.08 ± 1.50 g per 100 mL vs. 4.24 ± 1.42 g per 100 mL; p > 0.05). Group assignment did not affect the result (interaction > 0.05). These data suggest that when fructose is consumed as part of a typical diet in normally consumed sweeteners, such as sucrose or HFCS, ectopic fat storage in the liver or muscles is not promoted.

  19. Increasing Dietary Fat Elicits Similar Changes in Fat Oxidation and Markers of Muscle Oxidative Capacity in Lean and Obese Humans

    Science.gov (United States)

    Bergouignan, Audrey; Gozansky, Wendolyn S.; Barry, Daniel W.; Leitner, Wayne; MacLean, Paul S.; Hill, James O.; Draznin, Boris; Melanson, Edward L.

    2012-01-01

    In lean humans, increasing dietary fat intake causes an increase in whole-body fat oxidation and changes in genes that regulate fat oxidation in skeletal muscle, but whether this occurs in obese humans is not known. We compared changes in whole-body fat oxidation and markers of muscle oxidative capacity differ in lean (LN) and obese (OB) adults exposed to a 2-day high-fat (HF) diet. Ten LN (BMI = 22.5±2.5 kg/m2, age = 30±8 yrs) and nine OB (BMI = 35.9±4.93 kg/m2, 38±5 yrs, Mean±SD) were studied in a room calorimeter for 24hr while consuming isocaloric low-fat (LF, 20% of energy) and HF (50% of energy) diets. A muscle biopsy was obtained the next morning following an overnight fast. 24h respiratory quotient (RQ) did not significantly differ between groups (LN: 0.91±0.01; OB: 0.92±0.01) during LF, and similarly decreased during HF in LN (0.86±0.01) and OB (0.85±0.01). The expression of pyruvate dehydrogenase kinase 4 (PDK4) and the fatty acid transporter CD36 increased in both LN and OB during HF. No other changes in mRNA or protein were observed. However, in both LN and OB, the amounts of acetylated peroxisome proliferator-activated receptor γ coactivator-1-α (PGC1-α) significantly decreased and phosphorylated 5-AMP-activated protein kinase (AMPK) significantly increased. In response to an isoenergetic increase in dietary fat, whole-body fat oxidation similarly increases in LN and OB, in association with a shift towards oxidative metabolism in skeletal muscle, suggesting that the ability to adapt to an acute increase in dietary fat is not impaired in obesity. PMID:22253914

  20. Increasing dietary fat elicits similar changes in fat oxidation and markers of muscle oxidative capacity in lean and obese humans.

    Science.gov (United States)

    Bergouignan, Audrey; Gozansky, Wendolyn S; Barry, Daniel W; Leitner, Wayne; MacLean, Paul S; Hill, James O; Draznin, Boris; Melanson, Edward L

    2012-01-01

    In lean humans, increasing dietary fat intake causes an increase in whole-body fat oxidation and changes in genes that regulate fat oxidation in skeletal muscle, but whether this occurs in obese humans is not known. We compared changes in whole-body fat oxidation and markers of muscle oxidative capacity differ in lean (LN) and obese (OB) adults exposed to a 2-day high-fat (HF) diet. Ten LN (BMI = 22.5±2.5 kg/m², age = 30±8 yrs) and nine OB (BMI = 35.9±4.93 kg/m², 38±5 yrs, Mean±SD) were studied in a room calorimeter for 24hr while consuming isocaloric low-fat (LF, 20% of energy) and HF (50% of energy) diets. A muscle biopsy was obtained the next morning following an overnight fast. 24h respiratory quotient (RQ) did not significantly differ between groups (LN: 0.91±0.01; OB: 0.92±0.01) during LF, and similarly decreased during HF in LN (0.86±0.01) and OB (0.85±0.01). The expression of pyruvate dehydrogenase kinase 4 (PDK4) and the fatty acid transporter CD36 increased in both LN and OB during HF. No other changes in mRNA or protein were observed. However, in both LN and OB, the amounts of acetylated peroxisome proliferator-activated receptor γ coactivator-1-α (PGC1-α) significantly decreased and phosphorylated 5-AMP-activated protein kinase (AMPK) significantly increased. In response to an isoenergetic increase in dietary fat, whole-body fat oxidation similarly increases in LN and OB, in association with a shift towards oxidative metabolism in skeletal muscle, suggesting that the ability to adapt to an acute increase in dietary fat is not impaired in obesity.

  1. Increasing dietary fat elicits similar changes in fat oxidation and markers of muscle oxidative capacity in lean and obese humans.

    Directory of Open Access Journals (Sweden)

    Audrey Bergouignan

    Full Text Available In lean humans, increasing dietary fat intake causes an increase in whole-body fat oxidation and changes in genes that regulate fat oxidation in skeletal muscle, but whether this occurs in obese humans is not known. We compared changes in whole-body fat oxidation and markers of muscle oxidative capacity differ in lean (LN and obese (OB adults exposed to a 2-day high-fat (HF diet. Ten LN (BMI = 22.5±2.5 kg/m², age = 30±8 yrs and nine OB (BMI = 35.9±4.93 kg/m², 38±5 yrs, Mean±SD were studied in a room calorimeter for 24hr while consuming isocaloric low-fat (LF, 20% of energy and HF (50% of energy diets. A muscle biopsy was obtained the next morning following an overnight fast. 24h respiratory quotient (RQ did not significantly differ between groups (LN: 0.91±0.01; OB: 0.92±0.01 during LF, and similarly decreased during HF in LN (0.86±0.01 and OB (0.85±0.01. The expression of pyruvate dehydrogenase kinase 4 (PDK4 and the fatty acid transporter CD36 increased in both LN and OB during HF. No other changes in mRNA or protein were observed. However, in both LN and OB, the amounts of acetylated peroxisome proliferator-activated receptor γ coactivator-1-α (PGC1-α significantly decreased and phosphorylated 5-AMP-activated protein kinase (AMPK significantly increased. In response to an isoenergetic increase in dietary fat, whole-body fat oxidation similarly increases in LN and OB, in association with a shift towards oxidative metabolism in skeletal muscle, suggesting that the ability to adapt to an acute increase in dietary fat is not impaired in obesity.

  2. Hip abductors and thigh muscles strength ratios and their relation to electromyography amplitude during split squat and walking lunge exercises

    Directory of Open Access Journals (Sweden)

    Petr Stastny

    2015-06-01

    Full Text Available Background: The hip abductors (HAB, quadriceps (Q and hamstrings (H reciprocal strength ratios are predictors of electromyography (EMG amplitude during load carrying walking at moderate intensity. Therefore, these strength ratios might predict also the EMG during the exercises as walking lunge (WL or split squat (SSq at submaximal intensity. Objective: To determine whether the EMG amplitude of vastus mediali (VM, vastus laterali (VL, biceps femoris (BF and gluteus medius (Gmed is associated with muscle strength ratio during SSqs and WLs. To determine whether the EMG amplitude differs between individuals with HAB/H ratio above and below one and between individuals with H/Q or HAB/Q ratio above and below 0.5 during SSqs and WLs. Methods: 17 resistance-trained men (age 29.6 ± 4.6 years with at least 3 years of strength training performed in cross-sectional design 5 s maximal voluntary isometric contractions (MVIC on an isokinetic dynamometer for knee extension, knee flexion, and hip abduction. The MVIC was used to normalize the EMG signal and estimate the individual strength ratios. Than participants performed WL and SSq for a 5 repetition maximum, to find out muscle activity at submaximal intensity of exercise. Results: The H/Q ratio was associated by Kendall's tau (τ with VM (τ = .33 and BF (τ = -.71 amplitude, HAB/Q ratio was associated with BF (τ = -.43 and Gmed (τ = .38 amplitude, as well as HAB/H was associated with VM (τ = -.41 and Gmed (τ = .74 amplitude. ANOVA results showed significant differences between SSq and WL (F(4, 79 = 10, p < .001, ηp2 = .34 in Gmed amplitude, where WL resulted in higher Gmed amplitude compared to SSq. Other significant differences were found between H/Q groups (F(4, 29 = 3, p = .04, ηp2 = .28 in VM and Gmed amplitude, where group with H/Q > 0.5 showed higher VMO amplitude and lower Gmed amplitude. Furthermore, significant difference was found

  3. Expression of an insulin-regulatable glucose carrier in muscle and fat endothelial cells

    Science.gov (United States)

    Vilaró, Senen; Palacín, Manuel; Pilch, Paul F.; Testar, Xavier; Zorzano, Antonio

    1989-12-01

    INSULIN rapidly stimulates glucose use in the major target tissues, muscle and fat, by modulating a tissue-specific glucose transporter isoform1-6. Access of glucose to the target tissue is restricted by endothelial cells which line the walls of nonfenestrated capillaries of fat and muscle7. Thus, we examined whether the capillary endothelial cells are actively involved in the modulation of glucose availability by these tissues. We report here the abundant expression of the muscle/fat glucose transporter isoform in endothelial cells, using an immunocytochemical analysis with a monoclonal antibody specific for this isoform1. This expression is restricted to endothelial cells from the major insulin target tissues, and it is not detected in brain and liver where insulin does not activate glucose transport. The expression of the muscle/fat transporter isoform in endothelial cells is significantly greater than in the neighbouring muscle and fat cells. Following administration of insulin to animals in vivo, there occurs a rapid increase in the number of muscle/fat transporters present in the lumenal plasma membrane of the capillary endothelial cells. These results document that insulin promotes the translocation of the muscle/fat glucose transporter in endothelial cells. It is therefore likely that endothelial cells play an important role in the regulation of glucose use by the major insulin target tissues in normal and diseased states.

  4. Skeletal Muscle Magnetic Resonance Imaging of the Lower Limbs in Late-onset Lipid Storage Myopathy with Electron Transfer Flavoprotein Dehydrogenase Gene Mutations

    Institute of Scientific and Technical Information of China (English)

    Xin-Yi Liu; Ming Jin; Zhi-Qiang Wang; Dan-Ni Wang; Jun-Jie He; Min-Ting Lin; Hong-Xia Fu

    2016-01-01

    Background:Lipid storage myopathy (LSM) is a genetically heterogeneous group with variable clinical phenotypes.Late-onset multiple acyl-coenzyme A dehydrogenation deficiency (MADD) is a rather common form of LSM in China.Diagnosis and clinical management of it remain challenging,especially without robust muscle biopsy result and genetic detection.As the noninvasion and convenience,muscle magnetic resonance imaging (MRI) is a helpful assistant,diagnostic tool for neuromuscular disorders.However,the disease-specific MRI patterns of muscle involved and its diagnostic value in late-onset MADD have not been systematic analyzed.Methods:We assessed the MRI pattern and fat infiltration degree of the lower limb muscles in 28 late-onset MADD patients,combined with detailed clinical features and gene spectrum.Fat infiltration degree of the thigh muscle was scored while that ofgluteus was described as obvious or not.Associated muscular atrophy was defined as obvious muscle bulk reduction.Results:The mean scores were significantly different among the anterior,medial,and posterior thigh muscle groups.The mean of fat infiltration scores on posterior thigh muscle group was significantly higher than either anterior or medial thigh muscle group (P < 0.001).Moreover,the mean score on medial thigh muscle group was significantly higher than that of anterior thigh muscle group (P < 0.01).About half of the patients displayed fat infiltration and atrophy in gluteus muscles.Of 28 patients,12 exhibited atrophy in medial and/or posterior thigh muscle groups,especially in posterior thigh muscle group.Muscle edema pattern was not found in all the patients.Conclusions:Late-onset MADD patients show a typical muscular imaging pattern of fat infiltration and atrophy on anterior,posterior,and medial thigh muscle groups,with major involvement of posterior thigh muscle group and gluteus muscles and a sparing involvement of anterior thigh compartment.Our findings also suggest that muscle MRI of

  5. Histopathological changes in rat pancreas and skeletal muscle associated with high fat diet induced insulin resistance.

    Science.gov (United States)

    Ickin Gulen, M; Guven Bagla, A; Yavuz, O; Hismiogullari, A A

    2015-01-01

    The effects of a high fat diet on the development of diabetes mellitus, insulin resistance and secretion have been widely investigated. We investigated the effects of a high fat diet on the pancreas and skeletal muscle of normal rats to explore diet-induced insulin resistance mechanisms. Forty-four male Wistar rats were divided into six groups: a control group fed standard chow, a group fed a 45% fat diet and a group fed a 60% fat diet for 3 weeks to measure acute effects; an additional three groups were fed the same diet regimens for 8 weeks to measure chronic effects. The morphological effects of the two high fat diets were examined by light microscopy. Insulin in pancreatic islets was detected using immunohistochemistry. The homeostasis model assessment of insulin resistance index and insulin staining intensity in islets increased significantly with acute administration of high fat diets, whereas staining intensity decreased with chronic administration of the 45% fat diet. Islet areas increased significantly with chronic administration. High fat diet administration led to islet degeneration, interlobular adipocyte accumulation and vacuolization in the pancreatic tissue, as well as degeneration and lipid droplet accumulation in the skeletal muscle tissue. Vacuolization in the pancreas and lipid droplets in skeletal muscle tissue increased significantly with chronic high fat diet administration. We suggest that the glucolipotoxic effects of high fat diet administration depend on the ratio of saturated to unsaturated fatty acid content in the diet and to the total fat content of the diet.

  6. Effects of dietary fat modification on skeletal muscle fatty acid handling in the metabolic syndrome.

    Science.gov (United States)

    van Hees, A M J; Saris, W H M; Hul, G B; Schaper, N C; Timmerman, B E; Lovegrove, J A; Roche, H M; Blaak, E E

    2010-05-01

    In the metabolic syndrome (MetS), increased fat storage in 'nonadipose' tissues such as skeletal muscle may be related to insulin resistance ('lipid overflow' hypothesis). The objective of this study was to examine the effects of dietary fat modification on the capacity of skeletal muscle to handle dietary and endogenous fatty acids (FAs). In total, 29 men with the MetS were randomly assigned to one of four diets for 12 weeks: a high-fat saturated fat diet (HSFA, n=6), a high-fat monounsaturated fat diet (HMUFA, n=7) and two low-fat high-complex carbohydrate diets supplemented with (LFHCCn-3, n=8) or without (LFHCC, n=8) 1.24 g per day docosahexaenoic and eicosapentaenoic acid. Fasting and postprandial skeletal muscle FA handling was examined by measuring arteriovenous concentration differences across the forearm muscle. [(2)H(2)]-palmitate was infused intravenously to label endogenous triacylglycerol (TAG) and free fatty acids in the circulation and subjects received a high-fat mixed meal (2.6 MJ, 61 energy% fat) containing [U-(13)C]-palmitate to label chylomicron-TAG. Postprandial circulating TAG concentrations were significantly lower after dietary intervention in the LFHCCn-3 group compared to the HSFA group (DeltaiAUC -139+/-67 vs 167+/-70 micromol l(-1) min(-1), P=0.009), together with decreased concentrations of [U-(13)C]-labeled TAG, representing dietary FA. Fasting TAG clearance across forearm muscle was decreased on the HSFA diet, whereas no differences were observed in postprandial forearm muscle FA handling between diets. Chronic manipulation of dietary fat quantity and quality did not affect forearm muscle FA handling in men with the MetS. Postprandial TAG concentrations decreased on the LFHCCn-3 diet, which could be (partly) explained by lower concentration of dietary FA in the circulation.

  7. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, A. [Shenzhen College of International Education, 1st HuangGang Park St., Shenzhen, GuangDong (China); Luo, J. [Department of Biomedical Engineering, University at Buffalo, 332 Bonner Hall, Buffalo, NY 14260-1920 (United States); Wang, A. [Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Broadbent, C. [School of Engineering, Columbia University, 1130 Amsterdam Av., New York, NY 10027 (United States); Zhong, J. [Department of English, Dartmouth College, 6032 Sanborn House, Hanover, NH 03755 (United States); Dilmanian, F.A. [Departments of Radiation Oncology, Neurology, and Radiology, Stony Brook University, Stony Brook, NY 11794 (United States); Zafonte, F.; Zhong, Z. [National Synchrotron Light Source II, Brookhaven National Laboratory, Bldg. 743, Upton, NY 11973 (United States)

    2015-07-11

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. An efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent in the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.

  8. Fat to Muscle Ratio Measurements with Dual Energy X Ray Absorbtiometry

    CERN Document Server

    Chen, A; Broadbent, C; Zhong, J; Dilmanian, A; Zafonte, F; Zhong, Z

    2014-01-01

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. An efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent in the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.

  9. Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans

    DEFF Research Database (Denmark)

    Ara, I; Larsen, S; Stallknecht, Bente Merete

    2011-01-01

    was that fat oxidation during exercise might be differentially preserved in leg and arm muscles after weight loss.Methods:Indirect calorimetry was used to calculate fat and carbohydrate oxidation during both progressive arm-cranking and leg-cycling exercises. Muscle biopsy samples were obtained from musculus...... deltoideus (m. deltoideus) and m. vastus lateralis muscles. Fibre-type composition, enzyme activity and O(2) flux capacity of saponin-permeabilized muscle fibres were measured, the latter by high-resolution respirometry.Results:During the graded exercise tests, peak fat oxidation during leg cycling......, and plasma leptin was higher in O than in PO and C.Conclusions:In O subjects, maximal fat oxidation during exercise and the eliciting relative exercise intensity are increased. This is associated with higher intramuscular triglyceride levels and higher resting non esterified fatty acid (NEFA) concentrations...

  10. Acute and chronic changes in rat soleus muscle after high-fat high-sucrose diet.

    Science.gov (United States)

    Collins, Kelsey H; Hart, David A; Smith, Ian C; Issler, Anthony M; Reimer, Raylene A; Seerattan, Ruth A; Rios, Jaqueline L; Herzog, Walter

    2017-05-01

    The effects of obesity on different musculoskeletal tissues are not well understood. The glycolytic quadriceps muscles are compromised with obesity, but due to its high oxidative capacity, the soleus muscle may be protected against obesity-induced muscle damage. To determine the time-course relationship between a high-fat/high-sucrose (HFS) metabolic challenge and soleus muscle integrity, defined as intramuscular fat invasion, fibrosis and molecular alterations over six time points. Male Sprague-Dawley rats were fed a HFS diet (n = 64) and killed at serial short-term (3 days, 1 week, 2 weeks, 4 weeks) and long-term (12 weeks, 28 weeks) time points. Chow-fed controls (n = 21) were killed at 4, 12, and 28 weeks. At sacrifice, animals were weighed, body composition was calculated (DXA), and soleus muscles were harvested and flash-frozen. Cytokine and adipokine mRNA levels for soleus muscles were assessed, using RT-qPCR Histological assessment of muscle fibrosis and intramuscular fat was conducted, CD68(+) cell number was determined using immunohistochemistry, and fiber typing was assessed using myosin heavy chain protein analysis. HFS animals demonstrated significant increases in body fat by 1 week, and this increase in body fat was sustained through 28 weeks on the HFS diet. Short-term time-point soleus muscles demonstrated up-regulated mRNA levels for inflammation, atrophy, and oxidative stress molecules. However, intramuscular fat, fibrosis, and CD68(+) cell number were similar to their respective control group at all time points evaluated. Therefore, the oxidative capacity of the soleus may be protective against diet-induced alterations to muscle integrity. Increasing oxidative capacity of muscles using aerobic exercise may be a beneficial strategy for mitigating obesity-induced muscle damage, and its consequences. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American

  11. Deregulation of the protocadherin gene FAT1 alters muscle shapes: implications for the pathogenesis of facioscapulohumeral dystrophy.

    Directory of Open Access Journals (Sweden)

    Nathalie Caruso

    2013-06-01

    Full Text Available Generation of skeletal muscles with forms adapted to their function is essential for normal movement. Muscle shape is patterned by the coordinated polarity of collectively migrating myoblasts. Constitutive inactivation of the protocadherin gene Fat1 uncoupled individual myoblast polarity within chains, altering the shape of selective groups of muscles in the shoulder and face. These shape abnormalities were followed by early onset regionalised muscle defects in adult Fat1-deficient mice. Tissue-specific ablation of Fat1 driven by Pax3-cre reproduced muscle shape defects in limb but not face muscles, indicating a cell-autonomous contribution of Fat1 in migrating muscle precursors. Strikingly, the topography of muscle abnormalities caused by Fat1 loss-of-function resembles that of human patients with facioscapulohumeral dystrophy (FSHD. FAT1 lies near the critical locus involved in causing FSHD, and Fat1 mutant mice also show retinal vasculopathy, mimicking another symptom of FSHD, and showed abnormal inner ear patterning, predictive of deafness, reminiscent of another burden of FSHD. Muscle-specific reduction of FAT1 expression and promoter silencing was observed in foetal FSHD1 cases. CGH array-based studies identified deletion polymorphisms within a putative regulatory enhancer of FAT1, predictive of tissue-specific depletion of FAT1 expression, which preferentially segregate with FSHD. Our study identifies FAT1 as a critical determinant of muscle form, misregulation of which associates with FSHD.

  12. Blocked muscle fat oxidation during exercise in neutral lipid storage disease

    DEFF Research Database (Denmark)

    Laforêt, Pascal; Ørngreen, Mette; Preisler, Nicolai

    2012-01-01

    To determine whether impaired exercise capacity in neutral lipid storage disease with myopathy is solely caused by muscle weakness or whether a defect in energy metabolism (blocked fat oxidation) may also play a role.......To determine whether impaired exercise capacity in neutral lipid storage disease with myopathy is solely caused by muscle weakness or whether a defect in energy metabolism (blocked fat oxidation) may also play a role....

  13. Thigh Injuries in American Football.

    Science.gov (United States)

    Lamplot, Joseph D; Matava, Matthew J

    Quadriceps and hamstring injuries occur frequently in football and are generally treated conservatively. While return to competition following hamstring strains is relatively quick, a high rate of injury recurrence highlights the importance of targeted rehabilitation and conditioning. This review describes the clinical manifestations of thigh-related soft-tissue injuries seen in football players. Two of these-muscle strains and contusions-are relatively common, while a third condition-the Morel-Lavallée lesion-is a rare, yet relevant injury.

  14. Age and gender-specific reference values of orbital fat and muscle volumes in Caucasians

    NARCIS (Netherlands)

    Regensburg, N.I.; Wiersinga, W.M.; van Velthoven, M.E.J.; Berendschot, T.T.J.M.; Zonneveld, F.W.; Baldeschi, L.; Saeed, P.; Mourits, M.P.

    2011-01-01

    To provide age and gender-specific reference values for orbital fat and muscle volumes (MV) in Caucasian adults. Computed tomographic scans of 160 orbits from 52 men and 55 women, aged 20-80 years, not affected by orbital disease were evaluated. Orbital bony cavity volume (OV), fat volume (FV) and M

  15. Age and gender-specific reference values of orbital fat and muscle volumes in Caucasians

    NARCIS (Netherlands)

    Regensburg, N.I.; Wiersinga, W.M.; van Velthoven, M.E.J.; Berendschot, T.T.J.M.; Zonneveld, F.W.; Baldeschi, L.; Saeed, P.; Mourits, M.P.

    2011-01-01

    To provide age and gender-specific reference values for orbital fat and muscle volumes (MV) in Caucasian adults. Computed tomographic scans of 160 orbits from 52 men and 55 women, aged 20-80 years, not affected by orbital disease were evaluated. Orbital bony cavity volume (OV), fat volume (FV) and

  16. Association of lower limb muscle mass and energy expenditure with visceral fat mass in healthy men

    OpenAIRE

    Yagi, S.; Kadota, M; Aihara, K; Nishikawa, K.; Hara, T.; Ise, T.; Ueda, Y; Iwase, T; Akaike, M; Shimabukuro, M; Katoh, S.; Sata, M

    2014-01-01

    Background A high-calorie diet and physical inactivity, an imbalance between caloric intake and energy consumption, are major causes of metabolic syndrome (MetS), which manifests as accumulation of visceral fat and insulin resistance. However, the lifestyle-related factors associated with visceral fat mass in healthy men are not fully understood. Methods We evaluated visceral fat area (VFA), skeletal muscle mass, caloric intake, and energy expenditure in 67 healthy male participants (mean age...

  17. Development and Validation of a High Anatomical Fidelity FE Model for the Buttock and Thigh of a Seated Individual.

    Science.gov (United States)

    Al-Dirini, Rami M A; Reed, Matthew P; Hu, Jingwen; Thewlis, Dominic

    2016-09-01

    Current practices for designing new cushions for seats depend on superficial measurements, such as pressure mapping, which do not provide sufficient information about the condition of sub-dermal tissues. Finite element (FE) modelling offers a unique alternative to integrate assessment of sub-dermal tissue condition into seat/cushion design and development processes. However, the development and validation of such FE models for seated humans requires accurate representation of the anatomy and material properties, which remain challenges that are yet to be addressed. This paper presents the development and validation of a detailed 3D FE model with high anatomical fidelity of the buttock and thigh, for a specific seated subject. The developed model consisted of 28 muscles, the pelvis, sacrum, femur, and one layer of inter-muscular fat, subcutaneous fat and skin. Validation against in vivo measurements from MRI data confirmed that the FE model can simulate the deformation of soft tissues under sitting loads with an accuracy of (mean ± SD) 4.7 ± 4.4 mm. Simulation results showed that the maximum strains (compressive, shear and von-Mises) on muscles (41, 110, 79%) were higher than fat tissues (21, 62, 41%). The muscles that experienced the highest mechanical loads were the gluteus maximus, adductor magnus and muscles in the posterior aspect of the thighs (biceps femoris, semitendinosus and semimembranosus muscles). The developed FE model contributes to the progression towards bio-fidelity in modelling the human body in seated postures by providing insight into the distribution of stresses/strains in individual muscles and inter-muscular fat in the buttock and thigh of seated individuals. Industrial applications for the developed FE model include improving the design of office and household furniture, automotive and airplane seats and wheelchairs as well as customisation and assessment of sporting and medical equipment to meet individual requirements.

  18. Efficacy observation on treating thigh hamstring injury by electro-acupuncture combined with muscle stretching exercises%电针配合肌肉伸展练习治疗大腿后肌拉伤疗效观察

    Institute of Scientific and Technical Information of China (English)

    舒育芳

    2013-01-01

    Objective: To observe the effect on treating thigh hamstring injury by electro-acupuncture combined with muscle stretching exercises. Methods:Give priority to Ashi point, and treated by electro-acupuncture for 20 minutes once per day, cooperating with muscle stretching exercises. Results: 29 out of 50 patients were recovered (accounting for 58%) and 21 were improved (accounting for 42%). The total efficiency was 100%. Conclusion: Satisfied with the efficacy of treating thigh hamstring injury by electro-acupuncture combined with muscle stretching exercises.%  目的:观察电针配合肌肉伸展练习治疗大腿后肌拉伤的疗效。方法:阿是穴为主,用电针治疗20min,1次/d,配合肌肉伸展练习。结果:50例中治愈29例(58%),好转21例(42%),总有效率100%。结论:电针配合肌肉伸展练习治疗大腿后肌拉伤的疗效满意。

  19. The musclefat duel or why obese children are taller?

    Directory of Open Access Journals (Sweden)

    Ralt Dina

    2006-12-01

    Full Text Available Abstract Background Obesity the epidemic of our times appears to be a problem that is easy to resolve: just eat less and move more. However, this very common condition has turned out to be extremely troublesome, and in some cases even irreversible. Methods The interplay between less muscle and more fat tissue is discussed from physiological perspectives with an emphasis on the early years of childhood. Results It is suggested that the coordinated muscle-fat interactions lead to a fluctuating exchange economy rate. This bodily economic decision, slides between thrift (more fat and prodigal (more muscle strategies. The thrift strategy results not only in obesity and less physical activity but also in other maladies which the body is unable to manage. What leads to obesity (less muscle, more fat might be very difficult to reverse at adulthood, prevention at childhood is thus recommended. Conclusion Early recognition of the ailment (low muscle mass is crucial. Based on studies demonstrating a 'rivalry' between muscle build-up and height growth at childhood, it is postulated that among the both taller and more obese children the percentage of children with lower muscle mass will be higher. A special, body/muscle-building gymnastics program for children is suggested as a potential early intervention to prevent the ill progress of obesity.

  20. Exercise might bias skeletal-muscle fat fraction calculation from Dixon images.

    Science.gov (United States)

    Fischmann, Arne; Kaspar, Selina; Reinhardt, Julia; Gloor, Monika; Stippich, Christoph; Fischer, Dirk

    2012-10-01

    We examined the influence of a single exercise session on quantitative muscle fat fraction MRI measurements. Ten healthy volunteers were scanned on a 3T body scanner before and after a session of bilateral squats until muscular fatigue. Axial in- and opposed phase images were acquired at a fixed distance from the knee joint and fat fractions were calculated using a 2-point Dixon technique as well as muscle cross sectional area at the same position. After the squat session, calculated fat fraction in the quadriceps bilaterally appeared to be significantly decreased, while all but one non-exercised muscles showed no change. In conclusion exercise might modify the measured apparent fat fraction. Trials using quantitative MRI should consider the timing of scanning sessions and physical examinations to avoid bias caused by the influence of exercise on measurements.

  1. Segmentation of magnetic resonance images of the thighs for a new National Institutes of Health initiative

    Science.gov (United States)

    Monzon, A.; Hemler, P. F.; Nalls, M.; Manini, T.; Clark, B. C.; Harris, T. B.; McAuliffe, M. J.

    2007-03-01

    This paper describes a new system for semi-automatically segmenting the background, subcutaneous fat, interstitial fat, muscle, bone, and bone marrow from magnetic resonance images (MRI's) of volunteers for a new osteoarthritis study. Our system first creates separate right and left thigh images from a single MR image containing both legs. The subcutaneous fat boundary is very difficult to detect in these images and is therefore interactively defined with a single boundary. The volume within the boundary is then automatically processed with a series of clustering and morphological operations designed to identify and classify the different tissue types required for this study. Once the tissues have been identified, the volume of each tissue is determined and a single, false colored, segmented image results. We quantitatively compare the segmentation in three different ways. In our first method we simply compare the tissue volumes of the resulting segmentations performed independently on both the left and right thigh. A second quantification method compares our results temporally with three image sets of the same volunteer made one month apart including a month of leg disuse. Our final quantification methodology compares the volumes of different tissues detected with our system to the results of a manual segmentation performed by a trained expert. The segmented image results of four different volunteers using images acquired at three different times suggests that the system described in this paper provides more consistent results than the manually segmented set. Furthermore, measurements of the left and right thigh and temporal results for both segmentation methods follow the anticipated trend of increasing fat and decreasing muscle over the period of disuse.

  2. Does caffeine alter muscle carbohydrate and fat metabolism during exercise?

    DEFF Research Database (Denmark)

    Graham, Terry E; Battram, Danielle S; Dela, Flemming

    2008-01-01

    Caffeine, an adenosine receptor antagonist, has been studied for decades as a putative ergogenic aid. In the past 2 decades, the information has overwhelmingly demonstrated that it indeed is a powerful ergogenic aid, and frequently theories have been proposed that this is due to alterations in fat...... and carbohydrate metabolism. While caffeine certainly mobilizes fatty acids from adipose tissue, rarely have measures of the respiratory exchange ratio indicated an increase in fat oxidation. However, this is a difficult measure to perform accurately during exercise, and small changes could be physiologically...... and increased (p caffeine were to increase (p caffeine has ergogenic effects as a result of enhanced fat oxidation...

  3. Relationships among Puberty, Muscle and Fat, and Liveweight Gain during Mating in Young Female Sheep.

    Science.gov (United States)

    Rosales Nieto, C A; Ferguson, M B; Thompson, H; Briegel, J R; Macleay, C A; Martin, G B; Thompson, A N

    2015-08-01

    Greater depths of muscle are associated with better reproductive performance in ewe lambs, but, in adult ewes, reproductive performance also seems to vary with liveweight gain during the mating period. Therefore, in a large field study with Merino ewe lambs, we tested whether the relationships among eye muscle depth (EMD), fat depth (FAT) and reproductive performance depend on liveweight gain during the mating period. We selected lambs with a wide range in phenotypic values for depths of eye muscle (EMD) and fat (FAT) and assigned them to dietary treatments designed to achieve low (LOW, n = 244) or high (HIGH, n = 237) rates of liveweight gain during a 28-day mating period. The LOW treatment maintained live weight, whereas the HIGH treatment gained 179 ± 3.8 g/day (p increased with EMD (p FAT and EMD (p fat and muscle, will increase reproductive performance in ewe lambs mated at 8 months of age. © 2015 Blackwell Verlag GmbH.

  4. High-fat feeding induces angiogenesis in skeletal muscle and activates angiogenic pathways in capillaries.

    Science.gov (United States)

    Silvennoinen, Mika; Rinnankoski-Tuikka, Rita; Vuento, Mikael; Hulmi, Juha J; Torvinen, Sira; Lehti, Maarit; Kivelä, Riikka; Kainulainen, Heikki

    2013-04-01

    High-fat diet (HFD) increases fatty acid oxidation in skeletal muscles. We hypothesized that this leads to increased oxygen demand and thus to increased capillarization. We determined the effects of high-fat diet on capillarization and angiogenic factors in skeletal muscles of mice that were either active or sedentary. Fifty-eight C57BL/6 J mice were divided into four groups: low-fat diet sedentary (LFS), low-fat diet active (LFA), high-fat diet sedentary (HFS), and high-fat diet active (HFA). The mice in active groups were housed in cages with running wheels and the sedentary mice were housed in similar cages without running wheels. After 19 weeks HFS, LFA and HFA had higher capillary density and capillary-to-fiber-ratio in quadriceps femoris muscles than LFS. Capillarization was similar in HFS and HFA. To reveal possible mechanisms of HFD induced angiogenesis, we measured protein and mRNA levels of angiogenic factors VEGF-A, HIF-1α, PGC-1α and ERRα. VEGF-A protein levels were higher in muscles of HFS, LFA and HFA compared to LFS. However, no significant differences were observed between HFA and HFS. Protein levels of HIF-1α, PGC-1α, and ERRα were similar in all groups. However, the mRNA expression of HIF-1α and VEGF-A was up-regulated in capillaries but not in muscle fibers of HFS. The sedentary and active mice groups had similar mRNA expression levels of angiogenesis regulators studied. We conclude that high-fat feeding induces angiogenesis in skeletal muscle and up-regulates the gene expression of HIF-1α and VEGF-A in capillaries.

  5. Methylation-sensitive amplification polymorphism analysis of fat and muscle tissues in pigs.

    Science.gov (United States)

    Ma, J D; Li, M Z; Zhou, S L; Zhou, C W; Li, X W

    2012-09-26

    DNA methylation may be involved in regulating the expression of protein-coding genes, resulting in different fat and muscle phenotypes. Using a methylation-sensitive amplified polymorphism approach, we obtained 7423 bands by selective amplification of genomic DNA from six different fat depots and two heterogeneous muscle types from Duroc/Landrace/Yorkshire cross-bred pigs. The degrees of DNA methylation, determined by the percentages of hemi- and fully methylated sites relative to the total number of CCGG sites, were similar in male and female pigs for each specific tissue [χ(2) test; P (two-tailed) > 0.05]. Gender bias was therefore ignored. There were significant differences in the degree of DNA methylation among the eight tissue types [χ(2) test; P(total) (two-tailed) = 0.009]. However, similar degrees of methylation were observed among the six fat depots [χ(2) test; P(fat) (two-tailed) = 0.24 > 0.05]and between the two muscle types [χ(2) test; P(muscle) (two-tailed) = 0.76 > 0.05]. We conclude that the degree of DNA methylation differs between porcine fat and muscle tissue, but that the methylation status of a particular tissue type is similar, despite being deposited at different body sites.

  6. Re-patterning of skeletal muscle energy metabolism by fat storage-inducing transmembrane protein 2.

    Science.gov (United States)

    Miranda, Diego A; Koves, Timothy R; Gross, David A; Chadt, Alexandra; Al-Hasani, Hadi; Cline, Gary W; Schwartz, Gary J; Muoio, Deborah M; Silver, David L

    2011-12-09

    Triacylglyceride stored in cytosolic lipid droplets (LDs) constitutes a major energy reservoir in most eukaryotes. The regulated turnover of triacylglyceride in LDs provides fatty acids for mitochondrial β-oxidation and ATP generation in physiological states of high demand for energy. The mechanisms for the formation of LDs in conditions of energy excess are not entirely understood. Fat storage-inducing transmembrane protein 2 (FIT2/FITM2) is the anciently conserved member of the fat storage-inducing transmembrane family of proteins implicated to be important in the formation of LDs, but its role in energy metabolism has not been tested. Here, we report that expression of FIT2 in mouse skeletal muscle had profound effects on muscle energy metabolism. Mice with skeletal muscle-specific overexpression of FIT2 (CKF2) had significantly increased intramyocellular triacylglyceride and complete protection from high fat diet-induced weight gain due to increased energy expenditure. Mass spectrometry-based metabolite profiling suggested that CKF2 skeletal muscle had increased oxidation of branched chain amino acids but decreased oxidation of fatty acids. Glucose was primarily utilized in CKF2 muscle for synthesis of the glycerol backbone of triacylglyceride and not for glycogen production. CKF2 muscle was ATP-deficient and had activated AMP kinase. Together, these studies indicate that FIT2 expression in skeletal muscle plays an unexpected function in regulating muscle energy metabolism and indicates an important role for lipid droplet formation in this process.

  7. Analysis of fatty infiltration and inflammation of the pelvic and thigh muscles in boys with Duchenne muscular dystrophy (DMD): grading of disease involvement on MR imaging and correlation with clinical assessments.

    Science.gov (United States)

    Kim, Hee Kyung; Merrow, Arnold C; Shiraj, Sahar; Wong, Brenda L; Horn, Paul S; Laor, Tal

    2013-10-01

    Prior reports focus primarily on muscle fatty infiltration in Duchenne muscular dystrophy (DMD). However, the significance of muscle edema is uncertain. To evaluate the frequency and degree of muscle fat and edema, and correlate these with clinical function. Forty-two boys (ages 5-19 years) with DMD underwent pelvic MRI. Axial T1- and fat-suppressed T2-weighted images were evaluated to grade muscle fatty infiltration (0-4) and edema (0-3), respectively. Degree and frequency of disease involvement were compared to clinical evaluations. Gluteus maximus had the greatest mean fatty infiltration score, followed by adductor magnus and gluteus medius muscles, and had the most frequent and greatest degree of fatty infiltration. Gluteus maximus also had the greatest mean edema score, followed by vastus lateralis and gluteus medius muscles. These muscles had the most frequent edema, although the greatest degree of edema was seen in other muscles. There was correlation between cumulative scores of fatty infiltration and all clinical evaluations (P < 0.05). In DMD, the muscles with the most frequent fatty infiltration had the greatest degree of fatty infiltration and correlated with patient function. However, the muscles with the most frequent edema were different from those with the greatest degree of edema. Thus, edema may not predict patient functional status.

  8. Acute Compartment Syndrome of the Thigh in Combat Casualties

    Science.gov (United States)

    2013-03-01

    clinical signs and symptoms alone (27, 28). These signs include pain out of proportion, weakness and passive pain on stretch of the muscles in the...spasm/ cramping /weakness). Thirty-three percent (5/15) have pruritis. Twenty-seven percent (4/15) have symptomatic fascial herniations. Twenty...thigh. J. Orthop. Trauma 16:436–438, 2002. 6. Rooser, B., Bengtson, S., Hagglund, G. Acute compartment syndrome from anterior thigh muscle contusion: a

  9. Overexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance

    Science.gov (United States)

    Choi, Cheol Soo; Fillmore, Jonathan J.; Kim, Jason K.; Liu, Zhen-Xiang; Kim, Sheene; Collier, Emily F.; Kulkarni, Ameya; Distefano, Alberto; Hwang, Yu-Jin; Kahn, Mario; Chen, Yan; Yu, Chunli; Moore, Irene K.; Reznick, Richard M.; Higashimori, Takamasa; Shulman, Gerald I.

    2007-01-01

    Insulin resistance is a major factor in the pathogenesis of type 2 diabetes and is strongly associated with obesity. Increased concentrations of intracellular fatty acid metabolites have been postulated to interfere with insulin signaling by activation of a serine kinase cascade involving PKCθ in skeletal muscle. Uncoupling protein 3 (UCP3) has been postulated to dissipate the mitochondrial proton gradient and cause metabolic inefficiency. We therefore hypothesized that overexpression of UCP3 in skeletal muscle might protect against fat-induced insulin resistance in muscle by conversion of intramyocellular fat into thermal energy. Wild-type mice fed a high-fat diet were markedly insulin resistant, a result of defects in insulin-stimulated glucose uptake in skeletal muscle and hepatic insulin resistance. Insulin resistance in these tissues was associated with reduced insulin-stimulated insulin receptor substrate 1– (IRS-1–) and IRS-2–associated PI3K activity in muscle and liver, respectively. In contrast, UCP3-overexpressing mice were completely protected against fat-induced defects in insulin signaling and action in these tissues. Furthermore, these changes were associated with a lower membrane-to-cytosolic ratio of diacylglycerol and reduced PKCθ activity in whole-body fat–matched UCP3 transgenic mice. These results suggest that increasing mitochondrial uncoupling in skeletal muscle may be an excellent therapeutic target for type 2 diabetes mellitus. PMID:17571165

  10. Antiretroviral initiation is associated with increased skeletal muscle area and fat content.

    Science.gov (United States)

    Erlandson, Kristine M; Fiorillo, Suzanne; Masawi, Fadzai; Scherzinger, Ann; McComsey, Grace A; Lake, Jordan E; Stein, James H; Currier, Judith S; Brown, Todd T

    2017-08-24

    A greater burden of physical function impairment occurs in HIV-infected adults; the impact of antiretroviral therapy (ART) initiation on muscle density (less dense = more fat), a measure of muscle quality, is unknown. AIDS Clinical Trials Group Study A5260s, a cardiometabolic substudy of A5257, randomized HIV-infected, ART-naive adults to ritonavir-boosted atazanavir, darunavir, or raltegravir with tenofovir/emtricitabine backbone. Single-slice abdominal computed tomography scans from baseline and week 96 were reanalyzed for total and lean muscle area and density. Two-sample t-tests described the differences between baseline and week 96 variables. Linear regression analysis was used to explore the role of a priori identified variables and potential confounders. Participants (n = 235) were mostly men (90%); 31% were Black non-Hispanic; 21% were Hispanic. Over 96 weeks, small but significant increases were seen in oblique/transverse abdominal, rectus, and psoas muscle total area (range 0.21-0.83 cm; P muscle component (all P ≥ 0.33). Significant decreases in overall density, consistent with increases in fat, were seen in all muscle groups (range -0.87 to -2.4 HU; P muscle component, only decreases in oblique/transverse abdominal and rectus reached statistical significance (P increased muscle density and female sex with decreased density; treatment arm was not associated with changes in mass or density. The ART-associated increase in muscle area, regardless of regimen, is likely a reflection of increased fat within the muscle. The consequences of fatty infiltration of muscle on subsequent muscle function require further investigation.

  11. Increased body fat mass and tissue lipotoxicity associated with ovariectomy or high-fat diet differentially affects bone and skeletal muscle metabolism in rats.

    Science.gov (United States)

    Tagliaferri, Camille; Salles, Jérôme; Landrier, Jean-François; Giraudet, Christophe; Patrac, Véronique; Lebecque, Patrice; Davicco, Marie-Jeanne; Chanet, Audrey; Pouyet, Corinne; Dhaussy, Amélie; Huertas, Alain; Boirie, Yves; Wittrant, Yohann; Coxam, Véronique; Walrand, Stéphane

    2015-10-01

    The aim of this study was to evaluate and compare the musculoskeletal effects induced by ovariectomy-related fat mass deposition against the musculoskeletal effects caused by a high-fat diet. A group of adult female rats was ovariectomized and fed a control diet. Two additional groups were sham-operated and fed a control or a high-fat diet for 19 weeks. Distal femur and serum bone parameters were measured to assess bone metabolism. Muscle protein metabolism, mitochondrial markers and triglyceride content were evaluated in tibialis anterior. Triglyceride content was evaluated in liver. Circulating inflammatory and metabolic markers were determined. The high-fat diet and ovariectomy led to similar increases in fat mass (+36.6-56.7%; p muscle tissues and inflammatory markers. Consumption of the high-fat diet led to decreased bone formation (-38.4%; p muscle mitochondrial metabolism, muscle lipotoxicity and a 20.9% increase in tibialis anterior protein synthesis rate (p increased +72.7% (p increased +76.4% (p muscle protein synthesis rate (p fat diet and ovariectomy triggered similar gains in fat mass but had different impacts on bone and muscle metabolism. The ovariectomy-induced mechanisms affecting the musculoskeletal system are mainly caused by estrogen depletion, which surpasses the potential-independent effect of adiposity.

  12. Whole-body fat oxidation determined by graded exercise and indirect calorimetry: a role for muscle oxidative capacity?

    DEFF Research Database (Denmark)

    Nordby, P; Saltin, B; Helge, J W

    2006-01-01

    During whole-body exercise, peak fat oxidation occurs at a moderate intensity. This study investigated whole-body peak fat oxidation in untrained and trained subjects, and the presence of a relation between skeletal muscle oxidative enzyme activity and whole-body peak fat oxidation. Healthy male...... muscle oxidative capacity was not correlated to whole-body peak fat oxidation. In conclusion, whole-body peak fat oxidation occurred at a higher relative exercise load in trained compared with untrained subjects. Whole-body peak fat oxidation was not significantly related to leg muscle oxidative capacity......, but was related to lean body mass and maximal oxygen uptake. This may suggest that leg muscle oxidative activity is not the main determinant of whole-body peak fat oxidation....

  13. Overview of thigh injuries in dance.

    Science.gov (United States)

    Deleget, Alison

    2010-01-01

    Thigh injuries include musculotendinous strains of the quadriceps, hamstrings, adductors, iliotibial band (ITB), and bony injuries to the shaft of the femur. There is scant information in the literature regarding thigh injuries in dance, which appear to range from 5% to 16% of total injury incidence. Hamstring strains and ITB syndrome are the most commonly reported thigh injuries. Hamstring injuries occur most frequently during slow stretching when the dancer's hip is flexed and knee extended. Uniquely in dancers, adductor injury occurs concurrently with hamstring injuries in approximately one-third of cases. Snapping of the ITB at the lateral hip and knee may result from imbalance of thigh muscle strength and flexibility. To date no quadriceps strain injuries or stress injuries to the shaft of the femur have been reported in the dance medicine literature. As dancers notoriously underestimate time needed to return to dance, it can be suggested that early return to work is a contributing factor to chronic injury. Further research is needed regarding the incidence and nature of injury to the thigh among dancers.

  14. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Tingqing Guo

    Full Text Available Myostatin (Mstn is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Mstn(-/- mice have a dramatic increase in muscle mass, reduction in fat mass, and resistance to diet-induced and genetic obesity. To determine how Mstn deletion causes reduced adiposity and resistance to obesity, we analyzed substrate utilization and insulin sensitivity in Mstn(-/- mice fed a standard chow. Despite reduced lipid oxidation in skeletal muscle, Mstn(-/- mice had no change in the rate of whole body lipid oxidation. In contrast, Mstn(-/- mice had increased glucose utilization and insulin sensitivity as measured by indirect calorimetry, glucose and insulin tolerance tests, and hyperinsulinemic-euglycemic clamp. To determine whether these metabolic effects were due primarily to the loss of myostatin signaling in muscle or adipose tissue, we compared two transgenic mouse lines carrying a dominant negative activin IIB receptor expressed specifically in adipocytes or skeletal muscle. We found that inhibition of myostatin signaling in adipose tissue had no effect on body composition, weight gain, or glucose and insulin tolerance in mice fed a standard diet or a high-fat diet. In contrast, inhibition of myostatin signaling in skeletal muscle, like Mstn deletion, resulted in increased lean mass, decreased fat mass, improved glucose metabolism on standard and high-fat diets, and resistance to diet-induced obesity. Our results demonstrate that Mstn(-/- mice have an increase in insulin sensitivity and glucose uptake, and that the reduction in adipose tissue mass in Mstn(-/- mice is an indirect result of metabolic changes in skeletal muscle. These data suggest that increasing muscle mass by administration of myostatin antagonists may be a promising therapeutic target for treating patients with obesity or diabetes.

  15. Differential involvement of orbital fat and extraocular muscles in graves' ophthalmopathy.

    Science.gov (United States)

    Wiersinga, Wilmar M; Regensburg, Noortje I; Mourits, Maarten P

    2013-03-01

    Graves' ophthalmopathy (GO) is characterized by swelling of orbital fat and extraocular muscles, but little attention has been given to differential involvement of fat and muscles. Advancements in imaging allow rather accurate measurements of orbital bony cavity volume (OV), fat volume (FV) and muscle volume (MV), and are the topics of this review. Ratios of FV/OV and MV/OV neutralize gender differences. In adult Caucasian controls, mean values ± SD of FV/OV are 0.56 ± 0.11 and of MV/OV are 0.15 ± 0.02. FV increases substantially and MV decreases slightly with advancing age, requiring age-specific reference ranges. In 95 consecutive untreated Caucasian GO patients, both FV and MV were within normal limits in 25%, increased FV but normal MV was present in 5%, normal FV but increased MV was detected in 61%, and both increased FV and MV was evident in 9%. Increased FV was associated with more proptosis and longer GO duration. Increased MV was associated with older age, more severe GO (more proptosis and diplopia, worse eye muscle ductions), higher TBII and current smoking. At the cellular and molecular level differential involvement of fat and muscles might be related to differences between fibroblast phenotypes and cytokine profiles in each compartment, to different orbital T cell subsets during the course of the disease and to peroxisome proliferator activator receptor-γ polymorphisms and modulation of 11β-hydroxysteroid dehydrogenase-1. Enlarged muscles are apparently a rather early phenomenon in GO, whereas increases in fat mass occur relatively late. Why a minor subset of GO patients presents with an increase of only fat remains poorly understood.

  16. Muscle lipid metabolism in two rabbit lines divergently selected for intramuscular fat.

    Science.gov (United States)

    Martínez-Álvaro, M; Agha, S; Blasco, A; Hernández, P

    2017-06-01

    A divergent selection experiment for intramuscular fat (IMF) of LM at 9 wk of age was performed in rabbits. The objective of this work was to compare the lipid metabolism in muscles and fat tissues of the high-IMF and low-IMF lines. Lipogenic, catabolic, and lipolytic activities were studied in 2 muscles with different oxidative patterns (LM and semimembranosus proprius) and in the perirenal fat depot at 2 ages, 9 and 13 wk. In addition, adipocytes were characterized in perirenal fat. In the fifth generation, direct response to selection was 0.26 g IMF/100 g muscle. Lines showed differences in their lipogenic activities of muscles and fat tissues at 13 wk but not at 9 wk. The high-IMF line showed greater glucose-6-phosphate dehydrogenase (G6PDH), malic enzyme (EM), and fatty acid synthase (FAS) activities in LM than the low-IMF line, with probabilities = 1.00, 0.93, and 0.90, respectively. Differences between lines were particularly great for G6PDH activity, representing 1.13 SD. The high-IMF line also showed greater G6PDH and FAS activities in semimembranosus proprius (P = 0.98 for G6PDH and 0.95 for FAS) and perirenal fat (P = 0.91 for G6PDH and 0.96 for FAS). However, in perirenal fat, EM activity was greater in the low-IMF line (P = 0.90). No differences between lines were found in almost any catabolic or lipolytic activities of muscles. Regarding adipocyte characteristics, the high-IMF line showed larger adipocytes in perirenal fat depot tissue (P = 0.97) compared to the low-IMF line, but no differences between lines were observed in the number of adipocytes. This study sheds light on the metabolic activities involved in the genetic differentiation of lipid deposition in rabbits. This study shows that lipogenic activities in muscles and fat tissues, in particular G6PDH in LM, are involved in the lipid accumulation in muscle and adipose tissues.

  17. Functional Capacity, Muscle Fat Infiltration, Power Output, and Cognitive Impairment in Institutionalized Frail Oldest Old

    Science.gov (United States)

    Casas-Herrero, Alvaro; Cadore, Eduardo L.; Zambom-Ferraresi, Fabricio; Idoate, Fernando; Millor, Nora; Martínez-Ramirez, Alicia; Gómez, Marisol; Rodriguez-Mañas, Leocadio; Marcellán, Teresa; de Gordoa, Ana Ruiz; Marques, Mário C.

    2013-01-01

    Abstract This study examined the neuromuscular and functional performance differences between frail oldest old with and without mild cognitive impairment (MCI). In addition, the associations between functional capacities, muscle mass, strength, and power output of the leg muscles were also examined. Forty-three elderly men and women (91.9±4.1 years) were classified into three groups—the frail group, the frail with MCI group (frail+MCI), and the non-frail group. Strength tests were performed for upper and lower limbs. Functional tests included 5-meter habitual gait, timed up-and-go (TUG), dual task performance, balance, and rise from a chair ability. Incidence of falls was assessed using questionnaires. The thigh muscle mass and attenuation were assessed using computed tomography. There were no differences between the frail and frail+MCI groups for all the functional variables analyzed, except in the cognitive score of the TUG with verbal task, which frail showed greater performance than the frail+MCI group. Significant associations were observed between the functional performance, incidence of falls, muscle mass, strength, and power in the frail and frail+MCI groups (r=−0.73 to r=0.83, p<0.01 to p<0.05). These results suggest that the frail oldest old with and without MCI have similar functional and neuromuscular outcomes. Furthermore, the functional outcomes and incidences of falls are associated with muscle mass, strength, and power in the frail elderly population. PMID:23822577

  18. Dietary conjugated linoleic acid modify gene expression in liver, muscles, and fat tissues of finishing pigs.

    Science.gov (United States)

    Tous, N; Theil, P K; Lauridsen, C; Lizardo, R; Vilà, B; Esteve-Garcia, E

    2012-12-01

    The aim of this study was to investigate underlying mechanisms of dietary conjugated linoleic acid (CLA) on lipid metabolism in various tissues of pigs. Sixteen gilts (73 ± 3 kg) were fed a control (containing sunflower oil) or an experimental diet in which 4% of sunflower oil was replaced by CLA, and slaughtered at an average BW of 117 ± 4.9 kg. Transcription of peroxisome proliferator-activated receptor alpha (PPARα), peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid synthase (FAS), sterol regulatory element binding protein (SREBP1), acetyl-CoA carboxylase (ACC), lipoprotein lipase (LPL), delta-6-desaturase (D6D), and stearoyl CoA desaturase (SCD) were determined by real-time PCR in longissimus thoracis (LT) and semimembranosus (SM) muscles, LT subcutaneous and SM intermuscular fat, and in the liver. Fatty acid (FA) composition was analyzed using gas chromatography in these tissues, except for SM intermuscular fat. Dietary CLA increased PPARγ in LT muscle (P tissues studied (P muscle and liver (SREBP1, both P muscle and reduced (P muscle and intermuscular fat. Saturated FA were increased in all studied tissues (P tissue-specific way by CLA. It was concluded that dietary CLA affected transcription of genes and fat metabolism in a tissue-specific manner.

  19. Effect of ethyl pyruvate on skeletal muscle metabolism in rats fed on a high fat diet.

    Science.gov (United States)

    Olek, Robert A; Ziolkowski, Wieslaw; Wierzba, Tomasz H; Kaczor, Jan J

    2013-07-01

    Impaired mitochondrial capacity may be implicated in the pathology of chronic metabolic diseases. To elucidate the effect of ethyl pyruvate supplementation on skeletal muscles metabolism we examined changes in activities of mitochondrial and antioxidant enzymes, as well as sulfhydryl groups oxidation (an indirect marker of oxidative stress) during the development of obesity. After 6 weeks feeding of control or high fat diet, Wistar rats were divided into four groups: control diet, control diet and ethyl pyruvate, high fat diet, and high fat diet and ethyl pyruvate. Ethyl pyruvate was administered as 0.3% solution in drinking water, for the following 6 weeks. High fat diet feeding induced the increase of activities 3-hydroxyacylCoA dehydrogenase, citrate synthase, and fumarase. Moreover, higher catalase and superoxide dismutase activities, as well as sulfhydryl groups oxidation, were noted. Ethyl pyruvate supplementation did not affect the mitochondrial enzymes' activities, but induced superoxide dismutase activity and sulfhydryl groups oxidation. All of the changes were observed in soleus muscle, but not in extensor digitorum longus muscle. Additionally, positive correlations between fasting blood insulin concentration and activities of catalase (p = 0.04), and superoxide dismutase (p = 0.01) in soleus muscle were noticed. Prolonged ethyl pyruvate consumption elevated insulin concentration, which may cause modifications in oxidative type skeletal muscles.

  20. Fatty acid composition of muscle fat and enzymes of storage lipid synthesis in whole muscle from beef cattle.

    Science.gov (United States)

    Kazala, E Chris; Lozeman, Fred J; Mir, Priya S; Aalhus, Jennifer L; Schmutz, Sheila M; Weselake, Randall J

    2006-11-01

    Enhanced intramuscular fat content (i.e., marbling) in beef is a desirable trait, which can result in increased product value. This study was undertaken with the aim of revealing biochemical factors associated with the marbling trait in beef cattle. Samples of longissimus lumborum (LL) and pars costalis diaphragmatis (PCD) were taken from a group of intact crossbred males and females at slaughter, lipids extracted, and the resulting FAME examined for relationships with marbling fat deposition. For LL, significant associations were found between degree of marbling and myristic (14:0, r = 0.55, P muscle were assayed for diacylglycerol acyltransferase (DGAT), lysophosphatidic acid acyltransferase (LPAAT), and phosphatidic acid phosphatase-1 (PAP-1) activity, and the results examined for relationships with degree of intramuscular fat deposition. None of the enzyme activities from PCD displayed an association with marbling fat content, but DGAT specific activity showed significant positive associations with LPAAT (r = 0.54, P muscle tissues provide insight into possible enzyme action associated with the production of specific FA. The increased proportion of oleic acid associated with enhanced lipid content of whole muscle is noteworthy given the known health benefits of this FA.

  1. Pelvic Primary Staphylococcal Infection Presenting as a Thigh Abscess

    Directory of Open Access Journals (Sweden)

    T. O. Abbas

    2013-01-01

    Full Text Available Intra-abdominal disease can present as an extra-abdominal abscess and can follow several routes, including the greater sciatic foramen, obturator foramen, femoral canal, pelvic outlet, and inguinal canal. Nerves and vessels can also serve as a route out of the abdomen. The psoas muscle extends from the twelfth thoracic and fifth lower lumbar vertebrae to the lesser trochanter of the femur, which means that disease in this muscle group can migrate along the muscle, out of the abdomen, and present as a thigh abscess. We present a case of a primary pelvic staphylococcal infection presenting as a thigh abscess. The patient was a 60-year-old man who presented with left posterior thigh pain and fever. Physical examination revealed a diffusely swollen left thigh with overlying erythematous, shiny, and tense skin. X-rays revealed no significant soft tissue lesions, ultrasound was suggestive of an inflammatory process, and MRI showed inflammatory changes along the left hemipelvis and thigh involving the iliacus muscle group, left gluteal region, and obturator internus muscle. The abscess was drained passively via two incisions in the posterior left thigh, releasing large amounts of purulent discharge. Subsequent bacterial culture revealed profuse growth of Staphylococcus aureus. The patient recovered uneventfully except for a moderate fever on the third postoperative day.

  2. Pelvic primary staphylococcal infection presenting as a thigh abscess.

    Science.gov (United States)

    Abbas, T O

    2013-01-01

    Intra-abdominal disease can present as an extra-abdominal abscess and can follow several routes, including the greater sciatic foramen, obturator foramen, femoral canal, pelvic outlet, and inguinal canal. Nerves and vessels can also serve as a route out of the abdomen. The psoas muscle extends from the twelfth thoracic and fifth lower lumbar vertebrae to the lesser trochanter of the femur, which means that disease in this muscle group can migrate along the muscle, out of the abdomen, and present as a thigh abscess. We present a case of a primary pelvic staphylococcal infection presenting as a thigh abscess. The patient was a 60-year-old man who presented with left posterior thigh pain and fever. Physical examination revealed a diffusely swollen left thigh with overlying erythematous, shiny, and tense skin. X-rays revealed no significant soft tissue lesions, ultrasound was suggestive of an inflammatory process, and MRI showed inflammatory changes along the left hemipelvis and thigh involving the iliacus muscle group, left gluteal region, and obturator internus muscle. The abscess was drained passively via two incisions in the posterior left thigh, releasing large amounts of purulent discharge. Subsequent bacterial culture revealed profuse growth of Staphylococcus aureus. The patient recovered uneventfully except for a moderate fever on the third postoperative day.

  3. Impact of maternal dietary fat supplementation during gestation upon skeletal muscle in neonatal pigs.

    Science.gov (United States)

    Fainberg, Hernan P; Almond, Kayleigh L; Li, Dongfang; Rauch, Cyril; Bikker, Paul; Symonds, Michael E; Mostyn, Alison

    2014-08-27

    Maternal diet during pregnancy can modulate skeletal muscle development of the offspring. Previous studies in pigs have indicated that a fat supplemented diet during pregnancy can improve piglet outcome, however, this is in contrast to human studies suggesting adverse effects of saturated fats during pregnancy. This study aimed to investigate the impact of a fat supplemented (palm oil) "high fat" diet on skeletal muscle development in a porcine model. Histological and metabolic features of the biceps femoris muscle obtained from 7-day-old piglets born to sows assigned to either a commercial (C, n = 7) or to an isocaloric fat supplementation diet ("high fat" HF, n = 7) during pregnancy were assessed. Offspring exposed to a maternal HF diet demonstrated enhanced muscular development, reflected by an increase in fractional growth rate, rise in myofibre cross-sectional area, increased storage of glycogen and reduction in lipid staining of myofibres. Although both groups had similar intramuscular protein and triglyceride concentrations, the offspring born to HF mothers had a higher proportion of arachidonic acid (C20:4n6) and a reduction in α-linolenic acid (C18:3n3) compared to C group offspring. The HF group muscle also exhibited a higher ratio of C20:3n6 to C20:4n6 and total n-6 to n-3 in conjunction with up-regulation of genes associated with free fatty acid uptake and biogenesis. In conclusion, a HF gestational diet accelerates the maturation of offspring biceps femoris muscle, reflected in increased glycolytic metabolism and fibre cross sectional area, differences accompanied with a potential resetting of myofibre nutrient uptake.

  4. Follistatin N terminus differentially regulates muscle size and fat in vivo.

    Science.gov (United States)

    Zheng, Hui; Qiao, Chunping; Tang, Ruhang; Li, Jianbin; Bulaklak, Karen; Huang, Zhenhua; Zhao, Chunxia; Dai, Yi; Li, Juan; Xiao, Xiao

    2017-09-15

    Delivery of follistatin (FST) represents a promising strategy for both muscular dystrophies and diabetes, as FST is a robust antagonist of myostatin and activin, which are critical regulators of skeletal muscle and adipose tissues. FST is a multi-domain protein, and deciphering the function of different domains will facilitate novel designs for FST-based therapy. Our study aims to investigate the role of the N-terminal domain (ND) of FST in regulating muscle and fat mass in vivo. Different FST constructs were created and packaged into the adeno-associated viral vector (AAV). Overexpression of wild-type FST in normal mice greatly increased muscle mass while decreasing fat accumulation, whereas overexpression of an N terminus mutant or N terminus-deleted FST had no effect on muscle mass but moderately decreased fat mass. In contrast, FST-I-I containing the complete N terminus and double domain I without domain II and III had no effect on fat but increased skeletal muscle mass. The effects of different constructs on differentiated C2C12 myotubes were consistent with the in vivo finding. We hypothesized that ND was critical for myostatin blockade, mediating the increase in muscle mass, and was less pivotal for activin binding, which accounts for the decrease in the fat tissue. An in vitro TGF-beta1-responsive reporter assay revealed that FST-I-I and N terminus-mutated or -deleted FST showed differential responses to blockade of activin and myostatin. Our study provided direct in vivo evidence for a role of the ND of FST, shedding light on future potential molecular designs for FST-based gene therapy.

  5. Aliskiren Reduces Hepatic steatosis and Epididymal Fat Mass and Increases Skeletal Muscle Insulin Sensitivity in High-Fat Diet-Fed Mice

    National Research Council Canada - National Science Library

    Lee, Kuei-Chuan; Hsieh, Yun-Cheng; Yang, Ying-Ying; Chan, Che-Chang; Huang, Yi-Hsiang; Lin, Han-Chieh

    2016-01-01

    .... Aliskiren reduced systemic insulin resistance, hepatic steatosis, epididymal fat mass and increased gastrocnemius muscle glucose transporter type 4 levels with lower tissue angiotensin II levels in the HFD-fed mice...

  6. Dietary fat influences the expression of contractile and metabolic genes in rat skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Wataru Mizunoya

    Full Text Available Dietary fat plays a major role in obesity, lipid metabolism, and cardiovascular diseases. To determine whether the intake of different types of dietary fats affect the muscle fiber types that govern the metabolic and contractile properties of the skeletal muscle, we fed male Wistar rats with a 15% fat diet derived from different fat sources. Diets composed of soybean oil (n-6 polyunsaturated fatty acids (PUFA-rich, fish oil (n-3 PUFA-rich, or lard (low in PUFAs were administered to the rats for 4 weeks. Myosin heavy chain (MyHC isoforms were used as biomarkers to delineate the skeletal muscle fiber types. Compared with soybean oil intake, fish oil intake showed significantly lower levels of the fast-type MyHC2B and higher levels of the intermediate-type MyHC2X composition in the extensor digitorum longus (EDL muscle, which is a fast-type dominant muscle. Concomitantly, MyHC2X mRNA levels in fish oil-fed rats were significantly higher than those observed in the soybean oil-fed rats. The MyHC isoform composition in the lard-fed rats was an intermediate between that of the fish oil and soybean oil-fed rats. Mitochondrial uncoupling protein 3, pyruvate dehydrogenase kinase 4, and porin mRNA showed significantly upregulated levels in the EDL of fish oil-fed rats compared to those observed in soybean oil-fed and lard-fed rats, implying an activation of oxidative metabolism. In contrast, no changes in the composition of MyHC isoforms was observed in the soleus muscle, which is a slow-type dominant muscle. Fatty acid composition in the serum and the muscle was significantly influenced by the type of dietary fat consumed. In conclusion, dietary fat affects the expression of genes related to the contractile and metabolic properties in the fast-type dominant skeletal muscle, where the activation of oxidative metabolism is more pronounced after fish oil intake than that after soybean oil intake.

  7. Intramuscular fat in lamb muscle and the impact of selection for improved carcass lean meat yield.

    Science.gov (United States)

    Anderson, F; Pannier, L; Pethick, D W; Gardner, G E

    2015-06-01

    Intramuscular fat percentage (IMF%) has been shown to have a positive influence on the eating quality of red meat. Selection of Australian lambs for increased lean tissue and reduced carcass fatness using Australian Sheep Breeding Values has been shown to decrease IMF% of the Muscularis longissimus lumborum. The impact this selection has on the IMF% of other muscle depots is unknown. This study examined IMF% in five different muscles from 400 lambs (M. longissimus lumborum, Muscularis semimembranosus, Muscularis semitendinosus, Muscularis supraspinatus, Muscularis infraspinatus). The sires of these lambs had a broad range in carcass breeding values for post-weaning weight, eye muscle depth and fat depth over the 12th rib (c-site fat depth). Results showed IMF% to be highest in the M. supraspinatus (4.87 ± 0.1, Plambs born as multiples and raised as singles. For each per cent increase in lean meat yield percentage (LMY%), there was a reduction in IMF% of 0.16 in all five muscles examined. Given the drive within the lamb industry to improve LMY%, our results indicate the importance of continued monitoring of IMF% throughout the different carcass regions, given its importance for eating quality.

  8. Impact of maternal dietary fat supplementation during gestation upon skeletal muscle in neonnatal pigs

    NARCIS (Netherlands)

    Fainberg, H.P.; Almond, K.L.; Li DongFang Rauch, C.; Bikker, P.; Symonds, M.E.; Mostyn, A.

    2014-01-01

    Background Maternal diet during pregnancy can modulate skeletal muscle development of the offspring. Previous studies in pigs have indicated that a fat supplemented diet during pregnancy can improve piglet outcome, however, this is in contrast to human studies suggesting adverse effects of saturated

  9. Intramuscular fat in the longissimus muscle is reduced in lambs from sires selected for leanness.

    Science.gov (United States)

    Pannier, L; Pethick, D W; Geesink, G H; Ball, A J; Jacob, R H; Gardner, G E

    2014-02-01

    Selection for lean growth through Australian Sheep Breeding Values (ASBVs) for post weaning weight (PWWT), eye muscle depth (PEMD) and c-site fat depth (PFAT) raises concerns regarding declining intramuscular fat (IMF) levels. Reducing PFAT decreased IMF by 0.84% for Terminal sired lambs. PEMD decreased IMF by 0.18% across all sire types. Female lambs had higher IMF levels and this was unexplained by total carcass fatness. The negative phenotypic association between measures of muscling (shortloin muscle weight, eye muscle area) and IMF, and positive association between fatness and IMF, was consistent with other literature. Hot carcass weight increased IMF by 2.08% between 12 and 40 kg, reflective of development of IMF as lambs approach maturity. Selection objectives with low PFAT sires will reduce IMF, however the lower impact of PEMD and absence of a PWWT effect, will enable continued selection for lean growth without influencing IMF. Alternatively, the negative impact of PFAT could be off-set by inclusion of an IMF ASBV. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Three-dimensional comparison of intramuscular fat content between young and old adults.

    Science.gov (United States)

    Yoshiko, Akito; Hioki, Maya; Kanehira, Nana; Shimaoka, Kiyoshi; Koike, Teruhiko; Sakakibara, Hisataka; Oshida, Yoshiharu; Akima, Hiroshi

    2017-02-10

    Fat infiltration within skeletal muscle is known as intramuscular fat (IMF), which increases with aging. Studies have assessed IMF content, using the mid-thigh as a representative location. However, three-dimensional IMF distribution is not well understood. The aim of this study was to compare the IMF content in young and old adults by assessing its distribution along the length of the thigh. Consecutive transaxial images of the right thighs in 15 young (age, 21.0 ± 0.4) and 15 old (age, 70.7 ± 3.8) were obtained by magnetic resonance imaging. We measured IMF cross-sectional area (CSA), skeletal muscle CSA and calculated volume- and CSA-based IMF content for the quadriceps femoris (QF), hamstring (HM) and adductor (AD). CSA-based calculations were performed at every 10% of femur length (Lf), with 0% Lf and 100% Lf indicating the proximal and distal ends of femur. IMF CSAs along the length of the thigh were similar in both age groups. In contrast, skeletal muscle CSAs in all three muscle groups were significantly lower in old adults than in young adults (variation: -15.2 to -1.6 cm(2), P increase in IMF content-confirmed in areas of the thigh-primarily based on finding lower amounts of skeletal muscle mass in CSAs in the older adults.

  11. Factors regulating fat oxidation in human skeletal muscle

    DEFF Research Database (Denmark)

    Kiens, Bente; Alsted, Thomas Junker; Jeppesen, Jacob

    2011-01-01

    In modern societies, oversupply of calories leads to obesity and chronic metabolic stress, which may lead to development of disease. Oversupply of calories is often associated with elevated plasma lipid concentrations and accumulation of lipids in skeletal muscle leading to decreased insulin...

  12. Muscle structural changes in mitochondrial myopathy relate to genotype

    DEFF Research Database (Denmark)

    Olsen, David B.; Langkilde, Annika Reynberg; Ørngreen, Mette C.

    2003-01-01

    It is well known that morphological changes at the cellular level occur in muscle of patients with mitochondrial myopathy (MM), but changes in muscle structure with fat infiltration and gross variation of muscle fiber size with giant fibers, normally encountered in the muscular dystrophies, have...... typically not been associated with mitochondrial disease. We investigated gross and microscopic muscle morphology in thigh muscles by muscle biopsy and MRI in 16 patients with MM, and compared findings with those obtained in muscular dystrophy patients and healthy subjects. Changes of muscle architecture...

  13. Chemical shift-based MRI to measure fat fractions in dystrophic skeletal muscle

    Science.gov (United States)

    Triplett, William T.; Baligand, Celine; Forbes, Sean C.; Willcocks, Rebecca J.; Lott, Donovan J.; DeVos, Soren; Pollaro, Jim; Rooney, William D.; Sweeney, H. Lee; Bönnemann, Carsten; Wang, Dah-Jyuu; Vandenborne, Krista; Walter, Glenn A.

    2014-01-01

    Purpose The relationship between FF determined based on multiple TE, unipolar GE images and 1H-MRS was evaluated using different models for fat-water decomposition, signal-to-noise ratios (SNR), and excitation flip angles. Methods A combination of single voxel proton spectroscopy (1H-MRS) and gradient echo (GE) imaging was used to determine muscle fat fractions (FF) in both normal and dystrophic muscles. In order to cover a large range of FF, the soleus and vastus lateralis muscles of 22 unaffected control (CON), 16 subjects with Collagen VI (COL6), and 71 subjects with Duchenne muscular dystrophy (DMD) were studied. 1H-MRS based FF were corrected for the increased muscle 1H2O T1 and T2 values observed in dystrophic muscles. Results Excellent agreement was found between co-registered FF derived from GE images fit to a multipeak model with noise bias correction and the relaxation corrected 1H-MRS FF (y= 0.93×+0.003; R2=0.96) across the full range of FF. Relaxation corrected 1H-MRS FF and imaging based FF were significantly elevated (pmuscles. Conclusion FF, T2, and T1 were all sensitive to muscle involvement in dystrophic muscle. MRI offered an additional advantage over single voxel spectroscopy in that the tissue heterogeneity in FF could be readily determined. PMID:24006208

  14. Skeletal muscle TLR4 and TACE are associated with body fat percentage in older adults.

    Science.gov (United States)

    Timmerman, Kyle L; Connors, Ian D; Deal, Michael A; Mott, Rachael E

    2016-04-01

    Elevated skeletal muscle expression of toll-like receptor 4 (TLR4) has been linked to increased inflammation in clinical populations. TNFα converting enzyme (TACE), which cleaves membrane-bound TNFα (mTNFα) to its soluble (sTNFα) and more bioactive form, has been linked to chronic disease. In contrast, higher physical activity level is associated with decreased chronic disease risk and inflammation. The purpose of the present study was to examine the relationship between physical activity and skeletal muscle TLR4, TACE, and TNFα in older adults. In 26 older adults (age = 68 ± 4 years, body mass index = 26 ± 3 kg·m(-2)), self-reported physical activity (kcal·week(-1)), estimated maximal oxygen consumption, and body composition (air plethysmography) were measured. TLR4, TACE, mTNFα, and sTNFα were measured in skeletal muscle biopsies (vastus lateralis) using western blot analyses. Pearson product-moment correlations were run between variables. Significance was set at p muscle TACE was directly associated with sTNFα (r = 0.53, p fat was directly associated with skeletal muscle TLR4 (r = 0.52, p fat was directly associated with TLR4 and TACE expression in skeletal muscle of older adults. These findings suggest that elevated skeletal muscle expression of TLR4 and TACE may contribute to the augmented inflammation and chronic disease risk observed with increased adiposity.

  15. Independent Aftereffects of Fat and Muscle: Implications for neural encoding, body space representation, and body image disturbance.

    Science.gov (United States)

    Sturman, Daniel; Stephen, Ian D; Mond, Jonathan; Stevenson, Richard J; Brooks, Kevin R

    2017-01-10

    Although research addressing body size misperception has focused on socio-cognitive processes, such as internalization of the "ideal" images of bodies in the media, the perceptual basis of this phenomenon remains largely unknown. Further, most studies focus on body size per se even though this depends on both fat and muscle mass - variables that have very different relationships with health. We tested visual adaptation as a mechanism for inducing body fat and muscle mass misperception, and assessed whether these two dimensions of body space are processed independently. Observers manipulated the apparent fat and muscle mass of bodies to make them appear "normal" before and after inspecting images from one of four adaptation conditions (increased fat/decreased fat/increased muscle/decreased muscle). Exposure resulted in a shift in the point of subjective normality in the direction of the adapting images along the relevant (fat or muscle) axis, suggesting that the neural mechanisms involved in body fat and muscle perception are independent. This supports the viability of adaptation as a model of real-world body size misperception, and extends its applicability to clinical manifestations of body image disturbance that entail not only preoccupation with thinness (e.g., anorexia nervosa) but also with muscularity (e.g., muscle dysmorphia).

  16. Independent Aftereffects of Fat and Muscle: Implications for neural encoding, body space representation, and body image disturbance

    Science.gov (United States)

    Sturman, Daniel; Stephen, Ian D.; Mond, Jonathan; Stevenson, Richard J; Brooks, Kevin R.

    2017-01-01

    Although research addressing body size misperception has focused on socio-cognitive processes, such as internalization of the “ideal” images of bodies in the media, the perceptual basis of this phenomenon remains largely unknown. Further, most studies focus on body size per se even though this depends on both fat and muscle mass – variables that have very different relationships with health. We tested visual adaptation as a mechanism for inducing body fat and muscle mass misperception, and assessed whether these two dimensions of body space are processed independently. Observers manipulated the apparent fat and muscle mass of bodies to make them appear “normal” before and after inspecting images from one of four adaptation conditions (increased fat/decreased fat/increased muscle/decreased muscle). Exposure resulted in a shift in the point of subjective normality in the direction of the adapting images along the relevant (fat or muscle) axis, suggesting that the neural mechanisms involved in body fat and muscle perception are independent. This supports the viability of adaptation as a model of real-world body size misperception, and extends its applicability to clinical manifestations of body image disturbance that entail not only preoccupation with thinness (e.g., anorexia nervosa) but also with muscularity (e.g., muscle dysmorphia). PMID:28071712

  17. Plasma carnosine, but not muscle carnosine, attenuates high-fat diet-induced metabolic stress.

    Science.gov (United States)

    Stegen, Sanne; Stegen, Bram; Aldini, Giancarlo; Altomare, Alessandra; Cannizzaro, Luca; Orioli, Marica; Gerlo, Sarah; Deldicque, Louise; Ramaekers, Monique; Hespel, Peter; Derave, Wim

    2015-09-01

    There is growing in vivo evidence that the dipeptide carnosine has protective effects in metabolic diseases. A critical unanswered question is whether its site of action is tissues or plasma. This was investigated using oral carnosine versus β-alanine supplementation in a high-fat diet rat model. Thirty-six male Sprague-Dawley rats received a control diet (CON), a high-fat diet (HF; 60% of energy from fat), the HF diet with 1.8% carnosine (HFcar), or the HF diet with 1% β-alanine (HFba), as β-alanine can increase muscle carnosine without increasing plasma carnosine. Insulin sensitivity, inflammatory signaling, and lipoxidative stress were determined in skeletal muscle and blood. In a pilot study, urine was collected. The 3 HF groups were significantly heavier than the CON group. Muscle carnosine concentrations increased equally in the HFcar and HFba groups, while elevated plasma carnosine levels and carnosine-4-hydroxy-2-nonenal adducts were detected only in the HFcar group. Elevated plasma and urine N(ε)-(carboxymethyl)lysine in HF rats was reduced by ∼50% in the HFcar group but not in the HFba group. Likewise, inducible nitric oxide synthase mRNA was decreased by 47% (p muscle carnosine, is involved in preventing early-stage lipoxidation in the circulation and inflammatory signaling in the muscle of rats.

  18. Muscle fat content and abdominal adipose tissue distribution investigated by magnetic resonance spectroscopy and imaging in obese children and youths

    DEFF Research Database (Denmark)

    Fonvig, Cilius E; Bille, Dorthe S; Chabanova, Elizaveta

    2012-01-01

    The degree of fat deposition in muscle and its implications for obesity-related complications in children and youths are not well understood. One hundred and fifty-nine patients (mean age: 13.3 years; range: 6-20) with a body mass index (BMI) >90(th) percentile for age and sex were included. Muscle...... fat content (MFC) was measured in the psoas muscle by proton magnetic resonance spectroscopy. The patients were assigned to two groups: MFC...

  19. Skeletal Muscle and Liver Lipidomics and the Regulation of FAT/CD36

    DEFF Research Database (Denmark)

    Jordy, Andreas Børsting

    . This peripheral intramyocellular and intrahepatic lipid accumulation is associated with tissue-specific and whole body insulin resistance and, in the case of the liver non-alcoholic fatty liver disease. Studies show that regular exercise can reduce hepatic lipid content and enhance liver health. In high-fat diet...... that the current worldwide obesity epidemic has resulted in the increased prevalence of “metabolic disease clusters”, including type 2 diabetes, fatty liver disease and dyslipidemia. Excessive plasma lipids can result in the accumulation of lipid metabolites at ectopic sites including skeletal muscle and liver...... induced obesity in mice, we observed an increased muscle and liver lipid content, analyzed by mass spectrometry, concomitant with decreased glucose tolerance. We observed that treadmill exercise-training in high-fat fed mice resulted in a reduction in the lipid content in the liver, but not in muscle...

  20. Haemodynamic responses to exercise, ATP infusion and thigh compression in humans: insight into the role of muscle mechanisms on cardiovascular function

    DEFF Research Database (Denmark)

    Gonzalez-Alonso, J.; Mortensen, S.P.; Jeppesen, Tina Dysgaard

    2008-01-01

    increased blood flow (DeltaLBF 0.5-0.7 l min(-1)) without altering (.)Q, MAP or (.)VO2. These findings suggest that the skeletal muscle pump is not obligatory for sustaining venous return, central venous pressure,stroke volume and (.)Q or maintaining muscle blood flow during one-legged exercise in humans......The muscle pump and muscle vasodilatory mechanism are thought to play important roles in increasing and maintaining muscle perfusion and cardiac output ((.)Q) during exercise, but their actual contributions remain uncertain. To evaluate the role of the skeletal muscle pump and vasodilatation...... on cardiovascular function during exercise, we determined leg and systemic haemodynamic responses in healthy men during (1) incremental one-legged knee-extensor exercise, (2) step-wise femoral artery ATP infusion at rest, (3) passive exercise (n=10), (4)femoral vein or artery ATP infusion (n=6), and (5) cyclic...

  1. Accurate NIRS measurement of muscle oxygenation by correcting the influence of a subcutaneous fat layer

    Science.gov (United States)

    Yamamoto, Katsuyuki; Niwayama, Masatsugu; Lin, Ling; Shiga, Toshikazu; Kudo, Nobuki; Takahashi, Makoto

    1998-01-01

    Although the inhomogeneity of tissue structure affects the sensitivity of tissue oxygenation measurement by reflectance near-infrared spectroscopy, few analyses of this effect have been reported. In this study, the influence of a subcutaneous fat layer on muscle oxygenation measurement was investigated by Monte Carlo simulation and experimental studies. In the experiments, measurement sensitivity was examined by measuring the falling rate of oxygenation in occlusion tests on the forearm using a tissue oxygen monitor. The fat layer thickness was measured by ultrasonography. Results of the simulation and occlusion tests clearly showed that the presence of a fat layer greatly decreases the measurement sensitivity and increases the light intensity at the detector. The correction factors of sensitivity were obtained from this relationship and were successfully validated by experiments on 12 subjects whose fat layer thickness ranged from 3.5 to 8 mm.

  2. A Case of Acute Atraumatic Compartment Syndrome of the Thigh.

    Science.gov (United States)

    Gutfraynd, Alexander; Philpott, Sheila

    2016-09-01

    In the absence of trauma, compartment syndrome of the thigh is rare. Several case reports have described compartment syndrome in the presence of trauma, comorbid medical conditions, and acute muscle overuse. Very few reports have demonstrated an acute onset of atraumatic thigh compartment syndrome. A 24-year-old man presented to the Emergency Department (ED) with a painful and swollen left thigh immediately after a night of dancing at a concert. He was found to have an elevated intracompartmental quadriceps pressure of 45 mm Hg in the ED, which led to his transfer to the operating room for an emergent fasciotomy. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Although acute, atraumatic compartment syndrome of the thigh is a rare entity, failure to diagnose it promptly can lead to muscle necrosis, permanent neurologic deficits, and amputation. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Acute compartment syndrome of the thigh in a rugby player

    Science.gov (United States)

    Smith, Richard David James; Rust-March, Holly; Kluzek, Stefan

    2015-01-01

    In the absence of obvious trauma, diagnosis of acute compartment syndrome (ACS) of the thigh can easily be delayed, as disproportional pain is not always present. We present a case of ACS of the anterior right thigh compartment in a healthy, semiprofessional rugby player with normal coagulation, who sustained a seemingly innocuous blow during a rugby match. Following early surgical fasciotomy, he returned to his preinjury playing standards within 12 months. Our literature review suggests that high muscle mass, young, athletic males participating in a contact sport are mostly at risk of developing ACS of the thigh. PMID:26250368

  4. (-)-Epigallocatechin-3-gallate increases the expression of genes related to fat oxidation in the skeletal muscle of high fat-fed mice.

    Science.gov (United States)

    Sae-Tan, Sudathip; Grove, Kimberly A; Kennett, Mary J; Lambert, Joshua D

    2011-02-01

    (-)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been shown to prevent the development of obesity in rodent models. Here, we examined the effect of EGCG on markers of fat oxidation in high fat-fed C57bl/6J mice. High fat-fed mice treated with 0.32% dietary EGCG for 16 weeks had reduced body weight gain and final body weight (19.2% and 9.4%, respectively) compared to high fat-fed controls. EGCG-treatment decreased fasting blood glucose, plasma insulin, and insulin resistance by 18.5%, 25.3%, and 33.9%, respectively. EGCG treatment also reduced markers of obesity-related fatty liver disease in high fat-fed mice. Gene expression analysis of skeletal muscle showed that EGCG increased mRNA levels of nuclear respiratory factor (nrf)1, medium chain acyl coA decarboxylase (mcad), uncoupling protein (ucp)3, and peroxisome proliferator responsive element (ppar)α by 1.4-1.9-fold compared to high fat-fed controls. These genes are all related to mitochondrial fatty acid oxidation. In addition, EGCG increased fecal excretion of lipids in high fat-fed mice. In summary, it appears that EGCG modulates body weight gain in high fat-fed mice both by increasing the expression of genes related fat oxidation in the skeletal muscle and by modulating fat absorption from the diet.

  5. Maternal High Fat Diet Alters Skeletal Muscle Mitochondrial Catalytic Activity in Adult Male Rat Offspring

    Science.gov (United States)

    Pileggi, Chantal A.; Hedges, Christopher P.; Segovia, Stephanie A.; Markworth, James F.; Durainayagam, Brenan R.; Gray, Clint; Zhang, Xiaoyuan D.; Barnett, Matthew P. G.; Vickers, Mark H.; Hickey, Anthony J. R.; Reynolds, Clare M.; Cameron-Smith, David

    2016-01-01

    A maternal high-fat (HF) diet during pregnancy can lead to metabolic compromise, such as insulin resistance in adult offspring. Skeletal muscle mitochondrial dysfunction is one mechanism contributing to metabolic impairments in insulin resistant states. Therefore, the present study aimed to investigate whether mitochondrial dysfunction is evident in metabolically compromised offspring born to HF-fed dams. Sprague-Dawley dams were randomly assigned to receive a purified control diet (CD; 10% kcal from fat) or a high fat diet (HFD; 45% kcal from fat) for 10 days prior to mating, throughout pregnancy and during lactation. From weaning, all male offspring received a standard chow diet and soleus muscle was collected at day 150. Expression of the mitochondrial transcription factors nuclear respiratory factor-1 (NRF1) and mitochondrial transcription factor A (mtTFA) were downregulated in HF offspring. Furthermore, genes encoding the mitochondrial electron transport system (ETS) respiratory complex subunits were suppressed in HF offspring. Moreover, protein expression of the complex I subunit, NDUFB8, was downregulated in HF offspring (36%), which was paralleled by decreased maximal catalytic linked activity of complex I and III (40%). Together, these results indicate that exposure to a maternal HF diet during development may elicit lifelong mitochondrial alterations in offspring skeletal muscle. PMID:27917127

  6. Dissociation between PGC-1alpha and GLUT-4 expression in skeletal muscle of rats fed a high-fat diet.

    Science.gov (United States)

    Higashida, Kazuhiko; Higuchi, Mitsuru; Terada, Shin

    2009-12-01

    It has recently been reported that a 4-wk high-fat diet gradually increases skeletal muscle peroxisome proliferator activated receptor (PPAR) gamma coactivator-1alpha (PGC-1alpha) protein content, which has been suggested to regulate GLUT-4 gene transcription. However, it has not been reported that a high-fat diet enhances GLUT-4 mRNA expression and protein content in skeletal muscle, suggesting that an increase in PGC-1alpha protein content is not sufficient to induce muscle GLUT-4 biogenesis in a high-fat fed animal. Therefore, we first evaluated the relationship between PGC-1alpha and GLUT-4 expression in skeletal muscle of rats fed a high-fat diet for 4 wk. The PGC-1alpha protein content in rat epitrochlearis muscle significantly increased by twofold after the 4-wk high-fat diet feeding. However, the high-fat diet had no effect on GLUT-4 protein content and induced a 30% decrease in GLUT-4 mRNA expression in rat skeletal muscle (p<0.05). To clarify the mechanism by which a high-fat diet downregulates GLUT-4 mRNA expression, we next examined the effect of PPARdelta activation, which is known to occur in response to a high-fat diet, on GLUT-4 mRNA expression in L6 myotubes. Incubation with 500 nM GW501516 (PPARdelta activator) for 24 h significantly decreased GLUT-4 mRNA in L6 myotubes. Taken together, these findings suggest that a high-fat diet downregulates GLUT-4 mRNA, possibly through the activation of PPARdelta, despite an increase in PGC-1alpha protein content in rat skeletal muscle, and that a posttranscriptional regulatory mechanism maintains GLUT-4 protein content in skeletal muscle of rats fed a high-fat diet.

  7. Identification of a skeletal muscle-specific regulatory domain in the rat GLUT4/muscle-fat gene.

    Science.gov (United States)

    Richardson, J M; Pessin, J E

    1993-10-05

    To identify sequences responsible for the muscle-specific expression of the rat GLUT4/muscle-fat gene, we examined the transcriptional regulation of this gene in the differentiating murine C2C12 skeletal muscle cell line. Differentiated myofibers displayed a 4-5-fold increase in GLUT4 mRNA compared with undifferentiated myoblasts which paralleled the conversion from non-muscle beta-actin mRNA to muscle-specific alpha-actin mRNA expression. Transient transfection of progressive 5' and 3' deletions of the GLUT4 5'-flanking DNA identified a 281-base pair region located between -517 and -237 relative to the transcription start site which conferred myotube-specific expression. This region increased reporter activity in the context of the GLUT4 minimal promoter in an orientation-independent manner and, in addition, onto the heterologous thymidine kinase promoter. Myotube-specific expression of both GLUT4 reporter constructs and the endogenous mouse GLUT4 mRNA was also observed to be thyroid hormone-dependent. Further, cotransfection of reporter constructs containing the 281-base pair GLUT4 differentiation-specific enhancer with the thyroid hormone receptor specifically increased luciferase activity in myotubes approximately 12-fold. Thus, these data demonstrate the presence of a proximal skeletal muscle-specific activation domain that is necessary for both myotube-specific GLUT4 expression and thyroid hormone responsiveness.

  8. Contrasting cellularity on fat deposition in the subcutaneous adipose tissue and longissimus lumborum muscle from lean and fat pigs under dietary protein reduction.

    Science.gov (United States)

    Lopes, P A; Costa, A S H; Costa, P; Pires, V M R; Madeira, M S; Achega, F; Pinto, R M A; Prates, J A M

    2014-04-01

    The production of pork with high amounts of intramuscular fat (IMF) without an increase in subcutaneous fat is highly desirable for the pig industry and consumers. Herein, we question the impact of dietary protein reduction (18% v. 13%) on fat deposition in the subcutaneous adipose tissue (SAT) and longissimus lumborum (LL) muscle using genetically diverse pigs for body fatness (lean v. fat). A clear effect of genotype was observed on plasma insulin (P=0.004) and leptin (Pfat pigs having higher values. Accordingly, IMF was higher in the fat pigs, when compared with their lean counterparts (P=0.003), which was supported by enlarged adipocytes (Pincreased in pigs fed reduced protein diets, regardless of genotype, which is consistent with higher levels of plasma triacylglycerols (P=0.002). The gene-expression pattern of lipogenic factors in the SAT was distinct from the LL muscle. In the SAT, PPARG expression was similar among genotypes (P>0.05), whereas in the LL muscle it was higher in the lean pigs (P=0.023), especially when fed on low protein diet (P=0.057). The CEBPA and FABP4 mRNA levels were increased in the SAT of fat pigs (Pmuscle (P>0.05). The influence of diet on FABP4 expression in the SAT was dependent on pig's genetic background (P=0.005). In conclusion, fat deposition was clearly influenced by genotype and, to a lesser extent, by dietary protein level, the SAT being more sensitive than the LL muscle. One can speculate that the pathways involved in lipid metabolism are downregulated in intramuscular adipocytes when compared with SAT fat cells. This result might be a direct consequence of the relatively low proportion of adipocytes found in the LL muscle.

  9. Increased fat deposition in injured skeletal muscle is regulated by sex-specific hormones.

    Science.gov (United States)

    McHale, Matthew J; Sarwar, Zaheer U; Cardenas, Damon P; Porter, Laurel; Salinas, Anna S; Michalek, Joel E; McManus, Linda M; Shireman, Paula K

    2012-02-01

    Sex differences in skeletal muscle regeneration are controversial; comparisons of regenerative events between sexes have not been rigorously defined in severe injury models. We comprehensively quantified inflammation and muscle regeneration between sexes and manipulated sex-specific hormones to determine effects on regeneration. Cardiotoxin injury was induced in intact, castrated and ovariectomized female and male mice; ovariectomized mice were replaced with low- or high-dose 17-β estradiol (E(2)) or progesterone (P4). Extent of injury was comparable between intact mice, but females were more efficient in removal of necrotic debris, despite similar tissue levels of inflammatory cells and chemokines. Myofiber size during regeneration was equivalent between intact mice and after castration or ovariectomy (OVX) but was decreased (P muscle, whereas adipocyte area was increased among regenerated myofibers in all groups. Interestingly, intermuscular fat was greater (P = 0.03) in intact females at day 14 compared with intact males. Furthermore, castration increased (P = 0.01) and OVX decreased adipocyte accumulation. After OVX, E(2), but not P4, replacement decreased (P ≤ 0.03) fat accumulation. In conclusion, sex-dependent differences in regeneration consisted of more efficient removal of necrosis and increased fat deposition in females with similar injury, inflammation, and regenerated myofiber size; high-dose E(2) decreased myofiber size and fat deposition. Adipocyte accumulation in regenerating muscle was influenced by sex-specific hormones. Recovery following muscle injury was different between males and females, and sex-specific hormones contributed to these differences, suggesting that sex-specific treatments could be beneficial after injury.

  10. The diseasome of physical inactivity--and the role of myokines in muscle--fat cross talk

    DEFF Research Database (Denmark)

    Pedersen, Bente K

    2009-01-01

    Type 2 diabetes, cardiovascular diseases, colon cancer, breast cancer, dementia and depression constitute a cluster of diseases, which defines 'a diseasome of physical inactivity'. Both physical inactivity and abdominal adiposity, reflecting accumulation of visceral fat mass, are associated...... of exercise. The finding that muscles produce and release myokines provides a conceptual basis to understand the mechanisms whereby exercise influences metabolism and exerts anti-inflammatory effects. According to our theory, contracting skeletal muscles release myokines, which work in a hormone-like fashion......, exerting specific endocrine effects on visceral fat. Other myokines work locally within the muscle via paracrine mechanisms, exerting their effects on signalling pathways involved in fat oxidation....

  11. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Steven D Kunkel

    Full Text Available Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II, blood vessel recruitment (Vegfa and autocrine/paracrine IGF-I signaling (Igf1. As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness.

  12. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease.

    Science.gov (United States)

    Kunkel, Steven D; Elmore, Christopher J; Bongers, Kale S; Ebert, Scott M; Fox, Daniel K; Dyle, Michael C; Bullard, Steven A; Adams, Christopher M

    2012-01-01

    Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II), blood vessel recruitment (Vegfa) and autocrine/paracrine IGF-I signaling (Igf1). As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness.

  13. 饲喂不同配比油脂饲料对肉鸡肉品质及肌肉中脂肪酸组成的影响%Effect of Feeding Diets Containing Different Oils to Broilers on Meat Quality and Fatty Acid Composition in Breast and Thigh Muscles

    Institute of Scientific and Technical Information of China (English)

    安文俊; 张丽; 庄苏; 王恬

    2011-01-01

    研究日粮中添加不同配比油脂对肉鸡肉品质、肌肉胆固醇含量及脂肪酸组成的影响。选取648只1日龄AA肉鸡,随机分成6组,CON为对照组(饲喂基础日粮),SO为正对照组(日粮中添加豆油),LO为负对照组(日粮中添加猪油),COP、COC、COV组分别在日粮中添加以棕榈油为主的配比油脂、以椰子油为主的配比油脂、多种植物油组成的配比油脂,实验期为42d。结果表明:COP组胸肌24h的滴水损失显著升高(P〈0.05);COC组腿肌烹饪损失显著降低(P〈0.05)。LO组胸肌不饱和脂肪酸/饱和脂肪酸得到提高(P〈0.0%The purpose of this study was to investigate the effect of adding different vegetable oils or fat to basal diet on the meat quality,cholesterol content and fatty acid composition of breast and thigh muscles of Arbor Acre(AA) broilers.Totally 648 one-day-old chickens were randomly divided into 6 groups: CON(fed basal diet mainly consisting of corn meal and soybean meal as normal control),SO(fed basal diet added with soybean oil as positive control),LO(fed basal diet added with lard as negative control),COP(fed basal diet added with commercial complex vegetable oil sample mainly containing palm oil),COC(fed basal diet added with commercial complex vegetable oil sample mainly containing coconut oil) and COV(fed basal diet added with commercial complex vegetable oil sample containing multiple vegetable oils).Each chicken was fed for 42 days.The results showed that:(1) Drip loss(24 h postmortem) of breast muscle in COP group was significantly increased(P 0.05) and cooking loss of thigh muscle in COC group was significantly decreased(P 0.05).(2) Breast ratio of unsaturated to saturated fatty acids in LO group was improved(P 0.05);more n-3 PUFAs were determined in SO,LO,COP and COC groups(P 0.05);compared with CON group,the contents of n-6 PUFAs in SO and COC groups were

  14. Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles

    DEFF Research Database (Denmark)

    Hojman, Pernille; Brolin, Camilla; Gissel, Hanne

    2009-01-01

    in the high-fat fed mice. EPO expression also induced a 14% increase in muscle volume and a 25% increase in vascularisation of the EPO transfected muscle. Muscle force and stamina were not affected by EPO expression. PCR array analysis revealed that genes involved in lipid metabolism, thermogenesis...... and inflammation were increased in muscles in response to EPO expression, while genes involved in glucose metabolism were down-regulated. In addition, muscular fat oxidation was increased 1.8-fold in both the EPO transfected and contralateral muscles.In conclusion, we have shown that EPO when expressed in supra......-physiological levels has substantial metabolic effects including protection against diet-induced obesity and normalisation of glucose sensitivity associated with a shift to increased fat metabolism in the muscles....

  15. Use of genetically modified muscle and fat grafts to repair defects in bone and cartilage

    Directory of Open Access Journals (Sweden)

    CH Evans

    2009-12-01

    Full Text Available We report a novel technology for the rapid healing of large osseous and chondral defects, based upon the genetic modification of autologous skeletal muscle and fat grafts. These tissues were selected because they not only possess mesenchymal progenitor cells and scaffolding properties, but also can be biopsied, genetically modified and returned to the patient in a single operative session. First generation adenovirus vector carrying cDNA encoding human bone morphogenetic protein-2 (Ad.BMP-2 was used for gene transfer to biopsies of muscle and fat. To assess bone healing, the genetically modified (“gene activated” tissues were implanted into 5mm-long critical size, mid-diaphyseal, stabilized defects in the femora of Fischer rats. Unlike control defects, those receiving gene-activated muscle underwent rapid healing, with evidence of radiologic bridging as early as 10 days after implantation and restoration of full mechanical strength by 8 weeks. Histologic analysis suggests that the grafts rapidly differentiated into cartilage, followed by efficient endochondral ossification. Fluorescence in situ hybridization detection of Y-chromosomes following the transfer of male donor muscle into female rats demonstrated that at least some of the osteoblasts of the healed bone were derived from donor muscle. Gene activated fat also healed critical sized defects, but less quickly than muscle and with more variability. Anti-adenovirus antibodies were not detected. Pilot studies in a rabbit osteochondral defect model demonstrated the promise of this technology for healing cartilage defects. Further development of these methods should provide ways to heal bone and cartilage more expeditiously, and at lower cost, than is presently possible.

  16. BMI, fat and muscle differences in urban women of five ethnicities from two countries.

    Science.gov (United States)

    Rush, E C; Goedecke, J H; Jennings, C; Micklesfield, L; Dugas, L; Lambert, E V; Plank, L D

    2007-08-01

    To investigate body composition differences, especially the relationship between body mass index (BMI) and percent body fat (%BF), among five ethnic groups. Cross-sectional. Seven hundred and twenty-one apparently healthy women aged 18-60 years (BMI: 17.4-54.0 kg/m(2)) from South Africa (SA, 201 black, 94 European) and New Zealand (NZ, 173 European, 76 Maori, 84 Pacific, 93 Asian Indian). Anthropometry, including waist circumference, and total, central and peripheral body fat, bone mineral content and total appendicular skeletal muscle mass (ASMM) derived from dual X-ray absorptiometry. Regression analysis determined that at a BMI of 30 kg/m(2), SA European women had a %BF of 39%, which corresponded to a BMI of 29 for SA black women. For a BMI of 30 kg/m(2) in NZ Europeans, equivalent to 43% body fat, the corresponding BMIs for NZ Maori, Pacific and Asian Indian women were 34, 36 and 26 kg/m(2), respectively. Central fat mass was lower in black SA than in European SA women (PBMI varies with ethnicity and may be due, in part, to differences in central fatness and muscularity. Use of universal BMI or waist cut-points may not be appropriate for comparison of obesity prevalence among differing ethnic groups, as they do not provide a consistent reflection of adiposity and fat distribution across ethnic groups.

  17. The effect of high-fat--high-fructose diet on skeletal muscle mitochondrial energetics in adult rats.

    Science.gov (United States)

    Crescenzo, Raffaella; Bianco, Francesca; Coppola, Paola; Mazzoli, Arianna; Cigliano, Luisa; Liverini, Giovanna; Iossa, Susanna

    2015-03-01

    To study the effect of isoenergetic administration to adult rats of high-fat or high-fat--high-fructose diet for 2 weeks on skeletal muscle mitochondrial energetic. Body and skeletal muscle composition, energy balance, plasma lipid profile and glucose tolerance were measured, together with mitochondrial functionality, oxidative stress and antioxidant defense. Rats fed high-fat--high-fructose diet exhibited significantly higher plasma triglycerides and non-esterified fatty acids, together with significantly higher plasma glucose and insulin response to glucose load. Skeletal muscle triglycerides and ceramide were significantly higher in rats fed high-fat--high-fructose diet. Skeletal muscle mitochondrial energetic efficiency and uncoupling protein 3 content were significantly higher, while adenine nucleotide translocase content was significantly lower, in rats fed high-fat or high-fat--high-fructose diet. The results suggest that a high-fat--high-fructose diet even without hyperphagia is able to increase lipid flow to skeletal muscle and mitochondrial energetic efficiency, with two detrimental effects: (a) energy sparing that contributes to the early onset of obesity and (b) reduced oxidation of fatty acids and lipid accumulation in skeletal muscle, which could generate insulin resistance.

  18. Nitric oxide controls fat deposition in dystrophic skeletal muscle by regulating fibro-adipogenic precursor differentiation.

    Science.gov (United States)

    Cordani, Nicoletta; Pisa, Viviana; Pozzi, Laura; Sciorati, Clara; Clementi, Emilio

    2014-04-01

    Duchenne muscular dystrophy (DMD) is an hereditary disease characterized by loss of muscle fibers and their progressive substitution by fat and fibrous tissue. Mesenchymal fibro-adipogenic progenitors (FAPs) expressing the platelet-derived growth factor receptor alpha (PDGFRα) are an important source of fibrosis and adipogenesis in dystrophic skeletal muscle. Among the therapies suggested for dystrophy are those based on nitric oxide (NO) donating drugs, the administration of which slows disease progression. NO has been shown to act by enhancing the regenerative potential of the diseased muscle. Whether it acts also by inhibiting fibrosis and adipogenesis was not known. Here, we show in vitro that NO regulates FAP fate through inhibition of their differentiation into adipocytes. In mdx mice, an animal model of DMD, treatment with the NO donating drug molsidomine reduced the number of PDGFRα(+) cells as well as the deposition of both skeletal muscle fat and connective tissues. Inhibition of adipogenesis was due to NO-induced increased expression of miR-27b leading to downregulation of peroxisome proliferator-activated receptors gamma (Pparγ1) expression in a pathway independent of cGMP generation. These findings reveal an additional effect of NO in dystrophic muscle that conceivably synergizes with its known effects on regeneration improvement and explain why NO-based therapies appear effective in the treatment of muscular dystrophy.

  19. High-fat diets cause insulin resistance despite an increase in muscle mitochondria.

    Science.gov (United States)

    Hancock, Chad R; Han, Dong-Ho; Chen, May; Terada, Shin; Yasuda, Toshihiro; Wright, David C; Holloszy, John O

    2008-06-03

    It has been hypothesized that insulin resistance is mediated by a deficiency of mitochondria in skeletal muscle. In keeping with this hypothesis, high-fat diets that cause insulin resistance have been reported to result in a decrease in muscle mitochondria. In contrast, we found that feeding rats high-fat diets that cause muscle insulin resistance results in a concomitant gradual increase in muscle mitochondria. This adaptation appears to be mediated by activation of peroxisome proliferator-activated receptor (PPAR)delta by fatty acids, which results in a gradual, posttranscriptionally regulated increase in PPAR gamma coactivator 1alpha (PGC-1alpha) protein expression. Similarly, overexpression of PPARdelta results in a large increase in PGC-1alpha protein in the absence of any increase in PGC-1alpha mRNA. We interpret our findings as evidence that raising free fatty acids results in an increase in mitochondria by activating PPARdelta, which mediates a posttranscriptional increase in PGC-1alpha. Our findings argue against the concept that insulin resistance is mediated by a deficiency of muscle mitochondria.

  20. Application of cell co-culture system to study fat and muscle cells.

    Science.gov (United States)

    Pandurangan, Muthuraman; Hwang, Inho

    2014-09-01

    Animal cell culture is a highly complex process, in which cells are grown under specific conditions. The growth and development of these cells is a highly unnatural process in vitro condition. Cells are removed from animal tissues and artificially cultured in various culture vessels. Vitamins, minerals, and serum growth factors are supplied to maintain cell viability. Obtaining result homogeneity of in vitro and in vivo experiments is rare, because their structure and function are different. Living tissues have highly ordered complex architecture and are three-dimensional (3D) in structure. The interaction between adjacent cell types is quite distinct from the in vitro cell culture, which is usually two-dimensional (2D). Co-culture systems are studied to analyze the interactions between the two different cell types. The muscle and fat co-culture system is useful in addressing several questions related to muscle modeling, muscle degeneration, apoptosis, and muscle regeneration. Co-culture of C2C12 and 3T3-L1 cells could be a useful diagnostic tool to understand the muscle and fat formation in animals. Even though, co-culture systems have certain limitations, they provide a more realistic 3D view and information than the individual cell culture system. It is suggested that co-culture systems are useful in evaluating the intercellular communication and composition of two different cell types.

  1. Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy.

    Science.gov (United States)

    Marzuca-Nassr, Gabriel Nasri; Murata, Gilson Masahiro; Martins, Amanda Roque; Vitzel, Kaio Fernando; Crisma, Amanda Rabello; Torres, Rosângela Pavan; Mancini-Filho, Jorge; Kang, Jing Xuan; Curi, Rui

    2017-10-06

    The consequences of two-week hindlimb suspension (HS) on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA), and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2) and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1) were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively), muscle isotonic and tetanic force (by 29% and 18%, respectively), CSA of the soleus muscle (by 36%), and soleus muscle fibers (by 45%). Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs) ratio as compared with C57BL/6 wild-type mice (56%, p Fat-1 mice had lower soleus muscle dry mass loss (by 10%) and preserved absolute isotonic force (by 17%) and CSA of the soleus muscle (by 28%) after HS as compared with C57BL/6 wild-type mice. p-GSK3B/GSK3B ratio was increased (by 70%) and MuRF-1 content decreased (by 50%) in the soleus muscle of Fat-1 mice after HS. Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition.

  2. Delayed presentation of compartment syndrome of the thigh secondary to quadriceps trauma and vascular injury in a soccer athlete

    Directory of Open Access Journals (Sweden)

    Moo Ing How

    2015-01-01

    Conclusion: A high index of suspicion for compartment syndrome is needed in all severe quadriceps contusion. Vascular injury can cause thigh compartment syndrome in sports trauma. MRI findings of deep thigh muscle swelling and “blow-out” tear of the vastus lateralis are strongly suggestive of severe quadriceps injury, and may be a harbinger of delayed thigh compartment syndrome.

  3. One-year high fat diet affects muscle-but not brain mitochondria

    DEFF Research Database (Denmark)

    Joergensen, Tenna; Grunnet, Niels; Quistorff, Bjørn

    2015-01-01

    It is well known that few weeks of high fat (HF) diet may induce metabolic disturbances and mitochondrial dysfunction in skeletalmuscle. However, little is known about the effects of long-term HF exposure and effects on brain mitochondria are unknown. Wistarrats were fed either chow (13E% fat......) or HF diet (60E% fat) for 1 year. The HF animals developed obesity, dyslipidemia, insulinresistance, and dysfunction of isolated skeletal muscle mitochondria: state 3 and state 4 were 30% to 50% increased (P .... Adding also succinate in state 3 resulted in ahigher substrate control ratio (SCR) with PC, but a lower SCR with pyruvate (P mitochondria from the same animal showed no changes with the substrates relevant...

  4. Genome-wide association analyses for fatty acid composition in porcine muscle and abdominal fat tissues.

    Directory of Open Access Journals (Sweden)

    Bin Yang

    Full Text Available Fatty acid composition is an important phenotypic trait in pigs as it affects nutritional, technical and sensory quality of pork. Here, we reported a genome-wide association study (GWAS for fatty acid composition in the longissimus muscle and abdominal fat tissues of 591 White Duroc×Erhualian F2 animals and in muscle samples of 282 Chinese Sutai pigs. A total of 46 loci surpassing the suggestive significance level were identified on 15 pig chromosomes (SSC for 12 fatty acids, revealing the complex genetic architecture of fatty acid composition in pigs. Of the 46 loci, 15 on SSC5, 7, 14 and 16 reached the genome-wide significance level. The two most significant SNPs were ss131535508 (P = 2.48×10(-25 at 41.39 Mb on SSC16 for C20∶0 in abdominal fat and ss478935891 (P = 3.29×10(-13 at 121.31 Mb on SSC14 for muscle C18∶0. A meta-analysis of GWAS identified 4 novel loci and enhanced the association strength at 6 loci compared to those evidenced in a single population, suggesting the presence of common underlying variants. The longissimus muscle and abdominal fat showed consistent association profiles at most of the identified loci and distinct association signals at several loci. All loci have specific effects on fatty acid composition, except for two loci on SSC4 and SSC7 affecting multiple fatness traits. Several promising candidate genes were found in the neighboring regions of the lead SNPs at the genome-wide significant loci, such as SCD for C18∶0 and C16∶1 on SSC14 and ELOVL7 for C20∶0 on SSC16. The findings provide insights into the molecular basis of fatty acid composition in pigs, and would benefit the final identification of the underlying mutations.

  5. Near-infrared muscle oximeter that can correct the influence of a subcutaneous fat layer

    Science.gov (United States)

    Yamamoto, Katsuyuki; Niwayama, Masatsugu; Lin, Ling; Shiga, Toshikazu; Kudo, Nobuki; Takahashi, Makoto

    1998-04-01

    The inhomogeneity of tissue structure greatly affects the sensitivity of tissue oxygenation measurement by reflectance NIRS. We have proposed a method for correcting the influence of a subcutaneous fat layer on muscle oxygenation measurement. In this study, this method was validated by measuring the peak-to-peak variation of muscle oxygenation in periodic exercise tests on the vastus lateralis and the falling rate of oxygenation in ischemia tests on the forearm. A newly developed multisensor probe with source- detector distances of 7-40 mm was used. THe probe, consisting of a two-wavelength LED and four photodiodes, was connected to a 4-channel tissue oxygen monitor. The fat layer thickness was also measured by ultrasonography. Results of the tests clearly showed that the presence of a fat layer greatly decreases the sensitivity of measurement and increases the light intensity at a detector. The correction factors of sensitivity were determined from this relationship and Monte Carlo simulation. The corrected oxygenation levels were quantitatively compared among subjects in spite of different fat layer thicknesses.

  6. Effects of ovariectomy and resistance training on lipid content in skeletal muscle, liver, and heart; fat depots; and lipid profile

    National Research Council Canada - National Science Library

    Baldissera, Vilmar; de Andrade Perez, Sérgio Eduardo; Prestes, Jonato; Domingos, Mateus Moraes; Shiguemoto, Gilberto Eiji; Pereira, Guilherme Borges; Bernardes, Celene Fernandes; Duarte, Josiane Oliveira; Leite, Richard Diego

    2009-01-01

    The aim of the present study was to investigate the effects of resistance training on skeletal muscle lipid content, liver lipid content, heart lipid content, fat depots, and lipid profile in ovariectomized rats...

  7. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Roepstorff, Carsten; Halberg, Nils; Hillig, Thore

    2005-01-01

    that a decrease in the concentration of malonyl-CoA, secondary to a2-AMPK activation and ACC inhibition (by phosphorylation), contributes to the increase in fat oxidation observed at the onset of exercise regardless of muscle glycogen levels. They also suggest that, with high muscle glycogen, the availability......Intracellular mechanisms regulating fat oxidation were investigated in human skeletal muscle during exercise. Eight young, healthy, moderately trained men performed bicycle exercise (60 min, 65% peak O2 consumption) on two occasions, where they ingested either 1) a high-carbohydrate diet (H......-CHO) or 2) a low-carbohydrate diet (L-CHO) before exercise to alter muscle glycogen content as well as to induce, respectively, low and high rates of fat oxidation. Leg fat oxidation was 122% higher during exercise in L-CHO than in H-CHO (P

  8. Imaging ectopic fat deposition in Caenorhabditis elegans muscles using nonlinear microscopy.

    Science.gov (United States)

    Mari, Meropi; Filippidis, George; Palikaras, Konstantinos; Petanidou, Barbara; Fotakis, Costas; Tavernarakis, Nektarios

    2015-06-01

    The elucidation of the molecular mechanisms that lead to the development of metabolic syndrome, a complex of pathological conditions including type-2 diabetes, hypertension, and cardiovascular diseases, is an important issue with high biological significance and requires accurate methods capable of monitoring lipid storage distribution and dynamics in vivo. In this study, the nonlinear phenomena of second and third harmonic generation (SHG, THG) have been employed simultaneously as label-free, nondestructive diagnostic techniques, for the monitoring and the complementary three-dimensional (3D) imaging and analysis of the muscular areas and the lipid content localization. THG microscopy was used as a quantitative tool in order to record the accumulation of lipids in nonadipose tissues in the pharyngeal muscles of 18 Caenorhabditis elegans (C. elegans) specimens, while the SHG imaging provided the detailed anatomical information about the structure of the muscles. The ectopic accumulation of fat on the pharyngeal muscles increases in wild-type (N2) C. elegans between 1 and 9 days of adulthood. This suggests a correlation of ectopic fat accumulation with the process of aging. Our results can contribute to the unraveling of the link between the deposition of ectopic fat and aging, but mainly to the validation of SHG and THG microscopy modalities as new, noninvasive tools to localize and quantify selectively lipid formation and distribution.

  9. Decreased irisin secretion contributes to muscle insulin resistance in high-fat diet mice.

    Science.gov (United States)

    Yang, Zaigang; Chen, Xu; Chen, Yujuan; Zhao, Qian

    2015-01-01

    Recent studies have revealed the relationship between irisin and insulin signaling, while positive associations of muscle FNDC5 with insulin resistance is observed. However, the functional mechanism of irisin on muscle insulin resistance is still obscure. This study aims to investigate the effect of irisin on muscle insulin action. Diabetic mouse model was established by high fat diet (HFD) induced obesity in C57BL/6 mice. Body indexes and serum levels of triglyceride (TG), blood glucose and insulin were record. Oral glucose tolerance test (OGTT) was performed before being killed. Circulating irisin level was also detected, while FNDC5/irisin expression was determined by RT-PCR and western blot analysis in both muscle and adipose tissues. Insulin action was further evaluated by the phosphorylation of AKT and Erk, and palmitic acid treated muscle cells were introduced for mimicking diabetic status in vitro. Obvious obese feathers associated with type 2 diabetes were observed in HFD feeding mice, with decreased circulating irisin level and FNDC5/irisin secretion in adipose tissues. Although FNDC5/irisin expression showed little change in skeletal muscle, the insulin action was inhibited significantly. Moreover, palmitic acid treated muscle cells showed similar inhibition of insulin action, and FNDC5/irisin expression change. Besides, insulin action could be reversed by irisin addition in muscle cells. HFD induced obese mice showed decreased irisin secretion from adipose tissues, which might contribute to muscle insulin resistance. Furthermore, irisin addition could recover insulin action in palmitic acid treated muscle cells, indicating the importance of irisin for preserving insulin signaling.

  10. Effect of synbiotic supplementation and dietary fat sources on broiler performance, serum lipids, muscle fatty acid profile and meat quality.

    Science.gov (United States)

    Ghasemi, H A; Shivazad, M; Mirzapour Rezaei, S S; Karimi Torshizi, M A

    2016-01-01

    A 42-d trial was conducted to investigate the effect of adding a synbiotic supplement to diets containing two different types of fat on performance, blood lipids and fatty acid (FA) composition and oxidative stability of breast and thigh meat in broilers. A total of 800 one-d-old male broiler chickens were randomly assigned into 1 of 8 treatments with 4 replicates of 25 birds per treatment. The experiment consisted of a 4 × 2 factorial arrangement of treatments including 4 concentrations of synbiotic (0, 0.5, 1 or 1.5 g/kg diet) and 2 types of fat [sunflower oil (SO) or canola oil (CO)] at an inclusion rate of 50 g/kg diet. Dietary fat type did not affect body weight gain (BWG) or feed conversion ratio (FCR) during the overall experimental period (0-42 d). However, fat type modified serum lipid profile and FA composition and 2-thiobarbituric acid-reactive substances (TBARS) content in breast and thigh meat. The addition of synbiotic to the diet linearly improved overall BWG and FCR and also decreased serum cholesterol and low-density lipoprotein cholesterol concentrations. The TBARS value in thigh meat after 30 d of storage at 4°C was linearly decreased as the synbiotic inclusion concentrations in the diets increased. Dietary synbiotic also decreased the proportion of monounsaturated fatty acids and increased n-6 polyunsaturated fatty acid (PUFA) concentration in thigh meat, whereas the FA profile of breast meat was not affected by synbiotic supplementation. Moreover, the PUFA/SFA ratio in the breast meat was linearly increased when synbiotic was included in the CO-containing diets. In conclusion, the addition of synbiotic to broiler diets had a positive effect on growth performance, blood lipid profile and meat quality. The results also support the use of synbiotic to increase the capacity of canola oil for enhancing PUFA/SFA ratio of breast meat in broilers.

  11. Reducing body fat with altitude hypoxia training in swimmers: role of blood perfusion to skeletal muscles.

    Science.gov (United States)

    Chia, Michael; Liao, Chin-An; Huang, Chih-Yang; Lee, Wen-Chih; Hou, Chien-Wen; Yu, Szu-Hsien; Harris, M Brennan; Hsu, Tung-Shiung; Lee, Shin-Da; Kuo, Chia-Hua

    2013-02-28

    Swimmers tend to have greater body fat than athletes from other sports. The purpose of the study was to examine changes in body composition after altitude hypoxia exposure and the role of blood distribution to the skeletal muscle in swimmers. With a constant training volume of 12.3 km/day, young male swimmers (N = 10, 14.8 ± 0.5 years) moved from sea-level to a higher altitude of 2,300 meters. Body composition was measured before and after translocation to altitude using dual-energy X-ray absorptiometry (DXA) along with 8 control male subjects who resided at sea level for the same period of time. To determine the effects of hypoxia on muscle blood perfusion, total hemoglobin concentration (THC) was traced by near-infrared spectroscopy (NIRS) in the triceps and quadriceps muscles under glucose-ingested and insulin-secreted conditions during hypoxia exposure (16% O2) after training. While no change in body composition was found in the control group, subjects who trained at altitude had unequivocally decreased fat mass (-1.7 ± 0.3 kg, -11.4%) with increased lean mass (+0.8 ± 0.2 kg, +1.5%). Arterial oxygen saturation significantly decreased with increased plasma lactate during hypoxia recovery mimicking 2,300 meters at altitude (~93% versus ~97%). Intriguingly, hypoxia resulted in elevated muscle THC, and sympathetic nervous activities occurred in parallel with greater-percent oxygen saturation in both muscle groups. In conclusion, the present study provides evidence that increased blood distribution to the skeletal muscle under postprandial condition may contribute to the reciprocally increased muscle mass and decreased body mass after a 3-week altitude exposure in swimmers.

  12. Skeletal Muscle Troponin I (TnI) in Animal Fat Tissues to Be Used as Biomarker for the Identification of Fat Adulteration.

    Science.gov (United States)

    Park, Bong-Sup; Oh, Young-Kyoung; Kim, Min-Jin; Shim, Won-Bo

    2014-01-01

    In this study, the existence of skeletal muscle troponin I (smTnI), well-known as a muscle protein in fat tissues, and the utilization of smTnI as a biomarker for the identification of fat adulteration were investigated. A commercial antibody (ab97427) specific to all of animals smTnI was used in this study. Fat and meat samples (cooked and non-cooked) of pork and beef, and chicken considered as representative meats were well minced and extracted by heating and non-heating methods, and the extracts from fat and meat tissues were probed by the antibody used in both enzyme-linked immunosorbent assay (ELISA) and immunoblot. The antibody exhibited a strong reaction to all meat and fat extracts in ELISA test. On the other hand, the results of immunoblot analsis revealed a 23 kDa high intensity band corresponding to the molecular weight of smTnI (23786 Da). These results demonstrate that the existence of smTnI in all animal fat tissues. Since there are monoclonal antibodies specific to each species smTnI, smTnI in fat tissues could be used as a biomarker to identify or determine animal species adulterated in meat products. Therefore, an analytical method to identify fraudulent fat adulteration can be developed with an antibody specific to each species smTnI.

  13. Skeletal Muscle Troponin I (TnI) in Animal Fat Tissues to Be Used as Biomarker for the Identification of Fat Adulteration

    Science.gov (United States)

    Park, Bong-Sup; Oh, Young-Kyoung; Kim, Min-Jin

    2014-01-01

    In this study, the existence of skeletal muscle troponin I (smTnI), well-known as a muscle protein in fat tissues, and the utilization of smTnI as a biomarker for the identification of fat adulteration were investigated. A commercial antibody (ab97427) specific to all of animals smTnI was used in this study. Fat and meat samples (cooked and non-cooked) of pork and beef, and chicken considered as representative meats were well minced and extracted by heating and non-heating methods, and the extracts from fat and meat tissues were probed by the antibody used in both enzyme-linked immunosorbent assay (ELISA) and immunoblot. The antibody exhibited a strong reaction to all meat and fat extracts in ELISA test. On the other hand, the results of immunoblot analsis revealed a 23 kDa high intensity band corresponding to the molecular weight of smTnI (23786 Da). These results demonstrate that the existence of smTnI in all animal fat tissues. Since there are monoclonal antibodies specific to each species smTnI, smTnI in fat tissues could be used as a biomarker to identify or determine animal species adulterated in meat products. Therefore, an analytical method to identify fraudulent fat adulteration can be developed with an antibody specific to each species smTnI. PMID:26761680

  14. [Fast visualization of fat infiltration in dorsal muscles of the trunk at lumbar spinal column by magnetic resonance images (MR)].

    Science.gov (United States)

    Pérez-Miguelsanz, María Juliana; Herrera-Hervás, Luis; Franco-López, María de Los Ángeles

    2014-11-01

    In magnetic resonance, fat is considered an "unwanted artifact or signal" which is suppressed when performing a clinical study, unless otherwise specified. The increase in obesity and associated diseases has become necessary to study fat deposits both in adipose tissue and ectopic fat. In this paper, we analyze the information that is available from the CD which patients receive after undergoing magnetic resonance imaging of the abdomen along with the medical report, using a personal computer, focusing on the fat deposits in spinal muscles of healthy adult volunteers or analyzes nonspecific low back pain. The application of colored interfaces or windows on gray resonance images is very useful to display fat deposits, especially when the observer is not familiar with these images. It is a fast, easy and intuitive method of semiquantitative muscle visualization of the ectopic fat. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  15. Effects of a 12-week, short-interval, intermittent, low-intensity, slow-jogging program on skeletal muscle, fat infiltration, and fitness in older adults: randomized controlled trial.

    Science.gov (United States)

    Ikenaga, Masahiro; Yamada, Yosuke; Kose, Yujiro; Morimura, Kazuhiro; Higaki, Yasuki; Kiyonaga, Akira; Tanaka, Hiroaki

    2017-01-01

    We developed a short-interval, low-intensity, slow-jogging (SJ) program consisting of sets of 1 min of SJ at walking speed and 1 min of walking. We aimed to examine the effects of an easily performed SJ program on skeletal muscle, fat infiltration, and fitness in older adults. A total of 81 community-dwelling, independent, older adults (70.8 ± 4.0 years) were randomly assigned to the SJ or control group. The SJ group participants were encouraged to perform 90 min of SJ at their anaerobic threshold (AT) intensity and 90 min of walking intermittently per week. Aerobic capacity at the AT and sit-to-stand (STS) scores were measured. Intracellular water (ICW) in the legs was assessed by segmental multi-frequency bioelectrical impedance analysis. Subcutaneous (SAT) and intermuscular (IMAT) adipose tissue and muscle cross-sectional area (CSA) were measured at the mid-thigh using computed tomography. A total of 75 participants (37 SJ group, 38 controls) completed the 12-week intervention. The AT and STS improved in the SJ group compared with the controls (AT 15.7 vs. 4.9 %, p increased only in the SJ group (9.7 %, p decreased only in the SJ group (p muscle mass, improved aerobic capacity, muscle function, and muscle composition in older adults.

  16. Increasing fat in the diet does not improve muscle performance in patients with mitochondrial myopathy due to complex I deficiency

    NARCIS (Netherlands)

    de Meer, K; Roef, MJ; de Klerk, JBC; Bakker, HD; Smit, GPA; Poll-The, BT

    2005-01-01

    Four myopathic patients with complex I deficiency followed diets containing 55 energy per cent (En%) as fat or 25 En% as fat, both for three weeks. Maximal workload and muscle force were not different on either diet. Exercise endurance time, oxygen consumption and lactate levels were also not differ

  17. Selective transport of long-chain fatty acids by FAT/CD36 in skeletal muscle of broilers.

    Science.gov (United States)

    Guo, J; Shu, G; Zhou, L; Zhu, X; Liao, W; Wang, S; Yang, J; Zhou, G; Xi, Q; Gao, P; Zhang, Y; Zhang, S; Yuan, L; Jiang, Q

    2013-03-01

    Fatty acid translocase (FAT/CD36) is a membrane receptor that facilitates long-chain fatty acid uptake. To investigate its role in the regulation of long-chain fatty acid composition in muscle tissue, we studied and compared FAT/CD36 gene expression in muscle tissues of commercial broiler chickens and Chinese local Silky fowls. The results from gas chromatography-mass spectrometry analysis of muscle samples demonstrated that Chinese local Silky fowls had significantly higher (P FAT/CD36 and caveolin-1) in the m. ipsilateral pectoralis and biceps femoris were analyzed by Q-PCR, and FAT/CD36 expression levels showed significant differences between these types of chickens (P FAT/CD36 expression are positively correlated with LA content (r = 0.567, P FAT/CD36 cDNA demonstrated that overexpression of FAT/CD36 improves total FA uptake with a significant increase in the proportion of LA and AA, and a decreased proportion of palmitic acid. These results suggest that chicken FAT/CD36 may selectively transport LA and AA, which may lead to the higher LA deposition in muscle tissue.

  18. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study.

    Science.gov (United States)

    Maersk, Maria; Belza, Anita; Stødkilde-Jørgensen, Hans; Ringgaard, Steffen; Chabanova, Elizaveta; Thomsen, Henrik; Pedersen, Steen B; Astrup, Arne; Richelsen, Bjørn

    2012-02-01

    The consumption of sucrose-sweetened soft drinks (SSSDs) has been associated with obesity, the metabolic syndrome, and cardiovascular disorders in observational and short-term intervention studies. Too few long-term intervention studies in humans have examined the effects of soft drinks. We compared the effects of SSSDs with those of isocaloric milk and a noncaloric soft drink on changes in total fat mass and ectopic fat deposition (in liver and muscle tissue). Overweight subjects (n = 47) were randomly assigned to 4 different test drinks (1 L/d for 6 mo): SSSD (regular cola), isocaloric semiskim milk, aspartame-sweetened diet cola, and water. The amount of intrahepatic fat and intramyocellular fat was measured with (1)H-magnetic resonance spectroscopy. Other endpoints were fat mass, fat distribution (dual-energy X-ray absorptiometry and magnetic resonance imaging), and metabolic risk factors. The relative changes between baseline and the end of 6-mo intervention were significantly higher in the regular cola group than in the 3 other groups for liver fat (132-143%, sex-adjusted mean; P muscle fat (117-221%; P fat (24-31%; P fat mass was not significantly different between the 4 beverage groups. Milk and diet cola reduced systolic blood pressure by 10-15% compared with regular cola (P increases ectopic fat accumulation and lipids compared with milk, diet cola, and water. Thus, daily intake of SSSDs is likely to enhance the risk of cardiovascular and metabolic diseases. This trial is registered at clinicaltrials.gov as NCT00777647.

  19. Distinctive genes determine different intramuscular fat and muscle fiber ratios of the longissimus dorsi muscles in Jinhua and landrace pigs.

    Directory of Open Access Journals (Sweden)

    Ting Wu

    Full Text Available Meat quality is determined by properties such as carcass color, tenderness and drip loss. These properties are closely associated with meat composition, which includes the types of muscle fiber and content of intramuscular fat (IMF. Muscle fibers are the main contributors to meat mass, while IMF not only contributes to the sensory properties but also to the plethora of physical, chemical and technological properties of meat. However, little is known about the molecular mechanisms that determine meat composition in different pig breeds. In this report we show that Jinhua pigs, a Chinese breed, contains much higher levels of IMF than do Landrace pigs, a Danish breed. We analyzed global gene expression profiles in the longissimus dorsi muscles in Jinhua and Landrace breeds at the ages of 30, 90 and 150 days. Cross-comparison analysis revealed that genes that regulate fatty acid biosynthesis (e.g., fatty acid synthase and stearoyl-CoA desaturase are expressed at higher levels in Jinhua pigs whereas those that regulate myogenesis (e.g., myogenic factor 6 and forkhead box O1 are expressed at higher levels in Landrace pigs. Among those genes which are highly expressed in Jinhua pigs at 90 days (d90, we identified a novel gene porcine FLJ36031 (pFLJ, which functions as a positive regulator of fat deposition in cultured intramuscular adipocytes. In summary, our data showed that the up-regulation of fatty acid biosynthesis regulatory genes such as pFLJ and myogenesis inhibitory genes such as myostatin in the longissimus dorsi muscles of Jinhua pigs could explain why this local breed produces meat with high levels of IMF.

  20. Distinctive genes determine different intramuscular fat and muscle fiber ratios of the longissimus dorsi muscles in Jinhua and landrace pigs.

    Science.gov (United States)

    Wu, Ting; Zhang, Zhenhai; Yuan, Zhangqin; Lo, Li Jan; Chen, Jun; Wang, Yizhen; Peng, Jinrong

    2013-01-01

    Meat quality is determined by properties such as carcass color, tenderness and drip loss. These properties are closely associated with meat composition, which includes the types of muscle fiber and content of intramuscular fat (IMF). Muscle fibers are the main contributors to meat mass, while IMF not only contributes to the sensory properties but also to the plethora of physical, chemical and technological properties of meat. However, little is known about the molecular mechanisms that determine meat composition in different pig breeds. In this report we show that Jinhua pigs, a Chinese breed, contains much higher levels of IMF than do Landrace pigs, a Danish breed. We analyzed global gene expression profiles in the longissimus dorsi muscles in Jinhua and Landrace breeds at the ages of 30, 90 and 150 days. Cross-comparison analysis revealed that genes that regulate fatty acid biosynthesis (e.g., fatty acid synthase and stearoyl-CoA desaturase) are expressed at higher levels in Jinhua pigs whereas those that regulate myogenesis (e.g., myogenic factor 6 and forkhead box O1) are expressed at higher levels in Landrace pigs. Among those genes which are highly expressed in Jinhua pigs at 90 days (d90), we identified a novel gene porcine FLJ36031 (pFLJ), which functions as a positive regulator of fat deposition in cultured intramuscular adipocytes. In summary, our data showed that the up-regulation of fatty acid biosynthesis regulatory genes such as pFLJ and myogenesis inhibitory genes such as myostatin in the longissimus dorsi muscles of Jinhua pigs could explain why this local breed produces meat with high levels of IMF.

  1. Nox2 Mediates Skeletal Muscle Insulin Resistance Induced by a High Fat Diet*

    Science.gov (United States)

    Souto Padron de Figueiredo, Alvaro; Salmon, Adam B.; Bruno, Francesca; Jimenez, Fabio; Martinez, Herman G.; Halade, Ganesh V.; Ahuja, Seema S.; Clark, Robert A.; DeFronzo, Ralph A.; Abboud, Hanna E.; El Jamali, Amina

    2015-01-01

    Inflammation and oxidative stress through the production of reactive oxygen species (ROS) are consistently associated with metabolic syndrome/type 2 diabetes. Although the role of Nox2, a major ROS-generating enzyme, is well described in host defense and inflammation, little is known about its potential role in insulin resistance in skeletal muscle. Insulin resistance induced by a high fat diet was mitigated in Nox2-null mice compared with wild-type mice after 3 or 9 months on the diet. High fat feeding increased Nox2 expression, superoxide production, and impaired insulin signaling in skeletal muscle tissue of wild-type mice but not in Nox2-null mice. Exposure of C2C12 cultured myotubes to either high glucose concentration, palmitate, or H2O2 decreases insulin-induced Akt phosphorylation and glucose uptake. Pretreatment with catalase abrogated these effects, indicating a key role for H2O2 in mediating insulin resistance. Down-regulation of Nox2 in C2C12 cells by shRNA prevented insulin resistance induced by high glucose or palmitate but not H2O2. These data indicate that increased production of ROS in insulin resistance induced by high glucose in skeletal muscle cells is a consequence of Nox2 activation. This is the first report to show that Nox2 is a key mediator of insulin resistance in skeletal muscle. PMID:25825489

  2. Muscle and genotype effects on fatty acid composition of goat kid intramuscular fat

    Directory of Open Access Journals (Sweden)

    Valeriano Domenech

    2011-07-01

    Full Text Available Little is known about the fatty acid composition of the major muscles in goats from different breeds. Forty entire male suckling kids, 20 Criollo Cordobes and 20 Anglo Nubian, were slaughtered at 75 days of age and the fatty acid composition of their longissimus thoracis (LT and semitendinosus (ST muscles was analysed to clarify the effects of genotype and muscle type on goat kid meat. Genotype had a great influence on the fatty acid composition of goat kid meat. Meat from Criollo Cordobes had greater saturated (P<0.001 and lower monounsaturated (P<0.001 and polyunsaturated fatty acids (P=0.002 concentration than meat from Anglo Nubian, showing higher saturated fatty acids (SFA. On the other hand, intramuscular fat content from both genotypes was higher (P=0.042 in ST muscle, while the lowest cholesterol levels were observed in ST of Criollo Cordobes (P=0.038. That higher fat content resulted in lower relative contents of total polyunsaturated (P<0.001 and n-3 (P=0.002 fatty acids due to the lower contribution of the membrane phospholipids.

  3. Muscle-Specific IRS-1 Ser→Ala Transgenic Mice Are Protected From Fat-Induced Insulin Resistance in Skeletal Muscle

    National Research Council Canada - National Science Library

    Katsutaro Morino; Susanne Neschen; Stefan Bilz; Saki Sono; Dimitrios Tsirigotis; Richard M. Reznick; Irene Moore; Yoshio Nagai; Varman Samuel; David Sebastian; Morris White; William Philbrick; Gerald I. Shulman

    2008-01-01

    Muscle-Specific IRS-1 Ser→Ala Transgenic Mice Are Protected From Fat-Induced Insulin Resistance in Skeletal Muscle Katsutaro Morino 1 2 , Susanne Neschen 1 2 , Stefan Bilz 2 , Saki Sono 2 , Dimitrios Tsirigotis 2 3 , Richard M...

  4. 日粮中添加共轭亚油酸对肉仔鸡胸肌和腿肌脂质过氧化状态的影响%Effect of dietary conjugated linoleic acid on the lipid peroxidation of the breast muscle and the thigh muscle of broiler chickens

    Institute of Scientific and Technical Information of China (English)

    刘永祥; 徐秋良; 刘艳丽; 姜东风; 杨建平

    2012-01-01

    【目的】研究日粮中添加共轭亚油酸(Conjugated linoleic acid,CLA)对肉仔鸡胸肌和腿肌脂质过氧化状态的影响及原因。【方法】将96只1日龄AA(Arbor Acre)雄性肉仔鸡用玉米-豆粕日粮饲喂至3周龄,在3周龄末,将其随机分为对照组和CLA组,分别饲喂基础日粮和CLA日粮,每处理8个重复,每重复6只鸡。42日龄时屠宰,剥离胸肌和腿肌,检测其中的脂肪酸组成和脂质过氧化相关指标。【结果】日粮中添加CLA降低了肉仔鸡胸肌和腿肌的丙二醛(MDA)(P〈0.01)和活性氧含量(P〈0.05)。2组肉仔鸡腿肌和胸肌中各种抗氧化酶活性无显著差异(P〉0.05)。与对照组相比,CLA组肉仔鸡胸肌和腿肌的谷胱甘肽含量分别提高了21.89%和21.56%(P〈0.01),γ-谷氨酰半胱氨酸合成酶的活性分别提高了28.57%和25.80%(P〈0.01)。日粮中添加CLA提高了肉仔鸡胸肌和腿肌总CLA(P〈0.01)及饱和脂肪酸(SFA)含量(P〈0.05),极显著降低了单不饱和脂肪酸含量(P〈0.01)。【结论】日粮中添加CLA改变了肉仔鸡胸肌和腿肌脂肪酸的组成,提高了脂质稳定性,同时增加了GSH含量,淬灭了更多的自由基,从而降低了脂质过氧化水平。%[Objective] The present study was conducted to investigate effect of conjugated linoleic acid (CLA) on the lipid peroxidation of the breast muscle and the thigh muscle of broiler chickens and cress- ponding mechanism. [Method] Ninety six 1-day-old male AA (Abor Acre) broiler chickens were suple- mented with the same maize-soyabean meal diet until the end of the third week,and then were randomly al- located into control group and 1.5% CLA supplementation group, suplemented with control diet and CLA suplementation diet respectively, each treatment with elght replicates of 6 chickens. The brolier chickens were excuted at 42 days old,and the breast muscle and the thigh muscle were excised. The fatty

  5. Intramuscular fat and fatty acid composition of longissimus muscle from divergent pure breeds of cattle.

    Science.gov (United States)

    Dinh, T T N; Blanton, J R; Riley, D G; Chase, C C; Coleman, S W; Phillips, W A; Brooks, J C; Miller, M F; Thompson, L D

    2010-02-01

    The objective of this study was to compare the fatty acid (FA) composition of intramuscular fat from the LM of 3 divergent breeds of cattle: Angus (AN, n = 9), Brahman (BR, n = 7), and Romosinuano (RM, n = 11). Cattle were blocked by breed and finished 129 d before slaughter in one year and 157 d in the next year. Longissimus muscle samples were collected from each carcass between the 10th and 13th ribs, trimmed of external fat, frozen in liquid nitrogen, homogenized, and used for fat extraction, using a modified Folch procedure. Extracted fat was analyzed for FA by using a GLC system with an HP-88 capillary column. Fatty acid composition was expressed using both a normalized percentage (%) and gravimetric calculation (mg/g of fresh muscle tissue) in relation to degree of saturation, which was determined using a saturation index (ratio of total SFA to total unsaturated FA). Crude fat determination revealed that LM from AN purebred cattle had the greatest amount of intramuscular fat (7.08%; P = 0.001). Although intramuscular fat of LM from RM contained a reduced percentage of total SFA (P = 0.002) compared with AN, it had the greatest percentage of total PUFA (P < 0.001 and P = 0.020). The percentages of total MUFA were similar among the 3 breeds (P = 0.675). The gravimetric calculation, a measure of actual FA concentration, showed significantly greater concentrations of SFA (26.67 mg/g), MUFA (26.50 mg/g), and PUFA (2.37 mg/g) in LM from AN cattle, as compared with LM from BR and RM cattle (P < 0.001). Interestingly, BR purebreds had the least PUFA concentration (1.49 mg/g; P fat content was similar to that of RM (P = 0.924). Regardless of breed, the MUFA proportion was always the greatest (47.58%; P

  6. High-fat feeding inhibits exercise-induced increase in mitochondrial respiratory flux in skeletal muscle.

    Science.gov (United States)

    Skovbro, Mette; Boushel, Robert; Hansen, Christina Neigaard; Helge, Jørn Wulff; Dela, Flemming

    2011-06-01

    Twenty one healthy untrained male subjects were randomized to follow a high-fat diet (HFD; 55-60E% fat, 25-30E% carbohydrate, and 15E% protein) or a normal diet (ND; 25-35E% fat, 55-60E% carbohydrate, and 10-15E% protein) for 2(1/2) wk. Diets were isocaloric and tailored individually to match energy expenditure. At 2(1/2) wk of diet, one 60-min bout of bicycle exercise (70% of maximal oxygen uptake) was performed. Muscle biopsies were obtained before and after the diet, immediately after exercise, and after 3-h recovery. Insulin sensitivity (hyperinsulinemic-euglycemic clamp) and intramyocellular triacylglycerol content did not change with the intervention in either group. Indexes of mitochondrial density were similar across the groups and intervention. Mitochondrial respiratory rates, measured in permeabilized muscle fibers, showed a 31 ± 11 and 26 ± 9% exercise-induced increase (P increase was abolished. At recovery, no change from resting respiration was seen in either group. With a lipid substrate (octanoyl-carnitine with or without ADP), similar exercise-induced increases (31-62%) were seen in HFD and ND, but only in HFD was an elevated (P fat-rich diet induces marked changes in the mitochondrial electron transport system protein content and in exercise-induced mitochondrial substrate oxidation rates, with the effects being present hours after the exercise. The effect of HFD is present even without effects on insulin sensitivity and intramyocellular lipid accumulation. An isocaloric high-fat diet does not cause insulin resistance.

  7. Engineering brown fat into skeletal muscle using ultrasound-targeted microbubble destruction gene delivery in obese Zucker rats: Proof of concept design.

    Science.gov (United States)

    Bastarrachea, Raul A; Chen, Jiaxi; Kent, Jack W; Nava-Gonzalez, Edna J; Rodriguez-Ayala, Ernesto; Daadi, Marcel M; Jorge, Barbara; Laviada-Molina, Hugo; Comuzzie, Anthony G; Chen, Shuyuan; Grayburn, Paul A

    2017-09-01

    Ultrasound-targeted microbubble destruction (UTMD) is a novel means of tissue-specific gene delivery. This approach systemically infuses transgenes precoupled to gas-filled lipid microbubbles that are burst within the microvasculature of target tissues via an ultrasound signal resulting in release of DNA and transfection of neighboring cells within the tissue. Previous work has shown that adenovirus containing cDNA of UCP-1, injected into the epididymal fat pads in mice, induced localized fat depletion, improving glucose tolerance, and decreasing food intake in obese diabetic mice. Our group recently demonstrated that gene therapy by UTMD achieved beta cell regeneration in streptozotocin (STZ)-treated mice and baboons. We hypothesized that gene therapy with BMP7/PRDM16/PPARGC1A in skeletal muscle (SKM) of obese Zucker diabetic fatty (fa/fa) rats using UTMD technology would produce a brown adipose tissue (BAT) phenotype with UCP-1 overexpression. This study was designed as a proof of concept (POC) project. Obese Zucker rats were administered plasmid cDNA contructs encoding a gene cocktail with BMP7/PRDM16/PPARGC1A incorporated within microbubbles and intravenously delivered into their left thigh. Controls received UTMD with plasmids driving a DsRed reporter gene. An ultrasound transducer was directed to the thigh to disrupt the microbubbles within the microcirculation. Blood samples were drawn at baseline, and after treatment to measure glucose, insulin, and free fatty acids levels. SKM was harvested for immunohistochemistry (IHC). Our IHC results showed a reliable pattern of effective UTMD-based gene delivery in enhancing SKM overexpression of the UCP-1 gene. This clearly indicates that our plasmid DNA construct encoding the gene combination of PRDM16, PPARGC1A, and BMP7 reprogrammed adult SKM tissue into brown adipose cells in vivo. Our pilot established POC showing that the administration of the gene cocktail to SKM in this rat model of genetic obesity using UTMD

  8. The Gluteus Medius Vs. Thigh Muscles Strength Ratio and Their Relation to Electromyography Amplitude During a Farmer’s Walk Exercise

    Directory of Open Access Journals (Sweden)

    Stastny Petr

    2015-03-01

    Full Text Available The strength ratio between hamstrings and quadriceps (H/Q is associated with knee injuries as well as hip abductor muscle (HAB weakness. Sixteen resistance trained men (age, 32.5 ± 4.2 years performed 5 s maximal isometric contractions at 75° of knee flexion/extension and 15° of hip abduction on a dynamometer. After this isometric test they performed a Farmer´s walk exercise to find out if the muscle strength ratio predicted the electromyography amplitude expressed as a percentage of maximum voluntary isometric contraction (%MVIC. The carried load represented a moderate intensity of 75% of the exercise six repetitions maximum (6RM. Electromyography data from the vastus medialis (VM, vastus lateralis (VL, biceps femoris (BF and gluteus medius (Gmed on each leg were collected during the procedure. The groups selected were participants with H/Q ≥ 0.5, HQ < 0.5, HAB/H ≥ 1, HAB/H < 1, HAB/Q ≥ 0.5 and HAB/Q < 0.5. One way ANOVA showed that Gmed activity was significantly greater in the group with HAB/H < 1 (42 ± 14 %MVIC as compared to HAB/H ≥ 1 (26 ± 10 %MVIC and HAB/Q < 0.5 (47 ± 19 %MVIC compared to HAB/Q ≥ 0.5 (26 ± 12 %MVIC. The individuals with HAB/H < 1 were found to have greater activation of their Gmed during the Farmer’s walk exercise. Individuals with HAB/Q < 0.5 had greater activation of the Gmed. Gmed strength ratios predict the muscle involvement when a moderate amount of the external load is used. The Farmer’s walk is recommended as an exercise which can strengthen the gluteus medius, especially for individuals with a HAB/H ratio < 1 and HAB/Q < 0.5.

  9. Selective overexpression of Toll-like receptor-4 in skeletal muscle impairs metabolic adaptation to high-fat feeding

    Science.gov (United States)

    McMillan, Ryan P.; Wu, Yaru; Voelker, Kevin; Fundaro, Gabrielle; Kavanaugh, John; Stevens, Joseph R.; Shabrokh, Elika; Ali, Mostafa; Harvey, Mordecai; Anderson, Angela S.; Boutagy, Nabil E.; Mynatt, Randall L.; Frisard, Madlyn I.

    2015-01-01

    Toll-like receptor-4 (TLR-4) is elevated in skeletal muscle of obese humans, and data from our laboratory have shown that activation of TLR-4 in skeletal muscle via LPS results in decreased fatty acid oxidation (FAO). The purpose of this study was to determine whether overexpression of TLR-4 in skeletal muscle alters mitochondrial function and whole body metabolism in the context of a chow and high-fat diet. C57BL/6J mice (males, 6–8 mo of age) with skeletal muscle-specific overexpression of the TLR-4 (mTLR-4) gene were created and used for this study. Isolated mitochondria and whole muscle homogenates from rodent skeletal muscle (gastrocnemius and quadriceps) were investigated. TLR-4 overexpression resulted in a significant reduction in FAO in muscle homogenates; however, mitochondrial respiration and reactive oxygen species (ROS) production did not appear to be affected on a standard chow diet. To determine the role of TLR-4 overexpression in skeletal muscle in response to high-fat feeding, mTLR-4 mice and WT control mice were fed low- and high-fat diets for 16 wk. The high-fat diet significantly decreased FAO in mTLR-4 mice, which was observed in concert with elevated body weight and fat, greater glucose intolerance, and increase in production of ROS and cellular oxidative damage compared with WT littermates. These findings suggest that TLR-4 plays an important role in the metabolic response in skeletal muscle to high-fat feeding. PMID:26084695

  10. Selective overexpression of Toll-like receptor-4 in skeletal muscle impairs metabolic adaptation to high-fat feeding.

    Science.gov (United States)

    McMillan, Ryan P; Wu, Yaru; Voelker, Kevin; Fundaro, Gabrielle; Kavanaugh, John; Stevens, Joseph R; Shabrokh, Elika; Ali, Mostafa; Harvey, Mordecai; Anderson, Angela S; Boutagy, Nabil E; Mynatt, Randall L; Frisard, Madlyn I; Hulver, Matthew W

    2015-08-01

    Toll-like receptor-4 (TLR-4) is elevated in skeletal muscle of obese humans, and data from our laboratory have shown that activation of TLR-4 in skeletal muscle via LPS results in decreased fatty acid oxidation (FAO). The purpose of this study was to determine whether overexpression of TLR-4 in skeletal muscle alters mitochondrial function and whole body metabolism in the context of a chow and high-fat diet. C57BL/6J mice (males, 6-8 mo of age) with skeletal muscle-specific overexpression of the TLR-4 (mTLR-4) gene were created and used for this study. Isolated mitochondria and whole muscle homogenates from rodent skeletal muscle (gastrocnemius and quadriceps) were investigated. TLR-4 overexpression resulted in a significant reduction in FAO in muscle homogenates; however, mitochondrial respiration and reactive oxygen species (ROS) production did not appear to be affected on a standard chow diet. To determine the role of TLR-4 overexpression in skeletal muscle in response to high-fat feeding, mTLR-4 mice and WT control mice were fed low- and high-fat diets for 16 wk. The high-fat diet significantly decreased FAO in mTLR-4 mice, which was observed in concert with elevated body weight and fat, greater glucose intolerance, and increase in production of ROS and cellular oxidative damage compared with WT littermates. These findings suggest that TLR-4 plays an important role in the metabolic response in skeletal muscle to high-fat feeding. Copyright © 2015 the American Physiological Society.

  11. The Clinical Application of Anterolateral Thigh Flap

    Directory of Open Access Journals (Sweden)

    Yao-Chou Lee

    2011-01-01

    Furthermore, several modifications widen its clinical applications: the fascia lata can be included for sling or tendon reconstruction, the bulkiness could be created by including vastus lateralis muscle or deepithelization of skin flap, the pliability could be increased by suprafascial dissection or primary thinning, the pedicle length could be lengthening by proximally eccentric placement of the perforator, and so forth. Combined with these technical and conceptual advancements, the anterolateral thigh flap has become the workhorse flap for soft-tissue reconstructions from head to toe.

  12. Fatness

    DEFF Research Database (Denmark)

    Hansen, Anne Katrine Kleberg

    In 1727, the English physician Thomas Short wrote: “I believe no Age did ever afford more instances of Corpulency than our own.” Even in the 18th century, fatness was addressed as an issue of special contemporary concern. This thesis probes concepts and perceptions of fatness in Western European...... Medicine c. 1700–1900. It has been written with particular attention to whether and how fatness has been regarded as a disease during that period in history. One purpose of the thesis is to investigate the immediate period before fatness allegedly became problematized. Another purpose has been to grasp...

  13. Increased muscle fatty acid oxidation in dairy cows with intensive body fat mobilization during early lactation.

    Science.gov (United States)

    Schäff, C; Börner, S; Hacke, S; Kautzsch, U; Sauerwein, H; Spachmann, S K; Schweigel-Röntgen, M; Hammon, H M; Kuhla, B

    2013-10-01

    The beginning of lactation requires huge metabolic adaptations to meet increased energy demands for milk production of dairy cows. One of the adaptations is the mobilization of body reserves mainly from adipose tissue as reflected by increased plasma nonesterified fatty acid (NEFA) concentrations. The capacity of the liver for complete oxidation of NEFA is limited, leading to an increased formation of ketone bodies, reesterification, and accumulation of triglycerides in the liver. As the skeletal muscle also may oxidize fatty acids, it may help to decrease the fatty acid load on the liver. To test this hypothesis, 19 German Holstein cows were weekly blood sampled from 7 wk before until 5 wk after parturition to analyze plasma NEFA concentrations. Liver biopsies were obtained at d 3, 18, and 30 after parturition and, based on the mean liver fat content, cows were grouped to the 10 highest (HI) and 9 lowest (LO). In addition, muscle biopsies were obtained at d -17, 3, and 30 relative to parturition and used to quantify mRNA abundance of genes involved in fatty acid degradation. Plasma NEFA concentrations peaked after parturition and were 1.5-fold higher in HI than LO cows. Muscle carnitine palmitoyltransferase 1α and β mRNA was upregulated in early lactation. The mRNA abundance of muscle peroxisome proliferator-activated receptor γ (PPARG) increased in early lactation and was higher in HI than in LO cows, whereas the abundance of PPARA continuously decreased after parturition. The mRNA abundance of muscle PPARD, uncoupling protein 3, and the β-oxidative enzymes 3-hydroxyacyl-coenzyme A (CoA) dehydrogenase, very long-chain acyl-CoA dehydrogenase, and 3-ketoacyl-CoA was greatest at d 3 after parturition, whereas the abundance of PPARγ coactivator 1α decreased after parturition. Our results indicate that around parturition, oxidation of fatty acids in skeletal muscle is highly activated, which may contribute to diminish the fatty acid load on the liver. The

  14. Mapping quantitative trait loci affecting fatness and breast muscle weight in meat-type chicken lines divergently selected on abdominal fatness

    Directory of Open Access Journals (Sweden)

    Neau André

    2006-01-01

    Full Text Available Abstract Quantitative trait loci (QTL for abdominal fatness and breast muscle weight were investigated in a three-generation design performed by inter-crossing two experimental meat-type chicken lines that were divergently selected on abdominal fatness. A total of 585 F2 male offspring from 5 F1 sires and 38 F1 dams were recorded at 8 weeks of age for live body, abdominal fat and breast muscle weights. One hundred-twenty nine microsatellite markers, evenly located throughout the genome and heterozygous for most of the F1 sires, were used for genotyping the F2 birds. In each sire family, those offspring exhibiting the most extreme values for each trait were genotyped. Multipoint QTL analyses using maximum likelihood methods were performed for abdominal fat and breast muscle weights, which were corrected for the effects of 8-week body weight, dam and hatching group. Isolated markers were assessed by analyses of variance. Two significant QTL were identified on chromosomes 1 and 5 with effects of about one within-family residual standard deviation. One breast muscle QTL was identified on GGA1 with an effect of 2.0 within-family residual standard deviation.

  15. Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles.

    Science.gov (United States)

    Hojman, Pernille; Brolin, Camilla; Gissel, Hanne; Brandt, Claus; Zerahn, Bo; Pedersen, Bente Klarlund; Gehl, Julie

    2009-06-12

    Erythropoietin can be over-expressed in skeletal muscles by gene electrotransfer, resulting in 100-fold increase in serum EPO and significant increases in haemoglobin levels. Earlier studies have suggested that EPO improves several metabolic parameters when administered to chronically ill kidney patients. Thus we applied the EPO over-expression model to investigate the metabolic effect of EPO in vivo.At 12 weeks, EPO expression resulted in a 23% weight reduction (Pfat diet) and 28.8+/-2.6 g (EPO, high-fat diet). Correspondingly, DXA scanning revealed that this was due to a 28% reduction in adipose tissue mass.The decrease in adipose tissue mass was accompanied by a complete normalisation of fasting insulin levels and glucose tolerance in the high-fat fed mice. EPO expression also induced a 14% increase in muscle volume and a 25% increase in vascularisation of the EPO transfected muscle. Muscle force and stamina were not affected by EPO expression. PCR array analysis revealed that genes involved in lipid metabolism, thermogenesis and inflammation were increased in muscles in response to EPO expression, while genes involved in glucose metabolism were down-regulated. In addition, muscular fat oxidation was increased 1.8-fold in both the EPO transfected and contralateral muscles.In conclusion, we have shown that EPO when expressed in supra-physiological levels has substantial metabolic effects including protection against diet-induced obesity and normalisation of glucose sensitivity associated with a shift to increased fat metabolism in the muscles.

  16. Subsarcolemmal and intermyofibrillar mitochondrial responses to short-term high-fat feeding in rat skeletal muscle.

    Science.gov (United States)

    Crescenzo, Raffaella; Bianco, Francesca; Coppola, Paola; Mazzoli, Arianna; Liverini, Giovanna; Iossa, Susanna

    2014-01-01

    We assessed the alterations in mitochondrial function in skeletal muscle that were elicited by short-term high-fat feeding in sedentary rats. Two groups of rats were pair-fed for 1 wk and received a low-fat or high-fat diet. Body composition, energy balance, and glucose homeostasis were measured. Mitochondrial mass, oxidative capacity, and energetic efficiency as well as parameters of oxidative stress and antioxidant defense were evaluated in subsarcolemmal and intermyofibrillar mitochondria from the skeletal muscle. Body energy, lipid content, and metabolic efficiency were significantly higher and energy expenditure was significantly decreased among rats that were fed a high-fat diet, as compared with controls. Skeletal muscle mitochondrial energetic efficiency, oxidative capacity for lipid substrates, and antioxidant defense were significantly increased in rats that were fed a high-fat diet as compared with controls. Acute isocaloric high-fat feeding is able to induce increased phosphorylation efficiency in skeletal muscle subsarcolemmal and intermyofibrillar mitochondria. This modification implies a reduced oxidation of energy substrates that may contribute to the early onset of obesity. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Glycine supplementation during calorie restriction accelerates fat loss and protects against further muscle loss in obese mice.

    Science.gov (United States)

    Caldow, Marissa K; Ham, Daniel J; Godeassi, Daniel P; Chee, Annabel; Lynch, Gordon S; Koopman, René

    2016-10-01

    Calorie restriction (CR) reduces co-morbidities associated with obesity, but also reduces lean mass thereby predisposing people to weight regain. Since we demonstrated that glycine supplementation can reduce inflammation and muscle wasting, we hypothesized that glycine supplementation during CR would preserve muscle mass in mice. High-fat fed male C57BL/6 mice underwent 20 days CR (40% reduced calories) supplemented with glycine (1 g/kg/day; n = 15, GLY) or l-alanine (n = 15, ALA). Body composition and glucose tolerance were assessed and hindlimb skeletal muscles and epididymal fat were collected. Eight weeks of a high-fat diet (HFD) induced obesity and glucose intolerance. CR caused rapid weight loss (ALA: 20%, GLY: 21%, P fat mass (ALA: 41%, GLY: 49% P fat mass (14%, p fat mass (26%, P fat mass (pre CR) and the mRNA expression of genes involved in inflammation (r = 0.51 to 0.68, P loss of adipose tissue. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  18. Influenza A (H3N2-induced rhabdomyolysis complicating anterior compartment syndrome: Serial changes in muscle MRI T2 fat suppression imaging

    Directory of Open Access Journals (Sweden)

    Tadanori Hamano

    2017-06-01

    Conclusions: Muscle MRI T2 fat suppression imaging is a useful method to monitor influenza A induced rhabdomyolysis. We should keep in mind the possibilities of rhabdomyolysis and ACS in patients with influenza A infection presenting serious muscle pain.

  19. Aliskiren Reduces Hepatic steatosis and Epididymal Fat Mass and Increases Skeletal Muscle Insulin Sensitivity in High-Fat Diet-Fed Mice.

    Science.gov (United States)

    Lee, Kuei-Chuan; Hsieh, Yun-Cheng; Yang, Ying-Ying; Chan, Che-Chang; Huang, Yi-Hsiang; Lin, Han-Chieh

    2016-01-06

    Aliskiren has been found to reduce chronic injury and steatosis in the liver of methionine-choline-deficient (MCD) diet-fed mice. This study investigated whether aliskiren has an anti-steatotic effect in HFD-fed mice, which are more relevant to human patients with non-alcoholic fatty liver disease than MCD mice. Mice fed with 4-week normal chow or HFD randomly received aliskiren (50 mg/kg/day) or vehicle via osmotic minipumps for further 4 weeks. Aliskiren reduced systemic insulin resistance, hepatic steatosis, epididymal fat mass and increased gastrocnemius muscle glucose transporter type 4 levels with lower tissue angiotensin II levels in the HFD-fed mice. In addition, aliskiren lowered nuclear peroxisome proliferator-activated receptor gamma and its down-signaling molecules and increased cytochrome P450 4A14 and carnitine palmitoyltransferase 1A (CPT1a) in liver. In epididymal fat, aliskiren inhibited expressions of lipogenic genes, leading to decrease in fat mass, body weight, and serum levels of leptin and free fatty acid. Notably, in the gastrocnemius muscle, aliskiren increased phosphorylation of insulin receptor substrate 1 and Akt. Based on these beneficial effects on liver, peripheral fat and skeletal muscle, aliskiren is a promising therapeutic agent for patients with NAFLD.

  20. Young men with low birthweight exhibit decreased plasticity of genome-wide muscle DNA methylation by high-fat overfeeding

    DEFF Research Database (Denmark)

    Jacobsen, Stine C; Gillberg, Linn; Bork-Jensen, Jette

    2014-01-01

    individuals, and we recently showed multiple DNA methylation changes during short-term high-fat overfeeding in muscle of healthy people. In a randomised crossover study, we analysed genome-wide DNA promoter methylation in skeletal muscle of 17 young LBW men and 23 matched normal birthweight (NBW) men after......The association between low birthweight (LBW) and risk of developing type 2 diabetes may involve epigenetic mechanisms, with skeletal muscle being a prime target tissue. Differential DNA methylation patterns have been observed in single genes in muscle tissue from type 2 diabetic and LBW...

  1. The correlation of intramuscular fat content between muscles of the lamb carcass and the use of computed tomography to predict intramuscular fat percentage in lambs.

    Science.gov (United States)

    Anderson, F; Pethick, D W; Gardner, G E

    2015-07-01

    Intramuscular fat (IMF) % contributes positively to the juiciness and flavour of lamb and is therefore a useful indicator of eating quality. A rapid, non-destructive method of IMF determination like computed tomography (CT) would enable pre-sorting of carcasses based on IMF% and potential eating quality. Given the loin muscle (longissimus lumborum) is easy to sample, a single measurement at this site would be useful, providing is correlates well to other muscles. To determine the ability of CT to predict IMF%, this study used 400 animals and examined 5 muscles from three sections of the carcass: from the fore-section the m. supraspinatus and m. infraspinatus, from the saddle-section the m. longissimus lumborum and from the hind-section the m. semimembranosus and m. semitendinosus. The average CT pixel density of muscle was negatively associated with IMF% and can be used to predict IMF% although precision in this study was poor. The ability of CT to predict IMF% was greatest in the m. longissimus lumborum (slope -0.07) and smallest in the m. infraspinatus (slope -0.02). The correlation coefficients of IMF% between the five muscles were variable, with the highest correlation coefficients evident between muscles of the fore section (0.67 between the m. supraspinatus and the m. infraspinatus) and the weakest correlations were between the muscle of the fore and hind section. The correlation between the m. longissimus lumborum to the other muscles was fairly consistent with values ranging between 0.34 and 0.40 (partial correlation coefficient). The correlation between the proportion of carcass fat and the IMF% of the five muscles varied and was greatest in the m. longissimus lumborum (0.41).

  2. Differential requirement for utrophin in the induced pluripotent stem cell correction of muscle versus fat in muscular dystrophy mice.

    Directory of Open Access Journals (Sweden)

    Amanda J Beck

    Full Text Available Duchenne muscular dystrophy (DMD is an incurable degenerative muscle disorder. We injected WT mouse induced pluripotent stem cells (iPSCs into mdx and mdx∶utrophin mutant blastocysts, which are predisposed to develop DMD with an increasing degree of severity (mdx <<< mdx∶utrophin. In mdx chimeras, iPSC-dystrophin was supplied to the muscle sarcolemma to effect corrections at morphological and functional levels. Dystrobrevin was observed in dystrophin-positive and, at a lesser extent, utrophin-positive areas. In the mdx∶utrophin mutant chimeras, although iPSC-dystrophin was also supplied to the muscle sarcolemma, mice still displayed poor skeletal muscle histopathology, and negligible levels of dystrobrevin in dystrophin- and utrophin-negative areas. Not only dystrophin-expressing tissues are affected by iPSCs. Mdx and mdx∶utrophin mice have reduced fat/body weight ratio, but iPSC injection normalized this parameter in both mdx and mdx∶utrophin chimeras, despite the fact that utrophin was compromised in the mdx∶utrophin chimeric fat. The results suggest that the presence of utrophin is required for the iPSC-corrections in skeletal muscle. Furthermore, the results highlight a potential (utrophin-independent non-cell autonomous role for iPSC-dystrophin in the corrections of non-muscle tissue like fat, which is intimately related to the muscle.

  3. The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue.

    Science.gov (United States)

    Larsen, S; Danielsen, J H; Søndergård, S D; Søgaard, D; Vigelsoe, A; Dybboe, R; Skaaby, S; Dela, F; Helge, J W

    2015-02-01

    High-intensity interval training (HIT) is known to increase mitochondrial content in a similar way as endurance training [60-90% of maximal oxygen uptake (VO2peak)]. Whether HIT increases the mitochondria's ability to oxidize lipids is currently debated. We investigated the effect of HIT on mitochondrial fat oxidation in skeletal muscle and adipose tissue. Mitochondrial oxidative phosphorylation (OXPHOS) capacity, mitochondrial substrate sensitivity (K(m)(app)), and mitochondrial content were measured in skeletal muscle and adipose tissue in healthy overweight subjects before and after 6 weeks of HIT (three times per week at 298 ± 21 W). HIT significantly increased VO2peak from 2.9 ± 0.2 to 3.1 ± 0.2 L/min. No differences were seen in maximal fat oxidation in either skeletal muscle or adipose tissue. K(m)(app) for octanoyl carnitine or palmitoyl carnitine were similar after training in skeletal muscle and adipose tissue. Maximal OXPHOS capacity with complex I- and II-linked substrates was increased after training in skeletal muscle but not in adipose tissue. In conclusion, 6 weeks of HIT increased VO2peak. Mitochondrial content and mitochondrial OXPHOS capacity were increased in skeletal muscle, but not in adipose tissue. Furthermore, mitochondrial fat oxidation was not improved in either skeletal muscle or adipose tissue.

  4. Chicken muscle mitochondrial content appears co-ordinately regulated and is associated with performance phenotypes.

    Science.gov (United States)

    Reverter, Antonio; Okimoto, Ron; Sapp, Robyn; Bottje, Walter G; Hawken, Rachel; Hudson, Nicholas J

    2017-01-15

    Mitochondrial content is a fundamental cellular bioenergetic phenotype. Previous work has hypothesised possible links between variation in muscle mitochondrial content and animal performance. However, no population screens have been performed in any production species. Here, we have designed a high throughput molecular approach to estimate mitochondrial content in commercial broilers. Technical validity was established using several approaches, including its performance in monoclonal DF-1 cells, cross-tissue comparisons in tissues with differing metabolic demands (white fatmusclemusclemuscle) and, as a negative control, a near absence of mtDNA amplification from whole blood. We screened breast muscle and thigh muscle in 80 birds individually phenotyped for 11 growth and development traits. Substantial individual variation (fivefold) was discovered in both breast and thigh muscle mitochondrial content. Interestingly, across birds we detected a very strong positive relationship between breast and thigh content (correlation coefficient 0.61; Pmuscle mitochondrial content is negatively correlated with breast muscle yield (-0.27; P=0.037), abdominal fat content (-0.31; P=0.017) and carcass yield (-0.26; P=0.045). Therefore, low breast muscle mitochondrial content is associated with more muscular birds possessing higher abdominal fat, the latter being in line with biomedical models of obesity. Finally, thigh mitochondrial content is negatively correlated with the bow out leg defect (-0.30; P=0.011). Overall, our data point to mitochondrial content as a promising consideration in predictive modelling of production traits.

  5. High-fat diet induces skeletal muscle oxidative stress in a fiber type-dependent manner in rats.

    Science.gov (United States)

    Pinho, Ricardo A; Sepa-Kishi, Diane M; Bikopoulos, George; Wu, Michelle V; Uthayakumar, Abinas; Mohasses, Arta; Hughes, Meghan C; Perry, Christopher G R; Ceddia, Rolando B

    2017-09-01

    This study investigated the effects of high-fat (HF) diet on parameters of oxidative stress among muscles with distinct fiber type composition and oxidative capacities. To accomplish that, male Wistar rats were fed either a low-fat standard chow (SC) or a HF diet for 8 weeks. Soleus, extensor digitorum longus (EDL), and epitrochlearis muscles were collected and mitochondrial H2O2 (mtH2O2) emission, palmitate oxidation, and gene expression and antioxidant system were measured. Chronic HF feeding enhanced fat oxidation in oxidative and glycolytic muscles. It also caused a significant reduction in mtH2O2 emission in the EDL muscle, although a tendency towards a reduction was also found in the soleus and epitrochlearis muscles. In the epitrochlearis, HF diet increased mRNA expression of the NADPH oxidase complex; however, this muscle also showed an increase in the expression of antioxidant proteins, suggesting a higher capacity to generate and buffer ROS. The soleus muscle, despite being highly oxidative, elicited H2O2 emission rates equivalent to only 20% and 35% of the values obtained for EDL and epitrochlearis muscles, respectively. Furthermore, the Epi muscle with the lowest oxidative capacity was the second highest in H2O2 emission. In conclusion, it appears that intrinsic differences related to the distribution of type I and type II fibers, rather than oxidative capacity, drove the activity of the anti- and pro-oxidant systems and determine ROS production in different skeletal muscles. This also suggests that the impact of potentially deleterious effects of ROS production on skeletal muscle metabolism/function under lipotoxic conditions is fiber type-specific. Copyright © 2017. Published by Elsevier Inc.

  6. High-fat load: mechanism(s) of insulin resistance in skeletal muscle.

    Science.gov (United States)

    Lark, D S; Fisher-Wellman, K H; Neufer, P D

    2012-12-01

    Skeletal muscle from sedentary obese patients is characterized by depressed electron transport activity, reduced expression of genes required for oxidative metabolism, altered mitochondrial morphology and lower overall mitochondrial content. These findings imply that obesity, or more likely the metabolic imbalance that causes obesity, leads to a progressive decline in mitochondrial function, eventually culminating in mitochondrial dissolution or mitoptosis. A decrease in the sensitivity of skeletal muscle to insulin represents one of the earliest maladies associated with high dietary fat intake and weight gain. Considerable evidence has accumulated to suggest that the cytosolic ectopic accumulation of fatty acid metabolites, including diacylglycerol and ceramides, underlies the development of insulin resistance in skeletal muscle. However, an alternative mechanism has recently been evolving, which places the etiology of insulin resistance in the context of cellular/mitochondrial bioenergetics and redox systems biology. Overnutrition, particularly from high-fat diets, generates fuel overload within the mitochondria, resulting in the accumulation of partially oxidized acylcarnitines, increased mitochondrial hydrogen peroxide (H2O2) emission and a shift to a more oxidized intracellular redox environment. Blocking H2O2 emission prevents the shift in redox environment and preserves insulin sensitivity, providing evidence that the mitochondrial respiratory system is able to sense and respond to cellular metabolic imbalance. Mitochondrial H2O2 emission is a major regulator of protein redox state, as well as the overall cellular redox environment, raising the intriguing possibility that elevated H2O2 emission from nutrient overload may represent the underlying basis for the development of insulin resistance due to disruption of normal redox control mechanisms regulating protein function, including the insulin signaling and glucose transport processes.

  7. The physiological role of fat body and muscle tissues in response to cold stress in the tropical cockroach Gromphadorhina coquereliana.

    Science.gov (United States)

    Chowański, Szymon; Lubawy, Jan; Paluch-Lubawa, Ewelina; Spochacz, Marta; Rosiński, Grzegorz; Słocińska, Małgorzata

    2017-01-01

    Protective mechanisms against cold stress are well studied in terrestrial and polar insects; however, little is known about these mechanisms in tropical insects. In our study, we tested if a tropical cockroach Gromphadorhina coquereliana, possesses any protective mechanisms against cold stress. Based on the results of earlier studies, we examined how short-term (3 h) cold (4°C) influences biochemical parameters, mitochondrial respiration activity, and the level of HSPs and aquaporins expression in the fat body and leg muscles of G. coquereliana. Following cold exposure, we found that the level of carbohydrates, lipids and proteins did not change significantly. Nevertheless, we observed significant changes in mitochondrial respiration activity. The oxygen consumption of resting (state 4) and phosphorylating (state 3) mitochondria was altered following cold exposure. The increase in respiratory rate in state 4 respiration was observed in both tissues. In state 3, oxygen consumption by mitochondria in fat body was significantly lower compared to control insects, whereas there were no changes observed for mitochondria in muscle tissue. Moreover, there were cold-induced changes in UCP protein activity, but the changes in activity differed in fat body and in muscles. Additionally, we detected changes in the level of HSP70 and aquaporins expression. Insects treated with cold had significantly higher levels of HSP70 in fat body and muscles. On the other hand, there were lower levels of aquaporins in both tissues following exposure to cold. These results suggest that fat body play an important role in protecting tropical insects from cold stress.

  8. Relationship between FAT/CD36 Protein in Skeletal Muscle and Whole-body Fat Oxidation in Endurance-trained Mice.

    Science.gov (United States)

    Kim, Jisu; Lim, Kiwon

    2016-12-31

    We investigated the effects of endurance training on the expression of long-chain fatty acid transport proteins in the skeletal muscle and whole-body fat oxidation during endurance exercise. Seven-week-old male ICR mice (n = 12) were divided into 2 groups, namely, Sed (sedentary; non-trained) and Tr (endurance-trained) groups. The Tr group was adapted to treadmill training at a fixed intensity (15 m/min, 8° slope) for 3 days. Next, the exercise intensity was increased while maintaining the 8° slope. In the last week of training, the exercise intensity was set at 25 m/min for 50 min (about 70-75% maximal oxygen uptake for 4 weeks). After the protocol ended, the mice were sacrificed, and tissues were collected for western blot analysis. Four weeks of endurance training resulted in a significant increase in the protein levels of FAT/CD36 and CPTІ. The FAT/ CD36 protein level in the Tr group was about 1.3-fold greater than that in the Sed group (p increased CPTІ indicated higher activity (19% upregulation) in the Tr group compared to the Sed group (p FAT/CD36 protein level and the estimated whole-body fat oxidation rate during 1-h exercise were found to be significantly correlated (r = 0.765, p increase in FAT/CD36 protein in skeletal muscle by endurance training might be positively associated with whole-body fat oxidation, which might enhance endurance exercise capacity.

  9. Postexercise High-Fat Feeding Suppresses p70S6K1 Activity in Human Skeletal Muscle.

    Science.gov (United States)

    Hammond, Kelly M; Impey, Samuel G; Currell, Kevin; Mitchell, Nigel; Shepherd, Sam O; Jeromson, Stewart; Hawley, John A; Close, Graeme L; Hamilton, Lee D; Sharples, Adam P; Morton, James P

    2016-11-01

    This study aimed to examine the effects of reduced CHO but high postexercise fat availability on cell signaling and expression of genes with putative roles in regulation of mitochondrial biogenesis, lipid metabolism, and muscle protein synthesis. Ten males completed a twice per day exercise model (3.5 h between sessions) comprising morning high-intensity interval training (8 × 5 min at 85% V˙O2peak) and afternoon steady-state (SS) running (60 min at 70% V˙O2peak). In a repeated-measures design, runners exercised under different isoenergetic dietary conditions consisting of high-CHO (HCHO: 10 g·kg CHO, 2.5 g·kg protein, and 0.8 g·kg fat for the entire trial period) or reduced-CHO but high-fat availability in the postexercise recovery periods (HFAT: 2.5 g·kg CHO, 2.5 g·kg protein, and 3.5 g·kg fat for the entire trial period). Muscle glycogen was lower (P increased post-SS in either condition (P = 0.41), although comparable increases (all P fat feeding does not augment the mRNA expression of genes associated with regulatory roles in mitochondrial biogenesis, although it does increase lipid gene expression. However, postexercise ribosomal protein S6 kinase 1 activity is reduced under conditions of high-fat feeding, thus potentially impairing skeletal muscle remodeling processes.

  10. Time-dependent regulation of muscle caveolin activation and insulin signalling in response to high-fat diet.

    Science.gov (United States)

    Gómez-Ruiz, Ana; de Miguel, Carlos; Campión, Javier; Martínez, J Alfredo; Milagro, Fermín I

    2009-10-06

    We studied the effect of high-fat diet on the expression and activation of the three caveolins in rat skeletal muscle and their association with the insulin signalling cascade. Initial response was characterized by increased signalling through Cav-1 and Cav-3 phosphorylation, suggesting that both participate in an initial acute response to the calorie surplus. Afterwards, Cav-1 signalling was slightly reduced, whereas Cav-3 remained active. Late chronic phase signalling through both proteins was impaired inducing a prediabetic state. Summarizing, caveolins seem to mediate a time-dependent regulation of insulin cascade in response to high-fat diet in muscle.

  11. Fat infiltration in the lumbar multifidus and erector spinae muscles in subjects with sway-back posture.

    Science.gov (United States)

    Pezolato, Adriano; de Vasconcelos, Everaldo Encide; Defino, Helton Luiz Aparecido; Nogueira-Barbosa, Marcello Henrique

    2012-11-01

    Decreased activity of the lumbar stabilizer muscles has been identified in individuals with sway-back posture. Disuse can predispose these muscles to atrophy, which is characterized by a reduced cross-sectional area (CSA) and by fat infiltration. The aim of this study was to evaluate the amount of fat infiltration in the lumbar multifidus and lumbar erector spinae muscles as a sign of the muscle atrophy in individuals with sway-back posture, with and without low back pain. Forty-five sedentary individuals between 16 and 40 years old participated in this study. The sample was divided into three groups: symptomatic sway-back (SSBG) (n = 15), asymptomatic sway-back (ASBG) (n = 15), and control (CG) (n = 15). The individuals were first subjected to photographic analysis to classify their postures and were then referred for a magnetic resonance imaging (MRI) examination of the lumbar spine. The total (TCSA) and functional (FCSA) cross-sectional areas of the lumbar erector spinae together with lumbar multifidus and isolated lumbar multifidus muscles were measured from L1 to S1. The amount of fat infiltration was estimated as the difference between the TCSA and the FCSA. Greater fat deposition was observed in the lumbar erector spinae and lumbar multifidus muscles of the individuals in the sway-back posture groups than in the control group. Pain may have contributed to the difference in the amount of fat observed in the groups with the same postural deviation. Similarly, sway-back posture may have contributed to the tissue substitution relative to the control group independently of low back pain. The results of this study indicate that individuals with sway-back posture may be susceptible to morphological changes in their lumbar erector spinae and lumbar multifidus muscles, both due to the presence of pain and as a consequence of their habitual posture.

  12. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women

    Energy Technology Data Exchange (ETDEWEB)

    Alizai, Hamza; Nardo, Lorenzo; Karampinos, Dimitrios C.; Joseph, Gabby B.; Yap, Samuel P.; Baum, Thomas; Krug, Roland; Majumdar, Sharmila; Link, Thomas M. [University of California, San Francisco, Musculoskeletal and Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2012-07-15

    The goal of this study was to compare the semi-quantitative Goutallier classification for fat infiltration with quantitative fat-fraction derived from a magnetic resonance imaging (MRI) chemical shift-based water/fat separation technique. Sixty-two women (age 61 {+-} 6 years), 27 of whom had diabetes, underwent MRI of the calf using a T1-weighted fast spin-echo sequence and a six-echo spoiled gradient-echo sequence at 3 T. Water/fat images and fat fraction maps were reconstructed using the IDEAL algorithm with T2* correction and a multi-peak model for the fat spectrum. Two radiologists scored fat infiltration on the T1-weighted images using the Goutallier classification in six muscle compartments. Spearman correlations between the Goutallier grades and the fat fraction were calculated; in addition, intra-observer and inter-observer agreement were calculated. A significant correlation between the clinical grading and the fat fraction values was found for all muscle compartments (P < 0.0001, R values ranging from 0.79 to 0.88). Goutallier grades 0-4 had a fat fraction ranging from 3.5 to 19%. Intra-observer and inter-observer agreement values of 0.83 and 0.81 were calculated for the semi-quantitative grading. Semi-quantitative grading of intramuscular fat and quantitative fat fraction were significantly correlated and both techniques had excellent reproducibility. However, the clinical grading was found to overestimate muscle fat. (orig.)

  13. Fat Body dSir2 Regulates Muscle Mitochondrial Physiology and Energy Homeostasis Nonautonomously and Mimics the Autonomous Functions of dSir2 in Muscles

    Science.gov (United States)

    Banerjee, Kushal K.; Ayyub, Champakali; Sengupta, Samudra

    2013-01-01

    Sir2 is an evolutionarily conserved NAD+-dependent deacetylase which has been shown to play a critical role in glucose and fat metabolism. In this study, we have perturbed Drosophila Sir2 (dSir2) expression, bidirectionally, in muscles and the fat body. We report that dSir2 plays a critical role in insulin signaling, glucose homeostasis, and mitochondrial functions. Importantly, we establish the nonautonomous functions of fat body dSir2 in regulating mitochondrial physiology and insulin signaling in muscles. We have identified a novel interplay between dSir2 and dFOXO at an organismal level, which involves Drosophila insulin-like peptide (dILP)-dependent insulin signaling. By genetic perturbations and metabolic rescue, we provide evidence to illustrate that fat body dSir2 mediates its effects on the muscles via free fatty acids (FFA) and dILPs (from the insulin-producing cells [IPCs]). In summary, we show that fat body dSir2 is a master regulator of organismal energy homeostasis and is required for maintaining the metabolic regulatory network across tissues. PMID:23129806

  14. Molecular Factors Underlying the Deposition of Intramuscular Fat and Collagen in Skeletal Muscle of Nellore and Angus Cattle.

    Science.gov (United States)

    Martins, Taiane S; Sanglard, Letícia M P; Silva, Walmir; Chizzotti, Mário L; Rennó, Luciana N; Serão, Nick V L; Silva, Fabyano F; Guimarães, Simone E F; Ladeira, Márcio M; Dodson, Michael V; Du, Min; Duarte, Marcio S

    2015-01-01

    Studies have shown that intramuscular adipogenesis and fibrogenesis may concomitantly occur in skeletal muscle of beef cattle. Thus, we hypothesized that the discrepancy of intramuscular fat content in beef from Nellore and Angus was associated with differences in intramuscular adipogenesis and fibrogenesis during the finishing phase. To test our hypothesis, longissimus muscle samples of Nellore (n = 6; BW = 372.5 ± 37.3 kg) and Angus (n = 6; BW = 382.8 ± 23.9 kg) cattle were collected for analysis of gene and protein expression, and quantification of intramuscular fat and collagen. Least-squares means were estimated for the effect of Breed and differences were considered at P ≤ 0.05. A greater intramuscular fat content was observed in skeletal muscle of Angus compared to Nellore cattle (P≤0.05). No differences were observed for mRNA expression of lipogenic and lipolytic markers ACC, FAS, FABP4, SERBP-1, CPT-2, LPL, and ACOX (P > 0.05) in skeletal muscle of Nellore and Angus cattle. Similarly, no differences were observed in mRNA expression of adipogenic markers Zfp423, PPARγ, and C/EBPα (P>0.05) However, a greater PPARγ protein content was observed in skeletal muscle of Angus compared to Nellore cattle (P≤0.05). A greater abundance of adipo/fibrogenic cells, evaluated by the PDGFRα content, was observed in skeletal muscle of Angus than Nellore cattle (P≤0.05). No differences in fibrogenesis were observed in skeletal muscle of Angus and Nellore cattle, which is in accordance with the lack of differences in intramuscular collagen content in beef from both breeds (P>0.05). These findings demonstrate that difference in intramuscular fat content is associated with a slightly enhanced adipogenesis in skeletal muscle of Angus compared to Nellore cattle, while no difference in fibrogenesis.

  15. Molecular Factors Underlying the Deposition of Intramuscular Fat and Collagen in Skeletal Muscle of Nellore and Angus Cattle.

    Directory of Open Access Journals (Sweden)

    Taiane S Martins

    Full Text Available Studies have shown that intramuscular adipogenesis and fibrogenesis may concomitantly occur in skeletal muscle of beef cattle. Thus, we hypothesized that the discrepancy of intramuscular fat content in beef from Nellore and Angus was associated with differences in intramuscular adipogenesis and fibrogenesis during the finishing phase. To test our hypothesis, longissimus muscle samples of Nellore (n = 6; BW = 372.5 ± 37.3 kg and Angus (n = 6; BW = 382.8 ± 23.9 kg cattle were collected for analysis of gene and protein expression, and quantification of intramuscular fat and collagen. Least-squares means were estimated for the effect of Breed and differences were considered at P ≤ 0.05. A greater intramuscular fat content was observed in skeletal muscle of Angus compared to Nellore cattle (P≤0.05. No differences were observed for mRNA expression of lipogenic and lipolytic markers ACC, FAS, FABP4, SERBP-1, CPT-2, LPL, and ACOX (P > 0.05 in skeletal muscle of Nellore and Angus cattle. Similarly, no differences were observed in mRNA expression of adipogenic markers Zfp423, PPARγ, and C/EBPα (P>0.05 However, a greater PPARγ protein content was observed in skeletal muscle of Angus compared to Nellore cattle (P≤0.05. A greater abundance of adipo/fibrogenic cells, evaluated by the PDGFRα content, was observed in skeletal muscle of Angus than Nellore cattle (P≤0.05. No differences in fibrogenesis were observed in skeletal muscle of Angus and Nellore cattle, which is in accordance with the lack of differences in intramuscular collagen content in beef from both breeds (P>0.05. These findings demonstrate that difference in intramuscular fat content is associated with a slightly enhanced adipogenesis in skeletal muscle of Angus compared to Nellore cattle, while no difference in fibrogenesis.

  16. Association of the CPT1B gene with skeletal muscle fat infiltration in Afro-Caribbean men.

    Science.gov (United States)

    Miljkovic, Iva; Yerges, Laura M; Li, Hu; Gordon, Christopher L; Goodpaster, Bret H; Kuller, Lewis H; Nestlerode, Cara S; Bunker, Clareann H; Patrick, Alan L; Wheeler, Victor W; Zmuda, Joseph M

    2009-07-01

    Skeletal muscle fat is greater in African ancestry individuals compared with whites, is associated with diabetes, and is a heritable polygenic trait. However, specific genetic factors contributing to skeletal muscle fat in humans remain to be defined. Muscle carnitine palmitoyltransferase-1B (CPT1B) is a key enzyme in the regulation of skeletal muscle mitochondrial beta-oxidation of long-chain fatty acids, and as such is a reasonable biological candidate gene for skeletal muscle fat accumulation. Therefore, we examined the association of three nonsynonymous coding variants in CPT1B (G531L, I66V, and S427C; a fourth, A320G, could not be genotyped) and quantitative computed tomography measured tibia skeletal muscle composition and BMI among 1,774 Afro-Caribbean men aged > or =40, participants of the population-based Tobago Health Study. For all variants, no significant differences were observed for BMI or total adipose tissue. Among individuals who were homozygous for the minor allele at G531L or I66V, intermuscular adipose tissue (IMAT) was 87% (P = 0.03) and 54% lower (P = 0.03), respectively. In contrast, subcutaneous adipose tissue (SAT) was 11% (P = 0.017) and 7% (P = 0.049) higher, respectively, than among individuals without these genotypes. These associations were independent of age, body size, and muscle area. Finally, no individuals with type 2 diabetes were found among those who were homozygous for the minor allele of either at G531L and I66V whereas 14-18% of men with the major alleles had type 2 diabetes (P = 0.03 and 0.007, respectively). Our results suggest a novel association between common nonsynonymous coding variants in CPT1B and ectopic skeletal muscle fat among middle-aged and older African ancestry men.

  17. Alternate-Day High-Fat Diet Induces an Increase in Mitochondrial Enzyme Activities and Protein Content in Rat Skeletal Muscle.

    Science.gov (United States)

    Li, Xi; Higashida, Kazuhiko; Kawamura, Takuji; Higuchi, Mitsuru

    2016-04-06

    Long-term high-fat diet increases muscle mitochondrial enzyme activity and endurance performance. However, excessive calorie intake causes intra-abdominal fat accumulation and metabolic syndrome. The purpose of this study was to investigate the effect of an alternating day high-fat diet on muscle mitochondrial enzyme activities, protein content, and intra-abdominal fat mass in rats. Male Wistar rats were given a standard chow diet (CON), high-fat diet (HFD), or alternate-day high-fat diet (ALT) for 4 weeks. Rats in the ALT group were fed a high-fat diet and standard chow every other day for 4 weeks. After the dietary intervention, mitochondrial enzyme activities and protein content in skeletal muscle were measured. Although body weight did not differ among groups, the epididymal fat mass in the HFD group was higher than those of the CON and ALT groups. Citrate synthase and beta-hydroxyacyl CoA dehydrogenase activities in the plantaris muscle of rats in HFD and ALT were significantly higher than that in CON rats, whereas there was no difference between HFD and ALT groups. No significant difference was observed in muscle glycogen concentration or glucose transporter-4 protein content among the three groups. These results suggest that an alternate-day high-fat diet induces increases in mitochondrial enzyme activities and protein content in rat skeletal muscle without intra-abdominal fat accumulation.

  18. Alternate-Day High-Fat Diet Induces an Increase in Mitochondrial Enzyme Activities and Protein Content in Rat Skeletal Muscle

    Science.gov (United States)

    Li, Xi; Higashida, Kazuhiko; Kawamura, Takuji; Higuchi, Mitsuru

    2016-01-01

    Long-term high-fat diet increases muscle mitochondrial enzyme activity and endurance performance. However, excessive calorie intake causes intra-abdominal fat accumulation and metabolic syndrome. The purpose of this study was to investigate the effect of an alternating day high-fat diet on muscle mitochondrial enzyme activities, protein content, and intra-abdominal fat mass in rats. Male Wistar rats were given a standard chow diet (CON), high-fat diet (HFD), or alternate-day high-fat diet (ALT) for 4 weeks. Rats in the ALT group were fed a high-fat diet and standard chow every other day for 4 weeks. After the dietary intervention, mitochondrial enzyme activities and protein content in skeletal muscle were measured. Although body weight did not differ among groups, the epididymal fat mass in the HFD group was higher than those of the CON and ALT groups. Citrate synthase and beta-hydroxyacyl CoA dehydrogenase activities in the plantaris muscle of rats in HFD and ALT were significantly higher than that in CON rats, whereas there was no difference between HFD and ALT groups. No significant difference was observed in muscle glycogen concentration or glucose transporter-4 protein content among the three groups. These results suggest that an alternate-day high-fat diet induces increases in mitochondrial enzyme activities and protein content in rat skeletal muscle without intra-abdominal fat accumulation. PMID:27058555

  19. Chicken muscle mitochondrial content appears co-ordinately regulated and is associated with performance phenotypes

    Directory of Open Access Journals (Sweden)

    Antonio Reverter

    2017-01-01

    Full Text Available Mitochondrial content is a fundamental cellular bioenergetic phenotype. Previous work has hypothesised possible links between variation in muscle mitochondrial content and animal performance. However, no population screens have been performed in any production species. Here, we have designed a high throughput molecular approach to estimate mitochondrial content in commercial broilers. Technical validity was established using several approaches, including its performance in monoclonal DF-1 cells, cross-tissue comparisons in tissues with differing metabolic demands (white fatmusclemusclemuscle and, as a negative control, a near absence of mtDNA amplification from whole blood. We screened breast muscle and thigh muscle in 80 birds individually phenotyped for 11 growth and development traits. Substantial individual variation (fivefold was discovered in both breast and thigh muscle mitochondrial content. Interestingly, across birds we detected a very strong positive relationship between breast and thigh content (correlation coefficient 0.61; P<0.0001, consistent with coordinate regulatory control across the musculature. Further, breast muscle mitochondrial content is negatively correlated with breast muscle yield (−0.27; P=0.037, abdominal fat content (−0.31; P=0.017 and carcass yield (−0.26; P=0.045. Therefore, low breast muscle mitochondrial content is associated with more muscular birds possessing higher abdominal fat, the latter being in line with biomedical models of obesity. Finally, thigh mitochondrial content is negatively correlated with the bow out leg defect (−0.30; P=0.011. Overall, our data point to mitochondrial content as a promising consideration in predictive modelling of production traits.

  20. Significant associations of stearoyl-CoA desaturase (SCD1 gene with fat deposition and composition in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Zhihua Jiang, Jennifer J. Michal, David J. Tobey, Tyler F. Daniels, Daniel C. Rule, Michael D. MacNeil

    2008-01-01

    Full Text Available Gene expression studies in humans and animals have shown that elevated stearoyl-CoA desaturase (SCD1 activity is associated with increased fat accumulation and monounsaturation of saturated fatty acids in skeletal muscle. However, results of the two reported association studies in humans are inconsistent. In the present study, we annotated the bovine SCD1 gene and identified 3 single nucleotide polymorphisms (SNPs in its 3'untranslated region (UTR. Genotyping these SNPs on a Wagyu x Limousin reference population revealed that the SCD1 gene was significantly associated with six fat deposition and fatty acid composition traits in skeletal muscle, but not with subcutaneous fat depth and percent kidney-pelvic-heart fat. In particular, we confirmed that the high stearoyl-CoA desaturase activities/alleles were positively correlated with beef marbling score, amount of monounsaturated fatty acids and conjugated linoleic acid content, but negatively with amount of saturated fatty acids. The inconsistent associations between human studies might be caused by using different sets of markers because we obeserved that most associated markers are located near the end of 3'UTR. We found that the proximity of the polyadenylation signal site is highly conserved among human, cattle and pig, indicating that the region might contain functional elements involved in posttranscriptional control of SCD1 activity. In conclusion, our cross species study provided solid evidence to support SCD1 gene as a critical player in skeletal muscle fat metabolism.

  1. No Change of Body Mass, Fat Mass, and Skeletal Muscle Mass in Ultraendurance Swimmers after 12 Hours of Swimming

    Science.gov (United States)

    Knechtle, Beat; Knechtle, Patrizia; Kaul, Rene; Kohler, Gotz

    2009-01-01

    We evaluated whether ultraendurance swimmers suffer a change of body mass, fat mass, skeletal muscle mass, total body water, and specific gravity of urine during a 12-hr swim in 12 male Caucasian ultraswimmers. Proton nuclear magnetic resonance of urine samples before and after the race was performed to detect alanine, lactate, and…

  2. Viscous dietary fiber reduces adiposity and plasma leptin and increases muscle expression of fat oxidation genes in rats

    National Research Council Canada - National Science Library

    Islam, Ajmila; Civitarese, Anthony E; Hesslink, Robert L; Gallaher, Daniel D

    2012-01-01

    .... Body composition was measured by dual-energy X-ray absorptiometry (DXA) and fat pad weight. Plasma adipokines, AMP kinase activation, and enzyme and mRNA analysis of key regulators of energetics in liver and soleus muscle were measured...

  3. Correlation between lumbar dysfunction and fat infiltration in lumbar multifidus muscles in patients with low back pain.

    Science.gov (United States)

    Hildebrandt, Markus; Fankhauser, Gabriela; Meichtry, André; Luomajoki, Hannu

    2017-01-10

    Lumbar multifidus muscles (LMM) are important for spinal motion and stability. Low back pain (LBP) is often associated with fat infiltration in LMM. An increasing fat infiltration of LMM may lead to lumbar dysfunction. The purpose of this study was to investigate whether there is a correlation between the severity of lumbar dysfunction and the severity of fat infiltration of LMM. In a cross-sectional study, 42 patients with acute or chronic LBP were recruited. Their MRI findings were visually rated and graded using three criteria for fat accumulation in LMM: Grade 0 (0-10%), Grade 1 (10-50%) and Grade 2 (>50%). Lumbar sagittal range of motion, dynamic upright and seated posture control, sagittal movement control, body awareness and self-assessed functional disability were measured to determine the patients' low back dysfunction. The main result of this study was that increased severity of fat infiltration in the lumbar multifidus muscles correlated significantly with decreased range of motion of lumbar flexion (p = 0.032). No significant correlation was found between the severity of fat infiltration in LMM and impaired movement control, posture control, body awareness or self-assessed functional disability. This is the first study investigating the relationship between the severity of fat infiltration in LMM and the severity of lumbar dysfunction. The results of this study will contribute to the understanding of the mechanisms leading to fat infiltration of LMM and its relation to spinal function. Further studies should investigate whether specific treatment strategies are effective in reducing or preventing fat infiltration of LMM.

  4. Young men with low birthweight exhibit decreased plasticity of genome-wide muscle DNA methylation by high-fat overfeeding.

    Science.gov (United States)

    Jacobsen, Stine C; Gillberg, Linn; Bork-Jensen, Jette; Ribel-Madsen, Rasmus; Lara, Ester; Calvanese, Vincenzo; Ling, Charlotte; Fernandez, Agustin F; Fraga, Mario F; Poulsen, Pernille; Brøns, Charlotte; Vaag, Allan

    2014-06-01

    The association between low birthweight (LBW) and risk of developing type 2 diabetes may involve epigenetic mechanisms, with skeletal muscle being a prime target tissue. Differential DNA methylation patterns have been observed in single genes in muscle tissue from type 2 diabetic and LBW individuals, and we recently showed multiple DNA methylation changes during short-term high-fat overfeeding in muscle of healthy people. In a randomised crossover study, we analysed genome-wide DNA promoter methylation in skeletal muscle of 17 young LBW men and 23 matched normal birthweight (NBW) men after a control and a 5 day high-fat overfeeding diet. DNA methylation was measured using Illumina's Infinium BeadArray covering 27,578 CpG sites representing 14,475 different genes. After correction for multiple comparisons, DNA methylation levels were found to be similar in the LBW and NBW groups during the control diet. Whereas widespread DNA methylation changes were observed in the NBW group in response to high-fat overfeeding, only a few methylation changes were seen in the LBW group (χ(2), p muscle from LBW vs NBW men, potentially contributing to understanding the link between LBW and increased risk of type 2 diabetes.

  5. 1H-MRS Measured Ectopic Fat in Liver and Muscle in Danish Lean and Obese Children and Adolescents.

    Directory of Open Access Journals (Sweden)

    Cilius Esmann Fonvig

    Full Text Available This cross sectional study aims to investigate the associations between ectopic lipid accumulation in liver and skeletal muscle and biochemical measures, estimates of insulin resistance, anthropometry, and blood pressure in lean and overweight/obese children.Fasting plasma glucose, serum lipids, serum insulin, and expressions of insulin resistance, anthropometry, blood pressure, and magnetic resonance spectroscopy of liver and muscle fat were obtained in 327 Danish children and adolescents aged 8-18 years.In 287 overweight/obese children, the prevalences of hepatic and muscular steatosis were 31% and 68%, respectively, whereas the prevalences in 40 lean children were 3% and 10%, respectively. A multiple regression analysis adjusted for age, sex, body mass index z-score (BMI SDS, and pubertal development showed that the OR of exhibiting dyslipidemia was 4.2 (95%CI: [1.8; 10.2], p = 0.0009 when hepatic steatosis was present. Comparing the simultaneous presence of hepatic and muscular steatosis with no presence of steatosis, the OR of exhibiting dyslipidemia was 5.8 (95%CI: [2.0; 18.6], p = 0.002. No significant associations between muscle fat and dyslipidemia, impaired fasting glucose, or blood pressure were observed. Liver and muscle fat, adjusted for age, sex, BMI SDS, and pubertal development, associated to BMI SDS and glycosylated hemoglobin, while only liver fat associated to visceral and subcutaneous adipose tissue and intramyocellular lipid associated inversely to high density lipoprotein cholesterol.Hepatic steatosis is associated with dyslipidemia and liver and muscle fat depositions are linked to obesity-related metabolic dysfunctions, especially glycosylated hemoglobin, in children and adolescents, which suggest an increased cardiovascular disease risk.

  6. Rutin Increases Muscle Mitochondrial Biogenesis with AMPK Activation in High-Fat Diet-Induced Obese Rats.

    Science.gov (United States)

    Seo, Sangjin; Lee, Mak-Soon; Chang, Eugene; Shin, Yoonjin; Oh, Soojung; Kim, In-Hwan; Kim, Yangha

    2015-09-22

    Decreased mitochondrial number and dysfunction in skeletal muscle are associated with obesity and the progression of obesity-associated metabolic disorders. The specific aim of the current study was to investigate the effects of rutin on mitochondrial biogenesis in skeletal muscle of high-fat diet-induced obese rats. Supplementation with rutin reduced body weight and adipose tissue mass, despite equivalent energy intake (p increased mitochondrial size and mitochondrial DNA (mtDNA) content as well as gene expression related to mitochondrial biogenesis, such as peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factor-1 (NRF-1), transcription factor A (Tfam), and nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, sirtulin1 (SIRT1) in skeletal muscle (p increased muscle adenosine monophosphate-activated protein kinase (AMPK) activity by 40% (p muscle mitochondria and AMPK activation in the rutin-mediated beneficial effect on obesity.

  7. 1H-MRS Measured Ectopic Fat in Liver and Muscle in Danish Lean and Obese Children and Adolescents

    DEFF Research Database (Denmark)

    Fonvig, Cilius Esmann; Chabanova, Elizaveta; Andersson, Ehm Astrid

    2015-01-01

    OBJECTIVES: This cross sectional study aims to investigate the associations between ectopic lipid accumulation in liver and skeletal muscle and biochemical measures, estimates of insulin resistance, anthropometry, and blood pressure in lean and overweight/obese children. METHODS: Fasting plasma...... glucose, serum lipids, serum insulin, and expressions of insulin resistance, anthropometry, blood pressure, and magnetic resonance spectroscopy of liver and muscle fat were obtained in 327 Danish children and adolescents aged 8-18 years. RESULTS: In 287 overweight/obese children, the prevalences...... associated inversely to high density lipoprotein cholesterol. CONCLUSION: Hepatic steatosis is associated with dyslipidemia and liver and muscle fat depositions are linked to obesity-related metabolic dysfunctions, especially glycosylated hemoglobin, in children and adolescents, which suggest an increased...

  8. Association between skeletal muscle fat content and very-low-density lipoprotein-apolipoprotein B-100 transport in obesity: effect of weight loss.

    Science.gov (United States)

    Chan, D C; Gan, S K; Wong, A T Y; Barrett, P H R; Watts, G F

    2014-10-01

    Ectopic deposition of fat in skeletal muscle is a feature of metabolic syndrome, but its specific association with very-low-density lipoprotein (VLDL)-apolipoprotein (apo) B-100 metabolism remains unclear. We examined the association between skeletal muscle fat content and VLDL-apoB-100 kinetics in 25 obese subjects, and the responses of these variables to weight loss. The fat contents of liver, abdomen and skeletal muscle were determined by magnetic resonance imaging, and VLDL-apoB-100 kinetics were assessed using stable isotope tracers. In obese subjects who were insulin sensitive (homeostasis model assessment, HOMA, score ≤ 2.6, n = 12), skeletal muscle fat content was significantly associated with hepatic fat content (r = 0.636), energy intake (r = 0.694), plasma triglyceride (r = 0.644), apoB-100 (r = 0.529), glucose (r = 0.622), VLDL-apoB-100 concentrations (r = 0.860), VLDL-apoB-100 fractional catabolic rate (FCR; r = -0.581) and VLDL-apoB-100 secretion rate (r = 0.607). These associations were not found in obese subjects who were insulin resistant (HOMA score >2.6, n = 13). Of these 25 subjects, 10 obese subjects underwent a 16-week weight loss program. The low-fat diet achieved significant reduction (p fat areas, liver and skeletal muscle fat, energy intake, triglyceride, insulin, HOMA score, VLDL-apoB100 concentrations and VLDL-apoB100 secretion rate. The percentage reduction of skeletal muscle fat with weight loss was significantly associated with the corresponding changes in VLDL-apoB100 concentration (r = 0.770, p = 0.009) and VLDL-apoB-100 secretion (r = 0.682, p = 0.030). Skeletal muscle fat content is associated with VLDL-apoB-100 transport. Weight loss lowers skeletal muscle fat and VLDL-apoB-100 secretion. © 2014 John Wiley & Sons Ltd.

  9. Magnetic resonance imaging analysis of the upper cervical spine extensor musculature in an asymptomatic cohort: an index of fat within muscle

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, J.M. [Division of Physiotherapy, University of Queensland, Brisbane, QLD (Australia)]. E-mail: jimelliott@plbb.net; Galloway, G.J. [Center for Magnetic Resonance, University of Queensland, Brisbane, QLD (Australia); Jull, G.A. [Division of Physiotherapy, University of Queensland, Brisbane, QLD (Australia); Noteboom, J.T. [Department of Physical Therapy, Regis University, Denver, CO, USA (United States); Centeno, C.J. [Centeno Clinic, Westminster, CO, USA (United States); Gibbon, W.W. [Department of Radiology, School of Medicine, University of Queensland, Brisbane, QLD (Australia)

    2005-03-01

    AIM: To establish a simple method to quantify muscle/fat constituents in cervical muscles of asymptomatic women using magnetic resonance imaging (MRI), and to determine whether there is an age effect within a defined age range. MATERIALS AND METHODS: MRI of the upper cervical spine was performed for 42 asymptomatic women aged 18-45 years. The muscle and fat signal intensities on axial spin echo T1-weighted images were quantitatively classified by taking a ratio of the pixel intensity profiles of muscle against those of intermuscular fat for the rectus capitis posterior major and minor and inferior obliquus capitis muscles bilaterally. Inter- and intra-examiner agreement was scrutinized. RESULTS: The average relative values of fat within the upper cervical musculature compared with intermuscular fat indicated that there were only slight variations in indices between the three sets of muscles. There was no significant correlation between age and fat indices. There were significant differences for the relative fat within the muscle compared with intermuscular fat and body mass index for the right rectus capitis posterior major and right and left inferior obliquus capitis muscles (p=0.032). Intraclass correlation coefficients for intraobserver agreement ranged from 0.94 to 0.98. Inter-rater agreement of the measurements ranged from 0.75 to 0.97. CONCLUSION: A quantitative measure of muscle/fat constituents has been developed, and results of this study indicate that relative fatty infiltration is not a feature of age in the upper cervical extensor muscles of women aged 18-45 years.

  10. The unfolded protein response is activated in skeletal muscle by high-fat feeding: potential role in the downregulation of protein synthesis.

    Science.gov (United States)

    Deldicque, Louise; Cani, Patrice D; Philp, Andrew; Raymackers, Jean-Marc; Meakin, Paul J; Ashford, Michael L J; Delzenne, Nathalie M; Francaux, Marc; Baar, Keith

    2010-11-01

    High-fat diets are known to decrease muscle protein synthesis, the adaptation to overload, and insulin sensitivity. Conditions that disrupt endoplasmic reticulum (ER) homeostasis lead to the activation of the unfolded protein response (UPR) that is associated with decreases in protein synthesis, chronic inflammation, and insulin resistance. The purpose of the present study was to establish whether ER stress is induced by a high-fat diet in skeletal muscle and whether ER stress can decrease mTORC1 activity and protein synthesis in muscle cells. Two independent protocols of high-fat feeding activated the UPR in mice. In the first study, mice consuming a high-fat diet containing 70% fat and muscles and ATF4 in the tibialis anterior (P fat diet containing 46% fat and 36% carbohydrates also increased BiP, IRE1α, and phospho-PERK protein and the expression of ATF4, CHOP, and both the spliced and unspliced forms of XBP1 in the plantar flexors (P muscle cells, tunicamycin, thapsigargin, and palmitic acid all increased UPR markers and decreased phosphorylation of S6K1 (P fat diet activates the UPR in mouse skeletal muscle in vivo. In addition, in vitro studies indicate that palmitic acid, and other well-known ER stress inducers, triggered the UPR in myogenic cells and led to a decrease in protein synthesis and mTORC1 activity.

  11. Thigh circumference and risk of heart disease and premature death: prospective cohort study

    DEFF Research Database (Denmark)

    Heitmann, Berit; Frederiksen, Peder

    2009-01-01

    in Denmark. PARTICIPANTS: 1436 men and 1380 women participating in the Danish MONICA project, examined in 1987-8 for height, weight, and thigh, hip, and waist circumference, and body composition by impedance. MAIN OUTCOME MEASURES: 10 year incidence of cardiovascular and coronary heart disease and 12.5 years...... of follow-up for total death. RESULTS: A small thigh circumference was associated with an increased risk of cardiovascular and coronary heart diseases and total mortality in both men and women. A threshold effect for thigh circumference was evident, with greatly increased risk of premature death below...... circumference seems to be associated with an increased risk of developing heart disease or premature death. The adverse effects of small thighs might be related to too little muscle mass in the region. The measure of thigh circumference might be a relevant anthropometric measure to help general practitioners...

  12. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise.

    Science.gov (United States)

    Camera, Donny M; Burniston, Jatin G; Pogson, Mark A; Smiles, William J; Hawley, John A

    2017-08-30

    It is generally accepted that muscle adaptation to resistance exercise (REX) training is underpinned by contraction-induced, increased rates of protein synthesis and dietary protein availability. By using dynamic proteome profiling (DPP), we investigated the contribution of both synthesis and breakdown to changes in abundance on a protein-by-protein basis in human skeletal muscle. Age-matched, overweight males consumed 9 d of a high-fat, low-carbohydrate diet during which time they either undertook 3 sessions of REX or performed no exercise. Precursor enrichment and the rate of incorporation of deuterium oxide into newly synthesized muscle proteins were determined by mass spectrometry. Ninety proteins were included in the DPP, with 28 proteins exhibiting significant responses to REX. The most common pattern of response was an increase in turnover, followed by an increase in abundance with no detectable increase in protein synthesis. Here, we provide novel evidence that demonstrates that the contribution of synthesis and breakdown to changes in protein abundance induced by REX differ on a protein-by-protein basis. We also highlight the importance of the degradation of individual muscle proteins after exercise in human skeletal muscle.-Camera, D. M., Burniston, J. G., Pogson, M. A., Smiles, W. J., Hawley, J. A. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise. © FASEB.

  13. Mitochondrial-Targeted Catalase Protects Against High-Fat Diet-Induced Muscle Insulin Resistance by Decreasing Intramuscular Lipid Accumulation.

    Science.gov (United States)

    Lee, Hui-Young; Lee, Jae Sung; Alves, Tiago; Ladiges, Warren; Rabinovitch, Peter S; Jurczak, Michael J; Choi, Cheol Soo; Shulman, Gerald I; Samuel, Varman T

    2017-08-01

    We explored the role of reactive oxygen species (ROS) in the pathogenesis of muscle insulin resistance. We assessed insulin action in vivo with a hyperinsulinemic-euglycemic clamp in mice expressing a mitochondrial-targeted catalase (MCAT) that were fed regular chow (RC) or a high-fat diet (HFD) or underwent an acute infusion of a lipid emulsion. RC-fed MCAT mice were similar to littermate wild-type (WT) mice. However, HFD-fed MCAT mice were protected from diet-induced insulin resistance. In contrast, an acute lipid infusion caused muscle insulin resistance in both MCAT and WT mice. ROS production was decreased in both HFD-fed and lipid-infused MCAT mice and cannot explain the divergent response in insulin action. MCAT mice had subtly increased energy expenditure and muscle fat oxidation with decreased intramuscular diacylglycerol (DAG) accumulation, protein kinase C-θ (PKCθ) activation, and impaired insulin signaling with HFD. In contrast, the insulin resistance with the acute lipid infusion was associated with increased muscle DAG content in both WT and MCAT mice. These studies suggest that altering muscle mitochondrial ROS production does not directly alter the development of lipid-induced insulin resistance. However, the altered energy balance in HFD-fed MCAT mice protected them from DAG accumulation, PKCθ activation, and impaired muscle insulin signaling. © 2017 by the American Diabetes Association.

  14. Modulation of visceral fat adipokine secretion by dietary fatty acids and ensuing changes in skeletal muscle inflammation.

    Science.gov (United States)

    Tishinsky, Justine M; De Boer, Anna A; Dyck, David J; Robinson, Lindsay E

    2014-01-01

    Given the link between obesity and insulin resistance, the role of adipose-derived factors in communicating with skeletal muscle to affect its function is important. We sought to determine if high fat diets modulate visceral adipose tissue (VAT) adipokines with subsequent effects on skeletal muscle inflammation and insulin sensitivity. Rats were fed (i) low fat (LF), (ii) high saturated fatty acid (SFA), or (iii) high SFA with n-3 polyunsaturated fatty acid (SFA/n-3 PUFA) diets for 4 weeks. VAT-derived adipokines were measured in adipose conditioned medium (ACM) after 72 h. Next, skeletal muscles from LF-fed rats were incubated for 8 h in (i) control buffer (CON), (ii) CON with 2 mmol·L(-1) palmitate (PALM, positive control), (iii) ACM from LF, (iv) ACM from SFA, or (v) ACM from SFA/n-3 PUFA. ACM from rats fed SFA and SFA/n-3 PUFA had increased (P ≤ 0.05) interleukin-6 (IL-6) (+31%) and monocyte chemoattractant protein-1 (MCP-1) (+30%). Adiponectin was decreased (-29%, P ≤ 0.05) in ACM from SFA, and this was prevented in SFA/n-3 PUFA ACM. Toll-like receptor 4 (TLR4) gene expression was increased (P ≤ 0.05) in PALM soleus muscle (+356%) and all ACM groups (+175%-191%). MCP-1 gene expression was elevated (P ≤ 0.05) in PALM soleus muscle (+163%) and soleus muscle incubated in ACM from animals fed SFA (+159%) and SFA/n-3 PUFA (+151%). Glucose transport was impaired (P ≤ 0.05) in PALM muscles but preserved in ACM groups. Acute exposure of muscle to fatty acid modulated adipokines affects skeletal muscle inflammatory gene expression but not insulin sensitivity.

  15. The effect of a high monounsaturated fat diet on body weight, back fat and loin muscle growth in high and medium-lean pig genotypes

    Energy Technology Data Exchange (ETDEWEB)

    Mas, G.; Soler, J.; Llavall, M.; Tibau, J.; Roca, R.; Coll, D.; Fabrega, E.

    2012-11-01

    The objective of this study was to evaluate whether the use of a diet rich in oleic acid could have an effect on daily weight gain, backfat and loin muscle (Longissimus thoracis) depth. One hundred and ninety-two barrows and gilts, from two genotypes were fed a grain and soy diet (CONTROL with 28% C18:1) or a similar diet enriched with oleic acid (HO with 43% C18:1, Greedy-Grass OLIVA). The pigs were housed in 16 pens in groups of 12 according to their sex, diet and genotype. From 75 days of age every three weeks, the pigs were weighed and the backfat and loin muscle depth were ultrasonically recorded (PIGLOG). The inclusion of the dietary fat had no significant effect on the growth variables nor on the backfat and loin muscle depth measurements taken. However, the barrows resulted in higher live weight and backfat compared to the gilts at the end of the trial. Conversely, the gilts showed higher loin depth. Moreover, York-sired pigs were heavier than Pietrain-sired pigs during the whole trial and showed higher backfat at the last two measurements. Pietrain-sired pigs had higher loin muscle depth at the last measurements. The results of the present study suggest that the addition of a dietary fat into diets aiming at modifying the meat fatty acid profile has no detrimental effects on performance variables, or on backfat and loin muscle growth and thus, no negative economic impact for producers. (Author) 37 refs.

  16. The Variability of Growth Hormone Gene Associated with Ultrasound Imaging of Longissimus dorsi Muscle and Perirenal Fat in Rabbits

    Directory of Open Access Journals (Sweden)

    T. I. Amalianingsih

    2014-04-01

    Full Text Available Identification of genes in rabbits correlated to economic traits were intended to improve and develop their genetic quality. The objective of this research was to analyze the variability of growth hormone gene (GH in three rabbit breeds, i.e. Rex, Satin, and Reza (Rex and Satin crosses then was associated with ultrasound imaging of Longissimus dorsi muscle and perirenal fat thickness. Identification of the variability of growth hormone gene was analyzed using PCR RFLP technique from blood samples of 33 mature male rabbits in Indonesian Research Institute for Animal Production (IRIAP. Thickness of Longissimus dorsi muscle and perirenal fat were imaged and measured by using ultrasound unit at 2nd to 3rd lumbar vertebrae in the left body side. PCR product of GH gene fragment (231 base pair /bp was digested with restriction enzyme Bsh1236I. PCR-RFLP patterns were allele T resulted in an undigested fragment of 231 bp; allele C resulted in fragment of 169 bp and 62 bp. The result showed that Bsh1236I GH gene had three genotypes, i.e. CC, TT, and CT. There were signifficant association of Longissimus dorsi muscle thickness between rabbit breed (P<0.05. There was no significant association between GH Bsh1236I gene polymorphism and imaging ultrasound of Longissimus dorsi muscle and perirenal fat thickness. The association of characteristic genotype of GH|Bsh1236I gene with measurement phenotype was not significant, however it had potency as marker assisted selection (MAS.

  17. Disseminated lymphoma presenting as acute thigh pain and renal failure.

    LENUS (Irish Health Repository)

    Brown, Catherine

    2009-01-01

    A 66-year-old diabetic man presented with severe right thigh swelling and pain together with acute renal failure. At autopsy, this was found to be due to disseminated high grade B cell lymphoma invading the psoas muscle and multiple organs, including the kidneys. The unique presentation of this case emphasizes the need for increased awareness of the variety of ways in which lymphoma can manifest itself.

  18. Dietary enrichment with fish oil prevents high fat-induced metabolic dysfunction in skeletal muscle in mice.

    Science.gov (United States)

    Philp, Lisa K; Heilbronn, Leonie K; Janovska, Alena; Wittert, Gary A

    2015-01-01

    High saturated fat (HF-S) diets increase intramyocellular lipid, an effect ameliorated by omega-3 fatty acids in vitro and in vivo, though little is known about sex- and muscle fiber type-specific effects. We compared effects of standard chow, HF-S, and 7.5% HF-S replaced with fish oil (HF-FO) diets on the metabolic profile and lipid metabolism gene and protein content in red (soleus) and white (extensor digitorum longus) muscles of male and female C57BL/6 mice (n = 9-12/group). Weight gain was similar in HF-S- and HF-FO-fed groups. HF-S feeding increased mesenteric fat mass and lipid marker, Oil Red O, in red and mixed muscle; HF-FO increased interscapular brown fat mass. Compared to chow, HF-S and HF-FO increased expression of genes regulating triacylglycerol synthesis and fatty acid transport, HF-S suppressed genes and proteins regulating fatty acid oxidation, whereas HF-FO increased oxidative genes, proteins and enzymes and lipolytic gene content, whilst suppressing lipogenic genes. In comparison to HF-S, HF-FO further increased fat transporters, markers of fatty acid oxidation and mitochondrial content, and reduced lipogenic genes. No diet-by-sex interactions were observed. Neither diet influenced fiber type composition. However, some interactions between muscle type and diet were observed. HF-S induced changes in triacylglycerol synthesis and lipogenic genes in red, but not white, muscle, and mitochondrial biogenesis and oxidative genes were suppressed by HF-S and increased by HF-FO in red muscle only. In conclusion, HF-S feeding promotes lipid storage in red muscle, an effect abrogated by the fish oil, which increases mediators of lipolysis, oxidation and thermogenesis while inhibiting lipogenic genes. Greater storage and synthesis, and lower oxidative genes in red, but not white, muscle likely contribute to lipid accretion encountered in red muscle. Despite several gender-dimorphic genes, both sexes exhibited a similar HF-S-induced metabolic and gene

  19. Dietary enrichment with fish oil prevents high fat-induced metabolic dysfunction in skeletal muscle in mice.

    Directory of Open Access Journals (Sweden)

    Lisa K Philp

    Full Text Available High saturated fat (HF-S diets increase intramyocellular lipid, an effect ameliorated by omega-3 fatty acids in vitro and in vivo, though little is known about sex- and muscle fiber type-specific effects. We compared effects of standard chow, HF-S, and 7.5% HF-S replaced with fish oil (HF-FO diets on the metabolic profile and lipid metabolism gene and protein content in red (soleus and white (extensor digitorum longus muscles of male and female C57BL/6 mice (n = 9-12/group. Weight gain was similar in HF-S- and HF-FO-fed groups. HF-S feeding increased mesenteric fat mass and lipid marker, Oil Red O, in red and mixed muscle; HF-FO increased interscapular brown fat mass. Compared to chow, HF-S and HF-FO increased expression of genes regulating triacylglycerol synthesis and fatty acid transport, HF-S suppressed genes and proteins regulating fatty acid oxidation, whereas HF-FO increased oxidative genes, proteins and enzymes and lipolytic gene content, whilst suppressing lipogenic genes. In comparison to HF-S, HF-FO further increased fat transporters, markers of fatty acid oxidation and mitochondrial content, and reduced lipogenic genes. No diet-by-sex interactions were observed. Neither diet influenced fiber type composition. However, some interactions between muscle type and diet were observed. HF-S induced changes in triacylglycerol synthesis and lipogenic genes in red, but not white, muscle, and mitochondrial biogenesis and oxidative genes were suppressed by HF-S and increased by HF-FO in red muscle only. In conclusion, HF-S feeding promotes lipid storage in red muscle, an effect abrogated by the fish oil, which increases mediators of lipolysis, oxidation and thermogenesis while inhibiting lipogenic genes. Greater storage and synthesis, and lower oxidative genes in red, but not white, muscle likely contribute to lipid accretion encountered in red muscle. Despite several gender-dimorphic genes, both sexes exhibited a similar HF-S-induced metabolic

  20. Muscle structural changes in mitochondrial myopathy relate to genotype

    DEFF Research Database (Denmark)

    Olsen, David B.; Langkilde, Annika Reynberg; Ørngreen, Mette C.

    2003-01-01

    It is well known that morphological changes at the cellular level occur in muscle of patients with mitochondrial myopathy (MM), but changes in muscle structure with fat infiltration and gross variation of muscle fiber size with giant fibers, normally encountered in the muscular dystrophies, have...... typically not been associated with mitochondrial disease. We investigated gross and microscopic muscle morphology in thigh muscles by muscle biopsy and MRI in 16 patients with MM, and compared findings with those obtained in muscular dystrophy patients and healthy subjects. Changes of muscle architecture......, similar to those found in the group of muscular dystrophy patients occurred consistently in patients with a high mutation load for single, largescale deletions of mtDNA, but were absent in all patients with the 3243A-->G mtDNA point mutation. Dystrophic changes of muscle architecture were also present...

  1. Overexpression of manganese superoxide dismutase ameliorates high-fat diet-induced insulin resistance in rat skeletal muscle.

    Science.gov (United States)

    Boden, Michael J; Brandon, Amanda E; Tid-Ang, Jennifer D; Preston, Elaine; Wilks, Donna; Stuart, Ella; Cleasby, Mark E; Turner, Nigel; Cooney, Gregory J; Kraegen, Edward W

    2012-09-15

    Elevated mitochondrial reactive oxygen species have been suggested to play a causative role in some forms of muscle insulin resistance. However, the extent of their involvement in the development of diet-induced insulin resistance remains unclear. To investigate, manganese superoxide dismutase (MnSOD), a key mitochondrial-specific enzyme with antioxidant modality, was overexpressed, and the effect on in vivo muscle insulin resistance induced by a high-fat (HF) diet in rats was evaluated. Male Wistar rats were maintained on chow or HF diet. After 3 wk, in vivo electroporation (IVE) of MnSOD expression and empty vectors was undertaken in right and left tibialis cranialis (TC) muscles, respectively. After one more week, insulin action was evaluated using hyperinsulinemic euglycemic clamp, and tissues were subsequently analyzed for antioxidant enzyme capacity and markers of oxidative stress. MnSOD mRNA was overexpressed 4.5-fold, and protein levels were increased by 70%, with protein detected primarily in the mitochondrial fraction of muscle fibers. This was associated with elevated MnSOD and glutathione peroxidase activity, indicating that the overexpressed MnSOD was functionally active. The HF diet significantly reduced whole body and TC muscle insulin action, whereas overexpression of MnSOD in HF diet animals ameliorated this reduction in TC muscle glucose uptake by 50% (P Decreased protein carbonylation was seen in MnSOD overexpressing TC muscle in HF-treated animals (20% vs. contralateral control leg, P muscle.

  2. Targeted loss of GHR signaling in mouse skeletal muscle protects against high-fat diet-induced metabolic deterioration.

    Science.gov (United States)

    Vijayakumar, Archana; Wu, YingJie; Sun, Hui; Li, Xiaosong; Jeddy, Zuha; Liu, Chengyu; Schwartz, Gary J; Yakar, Shoshana; LeRoith, Derek

    2012-01-01

    Growth hormone (GH) exerts diverse tissue-specific metabolic effects that are not revealed by global alteration of GH action. To study the direct metabolic effects of GH in the muscle, we specifically inactivated the growth hormone receptor (ghr) gene in postnatal mouse skeletal muscle using the Cre/loxP system (mGHRKO model). The metabolic state of the mGHRKO mice was characterized under lean and obese states. High-fat diet feeding in the mGHRKO mice was associated with reduced adiposity, improved insulin sensitivity, lower systemic inflammation, decreased muscle and hepatic triglyceride content, and greater energy expenditure compared with control mice. The obese mGHRKO mice also had an increased respiratory exchange ratio, suggesting increased carbohydrate utilization. GH-regulated suppressor of cytokine signaling-2 (socs2) expression was decreased in obese mGHRKO mice. Interestingly, muscles of both lean and obese mGHRKO mice demonstrated a higher interleukin-15 and lower myostatin expression relative to controls, indicating a possible mechanism whereby GHR signaling in muscle could affect liver and adipose tissue function. Thus, our study implicates skeletal muscle GHR signaling in mediating insulin resistance in obesity and, more importantly, reveals a novel role of muscle GHR signaling in facilitating cross-talk between muscle and other metabolic tissues.

  3. Dixon-based MRI for assessment of muscle-fat content in phantoms, healthy volunteers and patients with achillodynia: comparison to visual assessment of calf muscle quality

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Michael A.; Pfirrmann, Christian W.A.; Buck, Florian M. [University Hospital Balgrist, Radiology, Zurich (Switzerland); Espinosa, Norman [University Hospital Balgrist, Department of Orthopedic Surgery, Zurich (Switzerland); Raptis, Dimitri A. [University Hospital Zurich, Clinic of Visceral and Transplant Surgery, Zurich (Switzerland)

    2014-06-15

    To quantify the muscle fat-content (MFC) in phantoms, volunteers and patients with achillodynia using two-point Dixon-based magnetic resonance imaging (2pt-MRI{sub DIXON}) in comparison to MR spectroscopy (MRS) and visual assessment of MFC. Two-point Dixon-based MRI was used to measure the MFC of 15 phantoms containing 0-100 % fat-content and calf muscles in 30 patients (13 women; 57 ± 15 years) with achillodynia and in 20 volunteers (10 women; 30 ± 14 years) at 1.5 T. The accuracy of 2pt-MRI{sub DIXON} in quantification of MFC was assessed in vitro using phantoms and in vivo using MRS as the standard of reference. Fat-fractions derived from 2pt-MRI{sub DIXON} (FF{sub DIXON}) and MRS (FF{sub MRS}) were related to visual assessment of MFC (Goutallier grades 0-4) and Achilles-tendon quality (grade 0-4). Excellent linear correlation was demonstrated for FF{sub DIXON} with phantoms and with FF{sub MRS} in patients (p{sub c} = 0.997/0.995; p < 0.001). FF{sub DIXON} of the gastrocnemius muscle was significantly higher (p = 0.002) in patients (7.0 % ± 4.7 %) compared with volunteers (3.6 % ± 0.7 %), whereas visual-grading showed no difference between both groups (p > 0.05). FF{sub MRS} and FF{sub DIXON} were significantly higher in subjects with (>grade 1) structural damage of the Achilles-tendon (p = 0.01). Two-point Dixon-based MRI allows for accurate quantification of MFC, outperforming visual assessment of calf muscle fat. Structural damage of the Achilles tendon is associated with a significantly higher MFC. (orig.)

  4. Rapid loss of adiponectin-stimulated fatty acid oxidation in skeletal muscle of rats fed a high fat diet is not due to altered muscle redox state.

    Science.gov (United States)

    Ritchie, Ian R W; Dyck, David J

    2012-01-01

    A high fat (HF) diet rapidly impairs the ability of adiponectin (Ad) to stimulate fatty acid (FA) oxidation in oxidative soleus muscle, but the underlying mechanism remains elusive. Mere days of HF feeding also increase the muscle's production and accumulation of reactive oxygen species (ROS) and shift cellular redox to a more oxidized state. It seems plausible that this shift towards a more oxidized state might act as negative feedback to suppress the ability of Ad to stimulate FA oxidation and generate more ROS. Therefore, we sought to determine whether i) a shift towards a more oxidized redox state (reduction in GSH/2GSSG) coincided with impaired Ad-stimulated palmitate oxidation in oxidative and glycolytic rodent muscle after 5 days of HF feeding (60% kCal), and ii) if supplementation with the antioxidant, N-acetylcysteine (NAC) could prevent the HF-diet induced impairment in Ad-response. Globular Ad (gAd) increased palmitate oxidation in isolated soleus and EDL muscles by 42% and 34%, respectively (pmuscles. HF feeding decreased total GSH (-26%, pmuscle. Furthermore, direct incubations with H(2)O(2) did not impair Ad-stimulated FA oxidation in either muscle. In conclusion, our data indicates that skeletal muscle Ad resistance is rapidly induced in both oxidative and glycolytic muscle, independently of altered cellular redox state.

  5. Denervation and high-fat diet reduce insulin signaling in T-tubules in skeletal muscle of living mice

    DEFF Research Database (Denmark)

    Lauritzen, Hans P M; Ploug, Thorkil; Ai, Hua

    2008-01-01

    OBJECTIVE: Insulin stimulates muscle glucose transport by translocation of GLUT4 to sarcolemma and T-tubules. Despite muscle glucose uptake playing a major role in insulin resistance and type 2 diabetes, the temporal and spatial changes in insulin signaling and GLUT4 translocation during...... these conditions are not well described. RESEARCH DESIGN AND METHODS: We used time-lapse confocal imaging of green fluorescent protein (GFP) ADP-ribosylation factor nucleotide-binding site opener (ARNO) (evaluation of phosphatidylinositide 3-kinase activation) and GLUT4-GFP-transfected quadriceps muscle in living...... receptors. RESULTS: Denervation and high-fat diet reduced insulin-mediated glucose transport. In denervated muscle, insulin-stimulated phosphatidylinositol 3,4,5 P(3) (PIP3) production was abolished in T-tubules, while PIP3 production at sarcolemma was increased 2.6-fold. Correspondingly, GLUT4-GFP...

  6. Caloric restriction induces energy-sparing alterations in skeletal muscle contraction, fiber composition and local thyroid hormone metabolism that persist during catch-up fat upon refeeding

    Directory of Open Access Journals (Sweden)

    Paula Bresciani M. De Andrade

    2015-09-01

    Full Text Available Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i higher expression of muscle deiodinase type 3 (DIO3 which inactivates tri-iodothyronine (T3, and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2, (ii slower net formation of T3 from its T4 precursor in muscles, and (iii accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development.We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. Energy-sparing effects persist during weight recovery and likely contribute to catch-up fat.

  7. Increased intramuscular fat induced by reduced dietary protein in finishing pigs: effects on the longissimus lumborum muscle proteome.

    Science.gov (United States)

    Pires, V M R; Madeira, M S; Dowle, A A; Thomas, J; Almeida, A M; Prates, J A M

    2016-07-19

    Due to genetic selection towards reduced subcutaneous fat, the amount of intramuscular fat (IMF) in commercial pigs has been reduced (increase IMF in pigs. We have previously shown that increased IMF promoted by RPD is mediated by lysine restriction. However, the molecular mechanisms involved remain unclear. Here we performed a proteomics study to quantify differentially regulated proteins in the longissimus lumborum muscle of pigs (n = 4) fed a normal protein diet (NPD) (16.0% CP) or a reduced protein diet (RPD) (13.0% CP). Both isobaric tags for relative and absolute quantification (iTRAQ) and label-free methods were used. Glycolysis, Krebs cycle, mitochondrion, contractile proteins, respiratory chain, and calcium signalling were significantly enriched in muscle samples. Thirty five proteins shown to be differentially expressed and were classified using gene ontology (GO) terms and functional annotation clustering, highlighting main relevant biological networks and proteins associated with muscle physiology and meat quality. Members of GO categories "muscle contraction" and "structural constituents of cytoskeleton", were the most significantly up-regulated proteins in muscle from pigs fed RPD. Conversely, in animals fed NPD most up-regulated proteins were enzymes involved in the regulation of energy metabolism. Our data revealed that RPD affects the amounts of proteins related to fibre type and structure, and energy metabolism. It is suggested that the increased IMF promoted by dietary protein reduction in growing-finishing pigs is mediated by shifting the metabolic properties of fibres from glycolytic to oxidative.

  8. The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Larsen, Steen; Danielsen, J H; Søndergård, Stine Dam

    2015-01-01

    of HIT (three times per week at 298 ± 21 W). HIT significantly increased VO2peak from 2.9 ± 0.2 to 3.1 ± 0.2 L/min. No differences were seen in maximal fat oxidation in either skeletal muscle or adipose tissue. Km (app) for octanoyl carnitine or palmitoyl carnitine were similar after training in skeletal...... on mitochondrial fat oxidation in skeletal muscle and adipose tissue. Mitochondrial oxidative phosphorylation (OXPHOS) capacity, mitochondrial substrate sensitivity (Km (app) ), and mitochondrial content were measured in skeletal muscle and adipose tissue in healthy overweight subjects before and after 6 weeks...... muscle and adipose tissue. Maximal OXPHOS capacity with complex I- and II-linked substrates was increased after training in skeletal muscle but not in adipose tissue. In conclusion, 6 weeks of HIT increased VO2peak . Mitochondrial content and mitochondrial OXPHOS capacity were increased in skeletal...

  9. High fat diet-induced changes in mouse muscle mitochondrial phospholipids do not impair mitochondrial respiration despite insulin resistance.

    Directory of Open Access Journals (Sweden)

    Joris Hoeks

    Full Text Available BACKGROUND: Type 2 diabetes mellitus and muscle insulin resistance have been associated with reduced capacity of skeletal muscle mitochondria, possibly as a result of increased intake of dietary fat. Here, we examined the hypothesis that a prolonged high-fat diet consumption (HFD increases the saturation of muscle mitochondrial membrane phospholipids causing impaired mitochondrial oxidative capacity and possibly insulin resistance. METHODOLOGY: C57BL/6J mice were fed an 8-week or 20-week low fat diet (10 kcal%; LFD or HFD (45 kcal%. Skeletal muscle mitochondria were isolated and fatty acid (FA composition of skeletal muscle mitochondrial phospholipids was analyzed by thin-layer chromatography followed by GC. High-resolution respirometry was used to assess oxidation of pyruvate and fatty acids by mitochondria. Insulin sensitivity was estimated by HOMA-IR. PRINCIPAL FINDINGS: At 8 weeks, mono-unsaturated FA (16∶1n7, 18∶1n7 and 18∶1n9 were decreased (-4.0%, p<0.001, whereas saturated FA (16∶0 were increased (+3.2%, p<0.001 in phospholipids of HFD vs. LFD mitochondria. Interestingly, 20 weeks of HFD descreased mono-unsaturated FA while n-6 poly-unsaturated FA (18∶2n6, 20∶4n6, 22∶5n6 showed a pronounced increase (+4.0%, p<0.001. Despite increased saturation of muscle mitochondrial phospholipids after the 8-week HFD, mitochondrial oxidation of both pyruvate and fatty acids were similar between LFD and HFD mice. After 20 weeks of HFD, the increase in n-6 poly-unsaturated FA was accompanied by enhanced maximal capacity of the electron transport chain (+49%, p = 0.002 and a tendency for increased ADP-stimulated respiration, but only when fuelled by a lipid-derived substrate. Insulin sensitivity in HFD mice was reduced at both 8 and 20 weeks. CONCLUSIONS/INTERPRETATION: Our findings do not support the concept that prolonged HF feeding leads to increased saturation of skeletal muscle mitochondrial phospholipids resulting in a decrease in

  10. Acute and perinatal programming effects of a fat-rich diet on rat muscle mitochondrial function and hepatic lipid accumulation.

    Science.gov (United States)

    Hellgren, Lars I; Jensen, Runa I; Waterstradt, Michelle S G; Quistorff, Bjørn; Lauritzen, Lotte

    2014-11-01

    Maternal high-fat intake during pregnancy may have long-term consequences in the offspring. Since this might relate to the capacity of mitochondrial metabolic adaptation and hepatic lipid metabolism, we investigated how maternal high-fat intake affected mitochondrial function and hepatic steatosis in the offspring. Sprague-Dawley rats were fed a high-fat (20% w/w) or a control diet (chow, C) from 10 days before pregnancy and throughout lactation. At weaning the litters were split into two groups; one was continued on the maternal diet and the other was fed low-fat chow. Skeletal muscle mitochondria and liver lipids. Mitochondrial respiration and hepatic lipid content were determined during and after weaning, on days 20 and 70 postpartum. Mitochondrial function and hepatic lipids. At 20 days, maternal high-fat diet caused increased Vo2max with pyruvate as substrate (p=0.047), at 70 days, pups born by C-dams, but not those born by high-fat-dams, showed increased oxidation of palmitoylcarnitine in the absence of ADP (p=0.018). Rates of ADP-stimulated oxygen consumption, maximal respiratory capacity and mitochondrial respiratory control ratio with pyruvate, increased post weaning (pdecreased (p=0.013). The increase in respiratory control ratio was most pronounced in pups from C-dams (p=0.05). The high-fat-diet caused pronounced hepatic steatosis in pups at weaning (pfat-feeding after weaning induced triacylglycerol and ceramide accumulation (pfat-rich diet during pregnancy and lactation reduced the age-induced increases in un-coupled fat oxidation. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  11. Determination of arm fat area and arm muscle area norms in children 6-12 years of age in Bursa.

    Science.gov (United States)

    Günay, U; Sapan, N; Salih, C; Doğruyol, H

    1990-01-01

    Since arm fat area and arm muscle area measurements are said to assess the calorie and protein reserves in the body more accurately than triceps skinfold thickness measurements, we decided to use this system on 1497 girls and 1651 boys who were pupils in elementary schools in Bursa. From the data obtained, percentile norms for the children aged between 6-12 were calculated and percentile curves were drawn. The data that we collected can be used in future nutritional surveys.

  12. Effects of Maternal Diet and Exercise during Pregnancy on Glucose Metabolism in Skeletal Muscle and Fat of Weanling Rats

    OpenAIRE

    Mukesh Raipuria; Hasnah Bahari; Morris, Margaret J.

    2015-01-01

    Obesity during pregnancy contributes to the development of metabolic disorders in offspring. Maternal exercise may limit gestational weight gain and ameliorate these programming effects. We previously showed benefits of post-weaning voluntary exercise in offspring from obese dams. Here we examined whether voluntary exercise during pregnancy influences lipid and glucose homeostasis in muscle and fat in offspring of both lean and obese dams. Female Sprague-Dawley rats were fed chow (C) or high ...

  13. Involvement of skeletal muscle protein, glycogen, and fat metabolism in the adaptation on early lactation of dairy cows.

    Science.gov (United States)

    Kuhla, Björn; Nürnberg, Gerd; Albrecht, Dirk; Görs, Solvig; Hammon, Harald M; Metges, Cornelia C

    2011-09-02

    During early lactation, high-yielding dairy cows cannot consume enough feed to meet nutrient requirements. As a consequence, animals drop into negative energy balance and mobilize body reserves including muscle protein and glycogen for milk production, direct oxidation, and hepatic gluconeogenesis. To examine which muscle metabolic processes contribute to the adaptation during early lactation, six German Holstein cows were blood sampled and muscle biopsied throughout the periparturient period. From pregnancy to lactation, the free plasma amino acid pattern imbalanced and plasma glucose decreased. Several muscle amino acids, as well as total muscle protein, fat, and glycogen, and the expression of glucose transporter-4 were reduced within the first 4 weeks of lactation. The 2-DE and MALDI-TOF-MS analysis identified 43 differentially expressed muscle protein spots throughout the periparturient period. In early lactation, expression of cytoskeletal proteins and enzymes involved in glycogen synthesis and in the TCA cycle was decreased, whereas proteins related to glycolysis, fatty acid degradation, lactate, and ATP production were increased. On the basis of these results, we propose a model in which the muscle breakdown in early lactation provides substrates for milk production by a decoupled Cori cycle favoring hepatic gluconeogenesis and by interfering with feed intake signaling.

  14. [Daily calorie and macronutrient consumption in girls of different somatotypes with different shares of body fat, muscle and bone components].

    Science.gov (United States)

    Fefelova, V V; Fefelova, Yu A; Koloskova, T P; Kazakova, T V; Sergeeva, E Yu

    2016-01-01

    211 practically healthy girls, the students of Krasnoyarsk Medical University in the ages of 16 to 20 years, have been examined. We determined their somatotypes (euriplastic, athletic, subathletic and stenoplastic) and body composition (fat, muscle, bone component). Actual nutrition in these subjects was studied by the method. of 24-hour nutrition recall involving foodstuffs models. Energy consumption in cohorts with different somatotypes did not differ from one another and ranged from 1880 to 2115 kilocalories per day, that corresponded to normal physiological needs in women of this age with the coefficient of physical activity as 1.4 (students). Only the intake of fat (% of calories) exceeded the performance standards. As for macronutrients, the majority of indicators of nutrient intake did not differ significantly among girls with different somatotype, except for fat intake in girls with athletic and stenoplastic somatotypes (psomatotypes (psomatotypes with statistically considerable, differences in both overall dimensions (body mass and length) and the ratios between fat, muscle and bone as somatic components. In general, macronutrient consumption did not show any differences as well. Thus, apart from the energy and macronutrient consumption, definite meaning within the process of the formation of body composition can belong to the characteristics of the changes following nutrition load on lipoid spectrum of blood serum as well 'as the peculiarities of the distribution of substrate flow among cell metabolic paths, appropriate of definite somatotypes.

  15. Restoration of Muscle Mitochondrial Function and Metabolic Flexibility in Type 2 Diabetes by Exercise Training Is Paralleled by Increased Myocellular Fat Storage and Improved Insulin Sensitivity

    NARCIS (Netherlands)

    Meex, R.C.R.; Schrauwen-Hinderling, V.B.; Moonen-Kornips, E.; Schaart, G.; Mensink, M.R.; Phielix, E.; Weijer, van de T.; Sels, J.P.; Schrauwen, P.; Hesselink, M.K.C.

    2010-01-01

    OBJECTIVE-Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2

  16. Histological Profile of the Longissimus Dorsi Muscle in Polish Large White and Polish Landrace Pigs and its Effect on Loin Parameters and Intramuscular Fat Content

    National Research Council Canada - National Science Library

    Anna Bereta; Mirosław Tyra; Katarzyna Ropka-Molik; Dorota Wojtysiak; Marian Różycki; Robert Eckert

    2014-01-01

    The objective of this study was to analyse differences in individual fibre types in the histological profile of the longissimus dorsi muscle and their effect on pork carcass lean content and level of intramuscular fat (IMF...

  17. Effects of Dietary Fatty Acids on Lipid Traits in the Muscle and Perirenal Fat of Growing Rabbits Fed Mixed Diets.

    Science.gov (United States)

    Peiretti, Pier Giorgio

    2012-02-22

    The aim of this study was to evaluate the effects of various raw materials (spirulina, curcuma, tomato pomace, false flax, linseed, chia, perilla seeds) as suitable polyunsaturated fatty acid n-3 (n-3 PUFA) sources, on the lipid traits in the longissimus dorsi muscle and perirenal fat of growing rabbits. The fatty acid (FA) analyses of the diets, carried out by gas chromatography, differed over a wide range on the basis of the highly varied ingredients in 27 experimental formulations. Among the 29 identified FAs, three from feeds were catabolized in the rabbits, five were de novo synthesized and stored chiefly in the muscle. It was possible to linearly characterize the incorporation from the feed to the muscle of 16 FAs. This study has confirmed that the dietary inclusion of various raw materials could be considered as a way of enriching the n-3 PUFA of rabbit meat. A proposal for the prediction of n-3 PUFA from dietary α-linolenic acid (C18:3 n-3) and a panel of another 10 FAs has been made for intramuscular fat (R² = 0.94) and perirenal fat (R² = 0.96).

  18. Effects of Dietary Fatty Acids on Lipid Traits in the Muscle and Perirenal Fat of Growing Rabbits Fed Mixed Diets

    Directory of Open Access Journals (Sweden)

    Pier Giorgio Peiretti

    2012-02-01

    Full Text Available The aim of this study was to evaluate the effects of various raw materials (spirulina, curcuma, tomato pomace, false flax, linseed, chia, perilla seeds as suitable polyunsaturated fatty acid n-3 (n-3 PUFA sources, on the lipid traits in the longissimus dorsi muscle and perirenal fat of growing rabbits. The fatty acid (FA analyses of the diets, carried out by gas chromatography, differed over a wide range on the basis of the highly varied ingredients in 27 experimental formulations. Among the 29 identified FAs, three from feeds were catabolized in the rabbits, five were de novo synthesized and stored chiefly in the muscle. It was possible to linearly characterize the incorporation from the feed to the muscle of 16 FAs. This study has confirmed that the dietary inclusion of various raw materials could be considered as a way of enriching the n-3 PUFA of rabbit meat. A proposal for the prediction of n-3 PUFA from dietary α-linolenic acid (C18:3 n-3 and a panel of another 10 FAs has been made for intramuscular fat (R2 = 0.94 and perirenal fat (R2 = 0.96.

  19. Identification and characterization of uncoupling protein 4 in fat body and muscle mitochondria from the cockroach Gromphadorhina cocquereliana.

    Science.gov (United States)

    Slocinska, Malgorzata; Antos-Krzeminska, Nina; Rosinski, Grzegorz; Jarmuszkiewicz, Wieslawa

    2011-12-01

    We have identified and characterized an uncoupling protein in mitochondria isolated from leg muscle and from fat body, an insect analogue tissue of mammalian liver and adipose tissue, of the cockroach Gromphadorhina coquereliana (GcUCP). This is the first functional characterization of UCP activity in isolated insect mitochondria. Bioenergetic studies clearly indicate UCP function in both insect tissues. In resting (non-phosphorylating) mitochondria, cockroach GcUCP activity was stimulated by the addition of micromolar concentrations of palmitic acid and inhibited by the purine nucleotide GTP. Moreover, in phosphorylating mitochondria, GcUCP activity was able to divert energy from oxidative phosphorylation. Functional studies indicate a higher activity of GcUCP-mediated uncoupling in cockroach muscle mitochondria compared to fat body mitochondria. GcUCP activation by palmitic acid resulted in a decrease in superoxide anion production, suggesting that protection against mitochondrial oxidative stress may be a physiological role of UCPs in insects. GcUCP protein was immunodetected using antibodies raised against human UCP4 as a single band of around 36 kDa. GcUCP protein expression in cockroach muscle mitochondria was significantly higher compared to mitochondria isolated from fat body. LC-MS/MS analyses revealed 100% sequence identities for peptides obtained from GcUCP to UCP4 isoforms from D. melanogaster (the highest homology), human, rat or other insect mitochondria. Therefore, it can be proposed that cockroach GcUCP corresponds to the UCP4 isoforms of other animals.

  20. Carnitine supplementation in high-fat diet-fed rats does not ameliorate lipid-induced skeletal muscle mitochondrial dysfunction in vivo.

    Science.gov (United States)

    Wessels, Bart; van den Broek, Nicole M A; Ciapaite, Jolita; Houten, Sander M; Wanders, Ronald J A; Nicolay, Klaas; Prompers, Jeanine J

    2015-10-01

    Muscle lipid overload and the associated accumulation of lipid intermediates play an important role in the development of insulin resistance. Carnitine insufficiency is a common feature of insulin-resistant states and might lead to incomplete fatty acid oxidation and impaired export of lipid intermediates out of the mitochondria. The aim of the present study was to test the hypothesis that carnitine supplementation reduces high-fat diet-induced lipotoxicity, improves muscle mitochondrial function, and ameliorates insulin resistance. Wistar rats were fed either normal chow or a high-fat diet for 15 wk. One group of high-fat diet-fed rats was supplemented with 300 mg·kg(-1)·day(-1) L-carnitine during the last 8 wk. Muscle mitochondrial function was measured in vivo by (31)P magnetic resonance spectroscopy (MRS) and ex vivo by high-resolution respirometry. Muscle lipid status was determined by (1)H MRS (intramyocellular lipids) and tandem mass spectrometry (acylcarnitines). High-fat diet feeding induced insulin resistance and was associated with decreases in muscle and blood free carnitine, elevated levels of muscle lipids and acylcarnitines, and an increased number of muscle mitochondria that showed an improved capacity to oxidize fat-derived substrates when tested ex vivo. This was, however, not accompanied by an increase in muscle oxidative capacity in vivo, indicating that in vivo mitochondrial function was compromised. Despite partial normalization of muscle and blood free carnitine content, carnitine supplementation did not induce improvements in muscle lipid status, in vivo mitochondrial function, or insulin sensitivity. Carnitine insufficiency, therefore, does not play a major role in high-fat diet-induced muscle mitochondrial dysfunction in vivo.

  1. Diabetic mice exhibited a peculiar alteration in body composition with exaggerated ectopic fat deposition after muscle injury due to anomalous cell differentiation.

    Science.gov (United States)

    Mogi, Masaki; Kohara, Katsuhiko; Nakaoka, Hirotomo; Kan-No, Harumi; Tsukuda, Kana; Wang, Xiao-Li; Chisaka, Toshiyuki; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Iwanami, Jun; Miki, Tetsuro; Horiuchi, Masatsugu

    2016-05-01

    Sarcopenic obesity, age-related muscle loss, which is compensated by an increase in fat mass, impairs quality of life in elderly people. Although the increase in intramuscular fat is associated with decreased insulin sensitivity and increased metabolic risk factors, the origin of diabetes-associated intramuscular fat has not been elucidated. Here, we investigated intramuscular fat deposition using a muscle injury model in type 2 diabetic mice. Male 8-week-old C57BL/6 and 8-week-old and 26-week-old KKAy underwent intramuscular injection of cardiotoxin (Ctx) (100 μL/10 μM) into the tibialis anterior (TA) muscles. After 2 weeks, the muscles were removed and evaluated. KKAy exhibited impaired muscle regeneration and ectopic fat deposition. Such impairment was more marked in older KKAy. These changes were also observed in another diabetic mouse model, db/db and diet-induced obese mice but not in streptozocin-induced diabetic mice. Deposited fat was platelet-derived growth factor (PDGF) receptor alpha positive and its cytoskeleton was stained with Masson's trichrome, indicating it to be of fibro-adipocyte progenitor cell origin. Expression of a myogenic marker, myoD, was lower and that of PDGF receptor alpha and CCAAT/enhancer binding protein (CEBP) alpha was higher in Ctx-injured TA of KKAy compared with that of C57BL/6. Peroxisome proliferator-activated receptor γ (PPARγ) was highly expressed in fat-forming lesions in older KKAy. Treatment with all-trans retinoic acid prevented the formation of intramuscular fat; however, treatment with GW9662, a PPARγ antagonist, increased the fibrotic change in muscle. Diabetic mice showed impaired muscle regeneration with fat deposition, suggesting that diabetes may enhance sarcopenic obesity through a mechanism involving anomalous fibro-adipocyte progenitor cell differentiation.

  2. Muscle Quantitative MR Imaging and Clustering Analysis in Patients with Facioscapulohumeral Muscular Dystrophy Type 1.

    Directory of Open Access Journals (Sweden)

    Emilie Lareau-Trudel

    Full Text Available Facioscapulohumeral muscular dystrophy type 1 (FSHD1 is the third most common inherited muscular dystrophy. Considering the highly variable clinical expression and the slow disease progression, sensitive outcome measures would be of interest.Using muscle MRI, we assessed muscular fatty infiltration in the lower limbs of 35 FSHD1 patients and 22 healthy volunteers by two methods: a quantitative imaging (qMRI combined with a dedicated automated segmentation method performed on both thighs and a standard T1-weighted four-point visual scale (visual score on thighs and legs. Each patient had a clinical evaluation including manual muscular testing, Clinical Severity Score (CSS scale and MFM scale. The intramuscular fat fraction measured using qMRI in the thighs was significantly higher in patients (21.9 ± 20.4% than in volunteers (3.6 ± 2.8% (p<0.001. In patients, the intramuscular fat fraction was significantly correlated with the muscular fatty infiltration in the thighs evaluated by the mean visual score (p<0.001. However, we observed a ceiling effect of the visual score for patients with a severe fatty infiltration clearly indicating the larger accuracy of the qMRI approach. Mean intramuscular fat fraction was significantly correlated with CSS scale (p ≤ 0.01 and was inversely correlated with MMT score, MFM subscore D1 (p ≤ 0.01 further illustrating the sensitivity of the qMRI approach. Overall, a clustering analysis disclosed three different imaging patterns of muscle involvement for the thighs and the legs which could be related to different stages of the disease and put forth muscles which could be of interest for a subtle investigation of the disease progression and/or the efficiency of any therapeutic strategy.The qMRI provides a sensitive measurement of fat fraction which should also be of high interest to assess disease progression and any therapeutic strategy in FSHD1 patients.

  3. Influence of a fat layer on the near infrared spectra of human muscle: quantitative analysis based on two-layered Monte Carlo simulations and phantom experiments

    Science.gov (United States)

    Yang, Ye; Soyemi, Olusola O.; Landry, Michelle R.; Soller, Babs R.

    2005-01-01

    The influence of fat thickness on the diffuse reflectance spectra of muscle in the near infrared (NIR) region is studied by Monte Carlo simulations of a two-layer structure and with phantom experiments. A polynomial relationship was established between the fat thickness and the detected diffuse reflectance. The influence of a range of optical coefficients (absorption and reduced scattering) for fat and muscle over the known range of human physiological values was also investigated. Subject-to-subject variation in the fat optical coefficients and thickness can be ignored if the fat thickness is less than 5 mm. A method was proposed to correct the fat thickness influence. c2005 Optical Society of America.

  4. Exercise, but not quercetin, ameliorates inflammation, mitochondrial biogenesis, and lipid metabolism in skeletal muscle after strenuous exercise by high-fat diet mice.

    Science.gov (United States)

    Kwon, Soon Mi; Park, Hee Geun; Jun, Jong Kui; Lee, Wang Lok

    2014-03-01

    The purpose of this study was to investigate whether moderate exercise and quercetin intake with a low fat diet contribute to inflammatory cytokine production, mitochondrial biogenesis, and lipid metabolism in skeletal muscle after strenuous exercise by high-fat diet mice. Male C57BL/6 mice were randomly divided into four groups: (1) High-fat for 12 weeks and low-fat diet control (C; n = 6); (2) high-fat diet for 12 weeks and low-fat diet with quercetin (Q; n = 4); (3) high-fat diet for 12 weeks and low-fat diet with exercise (E; n = 4); or (4) high-fat diet for 12 weeks and low-fat diet with exercise and quercetin (EQ; n = 5). Quercetin (10 mg/kg) was administered once per day, 5 day/week for 8 weeks. Exercise training was performed at moderate intensity for 8 weeks, 5 days/week for 30-60 min/day. Mice were subjected to a strenuous exercise bout of 60 min at a speed of 25 m/min (VO2 max 85%) conducted as an exercise-induced fatigue just before sacrifice. As results, body weights were significantly different among the groups. Exercise training significantly reduced inflammatory cytokines after strenuous exercise in skeletal muscle of high-fat diet mice. Exercise training increased Tfam mRNA in the soleus muscle after strenuous exercise. Exercise training significantly decreased lipogenesis markers in skeletal muscle of obese mice after strenuous exercise. Moderate exercise significantly increased lipolysis markers in the tibialis anterior muscle. These findings suggest that exercise training reduced inflammatory cytokine levels and improved mitochondrial biogenesis and lipid metabolism. However quercetin supplementation did not affect these parameters. Thus, long-term moderate exercise training has positive effects on obesity.

  5. Skeletal muscle CT of lower extremities in myotonic dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryosuke; Imai, Terukuni; Sadashima, Hiromichi; Matsumoto, Sadayuki; Yamamoto, Toru; Kusaka, Hirofumi; Yamasaki, Masahiro; Maya, Kiyomi; Tanabe, Masaya

    1988-02-01

    We evaluated the leg and thigh muscles of 4 control subjects and 10 patients with myotonic dystrophy using computed tomography. Taking previous reports about the skeletal muscle CT of myotonic dystrophy into account, we concluded that the following 5 features are characteristic of myotonic dystrophy: 1. The main change is the appearance of low-density areas in muscles; these areas reflect fat tissue. In addition, the muscle mass decreases in size. 2. The leg is more severely affected than the thigh. 3. In the thigh, although the m. quadriceps femoris, especially the vastus muscles, tends to be affected, the m. adductor longus and magnus tend to be preserved. 4. In the leg, although the m. tibialis anterior and m. triceps surae tend to be affected, the m. peroneus longus, brevis, and m. tibialis posterior tend to be preserved. 5. Compensatory hypertrophy is often observed in the m. rectus femoris, m. adductor longus, m. adductor magnus, m. peroneus longus, and m. peroneus brevis, accompanied by the involvement of their agonist muscles.

  6. Muscle ceramide content is similar after 3 weeks’ consumption of fat or carbohydrate diet in a crossover design in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Helge, J. W.; Tobin, L.; Drachmann, Tue

    2012-01-01

    This study aimed at investigating the effect of prolonged adaptation to fat- or carbohydrate-rich diet on muscle ceramide in type 2 diabetes patients, using a longitudinal crossover study. Eleven type 2 diabetes patients consumed isocaloric fat- or carbohydrate-rich diet for 3 weeks in random order...

  7. Clinical Study of Electroacupuncture on Acupoints Located Along Anterior and Posterior Thigh Muscles Plus Isokinetic Muscle Strength Training in Treating Poststroke Lower Limb Dysfunction%电针大腿前后肌群穴位配合等速训练治疗中风后下肢功能障碍的临床研究

    Institute of Scientific and Technical Information of China (English)

    张涧; 何铭锋; 赵书恒; 陈红霞

    2015-01-01

    Objective To observe the therapeutic effect of electroacupuncture (EA) on acupoints located along anterior and posterior thigh muscles plus isokinetic muscle strength training for poststroke lower limb dysfunction. Methods Fifty-two qualified mild hemiplegia cases were randomized into control group A ( N=17) , control group B (N=17), and observation group (N=18 ). Control group A was given conventional rehabilitation training, control group B was given conventional rehabilitation training and task-targeting knee strength-coordination isokinetic muscle strength training based on visual feedback, and observation group was given EA on acupoints located along anterior and posterior thigh muscles plus the treatment for control group B. The treatment for the three groups was performed once a day, five days a week, lasting 3 weeks. Before and after treatment, the lower limb motor function, peak torque ( PT) of knee flexion and extension muscles, and gait speed and gait symmetry were monitored. Results After treatment for 3 weeks, the lower limb motor function, PT and gait symmetry were much improved in the three groups (P0.05) , the improvement of observation indexes of control group B was superior to that of control group A, and the improvement of observation indexes of observation group was more obvious than that of the two control groups ( P<0.05) . Conclusion EA on acupoints located along anterior and posterior thigh muscles plus isokinetic muscle strength training is more effective for improving lower limb motor function of poststroke lower limb dysfunction patients than conventional isokinetic training.%【目的】观察电针大腿前后肌群穴位配合等速训练治疗中风后下肢功能障碍的临床疗效。【方法】将52例符合纳入标准的轻度偏瘫患者随机分为对照A组17例、对照B组17例和试验组18例。对照A组给予常规康复训练治疗,对照B组在常规康复训练中增加带有视觉反馈和任务导向的膝关

  8. A whey-protein supplement increases fat loss and spares lean muscle in obese subjects: a randomized human clinical study

    Directory of Open Access Journals (Sweden)

    Ward Loren S

    2008-03-01

    Full Text Available Abstract Background This study evaluated a specialized whey fraction (Prolibra™, high in leucine, bioactive peptides and milk calcium for use as a dietary supplement to enhance weight loss. Methods This was a randomized, double-blind, parallel-arm, 12-week study. Caloric intake was reduced 500 calories per day. Subjects consumed Prolibra or an isocaloric ready-to-mix beverage 20 minutes before breakfast and 20 minutes before dinner. Body fat and lean muscle tissue were measured by dual-energy x-ray absorptiometry (DEXA. Body weight and anthropometric measurements were recorded every 4 weeks. Blood samples were taken at the beginning and end of the study. Statistical analyses were performed on all subjects that completed (completer analysis and all subjects that lost at least 2.25 kg of body weight (responder analysis. Within group significance was determined at P Results Both groups lost a significant amount of weight and the Prolibra group tended to lose more weight than the control group; however the amount of weight loss was not significantly different between groups after 12 weeks. Prolibra subjects lost significantly more body fat compared to control subjects for both the completer (2.81 vs. 1.62 kg P = 0.03 and responder (3.63 vs. 2.11 kg, P = 0.01 groups. Prolibra subjects lost significantly less lean muscle mass in the responder group (1.07 vs. 2.41 kg, P = 0.02. The ratio of fat to lean loss (kg fat lost/kg lean lost was much larger for Prolibra subjects for both completer (3.75 vs. 1.05 and responder (3.39 vs. 0.88 groups. Conclusion Subjects in both the control and treatment group lost a significant amount of weight with a 500 calorie reduced diet. Subjects taking Prolibra lost significantly more body fat and showed a greater preservation of lean muscle compared to subjects consuming the control beverage. Because subjects taking Prolibra lost 6.1% of their body fat mass, and because a 5% reduction of body fat mass has been shown to

  9. Liraglutide prevents microvascular insulin resistance and preserves muscle capillary density in high-fat diet-fed rats.

    Science.gov (United States)

    Chai, Weidong; Fu, Zhuo; Aylor, Kevin W; Barrett, Eugene J; Liu, Zhenqi

    2016-09-01

    Muscle microvasculature critically regulates endothelial exchange surface area to facilitate transendothelial delivery of insulin, nutrients, and oxygen to myocytes. Insulin resistance blunts insulin-mediated microvascular recruitment and decreases muscle capillary density; both contribute to lower microvascular blood volume. Glucagon-like peptide 1 (GLP-1) and its analogs are able to dilate blood vessels and stimulate endothelial cell proliferation. In this study, we aim to determine the effects of sustained stimulation of the GLP-1 receptors on insulin-mediated capillary recruitment and metabolic insulin responses, small arterial endothelial function, and muscle capillary density. Rats were fed a high-fat diet (HFD) for 4 wk with or without simultaneous administration of liraglutide and subjected to a euglycemic hyperinsulinemic clamp for 120 min after an overnight fast. Insulin-mediated muscle microvascular recruitment and muscle oxygenation were determined before and during insulin infusion. Muscle capillary density was determined and distal saphenous artery used for determination of endothelial function and insulin-mediated vasodilation. HFD induced muscle microvascular insulin resistance and small arterial vessel endothelial dysfunction and decreased muscle capillary density. Simultaneous treatment of HFD-fed rats with liraglutide prevented all of these changes and improved insulin-stimulated glucose disposal. These were associated with a significantly increased AMPK phosphorylation and the expressions of VEGF and its receptors. We conclude that GLP-1 receptor agonists may exert their salutary glycemic effect via improving microvascular insulin sensitivity and muscle capillary density during the development of insulin resistance, and early use of GLP-1 receptor agonists may attenuate metabolic insulin resistance as well as prevent cardiovascular complications of diabetes. Copyright © 2016 the American Physiological Society.

  10. A Comparison of Magnetic Resonance Imaging Muscle Fat Content in the Lumbar Paraspinal Muscles with Patient-Reported Outcome Measures in Patients with Lumbar Degenerative Disk Disease and Focal Disk Prolapse

    Science.gov (United States)

    Bhadresha, Ashwin; Lawrence, Owen John; McCarthy, Michael J. H.

    2016-01-01

    Study Design Retrospective study. Objectives To assess the fatty atrophy of the lumbar paraspinal muscles (LPMs) as determined using magnetic resonance imaging in patients with lumbar degenerative disk disease (DDD) and focal disk herniation and to determine if fatty atrophy is associated with patient-reported outcome measures (PROMS). Methods One hundred sixty-five patients with lumbar DDD were identified from a PROMS database of >1,500 patients. These patients were divided into two study groups: DDD alone (n = 58) and DDD with disk herniation (n = 107). A grid was randomly applied to the axial scans at the L3–L4, L4–L5, and L5–S1 levels. The muscle-to-fat ratio of the LPMs was recorded and compared with PROMS data. Subcutaneous fat thickness at each level was also measured. Results This study found no difference in the muscle-to-fat ratio between the DDD and disk herniation groups. There was no association between the muscle-to-fat ratio and PROMS data in either group. There was significantly more subcutaneous fat at all levels in the DDD group as compared with the disk prolapse group. In DDD and disk prolapses, subcutaneous fat was thicker in women (p = 0.013 and 0.001). In patients with DDD, more subcutaneous fat was associated with disability (p Muscle content of erector spinae and multifidus negatively correlated with increasing age in both groups at the L3–L4 level. Conclusions Muscle fat content in the LPM does not appear to relate to PROMS. Muscle content decreases with age. Those with low back pain (DDD) have greater subcutaneous fat thickness. PMID:27190744

  11. Enhanced mitochondrial superoxide scavenging does not improve muscle insulin action in the high fat-fed mouse.

    Science.gov (United States)

    Lark, Daniel S; Kang, Li; Lustig, Mary E; Bonner, Jeffrey S; James, Freyja D; Neufer, P Darrell; Wasserman, David H

    2015-01-01

    Improving mitochondrial oxidant scavenging may be a viable strategy for the treatment of insulin resistance and diabetes. Mice overexpressing the mitochondrial matrix isoform of superoxide dismutase (sod2(tg) mice) and/or transgenically expressing catalase within the mitochondrial matrix (mcat(tg) mice) have increased scavenging of O2(˙-) and H2O2, respectively. Furthermore, muscle insulin action is partially preserved in high fat (HF)-fed mcat(tg) mice. The goal of the current study was to test the hypothesis that increased O2(˙-) scavenging alone or in combination with increased H2O2 scavenging (mtAO mice) enhances in vivo muscle insulin action in the HF-fed mouse. Insulin action was examined in conscious, unrestrained and unstressed wild type (WT), sod2(tg), mcat(tg) and mtAO mice using hyperinsulinemic-euglycemic clamps (insulin clamps) combined with radioactive glucose tracers following sixteen weeks of normal chow or HF (60% calories from fat) feeding. Glucose infusion rates, whole body glucose disappearance, and muscle glucose uptake during the insulin clamp were similar in chow- and HF-fed WT and sod2(tg) mice. Consistent with our previous work, HF-fed mcat(tg) mice had improved muscle insulin action, however, an additive effect was not seen in mtAO mice. Insulin-stimulated Akt phosphorylation in muscle from clamped mice was consistent with glucose flux measurements. These results demonstrate that increased O2(˙-) scavenging does not improve muscle insulin action in the HF-fed mouse alone or when coupled to increased H2O2 scavenging.

  12. Enhanced mitochondrial superoxide scavenging does not improve muscle insulin action in the high fat-fed mouse.

    Directory of Open Access Journals (Sweden)

    Daniel S Lark

    Full Text Available Improving mitochondrial oxidant scavenging may be a viable strategy for the treatment of insulin resistance and diabetes. Mice overexpressing the mitochondrial matrix isoform of superoxide dismutase (sod2(tg mice and/or transgenically expressing catalase within the mitochondrial matrix (mcat(tg mice have increased scavenging of O2(˙- and H2O2, respectively. Furthermore, muscle insulin action is partially preserved in high fat (HF-fed mcat(tg mice. The goal of the current study was to test the hypothesis that increased O2(˙- scavenging alone or in combination with increased H2O2 scavenging (mtAO mice enhances in vivo muscle insulin action in the HF-fed mouse. Insulin action was examined in conscious, unrestrained and unstressed wild type (WT, sod2(tg, mcat(tg and mtAO mice using hyperinsulinemic-euglycemic clamps (insulin clamps combined with radioactive glucose tracers following sixteen weeks of normal chow or HF (60% calories from fat feeding. Glucose infusion rates, whole body glucose disappearance, and muscle glucose uptake during the insulin clamp were similar in chow- and HF-fed WT and sod2(tg mice. Consistent with our previous work, HF-fed mcat(tg mice had improved muscle insulin action, however, an additive effect was not seen in mtAO mice. Insulin-stimulated Akt phosphorylation in muscle from clamped mice was consistent with glucose flux measurements. These results demonstrate that increased O2(˙- scavenging does not improve muscle insulin action in the HF-fed mouse alone or when coupled to increased H2O2 scavenging.

  13. The relationship of fasting hyperglycemia to changes in fat and muscle mass after exercise training in type 2 diabetes.

    Science.gov (United States)

    Yalamanchi, Swaytha V; Stewart, Kerry J; Ji, Nan; Golden, Sherita H; Dobs, Adrian; Becker, Diane M; Vaidya, Dhananjay; Kral, Brian G; Kalyani, Rita R

    2016-12-01

    Exercise training (ET) has been variably associated with body composition changes among persons with type 2 diabetes (T2DM). The degree to which these changes are related to hyperglycemia remains unclear. Our objective was to investigate the relationship of baseline fasting glucose (FG) to the magnitude of muscle gains and fat loss after ET in individuals with T2DM. Participants were enrolled in the SHAPE-2 trial, a six month supervised aerobic and resistance training intervention (three days/week), at Johns Hopkins. This was a post hoc single arm intervention study of participants who completed the exercise intervention (n=50). Participants were aged 40-65years and had T2DM that was not treated with insulin. Body composition was assessed by DEXA. After 6months of ET, total fat mass decreased (-2.1±3.1kg) and total lean body mass (LBM) increased (0.5±2.0kg) overall, but there was variability among individual participants. There was an increase in % total LBM (1.4±1.9%) and decrease in % total body fat mass (-1.5±2.0%) after ET. Interestingly, each standard deviation (SD) increase in baseline FG (mean=135.5mg/dl; SD=39.0mg/dl) was related to a significant increase in % total LBM (0.54±0.26%, p=0.048) and decrease in % total body fat (-0.57±0.27%, p=0.04) after ET among individual participants. Our data demonstrate that muscle gains and fat loss after ET are positively related to baseline hyperglycemia. Further studies are needed to characterize differences in metabolic response following ET among persons with diabetes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Glucose predictability, blood capillary permeability, and glucose utilization rate in subcutaneous, skeletal muscle, and visceral fat tissues.

    Science.gov (United States)

    Koutny, Tomas

    2013-11-01

    This study suggests an approach for the comparison and evaluation of particular compartments with modest experimental setup costs. A glucose level prediction model was used to evaluate the compartment's glucose transport rate across the blood capillary membrane and the glucose utilization rate by the cells. The glucose levels of the blood, subcutaneous tissue, skeletal muscle tissue, and visceral fat were obtained in experiments conducted on hereditary hypertriglyceridemic rats. After the blood glucose level had undergone a rapid change, the experimenter attempted to reach a steady blood glucose level by manually correcting the glucose infusion rate and maintaining a constant insulin infusion rate. The interstitial fluid glucose levels of subcutaneous tissue, skeletal muscle tissue, and visceral fat were evaluated to determine the reaction delay compared with the change in the blood glucose level, the interstitial fluid glucose level predictability, the blood capillary permeability, the effect of the concentration gradient, and the glucose utilization rate. Based on these data, the glucose transport rate across the capillary membrane and the utilization rate in a particular tissue were determined. The rates obtained were successfully verified against positron emission tomography experiments. The subcutaneous tissue exhibits the lowest and the most predictable glucose utilization rate, whereas the skeletal muscle tissue has the greatest glucose utilization rate. In contrast, the visceral fat is the least predictable and has the shortest reaction delay compared with the change in the blood glucose level. The reaction delays obtained for the subcutaneous tissue and skeletal muscle tissue were found to be approximately equal using a metric based on the time required to reach half of the increase in the interstitial fluid glucose level. © 2013 Published by Elsevier Ltd.

  15. Mass and fat infiltration of intercostal muscles measured by CT histogram analysis and their correlations with COPD severity.

    Science.gov (United States)

    Park, Mi Jung; Cho, Jae Min; Jeon, Kyung Nyeo; Bae, Kyung Soo; Kim, Ho Cheol; Choi, Dae Seob; Na, Jae Boem; Choi, Ho Cheol; Choi, Hye Young; Kim, Ji Eun; Shin, Hwa Seon

    2014-06-01

    Chronic obstructive pulmonary disease (COPD) is characterized by progressive respiratory function impairment and respiratory muscle dysfunction. We hypothesized that the mass and fat infiltration of respiratory muscles correlates with COPD severity and emphysema extent. Ninety-eight male patients with COPD underwent chest computed tomography (CT) and spirometry. The mass and fat infiltrations of intercostal and latissimus muscles were quantified as the cross-sectional area (CSA) and attenuation of these muscles using CT histogram analysis. Intercostal index and latissimus index were defined as intercostal CSAs and latissimus CSAs divided by body mass index. The emphysema extent was measured as the ratio of the emphysematous lung volume to the total lung volume using a density-mask technique. Pearson correlation analyses were performed to evaluate the relationships between these parameters. Multiple regression analysis was performed using forced expiratory volume in 1 second (FEV1) as the dependent parameter and the clinical and CT data as the independent parameters. FEV1 was significantly correlated with intercostal index (r = 0.57), latissimus index (r = 0.34), intercostal attenuation (r = 0.62), and latissimus attenuation (r = 0.38). Emphysema extent was significantly correlated with intercostal index (r = -0.36) and intercostal attenuation (r = -0.50). Multiple regression analysis showed that FEV1 was predicted by intercostal attenuation (B = 0.40), intercostal CSA (B = 0.23), emphysema extent (B = -0.23), and age (B = -0.21, R(2) = 0.64, P increase in intercostal fat are associated with worsening of COPD severity. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  16. Upper Limb Evaluation in Duchenne Muscular Dystrophy: Fat-Water Quantification by MRI, Muscle Force and Function Define Endpoints for Clinical Trials

    Science.gov (United States)

    Ricotti, Valeria; Evans, Matthew R. B.; Sinclair, Christopher D. J.; Butler, Jordan W.; Ridout, Deborah A.; Hogrel, Jean-Yves; Emira, Ahmed; Morrow, Jasper M.; Reilly, Mary M.; Hanna, Michael G.; Janiczek, Robert L.; Matthews, Paul M.; Yousry, Tarek A.; Muntoni, Francesco; Thornton, John S.

    2016-01-01

    Objective A number of promising experimental therapies for Duchenne muscular dystrophy (DMD) are emerging. Clinical trials currently rely on invasive biopsies or motivation-dependent functional tests to assess outcome. Quantitative muscle magnetic resonance imaging (MRI) could offer a valuable alternative and permit inclusion of non-ambulant DMD subjects. The aims of our study were to explore the responsiveness of upper-limb MRI muscle-fat measurement as a non-invasive objective endpoint for clinical trials in non-ambulant DMD, and to investigate the relationship of these MRI measures to those of muscle force and function. Methods 15 non-ambulant DMD boys (mean age 13.3 y) and 10 age-gender matched healthy controls (mean age 14.6 y) were recruited. 3-Tesla MRI fat-water quantification was used to measure forearm muscle fat transformation in non-ambulant DMD boys compared with healthy controls. DMD boys were assessed at 4 time-points over 12 months, using 3-point Dixon MRI to measure muscle fat-fraction (f.f.). Images from ten forearm muscles were segmented and mean f.f. and cross-sectional area recorded. DMD subjects also underwent comprehensive upper limb function and force evaluation. Results Overall mean baseline forearm f.f. was higher in DMD than in healthy controls (pfat transformation of muscle with loss of muscle force and function. PMID:27649492

  17. Comparative analyses by sequencing of transcriptomes during skeletal muscle development between pig breeds differing in muscle growth rate and fatness.

    Directory of Open Access Journals (Sweden)

    Xiao Zhao

    Full Text Available Understanding the dynamics of muscle transcriptome during development and between breeds differing in muscle growth is necessary to uncover the complex mechanism underlying muscle development. Herein, we present the first transcriptome-wide longissimus dorsi muscle development research concerning Lantang (LT, obese and Landrace (LR, lean pig breeds during 10 time-points from 35 days-post-coitus (dpc to 180 days-post-natum (dpn using Solexa/Illumina's Genome Analyzer. The data demonstrated that myogenesis was almost completed before 77 dpc, but the muscle phenotypes were still changed from 77 dpc to 28 dpn. Comparative analysis of the two breeds suggested that myogenesis started earlier but progressed more slowly in LT than in LR, the stages ranging from 49 dpc to 77 dpc are critical for formation of different muscle phenotypes. 595 differentially expressed myogenesis genes were identified, and their roles in myogenesis were discussed. Furthermore, GSK3B, IKBKB, ACVR1, ITGA and STMN1 might contribute to later myogenesis and more muscle fibers in LR than LT. Some myogenesis inhibitors (ID1, ID2, CABIN1, MSTN, SMAD4, CTNNA1, NOTCH2, GPC3 and HMOX1 were higher expressed in LT than in LR, which might contribute to more slow muscle differentiation in LT than in LR. We also identified several genes which might contribute to intramuscular adipose differentiation. Most important, we further proposed a novel model in which MyoD and MEF2A controls the balance between intramuscular adipogenesis and myogenesis by regulating CEBP family; Myf5 and MEF2C are essential during the whole myogenesis process while MEF2D affects muscle growth and maturation. The MRFs and MEF2 families are also critical for the phenotypic differences between the two pig breeds. Overall, this study contributes to elucidating the mechanism underlying muscle development, which could provide valuable information for pig meat quality improvement. The raw data have been submitted to Gene

  18. Muscle ectopic fat deposition contributes to anabolic resistance in obese sarcopenic old rats through eIF2α activation.

    Science.gov (United States)

    Tardif, Nicolas; Salles, Jérôme; Guillet, Christelle; Tordjman, Joan; Reggio, Sophie; Landrier, Jean-François; Giraudet, Christophe; Patrac, Véronique; Bertrand-Michel, Justine; Migne, Carole; Collin, Marie-Laure; Chardigny, Jean-Michel; Boirie, Yves; Walrand, Stéphane

    2014-12-01

    Obesity and aging are characterized by decreased insulin sensitivity (IS) and muscle protein synthesis. Intramuscular ceramide accumulation has been implicated in insulin resistance during obesity. We aimed to measure IS, muscle ceramide level, protein synthesis, and activation of intracellular signaling pathways involved in translation initiation in male Wistar young (YR, 6-month) and old (OR, 25-month) rats receiving a low- (LFD) or a high-fat diet (HFD) for 10 weeks. A corresponding cellular approach using C2C12 myotubes treated with palmitate to induce intracellular ceramide deposition was taken. A decreased ability of adipose tissue to store lipids together with a reduced adipocyte diameter and a development of fibrosis were observed in OR after the HFD. Consequently, OR fed the HFD were insulin resistant, showed a strong increase in intramuscular ceramide level and a decrease in muscle protein synthesis associated with increased eIF2α phosphorylation. The accumulation of intramuscular lipids placed a lipid burden on mitochondria and created a disconnect between metabolic and regulating pathways in skeletal muscles of OR. In C2C12 cells, palmitate-induced ceramide accumulation was associated with a decreased protein synthesis together with upregulated eIF2α phosphorylation. In conclusion, a reduced ability to expand adipose tissues was found in OR, reflecting a lower lipid buffering capacity. Muscle mitochondrial activity was affected in OR conferring a reduced ability to oxidize fatty acids entering the muscle cell. Hence, OR were more prone to ectopic muscle lipid accumulation than YR, leading to decreased muscle protein anabolism. This metabolic change is a potential therapeutic target to counter sarcopenic obesity. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. The influence of different fat sources on fattening of turkeys and composition of fatty acids in breast muscles

    Directory of Open Access Journals (Sweden)

    Danica Hanzˇek

    2010-01-01

    Full Text Available The aim of this research was to evaluate the influence that different fat sources (Bergafat-BF, Pronova Biocare Epax 3000 TG-PBE and rape oil-RO have on fattening characteristics of turkeys and composition of lipids in breast muscles, if added separately in the amount of 3% and also equally combined in finishing diets. The research was carried out on 180 heavy hybrid turkeys of Nicholas 700 provenience. Different sources of fat did not have statistically significant effect (P>0.05 on finishing weights, average daily weight gain, consumption and feed conversion. However, supplementation of the above stated fat sources changed highly significantly (P<0.001 the content of SFA, MUFA and EPA+DHA in the lipids of breast muscles. Rape oil, which was added to diets, had positive effect on the content of SFA and MUFA. In comparison to non-supplemented diets, supplementation of Pronova preparation to diets resulted in doubling of the desirable EPA+DHA.

  20. Insulin sensitivity is independent of lipid binding protein trafficking at the plasma membrane in human skeletal muscle: effect of a 3-day, high-fat diet.

    Science.gov (United States)

    Jordy, Andreas B; Serup, Annette K; Karstoft, Kristian; Pilegaard, Henriette; Kiens, Bente; Jeppesen, Jacob

    2014-11-01

    The aim of the present study was to investigate lipid-induced regulation of lipid binding proteins in human skeletal muscle and the impact hereof on insulin sensitivity. Eleven healthy male subjects underwent a 3-day hypercaloric and high-fat diet regime. Muscle biopsies were taken before and after the diet intervention, and giant sarcolemmal vesicles were prepared. The high-fat diet induced decreased insulin sensitivity, but this was not associated with a relocation of FAT/CD36 or FABPpm protein to the sarcolemma. However, FAT/CD36 and FABPpm mRNA, but not the proteins, were upregulated by increased fatty acid availability. This suggests a time dependency in the upregulation of FAT/CD36 and FABPpm protein during high availability of plasma fatty acids. Furthermore, we did not detect FATP1 and FATP4 protein in giant sarcolemmal vesicles obtained from human skeletal muscle. In conclusion, this study shows that a short-term lipid-load increases mRNA content of key lipid handling proteins in human muscle. However, decreased insulin sensitivity after a high-fat diet is not accompanied with relocation of FAT/CD36 or FABPpm protein to the sarcolemma. Finally, FATP1 and FATP4 protein was located intracellularly but not at the sarcolemma in humans. Copyright © 2014 the American Physiological Society.

  1. Fat oxidation, fitness and skeletal muscle expression of oxidative/lipid metabolism genes in South Asians: implications for insulin resistance?

    Directory of Open Access Journals (Sweden)

    Lesley M L Hall

    Full Text Available BACKGROUND: South Asians are more insulin resistant than Europeans, which cannot be fully explained by differences in adiposity. We investigated whether differences in oxidative capacity and capacity for fatty acid utilisation in South Asians might contribute, using a range of whole-body and skeletal muscle measures. METHODOLOGY/PRINCIPAL FINDINGS: Twenty men of South Asian ethnic origin and 20 age and BMI-matched men of white European descent underwent exercise and metabolic testing and provided a muscle biopsy to determine expression of oxidative and lipid metabolism genes and of insulin signalling proteins. In analyses adjusted for age, BMI, fat mass and physical activity, South Asians, compared to Europeans, exhibited; reduced insulin sensitivity by 26% (p = 0.010; lower VO2max (40.6±6.6 vs 52.4±5.7 ml x kg(-1 x min(-1, p = 0.001; and reduced fat oxidation during submaximal exercise at the same relative (3.77±2.02 vs 6.55±2.60 mg x kg(-1 x min(-1 at 55% VO2max, p = 0.013, and absolute (3.46±2.20 vs 6.00±1.93 mg x kg(-1 x min(-1 at 25 ml O(2 x kg(-1 x min(-1, p = 0.021, exercise intensities. South Asians exhibited significantly higher skeletal muscle gene expression of CPT1A and FASN and significantly lower skeletal muscle protein expression of PI3K and PKB Ser473 phosphorylation. Fat oxidation during submaximal exercise and VO2max both correlated significantly with insulin sensitivity index and PKB Ser473 phosphorylation, with VO2max or fat oxidation during exercise explaining 10-13% of the variance in insulin sensitivity index, independent of age, body composition and physical activity. CONCLUSIONS/SIGNIFICANCE: These data indicate that reduced oxidative capacity and capacity for fatty acid utilisation at the whole body level are key features of the insulin resistant phenotype observed in South Asians, but that this is not the consequence of reduced skeletal muscle expression of oxidative and lipid metabolism genes.

  2. Relationships between fat deposition in the liver and skeletal muscle and insulin sensitivity in Japanese individuals: a pilot study

    Directory of Open Access Journals (Sweden)

    Eiichi Yoshimura

    2011-01-01

    Full Text Available Eiichi Yoshimura1,2, Hideaki Kumahara3, Takuro Tobina4, Sakiko Matono1, Akira Kiyonaga4, Miyuki Kimura5, Hiroshi Tsukikawa6, Shinya Kono6, Takashi Etou5, Shin Irie5, Keizo Anzai7, Hiroaki Tanaka41Graduate School of Sports and Health Science, Fukuoka University, Fukuoka, Japan; 2Faculty of Medicine, Fukuoka University, Fukuoka, Japan; 3Faculty of Nutrition Sciences, Nakamura Gakuen University, Fukuoka, Japan; 4Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan; 5Kyushu Clinical Pharmacology Research Clinic, Fukuoka, Japan; 6PS Clinic, Fukuoka, Japan; 7Saga University Hospital, Saga, JapanPurpose: To evaluate the relationships between insulin sensitivity (IS, body fat accumulation, and aerobic capacity in middle- to older-aged Japanese participants with visceral adiposity.Participants and methods: Aerobic capacity was measured during an incremental ramp exercise test. Computed tomography was used to measure visceral (VFA and subcutaneous (SFA fat area, the fat in liver-to-spleen ratio (L/S, and low-density skeletal muscle area (LDMA. IS was assessed using euglycemic-hyperinsulinemic clamps.Results: A total of 11 males and 9 females, age 58 ± 9 years (mean ± standard deviation, body mass index 29 ± 4.1 kg/m2, and VFA 190 ± 53 cm2 participated in this study. In unadjusted models, VFA, LDMA, and L/S were significantly correlated with IS, which remained in adjusted models for LDMA and L/S, but not for VFA. In multiple stepwise regression analysis including sex, age, body fat, VFA, SFA, alcohol consumption, and aerobic capacity (oxygen uptake at the lactate threshold, L/S, and LDMA accounted for 70% of the total variance in IS. Percentage body fat and SFA, but not VFA, were significantly correlated with high molecular-weight adiponectin levels (r = 0.58, P < 0.01 and r = 0.54, P < 0.05, respectively. IS and L/S were significantly and negatively correlated with tumor necrosis factor-α (r = -0.67 and -0.63, respectively; both P

  3. Live animal assessments of rump fat and muscle score in Angus cows and steers using 3-dimensional imaging.

    Science.gov (United States)

    McPhee, M J; Walmsley, B J; Skinner, B; Littler, B; Siddell, J P; Cafe, L M; Wilkins, J F; Oddy, V H; Alempijevic, A

    2017-04-01

    The objective of this study was to develop a proof of concept for using off-the-shelf Red Green Blue-Depth (RGB-D) Microsoft Kinect cameras to objectively assess P8 rump fat (P8 fat; mm) and muscle score (MS) traits in Angus cows and steers. Data from low and high muscled cattle (156 cows and 79 steers) were collected at multiple locations and time points. The following steps were required for the 3-dimensional (3D) image data and subsequent machine learning techniques to learn the traits: 1) reduce the high dimensionality of the point cloud data by extracting features from the input signals to produce a compact and representative feature vector, 2) perform global optimization of the signatures using machine learning algorithms and a parallel genetic algorithm, and 3) train a sensor model using regression-supervised learning techniques on the ultrasound P8 fat and the classified learning techniques for the assessed MS for each animal in the data set. The correlation of estimating hip height (cm) between visually measured and assessed 3D data from RGB-D cameras on cows and steers was 0.75 and 0.90, respectively. The supervised machine learning and global optimization approach correctly classified MS (mean [SD]) 80 (4.7) and 83% [6.6%] for cows and steers, respectively. Kappa tests of MS were 0.74 and 0.79 in cows and steers, respectively, indicating substantial agreement between visual assessment and the learning approaches of RGB-D camera images. A stratified 10-fold cross-validation for P8 fat did not find any differences in the mean bias ( = 0.62 and = 0.42 for cows and steers, respectively). The root mean square error of P8 fat was 1.54 and 1.00 mm for cows and steers, respectively. Additional data is required to strengthen the capacity of machine learning to estimate measured P8 fat and assessed MS. Data sets for and continental cattle are also required to broaden the use of 3D cameras to assess cattle. The results demonstrate the importance of capturing

  4. Insulin regulates lipid and glucose metabolism similarly in two lines of rainbow trout divergently selected for muscle fat content.

    Science.gov (United States)

    Jin, Junyan; Panserat, Stéphane; Kamalam, Biju Sam; Aguirre, Peyo; Véron, Vincent; Médale, Françoise

    2014-08-01

    Two experimental rainbow trout lines were developed through divergent selection for low (Lean 'L' line) or high (Fat 'F' line) muscle fat content. Previous nutritional studies suggested that these lines differed in their regulation of lipid and glucose metabolism. Since insulin acts as an anabolic hormone by regulating lipid and glucose metabolism, we put forward the hypothesis that F line might have a stronger sensitivity to insulin than L line. In order to test this hypothesis, bovine insulin was injected into rainbow trout of the two lines fasted for 48 h. As expected, insulin induced hypoglycemia and activated Akt-TOR signaling both in the liver and muscle of the two lines. We demonstrate that this was coupled with increased expression of insulin dependent glucose transporter (GLUT4) and transcription factors of fatty acid anabolism (LXR and SREBP1c) in the muscle and liver, respectively, and lower mRNA levels of fatty acid oxidation enzymes (CPT1a, CPT1b and HOAD) in the white muscle of both lines. Regarding the genotype effect, TOR signaling response to insulin was stronger in F line as reflected by the higher phosphorylation of S6 protein and elevated mRNA levels of lipogenic enzyme (FAS) in the liver of F line. This observation was concordant with the higher plasma concentrations of free fatty acids and triglycerides in F line. Moreover, mRNA levels of hepatic gluconeogenic enzymes (G6Pase2, FBPase and PEPCK) and muscle fatty acid oxidation enzymes (CPT1a, CPT1b, HOAD and ACO) were higher in the F line. However, very few insulin-genotype interactions were detected, indicating that insulin induced similar changes in lipid and glucose metabolism in both lines. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Thrombospondin 1 mediates high-fat diet-induced muscle fibrosis and insulin resistance in male mice.

    Science.gov (United States)

    Inoue, Mayumi; Jiang, Yibin; Barnes, Richard H; Tokunaga, Masakuni; Martinez-Santibañez, Gabriel; Geletka, Lynn; Lumeng, Carey N; Buchner, David A; Chun, Tae-Hwa

    2013-12-01

    Thrombospondin 1 (THBS1 or TSP-1) is a circulating glycoprotein highly expressed in hypertrophic visceral adipose tissues of humans and mice. High-fat diet (HFD) feeding induces the robust increase of circulating THBS1 in the early stages of HFD challenge. The loss of Thbs1 protects male mice from diet-induced weight gain and adipocyte hypertrophy. Hyperinsulinemic euglycemic clamp study has demonstrated that Thbs1-null mice are protected from HFD-induced insulin resistance. Tissue-specific glucose uptake study has revealed that the insulin-sensitive phenotype of Thbs1-null mice is mostly mediated by skeletal muscles. Further assessments of the muscle phenotype using RNA sequencing, quantitative PCR, and histological studies have demonstrated that Thbs1-null skeletal muscles are protected from the HFD-dependent induction of Col3a1 and Col6a1, coupled with a new collagen deposition. At the same time, the Thbs1-null mice display a better circadian rhythm and higher amplitude of energy expenditure with a browning phenotype in sc adipose tissues. These results suggest that THBS1, which circulates in response to a HFD, may induce insulin resistance and fibrotic tissue damage in skeletal muscles as well as the de-browning of sc adipose tissues in the early stages of a HFD challenge. Our study may shed new light on the pathogenic role played by a circulating extracellular matrix protein in the cross talk between adipose tissues and skeletal muscles during obesity progression.

  6. Effects of chronic high-fat feeding on skeletal muscle mass and function in middle-aged mice.

    Science.gov (United States)

    Lee, Sang-Rok; Khamoui, Andy V; Jo, Edward; Park, Bong-Sup; Zourdos, Michael C; Panton, Lynn B; Ormsbee, Michael J; Kim, Jeong-Su

    2015-08-01

    Increased adipose tissue may promote catabolic events in skeletal muscle. The aim of this study was to test whether high-fat diet (HFD)-induced obesity would accelerate the onset of muscle wasting in middle-aged mice. Muscle was collected from C57BL/6 mice at 9 months of age (baseline) and 14 months of age after consuming a control (C) or HFD. Mice in C and HFD were also subjected to evaluations of body composition and function before and after their respective diets. HFD demonstrated significant (p decreased to a greater degree in HFD although not significantly (C: -20.69 ± 7.94 vs. HFD: -31.14 ± 5.49 %, p > 0.05). Gastrocnemius, quadriceps, and hamstrings mass in C and HFD were significantly reduced from baseline (-27 to 43 and -39 to 47 %, respectively, p muscle to HFD-dependent catabolism more so than aging. In the muscles containing fast/mixed fibers, aging effects may have concealed the catabolic nature of HFD; however, morphological changes in the gastrocnemius including decreased fiber area, satellite cells, and myonuclei are consistent with an atrophic phenotype related to HFD.

  7. Changes induced by dietary energy intake and divergent selection for muscle fat content in rainbow trout (Oncorhynchus mykiss), assessed by transcriptome and proteome analysis of the liver.

    Science.gov (United States)

    Kolditz, Catherine-Ines; Paboeuf, Gilles; Borthaire, Maïena; Esquerré, Diane; SanCristobal, Magali; Lefèvre, Florence; Médale, Françoise

    2008-10-29

    Growing interest is turned to fat storage levels and allocation within body compartments, due to their impact on human health and quality properties of farm animals. Energy intake and genetic background are major determinants of fattening in most animals, including humans. Previous studies have evidenced that fat deposition depends upon balance between various metabolic pathways. Using divergent selection, we obtained rainbow trout with differences in fat allocation between visceral adipose tissue and muscle, and no change in overall body fat content. Transcriptome and proteome analysis were applied to characterize the molecular changes occurring between these two lines when fed a low or a high energy diet. We focused on the liver, center of intermediary metabolism and the main site for lipogenesis in fish, as in humans and most avian species. The proteome and transcriptome analyses provided concordant results. The main changes induced by the dietary treatment were observed in lipid metabolism. The level of transcripts and proteins involved in intracellular lipid transport, fatty acid biosynthesis and anti-oxidant metabolism were lower with the lipid rich diet. In addition, genes and proteins involved in amino-acid catabolism and proteolysis were also under expressed with this diet. The major changes related to the selection effect were observed in levels of transcripts and proteins involved in amino-acid catabolism and proteolysis that were higher in the fat muscle line than in the lean muscle line. The present study led to the identification of novel genes and proteins that responded to long term feeding with a high energy/high fat diet. Although muscle was the direct target, the selection procedure applied significantly affected hepatic metabolism, particularly protein and amino acid derivative metabolism. Interestingly, the selection procedure and the dietary treatment used to increase muscle fat content exerted opposite effects on the expression of the liver

  8. Delayed presentation of compartment syndrome of the thigh secondary to quadriceps trauma and vascular injury in a soccer athlete.

    Science.gov (United States)

    How, Moo Ing; Lee, Puah Ken; Wei, Tan See; Chong, Chua Tai

    2015-01-01

    Compartment syndrome isolated to the anterior thigh is a rare complication of soccer injury. Previous reports in the English literature on sports trauma-related compartment syndrome of the thigh are vague in their description of the response of thigh musculature to blunt trauma, magnetic resonance imaging (MRI) findings of high-risk features of compartment syndrome, vascular injury in quadriceps trauma, and the role of vascular study in blunt thigh injury. We present herein the rare case of a 30-year-old man who developed thigh compartment syndrome 8 days after soccer injury due to severe edema of vastus intermedius and large thigh hematoma secondary to rupture of the profunda femoris vein. MRI revealed "blow-out" rupture of the vastus lateralis. Decompressive fasciotomy and vein repair performed with subsequent split-skin grafting of the wound defect resulted in a good functional outcome at 2-years follow-up. A high index of suspicion for compartment syndrome is needed in all severe quadriceps contusion. Vascular injury can cause thigh compartment syndrome in sports trauma. MRI findings of deep thigh muscle swelling and "blow-out" tear of the vastus lateralis are strongly suggestive of severe quadriceps injury, and may be a harbinger of delayed thigh compartment syndrome. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. A Case of Pyomyositis and Primary Thigh Abscess in a Systemic Lupus Erythematous Patient MimickingThigh Hematoma

    Directory of Open Access Journals (Sweden)

    Rahele Mehrain

    2011-05-01

    Full Text Available Routes of extension of infection into the thigh can"nbe either direct, through the subcutaneous tissue, or"nthrough naturally occurring defects in the abdominal"nwall. These include: (1 Along the psoas muscle deep"nto the inguinal ligament; (2 Through the femoral"ncanal; (3 By way of the obturator foramen; and (4"nThrough the sacrosciatic notch. Pyomyositis is a"nprimary deep bacterial infection of the skeletal muscle"nwithout contiguous spread from adjacent structures,"nusually accompanied by abscess formation within"nthe skeletal muscle, but may also present as a diffuse"ninflammatory or a rapidly progressing myonecrotic"nprocess. Pyomyositis in patients with SLE has rarely"nbeen reported. Because of its rarity and often vague"nclinical presentation, it is unlikely to be considered"nduring the initial differential diagnosis. Moreover,"nthe diagnosis may be delayed as the affected muscle is"ndeeply situated and local signs are not apparent. This"ndelay in diagnosis may result in increased morbidity"nand sometimes a significant mortality rate. Here,"nwe describe a 57-year-old woman, known case of"nSLE with pyomyositis and primary left thigh abscess"nthat mimicked DVT in physical examination and"nhematoma in MRI. The purpose of this report was to"ndraw attention to this rare occurrence and to highlight"nthe etiology, presentation and the imaging features.

  10. The effects of high fat diet and moderate exercise on TGFβ1 and collagen deposition in mouse skeletal muscle.

    Science.gov (United States)

    Pincu, Yair; Linden, Melissa A; Zou, Kai; Baynard, Tracy; Boppart, Marni D

    2015-05-01

    Obesity is a primary cause of muscle insulin resistance and is also associated with morphological and functional changes in the skeletal muscle including fibrosis. Studies suggest that macrophages in obese skeletal muscle may be primed to secrete transforming growth factor β1 (TGFβ1), a factor that can stimulate type I collagen gene expression via Smad3 activation but the extent to which exercise could modulate high fat (HF) diet-induced inflammation and fibrosis in skeletal muscle remains to be determined. The purpose of this study was to determine the extent to which moderate intensity exercise training can attenuate pro-inflammatory cytokine gene expression and markers of fibrosis in skeletal muscle in response to concomitant HF diet. Male C57BL/6J mice (6 wk old) were randomly assigned to one of four treatment groups: (1) Control diet-No Exercise (CON-No Ex), (2) CON-Ex, (3) HF-No Ex, or (4) HF-Ex. Mice were exercised on a motorized treadmill 40min/day at 12m/min, 5% grade, 5days/wk, for 12weeks. Macrophage (F4/80, CD11c, CD206), inflammatory cytokine (TNFα, IL-6, IL-10), TGFβ1, and collagen (Col1α) gene expression were evaluated in skeletal muscle by qPCR. Frozen muscle sections were stained to assess collagen content and fiber cross sectional area (CSA). F4/80, CD206 and IL-6 gene expression were increased by HF diet, and exercise only attenuated the increase in F4/80 and IL-6 (pincreased TGFβ1 protein expression, Smad3 activation, and collagen deposition in skeletal muscle, and exercise attenuated TGFβ1 protein expression and collagen deposition in skeletal muscle (pMuscle fiber CSA was not different between the groups. The results from this study suggest that HF diet can increase skeletal muscle macrophage gene expression and fibrosis and that exercise can attenuate these changes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Multidisciplinary care of obese children and adolescents for one year reduces ectopic fat content in liver and skeletal muscle

    DEFF Research Database (Denmark)

    Fonvig, Cilius Esmann; Chabanova, Elizaveta; Ohrt, Johanne Dam

    2015-01-01

    BACKGROUND: Ectopic fat deposition in liver and skeletal muscle tissue is related to cardiovascular disease risk and is a common metabolic complication in obese children. We evaluated the hypotheses of ectopic fat in these organs could be diminished following 1 year of multidisciplinary care...... specialized in childhood obesity, and whether this reduction would associate with changes in other markers of metabolic function. METHODS: This observational longitudinal study evaluated 40 overweight children and adolescents enrolled in a multidisciplinary treatment protocol at the Children's Obesity Clinic...... of care. Univariate linear regression models adjusted for age, sex, treatment duration, baseline degree of obesity, and pubertal developmental stage were used for investigating possible associations. RESULTS: The standard deviation score (SDS) of baseline median body mass index (BMI) was 2.80 (range: 1...

  12. The potential for mitochondrial fat oxidation in human skeletal muscle influences whole body fat oxidation during low-intensity exercise.

    Science.gov (United States)

    Sahlin, K; Mogensen, M; Bagger, M; Fernström, M; Pedersen, P K

    2007-01-01

    The purpose of this study was to investigate fatty acid (FA) oxidation in isolated mitochondrial vesicles (mit) and its relation to training status, fiber type composition, and whole body FA oxidation. Trained (Vo(2 peak) 60.7 +/- 1.6, n = 8) and untrained subjects (39.5 +/- 2.0 ml.min(-1).kg(-1), n = 5) cycled at 40, 80, and 120 W, and whole body relative FA oxidation was assessed from respiratory exchange ratio (RER). Mit were isolated from muscle biopsies, and maximal ADP stimulated respiration was measured with carbohydrate-derived substrate [pyruvate + malate (Pyr)] and FA-derived substrate [palmitoyl-l-carnitine + malate (PC)]. Fiber type composition was determined from analysis of myosin heavy-chain (MHC) composition. The rate of mit oxidation was lower with PC than with Pyr, and the ratio between PC and Pyr oxidation (MFO) varied greatly between subjects (49-93%). MFO was significantly correlated to muscle fiber type distribution, i.e., %MHC I (r = 0.62, P = 0.03), but was not different between trained (62 +/- 5%) and untrained subjects (72 +/- 2%). MFO was correlated to RER during submaximal exercise at 80 (r = -0.62, P = 0.02) and 120 W (r = -0.71, P = 0.007) and interpolated 35% Vo(2 peak) (r = -0.74, P = 0.004). ADP sensitivity of mit respiration was significantly higher with PC than with Pyr. It is concluded that MFO is influenced by fiber type composition but not by training status. The inverse correlation between RER and MFO implies that intrinsic mit characteristics are of importance for whole body FA oxidation during low-intensity exercise. The higher ADP sensitivity with PC than that with Pyr may influence fuel utilization at low rate of respiration.

  13. Effects of high-fat diet and physical activity on pyruvate dehydrogenase kinase-4 in mouse skeletal muscle

    Directory of Open Access Journals (Sweden)

    Rinnankoski-Tuikka Rita

    2012-06-01

    Full Text Available Abstract Background The expression of PDK4 is elevated by diabetes, fasting and other conditions associated with the switch from the utilization of glucose to fatty acids as an energy source. It is previously shown that peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α, a master regulator of energy metabolism, coactivates in cell lines pyruvate dehydrogenase kinase-4 (PDK4 gene expression via the estrogen-related receptor α (ERRα. We investigated the effects of long-term high-fat diet and physical activity on the expression of PDK4, PGC-1α and ERRα and the amount and function of mitochondria in skeletal muscle. Methods Insulin resistance was induced by a high-fat (HF diet for 19 weeks in C57BL/6 J mice, which were either sedentary or with access to running wheels. The skeletal muscle expression levels of PDK4, PGC-1α and ERRα were measured and the quality and quantity of mitochondrial function was assessed. Results The HF mice were more insulin-resistant than the low-fat (LF -fed mice. Upregulation of PDK4 and ERRα mRNA and protein levels were seen after the HF diet, and when combined with running even more profound effects on the mRNA expression levels were observed. Chronic HF feeding and voluntary running did not have significant effects on PGC-1α mRNA or protein levels. No remarkable difference was found in the amount or function of mitochondria. Conclusions Our results support the view that insulin resistance is not mediated by the decreased qualitative or quantitative properties of mitochondria. Instead, the role of PDK4 should be contemplated as a possible contributor to high-fat diet-induced insulin resistance.

  14. The effects of high-fat diets composed of different animal and vegetable fat sources on the health status and tissue lipid profiles of male Japanese quail (

    Directory of Open Access Journals (Sweden)

    Janine Donaldson

    2017-05-01

    Full Text Available Objective The current study aimed to investigate the impact of high-fat diets composed of different animal and vegetable fat sources on serum metabolic health markers in Japanese quail, as well as the overall lipid content and fatty acid profiles of the edible bird tissues following significantly increased dietary lipid supplementation. Methods Fifty seven male quail were divided into six groups and fed either a standard diet or a diet enriched with one of five different fats (22% coconut oil, lard, palm oil, soybean oil, or sunflower oil for 12 weeks. The birds were subjected to an oral glucose tolerance test following the feeding period, after which they were euthanized and blood, liver, breast, and thigh muscle samples collected. Total fat content and fatty acid profiles of the tissue samples, as well as serum uric acid, triglyceride, cholesterol, total protein, albumin, aspartate transaminase, and total bilirubin concentrations were assessed. Results High-fat diet feeding had no significant effects on the glucose tolerance of the birds. Dietary fatty acid profiles of the added fats were reflected in the lipid profiles of both the liver and breast and thigh muscle tissues, indicating successful transfer of dietary fatty acids to the edible bird tissues. The significantly increased level of lipid inclusion in the diets of the quail used in the present study was unsuccessful in increasing the overall lipid content of the edible bird tissues. Serum metabolic health markers in birds on the high-fat diets were not significantly different from those observed in birds on the standard diet. Conclusion Thus, despite the various high-fat diets modifying the fatty acid profile of the birds’ tissues, unlike in most mammals, the birds maintained a normal health status following consumption of the various high-fat diets.

  15. Effects of maternal diet and exercise during pregnancy on glucose metabolism in skeletal muscle and fat of weanling rats.

    Science.gov (United States)

    Raipuria, Mukesh; Bahari, Hasnah; Morris, Margaret J

    2015-01-01

    Obesity during pregnancy contributes to the development of metabolic disorders in offspring. Maternal exercise may limit gestational weight gain and ameliorate these programming effects. We previously showed benefits of post-weaning voluntary exercise in offspring from obese dams. Here we examined whether voluntary exercise during pregnancy influences lipid and glucose homeostasis in muscle and fat in offspring of both lean and obese dams. Female Sprague-Dawley rats were fed chow (C) or high fat (F) diet for 6 weeks before mating. Half underwent voluntary exercise (CE/FE) with a running wheel introduced 10 days prior to mating and available until the dams delivered; others remained sedentary (CS/FS). Male and female pups were killed at postnatal day (PND)19 and retroperitoneal fat and gastrocnemius muscle were collected for gene expression. Lean and obese dams achieved similar modest levels of exercise. At PND1, both male and female pups from exercised lean dams were significantly lighter (CE versus CS), with no effect in those from obese dams. At PND19, maternal obesity significantly increased offspring body weight and adiposity, with no effect of maternal exercise. Exercise significantly reduced insulin concentrations in males (CE/FE versus CS/FS), with reduced glucose in male FE pups. In males, maternal obesity significantly decreased muscle myogenic differentiation 1 (MYOD1) and glucose transporter type 4 (GLUT4) mRNA expressions (FS vs CS); these were normalized by exercise. Maternal exercise upregulated adipose GLUT4, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1α) mRNA expression in offspring of dams consuming chow. Modest voluntary exercise during pregnancy was associated with lower birth weight in pups from lean dams. Maternal exercise appeared to decrease the metabolic risk induced by maternal obesity, improving insulin/glucose metabolism, with greater effects in

  16. 64 EFFECTS OF NANOPURIFIED BOAR SEMEN FOR ARTIFICIAL INSEMINATION ON PROTEIN DETECTION IN SWINE OFFSPRING MUSCLE AND FAT TISSUE.

    Science.gov (United States)

    Moorhead, W A; Durfey, C L; Liao, S; Devost-Burnett, D; Gastal, G D A; Ryan, P L; Willard, S T; Feugang, J M

    2016-01-01

    Standard extended semen contains both viable and non-viable spermatozoa. Magnetic nanoparticles have proven to be effective in the purification of boar semen by targeting nonviable spermatozoal cells (Feugang et al. 2015 IVF Reprod. Med. Genet. 3, 2), allowing potentially greater efficiency within the pork production industry. Previous research lacks data regarding the biochemical effects on offspring produced from such nanopurified semen. Here, we aim to determine whether there is a difference in protein expression between offspring produced with standard and nanopurified semen. Myoglobin (MYO) and fatty acid synthase (FAS) were chosen as the protein markers for this study because they are often studied in reference to meat quality. Myoglobin provides meat its red colour, and FAS assembles fatty acids contributing to tenderness and palatability. The results produced here will provide a baseline for further research in the meat quality and the safety of consuming meat produced with this nanopurification method. Six sows maintained on our experimental farm were inseminated with standard (CTRL) and nanopurified (NANO) boar semen, leading to the birth of viable full-term piglets. At weaning, 10 pigs (5 male and 5 female) were randomly selected from each group and allowed to grow to market weight. Samples of longissimus muscle and SC back fat were then collected from each pig and prepared for protein analyses. Western immunoblotting and immunofluorescence of tissue samples were performed using anti-MYO and anti-FAS antibodies. Images were appropriately captured and quantified (ImageJ). Data (mean±SEM) were analysed (ANOVA/Wilcoxon) with Pfat tissues, respectively, and there were no differences between groups for each protein. Compared with the CTRL group, immunofluorescence signals of MYO in fat tissues and FAS in muscle tissues were significantly reduced in NANO group pigs, irrespective of the sex. However, MYO immunofluorescence levels in fat tissues and FAS levels

  17. Early decrease in dietary protein:energy ratio by fat addition and ontogenetic changes in muscle growth mechanisms of rainbow trout: short- and long-term effects.

    Science.gov (United States)

    Alami-Durante, Hélène; Cluzeaud, Marianne; Duval, Carine; Maunas, Patrick; Girod-David, Virginia; Médale, Françoise

    2014-09-14

    As the understanding of the nutritional regulation of muscle growth mechanisms in fish is fragmentary, the present study aimed to (1) characterise ontogenetic changes in muscle growth-related genes in parallel to changes in muscle cellularity; (2) determine whether an early decrease in dietary protein:energy ratio by fat addition affects the muscle growth mechanisms of rainbow trout (Oncorhynchus mykiss) alevins; and (3) determine whether this early feeding of a high-fat (HF) diet to alevins had a long-term effect on muscle growth processes in juveniles fed a commercial diet. Developmental regulation of hyperplasia and hypertrophy was evidenced at the molecular (expression of myogenic regulatory factors, proliferating cell nuclear antigen and myosin heavy chains (MHC)) and cellular (number and diameter of white muscle fibres) levels. An early decrease in dietary protein:energy ratio by fat addition stimulated the body growth of alevins but led to a fatty phenotype, with accumulation of lipids in the anterior part, and less caudal muscle when compared at similar body weights, due to a decrease in both the white muscle hyperplasia and maximum hypertrophy of white muscle fibres. These HF diet-induced cellular changes were preceded by a very rapid down-regulation of the expression of fast-MHC. The present study also demonstrated that early dietary composition had a long-term effect on the subsequent muscle growth processes of juveniles fed a commercial diet for 3 months. When compared at similar body weights, initially HF diet-fed juveniles indeed had a lower mean diameter of white muscle fibres, a smaller number of large white muscle fibres, and lower expression levels of MyoD1 and myogenin. These findings demonstrated the strong effect of early feed composition on the muscle growth mechanisms of trout alevins and juveniles.

  18. Body fat predicts an increase and limb muscle strength predicts a decrease in leptin in older adults over 2·6 years.

    Science.gov (United States)

    Antony, Benny; Jones, Graeme; Stannus, Oliver; Blizzard, Leigh; Ding, Changhai

    2013-11-01

    Obesity is characterized by hyperleptinaemia, which is associated with diabetes, hypertension and coronary heart disease. The aim of this study was to determine if body fat and muscle measures predict the natural increase in leptin over 2·6 years in older adults. A total of 190 subjects (50% females) aged between 50 and 79 years were selected to perform the serum measurements for leptin. Height and weight were measured and body mass index (BMI) was calculated. Fat and lean mass of the whole body and the trunk were acquired through dual-energy X-ray absorptiometry (DXA). Leg muscle strength and handgrip strength were measured using dynamometry. In multivariable analyses, leg muscle strength was negatively associated with both baseline leptin (β: -0·05 μg/l per kg, 95% CI: -0·08, -0·02) and follow-up leptin (β: -0·04 μg/l per kg, 95% CI: -0·07, -0·01). BMI, and percentage total fat and trunk fat and their respective change per annum (cpa) were significantly and positively associated with leptin. Lean mass was negatively associated with baseline leptin. Gender-specific analyses produced similar associations between leg muscle strength, fat measures and follow-up leptin in males and females. Besides positive associations between body fat, trunk fat and leptin, we found that leg muscle strength was negatively associated with leptin after 2·6 years in a sample of older population. This suggests that interventions to maintain or increase muscle strength may have a protective effect on hyperleptinaemia. © 2012 John Wiley & Sons Ltd.

  19. The effect of muraglitazar on adiponectin signalling, mitochondrial function and fat oxidation genes in human skeletal muscle in vivo.

    Science.gov (United States)

    Coletta, D K; Fernandez, M; Cersosimo, E; Gastaldelli, A; Musi, N; DeFronzo, R A

    2015-05-01

    The molecular mechanisms by which muraglitazar (peroxisome proliferator-activated receptor γ/α agonist) improves insulin sensitivity in Type 2 diabetes mellitus are not fully understood. We hypothesized that muraglitazar would increase expression of 5'-monophosphate-activated protein kinase and genes involved in adiponectin signalling, free fatty acid oxidation and mitochondrial function in skeletal muscle. Sixteen participants with Type 2 diabetes received muraglitazar, 5 mg/day (n = 12) or placebo (n = 4). Before and after 16 weeks, participants had vastus lateralis muscle biopsy followed by 180 min euglycaemic hyperinsulinaemic clamp. Muraglitazar increased plasma adiponectin (9.0 ± 1.1 to 17.8 ± 1.5 μg/ml, P decreased by 44%, insulin-stimulated glucose disposal increased by 81%, HbA1c decreased by 21% and plasma triglyceride decreased by 39% (all P increased mRNA levels of 5'-monophosphate-activated protein kinase, adiponectin receptor 1, adiponectin receptor 2, peroxisome proliferator-activated receptor gamma coactivator-1 alpha and multiple genes involved in mitochondrial function and fat oxidation. In the placebo group, there were no significant changes in expression of these genes. Muraglitazar increases plasma adiponectin, stimulates muscle 5'-monophosphate-activated protein kinase expression and increases expression of genes involved in adiponectin signalling, mitochondrial function and fat oxidation. These changes represent important cellular mechanisms by which dual peroxisome proliferator-activated receptor agonists improve skeletal muscle insulin sensitivity. © 2014 The Authors. Diabetic Medicine © 2014 Diabetes UK.

  20. Responses of skeletal muscle lipid metabolism in rat gastrocnemius to hypothyroidism and iodothyronine administration: a putative role for FAT/CD36.

    Science.gov (United States)

    Lombardi, Assunta; De Matteis, Rita; Moreno, Maria; Napolitano, Laura; Busiello, Rosa Anna; Senese, Rosalba; de Lange, Pieter; Lanni, Antonia; Goglia, Fernando

    2012-11-15

    Iodothyronines such as triiodothyronine (T(3)) and 3,5-diiodothyronine (T(2)) influence energy expenditure and lipid metabolism. Skeletal muscle contributes significantly to energy homeostasis, and the above iodothyronines are known to act on this tissue. However, little is known about the cellular/molecular events underlying the effects of T(3) and T(2) on skeletal muscle lipid handling. Since FAT/CD36 is involved in the utilization of free fatty acids by skeletal muscle, specifically in their import into that tissue and presumably their oxidation at the mitochondrial level, we hypothesized that related changes in lipid handling and in FAT/CD36 expression and subcellular redistribution would occur due to hypothyroidism and to T(3) or T(2) administration to hypothyroid rats. In gastrocnemius muscles isolated from hypothyroid rats, FAT/CD36 was upregulated (mRNA levels and total tissue, sarcolemmal, and mitochondrial protein levels). Administration of either T(3) or T(2) to hypothyroid rats resulted in 1) little or no change in FAT/CD36 mRNA level, 2) a decreased total FAT/CD36 protein level, and 3) further increases in FAT/CD36 protein level in sarcolemma and mitochondria. Thus, the main effect of each iodothyronine seemed to be exerted at the level of FAT/CD36 cellular distribution. The effect of further increases in FAT/CD36 protein level in sarcolemma and mitochondria was already evident at 1 h after iodothyronine administration. Each iodothyronine increased the mitochondrial fatty acid oxidation rate. However, the mechanisms underlying their rapid effects seem to differ; T(2) and T(3) each induce FAT/CD36 translocation to mitochondria, but only T(2) induces increases in carnitine palmitoyl transferase system activity and in the mitochondrial substrate oxidation rate.

  1. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis

    Directory of Open Access Journals (Sweden)

    Johanna Abrigo

    2016-01-01

    Full Text Available Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes.

  2. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis.

    Science.gov (United States)

    Abrigo, Johanna; Rivera, Juan Carlos; Aravena, Javier; Cabrera, Daniel; Simon, Felipe; Ezquer, Fernando; Ezquer, Marcelo; Cabello-Verrugio, Claudio

    2016-01-01

    Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs) are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes.

  3. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis

    Science.gov (United States)

    Aravena, Javier; Cabrera, Daniel; Simon, Felipe; Ezquer, Fernando

    2016-01-01

    Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs) are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes. PMID:27579157

  4. 游离股外侧肌瓣联合封闭式负压吸引技术修复四肢软组织缺损%Clinical Observation of Sequential Vacuum-assisted Closure and Free Lateral Thigh Muscle Flaps for Soft Tissue Defects in Extremities

    Institute of Scientific and Technical Information of China (English)

    张定伟; 王军; 唐诗添; 王陶; 石波; 康斌

    2013-01-01

    Objective To investigate the clinical effect of sequential vacuum-sealing drainage (VSD) and free lateral thigh muscle flaps on soft tissue defects in extremities. Methods A total of 25 cases of soft tissue defects in extremities treated between June 2009 and June 2011. After careful debridement, the wound was covered with VSD according to the condition of the soft tissue defect. The VSD negative pressure membrane wag removed after 5-9 days, then the free lateral thigh muscle flaps were transferred to cover the defects. The vascular crisis of the muscle flaps were treated after transfer, and grafting skin in the late. Results All cases were followed up for 6-12 months. After treated by VSD, no obvious infection was seen in 25 patient with soft tissue defect complicated by infection, and granulation tissue surrounding tendons and bone exposure area grew well. Three muscle flaps restored blood circulation in three cases vascular crisis. The result was satisfactory, and all muscle flaps were survived. The infection was well controlled, and no fistula tract was found. Conclusions For patients with soft tissue defect complicated by underlying tissue exposure, after strict debridement, the treatment circle will be obviously shortened by the application of sequential drainage and free lateral thigh muscle flaps, and the success rate of the operation is improved. Therefore, the function of affected limbs will be recovered as far as possible.%目的 探讨游离股外侧肌瓣联合封闭式负压吸引技术(VSD)修复四肢软组织缺损的临床效果.方法 2009年6月-2011年6月,对25例四肢软组织缺损患者采用游离股外侧肌瓣联合VSD治疗对创面经彻底清创后,先行VSD覆盖,5~9d后去除VSD负压膜.再次清创受区,切取股外侧肌瓣修复创面,处理血管危象,二期植皮.结果 25例均获得随访,时间6~12个月.经负压封闭引流后,局部创面无明显感染,肌腱及骨外露区周围肉芽组织

  5. Pioglitazone-induced increase in the stearoyl-CoA desaturation index and fat accumulation in rat muscles are not related to lipoprotein lipase activity.

    Science.gov (United States)

    Ochiai, Masaru; Matsuo, Tatsuhiro

    2013-01-01

    Muscular insulin resistance is a characteristic of obesity and type 2 diabetes, but little is known about fatty acid (FA) metabolism in insulin-resistant skeletal muscle. In this study, we investigated the effects of the repeated administration of the PPAR-γ agonist pioglitazone on fat accumulation, FA composition, and stearoyl-CoA desaturase (SCD) index in rat tissues. Seventeen 4-week-old male Wistar rats were divided into control (C, n = 9) and pioglitazone treatment (P, n = 8) groups, and all the rats were fed a high-fat and high-sucrose diet for 8 weeks. Vehicle or pioglitazone (3 mg/kg) was orally administered daily to rats in the C group and P group, respectively. In the eighth week of the test period, an oral glucose tolerance test (OGTT) was performed after 12 h fasting. At the end of the test period, serum, liver, perirenal adipose tissue, and skeletal muscles were removed after 12 h fasting. The fasting serum and plasma glucose concentrations and OGTT glucose and insulin levels were significantly lower, while the serum adiponectin concentration was significantly higher in the P group than in the C group. Pioglitazone administration increased fat accumulation in the various muscle types examined, perirenal adipose tissue, and brown adipose tissue (BAT), but decreased fat accumulation in the liver. Pioglitazone administration increased the SCD indices for the muscles, perirenal adipose tissue, and liver, but not those of BAT. The lipoprotein lipase (LPL) activity of the BAT and perirenal adipose tissue, but not the muscles, was higher in the P group than in the C group. These results indicate that pioglitazone administration improved glucose tolerance and increased fat accumulation and SCD indices in the muscles and adipose tissues of rats. The increased fat accumulation was closely correlated with LPL activity in both adipose tissues, but not in the muscles.

  6. Treadmill exercise promotes interleukin 15 expression in skeletal muscle and interleukin 15 receptor alpha expression in adipose tissue of high-fat diet rats.

    Science.gov (United States)

    Yang, Hongtao; Chang, Jinrui; Chen, Wenjia; Zhao, Lei; Qu, Bo; Tang, Chaoshu; Qi, Yongfen; Zhang, Jing

    2013-06-01

    Interleukin 15 (IL-15) has recently been proposed as a myokine involved in regulating lipid metabolism. We investigated the effect of exercise training on IL-15 content in skeletal muscle and expression of IL-15 receptor (IL-15R) in adipose tissue of obese rats. After 12 weeks of a high-fat diet, obese rats underwent treadmill running at 26 m/min (60 min each, 5 days/week for 8 weeks). High-fat diet induced obesity, with increased body weight, body fat, and lipid profile. The level of IL-15 immunoreactivity (IL-15-ir) in plasma and gastrocnemius muscle was lower in obese than control rats, and the mRNA level of IL-15 in gastrocnemius muscle was markedly decreased. The mRNA and protein levels of IL-15R in adipose tissue were markedly lower in obese rats. Compared with sedentary obese rats, treadmill running showed decreased body weight and elevated mRNA expression of IL-15 in muscle and elevated IL-15-ir level in plasma and muscle. The mRNA and protein level of IL-15R were increased in adipose tissue in treadmill running obese rats. Our results showed that exercise training improve obesity and reversed the downregulation of the IL-15 in muscle and IL-15R in adipose tissue induced by high-fat diet.

  7. Muscle reflexes during gait elicited by electrical stimulation of the posterior cruciate ligament in humans

    DEFF Research Database (Denmark)

    Fischer-Rasmussen, T; Krogsgaard, M R; Jensen, D B

    2002-01-01

    muscle activity in both the quadriceps and the hamstrings. The latency of the inhibition ranged between 78 and 148 ms in the quadriceps, between 88 and 110 ms in the hamstrings and between 189 and 258 ms in m. gastrocnemius. Stimulation of the fat pad of the knee did not influence the thigh and calf......We investigated the influence of electrical stimulation of the posterior cruciate ligament (PCL) on the motoneuron pool of the thigh and calf muscle during gait. The study group comprised eight young men without any history of injury to the knee joints. Multistranded teflon-insulated stainless...... over the vastus medialis, rectus femoris, vastus lateralis, biceps femoris caput longum, and semitendinosus muscles. The stimuli consisted of four pulses delivered at 200 Hz; the stimulus amplitude was two to three times the sensory threshold. The electrical stimulation of the PCL inhibited the ongoing...

  8. Whole-Body Muscle MRI in Patients with Hyperkalemic Periodic Paralysis Carrying the SCN4A Mutation T704M: Evidence for Chronic Progressive Myopathy with Selective Muscle Involvement.

    Science.gov (United States)

    Lee, Young Han; Lee, Hyung Soo; Lee, Hyo Eun; Hahn, Seok; Nam, Tai Seung; Shin, Ha Young; Choi, Young Chul; Kim, Seung Min

    2015-10-01

    Hyperkalemic periodic paralysis (hyperKPP) is a muscle sodium-ion channelopathy characterized by recurrent paralytic attacks. A proportion of affected individuals develop fixed or chronic progressive weakness that results in significant disability. However, little is known about the pathology of hyperKPP-induced fixed weakness, including the pattern of muscle involvement. The aim of this study was to characterize the patterns of muscle involvement in hyperKPP by whole-body magnetic resonance imaging (MRI). We performed whole-body muscle MRI in seven hyperKPP patients carrying the T704M mutation in the SCN4A skeletal sodium-channel gene. Muscle fat infiltration, suggestive of chronic progressive myopathy, was analyzed qualitatively using a grading system and was quantified by the two-point Dixon technique. Whole-body muscle MRI analysis revealed muscle atrophy and fatty infiltration in hyperKPP patients, especially in older individuals. Muscle involvement followed a selective pattern, primarily affecting the posterior compartment of the lower leg and anterior thigh muscles. The muscle fat fraction increased with patient age in the anterior thigh (r=0.669, p=0.009), in the deep posterior compartment of the lower leg (r=0.617, p=0.019), and in the superficial posterior compartment of the lower leg (r=0.777, p=0.001). Our whole-body muscle MRI findings provide evidence for chronic progressive myopathy in hyperKPP patients. The reported data suggest that a selective pattern of muscle involvement-affecting the posterior compartment of the lower leg and the anterior thigh-is characteristic of chronic progressive myopathy in hyperKPP.

  9. Age-dependent changes in skeletal muscle mass and visceral fat area in Japanese adults from 40 to 79 years-of-age.

    Science.gov (United States)

    Yamada, Minoru; Moriguch, Yoko; Mitani, Takahiro; Aoyama, Tomoki; Arai, Hidenori

    2014-02-01

    The age-dependent loss of skeletal muscle mass is highly concerning in diverse aging populations. However, age-dependent changes in muscle mass and the visceral fat area have not been well documented in Asian populations. The aim of the present study was to evaluate the age-dependent changes in skeletal muscle mass and the visceral fat area in Japanese adults from 40 to 79 years-of-age. This was a cross-sectional study. Healthy men (n = 16,379) and women (n = 21,660) aged 40-79 years participated in the present study. The skeletal muscle mass and visceral fat area were measured in the study participants by bioelectrical impedance. The muscle mass data were converted into the skeletal muscle mass index (SMI) by dividing the weight by the height squared (kg/m(2)). The SMI showed an age-dependent decrease in both sexes. Between 40 and 79 years, the total SMI decreased by 10.8% in men and by 6.4% in women. The arm SMI decreased by 12.6% in men and 4.1% in women, and the leg SMI decreased by 10.1% in men and by 7.1% in women in the same period. In contrast, the visceral fat area showed an age-dependent increase in both sexes. The visceral fat area increased by 42.9% in men and by 65.3% in women. The multiple regression analysis showed that the SMI was negatively associated with visceral obesity in both sexes. In Japanese adults, sex-specific changes in skeletal muscle mass are more prominent in the arm than in the leg. Furthermore, the age-dependent increases in visceral adipose tissue might lead to loss of skeletal muscle mass. © 2014 Japan Geriatrics Society.

  10. Nonlinear microscopy of lipid storage and fibrosis in muscle and liver tissues of mice fed high-fat diets

    Science.gov (United States)

    Brackmann, Christian; Gabrielsson, Britt; Svedberg, Fredrik; Holmäng, Agneta; Sandberg, Ann-Sofie; Enejder, Annika

    2010-11-01

    Hallmarks of high-fat Western diet intake, such as excessive lipid accumulation in skeletal muscle and liver as well as liver fibrosis, are investigated in tissues from mice using nonlinear microscopy, second harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS), supported by conventional analysis methods. Two aspects are presented; intake of standard chow versus Western diet, and a comparison between two high-fat Western diets of different polyunsaturated lipid content. CARS microscopy images of intramyocellular lipid droplets in muscle tissue show an increased amount for Western diet compared to standard diet samples. Even stronger diet impact is found for liver samples, where combined CARS and SHG microscopy visualize clear differences in lipid content and collagen fiber development, the latter indicating nonalcoholic fatty liver disease (NAFLD) and steatohepatitis induced at a relatively early stage for Western diet. Characteristic for NAFLD, the fibrous tissue-containing lipids accumulate in larger structures. This is also observed in CARS images of liver samples from two Western-type diets of different polyunsaturated lipid contents. In summary, nonlinear microscopy has strong potential (further promoted by technical advances toward clinical use) for detection and characterization of steatohepatitis already in its early stages.

  11. Brown fat determination and development from muscle precursor cells by novel action of bone morphogenetic protein 6.

    Directory of Open Access Journals (Sweden)

    Ankur Sharma

    Full Text Available Brown adipose tissue (BAT plays a pivotal role in promoting energy expenditure by the virtue of uncoupling protein-1 (UCP-1 that differentiates BAT from its energy storing white adipose tissue (WAT counterpart. The clinical implication of "classical" BAT (originates from Myf5 positive myoblastic lineage or the "beige" fat (originates through trans-differentiation of WAT activation in improving metabolic parameters is now becoming apparent. However, the inducers and endogenous molecular determinants that govern the lineage commitment and differentiation of classical BAT remain obscure. We report here that in the absence of any forced gene expression, stimulation with bone morphogenetic protein 6 (BMP6 induces brown fat differentiation from skeletal muscle precursor cells of murine and human origins. Through a comprehensive transcriptional profiling approach, we have discovered that two days of BMP6 stimulation in C2C12 myoblast cells is sufficient to induce genes characteristic of brown preadipocytes. This developmental switch is modulated in part by newly identified regulators, Optineurin (Optn and Cyclooxygenase-2 (Cox2. Furthermore, pathway analyses using the Causal Reasoning Engine (CRE identified additional potential causal drivers of this BMP6 induced commitment switch. Subsequent analyses to decipher key pathway that facilitates terminal differentiation of these BMP6 primed cells identified a key role for Insulin Like Growth Factor-1 Receptor (IGF-1R. Collectively these data highlight a therapeutically innovative role for BMP6 by providing a means to enhance the amount of myogenic lineage derived brown fat.

  12. Effects of adrenomedullin on tumour necrosis factor alpha, interleukins, endothelin-1, leptin, and adiponectin in the epididymal fat and soleus muscle of the rat.

    Science.gov (United States)

    Liao, S B; Wong, P F; Cheung, B M Y; Tang, F

    2013-01-01

    Adrenomedullin (ADM) is a peptide hormone, which participates in the development of metabolic syndrome. In this study, we have investigated the interaction of ADM and cytokines, endothelin-1 (EDN-1) and adipokines in the epididymal fat and the soleus muscle. Epididymal fat and soleus muscles from adult male Sprague-Dawley rat were incubated with ADM at concentration of 100 nM for the study of the gene expression and secretion of tumour necrosis factor (TNF-α), EDN-1, leptin, adiponectin, interleukin 1β (IL-1β), and IL-6. The effects of TNF-α and EDN-1 on ADM gene expression and secretion were also investigated. The results showed that ADM decreased the gene expression and protein secretion of TNF-α in both the epididymal fat and the soleus muscle and decreased IL-1β gene expression and secretion in the soleus muscle. It also decreased endothelin gene expression and adiponectin gene expression and release and increased IL-6 and leptin gene expression and secretion in the epididymal fat. These effects were effectively blocked by the calcitonin gene-related peptide (CGRP) receptor antagonist, hCGRP8-37, but not by the ADM receptor antagonist, hADM22-52. The reduction of inflammatory cytokines and EDN-1 may help to decrease insulin resistance and increase glucose uptake. As TNF-α also increases ADM levels in the epididymal fat and the soleus muscle and EDN-1 also increases ADM levels in the epididymal fat, they may form a feedback loop with ADM in these tissues. The increase in leptin and the decrease in adiponectin by ADM in the epididymal fat may have opposite effects on metabolism. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Influences of dietary vitamin D restriction on bone strength, body composition and muscle in rats fed a high-fat diet: involvement of mRNA expression of MyoD in skeletal muscle.

    Science.gov (United States)

    Oku, Yuno; Tanabe, Rieko; Nakaoka, Kanae; Yamada, Asako; Noda, Seiko; Hoshino, Ayumi; Haraikawa, Mayu; Goseki-Sone, Masae

    2016-06-01

    Vitamin D insufficiency is associated with a greater risk of osteoporosis and also influences skeletal muscle functions, differentiation and development. The present study investigated the influences of vitamin D restriction on the body composition, bone and skeletal muscle in rats fed a high-fat diet. Sprague-Dawley strain male rats (11weeks old) were divided into four groups and fed experimental diets: a basic control diet (Cont.), a basic control diet with vitamin D restriction (DR), a high-fat diet (F) and a high-fat diet with vitamin D restriction (FDR). At 28days after starting the experimental diets, the visceral fat mass was significantly increased in the F group compared with Cont. group, and the muscle mass tended to decrease in the DR group compared with Cont. group. The total volume of the femur was significantly lower in the DR group compared with Cont. group, and the bone mineral density (BMD) of the femur was significantly lower in the FDR group compared with F group. MyoD is one of the muscle-specific transcription factors. The levels of mRNA expression of MyoD of the gastrocnemius and soleus muscles from the DR group were reduced markedly compared with those from the Cont. group. In conclusion, our findings revealed the influences of a vitamin D-restricted high-fat diet on the bone strength, body composition and muscle. Further studies on vitamin D insufficiency in the regulation of muscle as well as fat and bone metabolism would provide valuable data for the prevention of lifestyle-related disorders, including osteoporosis and sarcopenia.

  14. Efeito do uso de óleo de vísceras de aves oxidado na ração de frangos de corte sobre o desempenho, a composição da carcaça e a estabilidade oxidativa da carne da sobrecoxa Dietary oxidized poultry offal fat: performance, carcass and meat composition, and oxidative stability of frozen thigh meat of broiler chickens

    Directory of Open Access Journals (Sweden)

    Aline Mondini Calil Racanicci

    2008-03-01

    Full Text Available Foi conduzido um experimento utilizando-se 200 pintos de corte da linhagem Ross de 10 a 40 dias de idade alimentados com ração à base de milho e farelo de soja e suplementada com 4% de óleo de vísceras de aves fresco ou oxidado, com o objetivo de avaliar os efeitos da qualidade do óleo utilizado nas rações sobre o desempenho de frangos de corte e a estabilidade oxidativa da carne de sobrecoxa congelada. Óleo de vísceras recém produzido com absorbâncias específicas de 5,80 a 232 nm e 0,690 a 532 nm, indicando a presença de quantidades mínimas de compostos de oxidação, foi congelado (-18ºC até o momento da produção das rações. O óleo oxidado foi produzido a partir deste mesmo lote, que foi aquecido em uma fritadeira elétrica com temperatura em torno de 110 a 120ºC até atingir absorbâncias específicas de 11,33 (232 nm e 2,31 (532 nm, caracterizando o acúmulo de compostos de ranço. Aos 41 dias de idade, 136 animais foram abatidos para avaliação das características de rendimento da carcaça e das partes e as sobrecoxas desossadas e sem pele foram embaladas e mantidas sob congelamento (-20ºC. O acompanhamento do processo de oxidação lipídica da carne congelada foi avaliado mensalmente pela determinação dos compostos secundários da oxidação (TBARS. O uso do óleo de vísceras oxidado não afetou o desempenho das aves, nem as características principais da carcaça. A partir do sexto mês de armazenamento, a estabilidade oxidativa da carne de sobrecoxa congelada foi comprometida pelo consumo de rações contendo o óleo oxidado, evidenciado pelo maior valor de TBARS.Two hundred male Ross broiler chicks were raised from 10 to 40 days of age and fed a corn-soy diet with 4% of fresh or oxidized poultry offal fat to evaluate the effects of dietary fat quality on broiler performance and on oxidative stability of frozen thigh meat during storage. Fresh poultry fat, characterized by low concentration of oxidation

  15. Effects of dietary eicosapentaenoic acid (EPA) supplementation in high-fat fed mice on lipid metabolism and apelin/APJ system in skeletal muscle.

    Science.gov (United States)

    Bertrand, Chantal; Pignalosa, Angelica; Wanecq, Estelle; Rancoule, Chloé; Batut, Aurélie; Deleruyelle, Simon; Lionetti, Lillà; Valet, Philippe; Castan-Laurell, Isabelle

    2013-01-01

    Various studies have shown that eicosapentaenoic acid (EPA) has beneficial effects on obesity and associated disorders. Apelin, the ligand of APJ receptor also exerts insulin-sensitizing effects especially by improving muscle metabolism. EPA has been shown to increase apelin production in adipose tissue but its effects in muscle have not been addressed. Thus, the effects of EPA supplementation (36 g/kg EPA) in high-fat diet (HFD) (45% fat, 20% protein, 35% carbohydrate) were studied in mice with focus on muscle lipid metabolism and apelin/APJ expression. Compared with HFD mice, HFD+EPA mice had significantly less weight gain, fat mass, lower blood glucose, insulinemia and hepatic steatosis after 10 weeks of diet. In addition, EPA prevented muscle metabolism alterations since intramuscular triglycerides were decreased and β-oxidation increased. In soleus muscles of HFD+EPA mice, apelin and APJ expression were significantly increased compared to HFD mice. However, plasma apelin concentrations in HFD and HFD+EPA mice were similar. EPA-induced apelin expression was confirmed in differentiated C2C12 myocytes but in this model, apelin secretion was also increased in response to EPA treatment. In conclusion, EPA supplementation in HFD prevents obesity and metabolic alterations in mice, especially in skeletal muscle. Since EPA increases apelin/APJ expression in muscle, apelin may act in a paracrine/autocrine manner to contribute to these benefical effects.

  16. Capsiate administration results in an uncoupling protein-3 downregulation, an enhanced muscle oxidative capacity and a decreased abdominal fat content in vivo.

    Science.gov (United States)

    Faraut, B; Giannesini, B; Matarazzo, V; Le Fur, Y; Rougon, G; Cozzone, P J; Bendahan, D

    2009-12-01

    The involvement of skeletal muscle mitochondrial uncoupling protein-3 (UCP3) in the control of energy expenditure in skeletal muscle and at the whole-body level is still a matter of debate. We previously reported that UCP3 downregulation is linked to an enhanced mitochondrial energy metabolism in rat skeletal muscle as a result of acute capsiate treatment. Here, we aimed at investigating noninvasively the effects of chronic capsiate ingestion on metabolic changes occurring in exercising gastrocnemius muscle and at the whole-body level. We used an original experimental setup allowing a complete noninvasive investigation of gastrocnemius muscle function in situ using 31-phosphorus magnetic resonance spectroscopy. Whole-body fat composition was determined using magnetic resonance imaging and UCP3 gene expression was measured by quantitative real-time RT-PCR analysis. We found that a 14-day daily administration of capsiate (100 mg kg(-1) body weight) reduced UCP3 gene expression and increased phosphocreatine level at baseline and during the stimulation period in gastrocnemius muscle. During muscle stimulation, pH(i) showed a larger alkalosis in the capsiate group suggesting a lower glycolysis and a compensatory higher aerobic contribution to ATP production. Although the capsiate-treated rats were hyperphagic as compared to control animals, they showed a lower weight gain coupled to a decreased abdominal fat content. Overall, our data indicated that capsiate administration contributes to the enhancement of aerobic ATP production and the reduction of body fat content coupled to a UCP3 gene downregulation.

  17. Body fat and skeletal muscle mass in relation to physical disability in very old men and women of the Framingham Heart Study.

    Science.gov (United States)

    Visser, M; Harris, T B; Langlois, J; Hannan, M T; Roubenoff, R; Felson, D T; Wilson, P W; Kiel, D P

    1998-05-01

    Low muscle mass has been assumed to be associated with disability, but no studies confirming this association have been published. High body weight and high body mass index, both rough indicators of body fatness, have been shown to increase the risk for disability; however, the specific role of body fatness has not been studied. The relations of skeletal muscle mass and percent body fat with self-reported physical disability were studied in 753 men and women aged 72 to 95 years. Cross-sectional data from biennial examination 22 (1992-1993) of the Framingham Heart Study were used. Body composition was assessed by dual-energy x-ray absorptiometry. Disability was scored as any versus none on a 9-item questionnaire. Total body and lower extremity muscle mass were not associated with disability in either men or women. However, a strong positive association between percent body fat and disability was observed. The odds ratio for disability in those in the highest tertile of body fatness was 2.69 (95% confidence interval 1.45-5.00) for women and 3.08 (1.22-7.81) for men compared to those in the lowest tertile. The increased risk could not be explained by age, education, physical activity, smoking, alcohol use, estrogen use (women only), muscle mass, and health status. Analyses restricting disability to mobility items gave similar results. In contrast to current assumptions, low skeletal muscle mass was not associated with self-reported physical disability. Persons with a high percent body fat had high levels of disability. Because it cannot be ruled out that persons with low skeletal muscle mass dropped out earlier in the study, prospective studies are needed to further assess the relationship between body composition and physical disability.

  18. Chronic AMP-activated protein kinase activation and a high-fat diet have an additive effect on mitochondria in rat skeletal muscle.

    Science.gov (United States)

    Fillmore, Natasha; Jacobs, Daniel L; Mills, David B; Winder, William W; Hancock, Chad R

    2010-08-01

    Factors that stimulate mitochondrial biogenesis in skeletal muscle include AMP-activated protein kinase (AMPK), calcium, and circulating free fatty acids (FFAs). Chronic treatment with either 5-aminoimidazole-4-carboxamide riboside (AICAR), a chemical activator of AMPK, or increasing circulating FFAs with a high-fat diet increases mitochondria in rat skeletal muscle. The purpose of this study was to determine whether the combination of chronic chemical activation of AMPK and high-fat feeding would have an additive effect on skeletal muscle mitochondria levels. We treated Wistar male rats with a high-fat diet (HF), AICAR injections (AICAR), or a high-fat diet and AICAR injections (HF + AICAR) for 6 wk. At the end of the treatment period, markers of mitochondrial content were examined in white quadriceps, red quadriceps, and soleus muscles, predominantly composed of unique muscle-fiber types. In white quadriceps, there was a cumulative effect of treatments on long-chain acyl-CoA dehydrogenase, cytochrome c, and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) protein, as well as on citrate synthase and beta-hydroxyacyl-CoA dehydrogenase (beta-HAD) activity. In contrast, no additive effect was noted in the soleus, and in the red quadriceps only beta-HAD activity increased additively. The additive increase of mitochondrial markers observed in the white quadriceps may be explained by a combined effect of two separate mechanisms: high-fat diet-induced posttranscriptional increase in PGC-1alpha protein and AMPK-mediated increase in PGC-1alpha protein via a transcriptional mechanism. These data show that chronic chemical activation of AMPK and a high-fat diet have a muscle type specific additive effect on markers of fatty acid oxidation, the citric acid cycle, the electron transport chain, and transcriptional regulation.

  19. Cutting the fat: artificial muscle oscillators for lighter, cheaper, and slimmer devices

    Science.gov (United States)

    O'Brien, Benjamin M.; Rosset, Samuel; Shea, Herbert R.; Anderson, Iain A.

    2012-04-01

    Artificial muscles based on dielectric elastomers show enormous promise for a wide range of applications and are slowly moving from the lab to industry. One problem for industrial uptake is the expensive, rigid, heavy and bulky high voltage driver, sensor and control circuitry that artificial muscle devices currently require. One recent development, the Dielectric Elastomer Switch(es) (DES), shows promise for substantially reducing auxiliary circuitry and helping to mature the technology. DES are piezoresistive elements that can be used to form logic, driver, and sensor circuitry. One particularly useful feature of DES is their ability to embed oscillatory behaviour directly into an artificial muscle device. In this paper we will focus on how DES oscillators can break down the barriers to industrial adoption for artificial muscle devices. We have developed an improved artificial muscle ring oscillator and applied it to form a mechanosensitive conveyor. The free running oscillator ran at 4.4 Hz for 1056 cycles before failing due to electrode degradation. With better materials artificial muscle oscillators could open the door to robots with increased power to weight ratios, simple-to-control peristaltic pumps, and commercially viable artificial muscle motors.

  20. Skeletal Muscle TRIB3 Mediates Glucose Toxicity in Diabetes and High- Fat Diet-Induced Insulin Resistance.

    Science.gov (United States)

    Zhang, Wei; Wu, Mengrui; Kim, Teayoun; Jariwala, Ravi H; Garvey, W John; Luo, Nanlan; Kang, Minsung; Ma, Elizabeth; Tian, Ling; Steverson, Dennis; Yang, Qinglin; Fu, Yuchang; Garvey, W Timothy

    2016-08-01

    In the current study, we used muscle-specific TRIB3 overexpressing (MOE) and knockout (MKO) mice to determine whether TRIB3 mediates glucose-induced insulin resistance in diabetes and whether alterations in TRIB3 expression as a function of nutrient availability have a regulatory role in metabolism. In streptozotocin diabetic mice, TRIB3 MOE exacerbated, whereas MKO prevented, glucose-induced insulin resistance and impaired glucose oxidation and defects in insulin signal transduction compared with wild-type (WT) mice, indicating that glucose-induced insulin resistance was dependent on TRIB3. In response to a high-fat diet, TRIB3 MOE mice exhibited greater weight gain and worse insulin resistance in vivo compared with WT mice, coupled with decreased AKT phosphorylation, increased inflammation and oxidative stress, and upregulation of lipid metabolic genes coupled with downregulation of glucose metabolic genes in skeletal muscle. These effects were prevented in the TRIB3 MKO mice relative to WT mice. In conclusion, TRIB3 has a pathophysiological role in diabetes and a physiological role in metabolism. Glucose-induced insulin resistance and insulin resistance due to diet-induced obesity both depend on muscle TRIB3. Under physiological conditions, muscle TRIB3 also influences energy expenditure and substrate metabolism, indicating that the decrease and increase in muscle TRIB3 under fasting and nutrient excess, respectively, are critical for metabolic homeostasis. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. Muscle fat content and abdominal adipose tissue distribution investigated by magnetic resonance spectroscopy and imaging in obese children and youths

    Directory of Open Access Journals (Sweden)

    Cilius E. Fonvig

    2012-01-01

    Full Text Available The degree of fat deposition in muscle and its implications for obesity-related complications in youth are not well understood. One hundred and fifty-nine patients (mean age: 13.3 years; range: 6-20 with a body mass index (BMI >90th percentile for age and sex were included. Muscle fat content (MFC was measured in the psoas muscle by proton magnetic resonance spectroscopy. The patients were assigned to two groups: MFC <5% or ³5%. Visceral adipose tissue volume (VAT and subcutaneous adipose tissue volume (SAT were measured by magnetic resonance imaging. Blood samples were obtained from 119 patients, and liver enzyme concentrations and other variables were measured. The data were analysed to detect any associations between MFC and BMI standard deviation scores, VAT and SAT, blood values, and physical activity levels. The mean BMI standard deviation score (SDS was 3.04 (range 1.32-5.02. The mean MFC was 8.9% (range 0.8-46.7, and 118 (74.2% of 159 patients had an MFC ³5%. Children with a high MFC had a higher BMI SDS (P=0.03 and had a higher VAT, but not SAT or SAT/VAT ratio. Both intramyocellular lipid (IMCL and extramyocellular lipid (EMCL content were elevated in patients with an MFC ³5%. Blood values and physical activity levels did not differ between the two groups. Severely obese children and adolescents tend to have a high MFC, which is associated with elevated VAT and IMCL and EMCL content. An increased MFC may be associated with impaired metabolic processes, which may predispose young people to obesity-related complications.

  2. (1)H-MRS measured ectopic fat in liver and muscle is associated with the metabolic syndrome in Danish girls but not in boys with overweight and obesity

    DEFF Research Database (Denmark)

    Nissen, A; Fonvig, C E; Chabanova, E;

    2016-01-01

    MetS and ectopic fat may offer clinical relevance. OBJECTIVES: To investigate the prevalence of MetS, or components hereof, and ectopic fat accumulation in liver and skeletal muscle tissue in children, as well as interactions between these. METHODS: Two-hundred-and-sixteen children and adolescents (95...... boys) with overweight/obesity were investigated, as well as 47 controls (22 boys) with normal weight. The assessments included anthropometry, fasting blood biochemistry and blood pressure measurements. Liver and muscle lipid contents were assessed by proton magnetic resonance spectroscopy. RESULTS: We...

  3. Computed tomographic findings of skeletal muscles in amyotrophic lateral sclerosis (ALS)

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryosuke; Imai, Terukuni; Sadashima, Hiromichi; Matsumoto, Sadayuki; Yamamoto, Toru; Kusaka, Hirobumi; Yamasaki, Masahiro; Maya, Kiyomi; Tanabe, Masaya (Kitano Hospital, Osaka (Japan))

    1989-04-01

    We evaluated the Computed Tomographic (CT) findings of skeletal muscles in 12 cases of amyotrophic lateral sclerosis (ALS), 1 case of spinal progressive muscular atrophy (SPMA), and 1 case of Kugelberg-Welander disease. CT examination was performed in the neck, shoulders, abdomen, pelvis, thighs, and lower legs, 15 muscles were selected for evaluation. The following muscles tended to be affected: m. transversospinalis (12 cases were abnormal), m. deltoideus (10), m. subscapularis (10), m. infraspinatus (10), mm. dorsi (12), hamstring muscles (14), m. tibialis anterior (14), and m. triceps surae (14). On the contrary, the following muscles tended to be preserved: m. sternocleidomastoideus (only 7 cases were abnormal), m. psoas major (7), m. gluteus maximus (7), m. rectus femoris (7), m. sartorius (7) and m. gracilis (6). The distribution of the muscles affected showed neither proximal nor distal dominancy. As the disease advanced, however, all the muscles became affected without any severity. CT findings of skeletal muscles in ALS were characterized by muscle atrophy and fat infiltration, which showed a patchy, linear, or moth-eaten appearance. In mildly affected cases, there was muscle atrophy without internal architectual changes. In moderately affected cases, muscle atrophy advanced and internal architectural changes (patchy, linear, and moth-eaten fat infiltration) became evident. In most advanced cases, every muscle showed a ragged appearance because of severe muscle atrophy and internal architectural changes. These findings were well distinguished from those of SPMA, which resembled the CT pattern of primary muscle diseases. (author).

  4. Distinct disease phases in muscles of facioscapulohumeral dystrophy patients identified by MR detected fat infiltration

    NARCIS (Netherlands)

    Janssen, B.H.; Voet, N.B.M.; Nabuurs, C.I.H.C.; Kan, H.E.; Rooy, J.W.J. de; Geurts, A.C.H.; Padberg, G.W.A.M.; Engelen, B.G.M. van; Heerschap, A.

    2014-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an untreatable disease, characterized by asymmetric progressive weakness of skeletal muscle with fatty infiltration. Although the main genetic defect has been uncovered, the downstream mechanisms causing FSHD are not understood. The objective of this

  5. The sphingosine-1-phosphate analog FTY720 reduces muscle ceramide content and improves glucose tolerance in high fat-fed male mice.

    Science.gov (United States)

    Bruce, Clinton R; Risis, Steve; Babb, Joanne R; Yang, Christine; Lee-Young, Robert S; Henstridge, Darren C; Febbraio, Mark A

    2013-01-01

    FTY720 is a sphingosine-1-phosphate analog that has been shown to inhibit ceramide synthesis in vitro. Because ceramide accumulation in muscle is associated with insulin resistance, we aimed to examine whether FTY720 would prevent muscle ceramide accumulation in high fat-fed mice and subsequently improve glucose homeostasis. Male C57Bl/6 mice were fed either a chow or high fat-diet (HFD) for 6 wk, after which they were treated with vehicle or FTY720 (5 mg/kg) daily for a further 6 wk. The ceramide content of muscle was examined and insulin action was assessed. Whereas the HFD increased muscle ceramide, this was prevented by FTY720 treatment. This was not associated with alterations in the expression of genes involved in sphingolipid metabolism. Interestingly, the effects of FTY720 on lipid metabolism were not limited to ceramide because FTY720 also prevented the HFD-induced increase in diacylglycerol and triacylglycerol in muscle. Furthermore, the increase in CD36 mRNA expression induced by fat feeding was prevented in muscle of FTY720-treated mice. This was associated with an attenuation of the HFD-induced increase in palmitate uptake and esterification. In addition, FTY720 improved glucose homeostasis as demonstrated by a reduction in plasma insulin, an improvement in whole-body glucose tolerance, an increase in insulin-stimulated glucose uptake, and Akt phosphorylation in muscle. In conclusion, FTY720 exerts beneficial effects on muscle lipid metabolism that prevent lipid accumulation and improve glucose tolerance in high fat-fed mice. Thus, FTY720 and other compounds that target sphingosine-1-phosphate signaling may have therapeutic potential in treating insulin resistance.

  6. FENOFIBRATE REVERSES CHANGES INDUCED BY HIGH-FAT DIET ON METABOLISM IN MICE MUSCLE AND VISCERAL ADIPOCYTES.

    Science.gov (United States)

    de Toledo Frias, Flávia; Rocha, Karina Cunha E; de Mendonça, Mariana; Murata, Gilson Massahiro; Araujo, Hygor Nunes; de Sousa, Luís Gustavo Oliveira; de Souza, Érica; Hirabara, Sandro Massao; de Carvalho Leite, Nayara; Carneiro, Everardo Magalhães; Curi, Rui; Silveira, Leonardo Reis; Rodrigues, Alice Cristina

    2017-09-19

    The effect of fenofibrate on the metabolism of skeletal muscle and visceral white adipose tissue of diet-induced obese (DIO) mice was investigated. C57BL/6J male mice were fed either a control or high-fat diet for eight weeks. Fenofibrate (50 mg/Kg b.w., daily) was administered by oral gavage during the last two weeks of the experimental period. Insulin-stimulated glucose metabolism in soleus muscles, glucose tolerance test, insulin tolerance test, indirect calorimetry, lipolysis of visceral white adipose tissue, expression of miR-103-3p in adipose tissue and miR-1a, miR-133a/b, miR-206, let7b-5p, miR-23b-3p, miR-29-3p, miR-143-3p in soleus muscle, genes related to glucose and fatty acid metabolism in adipose tissue and soleus muscle, and proteins (phospho-AMPKα2, Pgc1α, Cpt1b), intramuscular lipid staining, and activities of fatty acid oxidation enzymes in skeletal muscle were investigated. In DIO mice, fenofibrate prevented weight gain induced by HFD feeding by increasing energy expenditure; improved whole body glucose homeostasis, and in skeletal muscle, increased insulin dependent glucose uptake, miR-1a levels, reduced intramuscular lipid accumulation, and phospho-AMPKα2 levels. In visceral adipose tissue of obese mice, fenofibrate decreased basal lipolysis rate and visceral adipocytes hypertrophy, and induced the expression of Glut-4, Irs1 and Cav-1 mRNA and miR-103-3p suggesting a higher insulin sensitivity of the adipocytes. The evidence is presented herein that beneficial effects of fenofibrate on body weight, glucose homeostasis and muscle metabolism might be related to its action in adipose tissue. Moreover, fenofibrate regulates miR-1a-3p in soleus and miR-103-3p in adipose tissue, suggesting these microRNAs might contribute to fenofibrate beneficial effects on metabolism. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Allosteric regulation of 6-phosphofructo-1-kinase activity of fat body and flight muscle from the bloodsucking bug Rhodnius prolixus

    Directory of Open Access Journals (Sweden)

    Gutemberg G. Alves

    2007-03-01

    Full Text Available 6-phosphofructo-1-kinase (phosphofructokinase; PFK activity from Rhodnius prolixus, a haematophagous insect which is usually a poor flyer, was measured and compared in two metabolically active tissues - flight muscle and fat body. The activity of this important regulatory glycolytic enzyme was much more pronounced in muscle (15.1 ± 1.4 U/mg than in fat body extracts (3.6±0.4 U/mg, although the latter presented higher levels of enzyme per protein content, as measured by western-blotting. Muscle extracts are more responsible than fat body to ATP and fructose 6-phosphate, both substrates of PFK. Allosteric regulation exerted by different effectors such as ADP, AMP and fructose 2,6-phosphate presented a singular pattern for each tissue. Optimal pH (8.0-8.5 and sensitivity to pH variation was very similar, and citrate was unable to inhibit PFK activity in both extracts. Our results suggest the existence of a particular PFK activity for each tissue, with regulatory patterns that are consistent with their physiological roles.A atividade da fosfofrutocinase (PFK de Rodnius prolixus, um inseto hematófago, o qual vôa somente pequenas distâncias, foi medida e comparada em dois tecidos metabolicamente ativos - músculo de asa e corpo gorduroso. A atividade desta importante enzima glicolítica regulatória foi muito mais pronunciada em músculo de asa (15,1 ±1,4 U/mg do que em extrato de corpo gorduroso (3,6 ±0,4 U/mg embora este último tenha apresentado níveis mais altos da enzima por quantidade de proteína, como medido por western-blotting. Extratos de músculo foram mais responsivos do que corpo gorduroso para ATP e frutose-6-fosfato, ambos substratos da PFK. A regulação alostérica exercida por diferentes efetores tais como ADP, AMP, frutose-2,6-bisfosfato apresentou um padrão singular para cada tecido. O pH ótimo (8,0-8,5 e a sensibilidade a variações de pH, foram muito similares e o citrato foi incapaz de inibir a atividade da PFK em

  8. Compositional analysis of muscle in boys with Duchenne muscular dystrophy using MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Marden, Franklin A.; Siegel, Marilyn J.; Rubin, David A. [Mallinckrodt Institute of Radiology at Washington University Medical Center, St. Louis (United States); Barnes-Jewish Hospital, Department of Radiology, St. Louis (United States); Connolly, Anne M. [St. Louis Children' s Hospital, Department of Pediatrics, St. Louis (United States); Barnes-Jewish Hospital, Washington University School of Medicine, Department of Neurology, 660 S. Euclid, Box 8111, St. Louis (United States)

    2005-03-01

    Boys with Duchenne muscular dystrophy (DMD) present by age 5 years with weakness and, untreated, stop walking unaided by age 10 or 11 years. We used magnetic resonance (MR) imaging to study age-related changes in the composition and distribution of diseased muscles. Eleven boys (mean 7.1{+-}1.6 years) with DMD underwent clinical and MR examinations. Quantitative muscle strength and timed functional testing was performed. Thigh muscles were scanned at three levels (hip, mid-thigh, and knee) using T1-weighted spin echo and short-tau inversion recovery (STIR) sequences. Outcome measures included intramuscular fatty infiltration, intermuscle fat deposition, edema, and muscle size. Ten boys completed the study. Older boys demonstrated more prominent fatty infiltration of muscles. Fatty infiltration occurred in a characteristic pattern with the gluteus and adductor magnus muscles most commonly involved and the gracilis most commonly spared. Similarly, patchy increases in free water content suggested a pattern of intramuscular edema or inflammation. Atrophy occurred in muscles heavily infiltrated with fat, and true hypertrophy selectively occurred in those that were spared. While fibrofatty changes have been described in DMD, this study further defines differential involvement and additionally suggests widespread edema or inflammation. Improved imaging techniques to quantify the degree and distribution of these changes may provide a basis for exploring mechanisms of action of medications and perhaps another means for selecting treatment regimens and monitoring their effects. (orig.)

  9. Follicle-stimulating hormone increases the intramuscular fat content and expression of lipid biosynthesis genes in chicken breast muscle

    Institute of Scientific and Technical Information of China (English)

    Xiao-yan CUI; Ying-ying LI; Ran-ran LIU; Gui-ping ZHAO; Mai-qing ZHENG; Qing-he LI; Jie WEN

    2016-01-01

    Intramuscular fat (IMF) is a crucial factor in the quality of chicken meat. The genetic basis underlying it is complex. Folicle-stimulating hormone (FSH), wel-known as an effector in reproductive tissues, was recently discov-ered to stimulate abdominal fat accumulation in chicken. The effect of FSH on IMF accumulation and the underlying molecular regulatory mechanisms controling both IMF and abdominal fat deposition in vivo are largely unknown. In this study, two groups of chickens were treated with chicken FSH or a placebo. The lipid content of breast muscle, abdominal fat volume, and serum concentrations of FSH were examined. Related genes implicated in breast muscle and abdominal fat accumulation were also investigated. Compared to the control group, the triglyceride (TG) content of breast muscle and the percentage of abdominal fat in FSH-treated chickens were significantly increased by 64.9% and 56.5% (P<0.01), respectively. The FSH content in the serum of FSH-treated chickens was 2.1 times than that of control chickens (P<0.01). Results from quantitative real-time polymerase chain reaction (qRT-PCR) assays showed that relative expression levels of fatty acid synthase (FAS), lipoprotein lipase (LPL), diacylglycerol acyltransferase 2 (DGAT2), adipocyte fatty acid binding protein (A-FABP), and peroxisome proliferator-activated receptorγ (PPARγ) were significantly upregulated in breast muscle folowing FSH treatment (P<0.01). Treatment with FSH also signifi-cantly increased relative expression levels ofFAS, LPL, DGAT2, A-FABP, andPPARγ in abdominal fat tissue (P<0.05). The results of principal component analysis (PCA) for gene expression (breast muscle and abdominal fat) showed that the control and FSH treatment groups were well separated, which indicated the reliability of the data. This study demonstrates that FSH plays an important role in IMF accumulation in female chickens, which likely involves the regulation of biosynthesis genes related to lipid

  10. Saturated- and n-6 polyunsaturated-fat diets each induce ceramide accumulation in mouse skeletal muscle: reversal and improvement of glucose tolerance by lipid metabolism inhibitors.

    Science.gov (United States)

    Frangioudakis, G; Garrard, J; Raddatz, K; Nadler, J L; Mitchell, T W; Schmitz-Peiffer, C

    2010-09-01

    Lipid-induced insulin resistance is associated with intracellular accumulation of inhibitory intermediates depending on the prevalent fatty acid (FA) species. In cultured myotubes, ceramide and phosphatidic acid (PA) mediate the effects of the saturated FA palmitate and the unsaturated FA linoleate, respectively. We hypothesized that myriocin (MYR), an inhibitor of de novo ceramide synthesis, would protect against glucose intolerance in saturated fat-fed mice, while lisofylline (LSF), a functional inhibitor of PA synthesis, would protect unsaturated fat-fed mice. Mice were fed diets enriched in saturated fat, n-6 polyunsaturated fat, or chow for 6 wk. Saline, LSF (25 mg/kg x d), or MYR (0.3 mg/kg x d) were administered by mini-pumps in the final 4 wk. Glucose homeostasis was examined by glucose tolerance test. Muscle ceramide and PA were analyzed by mass spectrometry. Expression of LASS isoforms (ceramide synthases) was evaluated by immunoblotting. Both saturated and polyunsaturated fat diets increased muscle ceramide and induced glucose intolerance. MYR and LSF reduced ceramide levels in saturated and unsaturated fat-fed mice. Both inhibitors also improved glucose tolerance in unsaturated fat-fed mice, but only LSF was effective in saturated fat-fed mice. The discrepancy between ceramide and glucose tolerance suggests these improvements may not be related directly to changes in muscle ceramide and may involve other insulin-responsive tissues. Changes in the expression of LASS1 were, however, inversely correlated with alterations in glucose tolerance. The demonstration that LSF can ameliorate glucose intolerance in vivo independent of the dietary FA type indicates it may be a novel intervention for the treatment of insulin resistance.

  11. Selection of reference genes for gene expression studies related to intramuscular fat deposition in Capra hircus skeletal muscle.

    Science.gov (United States)

    Zhu, Wuzheng; Lin, Yaqiu; Liao, Honghai; Wang, Yong

    2015-01-01

    The identification of suitable reference genes is critical for obtaining reliable results from gene expression studies using quantitative real-time PCR (qPCR) because the expression of reference genes may vary considerably under different experimental conditions. In most cases, however, commonly used reference genes are employed in data normalization without proper validation, which may lead to incorrect data interpretation. Here, we aim to select a set of optimal reference genes for the accurate normalization of gene expression associated with intramuscular fat (IMF) deposition during development. In the present study, eight reference genes (PPIB, HMBS, RPLP0, B2M, YWHAZ, 18S, GAPDH and ACTB) were evaluated by three different algorithms (geNorm, NormFinder and BestKeeper) in two types of muscle tissues (longissimus dorsi muscle and biceps femoris muscle) across different developmental stages. All three algorithms gave similar results. PPIB and HMBS were identified as the most stable reference genes, while the commonly used reference genes 18S and GAPDH were the most variably expressed, with expression varying dramatically across different developmental stages. Furthermore, to reveal the crucial role of appropriate reference genes in obtaining a reliable result, analysis of PPARG expression was performed by normalization to the most and the least stable reference genes. The relative expression levels of PPARG normalized to the most stable reference genes greatly differed from those normalized to the least stable one. Therefore, evaluation of reference genes must be performed for a given experimental condition before the reference genes are used. PPIB and HMBS are the optimal reference genes for analysis of gene expression associated with IMF deposition in skeletal muscle during development.

  12. Hypoxic Exercise Training Promotes apelin/APJ Expression in Skeletal Muscles of High Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Ji, Weixiu; Gong, Lijing; Wang, Jianxiong; He, Hui; Zhang, Ying

    2017-01-01

    Apelin, an endogenous ligand of the G-protein-coupled receptor APJ, is a novel myokine and may play a key role in regulating energy metabolism. The purpose of the present study was to investigate the effects of hypoxic exposure, exercise, and hypoxic exercise training on the expression of apelin and APJ in skeletal muscle of obese mice. Sixty two-months old C57BL/6J mice were randomly divided into two groups: Ten in normal diet group (N) and 50 in the high fat diet (HFD) groups. After two months of feeding, the HFD mice, whose body weight was 20% higher than the average weight of the N group, were selected as obese mice and further allocated into four groups: Control (C), Exercise (E), Hypoxia (H), and Exercise plus Hypoxia (E+H), at 8-9 mice/group. Besides body weight, measured variables in skeletal muscle were protein/mRNA levels of apelin/APJ, AMPKα-Thr172 phosphorylation, hypoxia inducible factor-1α (HIF-1α), mRNA levels of peroxisome proliferator-activated receptor α (PPARα), estrogen-related receptor (ERRα), and nuclear respiratory factor 1 (NRF1). Obese mice had significantly lower mRNA and protein expressions of apelin/ APJ in skeletal muscles than the normal body weight mice. After four weeks of interventions, hypoxic exercise training decreased body weight and increased mRNA and protein expressions of apelin and APJ, mRNA expression of ERRα, and protein expression of HIF-1α. These results indicate that changes of body weight may be associated with the levels of apelin/APJ expressions in skeletal muscle. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Contributions by the CAG-repeat Polymorphism of the Androgen Receptor Gene and Circulating Androgens to Muscle Size. Odense Androgen Study - A Population-based Study of 20-29 Year-old Danish Men

    DEFF Research Database (Denmark)

    Nielsen, Torben Leo; Hagen, Claus; Wraae, Kristian

    2007-01-01

    Context: The number of CAG-repeats within the CAG-repeat polymorphism of the androgen receptor gene is inversely correlated with the transcriptional activity of the androgen receptor. Objective: To study the effect of the CAG-repeat number and circulating androgens on muscle size, to examine the ...... muscle size increased exponentially with decreasing androgen levels and was tripled at total testosterone levels...... the CAG-repeat number in relation to body fat mass and circulating androgens, and to identify the best hormonal marker of low muscle size amongst total testosterone, bioavailable testosterone, and dihydrotestosterone. Design, Setting, and Participants: Population-based study of 783 Danish men aged 20...... continuous outcomes (thigh and axial muscle area, lower extremity, upper extremity, and trunk lean body mass, and total body fat mass) and five binary outcomes of low muscle size defined as men with muscle size below the lower 10 percentile of each continuous outcome of muscle size. Results: The CAG...

  14. Effect of carcass fat and conformation class on consumer perception of various grilled beef muscles.

    Science.gov (United States)

    Guzek, Dominika; Głąbska, Dominika; Gutkowska, Krystyna; Wierzbicka, Agnieszka

    2016-10-01

    The aim of the study was to analyse the attributes influencing consumer perception of grilled beef steaks. The objects were 30 carcasses out of which eight cuts were obtained (2100 single samples were prepared). A total of 350 consumers were asked to rate the meat samples (6 samples for each consumer) by assessing: tenderness, juiciness, flavour, overall acceptability and satisfaction. The MQ4, which is a combination of consumer rates for tenderness, juiciness, flavour and overall acceptability that is transformed into a single parameter with greater discriminatory ability, was calculated using linear discriminate analysis. The tenderloin was the cut that had the highest ratings for all attributes, however, tenderness, juiciness, MQ4 and consumer satisfaction evaluated for oyster blade were not significantly different from tenderloin. The results of this study indicated that consumer preferences regarding grilled steak were not influenced by fat class, conformation rib fat thickness and ossification score of the carcasses but only by the type of meat cuts.

  15. Effects of High-Fat Feeding on Skeletal Muscle Gene Expression in Diabetic Goto-Kakizaki Rats

    Directory of Open Access Journals (Sweden)

    Jing Nie

    2017-05-01

    Full Text Available In the present report, we examined the responses of diabetic Goto-Kakizaki (GK rats and control Wistar-Kyoto (WKY rats fed either a standard chow or high-fat diet (HFD from weaning to 20 weeks of age. This comparison included gene expression profiling of skeletal muscle using Affymetrix gene array chips. The expression profiling is interpreted within the context of a wide array of physiological measurements. Genes whose expressions are different between the 2 strains regardless of diet, as well as genes that differ between strains only with HFD, were identified. In addition, genes that were regulated by diet in 1 or both strains were identified. The results suggest that both strains respond to HFD by an increased capacity to oxidize lipid fuels in the musculature but that this adaptation occurs more rapidly in WKY rats. The results also demonstrated an impaired cytokine signalling and heightened inflammatory status in the GK rats.

  16. Evidences for an ATP-sensitive potassium channel (KATP) in muscle and fat body mitochondria of insect.

    Science.gov (United States)

    Slocinska, Malgorzata; Lubawy, Jan; Jarmuszkiewicz, Wieslawa; Rosinski, Grzegorz

    2013-11-01

    In the present study, we describe the existence of mitochondrial ATP-dependent K(+) channel (mitoKATP) in two different insect tissues, fat body and muscle of cockroach Gromphadorhina coquereliana. We found that pharmacological substances known to modulate potassium channel activity influenced mitochondrial resting respiration. In isolated mitochondria oxygen consumption increased by about 13% in the presence of potassium channel openers (KCOs) such as diazoxide and pinacidil. The opening of mitoKATP was reversed by glibenclamide (potassium channel blocker) and 1 mM ATP. Immunological studies with antibodies raised against the Kir6.1 and SUR1 subunits of the mammalian ATP-sensitive potassium channel, indicated the existence of mitoKATP in insect mitochondria. MitoKATP activation by KCOs resulted in a decrease in superoxide anion production, suggesting that protection against mitochondrial oxidative stress may be a physiological role of mitochondrial ATP-sensitive potassium channel in insects.

  17. Functional Capacity, Muscle Fat Infiltration, Power Output, and Cognitive Impairment in Institutionalized Frail Oldest Old

    OpenAIRE

    Casas-Herrero, Alvaro; Eduardo L. Cadore; Zambom-Ferraresi, Fabricio; Idoate, Fernando; Millor, Nora; Martínez-Ramirez, Alicia; Gómez, Marisol; Rodriguez-Mañas, Leocadio; Marcellán, Teresa; de Gordoa, Ana Ruiz; Mário C. Marques; Izquierdo, Mikel

    2013-01-01

    This study examined the neuromuscular and functional performance differences between frail oldest old with and without mild cognitive impairment (MCI). In addition, the associations between functional capacities, muscle mass, strength, and power output of the leg muscles were also examined. Forty-three elderly men and women (91.9±4.1 years) were classified into three groups—the frail group, the frail with MCI group (frail+MCI), and the non-frail group. Strength tests were performed for upper ...

  18. Glucose ingestion during exercise blunts exercise-induced gene expression of skeletal muscle fat oxidative genes.

    Science.gov (United States)

    Civitarese, Anthony E; Hesselink, Matthijs K C; Russell, Aaron P; Ravussin, Eric; Schrauwen, Patrick

    2005-12-01

    Ingestion of carbohydrate during exercise may blunt the stimulation of fat oxidative pathways by raising plasma insulin and glucose concentrations and lowering plasma free fatty acid (FFA) levels, thereby causing a marked shift in substrate oxidation. We investigated the effects of a single 2-h bout of moderate-intensity exercise on the expression of key genes involved in fat and carbohydrate metabolism with or without glucose ingestion in seven healthy untrained men (22.7 +/- 0.6 yr; body mass index: 23.8 +/- 1.0 kg/m(2); maximal O(2) consumption: 3.85 +/- 0.21 l/min). Plasma FFA concentration increased during exercise (P glucose ingestion, whereas fat oxidation (indirect calorimetry) was higher in the fasted state vs. glucose feeding (P expression of pyruvate dehydrogenase kinase-4 (P glucose ingestion during exercise produced minimal effects on the expression of genes involved in carbohydrate utilization. However, glucose ingestion resulted in a decrease in the expression of genes involved in fatty acid transport and oxidation (CD36, carnitine palmitoyltransferase-1, uncoupling protein 3, and 5'-AMP-activated protein kinase-alpha(2); P glucose ingestion during exercise decreases the expression of genes involved in lipid metabolism rather than increasing genes involved in carbohydrate metabolism.

  19. Intrauterine growth retardation increases the susceptibility of pigs to high-fat diet-induced mitochondrial dysfunction in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Jingbo Liu

    Full Text Available It has been recognized that there is a relationship between prenatal growth restriction and the development of metabolic-related diseases in later life, a process involved in mitochondrial dysfunction. In addition, intrauterine growth retardation (IUGR increases the susceptibility of offspring to high-fat (HF diet-induced metabolic syndrome. Recent findings suggested that HF feeding decreased mitochondrial oxidative capacity and impaired mitochondrial function in skeletal muscle. Therefore, we hypothesized that the long-term consequences of IUGR on mitochondrial biogenesis and function make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. Normal birth weight (NBW, and IUGR pigs were allotted to control or HF diet in a completely randomized design, individually. After 4 weeks of feeding, growth performance and molecular pathways related to mitochondrial function were determined. The results showed that IUGR decreased growth performance and plasma insulin concentrations. In offspring fed a HF diet, IUGR was associated with enhanced plasma leptin levels, increased concentrations of triglyceride and malondialdehyde (MDA, and reduced glycogen and ATP contents in skeletal muscle. High fat diet-fed IUGR offspring exhibited decreased activities of lactate dehydrogenase (LDH and glucose-6-phosphate dehydrogenase (G6PD. These alterations in metabolic traits of IUGR pigs were accompanied by impaired mitochondrial respiration function, reduced mitochondrial DNA (mtDNA contents, and down-regulated mRNA expression levels of genes responsible for mitochondrial biogenesis and function. In conclusion, our results suggest that IUGR make the offspring more susceptible to HF diet-induced mitochondrial dysfunction.

  20. Decompression induced bubble dynamics on ex vivo fat and muscle tissue surfaces with a new experimental set up.

    Science.gov (United States)

    Papadopoulou, Virginie; Evgenidis, Sotiris; Eckersley, Robert J; Mesimeris, Thodoris; Balestra, Costantino; Kostoglou, Margaritis; Tang, Meng-Xing; Karapantsios, Thodoris D

    2015-05-01

    Vascular gas bubbles are routinely observed after scuba dives using ultrasound imaging, however the precise formation mechanism and site of these bubbles are still debated and growth from decompression in vivo has not been extensively studied, due in part to imaging difficulties. An experimental set-up was developed for optical recording of bubble growth and density on tissue surface area during hyperbaric decompression. Muscle and fat tissues (rabbits, ex vivo) were covered with nitrogen saturated distilled water and decompression experiments performed, from 3 to 0bar, at a rate of 1bar/min. Pictures were automatically acquired every 5s from the start of the decompression for 1h with a resolution of 1.75μm. A custom MatLab analysis code implementing a circular Hough transform was written and shown to be able to track bubble growth sequences including bubble center, radius, contact line and contact angles over time. Bubble density, nucleation threshold and detachment size, as well as coalescence behavior, were shown significantly different for muscle and fat tissues surfaces, whereas growth rates after a critical size were governed by diffusion as expected. Heterogeneous nucleation was observed from preferential sites on the tissue substrate, where the bubbles grow, detach and new bubbles form in turn. No new nucleation sites were observed after the first 10min post decompression start so bubble density did not vary after this point in the experiment. In addition, a competition for dissolved gas between adjacent multiple bubbles was demonstrated in increased delay times as well as slower growth rates for non-isolated bubbles.

  1. Genome-wide expression profiling in muscle and subcutaneous fat of lambs in response to the intake of concentrate supplemented with vitamin E

    Science.gov (United States)

    Background: The objective of this study was to acquire a broader, more comprehensive picture of the transcriptional changes in the L. Thoracis muscle (LT) and subcutaneous fat (SF) of lambs supplemented with vitamin E. Furthermore, we aimed to identify novel genes involved in the metabolism of vitam...

  2. An ultratriathlon leads to a decrease of body fat and skeletal muscle mass--the Triple Iron Triathlon Austria 2006.

    Science.gov (United States)

    Knechtle, Beat; Beat, Knechtle; Duff, Brida; Brida, Duff; Amtmann, Gerhard; Gerhard, Amtmann; Kohler, Götz; Götz, Kohler

    2008-01-01

    We investigated the effects on body composition in triathletes at the Triple Iron Triathlon Austria in 2006, where athletes had to perform 11.6 km swimming, 540 km cycling, and 126.6 km running within 58 h. In 16 male triathletes, body mass (BM), skinfold thicknesses, and circumferences of extremities were measured before and after the competition in order to calculate body mass index (BMI), percent body fat (%BF), fat mass (FM), and skeletal muscle mass (SM). Body mass, BMI, %BF, FM, and SM decreased statistically significantly (p 0.05, r(2)= 0.00) nor with the decrease of SM (p> 0.05, r(2)= 0.06). There is no association between total race time and the loss of BM (r(2) = 0.06), %BF (r(2) = 0.10), and SM (r2 = 0.11). No significant correlation (p > 0.05, r(2)= 0.43) was found between the initial SM and loss of SM.

  3. Changes induced by dietary energy intake and divergent selection for muscle fat content in rainbow trout (Oncorhynchus mykiss, assessed by transcriptome and proteome analysis of the liver

    Directory of Open Access Journals (Sweden)

    Lefèvre Florence

    2008-10-01

    Full Text Available Abstract Background Growing interest is turned to fat storage levels and allocation within body compartments, due to their impact on human health and quality properties of farm animals. Energy intake and genetic background are major determinants of fattening in most animals, including humans. Previous studies have evidenced that fat deposition depends upon balance between various metabolic pathways. Using divergent selection, we obtained rainbow trout with differences in fat allocation between visceral adipose tissue and muscle, and no change in overall body fat content. Transcriptome and proteome analysis were applied to characterize the molecular changes occurring between these two lines when fed a low or a high energy diet. We focused on the liver, center of intermediary metabolism and the main site for lipogenesis in fish, as in humans and most avian species. Results The proteome and transcriptome analyses provided concordant results. The main changes induced by the dietary treatment were observed in lipid metabolism. The level of transcripts and proteins involved in intracellular lipid transport, fatty acid biosynthesis and anti-oxidant metabolism were lower with the lipid rich diet. In addition, genes and proteins involved in amino-acid catabolism and proteolysis were also under expressed with this diet. The major changes related to the selection effect were observed in levels of transcripts and proteins involved in amino-acid catabolism and proteolysis that were higher in the fat muscle line than in the lean muscle line. Conclusion The present study led to the identification of novel genes and proteins that responded to long term feeding with a high energy/high fat diet. Although muscle was the direct target, the selection procedure applied significantly affected hepatic metabolism, particularly protein and amino acid derivative metabolism. Interestingly, the selection procedure and the dietary treatment used to increase muscle fat

  4. Application of dynamic metabolomics to examine in vivo skeletal muscle glucose metabolism in the chronically high-fat fed mouse

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Greg M., E-mail: greg.kowalski@deakin.edu.au [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); De Souza, David P. [Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Burch, Micah L. [Brigham and Women' s Hospital, Department of Medicine, Boston, MA (United States); Hamley, Steven [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); Kloehn, Joachim [Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Selathurai, Ahrathy [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); Tull, Dedreia; O' Callaghan, Sean; McConville, Malcolm J. [Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Bruce, Clinton R. [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia)

    2015-06-19

    Rationale: Defects in muscle glucose metabolism are linked to type 2 diabetes. Mechanistic studies examining these defects rely on the use of high fat-fed rodent models and typically involve the determination of muscle glucose uptake under insulin-stimulated conditions. While insightful, they do not necessarily reflect the physiology of the postprandial state. In addition, most studies do not examine aspects of glucose metabolism beyond the uptake process. Here we present an approach to study rodent muscle glucose and intermediary metabolism under the dynamic and physiologically relevant setting of the oral glucose tolerance test (OGTT). Methods and results: In vivo muscle glucose and intermediary metabolism was investigated following oral administration of [U-{sup 13}C] glucose. Quadriceps muscles were collected 15 and 60 min after glucose administration and metabolite flux profiling was determined by measuring {sup 13}C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates via gas chromatography–mass spectrometry. While no dietary effects were noted in the glycolytic pathway, muscle from mice fed a high fat diet (HFD) exhibited a reduction in labelling in TCA intermediates. Interestingly, this appeared to be independent of alterations in flux through pyruvate dehydrogenase. In addition, our findings suggest that TCA cycle anaplerosis is negligible in muscle during an OGTT. Conclusions: Under the dynamic physiologically relevant conditions of the OGTT, skeletal muscle from HFD fed mice exhibits alterations in glucose metabolism at the level of the TCA cycle. - Highlights: • Dynamic metabolomics was used to investigate muscle glucose metabolism in vivo. • Mitochondrial TCA cycle metabolism is altered in muscle of HFD mice. • This defect was not pyruvate dehydrogenase mediated, as has been previously thought. • Mitochondrial TCA cycle anaplerosis in muscle is virtually absent during the OGTT.

  5. Soy germ protein concentrate diet decreased body fat weight and increased hindlimb muscle weight in rats.

    Science.gov (United States)

    Kataoka, Hisashi; Saito, Sanshiro; Itoh, Atsushi; Matsuo, Tatsuhiro

    2012-01-01

    The purpose of this study was to investigate the effects of soy germ protein intake on body composition. Wistar rats were fed experimental diets for 16 weeks. These consisted of soy germ protein, soy protein, or casein. Abdominal adipose tissue weights significantly lower and hindlimb muscle weights were significantly higher in the soy germ protein group than in the casein group.

  6. Circulating levels of TNF-alpha and IL-6-relation to truncal fat mass and muscle mass in healthy elderly individuals and in patients with type-2 diabetes

    DEFF Research Database (Denmark)

    Pedersen, Maria; Bruunsgaard, Helle; Hendel, Helle W

    2003-01-01

    mass. Twenty young controls, (20-35 yr), 20 healthy elderly subjects (65-80 yr) and 16 elderly patients with type 2 diabetes (65-80 yr) were included in a cross sectional study. Plasma levels of TNF-alpha and IL-6 were measured after an overnight fast. Dual-energy X-ray absorptiometry and total body......The purpose of the current study was to test the hypothesis that an altered fat distribution in elderly healthy subjects and in patients with type-2 diabetes contributes to high circulating levels of interleukin (IL)-6 and tumor necrotic factor (TNF)-alpha, which secondly is related to lower muscle...... potassium counting measured truncal fat, appendicular skeletal muscle mass (ASM) and body cell mass (BCM), respectively. TNF-alpha, IL-6 and the relative truncal fat mass were higher in elderly compared with young controls. ASM was lower in diabetic men than in young controls and BCM was lower in elderly...

  7. Circulating levels of TNF-alpha and IL-6-relation to truncal fat mass and muscle mass in healthy elderly individuals and in patients with type-2 diabetes

    DEFF Research Database (Denmark)

    Pedersen, Maria; Bruunsgaard, Helle; Weis, Nina

    2003-01-01

    mass. Twenty young controls, (20-35 yr), 20 healthy elderly subjects (65-80 yr) and 16 elderly patients with type 2 diabetes (65-80 yr) were included in a cross sectional study. Plasma levels of TNF-alpha and IL-6 were measured after an overnight fast. Dual-energy X-ray absorptiometry and total body......The purpose of the current study was to test the hypothesis that an altered fat distribution in elderly healthy subjects and in patients with type-2 diabetes contributes to high circulating levels of interleukin (IL)-6 and tumor necrotic factor (TNF)-alpha, which secondly is related to lower muscle...... potassium counting measured truncal fat, appendicular skeletal muscle mass (ASM) and body cell mass (BCM), respectively. TNF-alpha, IL-6 and the relative truncal fat mass were higher in elderly compared with young controls. ASM was lower in diabetic men than in young controls and BCM was lower in elderly...

  8. Pro-inflammatory macrophages increase in skeletal muscle of high fat-fed mice and correlate with metabolic risk markers in humans.

    Science.gov (United States)

    Fink, Lisbeth N; Costford, Sheila R; Lee, Yun S; Jensen, Thomas E; Bilan, Philip J; Oberbach, Andreas; Blüher, Matthias; Olefsky, Jerrold M; Sams, Anette; Klip, Amira

    2014-03-01

    In obesity, immune cells infiltrate adipose tissue. Skeletal muscle is the major tissue of insulin-dependent glucose disposal, and indices of muscle inflammation arise during obesity, but whether and which immune cells increase in muscle remain unclear. Immune cell presence in quadriceps muscle of wild type mice fed high-fat diet (HFD) was studied for 3 days to 10 weeks, in CCL2-KO mice fed HFD for 1 week, and in human muscle. Leukocyte presence was assessed by gene expression of lineage markers, cyto/chemokines and receptors; immunohistochemistry; and flow cytometry. After 1 week HFD, concomitantly with glucose intolerance, muscle gene expression of Ly6b, Emr1 (F4/80), Tnf, Ccl2, and Ccr2 rose, as did pro- and anti-inflammatory markers Itgax (CD11c) and Mgl2. CD11c+ proinflammatory macrophages in muscle increased by 76%. After 10 weeks HFD, macrophages in muscle increased by 47%. Quadriceps from CCL2-KO mice on HFD did not gain macrophages and maintained insulin sensitivity. Muscle of obese, glucose-intolerant humans showed elevated CD68 (macrophage marker) and ITGAX, correlating with poor glucose disposal and adiposity. Mouse and human skeletal muscles gain a distinct population of inflammatory macrophages upon HFD or obesity, linked to insulin resistance in humans and CCL2 availability in mice. © 2013 The Obesity Society.

  9. Non-alcoholic fatty liver disease connections with fat-free tissues: A focus on bone and skeletal muscle

    Science.gov (United States)

    Poggiogalle, Eleonora; Donini, Lorenzo Maria; Lenzi, Andrea; Chiesa, Claudio; Pacifico, Lucia

    2017-01-01

    The estimates of global incidence and prevalence of non-alcoholic fatty liver disease (NAFLD) are worrisome, due to the parallel burden of obesity and its metabolic complications. Indeed, excess adiposity and insulin resistance represent two of the major risk factors for NAFLD; interestingly, in the last years a growing body of evidence tended to support a novel mechanistic perspective, in which the liver is at the center of a complex interplay involving organs and systems, other than adipose tissue and glucose homeostasis. Bone and the skeletal muscle are fat- free tissues which appeared to be independently associated with NAFLD in several cross-sectional studies. The deterioration of bone mineral density and lean body mass, leading to osteoporosis and sarcopenia, respectively, are age-related processes. The prevalence of NAFLD also increases with age. Beyond physiological aging, the three conditions share some common underlying mechanisms, and their elucidations could be of paramount importance to design more effective treatment strategies for the management of NAFLD. In this review, we provide an overview on epidemiological data as well as on potential contributors to the connections of NAFLD with bone and skeletal muscle.

  10. Identification of differentially expressed genes in longissimus muscle of pigs with high and low intramuscular fat content using RNA sequencing.

    Science.gov (United States)

    Lim, K S; Lee, K T; Park, J E; Chung, W H; Jang, G W; Choi, B H; Hong, K C; Kim, T H

    2017-04-01

    Intramuscular fat (IMF) content in pork is an important element of consumer preference and is positively correlated with meat quality, including tenderness and juiciness. With advances in RNA sequencing technologies, transcriptome-related differences can be associated with specific traits in animals. The objective of this study was to investigate differentially expressed genes (DEGs) closely related to IMF content in porcine longissimus muscle using RNA sequencing. A total of 107 Berkshire pigs were used for IMF content measurements, and significant differences between extremely high (H, n = 3) and low (L, n = 3) IMF content groups were found (P change ≥2). Functional analyses with DEGs revealed that lipid metabolism (SCD and FASN) was one of the significant biological processes related to IMF content determination. In addition, we found that DEGs related to muscle regeneration (MYOG and VEGFA) and extracellular matrix (COL1A1, COL1A2, COL5A1, COL14A1 and COL15A1) were changed among individuals with extreme IMF contents. These results will aid in understanding the regulation of IMF content in pigs.

  11. Transcriptomic Analysis Identifies Candidate Genes Related to Intramuscular Fat Deposition and Fatty Acid Composition in the Breast Muscle of Squabs (Columba).

    Science.gov (United States)

    Ye, Manhong; Zhou, Bin; Wei, Shanshan; Ding, MengMeng; Lu, Xinghui; Shi, Xuehao; Ding, Jiatong; Yang, Shengmei; Wei, Wanhong

    2016-01-01

    Despite the fact that squab is consumed throughout the world because of its high nutritional value and appreciated sensory attributes, aspects related to its characterization, and in particular genetic issues, have rarely been studied. In this study, meat traits in terms of pH, water-holding capacity, intramuscular fat content, and fatty acid profile of the breast muscle of squabs from two meat pigeon breeds were determined. Breed-specific differences were detected in fat-related traits of intramuscular fat content and fatty acid composition. RNA-Sequencing was applied to compare the transcriptomes of muscle and liver tissues between squabs of two breeds to identify candidate genes associated with the differences in the capacity of fat deposition. A total of 27 differentially expressed genes assigned to pathways of lipid metabolism were identified, of which, six genes belonged to the peroxisome proliferator-activated receptor signaling pathway along with four other genes. Our results confirmed in part previous reports in livestock and provided also a number of genes which had not been related to fat deposition so far. These genes can serve as a basis for further investigations to screen markers closely associated with intramuscular fat content and fatty acid composition in squabs. The data from this study were deposited in the National Center for Biotechnology Information (NCBI)'s Sequence Read Archive under the accession numbers SRX1680021 and SRX1680022. This is the first transcriptome analysis of the muscle and liver tissue in Columba using next generation sequencing technology. Data provided here are of potential value to dissect functional genes influencing fat deposition in squabs.

  12. Long-term rates of mitochondrial protein synthesis are increased in mouse skeletal muscle with high fat feeding regardless of insulin sensitizing treatment.

    Science.gov (United States)

    Newsom, Sean A; Miller, Benjamin F; Hamilton, Karyn L; Ehrlicher, Sarah E; Stierwalt, Harrison D; Robinson, Matthew M

    2017-07-11

    Skeletal muscle mitochondrial protein synthesis is regulated in part by insulin. The development of insulin resistance with diet-induced obesity may therefore contribute to impairments to protein synthesis and decreased mitochondrial respiration. Yet, the impact of diet-induced obesity and insulin resistance on mitochondrial energetics is controversial with reports varying from decreases to increases in mitochondrial respiration. We investigated the impact of changes in insulin sensitivity on long-term rates of mitochondrial protein synthesis as a mechanism for changes to mitochondrial respiration in skeletal muscle. Insulin resistance was induced in C57BL/6J mice using 4 weeks of high-fat compared with low-fat diet. For 8 additional weeks, diets were enriched in pioglitazone to restore insulin sensitivity as compared with non-enriched control low-fat or high-fat diet. Skeletal muscle mitochondrial protein synthesis was measured using deuterium oxide labeling during weeks 10 to 12. High-resolution respirometry was performed using palmitoyl-L-carnitine, glutamate+malate and glutamate+malate+succinate as substrates for mitochondria isolated from quadriceps. Mitochondrial protein synthesis and palmitoyl-L-carnitine oxidation were increased in mice consuming high-fat diet, regardless of differences in insulin sensitivity with pioglitazone treatment. There was no effect of diet or pioglitazone treatment on ADP-stimulated respiration or H2O2 emission using glutamate+malate or glutamate+malate+succinate. The results demonstrate no impairments to mitochondrial protein synthesis or respiration following induction of insulin resistance. Instead, mitochondrial protein synthesis was increased with high-fat diet and may contribute to remodeling of the mitochondria to increase lipid oxidation capacity. Mitochondrial adaptations with high-fat diet appear driven by nutrient availability, not intrinsic defects that contribute to insulin resistance. Copyright © 2017, American

  13. Transcriptomic Analysis Identifies Candidate Genes Related to Intramuscular Fat Deposition and Fatty Acid Composition in the Breast Muscle of Squabs (Columba

    Directory of Open Access Journals (Sweden)

    Manhong Ye

    2016-07-01

    Full Text Available Despite the fact that squab is consumed throughout the world because of its high nutritional value and appreciated sensory attributes, aspects related to its characterization, and in particular genetic issues, have rarely been studied. In this study, meat traits in terms of pH, water-holding capacity, intramuscular fat content, and fatty acid profile of the breast muscle of squabs from two meat pigeon breeds were determined. Breed-specific differences were detected in fat-related traits of intramuscular fat content and fatty acid composition. RNA-Sequencing was applied to compare the transcriptomes of muscle and liver tissues between squabs of two breeds to identify candidate genes associated with the differences in the capacity of fat deposition. A total of 27 differentially expressed genes assigned to pathways of lipid metabolism were identified, of which, six genes belonged to the peroxisome proliferator-activated receptor signaling pathway along with four other genes. Our results confirmed in part previous reports in livestock and provided also a number of genes which had not been related to fat deposition so far. These genes can serve as a basis for further investigations to screen markers closely associated with intramuscular fat content and fatty acid composition in squabs. The data from this study were deposited in the National Center for Biotechnology Information (NCBI’s Sequence Read Archive under the accession numbers SRX1680021 and SRX1680022. This is the first transcriptome analysis of the muscle and liver tissue in Columba using next generation sequencing technology. Data provided here are of potential value to dissect functional genes influencing fat deposition in squabs.

  14. Unusual bilateral origins of the deep artery of thigh and associated variations

    Directory of Open Access Journals (Sweden)

    Shankar N

    2009-08-01

    Full Text Available During routine dissection of a middle aged male cadaver, an unusual origin of the deep artery of thigh was observed bilaterally. It arose from the femoral artery less than 1 cm distal to the inguinal ligament. On both sides, its diameter was greater than that of the femoral artery. An unusually distal origin of the lateral circumflex femoral artery was observed bilaterally. An unnamed branch from the deep artery of thigh on the left side was seen coursing superolaterally towards the anterior superior iliac spine. The deep external pudendal artery arose from the medial circumflex femoral artery on either side. On the right side, the femoral nerve emerged in the femoral triangle by piercing the iliacus muscle. As the deep artery of thigh is often used in vascular reconstructive procedures and is frequently visualized by various radiological imaging techniques, anatomical variations of itself as well as its branches have significant clinical implications.

  15. Gene expression of a truncated and the full-length growth hormone (GH) receptor in subcutaneous fat and skeletal muscle in GH-deficient adults

    DEFF Research Database (Denmark)

    Fisker, Sidse; Kristensen, K; Rosenfalck, A M

    2001-01-01

    the relationship of circulating GHBP and body composition to GHR and GHRtr gene expression. Eleven adult GH-deficient patients were studied before and after 4 months of GH substitution therapy. Abdominal fat obtained by liposuction and femoral muscle biopsies were taken at baseline and after 4 months. Gene...... expression of GHR and GHRtr in adipose tissue and skeletal muscle was determined and expressed relative to the expression of beta-actin. Gene expression of GHR in abdominal sc adipose tissue was not altered, whereas the expression of GHRtr increased significantly. In skeletal muscle inverse changes were seen...... in the expression of messenger ribonucleic acid (mRNA) levels for the two GH receptor forms: expression of GHR increased significantly, whereas mRNA levels for GHRtr decreased. As expected, body composition changed with reduction of body fat mass after 4 months of GH treatment. Levels of circulating GHBP decreased...

  16. Seasonal change in bone, muscle and fat in professional rugby league players and its relationship to injury: a cohort study

    Science.gov (United States)

    Georgeson, Erin C; Weeks, Benjamin K; McLellan, Chris; Beck, Belinda R

    2012-01-01

    Objectives To examine the anthropometric characteristics of an Australian National Rugby League team and identify the relationship to type and incidence of injuries sustained during a professional season. It was hypothesised that body composition would not change discernibly across a season and that injury would be negatively related to preseason bone and muscle mass. Design A repeated measure, prospective, observational, cohort study. Setting Griffith University, Gold Coast, Australia. Participants 37 professional male Australian National Rugby League players, 24.3 (3.8) years of age were recruited for preseason 1 testing, of whom 25 were retested preseason 2. Primary and secondary outcome measures Primary outcome measures included biometrics; body composition (bone, muscle and fat mass; dual-energy x-ray absorptiometry; XR800, Norland Medical Systems, Inc); bone geometry and strength (peripheral quantitative CT; XCT 3000, Stratec); calcaneal broadband ultrasound attenuation (BUA; QUS-2, Quidel); diet and physical activity history. Secondary outcome measures included player injuries across a single playing season. Results Lean mass decreased progressively throughout the season (pre=81.45(7.76) kg; post=79.89(6.72) kg; p≤0.05), while whole body (WB) bone mineral density (BMD) increased until mid-season (pre=1.235(0.087) g/cm2; mid=1.296(0.093) g/cm2; p≤0.001) then decreased thereafter (post=1.256(0.100); p≤0.001). Start-of-season WB BMD, fat and lean mass, weight and tibial mass measured at the 38% site predicted bone injury incidence, but no other relationship was observed between body composition and injury. Conclusions Significant anthropometric changes were observed in players across a professional rugby league season, including an overall loss of muscle and an initial increase, followed by a decrease in bone mass. Strong relationships between anthropometry and incidence of injury were not observed. Long-term tracking of large rugby league cohorts is

  17. Cinnamomum cassia Prevents High-Fat Diet-Induced Obesity in Mice through the Increase of Muscle Energy.

    Science.gov (United States)

    Song, Mi Young; Kang, Seok Yong; Kang, Anna; Hwang, Ji Hye; Park, Yong-Ki; Jung, Hyo Won

    2017-01-01

    The cortex of Cinnamomum cassia Presl (Cinnamomi Cortex: CC) has commonly been used for weight control in traditional medicines, but without a scientific basis. Therefore, this study was undertaken to investigate the anti-obesity effect of CC extract in a high-fat diet (HFD)-induced obese mouse model and in C2C12 mouse skeletal muscle cells. Male C57BL/6 mice were fed a normal diet or a HFD for 16 consecutive weeks, and orally administered CC extract (100 or 300[Formula: see text]mg/kg) or metformin (250[Formula: see text]mg/kg; positive control) daily for 16 weeks. CC extract administration significantly decreased body weights, food intakes, and serum levels of glucose, insulin, total cholesterol and ALT levels, prevented oral glucose tolerance and insulin resistance, inhibited the protein expressions of MyHC and PGC1[Formula: see text] and the phosphorylation of AMPK, suppressed lipid accumulation in liver, decreased adipocyte size and increased muscle mass in obese mice. For this in vitro study, C2C12 myoblasts were differentiated into the myotubes for five days, and then treated with CC extract (0.1 or 0.2[Formula: see text]mg/ml) for 24[Formula: see text]h. CC extract significantly increased ATP levels by increasing the mRNA expressions of mitochondrial biogenesis-related factors, such as, PGC1[Formula: see text], NRF-1, and Tfam, and the phosphorylations of AMPK and ACC. Our results suggest CC extract controls weight gain in obese mice by inhibiting lipid accumulation and increasing energy expenditure, and that its action mechanism involves the up-regulation of mitochondrial biogenesis in skeletal muscle cells.

  18. High-fat feeding inhibits exercise-induced increase in mitochondrial respiratory flux in skeletal muscle

    DEFF Research Database (Denmark)

    Skovbro, Mette; Boushel, Robert Christopher; Hansen, Christina Neigaard

    2011-01-01

    -62%) were seen in HFD and ND, but only in HFD was an elevated (P respiratory rate seen at recovery. With HFD complex I and IV protein expression decreased (P system protein content......) and intramyocellular triacylglycerol content did not change with the intervention in either group. Indexes of mitochondrial density were similar across the groups and intervention. Mitochondrial respiratory rates, measured in permeabilized muscle fibers, showed a 31 ± 11 and 26 ± 9% exercise-induced increase (P

  19. Long-term, but not short-term high-fat diet induces fiber composition changes and impaired contractile force in mouse fast-twitch skeletal muscle.

    Science.gov (United States)

    Eshima, Hiroaki; Tamura, Yoshifumi; Kakehi, Saori; Kurebayashi, Nagomi; Murayama, Takashi; Nakamura, Kyoko; Kakigi, Ryo; Okada, Takao; Sakurai, Takashi; Kawamori, Ryuzo; Watada, Hirotaka

    2017-04-01

    In this study, we investigated the effects of a short-term and long-term high-fat diet (HFD) on morphological and functional features of fast-twitch skeletal muscle. Male C57BL/6J mice were fed a HFD (60% fat) for 4 weeks (4-week HFD) or 12 weeks (12-week HFD). Subsequently, the fast-twitch extensor digitorum longus muscle was isolated, and the composition of muscle fiber type, expression levels of proteins involved in muscle contraction, and force production on electrical stimulation were analyzed. The 12-week HFD, but not the 4-week HFD, resulted in a decreased muscle tetanic force on 100 Hz stimulation compared with control (5.1 ± 1.4 N/g in the 12-week HFD vs. 7.5 ± 1.7 N/g in the control group; P muscle weight and cross-sectional area were not altered after both HFD protocols. Morphological analysis indicated that the percentage of type IIx myosin heavy chain fibers, mitochondrial oxidative enzyme activity, and intramyocellular lipid levels increased in the 12-week HFD group, but not in the 4-week HFD group, compared with controls (P decreased in the 12-week HFD group, but not in the 4-week HFD group (P muscle fibers. Given that skeletal muscle strength largely depends on muscle fiber type, the impaired muscle contractile force by a HFD might result from morphological changes of fiber type composition. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  20. Treatment of compartment syndrome of the thigh associated with acute renal failure after the Wenchuan earthquake.

    Science.gov (United States)

    Duan, Xin; Zhang, Kaiwei; Zhong, Gang; Cen, Shiqiang; Huang, Fuguo; Lv, Jingtong; Xiang, Zhou

    2012-04-01

    Compartment syndrome of the thigh is a rare emergency often treated operatively. The purpose of this study was to evaluate the effects of nonoperative treatment for compartment syndrome of the thigh associated with acute renal failure after the 2008 Wenchuan earthquake. Nonoperative treatment, which primarily involves continuous renal replacement therapy, was performed in 6 patients (3 men and 3 women) who presented with compartment syndrome of the thigh associated with acute renal failure. The mean mangled extremity severity score (MESS) and laboratory data regarding renal function were analyzed before and after treatment, and the clinical outcome was evaluated at 17-month follow-up. Laboratory data regarding renal function showed improvements. All 6 patients survived with the affected lower limbs intact after nonoperative treatment. Follow-up revealed active knee range of motion and increased muscle strength, as well as a recovery of sensation. A positive linear correlation was found between MESS and the time required to achieve a reduction in swelling, as well as the time required for the recovery of sensation and knee range of motion (r>0.8; P<.05). Satisfactory clinical outcomes were obtained in patients with compartment syndrome of the thigh associated with acute renal failure.Urine alkalization, electrolyte and water balance, and continuous renal replacement therapy have played an important role in saving lives and extremities. Nonoperative treatment should be considered in the treatment of compartment syndrome of the thigh associated with acute renal failure.

  1. Magnetic Resonance Imaging-Assessed Vastus Medialis Muscle Fat Content and Risk for Knee Osteoarthritis Progression: Relevance From a Clinical Trial.

    Science.gov (United States)

    Raynauld, Jean-Pierre; Pelletier, Jean-Pierre; Roubille, Camille; Dorais, Marc; Abram, François; Li, Wei; Wang, Yuanyuan; Fairley, Jessica; Cicuttini, Flavia M; Martel-Pelletier, Johanne

    2015-10-01

    Studies have proposed vastus medialis (VM) muscle cross-sectional area change as a variable associated with cartilage volume loss in knee osteoarthritis (OA). However, the VM also includes fat (%Fat), which may influence knee function. This study analyzed the VM area and %Fat data, separately and in combination, to predict symptoms, cartilage volume loss, and bone marrow lesion (BML) change in knee OA. This study included the according-to-protocol population (n = 143) of a 2-year knee OA randomized clinical trial having magnetic resonance imaging at baseline and 2 years. Correlations used multivariate analyses. Greater baseline value for VM area and %Fat were significantly associated with sex (male, area; female, %Fat), higher body mass index (BMI), and Western Ontario and McMaster Universities Osteoarthritis Index stiffness, function, and total scores (better, high area; worse, high %Fat). Moreover, a VM %Fat increase of 1% at 2 years was associated with worsening of cartilage volume loss in the global knee (P = 0.015) and some subregions (P ≤ 0.030), and with an increment of BML global score change (P Fat, and high BMI identified a subgroup of patients with greater cartilage volume loss in the medial femur (P = 0.028) than the rest of the cohort. These data demonstrated, for the first time, that VM fat content is a strong predictor of cartilage volume loss and the occurrence and progression of BML. Importantly, the combined data of VM area, VM %Fat, and BMI identified patients at higher risk for OA progression. © 2015, American College of Rheumatology.

  2. Muscle expression of a malonyl-CoA-insensitive carnitine palmitoyltransferase-1 protects mice against high-fat/high-sucrose diet-induced insulin resistance.

    Science.gov (United States)

    Vavrova, Eliska; Lenoir, Véronique; Alves-Guerra, Marie-Clotilde; Denis, Raphaël G; Castel, Julien; Esnous, Catherine; Dyck, Jason R B; Luquet, Serge; Metzger, Daniel; Bouillaud, Frédéric; Prip-Buus, Carina

    2016-09-01

    Impaired skeletal muscle mitochondrial fatty acid oxidation (mFAO) has been implicated in the etiology of insulin resistance. Carnitine palmitoyltransferase-1 (CPT1) is a key regulatory enzyme of mFAO whose activity is inhibited by malonyl-CoA, a lipogenic intermediate. Whereas increasing CPT1 activity in vitro has been shown to exert a protective effect against lipid-induced insulin resistance in skeletal muscle cells, only a few studies have addressed this issue in vivo. We thus examined whether a direct modulation of muscle CPT1/malonyl-CoA partnership is detrimental or beneficial for insulin sensitivity in the context of diet-induced obesity. By using a Cre-LoxP recombination approach, we generated mice with skeletal muscle-specific and inducible expression of a mutated CPT1 form (CPT1mt) that is active but insensitive to malonyl-CoA inhibition. When fed control chow, homozygous CPT1mt transgenic (dbTg) mice exhibited decreased CPT1 sensitivity to malonyl-CoA inhibition in isolated muscle mitochondria, which was sufficient to substantially increase ex vivo muscle mFAO capacity and whole body fatty acid utilization in vivo. Moreover, dbTg mice were less prone to high-fat/high-sucrose (HFHS) diet-induced insulin resistance and muscle lipotoxicity despite similar body weight gain, adiposity, and muscle malonyl-CoA content. Interestingly, these CPT1mt-protective effects in dbTg-HFHS mice were associated with preserved muscle insulin signaling, increased muscle glycogen content, and upregulation of key genes involved in muscle glucose metabolism. These beneficial effects of muscle CPT1mt expression suggest that a direct modulation of the malonyl-CoA/CPT1 partnership in skeletal muscle could represent a potential strategy to prevent obesity-induced insulin resistance. Copyright © 2016 the American Physiological Society.

  3. Increased intramuscular fat improves both 'chewiness' and 'hardness' as defined in ISO5492:1992 of beef Longissimus muscle of Holstein × Japanese black F1 steers.

    Science.gov (United States)

    Sasaki, Keisuke; Motoyama, Michiyo; Narita, Takumi

    2012-04-01

    It is considered that high-fat beef is more 'tender' than low-fat beef in Japanese consumers. However, 'tenderness' which has been an important beef characteristic, has not been commonly defined. ISO5492:1992 provides internationally established items for sensory texture analysis with simple definitions, and the items classified under 'chewiness' and 'hardness' as defined in the international standard are characterized as useful texture descriptors for beef. The aim of this study was to investigate the effects of intramuscular fat on beef texture using the ISO5492 texture vocabulary. Longissimus muscles were harvested from Holstein × Japanese black F1 beef steers with different intramuscular fat levels and were subjected to sensory tests by a trained panel using ISO5492:1992 texture terms. Correspondence analysis indicated that the intramuscular fat level was related to both 'chewiness' and 'hardness' and the intensities of these characteristics decreased as intramuscular fat increased. These findings suggest that intramuscular fat improves both 'chewiness' and 'hardness' as defined in ISO5492:1992. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  4. Glycolytic-to-oxidative fiber-type switch and mTOR signaling activation are early-onset features of SBMA muscle modified by high-fat diet.

    Science.gov (United States)

    Rocchi, Anna; Milioto, Carmelo; Parodi, Sara; Armirotti, Andrea; Borgia, Doriana; Pellegrini, Matteo; Urciuolo, Anna; Molon, Sibilla; Morbidoni, Valeria; Marabita, Manuela; Romanello, Vanina; Gatto, Pamela; Blaauw, Bert; Bonaldo, Paolo; Sambataro, Fabio; Robins, Diane M; Lieberman, Andrew P; Sorarù, Gianni; Vergani, Lodovica; Sandri, Marco; Pennuto, Maria

    2016-07-01

    Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by the expansion of a polyglutamine tract in the androgen receptor (AR). The mechanism by which expansion of polyglutamine in AR causes muscle atrophy is unknown. Here, we investigated pathological pathways underlying muscle atrophy in SBMA knock-in mice and patients. We show that glycolytic muscles were more severely affected than oxidative muscles in SBMA knock-in mice. Muscle atrophy was associated with early-onset, progressive glycolytic-to-oxidative fiber-type switch. Whole genome microarray and untargeted lipidomic analyses revealed enhanced lipid metabolism and impaired glycolysis selectively in muscle. These metabolic changes occurred before denervation and were associated with a concurrent enhancement of mechanistic target of rapamycin (mTOR) signaling, which induced peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC1α) expression. At later stages of disease, we detected mitochondrial membrane depolarization, enhanced transcription factor EB (TFEB) expression and autophagy, and mTOR-induced protein synthesis. Several of these abnormalities were detected in the muscle of SBMA patients. Feeding knock-in mice a high-fat diet (HFD) restored mTOR activation, decreased the expression of PGC1α, TFEB, and genes involved in oxidative metabolism, reduced mitochondrial abnormalities, ameliorated muscle pathology, and extended survival. These findings show early-onset and intrinsic metabolic alterations in SBMA muscle and link lipid/glucose metabolism to pathogenesis. Moreover, our results highlight an HFD regime as a promising approach to support SBMA patients.

  5. (−)-Epigallocatechin-3-gallate Increases the Expression of Genes Related to Fat Oxidation in the Skeletal Muscle of High Fat-Fed Mice

    OpenAIRE

    Sae-tan, Sudathip; Grove, Kimberly A.; Kennett, Mary J.; Lambert, Joshua D.

    2011-01-01

    (−)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been shown to prevent the development of obesity in rodent models. Here, we examined the effect of EGCG on markers of fat oxidation in high fat-fed C57bl/6J mice. High fat-fed mice treated with 0.32% dietary EGCG for 16 weeks had reduced body weight gain and final body weight (19.2% and 9.4%, respectively) compared to high fat-fed controls. EGCG-treatment decreased fasting blood glucose, plasma insulin, and insulin ...

  6. Prognostic Impact of CT-Quantified Muscle and Fat Distribution before and after First-Line-Chemotherapy in Lung Cancer Patients.

    Science.gov (United States)

    Nattenmüller, Johanna; Wochner, Raoul; Muley, Thomas; Steins, Martin; Hummler, Simone; Teucher, Birgit; Wiskemann, Joachim; Kauczor, Hans-Ulrich; Wielpütz, Mark Oliver; Heussel, Claus Peter

    2017-01-01

    Cachexia and sarcopenia are associated with poor outcome and increased chemotherapy-induced toxicity in lung cancer patients. However, the complex interplay of obesity, sarcopenia and cachexia, and its impact on survival in the context of first-line-chemotherapy is not yet understood. In 200 consecutively recruited lung cancer patients (70 female, mean age 62y; mean BMI 25 kg/m2; median follow-up 15.97 months) with routine staging-CT before and after chemotherapy (CTX, mean interval: 4.3 months), densitometric quantification of total (TFA), visceral (VFA), and subcutaneous-fat-area (SFA), inter-muscular-fat-area (IMFA), muscle-density (MD), muscle-area (MA) and skeletal-muscle-index (SMI) was performed retrospectively to evaluate changes under chemotherapy and the impact on survival. We observed increases in TFA, VFA, SFA, VFA/SFA, and IMFA (pdecreases in MA, MD and BMI (pDecrease in BMI (HR = 1.303; pincreased survival (17.6 vs. 9.1months), less muscle depletion (SMIdifference: pdecreased muscle and increased adipose tissue compartments, which was not adequately mirrored by BMI and weight loss but by imaging. Particularly sarcopenic patients received less CTX-cycles and had poorer survival. As loss of BMI, weight and muscle were associated with poor survival, early detection (via imaging) and prevention (via physical exercise and nutrition) of sarcopenia may potentially improve outcome and reduce chemotherapy-induced toxicity.

  7. The Development Of Lean Muscle, Bone And Fat In The West African Dwarf Goat Of Nigeria Maintained On Good Plane Of Nutrition

    Directory of Open Access Journals (Sweden)

    Awah, AA.

    1994-01-01

    Full Text Available Thirty West African Dwarf goat kids were raised on good diets intensively from 5 days to 52 weeks of age. Six animals (3 males and 3 females were serially slaughtered at 2, 8, 12, 24 and 52 weeks of age to study changes in liveweight and the development of lean muscle, bone and fat. Lean muscle and fat expressed as the percentage of empty body weight (E.B.W. increased from 31.8 % and 3.8 % at 2 weeks to 43.2 % and 14.2 % at 52 weeks respectively. These increases at 52 weeks old were about 673.2 % and 2090.8 %> over their respective weights at 2 weeks old. The bone tissue also increased to about 220.7 %, at 52 weeks old over the weight at 2 weeks of age, but decreased from 17.4 % E.B.W. at 2 weeks to 9.8 % E.B.W. at 52 weeks of age. At 2 weeks old, muscle was the largest tissue, followed by bone, while fat was the least. The bone grew at a low impetus rate, muscle at intermediate rate and fat at high impetus rate so that at 52 weeks of age, fat became the second largest tissue and bone the least. Male goat kids entered the rapid fattening phase later in life (about 43 weeks of age and at heavier liveweight (about 12 kg liveweight than the female goat kids (about 28 weeks of age and 9 kg liveweight respectively.

  8. Colour of fat, and colour, fatty acid composition and sensory characteristics of muscle from heifers offered alternative forages to grass silage in a finishing ration.

    Science.gov (United States)

    Moloney, A P; Mooney, M T; Kerry, J P; Stanton, C; O'Kiely, P

    2013-11-01

    The effect of type of silage offered to beef heifers during the finishing period on aspects of beef quality was determined. In two experiments, a diet based on grass silage (GS) was compared with a diet based on maize silage (MS) or whole-crop wheat silage (WCW). Compared to the GS-based diet, increasing the amount of MS linearly increased fat whiteness while the increase in fat whiteness due to WCW was dependent on the stage of crop maturity at harvesting. There was no effect of diet on muscle colour or on muscle pH measured at 48h post-mortem, drip loss, taste panel traits after 14days ageing or shear force values at 2, 7 or 14days ageing. The alternative silages decreased the n-3 polyunsaturated fatty acid proportion and increased the linoleic:linolenic acid ratio in intramuscular lipid. It is concluded that type of silage affects fat colour and fatty acid composition of muscle but not the other muscle characteristics examined. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Extrinsic and intrinsic regulation of DOR/TP53INP2 expression in mice: effects of dietary fat content, tissue type and sex in adipose and muscle tissues.

    Science.gov (United States)

    Fromm-Dornieden, Carolin; Lytovchenko, Oleksandr; von der Heyde, Silvia; Behnke, Nina; Hogl, Sebastian; Berghoff, Janina; Köpper, Frederik; Opitz, Lennart; Renne, Ulla; Hoeflich, Andreas; Beissbarth, Tim; Brenig, Bertram; Baumgartner, Bernhard G

    2012-09-21

    DOR/TP53INP2 acts both at the chromosomal level as a nuclear co-factor e.g. for the thyroid hormone receptor and at the extrachromosomal level as an organizing factor of the autophagosome. In a previous study, DOR was shown to be down-regulated in skeletal muscle of obese diabetic Zucker fa/fa rats. To identify sites of differential DOR expression in metabolically active tissues, we measured differences in DOR expression in white adipose tissue (WAT), brown adipose tissue (BAT), skeletal muscle (SM) and heart muscle (HM) by qPCR. To assess whether DOR expression is influenced in the short term by nutritional factors, NMRI mice were fed different fat rich diets (fat diet, FD: 18% or high fat diet, HFD: 80% fat) for one week and DOR expression was compared to NMRI mice fed a control diet (normal diet, ND: 3.3% fat). Additionally, DOR expression was measured in young (45 days old) and adult (100 days old) genetically obese (DU6/DU6i) mice and compared to control (DUKs/DUKsi) animals. ANOVA results demonstrate a significant influence of diet, tissue type and sex on DOR expression in adipose and muscle tissues of FD and HFD mice. In SM, DOR expression was higher in HFD than in FD male mice. In WAT, DOR expression was increased compared to BAT in male FD and HFD mice. In contrast, expression levels in female mice were higher in BAT for both dietary conditions.DOR expression levels in all tissues of 100 days old genetically obese animals were mainly influenced by sex. In HM, DOR expression was higher in male than female animals. DOR expression varies under the influence of dietary fat content, tissue type and sex. We identified target tissues for further studies to analyze the specific function of DOR in obesity. DOR might be part of a defense mechanism against fat storage in high fat diets or obesity.

  10. Similar changes in muscle lipid metabolism are induced by chronic high-fructose feeding and high-fat feeding in C57BL/J6 mice.

    Science.gov (United States)

    Song, Guang-Yao; Ren, Lu-Ping; Chen, Shu-Chun; Wang, Chao; Liu, Na; Wei, Li-Min; Li, Fan; Sun, Wen; Peng, Lan-Bo; Tang, Yong

    2012-12-01

    The aim of the present study was to investigate the effects of high fructose and high fat feeding on muscle lipid metabolism and to illustrate the mechanisms by which the two different dietary factors induce muscle lipid accumulation. C57BL/J6 mice were fed either a standard, high-fructose (HFru) or high-fat diet. After 16 weeks feeding, mice were killed and plasma triglyceride (TG) and free fatty acid (FFA) levels were detected. In addition, muscle TG and long chain acyl CoA (LCACoA) content was determined, glucose tolerance was evaluated and the protein content of fatty acid translocase CD36 (FATCD36) in muscle was measured. Mitochondrial oxidative function in the muscle was evaluated by estimating the activity of oxidative enzymes, namely cytochrome oxidase (COx), citrate synthase (CS) and β-hydroxyacyl CoA dehydrogenase (β-HAD), and the muscle protein content of carnitine palmitoyltransferase-1 (CPT-1), cyclo-oxygenase (COX)-1 and proliferator-activated receptor coactivator (PGC)-1α was determined. Finally, sterol regulatory element-binding protein-1c (SREBP-1c) gene expression and fatty acid synthase (FAS) protein content were determined in muscle tissues. After 16 weeks, plasma TG and FFA levels were significantly increased in both the HFru and HF groups. In addition, mice in both groups exhibited significant increases in muscle TG and LCACoA content. Compared with mice fed the standard diet (control group), those in the HFru and HF groups developed glucose intolerance and exhibited increased FATCD36 protein levels, enzyme activity related to fatty acid utilization in the mitochondria and protein expressions of CPT-1, COX-1 and PGC-1α in muscle tissue. Finally, mice in both the HFru and HF groups exhibited increase SREBP-1c expression and FAS protein content. In conclusion, high fructose and high fat feeding lead to similar changes in muscle lipid metabolism in C57BL/J6 mice. Lipid accumulation in the muscle may be associated with increased expression

  11. The surface-electromyographic characteristics of the anterior and posterior thigh muscles in patients recovering from cerebral infarction%脑梗死恢复期患者大腿前后肌群表面肌电特征的研究

    Institute of Scientific and Technical Information of China (English)

    窦祖林; 姜丽; 何萃; 温红梅

    2011-01-01

    Objective To assess the contraction and coordination changes in the anterior and posterior thigh muscles of patients recovering from cerebral infarction,and to provide objective references for targeted rehabilitation programs. Methods Eighteen cerebral infarction patients with mild hemiparesis (the patient group) and eighteen age- and sex-matched healthy volunteers (the healthy group) were investigated. The surface-electromyographic (sEMG) signals of their vastus medialis,rectus femoris,vastus lateralis,biceps femoris,semitendinosus and semimembranosus were recorded during knee joint flexion and extension in the prone position.The sEMG signals from both legs were recorded for the patient group,but only from the left leg in the healthy group.The standardized root mean square (stRMS) signals and the co-contraction ratios (CRs) were compared and analysed, Results The stRMSs of the rectus femoris,vastus lateralis and vastus medialis on the patients' affected side during knee extension were significantly higher than those in the healthy group at baseline and follow-up.The stRMSs of the biceps femoris and semitendinosus-semimembranous on the patients' unaffected side were significantly higher than those of the affected side and the healthy group during knee flexion at baseline.The CRs during knee flexion on the patientsˊ affected side at baseline and follow-up were significantly higher than those of the unaffected side at baseline. Conclusions After cerebral infarction,the functioning of both the anterior and posterior thigh muscles on the affected side are impaired.The rectus femoris are the most severely impaired knee extensors,and the biceps femoris,semitendinosus and semimembranous are impaired equally in knee flexion.The thigh flexors and extensors lose their normal antagonist-agonist contraction modes.The functions of both the anterior and posterior thigh muscles should be emphasized during rehabilitation to improve abnormal contraction.%目的 探讨脑梗死偏

  12. Extranodal diffuse non hodgkin lymphoma in the thigh

    Directory of Open Access Journals (Sweden)

    Bölke E

    2010-08-01

    Full Text Available Abstract Diffuse large B-cell lymphoma usually starts as a rapidly growing mass in an internal lymph node and can grow in other areas such as the bone or intestines. About 1/3 of these lymphomas are confined to one part of the body when they are localized. In the case of a 78-year-old man, an extensive tumour was located on the right thigh. Biopsies of the tumour revealed diffuse proliferation of large lymphoid cells which have totally affected the normal architecture of striated muscle. The patient received multimodality treatment including chemotherapy of the CHOP regimen and adjuvant radiotherapy. Despite this being a fast growing lymphoma, about 3 out of 4 people will have no signs of disease after initial treatment, and about half of all people with this lymphoma are cured with therapy.

  13. Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat

    DEFF Research Database (Denmark)

    Teperino, Raffaele; Amann, Sabine; Bayer, Martina

    2012-01-01

    Diabetes, obesity, and cancer affect upward of 15% of the world's population. Interestingly, all three diseases juxtapose dysregulated intracellular signaling with altered metabolic state. Exactly which genetic factors define stable metabolic set points in vivo remains poorly understood. Here, we......-independent glucose uptake in muscle and brown adipose tissue. These data identify multiple noncanonical endpoints that are pivotal for rational design of hedgehog modulators and provide a new therapeutic avenue for obesity and diabetes.......Diabetes, obesity, and cancer affect upward of 15% of the world's population. Interestingly, all three diseases juxtapose dysregulated intracellular signaling with altered metabolic state. Exactly which genetic factors define stable metabolic set points in vivo remains poorly understood. Here, we...

  14. Do sarcomere length, collagen content, pH, intramuscular fat and desmin degradation explain variation in the tenderness of three ovine muscles?

    Science.gov (United States)

    Starkey, Colin P; Geesink, Geert H; Collins, Damian; Hutton Oddy, V; Hopkins, David L

    2016-03-01

    The longissimus (n=118) (LL), semimembranosus (n=104) (SM) and biceps femoris (n=134) (BF) muscles were collected from lamb and sheep carcases and aged for 5days (LL and SM) and 14days (BF) to study the impact of muscle characteristics on tenderness as assessed by shear force (SF) and sensory evaluation. The impact of gender, animal age, collagen content, sarcomere length (SL), desmin degradation, ultimate pH and intramuscular fat (IMF) on tenderness was examined. The main factors which influenced SF of the LL were IMF, SL and desmin degradation, but for sensory tenderness, IMF, ultimate pH and gender were the main factors. The SF and sensory tenderness of the SM was best predicted by the degree of desmin degradation. For the BF soluble collagen and animal age both influenced SF. Different factors affect tenderness across muscles and not one prediction model applied across all muscles equally well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Reduced protein diets increase intramuscular fat of psoas major, a red muscle, in lean and fatty pig genotypes.

    Science.gov (United States)

    Madeira, M S; Lopes, P A; Costa, P; Coelho, D; Alfaia, C M; Prates, J A M

    2017-05-02

    The present study aims to assess the effects of pig's genotype (lean v. fatty) and dietary protein level (control v. reduced) on intramuscular fat (IMF) content, fatty acid composition and fibre profile of psoas major, a representative red muscle in pig's carcass scarcely studied relative to white longissimus lumborum. The experiment was conducted on 40 intact male pigs (20 Alentejana purebred and 20 Large White×Landrace×Pietrain crossbred) from 60 to 93 kg of live weight. Pigs were divided and allocated to four dietary groups: control protein diet equilibrated for lysine (17.5% of CP and 0.7% of lysine) and reduced protein diet (RPD) not equilibrated for lysine (13.1% of crude protein and 0.4% of lysine) within a 2×2 factorial arrangement (two genotypes and two diets). Alentejana purebred had higher IMF content (15.7%) and monounsaturated fatty acids (MUFA) (8.9%), whereas crossbred pigs had higher PM weight (46.3%) and polyunsaturated fatty acids (PUFA) (20.1%). The genotype also affected colour with higher lightness (15.1%) and yellowness (33.8%) and lower redness (9.9%) scores in crossbred pigs. In line with this, fatty pigs displayed more oxidative fibres (29.5%), whilst lean pigs had more glycolytic (54.4%). Relative to fatty acids, RPD increased MUFA (5.2%) and SFA (3.2%) but decreased PUFA (14.8%). Ultimately, RPD increased IMF content (15.7%) in the red muscle under study, with no impact on glycolytic to oxidative fibre type transformation.

  16. Changes in Skinfold Thicknesses and Body Fat in Ultra-endurance Cyclists.

    Science.gov (United States)

    Bischof, Martin; Knechtle, Beat; A Rüst, Christoph; Knechtle, Patrizia; Rosemann, Thomas

    2013-03-01

    The present study investigated the changes in single skinfold thicknesses and body fat during an ultra-endurance cycling race. One hundred and nineteen ultra-endurance cyclists in the 'Swiss Cycling Marathon' covering a distance of 600 km were included. Changes in skinfold thickness, fat mass, skeletal muscle mass and total body water were estimated using anthropometric methods. The subjects were riding at a mean speed of 23.5±4.0 km/h and finished the race within 1,580±296 min. During the race, body mass decreased by 1.5±1.2 kg (P0.05). The decrease in body mass correlated to the decrease in fat mass (r = 0.20, P=0.03). The skinfold thicknesses at pectoral (-14.7%), abdominal (-14.9%), and thigh (-10.2%) site showed the largest decrease. The decrease in abdominal skinfold was significantly and negatively related to cycling speed during the race (r = -0.31, Pskinfold thicknesses. The largest decrease in skinfold thickness was recorded for pectoral, abdominal, and thigh site. The decrease in abdominal skinfold thickness was negatively related to cycling speed. The body seems to reduce adipose subcutaneous fat during an ultra-endurance performance at the site of the thickest skinfold.

  17. Effect of high fat diet enriched with unsaturated and diet rich in saturated fatty acids on sphingolipid metabolism in rat skeletal muscle.

    Science.gov (United States)

    Blachnio-Zabielska, Agnieszka; Baranowski, Marcin; Zabielski, Piotr; Gorski, Jan

    2010-11-01

    Consumption of high fat diet leads to muscle lipid accumulation which is an important factor involved in induction of insulin resistance. Ceramide is likely to partially inhibit insulin signaling cascade. The aim of this study was to examine the effect of different high fat diets on ceramide metabolism in rat skeletal muscles. The experiments were carried out on rats fed for 5 weeks: (1) a standard chow and (2) high fat diet rich in polyunsaturated fatty acids (PUFA) and (3) diet enriched with saturated fatty acids (SAT). Assays were performed on three types of muscles: slow-twitch oxidative (soleus), fast-twitch oxidative-glycolytic, and fast-twitch glycolytic (red and white section of the gastrocnemius, respectively). The activity of serine palmitoyltransferase (SPT), neutral and acid sphingomyelinase (n- and aSMase), and neutral and alkaline ceramidase (n- and alCDase) was examined. The content of ceramide, sphinganine, sphingosine, and sphingosine-1-phosphate was also measured. The ceramide content did not change in any muscle from PUFA diet group but increased in the SAT diet group by 46% and 52% in the soleus and red section of the gastrocnemius, respectively. Elevated ceramide content in the SAT diet group could be a result of increased SPT activity and simultaneously decreased activity of nCDase. Unchanged ceramide content in the PUFA diet group might be a result of increased activity of SPT and alCDase and simultaneously decreased activity of SMases. We conclude that regulation of muscle ceramide level depends on the diet and type of skeletal muscle. © 2010 Wiley-Liss, Inc.

  18. The effect of high fat diet on daily rhythm of the core clock genes and muscle functional genes in the skeletal muscle of Chinese soft-shelled turtle (Trionyx sinensis).

    Science.gov (United States)

    Liu, Li; Jiang, Guomin; Peng, Zhitao; Li, Yulong; Li, Jinlong; Zou, Li; He, Zhigang; Wang, Xiaoqing; Chu, Wuying

    2017-11-01

    In the present study, we sought to investigate the influence of high fat diet on the core clock genes and the muscle functional genes daily expression in the skeletal muscle of Chinese soft-shelled turtle. The turtles were fed by two diets including a control fat diet (the CON treatment, 7.98% lipid) and a high fat diet (the HFD treatment, 13.86% lipid) for six weeks and administrated by the photophase regimen of 24h light/dark (12L:12D) cycle. After the feeding trial experiment, we measured the daily expression levels of 17 core clock genes (Clock, Bmal1/2, NPAS2, Tim, Cry1/2, Per1/2, DBP, AANAT, NIFL3, BHLHE40, NR1D2, RORA, RORB, RORC) and 12 muscle functional genes (FBXO32, MBNL1, MSTN, Myf5, Myf6, MyoD, MyoG, MyoM1, PPARa, PDK4, Trim63, UCP3) in the skeletal muscle of the two treatments. The results showed that except for Bmal1, NPAS2, Per2 and RORB, the expression of the other 13 core clock genes exhibited circadian oscillation in the CON treatment. Among the 12 muscle functional genes, MBNL1, PDK4 and MyoM1 did not exhibit circadian oscillation in the CON treatment. In the HFD treatment, the circadian rhythms expressional patterns of the 8 core clock genes (Clock, Bmal2, Cry2, Per1, DBP, NFIL3, BHLHE40 and RORA) and 6 muscle functional genes (MSTN, Myf5, MyoD, MyoG, PPARa and Trim63) were disrupted. In addition, compared with the CON treatment, the circadian expression of the 5 core clock genes (Tim, Cry1, AANAT, NR1D2, RORC) and the 3 muscle functional genes (FBXO32, Myf6, UCP3) showed the advanced or delayed expression peaks in the HFD treatment. In CON treatment, the circadian expression of the MyoG, MyoD, Myf6, FBXO32 and PPARa showed positive or negative correlation with the transcription pattern of Clock, Bmal2, Cry1/2, Per1/2. However, only the FBXO32 and Myf6 presented positive or negative correlation with the circadian expression of Cry1, RORB, AANAT and Tim in HFD treatment. In summary, these results demonstrate that the disruption of the circadian

  19. Ventrogluteal versus dorsogluteal site selection: A cross-sectional study of muscle and subcutaneous fat thicknesses and an algorithm incorporating demographic and anthropometric data to predict injection outcome.

    Science.gov (United States)

    Larkin, Theresa A; Ashcroft, Elfriede; Elgellaie, Asmahan; Hickey, Blake A

    2017-06-01

    The dorsogluteal and ventrogluteal intramuscular injection sites both have their use in clinical practice; however, it has not been established in whom one or the other should be preferentially targeted or avoided. There is a need for an evidence-based approach towards site selection for a successful intramuscular injection outcome and to avoid unwanted injection outcomes of inadvertent subcutaneous injection or bone contact. Injection outcome is dependent on injection site subcutaneous fat thickness and muscle thickness; these are likely influenced by gender and anthropometry. To determine whether subcutaneous fat, muscle, and total tissue thicknesses differ between the dorsogluteal and ventrogluteal sites, and whether theoretical injection outcome (intramuscular, subcutaneous, or bone contact) can be predicted by demographic and anthropometric data and described by an algorithm. Cross-sectional study design. University in Australia. 145 volunteers (57% female) of at least 18 years of age recruited through the university community. Anthropometric data was collected and subcutaneous fat and muscle thicknesses were quantified by ultrasonography. Anthropometric differences between theoretical injection outcome groups (bone contact versus intramuscular versus subcutaneous at the ventrogluteal and dorsogluteal sites) was determined for each gender (ANOVA). Multiple regression analysis was conducted to determine the influence of demographic and anthropometric data on theoretical intramuscular injection outcome. An algorithm to guide site selection was developed for each gender, based on the anthropometric measures that best discriminated between injection outcomes. Subcutaneous fat, muscle and total tissue were significantly thicker at the dorsogluteal site than the ventrogluteal site, and subcutaneous fat was significantly thicker in females than males at both sites (all psubcutaneous fat thickness at both sites; male gender was a significant predictor of dorsogluteal

  20. Expression profiles and associations of adiponectin and adiponectin receptors with intramuscular fat in Tibetan chicken.

    Science.gov (United States)

    Zhang, R; Lin, Y; Zhi, L; Liao, H; Zuo, L; Li, Z; Xu, Y

    2017-04-01

    1. Adiponectin and its receptors (ADIPOR1 and ADIPOR2) are novel endocrine systems that act at various levels to modulate glucose and lipid metabolism. This study was designed to investigate the spatial expression of adiponectin, ADIPOR1 and ADIPOR2 genes in various tissues in Tibetan chicken. The temporal expression of adiponectin and its receptor mRNAs were also studied in adipose tissue, breast muscle and thigh muscle and the correlations of the levels of adiponectin, ADIPOR1 and ADIPOR2 mRNA with the contents of intramuscular fat in breast muscle and thigh muscle of Tibetan chicken were determined. 2. Quantitative real-time PCR detected chicken adiponectin, ADIPOR1 and ADIPOR2 mRNA transcripts in heart, liver, spleen, lung, kidney, skeletal muscle and adipose tissue. 3. Adipose tissue contained the highest amount of adiponectin mRNA followed by the kidney and liver. The expression levels of ADIPOR1 mRNA were significantly higher in adipose tissue, lung and spleen, and adipose tissue exhibited significantly higher levels of ADIPOR2 mRNA followed by the spleen and lung compared with other tissues. 4. Temporal expression profiles of adiponectin, ADIPOR1 and ADIPOR2 mRNA showed gender differences in adipose tissue and skeletal muscle at certain ages. In adipose tissue, adiponectin mRNA was higher in 154-d-old females and ADIPOR1 mRNA was higher in 154-d-old males: Adiponectin and ADIPOR2 mRNA were higher, and ADIPOR1 mRNA was lower, in thigh muscle in female compared with male chickens. 5. The correlation data showed that, except for adiponectin mRNA, the levels of ADIPOR1 and ADIPOR2 mRNA in thigh muscle of males were significantly positively correlated with IMF (r = 0.206 for the ADIPOR1 gene and r = 0.676 for the ADIPOR2 gene). 6. Taken together, it was concluded that adiponectin and the ADIPOR1 and ADIPOR2 genes are ubiquitously expressed in various tissues of Tibetan chicken and the expression of the adiponectin system is gender-dependant at certain ages

  1. Comparison of the G and V methods for ventrogluteal site identification: Muscle and subcutaneous fat thicknesses and considerations for successful intramuscular injection.

    Science.gov (United States)

    Larkin, Theresa A; Elgellaie, Asmahan; Ashcroft, Elfriede

    2017-07-28

    The ventrogluteal site is increasingly recommended for long-acting antipsychotic intramuscular injections; however, it remains infrequently utilized due to nurses' lack of confidence in site identification. The more recent G (geometric) method of ventrogluteal site identification is less subjective and likely more reliable than the V method for successful intramuscular injection outcomes. Knowledge of muscle and subcutaneous fat thicknesses, and the influence of sex and anthropometry on theoretical injection outcome, is necessary to support evidence-based use of the ventrogluteal site. In the presents study, we compared the V and G methods for injection site subcutaneous fat, muscle, and total tissue thicknesses, and theoretical injection outcome (bone injury, intramuscular or subcutaneous), and determined anthropometric predictors of injection outcome. Subcutaneous fat and muscle thicknesses were measured via ultrasound, bilaterally at V and G method sites (28 males, 32 females). Muscle and total tissue were significantly thicker, and successful intramuscular injection significantly more likely, using the G versus V method (75% versus 57%). Females had significantly thicker subcutaneous fat than males at both sites. Even using the G method, 92% of males but only 59% of females, would have a successful intramuscular injection, with remaining females at risk of bone injury (16%) or subcutaneous injection (25%). The G method site is more reliable for successful intramuscular injection, with less risk of bone injury than the V method site. Appropriate needle-length selection is essential for females with a body mass index (BMI) 30 kg m(-2) and hip >90 cm (to avoid subcutaneous injection). © 2017 Australian College of Mental Health Nurses Inc.

  2. Recurrent, giant subcutaneous leiomyosarcoma of the thigh

    Directory of Open Access Journals (Sweden)

    Gao Chuanping, MD

    2015-10-01

    Full Text Available We present a case of recurrent, massive subcutaneous leiomyosarcoma involving the left thigh in a 29-year-old male from Madagascar. The patient had earlier undergone local resection of subcutaneous leiomyosarcoma a half year before. After surgical intervention, local recurrence developed at this site and was rapidly growing. The patient was surgically treated with a 2-cm-wide margin local excision in our hospital. The patient has remained recurrence free at 1-year follow-up.

  3. [Impressions on the thighs; semicircular lipoatrophy].

    Science.gov (United States)

    de Rie, M A

    1998-04-01

    An otherwise healthy woman aged 28 had symmetrical band-shaped dents on both thighs. She worked as a secretary; several female colleagues showed identical lesions. An investigation showed that the arrangement of the office equipment combined with sharp-edged desk tops caused these abnormalities. The diagnosis made read 'semicircular lipoatrophy caused by repetitive leaning against a desk'. This is probably a common problem, although it rarely leads to consultation of a dermatologist.

  4. Effects of olive and fish oil Ca soaps in ewe diets on milk fat and muscle and subcutaneous tissue fatty-acid profiles of suckling lambs.

    Science.gov (United States)

    Gallardo, B; Gómez-Cortés, P; Mantecón, A R; Juárez, M; Manso, T; de la Fuente, M A

    2014-07-01

    Enhancing healthy fatty acids (FAs) in ewe milk fat and suckling lamb tissues is an important objective in terms of improving the nutritional value of these foods for the consumer. The present study examined the effects of feeding-protected lipid supplements rich in unsaturated FAs on the lipid composition of ewe milk, and subsequently in the muscle and subcutaneous adipose tissues of lambs suckling such milk. Thirty-six pregnant Churra ewes with their new-born lambs were assigned to one of three experimental diets (forage/concentrate ratio 50 : 50), each supplemented with either 3% Ca soap FAs of palm (Control), olive (OLI) or fish (FO) oil. The lambs were nourished exclusively by suckling for the whole experimental period. When the lambs reached 11 kg BW, they were slaughtered and samples were taken from the Longissimus dorsi and subcutaneous fat depots. Although milk production was not affected by lipid supplementation, the FO diet decreased fat content (P0.05) and other trans-FAs between Control and FO treatments would indicate that FO treatment does not alter rumen biohydrogenation pathways under the assayed conditions. Changes in dam milk FA composition induced differences in the FA profiles of meat and fat depots of lambs, preferentially incorporated polyunsaturated FAs into the muscle rather than storing them in the adipose tissue. In the intramuscular fat of the FO treatment, all the n-3 FAs reached their highest concentrations: 0.97 (18:3 n-3), 2.72 (20:5 n-3), 2.21 (22:5 n-3) and 1.53% (22:6 n-3). In addition, not only did FO intramuscular fat have the most cis-9, trans-11 18:2 (1.66%) and trans-11 18:1 (3.75%), but also the lowest n-6/n-3 ratio (1.80) and saturated FA content were not affected. Therefore, FO exhibited the best FA profile from a nutritional point of view.

  5. Effects of Low Plane of Nutrition on the Development of Lean Muscle, Bone and Fat in the West African Dwarf Goats of Nigeria

    Directory of Open Access Journals (Sweden)

    Awah, AA.

    1997-01-01

    Full Text Available Thirty West African Dwarf goat kids were raised on low plane of nutrition from 5 days old to 52 weeks of age. They were serially slaughtered at 2, 8, 12, 24 and 52 weeks old to study changes in liveweight and the development of lean muscle, bone and fat. Lean muscle and fat expressed as the percentage of empty body weight (E.B.W. increased from 32.5 % and 3.5 % at 2 weeks to 42.0 % and 9.4 % at 52 weeks respectively. These increases at 52 weeks old represented about 544.9 % and 1093.3 % over their respective weights at 2 weeks old. The bone tissue increased to about 307.3 % at 52 weeks old over its weight at 2 weeks of age, but decreased from 15.4 % E.B.W. at 2 weeks to 10.9 % E.B.W. at 52 weeks of age. Lean muscle was consistently the largest carcass tissue from 2 weeks to 52 weeks of age followed by the bone tissue, while fat was the least. Female goat kids entered the rapid fattening phase at about 38 weeks of age (6.9 kg liveweight, but the males did not enter the rapid fattening phase, even at 52 weeks of age (11.8 kg. liveweight.

  6. Pomegranate and green tea extracts protect against ER stress induced by a high-fat diet in skeletal muscle of mice.

    Science.gov (United States)

    Rodriguez, Julie; Gilson, Hélène; Jamart, Cécile; Naslain, Damien; Pierre, Nicolas; Deldicque, Louise; Francaux, Marc

    2015-04-01

    We tested the hypothesis that polyphenol-rich extracts can reduce endoplasmic reticulum (ER) stress induced by a high-fat diet (HFD) in skeletal muscle of mice. Mice were randomly assigned to four groups receiving during 20 weeks either a standard chow control (CTRL), or a HFD supplemented, or not, with pomegranate (HFD + P) or green tea (HFD + GT) extracts. After the nutritional intervention, mice were killed and gastrocnemius muscles were taken. Proteins and mRNA were measured by Western blot and RT-qPCR, respectively. Body weight gain and visceral fat were higher in HFD, HFD + P and HFD + GT than in CTRL. The markers of the unfolded protein response BiP, XBP1u, XBP1s and ATF4 were higher only in HFD. In HFD + P and HFD + GT, this increase was not observed except for CHOP, which was elevated in all HFD groups. HFD increased also markers of ubiquitin-proteasome pathway, autophagy and oxidative stress, which were kept low in HFD + P and HFD + GT groups. Our data provide evidence for a protective effect of pomegranate and green tea extracts against ER stress, oxidative stress and protein degradation induced by HFD in skeletal muscle. They give arguments for a usefulness of these natural nutritional compounds to fight against cellular dysfunctions related to fat excess.

  7. Quality traits in muscle biceps femoris and back-fat from purebred Iberian and reciprocal Iberian×Duroc crossbred pigs.

    Science.gov (United States)

    Ventanas, Sonia; Ventanas, Jesús; Jurado, Angela; Estévez, Mario

    2006-08-01

    The present study evaluated the physico-chemical characteristics of muscle biceps femoris and back-fat from purebred Iberian (PBI) pigs and reciprocal crossbred Iberian×Duroc pigs (IB×D pigs: Iberian dams×Duroc sires; D×IB pigs: Duroc dams×Iberian sires). Muscles from PBI pigs contained significantly higher amounts of IMF, heme pigments and iron than those from crossbred pigs. In addition, muscles from PBI pigs were darker (lower L(∗)-values) and redder (higher a(∗)-values) and exhibited a more intense colour (higher chroma value) which was closer to the true red axis (lower hue value) than muscles from crossbred pigs. Back-fat from PBI pigs had significantly higher percentages of monounsaturated fatty acids (MUFA) and significantly smaller percentages of polyunsaturated fatty acids (PUFA) than those from crossbred pigs. Regarding the fatty acid profiles of the muscle lipid fractions, the genetic background particularly affected the composition of the polar lipid (PL) fraction. PL in muscles from PBI pigs contained significantly higher proportions of oleic acid and total MUFA and significantly lower amounts of arachidonic acid, certain long-chain PUFA (ω-6 and ω-3 fatty acids) and total amount of PUFA than PL in muscles from crossbred pigs. The results obtained indicate that tissues from PBI pigs would be more suitable for the production of dry-cured meats than those from cross-bred pigs. The position of the dam or the sire in reciprocal Iberian×Duroc crosses had no clear effects on meat quality.

  8. Fat in the lumbar multifidus muscles - predictive value and change following disc prosthesis surgery and multidisciplinary rehabilitation in patients with chronic low back pain and degenerative disc: 2-year follow-up of a randomized trial.

    Science.gov (United States)

    Storheim, Kjersti; Berg, Linda; Hellum, Christian; Gjertsen, Øivind; Neckelmann, Gesche; Espeland, Ansgar; Keller, Anne

    2017-04-04

    Evidence is lacking on whether fat infiltration in the multifidus muscles affects outcomes after total disc replacement (TDR) surgery and if it develops after surgery. The aims of this study were 1) to investigate whether pre-treatment multifidus muscle fat infiltration predicts outcome 2 years after treatment with TDR surgery or multidisciplinary rehabilitation, and 2) to compare changes in multifidus muscle fat infiltration from pre-treatment to 2-year follow-up between the two treatment groups. The study is secondary analysis of data from a trial with 2-year follow-up of patients with chronic low back pain (LBP) and degenerative disc randomized to TDR surgery or multidisciplinary rehabilitation. We analyzed (aim 1) patients with both magnetic resonance imaging (MRI) at pre-treatment and valid data on outcome measures at 2-year follow-up (predictor analysis), and (aim 2) patients with MRI at both pre-treatment and 2-year follow-up. Outcome measures were visual analogue scale (VAS) for LBP, Oswestry Disability Index (ODI), work status and muscle fat infiltration on MRI. Patients with pre-treatment MRI and 2-year outcome data on VAS for LBP (n = 144), ODI (n = 147), and work status (n = 137) were analyzed for prediction purposes. At 2-year follow-up, 126 patients had another MRI scan, and change in muscle fat infiltration was compared between the two treatment groups. Three radiologists visually quantified multifidus muscle fat in the three lower lumbar levels on MRI as 50% (grade 2) of the muscle cross-section containing fat. Regression analysis and a mid-P exact test were carried out. Grade 0 pre-treatment multifidus muscle fat predicted better clinical results at 2-year follow-up after TDR surgery (all outcomes) but not after rehabilitation. At 2-year follow-up, increased fat infiltration was more common in the surgery group (intention-to-treat p = 0.03, per protocol p = 0.08) where it was related to worse pain and ODI. Patients with less

  9. Whole-body electromyostimulation as a means to impact muscle mass and abdominal body fat in lean, sedentary, older female adults: subanalysis of the TEST-III trial

    Directory of Open Access Journals (Sweden)

    Kemmler W

    2013-10-01

    Full Text Available Wolfgang Kemmler, Simon von StengelInstitute of Medical Physics, University of Erlangen-Nürnberg, Erlangen, GermanyBackground: The primary aim of this study was to determine the effect of 12 months of whole-body electromyostimulation (WB-EMS exercise on appendicular muscle mass and abdominal fat mass in subjects specifically at risk for sarcopenia and abdominal obesity, but unable or unwilling to exercise conventionally.Methods: Forty-six lean, nonsportive (<60 minutes of exercise per week, elderly women (aged 75 ± 4 years with abdominal obesity according to International Diabetes Federation criteria were randomly assigned to either a WB-EMS group (n=23 which performed 18 minutes of intermittent, bipolar WB-EMS (85 Hz three sessions in 14 days or an "active" control group (n=23. Whole-body and regional body composition was assessed by dual energy X-ray absorptiometry to determine appendicular muscle mass, upper leg muscle mass, abdominal fat mass, and upper leg fat mass. Maximum strength of the leg extensors was determined isometrically by force plates.Results: After 12 months, significant intergroup differences were detected for the primary endpoints of appendicular muscle mass (0.5% ± 2.0% for the WB-EMS group versus −0.8% ± 2.0% for the control group, P=0.025 and abdominal fat mass (−1.2% ± 5.9% for the WB-EMS group versus 2.4% ± 5.8% for the control group, P=0.038. Further, upper leg lean muscle mass changed favorably in the WB-EMS group (0.5% ± 2.5% versus −0.9% ± 1.9%, in the control group, P=0.033, while effects for upper leg fat mass were borderline nonsignificant (−0.8% ± 3.5% for the WB-EMS group versus 1.0% ± 2.6% for the control group, P=0.050. With respect to functional parameters, the effects for leg extensor strength were again significant, with more favorable changes in the WB-EMS group (9.1% ± 11.2% versus 1.0% ± 8.1% in the control group, P=0.010.Conclusion: In summary, WB-EMS showed positive effects on the

  10. RUNNING 338 KILOMETRES WITHIN FIVE DAYS HAS NO EFFECT ON BODY MASS AND BODY FAT BUT REDUCES SKELETAL MUSCLE MASS - THE ISARRUN 2006

    Directory of Open Access Journals (Sweden)

    Beat Knechtle

    2007-12-01

    Full Text Available We investigated the change of body composition in ultra- endurance runners during a multi-stage ultra-endurance run, the Isarrun 2006 in Bavaria, Germany, where athletes had to run 338 km within 5 days. Body mass, skin fold thicknesses and circumferences of extremities were measured in 21 well-experienced extreme endurance male runners (mean ± SD, 41.5 ± 6.9 years, 72.6 ± 6.4 kg, 178 ± 5 cm, BMI 23.0 ± 2.0 kg/m2, who finished mainly within the first half of the ranking, in order to calculate skeletal muscle mass and body fat mass to prove changes after the race. Body mass and calculated fat mass did not change significantly (p>0.05, but, calculated skeletal muscle mass decreased significantly (p<0.05 by 0.63 ± 0.79 kg by the end of the race. The most apparent decline (p<0.01 of the calculated skeletal muscle mass was during the first stage, and no changes were observed during the last 4 stages. We conclude, that a multi- stage ultra-endurance run over 338 km within 5 days leads to no changes of body mass or body fat mass, but a statistically significant decrease of skeletal muscle mass of 0.63 ± 0.79 kg by the end of the race in well-trained and well-experienced ultra-endurance runners. The change of skeletal muscle mass has to be evaluated in further studies at ultra-endurance races with suitable methods to detect changes in hydration status and water metabolism

  11. Repair of pressure sores over ischial tuberosity with long head of biceps femoris muscle flap combined with semi-V posterior thigh fasciocutaneous flap%股二头肌长头肌瓣联合半V形股后筋膜皮瓣修复坐骨结节压疮

    Institute of Scientific and Technical Information of China (English)

    海恒林; 申传安; 柴家科; 李华涛

    2012-01-01

    Objective To explore the clinical effect of transplantation of the long head of biceps femoris muscle flap in combination with semi-V posterior thigh fasciocutaneous flap for repair of pressure sores over ischial tuberosity. Methods Eight patients with 10 deep pressure sores over ischial tuberosity were admitted to the First Affiliated Hospital to the PLA General Hospital and the 98th Hospital of PLA from April 2004 to June 2010.The wounds measured from 2 cm × 2 cm to 6 cm ×4 cm were covered with the long head of biceps femoris muscle flap and semi-V posterior thigh fasciocutaneous flap(ranged from 10 cm ×6 cm to 13 cm × 8 cm).The condition of flaps was observed and followed up for a long time. Results All flaps survived.Nine wounds healed by first intention.Subcutaneous accumulation of fluids occurred in one wound with formation of a sinus at drainage site,and it healed after dressing change for 25 days.Patients were followed up for 7 to 34 months.Sore recurred in one patient 9 months after surgery,and it was successfully repaired with the same flap for the second time.Flaps in the other 7 patients appeared satisfactory with soft texture and without ulceration. Conclusions This combined flap is easy in formation and transfer,and it causes little side injury with good resistance against pressure.It is a new method for repair of pressure sore over sacral region.%目的 观察应用股二头肌长头肌瓣联合半V形股后筋膜皮瓣修复坐骨结节压疮的临床疗效. 方法 选择2004年4月-2010年6月2家笔者单位收治的坐骨结节深度压疮患者8例共10处创面,压疮范围2cm×2 cm~6 cm ×4cm.设计股二头肌长头肌瓣和半V形股后筋膜皮瓣进行修复,其中股后筋膜皮瓣大小为10 cm ×6 cm ~13 cm×8 cm.统计术后皮瓣成活情况,并进行远期随访. 结果 术后皮瓣全部成活,其中9处压疮切口术后顺利愈合;1处因皮瓣下积液引流部位形成窦道,经换药治疗于术后25 d愈合.随访7

  12. Bioinformatics for the NuGO proof of principle study: analysis of gene expression in muscle of ApoE3*Leiden mice on a high-fat diet using PathVisio

    NARCIS (Netherlands)

    Coort, S.L.M.; Iersel, M.P. van; Erk, M. van; Kooistra, T.; Kleemann, R.; Evelo, C.T.A.

    2008-01-01

    Insulin resistance is a characteristic of type-2 diabetes and its development is associated with an increased fat consumption. Muscle is one of the tissues that becomes insulin resistant after high fat (HF) feeding. The aim of the present study is to identify processes involved in the development of

  13. Movement anatomy of the gluteal region and thigh of the giant anteater Myrmecophaga tridactyla (Myrmecophagidae: Pilosa

    Directory of Open Access Journals (Sweden)

    Priscilla Rosa Queiroz Ribeiro

    2016-06-01

    Full Text Available Abstract: Locomotion reveals the displacement and behavior manner of the species in their daily needs. According to different needs of the several species, different locomotor patterns are adopted. The shapes and attachment points of muscles are important determinants of the movements performed and consequently, the locomotion and motion patterns of living beings. It was aimed to associate anatomical, kinesiology and biomechanics aspects of the gluteal region and thigh of the giant anteater to its moving characteristics and locomotor habits. It was used three specimens of Myrmecophaga tridactyla, settled in formaldehyde aqueous solution at 10% and subsequently, dissected using usual techniques in gross anatomy. The morphological characteristics of the gluteal region and thigh that influence the patterns of movement and locomotion of animals, were analyzed and discussed in light of literature. All muscles of the gluteal region and thigh of giant anteater show parallel arrangement of the muscular fibers, being flat or fusiform. These muscles are formed in the joint which the interpotent type biolever act. These morphological characteristics indicate a greater predominance of amplitude and movement speed at the expense of strength. On the other hand, features such as osteometric index and the observation of giant anteater motion indicate the opposite, what reflects this animal lack of expertise in locomotor habits and shows the need of future realization of more detailed studies in this subject.

  14. Application of Hydrogel in Reconstruction Surgery: Hydrogel/Fat Graft Complex Filler for Volume Reconstruction in Critical Sized Muscle Defects

    Directory of Open Access Journals (Sweden)

    Y. F. Lui

    2016-01-01

    Full Text Available Autogenic fat graft usually suffers from degeneration and volume shrinkage in volume reconstruction applications. How to maintain graft viability and graft volume is an essential consideration in reconstruction therapies. In this presented investigation, a new fat graft transplantation method was developed aiming to improve long term graft viability and volume reconstruction effect by incorporation of hydrogel. The harvested fat graft is dissociated into small fragments and incorporated into a collagen based hydrogel to form a hydrogel/fat graft complex for volume reconstruction purpose. In vitro results indicate that the collagen based hydrogel can significantly improve the survivability of cells inside isolated graft. In a 6-month investigation on artificial created defect model, this hydrogel/fat graft complex filler has demonstrated the ability of promoting fat pad formation inside the targeted defect area. The newly generated fat pad can cover the whole defect and restore its original dimension in 6-month time point. Compared to simple fat transplantation, this hydrogel/fat graft complex system provides much improvement on long term volume restoration effect against degeneration and volume shrinkage. One notable effect is that there is continuous proliferation of adipose tissue throughout the 6-month period. In summary, the hydrogel/fat graft system presented in this investigation demonstrated a better and more significant effect on volume reconstruction in large sized volume defect than simple fat transplantation.

  15. Muscle mass loss and intermuscular lipid accumulation were associated with insulin resistance in patients receiving hemodialysis

    Institute of Scientific and Technical Information of China (English)

    WANG Hui-ling; DING Ting-ting; LU Shi; XU Ye; TIAN Jun; HU Wei-feng; ZHANG Jin-yuan

    2013-01-01

    Background An accelerated muscle wasting was the pivotal factor for protein-energy wasting in end stage renal disease.However,very few researches have examined the skeletal muscle quantity and quality in clinical patients.This study investigated the muscle morphologic changes by magnetic resonance imaging (MRI) and analyzed the related factors in hemodialysis patients.Methods Fifty-eight patients receiving maintenance hemodialysis (HD) were investigated and 28 healthy adults with gender and age matched were used as controls (Control).Anthropometry,cytokine factors,and laboratory data were measured.The muscle and intermuscular adipose tissues (IMAT) were analyzed via a Thigh MRI.The bicep samples were observed after HE staining.Homeostatic model assessment of insulin resistance (HOMA-IR) was measured and their association with muscle wasting was analyzed.Results HD patients tended to have a lower protein diet,anthropometry data,and serum albumin,but the C reactive protein and interleukin-6 increased significantly.The MRI showed that HD patients had less muscle mass and a lower muscle/total ratio,but the fat/muscle and IMAT was higher when compared to the Control group.The muscle fiber showed atrophy and fat accumulation in the biceps samples come from the HD patients.Moreover,we found that the HD patients presented with a high level of plasma fasting insulin and increased HOMA-IR which negatively correlated with the muscle/total ratio,but positively with the fat/muscle ratio.Conclusions Muscle wasting presented early before an obvious malnutrition condition emerged in HD patients.The main morphological change was muscle atrophy along with intermuscular lipid accumulation.Insulin resistance was associated with muscle wasting in dialysis patients.

  16. Examination of Subcutaneous Tissue Thickness in the Thigh Site for Intramuscular Injection in Obese Individuals.

    Science.gov (United States)

    Zaybak, Ayten; İsmailoğlu, Elif Günay; İsmailoğlu, Eren

    2015-09-01

    The aim of the study was to investigate the thickness of subcutaneous (SC) tissue in the dorsogluteal and thigh sites in obese adults and its suitability for intramuscular injection using a standard-length needle. The sample for this prospective study consisted of 54 obese adults who presented to the ultrasound unit of the radiology clinic of a university hospital in the province of İzmir, Turkey, between June 2012 and August 2013. The study received Institutional Review Board approval, and informed written consent was obtained from all participants. The thickness of the SC tissue in the dorsogluteal and thigh sites was measured by sonography. The sonographic measurements were performed by a radiology specialist. The mean thicknesses of the SC tissue were 61.70 ± 15.73 mm in the dorsogluteal site, 27.05 ± 8.52 mm in the rectus femoris site, and 23.23 ± 8.44 mm in vastus lateralis site. The SC tissue was thicker in the dorsogluteal than the thigh site (P njections to the thigh site would be effective in reaching the muscle in the rectus femoris and vastus lateralis sites in all men and in 77.8% of women, although it is not usually adequate for gluteal injection. © 2015 by the American Institute of Ultrasound in Medicine.

  17. Metabolic effects of the iodothyronine functional analogue TRC150094 on the liver and skeletal muscle of high-fat diet fed overweight rats: an integrated proteomic study.

    Science.gov (United States)

    Silvestri, Elena; Glinni, Daniela; Cioffi, Federica; Moreno, Maria; Lombardi, Assunta; de Lange, Pieter; Senese, Rosalba; Ceccarelli, Michele; Salzano, Anna Maria; Scaloni, Andrea; Lanni, Antonia; Goglia, Fernando

    2012-07-06

    A novel functional iodothyronine analogue, TRC150094, which has a much lower potency toward thyroid hormone receptor (α1/β1) activation than triiodothyronine, has been shown to be effective at reducing adiposity in rats simultaneously receiving a high-fat diet (HFD). Here, by combining metabolic, functional and proteomic analysis, we studied how the hepatic and skeletal muscle phenotypes might respond to TRC150094 treatment in HFD-fed overweight rats. Drug treatment increased both the liver and skeletal muscle mitochondrial oxidative capacities without altering mitochondrial efficiency. Coherently, in terms of individual respiratory in-gel activity, blue-native analysis revealed an increased activity of complex V in the liver and of complexes II and V in tibialis muscle in TCR150094-treated animals. Subsequently, the identification of differentially expressed proteins and the analysis of their interrelations gave an integrated view of the phenotypic/metabolic adaptations occurring in the liver and muscle proteomes during drug treatment. TRC150094 significantly altered the expression of several proteins involved in key liver metabolic pathways, including amino acid and nitrogen metabolism, and fructose and mannose metabolism. The canonical pathways most strongly influenced by TRC150094 in tibialis muscle included glycolysis and gluconeogenesis, amino acid, fructose and mannose metabolism, and cell signaling. The phenotypic/metabolic influence of TRC150094 on the liver and skeletal muscle of HFD-fed overweight rats suggests the potential clinical application of this iodothyronine analogue in ameliorating metabolic risk parameters altered by diet regimens.

  18. Increased atherosclerosis and vascular smooth muscle cell activation in AIF-1 transgenic mice fed a high-fat diet.

    Science.gov (United States)

    Sommerville, Laura J; Kelemen, Sheri E; Ellison, Stephen P; England, Ross N; Autieri, Michael V

    2012-01-01

    Allograft inflammatory factor-1 (AIF-1) is a cytoplasmic, scaffold signal transduction protein constitutively expressed in inflammatory cells, but inducible in vascular smooth muscle cells (VSMCs) in response to injury or inflammatory stimuli. Although several basic science and population studies have reported increased AIF-1 expression in human and experimental atherosclerosis, a direct causal effect of AIF-1 expression on development of atherosclerosis has not been reported. The purpose of this study is to establish a direct relationship between AIF-1 expression and development of atherosclerosis. AIF-1 expression is detected VSMC in atherosclerotic lesions from ApoE(-/-) mice, but not normal arteries from wild-type mice. AIF-1 expression can be induced in cultured VSMC by stimulation with oxidized LDL (ox-LDL). Transgenic mice in which AIF-1 expression is driven by the G/C modified SM22 alpha promoter to restrict AIF-1 expression to VSMC develop significantly increased atherosclerosis compared with wild-type control mice when fed a high-fat diet (P=0.022). Cultured VSMC isolated from Tg mice demonstrated significantly increased migration in response to ox-LDL compared with matched controls (P<0.001). VSMC isolated from Tg mice and cultured human VSMC which over express AIF-1 demonstrated increased expression of MMP-2 and MMP-9 mRNA and protein and increased NF-κB activation in response to ox-LDL as compared with wild-type control mice. VSMC which over express AIF-1 have significantly increased uptake of ox-LDL, and increased CD36 expression. Together, these data suggest a strong association between AIF-1 expression, NF-κB activation, and development of experimental atherosclerosis.

  19. Fat utilization during exercise

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Watt, Peter W.; Richter, Erik

    2001-01-01

    1. This study was carried out to test the hypothesis that the greater fat oxidation observed during exercise after adaptation to a high-fat diet is due to an increased uptake of fat originating from the bloodstream. 2. Of 13 male untrained subjects, seven consumed a fat-rich diet (62 % fat, 21......, and blood flow was determined by the thermodilution technique. Muscle biopsy samples were taken from the vastus lateralis muscle before and after exercise. 3. During exercise, the respiratory exchange ratio was significantly lower in subjects consuming the fat-rich diet (0.86 +/- 0.01, mean +/- S.E.M.) than.......05). Muscle glycogen breakdown was significantly lower in the subjects taking the fat-rich diet than those taking the carbohydrate-rich diet (2.6 +/- 0.5 vs. 4.8 +/- 0.5 mmol (kg dry weight)(-1) min(-1), respectively; P

  20. A high-fat diet elicits differential responses in genes coordinating oxidative metabolism in skeletal muscle of lean and obese individuals.

    Science.gov (United States)

    Boyle, K E; Canham, J P; Consitt, L A; Zheng, D; Koves, T R; Gavin, T P; Holbert, D; Neufer, P D; Ilkayeva, O; Muoio, D M; Houmard, J A

    2011-03-01

    In lean individuals, increasing dietary lipid can elicit an increase in whole body lipid oxidation; however, with obesity the capacity to respond to changes in substrate availability appears to be compromised. To determine whether the responses of genes regulating lipid oxidation in skeletal muscle differed between lean and insulin resistant obese humans upon exposure to a high-fat diet (HFD). A 5-d prospective study conducted in the research unit of an academic center. Healthy, lean (n = 12; body mass index = 22.1 ± 0.6 kg/m(2)), and obese (n=10; body mass index = 39.6 ± 1.7 kg/m(2)) males and females, between ages 18 and 30. Participants were studied before and after a 5-d HFD (65% fat). Skeletal muscle biopsies (vastus lateralis) were obtained in the fasted and fed states before and after the HFD and mRNA content for genes involved with lipid oxidation determined. Skeletal muscle acylcarnitine content was determined in the fed states before and after the HFD. Peroxisome proliferator activated receptor (PPAR) α mRNA content increased in lean, but not obese, subjects after a single high-fat meal. From Pre- to Post-HFD, mRNA content exhibited a body size × HFD interaction, where the lean individuals increased while the obese individuals decreased mRNA content for pyruvate dehydrogenase kinase 4, uncoupling protein 3, PPARα, and PPARγ coactivator-1α (P ≤ 0.05). In the obese subjects medium-chain acylcarnitine species tended to accumulate, whereas no change or a reduction was evident in the lean individuals. These findings indicate a differential response to a lipid stimulus in the skeletal muscle of lean and insulin resistant obese humans.

  1. Blockade of interleukin 6 signalling ameliorates systemic insulin resistance through upregulation of glucose uptake in skeletal muscle and improves hepatic steatosis in high-fat diet fed mice.

    Science.gov (United States)

    Yamaguchi, Kanji; Nishimura, Takeshi; Ishiba, Hiroshi; Seko, Yuya; Okajima, Akira; Fujii, Hideki; Tochiki, Nozomi; Umemura, Atsushi; Moriguchi, Michihisa; Sumida, Yoshio; Mitsuyoshi, Hironori; Yasui, Kohichiroh; Minami, Masahito; Okanoue, Takeshi; Itoh, Yoshito

    2015-02-01

    Mice fed high-fat diet (HFD) demonstrate obesity-related systemic insulin resistance (IR). Aim of this study is to clarify the role of interleukin (IL)-6 in IR in vivo focusing on skeletal muscle, adipose tissue and liver. Plasma markers of IR and hepatic IL-6 signalling were examined in eight-week HFD feeding C57/BL6 mice. Furthermore, IR-related molecules in skeletal muscles, adipose tissues and livers were investigated following a single injection of anti- IL-6 receptor neutralizing antibody (MR16-1) in two-week HFD feeding mice. To investigate the role of IL-6 in hepatic steatosis by prolonged HFD, hepatic triglyceride accumulation was assessed in eight-week HFD feeding mice with continuous MR16-1 treatment. High-fat diet for both 2 and 8 weeks elevated plasma IL-6, insulin and leptin, which were decreased by MR16-1 treatment. A single injection of MR16-1 ameliorated IR as assessed by glucose and insulin tolerance test, which may be attributable to upregulation of glucose transporter type 4 via phosphorylation of AMP-activated protein kinase as well as upregulation of peroxisome proliferator-activated receptor alpha in livers and, particularly, in skeletal muscles. MR16-1 also decreased mRNA expression of leptin and tumour necrosis factor-alpha and increased that of adiponectin in adipose tissue. High-fat diet for 8 weeks, not 2 weeks, induced hepatic steatosis and increased hepatic triglyceride content, all of which were ameliorated by MR16-1 treatment. Blockade of excessive IL-6 stimulus ameliorated HFD-induced IR in a skeletal muscle and modulated the production of adipokines from an early stage of NAFLD, leading to prevention of liver steatosis for a long term. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Skeletal muscle mass to visceral fat area ratio is an important determinant affecting hepatic conditions of non-alcoholic fatty liver disease.

    Science.gov (United States)

    Shida, Takashi; Akiyama, Kentaro; Oh, Sechang; Sawai, Akemi; Isobe, Tomonori; Okamoto, Yoshikazu; Ishige, Kazunori; Mizokami, Yuji; Yamagata, Kenji; Onizawa, Kojiro; Tanaka, Hironori; Iijima, Hiroko; Shoda, Junichi

    2017-08-08

    Not only obesity but also sarcopenia is associated with NAFLD. The influence of altered body composition on the pathophysiology of NAFLD has not been fully elucidated. The aim of this study is to determine whether skeletal muscle mass to visceral fat area ratio (SV ratio) affects NAFLD pathophysiology. A total of 472 subjects were enrolled. The association between SV ratio and NAFLD pathophysiological factors was assessed in a cross-sectional nature by stratification analysis. When the SV ratio was stratified by quartiles (Q 1-Q 4), the SV ratio showed a negative relationship with the degree of body mass index, HOMA-IR, and liver stiffness (Q 1, 8.9 ± 7.5 kPa, mean ± standard deviation; Q 2, 7.5 ± 6.2; Q 3, 5.8 ± 3.7; Q 4, 5.0 ± 1.9) and steatosis (Q 1, 282 ± 57 dB/m; Q 2, 278 ± 58; Q 3, 253 ± 57; Q 4, 200 ± 42) measured by transient elastography. Levels of leptin and biochemical markers of liver cell damage, liver fibrosis, inflammation and oxidative stress, and hepatocyte apoptosis were significantly higher in subjects in Q 1 than in those in Q 2, Q 3, or Q 4. Moreover, fat contents in femoral muscles were significantly higher in subjects in Q 1 and the change was associated with weakened muscle strength. In logistic regression analysis, NAFLD subjects with the decreased SV ratio were likely to have an increased risk of moderate-to-severe steatosis and that of advanced fibrosis. Decreased muscle mass coupled with increased visceral fat mass is closely associated with an increased risk for exacerbating NAFLD pathophysiology.

  3. Effect of vitamin A depletion on fat deposition in finishing pigs, intramuscular fat content and gene expression in the longissimus muscle

    DEFF Research Database (Denmark)

    Tous, Nuria; Lizardo, R; Theil, Peter Kappel

    2014-01-01

    Nutritional strategies like reduction of dietary vitamin A have been proposed with the aim of increasing intramuscular fat (IMF) and improving the meat quality. The purpose of the study was to evaluate if reduction of dietary vitamin A would increase IMF, without affecting backfat deposition...

  4. Fiber-type-specific sensitivities and phenotypic adaptations to dietary fat overload differentially impact fast- versus slow-twitch muscle contractile function in C57BL/6J mice

    NARCIS (Netherlands)

    Ciapaite, Jolita; van den Berg, Sjoerd A.; Houten, Sander M.; Nicolay, Klaas; van Dijk, Ko Willems; Jeneson, Jeroen

    2015-01-01

    High-fat diets (HFDs) have been shown to interfere with skeletal muscle energy metabolism and cause peripheral insulin resistance. However, understanding of HFD impact on skeletal muscle primary function, i.e., contractile performance, is limited. Male C57BL/6J mice were fed HFD containing lard (HFL

  5. Fiber-type-specific sensitivities and phenotypic adaptations to dietary fat overload differentially impact fast- versus slow-twitch muscle contractile function in C57BL/6J mice

    NARCIS (Netherlands)

    Ciapaite, Jolita; van den Berg, Sjoerd A.; Houten, Sander M.; Nicolay, Klaas; van Dijk, Ko Willems; Jeneson, Jeroen

    High-fat diets (HFDs) have been shown to interfere with skeletal muscle energy metabolism and cause peripheral insulin resistance. However, understanding of HFD impact on skeletal muscle primary function, i.e., contractile performance, is limited. Male C57BL/6J mice were fed HFD containing lard

  6. Fascia-only anterolateral thigh flap for extremity reconstruction.

    Science.gov (United States)

    Fox, Paige; Endress, Ryan; Sen, Subhro; Chang, James

    2014-05-01

    The ability to use the anterolateral thigh (ALT) flap as a vascularized fascial flap, without skin or muscle, was first documented by Koshima et al in 1989. The authors mention the possibility of using the fascia alone for dural reconstruction. Despite its description more than 20 years ago, little literature exists on the application of the ALT flap as a vascularized fascial flap. In our experience, the ALT flap can be used as a fascia-only flap for thin, pliable coverage in extremity reconstruction. After approval from the institutional review board, the medical records and photographs of patients who had undergone fascia-only ALT free flaps for extremity reconstruction were reviewed. Photographic images of patients were then matched to patients who had undergone either a