WorldWideScience

Sample records for fast-time scale dynamics

  1. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale

    Energy Technology Data Exchange (ETDEWEB)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I. [Institute of Applied Physics of RAS, Nizhny Novgorod (Russian Federation)

    2016-07-15

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.

  2. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale.

    Science.gov (United States)

    Maslennikov, Oleg V; Nekorkin, Vladimir I

    2016-07-01

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.

  3. Wide dynamic range neutron flux monitor having fast time response for the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Isobe, M., E-mail: isobe@nifs.ac.jp; Takeiri, Y. [National Institute for Fusion Science, Toki 509-5292 (Japan); Department of Fusion Science, The Graduate University for Advanced Studies, Toki 509-5292 (Japan); Ogawa, K.; Miyake, H.; Hayashi, H.; Kobuchi, T. [National Institute for Fusion Science, Toki 509-5292 (Japan); Nakano, Y.; Watanabe, K.; Uritani, A. [Department of Materials, Physics and Energy Engineering, Nagoya University, Nagoya 464-8603 (Japan); Misawa, T. [Kyoto University Research Reactor Institute, Kumatori 590-0494 (Japan); Nishitani, T. [Japan Atomic Energy Agency, Rokkasho 039-3212 (Japan); Tomitaka, M.; Kumagai, T.; Mashiyama, Y.; Ito, D.; Kono, S. [Toshiba Corporation, Fuchu 183-8511 (Japan); Yamauchi, M. [Toshiba Nuclear Engineering Services Corporation, Yokohama 235-8523 (Japan)

    2014-11-15

    A fast time response, wide dynamic range neutron flux monitor has been developed toward the LHD deuterium operation by using leading-edge signal processing technologies providing maximum counting rate up to ∼5 × 10{sup 9} counts/s. Because a maximum total neutron emission rate over 1 × 10{sup 16} n/s is predicted in neutral beam-heated LHD plasmas, fast response and wide dynamic range capabilities of the system are essential. Preliminary tests have demonstrated successful performance as a wide dynamic range monitor along the design.

  4. Fast time-reversible algorithms for molecular dynamics of rigid-body systems

    Science.gov (United States)

    Kajima, Yasuhiro; Hiyama, Miyabi; Ogata, Shuji; Kobayashi, Ryo; Tamura, Tomoyuki

    2012-06-01

    In this paper, we present time-reversible simulation algorithms for rigid bodies in the quaternion representation. By advancing a time-reversible algorithm [Y. Kajima, M. Hiyama, S. Ogata, and T. Tamura, J. Phys. Soc. Jpn. 80, 114002 (2011), 10.1143/JPSJ.80.114002] that requires iterations in calculating the angular velocity at each time step, we propose two kinds of iteration-free fast time-reversible algorithms. They are easily implemented in codes. The codes are compared with that of existing algorithms through demonstrative simulation of a nanometer-sized water droplet to find their stability of the total energy and computation speeds.

  5. Fast Timing for Collider Detectors

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Advancements in fast timing particle detectors have opened up new possibilities to design collider detectors that fully reconstruct and separate event vertices and individual particles in the time domain. The applications of these techniques are considered for the physics at HL-LHC.

  6. Separating Double-Beta Decay Events from Solar Neutrino Interactions in a Kiloton-Scale Liquid Scintillator Detector By Fast Timing

    CERN Document Server

    Elagin, Andrey; Naranjo, Brian; Ouellet, Jonathan; Winslow, Lindley; Wongjirad, Taritree

    2016-01-01

    We present a technique for separating nuclear double beta decay ($\\beta\\beta$-decay) events from background neutrino interactions due to $^{8}$B decays in the sun. This background becomes dominant in a kiloton-scale liquid-scintillator detector deep underground and is usually considered as irreducible due to an overlap in deposited energy with the signal. However, electrons from 0$\

  7. Separating double-beta decay events from solar neutrino interactions in a kiloton-scale liquid scintillator detector by fast timing

    Science.gov (United States)

    Elagin, Andrey; Frisch, Henry J.; Naranjo, Brian; Ouellet, Jonathan; Winslow, Lindley; Wongjirad, Taritree

    2017-03-01

    We present a technique for separating nuclear double beta decay (ββ -decay) events from background neutrino interactions due to 8B decays in the sun. This background becomes dominant in a kiloton-scale liquid-scintillator detector deep underground and is usually considered as irreducible due to an overlap in deposited energy with the signal. However, electrons from 0 νββ -decay often exceed the Cherenkov threshold in liquid scintillator, producing photons that are prompt and correlated in direction with the initial electron direction. The use of large-area fast photodetectors allows some separation of these prompt photons from delayed isotropic scintillation light and, thus, the possibility of reconstructing the event topology. Using a simulation of a 6.5 m radius liquid scintillator detector with 100 ps resolution photodetectors, we show that a spherical harmonics analysis of early-arrival light can discriminate between 0 νββ -decay signal and 8B solar neutrino background events on a statistical basis. Good separation will require the development of a slow scintillator with a 5 ns risetime.

  8. GRIFFIN's Fast-Timing Array

    Science.gov (United States)

    Olaizola, Bruno; Griffin Collaboration

    2016-09-01

    The Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei (GRIFFIN) is the new β-decay spectrometer facility at TRIUMF-ISAC. Consists of an array of 16 large-volume HPGe clover detectors with an unparalleled efficiency of 19% at 1.33 MeV. Its strongest advantage is the versatility of the ancillary detectors that can be coupled to the main array to tag on β particles, neutrons or precisely measure conversion electron spectra. An ancillary array of 8 LaBr3(Ce) detectors for γ-rays and a fast plastic scintillator for β-particles has been optimized for fast-timing experiments with GRIFFIN. The 51 mm x 51 mm cylindrical LaBr3(Ce) crystals are coupled to Hamamatsu R2083 photomultipliers. Timing resolutions as good as FWHM 200 ps and time-walks below +/- 30 ps have been obtained for individual crystals using analog electronics. There is also an ongoing project to develop an active BGO shield for the LaBr3(Ce) crystals. The LaBr3(Ce) array commissioning experiment to measure the 145,146Cs decay to 145,146Ba will test its capabilities over a wide range of lifetimes. Preliminary results on the lifetimes of some of the low-laying states will be presented.

  9. Generic Dynamic Scaling in Kinetic Roughening

    OpenAIRE

    Ramasco, José J.; López, Juan M.; Rodríguez, Miguel A.

    2000-01-01

    We study the dynamic scaling hypothesis in invariant surface growth. We show that the existence of power-law scaling of the correlation functions (scale invariance) does not determine a unique dynamic scaling form of the correlation functions, which leads to the different anomalous forms of scaling recently observed in growth models. We derive all the existing forms of anomalous dynamic scaling from a new generic scaling ansatz. The different scaling forms are subclasses of this generic scali...

  10. Ultra-fast timing with plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Hoischen, Robert [Department of Physics, Lund University, S-22100 Lund (Sweden); Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Pietri, Stephane; Prokopowicz, Wawrzyniec; Schaffner, Henning; Gerl, Juergen; Wollersheim, Hans Juergen; Kurz, Nikolaus [Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Rudolph, Dirk [Department of Physics, Lund University, S-22100 Lund (Sweden)

    2009-07-01

    Fast timing detectors for time-of-flight measurements are essential identification tools for isotopes studied at fragment separators at major heavy-ion research facilities. While today's standard technique of utilizing a plastic scintillator read out by few photomultiplier tubes proofs to be efficient, it does not provide the required time resolution for future key experiments at, for example, the Super-FRS at FAIR. A common present-day approach is to use diamond detectors instead. While they do provide a better time resolution compared to scintillators, they are more difficult to use and far more expensive. Results from tests using a new design approach with standard materials will be presented. This leads to a much improved performance, but remains both cost-efficient, compact, and reliable. The design goals and how to accomplish them will be exemplified by the LYCCA (Lund-York-Cologne CAlorimeter) detector aiming for fast-beam experiments at HISPEC within NUSTAR.

  11. Flavor hierarchies from dynamical scales

    CERN Document Server

    Panico, Giuliano

    2016-07-20

    One main obstacle for any beyond the SM (BSM) scenario solving the hierarchy problem is its potentially large contributions to electric dipole moments. An elegant way to avoid this problem is to have the light SM fermions couple to the BSM sector only through bilinears, $\\bar ff$. This possibility can be neatly implemented in composite Higgs models. We study the implications of dynamically generating the fermion Yukawa couplings at different scales, relating larger scales to lighter SM fermions. We show that all flavor and CP-violating constraints can be easily accommodated for a BSM scale of few TeV, without requiring any extra symmetry. Contributions to B physics are mainly mediated by the top, giving a predictive pattern of deviations in $\\Delta F=2$ and $\\Delta F=1$ flavor observables that could be seen in future experiments.

  12. Evaluation of Fast-Time Wake Vortex Prediction Models

    Science.gov (United States)

    Proctor, Fred H.; Hamilton, David W.

    2009-01-01

    Current fast-time wake models are reviewed and three basic types are defined. Predictions from several of the fast-time models are compared. Previous statistical evaluations of the APA-Sarpkaya and D2P fast-time models are discussed. Root Mean Square errors between fast-time model predictions and Lidar wake measurements are examined for a 24 hr period at Denver International Airport. Shortcomings in current methodology for evaluating wake errors are also discussed.

  13. Initial Study of an Effective Fast-Time Simulation Platform for Unmanned Aircraft System Traffic Management

    Science.gov (United States)

    Xue, Min; Rios, Joseph

    2017-01-01

    Small Unmanned Aerial Vehicles (sUAVs), typically 55 lbs and below, are envisioned to play a major role in surveilling critical assets, collecting important information, and delivering goods. Large scale small UAV operations are expected to happen in low altitude airspace in the near future. Many static and dynamic constraints exist in low altitude airspace because of manned aircraft or helicopter activities, various wind conditions, restricted airspace, terrain and man-made buildings, and conflict-avoidance among sUAVs. High sensitivity and high maneuverability are unique characteristics of sUAVs that bring challenges to effective system evaluations and mandate such a simulation platform different from existing simulations that were built for manned air traffic system and large unmanned fixed aircraft. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative focuses on enabling safe and efficient sUAV operations in the future. In order to help define requirements and policies for a safe and efficient UTM system to accommodate a large amount of sUAV operations, it is necessary to develop a fast-time simulation platform that can effectively evaluate requirements, policies, and concepts in a close-to-reality environment. This work analyzed the impacts of some key factors including aforementioned sUAV's characteristics and demonstrated the importance of these factors in a successful UTM fast-time simulation platform.

  14. CAIPIRINHA-Dixon-TWIST (CDT)-volume-interpolated breath-hold examination (VIBE): a new technique for fast time-resolved dynamic 3-dimensional imaging of the abdomen with high spatial resolution.

    Science.gov (United States)

    Michaely, Henrik J; Morelli, John N; Budjan, Johannes; Riffel, Philipp; Nickel, Dominik; Kroeker, Randall; Schoenberg, Stefan O; Attenberger, Ulrike I

    2013-08-01

    The purpose of this study was to assess the feasibility and image quality of a novel, highly accelerated T1-weighted sequence for time-resolved imaging of the abdomen during the first pass of contrast media transit using controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) under sampling, view-sharing techniques, and Dixon water-fat separation (CAIPRINHA-Dixon-time-resolved imaging with interleaved stochastic trajectories-volumetric interpolated breath-hold examination [CDT-VIBE]). In this retrospective, institutional review board-approved study, 47 patients (median age, 62 years; 25 men, 22 women) scanned on a 3.0-T magnetic resonance system (Skyra; Siemens) were included. The CDT-VIBE (repetition time/echo time1/echo time2, 4.1/1.33/2.56 milliseconds; acquisition time, 29 seconds) was used in place of the standard arterial phase acquisition and started 15 seconds after the injection of 0.1 mmol/kg Gd-DOTA (Dotarem, Guerbet). Within 29 seconds, 14 high spatial resolution (1.2 × 1.2 × 3 mm) 3-dimensional data sets were acquired and reconstructed using view sharing (temporal resolution, 2.1 seconds). The CDT-VIBE images were evaluated independently by 2 blinded, experienced radiologists with regard to image quality and the number of hepatic arterial-dominant phases present on an ordinal 5-point scale (5, excellent; 1, nondiagnostic). Added diagnostic information with CDT-VIBE relative to portal venous phase VIBE was assessed. In all patients, CDT-VIBE measurements were successfully acquired. The image quality was diagnostic in 46 of the 47 patients. Both readers assessed the highest image quality present in the data sets with a median score of 4 (range, 3-5 for both readers; κ, 0.789) and the worst image quality with a median score of 3 (range, 1-4 for both readers; κ, 0.689). With a range between 1 and 8 (median, 5), hepatic arterial-dominant data sets (of the 14 acquired) were obtained in each case. There was an added diagnostic

  15. Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Karatay, Durmus U.; Harrison, Jeffrey S.; Glaz, Micah S.; Giridharagopal, Rajiv; Ginger, David S., E-mail: ginger@chem.washington.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States)

    2016-05-15

    The ability to measure microsecond- and nanosecond-scale local dynamics below the diffraction limit with widely available atomic force microscopy hardware would enable new scientific studies in fields ranging from biology to semiconductor physics. However, commercially available scanning-probe instruments typically offer the ability to measure dynamics only on time scales of milliseconds to seconds. Here, we describe in detail the implementation of fast time-resolved electrostatic force microscopy using an oscillating cantilever as a means to measure fast local dynamics following a perturbation to a sample. We show how the phase of the oscillating cantilever relative to the perturbation event is critical to achieving reliable sub-cycle time resolution. We explore how noise affects the achievable time resolution and present empirical guidelines for reducing noise and optimizing experimental parameters. Specifically, we show that reducing the noise on the cantilever by using photothermal excitation instead of piezoacoustic excitation further improves time resolution. We demonstrate the discrimination of signal rise times with time constants as fast as 10 ns, and simultaneous data acquisition and analysis for dramatically improved image acquisition times.

  16. From dynamical scaling to local scale-invariance: a tutorial

    CERN Document Server

    Henkel, Malte

    2016-01-01

    Dynamical scaling arises naturally in various many-body systems far from equilibrium. After a short historical overview, the elements of possible extensions of dynamical scaling to a local scale-invariance will be introduced. Schr\\"odinger-invariance, the most simple example of local scale-invariance, will be introduced as a dynamical symmetry in the Edwards-Wilkinson universality class of interface growth. The Lie algebra construction, its representations and the Bargman superselection rules will be combined with non-equilibrium Janssen-de Dominicis field-theory to produce explicit predictions for responses and correlators, which can be compared to the results of explicit model studies. At the next level, the study of non-stationary states requires to go over, from Schr\\"odinger-invariance, to ageing-invariance. The ageing algebra admits new representations, which acts as dynamical symmetries on more general equations, and imply that each non-equilibrium scaling operator is characterised by two distinct, ind...

  17. Stochastic dynamic equations on general time scales

    Directory of Open Access Journals (Sweden)

    Martin Bohner

    2013-02-01

    Full Text Available In this article, we construct stochastic integral and stochastic differential equations on general time scales. We call these equations stochastic dynamic equations. We provide the existence and uniqueness theorem for solutions of stochastic dynamic equations. The crucial tool of our construction is a result about a connection between the time scales Lebesgue integral and the Lebesgue integral in the common sense.

  18. 2005 Program of Study: Fast Times and Fine Scales

    Science.gov (United States)

    2006-07-01

    is very close to the equilibrium density. where lEy denotes expectation conditional on X0 = y, Both the forward and the backward equations can be...V(A 1 (V v) . V(A’(V. v)) ( IVA - 1 V. v12 ). (3.40) From this it is clear that the explicit optimization over 9 yields a sharper bound by picking

  19. Evaluation of Fast-Time Wake Vortex Models using Wake Encounter Flight Test Data

    Science.gov (United States)

    Ahmad, Nashat N.; VanValkenburg, Randal L.; Bowles, Roland L.; Limon Duparcmeur, Fanny M.; Gloudesman, Thijs; van Lochem, Sander; Ras, Eelco

    2014-01-01

    This paper describes a methodology for the integration and evaluation of fast-time wake models with flight data. The National Aeronautics and Space Administration conducted detailed flight tests in 1995 and 1997 under the Aircraft Vortex Spacing System Program to characterize wake vortex decay and wake encounter dynamics. In this study, data collected during Flight 705 were used to evaluate NASA's fast-time wake transport and decay models. Deterministic and Monte-Carlo simulations were conducted to define wake hazard bounds behind the wake generator. The methodology described in this paper can be used for further validation of fast-time wake models using en-route flight data, and for determining wake turbulence constraints in the design of air traffic management concepts.

  20. Initial Report of the Fast Timing Working Group

    CERN Document Server

    CMS Collaboration

    2016-01-01

    A preliminary set of results highlighting the unique capabilities of fast-timing for resolving information from individual collisions at the High-Luminosity LHC (HL- LHC) is presented. These results explore the possibilities made available by using fast timing to enhance the reconstruction and physics capabilities of the CMS detector in terms of pileup mitigation and searches for new physics. Fast timing applications in calorimetry, for electromagnetic showers, and for MIPs, to time-tag tracks, are demonstrated as are first examples of what is possible with their combination.

  1. Fluid dynamics: Swimming across scales

    Science.gov (United States)

    Baumgart, Johannes; Friedrich, Benjamin M.

    2014-10-01

    The myriad creatures that inhabit the waters of our planet all swim using different mechanisms. Now, a simple relation links key physical observables of underwater locomotion, on scales ranging from millimetres to tens of metres.

  2. From dynamical scaling to local scale-invariance: a tutorial

    Science.gov (United States)

    Henkel, Malte

    2017-03-01

    Dynamical scaling arises naturally in various many-body systems far from equilibrium. After a short historical overview, the elements of possible extensions of dynamical scaling to a local scale-invariance will be introduced. Schrödinger-invariance, the most simple example of local scale-invariance, will be introduced as a dynamical symmetry in the Edwards-Wilkinson universality class of interface growth. The Lie algebra construction, its representations and the Bargman superselection rules will be combined with non-equilibrium Janssen-de Dominicis field-theory to produce explicit predictions for responses and correlators, which can be compared to the results of explicit model studies. At the next level, the study of non-stationary states requires to go over, from Schrödinger-invariance, to ageing-invariance. The ageing algebra admits new representations, which acts as dynamical symmetries on more general equations, and imply that each non-equilibrium scaling operator is characterised by two distinct, independent scaling dimensions. Tests of ageing-invariance are described, in the Glauber-Ising and spherical models of a phase-ordering ferromagnet and the Arcetri model of interface growth.

  3. Large-scale dynamics of magnetic helicity

    Science.gov (United States)

    Linkmann, Moritz; Dallas, Vassilios

    2016-11-01

    In this paper we investigate the dynamics of magnetic helicity in magnetohydrodynamic (MHD) turbulent flows focusing at scales larger than the forcing scale. Our results show a nonlocal inverse cascade of magnetic helicity, which occurs directly from the forcing scale into the largest scales of the magnetic field. We also observe that no magnetic helicity and no energy is transferred to an intermediate range of scales sufficiently smaller than the container size and larger than the forcing scale. Thus, the statistical properties of this range of scales, which increases with scale separation, is shown to be described to a large extent by the zero flux solutions of the absolute statistical equilibrium theory exhibited by the truncated ideal MHD equations.

  4. Studies on fast timing and high precision tracking performance of Resistive Plate Chamber

    CERN Document Server

    Han, L; The ATLAS collaboration

    2013-01-01

    Resistive plate chambers (RPC), produced in large scales, are widely used as trigger detectors with O(ns) time resolution in high energy and high intensity experiments. To confront the future high experimental frontiers, such as the super-LHC, RPCs equipped with fine-pitch readout strips were tested with 180GeV/c muon at CERN SPS H8 beam line, to assess the viability of using RPCs for both fast timing and high precision tracking trigger.

  5. Some Nonlinear Dynamic Inequalities on Time Scales

    Indian Academy of Sciences (India)

    Wei Nian Li; Weihong Sheng

    2007-11-01

    The aim of this paper is to investigate some nonlinear dynamic inequalities on time scales, which provide explicit bounds on unknown functions. The inequalities given here unify and extend some inequalities in (B G Pachpatte, On some new inequalities related to a certain inequality arising in the theory of differential equation, J. Math. Anal. Appl. 251 (2000) 736--751).

  6. Simple scaling of catastrophic landslide dynamics.

    Science.gov (United States)

    Ekström, Göran; Stark, Colin P

    2013-03-22

    Catastrophic landslides involve the acceleration and deceleration of millions of tons of rock and debris in response to the forces of gravity and dissipation. Their unpredictability and frequent location in remote areas have made observations of their dynamics rare. Through real-time detection and inverse modeling of teleseismic data, we show that landslide dynamics are primarily determined by the length scale of the source mass. When combined with geometric constraints from satellite imagery, the seismically determined landslide force histories yield estimates of landslide duration, momenta, potential energy loss, mass, and runout trajectory. Measurements of these dynamical properties for 29 teleseismogenic landslides are consistent with a simple acceleration model in which height drop and rupture depth scale with the length of the failing slope.

  7. ELASTIC: A Large Scale Dynamic Tuning Environment

    Directory of Open Access Journals (Sweden)

    Andrea Martínez

    2014-01-01

    Full Text Available The spectacular growth in the number of cores in current supercomputers poses design challenges for the development of performance analysis and tuning tools. To be effective, such analysis and tuning tools must be scalable and be able to manage the dynamic behaviour of parallel applications. In this work, we present ELASTIC, an environment for dynamic tuning of large-scale parallel applications. To be scalable, the architecture of ELASTIC takes the form of a hierarchical tuning network of nodes that perform a distributed analysis and tuning process. Moreover, the tuning network topology can be configured to adapt itself to the size of the parallel application. To guide the dynamic tuning process, ELASTIC supports a plugin architecture. These plugins, called ELASTIC packages, allow the integration of different tuning strategies into ELASTIC. We also present experimental tests conducted using ELASTIC, showing its effectiveness to improve the performance of large-scale parallel applications.

  8. Test and calibration of the IDS fast-timing electronics

    CERN Document Server

    AUTHOR|(CDS)2160817

    2016-01-01

    The ISOLDE decay station(IDS) is one of the permanent experimental setups at the ISOLDE facility of CERN. IDS is used to study decay properties of radioactive nuclei. Thus, fast-timing electronics are necessary for extracting nuclear half-lives. The aims of this work are testing and optimization of the IDS fast-timing electronics as well as measuring a nuclear level half-life in the decay of $^{152}$Eu. The energy resolution of LaBr$_3$ $\\gamma$-detectors was characterized and optimized. A nuclear level lifetime of $^{152}$Eu was measured after obtaining the best parameters for energy resolution and time walk. Dedicated sorting scripts were developed in ROOT in order of perform the characterization and optimization automatically.

  9. NASA AVOSS Fast-Time Wake Prediction Models: User's Guide

    Science.gov (United States)

    Ahmad, Nash'at N.; VanValkenburg, Randal L.; Pruis, Matthew

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is developing and testing fast-time wake transport and decay models to safely enhance the capacity of the National Airspace System (NAS). The fast-time wake models are empirical algorithms used for real-time predictions of wake transport and decay based on aircraft parameters and ambient weather conditions. The aircraft dependent parameters include the initial vortex descent velocity and the vortex pair separation distance. The atmospheric initial conditions include vertical profiles of temperature or potential temperature, eddy dissipation rate, and crosswind. The current distribution includes the latest versions of the APA (3.4) and the TDP (2.1) models. This User's Guide provides detailed information on the model inputs, file formats, and the model output. An example of a model run and a brief description of the Memphis 1995 Wake Vortex Dataset is also provided.

  10. Multivariable dynamic calculus on time scales

    CERN Document Server

    Bohner, Martin

    2016-01-01

    This book offers the reader an overview of recent developments of multivariable dynamic calculus on time scales, taking readers beyond the traditional calculus texts. Covering topics from parameter-dependent integrals to partial differentiation on time scales, the book’s nine pedagogically oriented chapters provide a pathway to this active area of research that will appeal to students and researchers in mathematics and the physical sciences. The authors present a clear and well-organized treatment of the concept behind the mathematics and solution techniques, including many practical examples and exercises.

  11. Dual-scale multimedia dynamic synchronization model

    Institute of Scientific and Technical Information of China (English)

    李乃祥

    2009-01-01

    Multimedia synchronization is the key technology in application of distributed multimedia.Solution of synchronization conflicts insides and among streams as well as that of user interaction,synchronization granularity refinement and synchronization precision improvement remain great challenges although great efforts have been invested by the academic circle.The construction method of a dual-scale dynamic synchronous model of multimedia presented in this article realizes multimedia synchronization on two sca...

  12. Scaling laws and dynamics of bubble coalescence

    Science.gov (United States)

    Anthony, Christopher R.; Kamat, Pritish M.; Thete, Sumeet S.; Munro, James P.; Lister, John R.; Harris, Michael T.; Basaran, Osman A.

    2017-08-01

    The coalescence of bubbles and drops plays a central role in nature and industry. During coalescence, two bubbles or drops touch and merge into one as the neck connecting them grows from microscopic to macroscopic scales. The hydrodynamic singularity that arises when two bubbles or drops have just touched and the flows that ensue have been studied thoroughly when two drops coalesce in a dynamically passive outer fluid. In this paper, the coalescence of two identical and initially spherical bubbles, which are idealized as voids that are surrounded by an incompressible Newtonian liquid, is analyzed by numerical simulation. This problem has recently been studied (a) experimentally using high-speed imaging and (b) by asymptotic analysis in which the dynamics is analyzed by determining the growth of a hole in the thin liquid sheet separating the two bubbles. In the latter, advantage is taken of the fact that the flow in the thin sheet of nonconstant thickness is governed by a set of one-dimensional, radial extensional flow equations. While these studies agree on the power law scaling of the variation of the minimum neck radius with time, they disagree with respect to the numerical value of the prefactors in the scaling laws. In order to reconcile these differences and also provide insights into the dynamics that are difficult to probe by either of the aforementioned approaches, simulations are used to access both earlier times than has been possible in the experiments and also later times when asymptotic analysis is no longer applicable. Early times and extremely small length scales are attained in the new simulations through the use of a truncated domain approach. Furthermore, it is shown by direct numerical simulations in which the flow within the bubbles is also determined along with the flow exterior to them that idealizing the bubbles as passive voids has virtually no effect on the scaling laws relating minimum neck radius and time.

  13. A population study of fasting time and serum prostate-speciifc antigen (PSA) level

    Institute of Scientific and Technical Information of China (English)

    Cheryl K Lau; Maggie Guo; Jeannine A Viczko; Christopher T Naugler

    2014-01-01

    Prostate cancer is one of the most common cancers in men. Traditional screening and diagnostic methods include digital rectal examinations(DREs), biopsies and serum prostate‑speciifc antigen(PSA) tests, with the latter being the more popular. PSA is a biomarker for prostate cancer; however, it is highly sensitive to external factors as well as other prostate diseases. As such, the reliability of of the serum PSA level as a sole screening and diagnostic tool for prostate cancer is controversial. Recently, it has been shown that fasting extremes can affect concentrations of serum chemistry analytes, thus raising the question of whether or not fasting has an effect on the highly sensitive PSA biomarker. Patients testing for serum PSA levels are often concomitantly submitting to other tests that require fasting, subjecting certain patients to a fasting PSA level while others not. The objective of this study was to investigate whether this discrepancy in fasting state translates into an effect on serum PSA levels. Serum PSA levels and fasting time records for 157276 men who underwent testing at Calgary Laboratory Services(CLS; Calgary, Alberta, Canada) between 01January 2010 and 31March 2013 were accessed. Linear regression models of mean PSA levels and fasting times revealed a statistically important relationship at certain fasting times. Applying a dynamic mathematical model to explore the clinical effect of fasting suggests minimal impact on serum PSA result interpretation. Thus, patients can be tested for serum PSA levels regardless of their fasting state.

  14. A population study of fasting time and serum prostate-specific antigen (PSA level

    Directory of Open Access Journals (Sweden)

    Cheryl K Lau

    2014-10-01

    Full Text Available Prostate cancer is one of the most common cancers in men. Traditional screening and diagnostic methods include digital rectal examinations (DREs, biopsies and serum prostate-specific antigen (PSA tests, with the latter being the more popular. PSA is a biomarker for prostate cancer; however, it is highly sensitive to external factors as well as other prostate diseases. As such, the reliability of of the serum PSA level as a sole screening and diagnostic tool for prostate cancer is controversial. Recently, it has been shown that fasting extremes can affect concentrations of serum chemistry analytes, thus raising the question of whether or not fasting has an effect on the highly sensitive PSA biomarker. Patients testing for serum PSA levels are often concomitantly submitting to other tests that require fasting, subjecting certain patients to a fasting PSA level while others not. The objective of this study was to investigate whether this discrepancy in fasting state translates into an effect on serum PSA levels. Serum PSA levels and fasting time records for 157 276 men who underwent testing at Calgary Laboratory Services (CLS; Calgary, Alberta, Canada between 01 January 2010 and 31 March 2013 were accessed. Linear regression models of mean PSA levels and fasting times revealed a statistically important relationship at certain fasting times. Applying a dynamic mathematical model to explore the clinical effect of fasting suggests minimal impact on serum PSA result interpretation. Thus, patients can be tested for serum PSA levels regardless of their fasting state.

  15. Dynamic scaling regimes of collective decision making

    CERN Document Server

    Gronlund, Andreas; Minnhagen, Petter

    2008-01-01

    We investigate a social system of agents faced with a binary choice. We assume there is a correct, or beneficial, outcome of this choice. Furthermore, we assume agents are influenced by others in making their decision, and that the agents can obtain information that may guide them towards making a correct decision. The dynamic model we propose is of nonequilibrium type, converging to a final decision. We run it on random graphs and scale-free networks. On random graphs, we find two distinct regions in terms of the "finalizing time" -- the time until all agents have finalized their decisions. On scale-free networks on the other hand, there does not seem to be any such distinct scaling regions.

  16. A dynamical weak scale from inflation

    Science.gov (United States)

    You, Tevong

    2017-09-01

    Dynamical scanning of the Higgs mass by an axion-like particle during inflation may provide a cosmological component to explaining part of the hierarchy problem. We propose a novel interplay of this cosmological relaxation mechanism with inflation, whereby the backreaction of the Higgs vacuum expectation value near the weak scale causes inflation to end. As Hubble drops, the relaxion's dissipative friction increases relative to Hubble and slows it down enough to be trapped by the barriers of its periodic potential. Such a scenario raises the natural cut-off of the theory up to ~ 1010 GeV, while maintaining a minimal relaxion sector without having to introduce additional scanning scalars or new physics coincidentally close to the weak scale.

  17. uncertain dynamic systems on time scales

    Directory of Open Access Journals (Sweden)

    V. Lakshmikantham

    1995-01-01

    Full Text Available A basic feedback control problem is that of obtaining some desired stability property from a system which contains uncertainties due to unknown inputs into the system. Despite such imperfect knowledge in the selected mathematical model, we often seek to devise controllers that will steer the system in a certain required fashion. Various classes of controllers whose design is based on the method of Lyapunov are known for both discrete [4], [10], [15], and continuous [3–9], [11] models described by difference and differential equations, respectively. Recently, a theory for what is known as dynamic systems on time scales has been built which incorporates both continuous and discrete times, namely, time as an arbitrary closed sets of reals, and allows us to handle both systems simultaneously [1], [2], [12], [13]. This theory permits one to get some insight into and better understanding of the subtle differences between discrete and continuous systems. We shall, in this paper, utilize the framework of the theory of dynamic systems on time scales to investigate the stability properties of conditionally invariant sets which are then applied to discuss controlled systems with uncertain elements. For the notion of conditionally invariant set and its stability properties, see [14]. Our results offer a new approach to the problem in question.

  18. A novel fast timing micropattern gaseous detector: FTM

    CERN Document Server

    De Oliveira, Rui; Sharma, Archana

    2015-01-01

    In recent years important progress in micropattern gaseous detectors has been achieved in the use of resistive material to build compact spark-protected devices. The novel idea presented here consists of the polarisation of WELL structures using only resistive coating. This allows a new device to be built with an architecture based on a stack of several coupled layers where drift and WELL multiplication stages alternate in the structure. The signals from each multiplication stage can be read out from any external readout boards through the capacitive couplings. Each layer provides a signal with a gain of 10^4-10^5. The main advantage of this new device is the dramatic improvement of the timing provided by the competition of the ionisation processes in the different drift regions, which can be exploited for fast timing at the high luminosity accelerators (e.g. HL-LHC upgrade) as well as far applications like medical imaging.

  19. A novel fast timing micropattern gaseous detector: FTM

    CERN Document Server

    De Oliveira, Rui; Maggi, Marcello

    2015-01-01

    In recent years important progress in micropattern gaseous detectors has been achieved in the use of resistive material to build compact spark-protected devices. The novel idea presented here consists of the polarisation of WELL structures using only resistive electrodes. This allows a new device to be built with an architecture based on a stack of several coupled layers where drift and WELL multiplication stages alternate in the structure. The signals from each multiplication stage can be read out from any external readout boards through the capacitive couplings. Each layer provides a signal with a gain of 10^4 - 10^5. The main advantage of this new device is the dramatic improvement of the timing provided by the competition of the ionisation processes in the different drift regions, which can be exploited for fast timing at the high luminosity accelerators (e.g. HL-LHC upgrade) as well as applications outside particle physics.

  20. Reconstruction of Fine Scale Auroral Dynamics

    CERN Document Server

    Hirsch, Michael; Zettergren, Matthew; Dahlgren, Hanna; Goenka, Chhavi; Akbari, Hassanali

    2015-01-01

    We present a feasibility study for a high frame rate, short baseline auroral tomographic imaging system useful for estimating parametric variations in the precipitating electron number flux spectrum of dynamic auroral events. Of particular interest are auroral substorms, characterized by spatial variations of order 100 m and temporal variations of order 10 ms. These scales are thought to be produced by dispersive Alfv\\'en waves in the near-Earth magnetosphere. The auroral tomography system characterized in this paper reconstructs the auroral volume emission rate to estimate the characteristic energy and location in the direction perpendicular to the geomagnetic field of peak electron precipitation flux using a distributed network of precisely synchronized ground-based cameras. As the observing baseline decreases, the tomographic inverse problem becomes highly ill-conditioned; as the sampling rate increases, the signal-to-noise ratio degrades and synchronization requirements become increasingly critical. Our a...

  1. Hierarchy of Scales in Language Dynamics

    CERN Document Server

    Blythe, Richard A

    2015-01-01

    Methods and insights from statistical physics are finding an increasing variety of applications where one seeks to understand the emergent properties of a complex interacting system. One such area concerns the dynamics of language at a variety of levels of description, from the behaviour of individual agents learning simple artificial languages from each other, up to changes in the structure of languages shared by large groups of speakers over historical timescales. In this Colloquium, we survey a hierarchy of scales at which language and linguistic behaviour can be described, along with the main progress in understanding that has been made at each of them---much of which has come from the statistical physics community. We argue that future developments may arise by linking the different levels of the hierarchy together in a more coherent fashion, in particular where this allows more effective use of rich empirical data sets.

  2. Dynamically Induced Planck Scale and Inflation

    CERN Document Server

    Kannike, Kristjan; Pizza, Liberato; Racioppi, Antonio; Raidal, Martti; Salvio, Alberto; Strumia, Alessandro

    2015-01-01

    Theories where the Planck scale is dynamically generated from dimensionless interactions provide predictive inflationary potentials and super-Planckian field variations. We first study the minimal single-field realisation in the low-energy effective field theory limit, finding the predictions $n_s \\approx 0.96$ for the spectral index and $r \\approx 0.13$ for the tensor-to-scalar ratio, close to those of a quadratic potential. Next we consider agravity as a dimensionless quantum gravity theory finding a multi-field inflation that converges towards an attractor trajectory that predicts $n_s\\approx 0.96$ and $0.003scale to the smallness of inflationary perturbations: both arise naturally because of small couplings, implying a reheating temperature of $10^{7-9}$ GeV. A measurement of $r$ by Keck/Bicep3 would give us information on quantum gravity in the dimensionless scenario.

  3. A Model for Nonstationary Market Dynamics with Nontrivial Dynamical Scaling

    Science.gov (United States)

    Liu, Min; Bassler, Kevin E.

    2008-03-01

    In a recent empirical analysis of the Euro/Dollar exchange rate [Bassler, et al., PNAS 104, 17287 (2007)] it was found that during certain periods of the day the market returns scale with Hurst exponents H that are significantly different from 1/2. In some of these periods it is less than 1/2, while in others it is greater than 1/2. In this talk we will propose a possible origin for this behavior and other stylized market facts, including short time negative autocorrelations of returns, in terms of a nonstationary compound Poisson process with a time-dependent intensity rate function that results from a changing bid-ask spread in the microscopic market. The model correctly describes the dynamic scaling behavior of a simple reaction-diffusion model of a limit-order book. That model, like the Euro/Dollar exchange rate, has nonstationary return increments and a Hurst exponent H not equal to 1/2.

  4. Fast Timing for High-Rate Environments with Micromegas

    CERN Document Server

    Papaevangelou, Thomas; Ferrer-Ribas, Esther; Giomataris, Ioannis; Godinot, Cyprien; Gonzalez Diaz, Diego; Gustavsson, Thomas; Kebbiri, Mariam; Oliveri, Eraldo; Resnati, Filippo; Ropelewski, Leszek; Tsiledakis, Georgios; Veenhof, Rob; White, Sebastian

    2016-01-01

    The current state of the art in fast timing resolution for existing experiments is of the order of 100 ps on the time of arrival of both charged particles and electromagnetic showers. Current R&D on charged particle timing is approaching the level of 10 ps but is not primarily directed at sustained performance at high rates and under high radiation (as would be needed for HL-LHC pileup mitigation). We demonstrate a Micromegas based solution to reach this level of performance. The Micromegas acts as a photomultiplier coupled to a Cerenkov-radiator front window, which produces sufficient UV photons to convert the ~100 ps single-photoelectron jitter into a timing response of the order of 10-20 ps per incident charged particle. A prototype has been built in order to demonstrate this performance. The first laboratory tests with a pico-second laser have shown a time resolution of the order of 27 ps for ~50 primary photoelectrons, using a bulk Micromegas readout.

  5. Dynamic contact angle at nano-scale: a unified view

    OpenAIRE

    Lukyanov, Alex V.; Likhtman, Alexei E.

    2016-01-01

    Generation of dynamic contact angle in the course of wetting is a fundamental phenomenon of nature. Dynamic wetting processes have a direct impact on flows at nano-scale, and therefore their understanding is exceptionally important to emerging technologies. Here, we reveal the microscopic mechanism of dynamic contact angle generation. It has been demonstrated using large-scale molecular dynamics simulations of bead-spring model fluids that the main cause of local contact angle variations is t...

  6. Dynamic finite-size scaling at first-order transitions

    Science.gov (United States)

    Pelissetto, Andrea; Vicari, Ettore

    2017-07-01

    We investigate the dynamic behavior of finite-size systems close to a first-order transition (FOT). We develop a dynamic finite-size scaling (DFSS) theory for the dynamic behavior in the coexistence region where different phases coexist. This is characterized by an exponentially large time scale related to the tunneling between the two phases. We show that, when considering time scales of the order of the tunneling time, the dynamic behavior can be described by a two-state coarse-grained dynamics. This allows us to obtain exact predictions for the dynamical scaling functions. To test the general DFSS theory at FOTs, we consider the two-dimensional Ising model in the low-temperature phase, where the external magnetic field drives a FOT, and the 20-state Potts model, which undergoes a thermal FOT. Numerical results for a purely relaxational dynamics fully confirm the general theory.

  7. Large scale dynamics of protoplanetary discs

    Science.gov (United States)

    Béthune, William

    2017-08-01

    Planets form in the gaseous and dusty disks orbiting young stars. These protoplanetary disks are dispersed in a few million years, being accreted onto the central star or evaporated into the interstellar medium. To explain the observed accretion rates, it is commonly assumed that matter is transported through the disk by turbulence, although the mechanism sustaining turbulence is uncertain. On the other side, irradiation by the central star could heat up the disk surface and trigger a photoevaporative wind, but thermal effects cannot account for the observed acceleration and collimation of the wind into a narrow jet perpendicular to the disk plane. Both issues can be solved if the disk is sensitive to magnetic fields. Weak fields lead to the magnetorotational instability, whose outcome is a state of sustained turbulence. Strong fields can slow down the disk, causing it to accrete while launching a collimated wind. However, the coupling between the disk and the neutral gas is done via electric charges, each of which is outnumbered by several billion neutral molecules. The imperfect coupling between the magnetic field and the neutral gas is described in terms of "non-ideal" effects, introducing new dynamical behaviors. This thesis is devoted to the transport processes happening inside weakly ionized and weakly magnetized accretion disks; the role of microphysical effects on the large-scale dynamics of the disk is of primary importance. As a first step, I exclude the wind and examine the impact of non-ideal effects on the turbulent properties near the disk midplane. I show that the flow can spontaneously organize itself if the ionization fraction is low enough; in this case, accretion is halted and the disk exhibits axisymmetric structures, with possible consequences on planetary formation. As a second step, I study the launching of disk winds via a global model of stratified disk embedded in a warm atmosphere. This model is the first to compute non-ideal effects from

  8. Pore Scale Dynamics of Microemulsion Formation.

    Science.gov (United States)

    Unsal, Evren; Broens, Marc; Armstrong, Ryan T

    2016-07-19

    Experiments in various porous media have shown that multiple parameters come into play when an oleic phase is displaced by an aqueous solution of surfactant. In general, the displacement efficiency is improved when the fluids become quasi-miscible. Understanding the phase behavior oil/water/surfactant systems is important because microemulsion has the ability to generate ultralow interfacial tension (formation and the resulting properties under equilibrium conditions. However, the majority of applications where microemulsion is present also involve flow, which has received relatively less attention. It is commonly assumed that the characteristics of an oil/water/surfactant system under flowing conditions are identical to the one under equilibrium conditions. Here, we show that this is not necessarily the case. We studied the equilibrium phase behavior of a model system consisting of n-decane and an aqueous solution of olefin sulfonate surfactant, which has practical applications for enhanced oil recovery. The salt content of the aqueous solution was varied to provide a range of different microemulsion compositions and oil-water interfacial tensions. We then performed microfluidic flow experiments to study the dynamic in situ formation of microemulsion by coinjecting bulk fluids of n-decane and surfactant solution into a T-junction capillary geometry. A solvatochromatic fluorescent dye was used to obtain spatially resolved compositional information. In this way, we visualized the microemulsion formation and the flow of it along with the excess phases. A complex interaction between the flow patterns and the microemulsion properties was observed. The formation of microemulsion influenced the flow regimes, and the flow regimes affected the characteristics of the microemulsion formation. In particular, at low flow rates, slug flow was observed, which had profound consequences on the pore scale mixing behavior and resulting microemulsion properties.

  9. Bounds of Certain Dynamic Inequalities on Time Scales

    Directory of Open Access Journals (Sweden)

    Deepak B. Pachpatte

    2014-10-01

    Full Text Available In this paper we study explicit bounds of certain dynamic integral inequalities on time scales. These estimates give the bounds on unknown functions which can be used in studying the qualitative aspects of certain dynamic equations. Using these inequalities we prove the uniqueness of some partial integro-differential equations on time scales.

  10. Multiscale functions, scale dynamics, and applications to partial differential equations

    Science.gov (United States)

    Cresson, Jacky; Pierret, Frédéric

    2016-05-01

    Modeling phenomena from experimental data always begins with a choice of hypothesis on the observed dynamics such as determinism, randomness, and differentiability. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following: "With a finite set of data concerning a phenomenon, can we recover its underlying nature? From this problem, we introduce in this paper the definition of multi-scale functions, scale calculus, and scale dynamics based on the time scale calculus [see Bohner, M. and Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (Springer Science & Business Media, 2001)] which is used to introduce the notion of scale equations. These definitions will be illustrated on the multi-scale Okamoto's functions. Scale equations are analysed using scale regimes and the notion of asymptotic model for a scale equation under a particular scale regime. The introduced formalism explains why a single scale equation can produce distinct continuous models even if the equation is scale invariant. Typical examples of such equations are given by the scale Euler-Lagrange equation. We illustrate our results using the scale Newton's equation which gives rise to a non-linear diffusion equation or a non-linear Schrödinger equation as asymptotic continuous models depending on the particular fractional scale regime which is considered.

  11. Toward Control of Universal Scaling in Critical Dynamics

    Science.gov (United States)

    2016-01-27

    to synergistically combine two powerful and very successful theories for non-linear stochastic dynamics of cooperative multi-component systems , namely...we have now defined various tractable theoretical model systems that will allow the external control of universal dynamical scaling features through...competition models in evolutionary game theory and population dynamics . His calculations specifically address the purported mapping of these systems

  12. Molecular Scale Dynamics of Large Ring Polymers

    Science.gov (United States)

    Gooßen, S.; Brás, A. R.; Krutyeva, M.; Sharp, M.; Falus, P.; Feoktystov, A.; Gasser, U.; Pyckhout-Hintzen, W.; Wischnewski, A.; Richter, D.

    2014-10-01

    We present neutron scattering data on the structure and dynamics of melts from polyethylene oxide rings with molecular weights up to ten times the entanglement mass of the linear counterpart. The data reveal a very compact conformation displaying a structure approaching a mass fractal, as hypothesized by recent simulation work. The dynamics is characterized by a fast Rouse relaxation of subunits (loops) and a slower dynamics displaying a lattice animal-like loop displacement. The loop size is an intrinsic property of the ring architecture and is independent of molecular weight. This is the first experimental observation of the space-time evolution of segmental motion in ring polymers illustrating the dynamic consequences of their topology that is unique among all polymeric systems of any other known architecture.

  13. Scaling of viscous dynamics in simple liquids

    DEFF Research Database (Denmark)

    Bøhling, Lasse; Ingebrigtsen, Trond; Grzybowski, A.

    2012-01-01

    Supercooled liquids are characterized by relaxation times that increase dramatically by cooling or compression. From a single assumption follows a scaling law according to which the relaxation time is a function of h(ρ) over temperature, where ρ is the density and the function h(ρ) depends...... on the liquid in question. This scaling is demonstrated to work well for simulations of the Kob–Andersen binary Lennard-Jones mixture and two molecular models, as well as for the experimental results for two van der Waals liquids, dibutyl phthalate and decahydroisoquinoline. The often used power-law density...... scaling, h(ρ)∝ργ, is an approximation to the more general form of scaling discussed here. A thermodynamic derivation was previously given for an explicit expression for h(ρ) for liquids of particles interacting via the generalized Lennard-Jones potential. Here a statistical mechanics derivation is given...

  14. Scaling for Dynamical Systems in Biology.

    Science.gov (United States)

    Ledder, Glenn

    2017-09-22

    Asymptotic methods can greatly simplify the analysis of all but the simplest mathematical models and should therefore be commonplace in such biological areas as ecology and epidemiology. One essential difficulty that limits their use is that they can only be applied to a suitably scaled dimensionless version of the original dimensional model. Many books discuss nondimensionalization, but with little attention given to the problem of choosing the right scales and dimensionless parameters. In this paper, we illustrate the value of using asymptotics on a properly scaled dimensionless model, develop a set of guidelines that can be used to make good scaling choices, and offer advice for teaching these topics in differential equations or mathematical biology courses.

  15. Dynamically Scaled Model Experiment of a Mooring Cable

    Directory of Open Access Journals (Sweden)

    Lars Bergdahl

    2016-01-01

    Full Text Available The dynamic response of mooring cables for marine structures is scale-dependent, and perfect dynamic similitude between full-scale prototypes and small-scale physical model tests is difficult to achieve. The best possible scaling is here sought by means of a specific set of dimensionless parameters, and the model accuracy is also evaluated by two alternative sets of dimensionless parameters. A special feature of the presented experiment is that a chain was scaled to have correct propagation celerity for longitudinal elastic waves, thus providing perfect geometrical and dynamic scaling in vacuum, which is unique. The scaling error due to incorrect Reynolds number seemed to be of minor importance. The 33 m experimental chain could then be considered a scaled 76 mm stud chain with the length 1240 m, i.e., at the length scale of 1:37.6. Due to the correct elastic scale, the physical model was able to reproduce the effect of snatch loads giving rise to tensional shock waves propagating along the cable. The results from the experiment were used to validate the newly developed cable-dynamics code, MooDy, which utilises a discontinuous Galerkin FEM formulation. The validation of MooDy proved to be successful for the presented experiments. The experimental data is made available here for validation of other numerical codes by publishing digitised time series of two of the experiments.

  16. Dynamic scaling at classical phase transitions approached through nonequilibrium quenching

    Science.gov (United States)

    Liu, Cheng-Wei; Polkovnikov, Anatoli; Sandvik, Anders W.

    2014-02-01

    We use Monte Carlo simulations to demonstrate generic scaling aspects of classical phase transitions approached through a quench (or annealing) protocol where the temperature changes as a function of time with velocity v. Using a generalized Kibble-Zurek ansatz, we demonstrate dynamic scaling for different types of stochastic dynamics (Metropolis, Swendsen-Wang, and Wolff) on Ising models in two and higher dimensions. We show that there are dual scaling functions governing the dynamic scaling, which together describe the scaling behavior in the entire velocity range v ∈[0,∞). These functions have asymptotics corresponding to the adiabatic and diabatic limits, and close to these limits they are perturbative in v and 1/v, respectively. Away from their perturbative domains, both functions cross over into the same universal power-law scaling form governed by the static and dynamic critical exponents (as well as an exponent characterizing the quench protocol). As a by-product of the scaling studies, we obtain high-precision estimates of the dynamic exponent z for the two-dimensional Ising model subject to the three variants of Monte Carlo dynamics: for single-spin Metropolis updates zM=2.1767(5), for Swendsen-Wang multicluster updates zSW=0.297(3), and for Wolff single-cluster updates zW=0.30(2). For Wolff dynamics, we find an interesting behavior with a nonanalytic breakdown of the quasiadiabatic and diabatic scalings, instead of the generic smooth crossover described by a power law. We interpret this disconnect between the two scaling regimes as a dynamic phase transition of the Wolff algorithm, caused by an effective sudden loss of ergodicity at high velocity.

  17. Dynamics of small-scale convective motions

    CERN Document Server

    Lemmerer, Birgit; Muthsam, Herbert; Piantschitsch, Isabell

    2016-01-01

    Previous studies have discovered a population of small granules with diameters less than 800 km showing differing physical properties. High resolution simulations and observations of the solar granulation, in combination with automated segmentation and tracking algorithms, allow us to study the evolution of the structural and physical properties of these granules and surrounding vortex motions with high temporal and spatial accuracy. We focus on the dynamics of granules (lifetime, fragmentation, size, position, intensity, vertical velocity) over time and the influence of strong vortex motions. Of special interest are the dynamics of small granules compared to regular-sized granules. We developed a temporal tracking algorithm based on our developed segmentation algorithm for solar granulation. This was applied to radiation hydrodynamics simulations and high resolution observations of the quiet Sun by SUNRISE/IMaX. The dynamics of small granules differ in regard to their diameter, intensity and depth evolution ...

  18. Emergence of scaling in human-interest dynamics

    CERN Document Server

    Zhao, Zhi-Dan; Zhang, Zike; Zhou, Tao; Huang, Zi-Gang; Lai, Ying-Cheng

    2013-01-01

    Human behaviors are often driven by human interests. Despite intense recent efforts in exploring the dynamics of human behaviors, little is known about human-interest dynamics, partly due to the extreme difficulty in accessing the human mind from observations. However, the availability of large-scale data, such as those from e-commerce and smart-phone communications, makes it possible to probe into and quantify the dynamics of human interest. Using three prototypical "big data" sets, we investigate the scaling behaviors associated with human-interest dynamics. In particular, from the data sets we uncover power-law scaling associated with the three basic quantities: (1) the length of continuous interest, (2) the return time of visiting certain interest, and (3) interest ranking and transition. We argue that there are three basic ingredients underlying human-interest dynamics: preferential return to previously visited interests, inertial effect, and exploration of new interests. We develop a biased random-walk ...

  19. Human seizures couple across spatial scales through travelling wave dynamics

    Science.gov (United States)

    Martinet, L.-E.; Fiddyment, G.; Madsen, J. R.; Eskandar, E. N.; Truccolo, W.; Eden, U. T.; Cash, S. S.; Kramer, M. A.

    2017-04-01

    Epilepsy--the propensity toward recurrent, unprovoked seizures--is a devastating disease affecting 65 million people worldwide. Understanding and treating this disease remains a challenge, as seizures manifest through mechanisms and features that span spatial and temporal scales. Here we address this challenge through the analysis and modelling of human brain voltage activity recorded simultaneously across microscopic and macroscopic spatial scales. We show that during seizure large-scale neural populations spanning centimetres of cortex coordinate with small neural groups spanning cortical columns, and provide evidence that rapidly propagating waves of activity underlie this increased inter-scale coupling. We develop a corresponding computational model to propose specific mechanisms--namely, the effects of an increased extracellular potassium concentration diffusing in space--that support the observed spatiotemporal dynamics. Understanding the multi-scale, spatiotemporal dynamics of human seizures--and connecting these dynamics to specific biological mechanisms--promises new insights to treat this devastating disease.

  20. Computing in Large-Scale Dynamic Systems

    NARCIS (Netherlands)

    Pruteanu, A.S.

    2013-01-01

    Software applications developed for large-scale systems have always been difficult to de- velop due to problems caused by the large number of computing devices involved. Above a certain network size (roughly one hundred), necessary services such as code updating, topol- ogy discovery and data dissem

  1. Multiscale modeling of soft matter: scaling of dynamics.

    Science.gov (United States)

    Fritz, Dominik; Koschke, Konstantin; Harmandaris, Vagelis A; van der Vegt, Nico F A; Kremer, Kurt

    2011-06-14

    Many physical phenomena and properties of soft matter systems are characterized by an interplay of interactions and processes that span a wide range of length- and time scales. Computer simulation approaches require models, which cover these scales. These are typically multiscale models that combine and link different levels of resolution. In order to reach mesoscopic time- and length scales, necessary to access material properties, coarse-grained models are developed. They are based on microscopic, atomistic descriptions of systems and represent these systems on a coarser, mesoscopic level. While the connection between length scales can be established immediately, the link between the different time scales that takes into account the faster dynamics of the coarser system cannot be obtained directly. In this perspective paper we discuss methods that link the time scales in structure based multiscale models. Concepts which try to rigorously map dynamics of related models are limited to simple model systems, while the challenge in soft matter systems is the multitude of fluctuating energy barriers of comparable height. More pragmatic methods to match time scales are applied successfully to quantitatively understand and predict dynamics of one-component soft matter systems. However, there are still open questions. We point out that the link between the dynamics on different resolution levels can be affected by slight changes of the system, as for different tacticities. Furthermore, in two-component systems the dynamics of the host polymer and of additives are accelerated very differently.

  2. Dynamic Uniform Scaling for Multiobjective Genetic Algorithms

    DEFF Research Database (Denmark)

    Pedersen, Gerulf; Goldberg, David E.

    2004-01-01

    Before Multiobjective Evolutionary Algorithms (MOEAs) can be used as a widespread tool for solving arbitrary real world problems there are some salient issues which require further investigation. One of these issues is how a uniform distribution of solutions along the Pareto non-dominated front can......, the issue of obtaining a diverse set of solutions for badly scaled objective functions will be investigated and proposed solutions will be implemented using the NSGA-II algorithm....

  3. Dynamic Uniform Scaling for Multiobjective Genetic Algorithms

    DEFF Research Database (Denmark)

    Pedersen, Gerulf; Goldberg, D.E.

    2004-01-01

    Before Multiobjective Evolutionary Algorithms (MOEAs) can be used as a widespread tool for solving arbitrary real world problems there are some salient issues which require further investigation. One of these issues is how a uniform distribution of solutions along the Pareto non-dominated front c......, the issue of obtaining a diverse set of solutions for badly scaled objective functions will be investigated and proposed solutions will be implemented using the NSGA-II algorithm....

  4. Metastable and scaling regimes of one-dimensional Kawasaki dynamics

    Science.gov (United States)

    Albarracín, F. A. Gómez; Rosales, H. D.; Grynberg, M. D.

    2016-04-01

    We investigate the large-time scaling regimes arising from a variety of metastable structures in a chain of Ising spins with both first- and second-neighbor couplings while subject to Kawasaki dynamics. Depending on the ratio and sign of these former, different dynamic exponents are suggested by finite-size scaling analyses of relaxation times. At low but nonzero temperatures these are calculated via exact diagonalizations of the evolution operator in finite chains under several activation barriers. In the absence of metastability the dynamics is always diffusive.

  5. Fast paths in large-scale dynamic road networks

    CERN Document Server

    Nannicini, Giacomo; Barbier, Gilles; Krob, Daniel; Liberti, Leo

    2007-01-01

    Efficiently computing fast paths in large scale dynamic road networks (where dynamic traffic information is known over a part of the network) is a practical problem faced by several traffic information service providers who wish to offer a realistic fast path computation to GPS terminal enabled vehicles. The heuristic solution method we propose is based on a highway hierarchy-based shortest path algorithm for static large-scale networks; we maintain a static highway hierarchy and perform each query on the dynamically evaluated network.

  6. OSCILLATION FOR NONAUTONOMOUS NEUTRAL DYNAMIC DELAY EQUATIONS ON TIME SCALES

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The article is concerned with oscillation of nonautonomous neutral dynamic delay equations on time scales. Sufficient conditions are established for the existence of bounded positive solutions and for oscillation of all solutions of this equation. Some results extend known results for difference equations when the time scale is the set Z+ of positive integers and for differential equations when the time scale is the set R of real numbers.

  7. Relaxation Dynamics in Condensation on Weighted Scale-Free Networks

    Institute of Scientific and Technical Information of China (English)

    MENG Xin-He; TANG Ming; WANG Peng; LIU Zong-Hua

    2008-01-01

    Most of the realistic networks are weighted scale-free networks. How this structure influences the conden-sation on it is a challenging problem. Recently, we make a first step to discuss its condensation [Phys. Rev. E 74 (2006) 036101] and here we focus on its evolutionary process of phase transition. In order to show how the weighted transport influences the dynamical properties, we study the relaxation dynamics in a zero range process on weighted scale-free networks. We find that there is a hierarchical relaxation dynamics in the evolution and there is a scaling relation between the relaxation time and the jumping exponent. The relaxation dynamics can be illustrated by a mean-field equation. The theoretical predictions are confirmed by our numerical simulations.

  8. Scaling in cognitive performance reflects multiplicative multifractal cascade dynamics.

    Science.gov (United States)

    Stephen, Damian G; Anastas, Jason R; Dixon, James A

    2012-01-01

    Self-organized criticality purports to build multi-scaled structures out of local interactions. Evidence of scaling in various domains of biology may be more generally understood to reflect multiplicative interactions weaving together many disparate scales. The self-similarity of power-law scaling entails homogeneity: fluctuations distribute themselves similarly across many spatial and temporal scales. However, this apparent homogeneity can be misleading, especially as it spans more scales. Reducing biological processes to one power-law relationship neglects rich cascade dynamics. We review recent research into multifractality in executive-function cognitive tasks and propose that scaling reflects not criticality but instead interactions across multiple scales and among fluctuations of multiple sizes.

  9. Scaling in cognitive performance reflects multiplicative multifractal cascade dynamics

    Directory of Open Access Journals (Sweden)

    Damian G. Stephen

    2012-04-01

    Full Text Available Self-organized criticality purports to build multi-scaled structures, such as those supporting life, out of local interactions. Evidence of scaling in various domains of biology may be more generally understood to reflect multiplicative interactions weaving together many disparate scales. The self-similarity of power-law scaling entails homogeneity: fluctuations distribute themselves similarly across many spatial and temporal scales. However, this apparent homogeneity can be misleading, especially as it spans more scales. Reducing biological processes to one power-law relationship neglects rich cascade dynamics. We review recent research into multifractality in executive-function cognitive tasks and propose that scaling reflects not criticality but instead interactions across multiple scales and among fluctuations of multiple sizes.

  10. The large-scale dynamics of magnetic helicity

    CERN Document Server

    Linkmann, Moritz

    2016-01-01

    In this Letter we investigate the dynamics of magnetic helicity in magnetohydrodynamic (MHD) turbulent flows focusing at scales larger than the forcing scale. Our results show a non-local inverse cascade of magnetic helicity, which occurs directly from the forcing scale into the largest scales of the magnetic fields. We also observe that no magnetic helicity and no energy is transferred to an intermediate range of scales sufficiently smaller than the container size and larger than the forcing scale. Thus, the statistical properties of this range of scales, which increases with scale separation, is shown to be described to a large extent by the zero-flux solutions of the absolute statistical equilibrium theory exhibited by the truncated ideal MHD equations.

  11. Multi-scale peridynamic modeling of dynamic fracture in concrete

    Science.gov (United States)

    Lammi, Christopher J.; Zhou, Min

    2017-01-01

    Peridynamics simulations of the dynamic deformation and failure of high-performance concrete are performed at the meso-scale. A pressure-dependent, peridynamic plasticity model and failure criteria are used to capture pressure-sensitive granular flow and fracture. The meso-scale framework explicitly resolves reinforcing phases, pores, and intrinsic flaws. A novel scaling approach is formulated to inform the engineering-scale plasticity model parameters with meso-scale simulation results. The effects of composition, porosity, and fracture energy at the meso-scale on the engineering-scale impact resistance are assessed. The fracture process zone at the meso-scale is found to propagate along adjacent pores and reinforcing phases under tensile and shear loading conditions. The simulations show that tensile strength decreases and dissipation increases as the porosity in the concrete increases. The framework and modeling approach allow the delineation of trends that can be used to design more impact-resistant materials.

  12. The scale-free dynamics of eukaryotic cells.

    Directory of Open Access Journals (Sweden)

    Miguel A Aon

    Full Text Available Temporal organization of biological processes requires massively parallel processing on a synchronized time-base. We analyzed time-series data obtained from the bioenergetic oscillatory outputs of Saccharomyces cerevisiae and isolated cardiomyocytes utilizing Relative Dispersional (RDA and Power Spectral (PSA analyses. These analyses revealed broad frequency distributions and evidence for long-term memory in the observed dynamics. Moreover RDA and PSA showed that the bioenergetic dynamics in both systems show fractal scaling over at least 3 orders of magnitude, and that this scaling obeys an inverse power law. Therefore we conclude that in S. cerevisiae and cardiomyocytes the dynamics are scale-free in vivo. Applying RDA and PSA to data generated from an in silico model of mitochondrial function indicated that in yeast and cardiomyocytes the underlying mechanisms regulating the scale-free behavior are similar. We validated this finding in vivo using single cells, and attenuating the activity of the mitochondrial inner membrane anion channel with 4-chlorodiazepam to show that the oscillation of NAD(PH and reactive oxygen species (ROS can be abated in these two evolutionarily distant species. Taken together these data strongly support our hypothesis that the generation of ROS, coupled to redox cycling, driven by cytoplasmic and mitochondrial processes, are at the core of the observed rhythmicity and scale-free dynamics. We argue that the operation of scale-free bioenergetic dynamics plays a fundamental role to integrate cellular function, while providing a framework for robust, yet flexible, responses to the environment.

  13. Scaling and Universality at Dynamical Quantum Phase Transitions.

    Science.gov (United States)

    Heyl, Markus

    2015-10-02

    Dynamical quantum phase transitions (DQPTs) at critical times appear as nonanalyticities during nonequilibrium quantum real-time evolution. Although there is evidence for a close relationship between DQPTs and equilibrium phase transitions, a major challenge is still to connect to fundamental concepts such as scaling and universality. In this work, renormalization group transformations in complex parameter space are formulated for quantum quenches in Ising models showing that the DQPTs are critical points associated with unstable fixed points of equilibrium Ising models. Therefore, these DQPTs obey scaling and universality. On the basis of numerical simulations, signatures of these DQPTs in the dynamical buildup of spin correlations are found with an associated power-law scaling determined solely by the fixed point's universality class. An outlook is given on how to explore this dynamical scaling experimentally in systems of trapped ions.

  14. The intrinsic scale of Quantum Chromo Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Rainer [DESY (Germany). Neumann Inst. for Computing

    2016-11-01

    We are presently checking that the necessarily finite size of the simulated grid does not affect the decay constants at the level of our precision and we are connecting the coupling at the smallest scale μ to the decay constants through simulations at matching grid spacings. In the summer 2016 we will be able to put the SuperMUC results and the analysis of the running coupling together and present our high quality result at the summer conferences on particle physics. It will represent a milestone in lattice QCD: the scales μ reached are an order of magnitude higher than ever before in the three-flavour theory. Consequently the α{sup 2} correction is truly small for the first time. In addition there is full control of the continuum limit. The large volume simulations were carried out in a GAUSS project on both SuperMUC and Juqueen, using the most suitable architecture for each grid size. The many smaller volume simulations were done at HLRN with a much smaller number of cores per simulation. The combination of these supercomputing resources is essential for carrying out such a challenging project. Once there is again a jump in compute resources by a factor of order 10, we would like to simulate the 4-flavour theory in a way where the decoupling of the heaviest quark from the low-energy physics is used.

  15. FTSPlot: fast time series visualization for large datasets.

    Science.gov (United States)

    Riss, Michael

    2014-01-01

    The analysis of electrophysiological recordings often involves visual inspection of time series data to locate specific experiment epochs, mask artifacts, and verify the results of signal processing steps, such as filtering or spike detection. Long-term experiments with continuous data acquisition generate large amounts of data. Rapid browsing through these massive datasets poses a challenge to conventional data plotting software because the plotting time increases proportionately to the increase in the volume of data. This paper presents FTSPlot, which is a visualization concept for large-scale time series datasets using techniques from the field of high performance computer graphics, such as hierarchic level of detail and out-of-core data handling. In a preprocessing step, time series data, event, and interval annotations are converted into an optimized data format, which then permits fast, interactive visualization. The preprocessing step has a computational complexity of O(n x log(N)); the visualization itself can be done with a complexity of O(1) and is therefore independent of the amount of data. A demonstration prototype has been implemented and benchmarks show that the technology is capable of displaying large amounts of time series data, event, and interval annotations lag-free with visualization method for long-term electrophysiological experiments.

  16. FTSPlot: fast time series visualization for large datasets.

    Directory of Open Access Journals (Sweden)

    Michael Riss

    Full Text Available The analysis of electrophysiological recordings often involves visual inspection of time series data to locate specific experiment epochs, mask artifacts, and verify the results of signal processing steps, such as filtering or spike detection. Long-term experiments with continuous data acquisition generate large amounts of data. Rapid browsing through these massive datasets poses a challenge to conventional data plotting software because the plotting time increases proportionately to the increase in the volume of data. This paper presents FTSPlot, which is a visualization concept for large-scale time series datasets using techniques from the field of high performance computer graphics, such as hierarchic level of detail and out-of-core data handling. In a preprocessing step, time series data, event, and interval annotations are converted into an optimized data format, which then permits fast, interactive visualization. The preprocessing step has a computational complexity of O(n x log(N; the visualization itself can be done with a complexity of O(1 and is therefore independent of the amount of data. A demonstration prototype has been implemented and benchmarks show that the technology is capable of displaying large amounts of time series data, event, and interval annotations lag-free with < 20 ms ms. The current 64-bit implementation theoretically supports datasets with up to 2(64 bytes, on the x86_64 architecture currently up to 2(48 bytes are supported, and benchmarks have been conducted with 2(40 bytes/1 TiB or 1.3 x 10(11 double precision samples. The presented software is freely available and can be included as a Qt GUI component in future software projects, providing a standard visualization method for long-term electrophysiological experiments.

  17. Leptogenesis with a dynamical seesaw scale

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, D. Aristizabal; Vicente, A. [IFPA, Department of Astrophysics, Geophysics and Oceanography, Universite de Liege, Bat B5, Sart Tilman B-4000 Liege 1 (Belgium); Tórtola, M.; Valle, J.W.F., E-mail: daristizabal@ulg.ac.be, E-mail: mariam@ific.uv.es, E-mail: valle@ific.uv.es, E-mail: Avelino.Vicente@ulg.ac.be [AHEP Group, Institut de Física Corpuscular -- C.S.I.C./Universitat de València, Parc Cientific de Paterna, C/Catedratico Jose Beltran, 2 E-46980 Paterna (València) (Spain)

    2014-07-01

    In the simplest type-I seesaw leptogenesis scenario right-handed neutrino annihilation processes are absent. However, in the presence of new interactions these processes are possible and can affect the resulting B-L asymmetry in an important way. A prominent example is provided by models with spontaneous lepton number violation, where the existence of new dynamical degrees of freedom can play a crucial role. In this context, we provide a model-independent discussion of the effects of right-handed neutrino annihilations. We show that in the weak washout regime, as long as the scattering processes remain slow compared with the Hubble expansion rate throughout the relevant temperature range, the efficiency can be largely enhanced, reaching in some cases maximal values. Moreover, the B-L asymmetry yield turns out to be independent upon initial conditions, in contrast to the ''standard'' case. On the other hand, when the annihilation processes are fast, the right-handed neutrino distribution tends to a thermal one down to low temperatures, implying a drastic suppression of the efficiency which in some cases can render the B-L generation mechanism inoperative.

  18. Leptogenesis with a dynamical seesaw scale

    CERN Document Server

    Sierra, D Aristizabal; Valle, J W F; Vicente, A

    2014-01-01

    In the simplest type-I seesaw leptogenesis scenario right-handed neutrino annihilation processes are absent. However, in the presence of new interactions these processes are possible and can affect the resulting $B-L$ asymmetry in an important way. A prominent example is provided by models with spontaneous lepton number violation, where the existence of new dynamical degrees of freedom can play a crucial role. In this context, we provide a model-independent discussion of the effects of right-handed neutrino annihilations. We show that in the weak washout regime, as long as the scattering processes remain slow compared with the Hubble expansion rate throughout the relevant temperature range, the efficiency can be largely enhanced, reaching in some cases maximal values. Moreover, the $B-L$ asymmetry yield turns out to be independent upon initial conditions, in contrast to the "standard" case. On the other hand, when the annihilation processes are fast, the right-handed neutrino distribution tends to a thermal o...

  19. Large Scale, High Resolution, Mantle Dynamics Modeling

    Science.gov (United States)

    Geenen, T.; Berg, A. V.; Spakman, W.

    2007-12-01

    To model the geodynamic evolution of plate convergence, subduction and collision and to allow for a connection to various types of observational data, geophysical, geodetical and geological, we developed a 4D (space-time) numerical mantle convection code. The model is based on a spherical 3D Eulerian fem model, with quadratic elements, on top of which we constructed a 3D Lagrangian particle in cell(PIC) method. We use the PIC method to transport material properties and to incorporate a viscoelastic rheology. Since capturing small scale processes associated with localization phenomena require a high resolution, we spend a considerable effort on implementing solvers suitable to solve for models with over 100 million degrees of freedom. We implemented Additive Schwartz type ILU based methods in combination with a Krylov solver, GMRES. However we found that for problems with over 500 thousend degrees of freedom the convergence of the solver degraded severely. This observation is known from the literature [Saad, 2003] and results from the local character of the ILU preconditioner resulting in a poor approximation of the inverse of A for large A. The size of A for which ILU is no longer usable depends on the condition of A and on the amount of fill in allowed for the ILU preconditioner. We found that for our problems with over 5×105 degrees of freedom convergence became to slow to solve the system within an acceptable amount of walltime, one minute, even when allowing for considerable amount of fill in. We also implemented MUMPS and found good scaling results for problems up to 107 degrees of freedom for up to 32 CPU¡¯s. For problems with over 100 million degrees of freedom we implemented Algebraic Multigrid type methods (AMG) from the ML library [Sala, 2006]. Since multigrid methods are most effective for single parameter problems, we rebuild our model to use the SIMPLE method in the Stokes solver [Patankar, 1980]. We present scaling results from these solvers for 3D

  20. Excessive fasting times: still an underaddressed challenge for African pediatrics and anesthesia?

    Directory of Open Access Journals (Sweden)

    Pollach G

    2014-04-01

    Full Text Available Gregor Pollach,1,2 Rose Kapenda,2 Beauty Anusa,2 Ethel Waluza,2 Felix Namboya1,21Department of Anaesthesia and Intensive Care, College of Medicine, University of Malawi, 2Queen Elizabeth Central Hospital, Blantyre, Malawi, Central AfricaBackground: Children are starved before surgery following international preoperative guidelines. Extreme fasting is still reported, but data for Africa are scarce. Starving in hot climates leads to challenges arising from dehydration, hypotension, metabolic disturbances, and complications during induction of anesthesia. The purpose of this study was to evaluate the scope of the problem, identify possible reasons for this, and propose realistic solutions.Methods: We performed eleven prospective audits between 2008 and 2013 in Malawi to improve our preoperative fasting times. In total, 631 children (aged 3 days to 13 years were monitored. Training was provided, and the results were measured using a visual analog scale.Results: In 2008, the baseline audit showed a mean fasting time (MFT of 13.48 hours (31 patients. Training reduced the MFT to 8.77 hours (73 patients and 3.2 hours (35 patients in 2009. Without training, the MFT increased to 4.6 hours (35 patients in 2010 and to 10.2 hours (50 patients in 2011. A low level of training decreased the MFT to 8.13 hours (139 patients, in spring 2012. Educational activity brought the MFT down further to 7.86 hours (36 patients, in summer 2012. Lack of training in autumn 2012 increased MFT to 9.32 hours (151 patients, which then improved to 8.04 hours (27 patients as a result of renewed educational activity. In 2013, MFT increased to 9.8 hours (37 patients despite training. In June 2013, more education achieved a reduction in MFT to 6.52 hours (17 patients. The MFT across all audits (2008–2013 was 8.48 hours. Education reduces MFT, but only in the short term. Factors responsible for changes in MFT were identified.Conclusion: Excessive preoperative fasting is an

  1. High rate, fast timing Glass RPC for the high η CMS muon detectors

    Science.gov (United States)

    Lagarde, F.; Gouzevitch, M.; Laktineh, I.; Buridon, V.; Chen, X.; Combaret, C.; Eynard, A.; Germani, L.; Grenier, G.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Wang, Y.; Gong, A.; Moreau, N.; de la Taille, C.; Dulucq, F.; Cimmino, A.; Crucy, S.; Fagot, A.; Gul, M.; Rios, A. A. O.; Tytgat, M.; Zaganidis, N.; Aly, S.; Assran, Y.; Radi, A.; Sayed, A.; Singh, G.; Abbrescia, M.; Iaselli, G.; Maggi, M.; Pugliese, G.; Verwilligen, P.; Van Doninck, W.; Colafranceschi, S.; Sharma, A.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.; Bhatnagar, V.; Kumari, R.; Mehta, A.; Singh, J.; Ahmad, A.; Ahmed, W.; Asghar, H. M. I.; Awan, I. M.; Hoorani, R.; Muhammad, S.; Shahzad, H.; Shah, M. A.; Cho, S. W.; Choi, S. Y.; Hong, B.; Kang, M. H.; Lee, K. S.; Lim, J. H.; Park, S. K.; Kim, M. S.; Carpinteyro Bernardino, S.; Pedraza, I.; Uribe Estrada, C.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pant, L. M.; Buontempo, S.; Cavallo, N.; Esposito, M.; Fabozzi, F.; Lanza, G.; Orso, I.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Thyssen, F.; Braghieri, A.; Magnani, A.; Montagna, P.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Ban, Y.; Qian, S. J.; Choi, M.; Choi, Y.; Goh, J.; Kim, D.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Bagaturia, I.; Lomidze, D.; Avila, C.; Cabrera, A.; Sanabria, J. C.; Crotty, I.; Vaitkus, J.

    2016-09-01

    The HL-LHC phase is designed to increase by an order of magnitude the amount of data to be collected by the LHC experiments. To achieve this goal in a reasonable time scale the instantaneous luminosity would also increase by an order of magnitude up to 6 · 1034 cm-2s-1. The region of the forward muon spectrometer (|η| > 1.6) is not equipped with RPC stations. The increase of the expected particles flux up to 2 kHz/cm2 (including a safety factor 3) motivates the installation of RPC chambers to guarantee redundancy with the CSC chambers already present. The current CMS RPC technology cannot sustain the expected background level. The new technology that will be chosen should have a high rate capability and provide a good spatial and timing resolution. A new generation of Glass-RPC (GRPC) using low-resistivity glass is proposed to equip at least the two most far away of the four high η muon stations of CMS. First the design of small size prototypes and studies of their performance in high-rate particles flux are presented. Then the proposed designs for large size chambers and their fast-timing electronic readout are examined and preliminary results are provided.

  2. Scale invariance of entanglement dynamics in Grover's quantum search algorithm

    CERN Document Server

    Rossi, M; Macchiavello, C

    2012-01-01

    We calculate the amount of entanglement of the multiqubit quantum states employed in the Grover algorithm, by following its dynamics at each step of the computation. We show that genuine multipartite entanglement is always present. Remarkably, the dynamics of any type of entanglement as well as of genuine multipartite entanglement is independent of the number $n$ of qubits for large $n$, thus exhibiting a scale invariance property. We also investigate criteria for efficient simulatability in the context of Grover's algorithm.

  3. One Type of Dynamic Scaling Characteristics for Synchronizability in LUHVGM

    Institute of Scientific and Technical Information of China (English)

    LIU; Qiang; FANG; Jin-qing; LI; Yong

    2012-01-01

    <正>The third level of unified hybrid network theoretical framework so-called large unifying hybrid variable growing model (LUHVGM) can be used to research basic characteristics of some social networks and high technology enterprise networks in theory as we investigated before. The research of dynamical synchronization is an important issue, which can rich and understand the characteristic of the LUHVGM. We found that the dynamical scaling relation and its exponent γ can be applied to describe the

  4. The scaling properties of dynamical fluctuations in temporal networks

    CERN Document Server

    Chi, Liping

    2015-01-01

    The factorial moments analyses are performed to study the scaling properties of the dynamical fluctuations of contacts and nodes in temporal networks based on empirical data sets. The intermittent behaviors are observed in the fluctuations for all orders of the moments. It indicates that the interaction has self-similarity structure in time interval and the fluctuations are not purely random but dynamical and correlated. The scaling exponents for contacts in Prostitution data and nodes in Conference data are very close to that for 2D Ising model undergoing a second-order phase transition.

  5. METRICS FOR DYNAMIC SCALING OF DATABASE IN CLOUDS

    OpenAIRE

    Alexander V. Boichenko; Dmitry K. Rogojin; Dmitry G. Korneev

    2013-01-01

    This article analyzes the main methods of scaling databases (replication, sharding) and their support at the popular relational databases and NoSQL solutions with different data models: a document-oriented, key-value, column-oriented, graph. The article provides an assessment of the capabilities of modern cloud-based solution and gives a model for the organization of dynamic scaling in the cloud infrastructure. In the article are analyzed different types of metrics and are included the basic ...

  6. Scaling of the dynamics of flexible Lennard-Jones chains.

    Science.gov (United States)

    Veldhorst, Arno A; Dyre, Jeppe C; Schrøder, Thomas B

    2014-08-07

    The isomorph theory provides an explanation for the so-called power law density scaling which has been observed in many molecular and polymeric glass formers, both experimentally and in simulations. Power law density scaling (relaxation times and transport coefficients being functions of ρ(γ(S)), where ρ is density, T is temperature, and γ(S) is a material specific scaling exponent) is an approximation to a more general scaling predicted by the isomorph theory. Furthermore, the isomorph theory provides an explanation for Rosenfeld scaling (relaxation times and transport coefficients being functions of excess entropy) which has been observed in simulations of both molecular and polymeric systems. Doing molecular dynamics simulations of flexible Lennard-Jones chains (LJC) with rigid bonds, we here provide the first detailed test of the isomorph theory applied to flexible chain molecules. We confirm the existence of isomorphs, which are curves in the phase diagram along which the dynamics is invariant in the appropriate reduced units. This holds not only for the relaxation times but also for the full time dependence of the dynamics, including chain specific dynamics such as the end-to-end vector autocorrelation function and the relaxation of the Rouse modes. As predicted by the isomorph theory, jumps between different state points on the same isomorph happen instantaneously without any slow relaxation. Since the LJC is a simple coarse-grained model for alkanes and polymers, our results provide a possible explanation for why power-law density scaling is observed experimentally in alkanes and many polymeric systems. The theory provides an independent method of determining the scaling exponent, which is usually treated as an empirical scaling parameter.

  7. Improved scaling of temperature-accelerated dynamics using localization.

    Science.gov (United States)

    Shim, Yunsic; Amar, Jacques G

    2016-07-07

    While temperature-accelerated dynamics (TAD) is a powerful method for carrying out non-equilibrium simulations of systems over extended time scales, the computational cost of serial TAD increases approximately as N(3) where N is the number of atoms. In addition, although a parallel TAD method based on domain decomposition [Y. Shim et al., Phys. Rev. B 76, 205439 (2007)] has been shown to provide significantly improved scaling, the dynamics in such an approach is only approximate while the size of activated events is limited by the spatial decomposition size. Accordingly, it is of interest to develop methods to improve the scaling of serial TAD. As a first step in understanding the factors which determine the scaling behavior, we first present results for the overall scaling of serial TAD and its components, which were obtained from simulations of Ag/Ag(100) growth and Ag/Ag(100) annealing, and compare with theoretical predictions. We then discuss two methods based on localization which may be used to address two of the primary "bottlenecks" to the scaling of serial TAD with system size. By implementing both of these methods, we find that for intermediate system-sizes, the scaling is improved by almost a factor of N(1/2). Some additional possible methods to improve the scaling of TAD are also discussed.

  8. Full-Scale Dynamic Testing of Dolosse to Destruction

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    1981-01-01

    It is well known that the relative dynamic strength of unreinforced slender concrete units decreases as the size increases. Big units can resist relatively smaller movements than small units. When model tests of cover layer stability are performed the determination of the damage criterion...... that should be adopted must therefore be based on knowledge of the dynamic strength of the corresponding prototype units. With the purpose of establishing a relationship between the size and the dynamic strength of unreinforced units, some full-scale tests to destruction of 1.5 and 5.4 t units were performed...

  9. Vector dissipativity theory for large-scale impulsive dynamical systems

    Directory of Open Access Journals (Sweden)

    Haddad Wassim M.

    2004-01-01

    Full Text Available Modern complex large-scale impulsive systems involve multiple modes of operation placing stringent demands on controller analysis of increasing complexity. In analyzing these large-scale systems, it is often desirable to treat the overall impulsive system as a collection of interconnected impulsive subsystems. Solution properties of the large-scale impulsive system are then deduced from the solution properties of the individual impulsive subsystems and the nature of the impulsive system interconnections. In this paper, we develop vector dissipativity theory for large-scale impulsive dynamical systems. Specifically, using vector storage functions and vector hybrid supply rates, dissipativity properties of the composite large-scale impulsive systems are shown to be determined from the dissipativity properties of the impulsive subsystems and their interconnections. Furthermore, extended Kalman-Yakubovich-Popov conditions, in terms of the impulsive subsystem dynamics and interconnection constraints, characterizing vector dissipativeness via vector system storage functions, are derived. Finally, these results are used to develop feedback interconnection stability results for large-scale impulsive dynamical systems using vector Lyapunov functions.

  10. Stability theory for dynamic equations on time scales

    CERN Document Server

    Martynyuk, Anatoly A

    2016-01-01

    This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Ma...

  11. Dynamic up-scaling of relative permeability in chalk

    Energy Technology Data Exchange (ETDEWEB)

    Frykman, P.; Lindgaard, H.F.

    1997-12-31

    This paper describes how fine-scale geo-statistic reservoir models can be utilised for the up-scaling of two-phase flow properties, including both relative permeability and capillary pressure function. The procedure is applied to a North Sea chalk carbonate reservoir example, which is a high-porosity/low-permeability reservoir type. The study focuses on waterflooding as the main recovery scheme and for the given flow regime in the reservoir. The main purpose of the paper is to demonstrate the use of dynamic multi-step up-scaling methods in the preparation of detailed geological information for full field reservoir simulation studies. (au) EFP-96. 39 refs.

  12. Multiscale functions, Scale dynamics and Applications to partial differential equations

    CERN Document Server

    Cresson, Jacky

    2015-01-01

    Modeling phenomena from experimental data, always begin with a \\emph{choice of hypothesis} on the observed dynamics such as \\emph{determinism}, \\emph{randomness}, \\emph{derivability} etc. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following : \\emph{"With a finite set of data concerning a phenomenon, can we recover its underlying nature ?} From this problem, we introduce in this paper the definition of \\emph{multi-scale functions}, \\emph{scale calculus} and \\emph{scale dynamics} based on the \\emph{time-scale calculus} (see \\cite{bohn}). These definitions will be illustrated on the \\emph{multi-scale Okamoto's functions}. The introduced formalism explains why there exists different continuous models associated to an equation with different \\emph{scale regimes} whereas the equation is \\emph{scale invariant}. A typical example of such an equation, is the \\emph{Euler-Lagrange equation} and particularly the \\emph{Newton's equation} ...

  13. Exponential stability of dynamic equations on time scales

    Directory of Open Access Journals (Sweden)

    Raffoul Youssef N

    2005-01-01

    Full Text Available We investigate the exponential stability of the zero solution to a system of dynamic equations on time scales. We do this by defining appropriate Lyapunov-type functions and then formulate certain inequalities on these functions. Several examples are given.

  14. Scaling of musculoskeletal models from static and dynamic trials

    DEFF Research Database (Denmark)

    Lund, Morten Enemark; Andersen, Michael Skipper; de Zee, Mark

    2015-01-01

    Subject-specific scaling of cadaver-based musculoskeletal models is important for accurate musculoskeletal analysis within multiple areas such as ergonomics, orthopaedics and occupational health. We present two procedures to scale ‘generic’ musculoskeletal models to match segment lengths and joint...... parameters to a specific subject and compare the results to a simpler approach based on linear, segment-wise scaling. By incorporating data from functional and standing reference trials, the new scaling approaches reduce the model sensitivity to assumed model marker positions. For validation, we applied all...... three scaling methods to an inverse dynamics-based musculoskeletal model and compared predicted knee joint contact forces to those measured with an instrumented prosthesis during gait. Additionally, a Monte Carlo study was used to investigate the sensitivity of the knee joint contact force to random...

  15. Scale-Free Networks Hidden in Chaotic Dynamical Systems

    CERN Document Server

    Iba, Takashi

    2010-01-01

    In this paper, we show our discovery that state-transition networks in several chaotic dynamical systems are "scale-free networks," with a technique to understand a dynamical system as a whole, which we call the analysis for "Discretized-State Transition" (DST) networks; This scale-free nature is found universally in the logistic map, the sine map, the cubic map, the general symmetric map, the sine-circle map, the Gaussian map, and the delayed logistic map. Our findings prove that there is a hidden order in chaos, which has not detected yet. Furthermore, we anticipate that our study opens up a new way to a "network analysis approach to dynamical systems" for understanding complex phenomena.

  16. Joint Scaling Theory of Human Dynamics and Network Science

    CERN Document Server

    Song, Chaoming; Barabasi, Albert-Laszlo

    2012-01-01

    The increasing availability of large-scale data on human behavior has catalyzed simultaneous advances in network theory, capturing the scaling properties of the interactions between a large number of individuals, and human dynamics, quantifying the temporal characteristics of human activity patterns. These two areas remain disjoint, however, traditionally each pursuing as a separate modeling framework. Here we establish the first formal link between these two areas by showing that the exponents characterizing the degree and link weight distribution in social networks can be expressed in terms of the dynamical exponents characterizing human activity patterns. We test the validity of these theoretical predictions on datasets capturing various facets of human interactions, from mobile calls to tweets. We find evidence of a universal measure, that links networks and human dynamics, but whose value is independent of the means of communication, capturing a fundamental property of human activity.

  17. Scaling laws of gelatin hydrogels for steady dynamic friction

    Science.gov (United States)

    Gupta, Vinit; Singh, Arun K.

    2016-09-01

    In this article, we use population balance based dynamic friction model for steady sliding to develop scaling laws in the terms of mesh size of gelatin hydrogels. First of all, it is observed in the sliding experiments that shear modulus of gelatin hydrogels depends on sliding velocity. This dependence is more evident in the case of low sliding velocity. Moreover, relaxation time constant of a dangling chain at the sliding interface scales with the same exponent as its stiffness. The scaling law is also developed for chain density and viscous retardation at the sliding interface. It is also established that the Hookean-based dynamic friction model is sufficient to study frictional behaviour of hydrogels. The reason for this observation is attributed to the weak bonding between a gelatin hydrogel and glass interface.

  18. METRICS FOR DYNAMIC SCALING OF DATABASE IN CLOUDS

    Directory of Open Access Journals (Sweden)

    Alexander V. Boichenko

    2013-01-01

    Full Text Available This article analyzes the main methods of scaling databases (replication, sharding and their support at the popular relational databases and NoSQL solutions with different data models: a document-oriented, key-value, column-oriented, graph. The article provides an assessment of the capabilities of modern cloud-based solution and gives a model for the organization of dynamic scaling in the cloud infrastructure. In the article are analyzed different types of metrics and are included the basic metrics that characterize the functioning parameters and database technology, as well as sets the goals of the integral metrics, necessary for the implementation of adaptive algorithms for dynamic scaling databases in the cloud infrastructure. This article was prepared with the support of RFBR grant № 13-07-00749.

  19. Emergence of scaling in human-interest dynamics

    Science.gov (United States)

    Zhao, Zhi-Dan; Yang, Zimo; Zhang, Zike; Zhou, Tao; Huang, Zi-Gang; Lai, Ying-Cheng

    2013-12-01

    Human behaviors are often driven by human interests. Despite intense recent efforts in exploring the dynamics of human behaviors, little is known about human-interest dynamics, partly due to the extreme difficulty in accessing the human mind from observations. However, the availability of large-scale data, such as those from e-commerce and smart-phone communications, makes it possible to probe into and quantify the dynamics of human interest. Using three prototypical ``Big Data'' sets, we investigate the scaling behaviors associated with human-interest dynamics. In particular, from the data sets we uncover fat-tailed (possibly power-law) distributions associated with the three basic quantities: (1) the length of continuous interest, (2) the return time of visiting certain interest, and (3) interest ranking and transition. We argue that there are three basic ingredients underlying human-interest dynamics: preferential return to previously visited interests, inertial effect, and exploration of new interests. We develop a biased random-walk model, incorporating the three ingredients, to account for the observed fat-tailed distributions. Our study represents the first attempt to understand the dynamical processes underlying human interest, which has significant applications in science and engineering, commerce, as well as defense, in terms of specific tasks such as recommendation and human-behavior prediction.

  20. Emergence of scaling in human-interest dynamics

    Science.gov (United States)

    Zhao, Zhi-Dan; Yang, Zimo; Zhang, Zike; Zhou, Tao; Huang, Zi-Gang; Lai, Ying-Cheng

    2013-01-01

    Human behaviors are often driven by human interests. Despite intense recent efforts in exploring the dynamics of human behaviors, little is known about human-interest dynamics, partly due to the extreme difficulty in accessing the human mind from observations. However, the availability of large-scale data, such as those from e-commerce and smart-phone communications, makes it possible to probe into and quantify the dynamics of human interest. Using three prototypical “Big Data” sets, we investigate the scaling behaviors associated with human-interest dynamics. In particular, from the data sets we uncover fat-tailed (possibly power-law) distributions associated with the three basic quantities: (1) the length of continuous interest, (2) the return time of visiting certain interest, and (3) interest ranking and transition. We argue that there are three basic ingredients underlying human-interest dynamics: preferential return to previously visited interests, inertial effect, and exploration of new interests. We develop a biased random-walk model, incorporating the three ingredients, to account for the observed fat-tailed distributions. Our study represents the first attempt to understand the dynamical processes underlying human interest, which has significant applications in science and engineering, commerce, as well as defense, in terms of specific tasks such as recommendation and human-behavior prediction. PMID:24326949

  1. Thermodynamic scaling of dynamic properties of liquid crystals: verifying the scaling parameters using a molecular model.

    Science.gov (United States)

    Satoh, Katsuhiko

    2013-08-28

    The thermodynamic scaling of molecular dynamic properties of rotation and thermodynamic parameters in a nematic phase was investigated by a molecular dynamic simulation using the Gay-Berne potential. A master curve for the relaxation time of flip-flop motion was obtained using thermodynamic scaling, and the dynamic property could be solely expressed as a function of TV(γτ) , where T and V are the temperature and volume, respectively. The scaling parameter γτ was in excellent agreement with the thermodynamic parameter Γ, which is the logarithm of the slope of a line plotted for the temperature and volume at constant P2. This line was fairly linear, and as good as the line for p-azoxyanisole or using the highly ordered small cluster model. The equivalence relation between Γ and γ(τ) was compared with results obtained from the highly ordered small cluster model. The possibility of adapting the molecular model for the thermodynamic scaling of other dynamic rotational properties was also explored. The rotational diffusion constant and rotational viscosity coefficients, which were calculated using established theoretical and experimental expressions, were rescaled onto master curves with the same scaling parameters. The simulation illustrates the universal nature of the equivalence relation for liquid crystals.

  2. Generalized dynamic scaling for quantum critical relaxation in imaginary time.

    Science.gov (United States)

    Zhang, Shuyi; Yin, Shuai; Zhong, Fan

    2014-10-01

    We study the imaginary-time relaxation critical dynamics of a quantum system with a vanishing initial correlation length and an arbitrary initial order parameter M0. We find that in quantum critical dynamics, the behavior of M0 under scale transformations deviates from a simple power law, which was proposed for very small M0 previously. A universal characteristic function is then suggested to describe the rescaled initial magnetization, similar to classical critical dynamics. This characteristic function is shown to be able to describe the quantum critical dynamics in both short- and long-time stages of the evolution. The one-dimensional transverse-field Ising model is employed to numerically determine the specific form of the characteristic function. We demonstrate that it is applicable as long as the system is in the vicinity of the quantum critical point. The universality of the characteristic function is confirmed by numerical simulations of models belonging to the same universality class.

  3. A Fast-Time Simulation Tool for Analysis of Airport Arrival Traffic

    Science.gov (United States)

    Erzberger, Heinz; Meyn, Larry A.; Neuman, Frank

    2004-01-01

    The basic objective of arrival sequencing in air traffic control automation is to match traffic demand and airport capacity while minimizing delays. The performance of an automated arrival scheduling system, such as the Traffic Management Advisor developed by NASA for the FAA, can be studied by a fast-time simulation that does not involve running expensive and time-consuming real-time simulations. The fast-time simulation models runway configurations, the characteristics of arrival traffic, deviations from predicted arrival times, as well as the arrival sequencing and scheduling algorithm. This report reviews the development of the fast-time simulation method used originally by NASA in the design of the sequencing and scheduling algorithm for the Traffic Management Advisor. The utility of this method of simulation is demonstrated by examining the effect on delays of altering arrival schedules at a hub airport.

  4. Multi-Scale Dynamics, Control, and Simulation of Granular Spacecraft

    Science.gov (United States)

    Quadrelli, Marco B.; Basinger, Scott; Swartzlander, Grover

    2013-01-01

    In this paper, we present some ideas regarding the modeling, dynamics and control aspects of granular spacecraft. Granular spacecraft are complex multibody systems composed of a spatially disordered distribution of a large number of elements, for instance a cloud of grains in orbit. An example of application is a spaceborne observatory for exoplanet imaging, where the primary aperture is a cloud instead of a monolithic aperture. A model is proposed of a multi-scale dynamics of the grains and cloud in orbit, as well as a control approach for cloud shape maintenance and alignment, and preliminary simulation studies are carried out for the representative imaging system.

  5. Scale-Invariant Correlations in Dynamic Bacterial Clusters

    Science.gov (United States)

    Chen, Xiao; Dong, Xu; Be'er, Avraham; Swinney, Harry L.; Zhang, H. P.

    2012-04-01

    In Bacillus subtilis colonies, motile bacteria move collectively, spontaneously forming dynamic clusters. These bacterial clusters share similarities with other systems exhibiting polarized collective motion, such as bird flocks or fish schools. Here we study experimentally how velocity and orientation fluctuations within clusters are spatially correlated. For a range of cell density and cluster size, the correlation length is shown to be 30% of the spatial size of clusters, and the correlation functions collapse onto a master curve after rescaling the separation with correlation length. Our results demonstrate that correlations of velocity and orientation fluctuations are scale invariant in dynamic bacterial clusters.

  6. Bed form dynamics in distorted lightweight scale models

    Science.gov (United States)

    Aberle, Jochen; Henning, Martin; Ettmer, Bernd

    2016-04-01

    The adequate prediction of flow and sediment transport over bed forms presents a major obstacle for the solution of sedimentation problems in alluvial channels because bed forms affect hydraulic resistance, sediment transport, and channel morphodynamics. Moreover, bed forms can affect hydraulic habitat for biota, may introduce severe restrictions to navigation, and present a major problem for engineering structures such as water intakes and groynes. The main body of knowledge on the geometry and dynamics of bed forms such as dunes originates from laboratory and field investigations focusing on bed forms in sand bed rivers. Such investigations enable insight into the physics of the transport processes, but do not allow for the long term simulation of morphodynamic development as required to assess, for example, the effects of climate change on river morphology. On the other hand, this can be achieved through studies with distorted lightweight scale models allowing for the modification of the time scale. However, our understanding of how well bed form geometry and dynamics, and hence sediment transport mechanics, are reproduced in such models is limited. Within this contribution we explore this issue using data from investigations carried out at the Federal Waterways and Research Institute in Karlsruhe, Germany in a distorted lightweight scale model of the river Oder. The model had a vertical scale of 1:40 and a horizontal scale of 1:100, the bed material consisted of polystyrene particles, and the resulting dune geometry and dynamics were measured with a high spatial and temporal resolution using photogrammetric methods. Parameters describing both the directly measured and up-scaled dune geometry were determined using the random field approach. These parameters (e.g., standard deviation, skewness, kurtosis) will be compared to prototype observations as well as to results from the literature. Similarly, parameters describing the lightweight bed form dynamics, which

  7. Ultra-fast timing detectors to probe exotic properties of nuclei using RIB facility

    CERN Document Server

    Datta, Ushasi; Rahaman, A

    2016-01-01

    Recently, the facilities of radioactive ion beam (RIB) combined with advanced detector systems provide us unique opportunity to probe the exotic properties of the nuclei with unusual neutron-to-proton ratio. In this article, a study of characterization of different types of ultra-fast timing detectors: a special type of gas detector (multi-strip multi-gap resistive plate chamber, MMRPC) ($\\sigma$ $<$100 ps), scintillators array ( viz., $LaBr_3:Ce$) (timing resolution ($\\sigma<$250 ps) are being presented. A brief discussion on usage of these different types of ultra-fast timing detector systems at radioactive ion beam facilities is also included.

  8. Dynamic response of scale models subjected to impact loading

    Science.gov (United States)

    Hillsdon, Graham K.

    1997-05-01

    Presented with the problem of possible failure of large structures due to dynamic loading, and the cost of staging full scale tests. The Oxford University's Department of Engineering Science, supported by British Gas and Rolls Royce, has been scale modeling these events experimentally. The paper looks at two areas of research: (1) The structural integrity of a particular type of Liquified Natural Gas Storage Tank, and its vulnerability to blast loading. (2) The ability of Large Aero Engine Fan blades to withstand impacts associated with birds, stones, ice etc.

  9. Finite-size scaling approach to dynamic storage allocation problem

    Science.gov (United States)

    Seyed-allaei, Hamed

    2003-09-01

    It is demonstrated how dynamic storage allocation algorithms can be analyzed in terms of finite-size scaling. The method is illustrated in the three simple cases of the first-fit, next-fit and best-fit algorithms, and the system works at full capacity. The analysis is done from two different points of view-running speed and employed memory. In both cases, and for all algorithms, it is shown that a simple scaling function exists and the relevant exponents are calculated. The method can be applied on similar problems as well.

  10. Dynamics symmetries of Hamiltonian system on time scales

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Keke, E-mail: pengkeke88@126.com; Luo, Yiping, E-mail: zjstulyp@126.com [Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2014-04-15

    In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.

  11. Dynamics symmetries of Hamiltonian system on time scales

    Science.gov (United States)

    Peng, Keke; Luo, Yiping

    2014-04-01

    In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.

  12. Challenges in transferring knowledge between scales in coastal sediment dynamics

    Directory of Open Access Journals (Sweden)

    Shari L Gallop

    2015-10-01

    Full Text Available ‘Packaging’ coastal sediment transport into discrete temporal and spatial scale bands is necessary for measurement programs, modelling, and design. However, determining how to best measure and parameterize information, to transfer between scales, is not trivial. An overview is provided of the major complexities in transferring information on coastal sediment transport between scales. Key considerations that recur in the literature include: interaction between sediment transport and morphology; the influence of biota; episodic sediment transport; and recovery time-scales. The influence of bedforms and landforms, as well as sediment-biota interactions, varies with spatio-temporal scale. In some situations, episodic sediment dynamics is the main contributor to long-term sediment transport. Such events can also significantly alter biogeochemical and ecological processes, which interact with sediments. The impact of such episodic events is fundamentally influenced by recovery time-scales, which vary spatially. For the various approaches to scaling (e.g., bottom-up, aggregation, spatial hierarchies, there is a need for fundamental research on the assumptions inherent in each approach.

  13. Multiple time scale based reduction scheme for nonlinear chemical dynamics

    Science.gov (United States)

    Das, D.; Ray, D. S.

    2013-07-01

    A chemical reaction is often characterized by multiple time scales governing the kinetics of reactants, products and intermediates. We eliminate the fast relaxing intermediates in autocatalytic reaction by transforming the original system into a new one in which the linearized part is diagonal. This allows us to reduce the dynamical system by identifying the associated time scales and subsequent adiabatic elimination of the fast modes. It has been shown that the reduced system sustains the robust qualitative signatures of the original system and at times the generic form of the return map for the chaotic system from which complex dynamics stems out in the original system can be identified. We illustrate the scheme for a three-variable cubic autocatalytic reaction and four-variable peroxidase-oxidase reaction.

  14. Nonlinear analysis of anesthesia dynamics by Fractal Scaling Exponent.

    Science.gov (United States)

    Gifani, P; Rabiee, H R; Hashemi, M R; Taslimi, P; Ghanbari, M

    2006-01-01

    The depth of anesthesia estimation has been one of the most research interests in the field of EEG signal processing in recent decades. In this paper we present a new methodology to quantify the depth of anesthesia by quantifying the dynamic fluctuation of the EEG signal. Extraction of useful information about the nonlinear dynamic of the brain during anesthesia has been proposed with the optimum Fractal Scaling Exponent. This optimum solution is based on the best box sizes in the Detrended Fluctuation Analysis (DFA) algorithm which have meaningful changes at different depth of anesthesia. The Fractal Scaling Exponent (FSE) Index as a new criterion has been proposed. The experimental results confirm that our new Index can clearly discriminate between aware to moderate and deep anesthesia levels. Moreover, it significantly reduces the computational complexity and results in a faster reaction to the transients in patients' consciousness levels in relations with the other algorithms.

  15. Lie group analysis for multi-scale plasma dynamics

    CERN Document Server

    Kovalev, Vladimir F

    2011-01-01

    An application of approximate transformation groups to study dynamics of a system with distinct time scales is discussed. The utilization of the Krylov-Bogoliubov-Mitropolsky method of averaging to find solutions of the Lie equations is considered. Physical illustrations from the plasma kinetic theory demonstrate the potentialities of the suggested approach. Several examples of invariant solutions for the system of the Vlasov-Maxwell equations for the two-component (electron-ion) plasma are presented.

  16. Dynamic Leidenfrost effect: relevant time- and length-scales

    CERN Document Server

    Shirota, Minori; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2015-01-01

    When a liquid droplet impacts a hot solid surface, enough vapor may be generated under it as to prevent its contact with the solid. The minimum solid temperature for this so-called Leidenfrost effect to occur is termed the Leidenfrost temperature, or the dynamic Leidenfrost temperature when the droplet velocity is non-negligible. We observe the wetting/drying and the levitation dynamics of the droplet impacting on an (isothermal) smooth sapphire surface using high speed total internal reflection imaging, which enables us to observe the droplet base up to about 100 nm above the substrate surface. By this method we are able to reveal the processes responsible for the transitional regime between the fully wetting and the fully levitated droplet as the solid temperature increases, thus shedding light on the characteristic time- and length-scales setting the dynamic Leidenfrost temperature for droplet impact on an isothermal substrate.

  17. The dynamics of large-scale arrays of coupled resonators

    Science.gov (United States)

    Borra, Chaitanya; Pyles, Conor S.; Wetherton, Blake A.; Quinn, D. Dane; Rhoads, Jeffrey F.

    2017-03-01

    This work describes an analytical framework suitable for the analysis of large-scale arrays of coupled resonators, including those which feature amplitude and phase dynamics, inherent element-level parameter variation, nonlinearity, and/or noise. In particular, this analysis allows for the consideration of coupled systems in which the number of individual resonators is large, extending as far as the continuum limit corresponding to an infinite number of resonators. Moreover, this framework permits analytical predictions for the amplitude and phase dynamics of such systems. The utility of this analytical methodology is explored through the analysis of a system of N non-identical resonators with global coupling, including both reactive and dissipative components, physically motivated by an electromagnetically-transduced microresonator array. In addition to the amplitude and phase dynamics, the behavior of the system as the number of resonators varies is investigated and the convergence of the discrete system to the infinite-N limit is characterized.

  18. Integrated process studies and dynamical upscaling from the observation scale to the catchment scale

    Science.gov (United States)

    Zehe, E.; Schröder, B.; Lee, H.; Sivapalan, M.

    2005-05-01

    A cardinal problem in hydrology is what we call the "scale gap" in understanding. We urgently need representative data on dynamics of surface and subsurface state variables at the catchment scale, for e.g., as additional performance measures for validating meso-scale models. However, due to the known shortcomings of geophysical measurement techniques such as time domain reflectometry (TDR), ground penetrating radar (GPR) or geo electrics, our observations, and therefore also our process understanding, are restricted to the point or small field scale. Common ways to assess e.g. information on the space-time pattern of soil moisture at larger scales is to perform a distributed set of point observations either using mobile sensors, such as the "green machine", or a fixed set of TDR stations distributed in a catchment. The first approach is restricted to field campaigns and does not yield continuous information in time. The latter suffers from the fact that the correlation structure of soil moisture depends on the saturation state of the catchment. Hence, especially in dry states the network might be too coarse for explaining spatial variability of soil moisture in a geo-statistical sense. Whatever measurement approach is employed, there is no easy way to scale the information from the distributed set of small scale observations to the catchment scale because of non-linear process dynamics and strong sub-catchment heterogeneity of soils and vegetation. Geostatistical interpolation including updating approaches suffer from the fact that they either assume stationary relations between drift parameters and soil moisture or the sampling is not sufficient to obtain useful posterior probability distributions of soil moisture within different classes of available soft information. In this study we present an approach for integrated process studies in catchments by comparing principles from landscape ecology such as the pattern process paradigm with physical reasoning

  19. The Acceleration Scale, Modified Newtonian Dynamics, and Sterile Neutrinos

    CERN Document Server

    Diaferio, Antonaldo

    2012-01-01

    General Relativity is able to describe the dynamics of galaxies and larger cosmic structures only if most of the matter in the Universe is dark, namely it does not emit any electromagnetic radiation. Intriguingly, on the scale of galaxies, there is strong observational evidence that the presence of dark matter appears to be necessary only when the gravitational field inferred from the distribution of the luminous matter falls below an acceleration of the order of 10^(-10) m/s^2. In the standard model, which combines Newtonian gravity with dark matter, the origin of this acceleration scale is challenging and remains unsolved. On the contrary, the full set of observations can be neatly described, and were partly predicted, by a modification of Newtonian dynamics, dubbed MOND, that does not resort to the existence of dark matter. On the scale of galaxy clusters and beyond, however, MOND is not as successful as on the scale of galaxies, and the existence of some dark matter appears unavoidable. A model combining ...

  20. Responses of Cloud Type Distributions to the Large-Scale Dynamical Circulation: Water Budget-Related Dynamical Phase Space and Dynamical Regimes

    Science.gov (United States)

    Wong, Sun; Del Genio, Anthony; Wang, Tao; Kahn, Brian; Fetzer, Eric J.; L'Ecuyer, Tristan S.

    2015-01-01

    Goals: Water budget-related dynamical phase space; Connect large-scale dynamical conditions to atmospheric water budget (including precipitation); Connect atmospheric water budget to cloud type distributions.

  1. Thermodynamic scaling of molecular dynamics in supercooled ibuprofen.

    Science.gov (United States)

    Adrjanowicz, K; Wojnarowska, Z; Paluch, M; Pionteck, J

    2011-04-28

    It was shown recently that ibuprofen revealed a strong tendency to form hydrogen bonded aggregates such as dimers and trimers of either cyclic or linear geometry, which somehow seems to control molecular mobility of that drug [Brás et al. J. Phys. Chem. B2008, 112 (35), 11 087-11 099]. For such hydrogen-bonded liquids, superpositioning of dynamics under various temperature T, pressure P, and volume V conditions, when plotted versus the scaling function of T(-1)V(-γ) (where γ is a material constant), may not always be satisfying. In the present work, we have tested the validity of this scaling for supercooled ibuprofen. In order to do that, pressure-volume-temperature (PVT) measurements combined with isobaric and isothermal dielectric relaxation studies (pressure up to 310 MPa) were carried out. The scaling properties of the examined drug were derived from the fitting of the τ(α)(T,V) dependences to the modified Avramov equation and by analyzing in double logarithmic scale the T(g)(V(g)) dependences, where the glass transition temperature T(g) and volume V(g) were defined for various relaxation times. In view of the obtained results, we conjecture that for ibuprofen the thermodynamic scaling idea works but not perfectly. The slight departure from the scaling behavior is discussed in the context of the hydrogen bonding abilities of the examined system and compared with the results reported for other strongly associated liquids.

  2. Strong anticipation: Multifractal cascade dynamics modulate scaling in synchronization behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Stephen, Damian G., E-mail: foovian@gmail.co [Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Floor 5, Boston, MA 02115 (United States); Dixon, James A. [Department of Psychology, University of Connecticut, 406 Babbidge Rd., Unit 1020, Storrs, CT 06269-1020 (United States); Haskins Laboratories, 300 George St., New Haven, CT 06511 (United States)

    2011-01-15

    Research highlights: We investigated anticipatory behaviors in response to chaotic metronomes. We assessed multifractal structure in tap intervals and onset intervals. Strength of multifractality in tap intervals appears to match that in onset intervals. - Abstract: Previous research on anticipatory behaviors has found that the fractal scaling of human behavior may attune to the fractal scaling of an unpredictable signal [Stephen DG, Stepp N, Dixon JA, Turvey MT. Strong anticipation: Sensitivity to long-range correlations in synchronization behavior. Physica A 2008;387:5271-8]. We propose to explain this attunement as a case of multifractal cascade dynamics [Schertzer D, Lovejoy S. Generalised scale invariance in turbulent phenomena. Physico-Chem Hydrodyn J 1985;6:623-5] in which perceptual-motor fluctuations are coordinated across multiple time scales. This account will serve to sharpen the contrast between strong and weak anticipation: whereas the former entails a sensitivity to the intermittent temporal structure of an unpredictable signal, the latter simply predicts sensitivity to an aggregate description of an unpredictable signal irrespective of actual sequence. We pursue this distinction through a reanalysis of Stephen et al.'s data by examining the relationship between the widths of singularity spectra for intertap interval time series and for each corresponding interonset interval time series. We find that the attunement of fractal scaling reported by Stephen et al. was not the trivial result of sensitivity to temporal structure in aggregate but reflected a subtle sensitivity to the coordination across multiple time scales of fluctuation in the unpredictable signal.

  3. Dislocation dynamics simulations of plasticity at small scales

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Caizhi [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this research is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.

  4. Scale-dependent homogeneity measures for causal dynamical triangulations

    CERN Document Server

    Cooperman, Joshua H

    2014-01-01

    I propose two scale-dependent measures of the homogeneity of the quantum geometry determined by an ensemble of causal triangulations. The first measure is volumetric, probing the growth of volume with graph geodesic distance. The second measure is spectral, probing the return probability of a random walk with diffusion time. Both of these measures, particularly the first, are closely related to those used to assess the homogeneity of our own universe on the basis of galaxy redshift surveys. I employ these measures to quantify the quantum spacetime homogeneity as well as the temporal evolution of quantum spatial homogeneity of ensembles of causal triangulations in the well-known physical phase. According to these measures, the quantum spacetime geometry exhibits some degree of inhomogeneity on sufficiently small scales and a high degree of homogeneity on sufficiently large scales. This inhomogeneity appears unrelated to the phenomenon of dynamical dimensional reduction. I also uncover evidence for power-law sc...

  5. OFDM receiver for fast time-varying channels using block-sparse Bayesian learning

    DEFF Research Database (Denmark)

    Barbu, Oana-Elena; Manchón, Carles Navarro; Rom, Christian

    2016-01-01

    We propose an iterative algorithm for OFDM receivers operating over fast time-varying channels. The design relies on the assumptions that the channel response can be characterized by a few non-negligible separable multipath components, and the temporal variation of each component gain can be well...

  6. A study of dynamic finite size scaling behavior of the scaling functions—calculation of dynamic critical index of Wolff algorithm

    Science.gov (United States)

    Gündüç, Semra; Dilaver, Mehmet; Aydın, Meral; Gündüç, Yiğit

    2005-02-01

    In this work we have studied the dynamic scaling behavior of two scaling functions and we have shown that scaling functions obey the dynamic finite size scaling rules. Dynamic finite size scaling of scaling functions opens possibilities for a wide range of applications. As an application we have calculated the dynamic critical exponent (z) of Wolff's cluster algorithm for 2-, 3- and 4-dimensional Ising models. Configurations with vanishing initial magnetization are chosen in order to avoid complications due to initial magnetization. The observed dynamic finite size scaling behavior during early stages of the Monte Carlo simulation yields z for Wolff's cluster algorithm for 2-, 3- and 4-dimensional Ising models with vanishing values which are consistent with the values obtained from the autocorrelations. Especially, the vanishing dynamic critical exponent we obtained for d=3 implies that the Wolff algorithm is more efficient in eliminating critical slowing down in Monte Carlo simulations than previously reported.

  7. Fasting time and lipid parameters: association with hepatic steatosis — data from a random population sample

    Science.gov (United States)

    2014-01-01

    Background Current guidelines recommend measuring plasma lipids in fasting patients. Recent studies, however, suggest that variation in plasma lipid concentrations secondary to fasting time may be minimal. Objective of the present study was to investigate the impact of fasting time on plasma lipid concentrations (total cholesterol, HDL and LDL cholesterol, triglycerides). A second objective was to determine the effect of non-alcoholic fatty liver disease exerted on the above-mentioned lipid levels. Method Subjects participating in a population-based cross-sectional study (2,445 subjects; 51.7% females) were questioned at time of phlebotomy regarding duration of pre-phlebotomy fasting. Total cholesterol, LDL and HDL cholesterol, and triglycerides were determined and correlated with length of fasting. An upper abdominal ultrasonographic examination was performed and body-mass index (BMI) and waist-to-hip ratio (WHR) were calculated. Subjects were divided into three groups based on their reported fasting periods of 1–4 h, 4–8 h and > 8 h. After application of the exclusion criteria, a total of 1,195 subjects (52.4% females) were included in the study collective. The Kruskal-Wallis test was used for continuous variables and the chi-square test for categorical variables. The effects of age, BMI, WHR, alcohol consumption, fasting time and hepatic steatosis on the respective lipid variables were analyzed using multivariate logistic regression. Results At multivariate analysis, fasting time was associated with elevated triglycerides (p = 0.0047 for 1–4 h and p = 0.0147 for 4–8 h among females; p fasting period. LDL cholesterol and triglycerides exhibit highly significant variability; the greatest impact is seen with the triglycerides. Fasting time represents an independent factor for reduced LDL cholesterol and elevated triglyceride concentrations. There is a close association between elevated lipids and hepatic steatosis. PMID:24447492

  8. Simulation of all-scale atmospheric dynamics on unstructured meshes

    Science.gov (United States)

    Smolarkiewicz, Piotr K.; Szmelter, Joanna; Xiao, Feng

    2016-10-01

    The advance of massively parallel computing in the nineteen nineties and beyond encouraged finer grid intervals in numerical weather-prediction models. This has improved resolution of weather systems and enhanced the accuracy of forecasts, while setting the trend for development of unified all-scale atmospheric models. This paper first outlines the historical background to a wide range of numerical methods advanced in the process. Next, the trend is illustrated with a technical review of a versatile nonoscillatory forward-in-time finite-volume (NFTFV) approach, proven effective in simulations of atmospheric flows from small-scale dynamics to global circulations and climate. The outlined approach exploits the synergy of two specific ingredients: the MPDATA methods for the simulation of fluid flows based on the sign-preserving properties of upstream differencing; and the flexible finite-volume median-dual unstructured-mesh discretisation of the spatial differential operators comprising PDEs of atmospheric dynamics. The paper consolidates the concepts leading to a family of generalised nonhydrostatic NFTFV flow solvers that include soundproof PDEs of incompressible Boussinesq, anelastic and pseudo-incompressible systems, common in large-eddy simulation of small- and meso-scale dynamics, as well as all-scale compressible Euler equations. Such a framework naturally extends predictive skills of large-eddy simulation to the global atmosphere, providing a bottom-up alternative to the reverse approach pursued in the weather-prediction models. Theoretical considerations are substantiated by calculations attesting to the versatility and efficacy of the NFTFV approach. Some prospective developments are also discussed.

  9. Multiple time scale behaviors and network dynamics in liquid methanol.

    Science.gov (United States)

    Sharma, Ruchi; Chakravarty, Charusita; Milotti, Edoardo

    2008-07-31

    Canonical ensemble molecular dynamics simulations of liquid methanol, modeled using a rigid-body, pair-additive potential, are used to compute static distributions and temporal correlations of tagged molecule potential energies as a means of characterizing the liquid state dynamics. The static distribution of tagged molecule potential energies shows a clear multimodal structure with three distinct peaks, similar to those observed previously in water and liquid silica. The multimodality is shown to originate from electrostatic effects, but not from local, hydrogen bond interactions. An interesting outcome of this study is the remarkable similarity in the tagged potential energy power spectra of methanol, water, and silica, despite the differences in the underlying interactions and the dimensionality of the network. All three liquids show a distinct multiple time scale (MTS) regime with a 1/ f (alpha) dependence with a clear positive correlation between the scaling exponent alpha and the diffusivity. The low-frequency limit of the MTS regime is determined by the frequency of crossover to white noise behavior which occurs at approximately 0.1 cm (-1) in the case of methanol under standard temperature and pressure conditions. The power spectral regime above 200 cm (-1) in all three systems is dominated by resonances due to localized vibrations, such as librations. The correlation between alpha and the diffusivity in all three liquids appears to be related to the strength of the coupling between the localized motions and the larger length/time scale network reorganizations. Thus, the time scales associated with network reorganization dynamics appear to be qualitatively similar in these systems, despite the fact that water and silica both display diffusional anomalies but methanol does not.

  10. Human dynamics scaling characteristics for aerial inbound logistics operation

    Science.gov (United States)

    Wang, Qing; Guo, Jin-Li

    2010-05-01

    In recent years, the study of power-law scaling characteristics of real-life networks has attracted much interest from scholars; it deviates from the Poisson process. In this paper, we take the whole process of aerial inbound operation in a logistics company as the empirical object. The main aim of this work is to study the statistical scaling characteristics of the task-restricted work patterns. We found that the statistical variables have the scaling characteristics of unimodal distribution with a power-law tail in five statistical distributions - that is to say, there obviously exists a peak in each distribution, the shape of the left part closes to a Poisson distribution, and the right part has a heavy-tailed scaling statistics. Furthermore, to our surprise, there is only one distribution where the right parts can be approximated by the power-law form with exponent α=1.50. Others are bigger than 1.50 (three of four are about 2.50, one of four is about 3.00). We then obtain two inferences based on these empirical results: first, the human behaviors probably both close to the Poisson statistics and power-law distributions on certain levels, and the human-computer interaction behaviors may be the most common in the logistics operational areas, even in the whole task-restricted work pattern areas. Second, the hypothesis in Vázquez et al. (2006) [A. Vázquez, J. G. Oliveira, Z. Dezsö, K.-I. Goh, I. Kondor, A.-L. Barabási. Modeling burst and heavy tails in human dynamics, Phys. Rev. E 73 (2006) 036127] is probably not sufficient; it claimed that human dynamics can be classified as two discrete university classes. There may be a new human dynamics mechanism that is different from the classical Barabási models.

  11. Towards Limited Scale-free Topology with Dynamic Peer Participation

    CERN Document Server

    Lu, Xiaoyan; Szymanski, Boleslaw

    2016-01-01

    Growth models have been proposed for constructing the scale-free overlay topology to improve the performance of unstructured peer-to-peer (P2P) networks. However, previous growth models are able to maintain the limited scale-free topology when nodes only join but do not leave the network; the case of nodes leaving the network while preserving a precise scaling parameter is not included in the solution. Thus, the full dynamic of node participation, inherent in P2P networks, is not considered in these models. In order to handle both nodes joining and leaving the network, we propose a robust growth model E-SRA, which is capable of producing the perfect limited scale-free overlay topology with user-defined scaling parameter and hard cut-offs. Scalability of our approach is ensured since no global information is required to add or remove a node. E-SRA is also tolerant to individual node failure caused by errors or attacks. Simulations have shown that E-SRA outperforms other growth models by producing topologies wi...

  12. Dynamics of Undisturbed Midlatitude Atmospheric Electricity: From Observations to Scaling

    Science.gov (United States)

    Anisimov, S. V.; Afinogenov, K. V.; Shikhova, N. M.

    2014-04-01

    Long-term dynamics of the electric field of the midlatitude near-surface atmosphere in a wide range of temporal scales is analyzed according to multiyear observatory and seasonal field observations. It is found that the daily dynamics of the aeroelectric field at mid-latitudes most authentically repeats a diurnal variation for the winter months. It is stated that short-period pulsations of the electric field have a self-similar power-law spectrum. Spatio-temporal scales of the self-similarity interval are estimated and the nature of the generalized diffusive process of the aeroelectric pulsation generation is defined. Characteristics of the turbulent ΔE pulsations are analyzed. Estimates of interrelation between the dynamic (fractal dimensions, intermittency indices) and power (degrees of spectral index and structure function) ΔE characteristics are obtained. Mutual correlations between atmospheric electric field variations, vertical atmospheric electrical current density, space charge density, and atmospheric electrical conductivity are studied. It is shown that variations of the light atmospheric ion number density and space charge density are related with variations of the Radon-222 emanations. Spectral analysis of the space charge density variations is carried out. It is shown that the electrodynamic state of the surface atmosphere depends on the convective state of the atmospheric boundary layer.

  13. Flame dynamics of a meso-scale heat recirculating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, V.; Gupta, A.K. [Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2010-12-15

    The dynamics of premixed propane-air flame in a meso-scale ceramic combustor has been examined here. The flame characteristics in the combustor were examined by measuring the acoustic emissions and preheat temperatures together with high-speed cinematography. For the small-scale combustor, the volume to surface area ratio is small and hence the walls have significant effect on the global flame structure, flame location and flame dynamics. In addition to the flame-wall thermal coupling there is a coupling between flame and acoustics in the case of confined flames. Flame-wall thermal interactions lead to low frequency flame fluctuations ({proportional_to}100 Hz) depending upon the thermal response of the wall. However, the flame-acoustic interactions can result in a wide range of flame fluctuations ranging from few hundred Hz to few kHz. Wall temperature distribution is one of the factors that control the amount of reactant preheating which in turn effects the location of flame stabilization. Acoustic emission signals and high-speed flame imaging confirmed that for the present case flame-acoustic interactions have more significant effect on flame dynamics. Based on the acoustic emissions, five different flame regimes have been identified; whistling/harmonic mode, rich instability mode, lean instability mode, silent mode and pulsating flame mode. (author)

  14. The dynamics of rapid fracture: instabilities, nonlinearities and length scales.

    Science.gov (United States)

    Bouchbinder, Eran; Goldman, Tamar; Fineberg, Jay

    2014-04-01

    The failure of materials and interfaces is mediated by cracks, almost singular dissipative structures that propagate at velocities approaching the speed of sound. Crack initiation and subsequent propagation-the dynamic process of fracture-couples a wide range of time and length scales. Crack dynamics challenge our understanding of the fundamental physics processes that take place in the extreme conditions within the almost singular region where material failure occurs. Here, we first briefly review the classic approach to dynamic fracture, namely linear elastic fracture mechanics (LEFM), and discuss its successes and limitations. We show how, on the one hand, recent experiments performed on straight cracks propagating in soft brittle materials have quantitatively confirmed the predictions of this theory to an unprecedented degree. On the other hand, these experiments show how LEFM breaks down as the singular region at the tip of a crack is approached. This breakdown naturally leads to a new theoretical framework coined 'weakly nonlinear fracture mechanics', where weak elastic nonlinearities are incorporated. The stronger singularity predicted by this theory gives rise to a new and intrinsic length scale, ℓnl. These predictions are verified in detail through direct measurements. We then theoretically and experimentally review how the emergence of ℓnl is linked to a new equation for crack motion, which predicts the existence of a high-speed oscillatory crack instability whose wavelength is determined by ℓnl. We conclude by delineating outstanding challenges in the field.

  15. Fast time- and frequency-domain finite-element methods for electromagnetic analysis

    Science.gov (United States)

    Lee, Woochan

    Fast electromagnetic analysis in time and frequency domain is of critical importance to the design of integrated circuits (IC) and other advanced engineering products and systems. Many IC structures constitute a very large scale problem in modeling and simulation, the size of which also continuously grows with the advancement of the processing technology. This results in numerical problems beyond the reach of existing most powerful computational resources. Different from many other engineering problems, the structure of most ICs is special in the sense that its geometry is of Manhattan type and its dielectrics are layered. Hence, it is important to develop structure-aware algorithms that take advantage of the structure specialties to speed up the computation. In addition, among existing time-domain methods, explicit methods can avoid solving a matrix equation. However, their time step is traditionally restricted by the space step for ensuring the stability of a time-domain simulation. Therefore, making explicit time-domain methods unconditionally stable is important to accelerate the computation. In addition to time-domain methods, frequency-domain methods have suffered from an indefinite system that makes an iterative solution difficult to converge fast. The first contribution of this work is a fast time-domain finite-element algorithm for the analysis and design of very large-scale on-chip circuits. The structure specialty of on-chip circuits such as Manhattan geometry and layered permittivity is preserved in the proposed algorithm. As a result, the large-scale matrix solution encountered in the 3-D circuit analysis is turned into a simple scaling of the solution of a small 1-D matrix, which can be obtained in linear (optimal) complexity with negligible cost. Furthermore, the time step size is not sacrificed, and the total number of time steps to be simulated is also significantly reduced, thus achieving a total cost reduction in CPU time. The second contribution

  16. AN IMPROVED DYNAMIC SUBGRID-SCALE STRESS MODEL

    Institute of Scientific and Technical Information of China (English)

    TANG Xue-ling; QIAN Zhong-dong; WU Yu-lin; LIU Shu-hong; YANG Fan

    2004-01-01

    According to modeling principle that a model must be more accurate if including more flow information, and based on the Cauchy-Helmholtz theorem and the Smagorinsky model, a second-order dynamic model with double dynamic coefficients was proposed by applying dimension analyses. The Subgrid-Scale (SGS) stress is a function of both strain-rate tensor and rotation-rate tensor. The SIMPLEC algorithm and staggering grid system was applied to give the solution of the discretized governing equations, and for the turbulent flow through a 90° bend, the distributions of velocity and pressure were achieved. The comparison between experimental data and simulation results at a Reynolds number 40000 shows a good agreement and implies that this model is practicable and credible.

  17. Molecular Dynamics Simulations for Resolving Scaling Laws of Polyethylene Melts

    Directory of Open Access Journals (Sweden)

    Kazuaki Z. Takahashi

    2017-01-01

    Full Text Available Long-timescale molecular dynamics simulations were performed to estimate the actual physical nature of a united-atom model of polyethylene (PE. Several scaling laws for representative polymer properties are compared to theoretical predictions. Internal structure results indicate a clear departure from theoretical predictions that assume ideal chain statics. Chain motion deviates from predictions that assume ideal motion of short chains. With regard to linear viscoelasticity, the presence or absence of entanglements strongly affects the duration of the theoretical behavior. Overall, the results indicate that Gaussian statics and dynamics are not necessarily established for real atomistic models of PE. Moreover, the actual physical nature should be carefully considered when using atomistic models for applications that expect typical polymer behaviors.

  18. Cooperative length scale of Aroclor near its dynamic glass transition

    Energy Technology Data Exchange (ETDEWEB)

    Rizos, A.K. [Univ. of Crete, Heraklion (Greece); Ngai, K.L. [Naval Research Lab., Washington, DC (United States)

    1997-12-31

    Photon correlation spectroscopy in the depolarized mode has been used to monitor the reorientational dynamics of Aroclor (A1248) (polychlorinated biphenyls) that contain in solutions various amounts of low and high molecular weight (M{sub W}) polymers. For the high M{sub W} polymer/A1248 solutions the authors observe a very small dependence of the stretched exponential parameter {beta} on temperature. In contrast, the low M{sub W} polymer/A1248 solutions display a pronounced temperature dependence of {beta}. These preliminary experiments allow them to use the effect of modification of the solvent dynamics by added polymer to estimate the length scale of cooperative motion in glass forming systems from the size of the polymer chain.

  19. Nonoscillation for second order sublinear dynamic equations on time scales

    Science.gov (United States)

    Erbe, Lynn; Baoguo, Jia; Peterson, Allan

    2009-10-01

    Consider the Emden-Fowler sublinear dynamic equation x[Delta][Delta](t)+p(t)f(x([sigma](t)))=0, where , is a time scale, , where ai>0, 0researchers. In this paper, we allow the coefficient function p(t) to be negative for arbitrarily large values of t. We extend a nonoscillation result of Wong for the second order sublinear Emden-Fowler equation in the continuous case to the dynamic equation (0.1). As applications, we show that the sublinear difference equation has a nonoscillatory solution, for b>0, c>[alpha], and the sublinear q-difference equation has a nonoscillatory solution, for , q>1, b>0, c>1+[alpha].

  20. Dynamical scaling laws – A few unanswered questions

    Indian Academy of Sciences (India)

    S Mazumder

    2008-11-01

    behaviour, and , the dimensionality of the system. It is important to note that the scaling hypothesis has not been proved conclusively except for some model systems. The Fourier transform of (, ), the structure factor or scattering function (, ) for a dimensional Euclidean system, obeys simple scaling ansatz at later times, $$(, ) = () d (())$$. Based on some of our recent observations on phase separation of a multicomponent alloy involving hydration of cementitious material, it is proposed to discuss some unanswered questions pertinent to the validity of dynamical scaling laws addressing some issues like (i) uniqueness of characteristic length (), (ii) the extent of validity of the scaling laws for new phase formation in the case of non-Euclidean fractal systems, (iii) the extent of validity of the scaling laws for multicomponent systems. The need for investigations examining the extent and the nature of the validity of the scaling laws for confined systems and for systems subjected to random field will also be discussed.

  1. Dynamics of proteins aggregation. I. Universal scaling in unbounded media

    Science.gov (United States)

    Zheng, Size; Javidpour, Leili; Shing, Katherine S.; Sahimi, Muhammad

    2016-10-01

    It is well understood that in some cases proteins do not fold correctly and, depending on their environment, even properly-folded proteins change their conformation spontaneously, taking on a misfolded state that leads to protein aggregation and formation of large aggregates. An important factor that contributes to the aggregation is the interactions between the misfolded proteins. Depending on the aggregation environment, the aggregates may take on various shapes forming larger structures, such as protein plaques that are often toxic. Their deposition in tissues is a major contributing factor to many neuro-degenerative diseases, such as Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, and prion. This paper represents the first part in a series devoted to molecular simulation of protein aggregation. We use the PRIME, a meso-scale model of proteins, together with extensive discontinuous molecular dynamics simulation to study the aggregation process in an unbounded fluid system, as the first step toward MD simulation of the same phenomenon in crowded cellular environments. Various properties of the aggregates have been computed, including dynamic evolution of aggregate-size distribution, mean aggregate size, number of peptides that contribute to the formation of β sheets, number of various types of hydrogen bonds formed in the system, radius of gyration of the aggregates, and the aggregates' diffusivity. We show that many of such quantities follow dynamic scaling, similar to those for aggregation of colloidal clusters. In particular, at long times the mean aggregate size S(t) grows with time as, S(t) ˜ tz, where z is the dynamic exponent. To our knowledge, this is the first time that the qualitative similarity between aggregation of proteins and colloidal aggregates has been pointed out.

  2. A Dynamic Pore-Scale Model of Imbibition

    DEFF Research Database (Denmark)

    Mogensen, Kristian; Stenby, Erling Halfdan

    1998-01-01

    could not incorporate long-range correlations among pore and throat sizes in our network, but were limited to small-range correlations. Consequently, the gradual suppression of snap-off occurs within one order of magnitude of the capillary number. At capillary numbers around l0- to l0-, snap-off has......We present a dynamic pore-scale network model of imbibition, capable of calculating residual oil saturation for any given capillary number, viscosity ratio, contact angle and aspect ratio. Our goal is not to predict the outcome of core floods, but rather to perform a sensitivity analysis...

  3. Scale-free dynamics of somatic adaptability in immune system

    CERN Document Server

    Saito, Shiro

    2009-01-01

    The long-time dynamics of somatic adaptability in immune system is simulated by a simple physical model. The immune system described by the model exhibits a scale free behavior as is observed in living systems. The balance between the positive and negative feedbacks of the model leads to a robust immune system where the positive one corresponds to the formation of memory cells and the negative one to immunosuppression. Also the immunosenescence of the system is discussed based on the time-dependence of the epigenetic landscape of the adaptive immune cells in the shape space.

  4. Adiabatic hyperspherical approach to large-scale nuclear dynamics

    CERN Document Server

    Suzuki, Yasuyuki

    2015-01-01

    We formulate a fully microscopic approach to large-scale nuclear dynamics using a hyperradius as a collective coordinate. An adiabatic potential is defined by taking account of all possible configurations at a fixed hyperradius, and its hyperradius dependence plays a key role in governing the global nuclear motion. In order to go to larger systems beyond few-body systems, we suggest basis functions of a microscopic multicluster model, propose a method for calculating matrix elements of an adiabatic Hamiltonian with use of Fourier transforms, and test its effectiveness.

  5. Examining a scaled dynamical system of telomere shortening

    Science.gov (United States)

    Cyrenne, Benoit M.; Gooding, Robert J.

    2015-02-01

    A model of telomere dynamics is proposed and examined. Our model, which extends a previously introduced model that incorporates stem cells as progenitors of new cells, imposes the Hayflick limit, the maximum number of cell divisions that are possible. This new model leads to cell populations for which the average telomere length is not necessarily a monotonically decreasing function of time, in contrast to previously published models. We provide a phase diagram indicating where such results would be expected via the introduction of scaled populations, rate constants and time. The application of this model to available leukocyte baboon data is discussed.

  6. Dynamical Scaling and Phase Coexistence in Topologically Constrained DNA Melting

    Science.gov (United States)

    Fosado, Y. A. G.; Michieletto, D.; Marenduzzo, D.

    2017-09-01

    There is a long-standing experimental observation that the melting of topologically constrained DNA, such as circular closed plasmids, is less abrupt than that of linear molecules. This finding points to an important role of topology in the physics of DNA denaturation, which is, however, poorly understood. Here, we shed light on this issue by combining large-scale Brownian dynamics simulations with an analytically solvable phenomenological Landau mean field theory. We find that the competition between melting and supercoiling leads to phase coexistence of denatured and intact phases at the single-molecule level. This coexistence occurs in a wide temperature range, thereby accounting for the broadening of the transition. Finally, our simulations show an intriguing topology-dependent scaling law governing the growth of denaturation bubbles in supercoiled plasmids, which can be understood within the proposed mean field theory.

  7. Scale invariant cosmology III: dynamical models and comparisons with observations

    CERN Document Server

    Maeder, Andre

    2016-01-01

    We examine the properties of the scale invariant cosmological models, also making the specific hypothesis of the scale invariance of the empty space at large scales. Numerical integrations of the cosmological equations for different values of the curvature parameter k and of the density parameter Omega_m are performed. We compare the dynamical properties of the models to the observations at different epochs. The main numerical data and graphical representations are given for models computed with different curvatures and density parameters. The models with non-zero density start explosively with first a braking phase followed by a continuously accelerating expansion. The comparison of the models with the recent observations from supernovae SN Ia, BAO and CMB data from Planck 2015 shows that the scale invariant model with k=0 and Omega_m=0.30 very well fits the observations in the usual Omega_m vs. Omega_Lambda plane and consistently accounts for the accelerating expansion or dark energy. The expansion history ...

  8. Virus Dynamics and Evolution: Bridging Scales and Disciplines

    Directory of Open Access Journals (Sweden)

    Mary Poss

    2011-08-01

    Full Text Available Viruses have attracted the interest of researchers from multiple disciplines and have nucleated many productive and innovative collaborations. In part, this is because viruses so intimately associate with their hosts that decoupling host and virus biology is difficult, and virus-host interactions occur at multiple scales, from within cells to populations, each of which is intrinsically complex. As a consequence, ecologists, population biologists, evolutionary biologists, and researchers from quantitative fields, including mathematics, statistics, physics and computer science, make significant contributions to the field of virology. Our understanding of virus dynamics and evolution has substantially benefited from these multidisciplinary efforts. It is now common to see advanced phylogenetic reconstruction methods used to determine the origins of emergent viruses, to estimate the effect of natural selection on virus populations, and to assess virus population dynamics. Mathematical and statistical models that elucidate complex virus and host interactions in time and space at the molecular and population level are appearing more regularly in virology and biomedical journals. Massive quantities of data now available due to technological innovation in imaging, increased disease surveillance efforts, and novel approaches to determine social contact structure are changing approaches to study the dynamics and evolution of viral infections in heterogeneous environments. The next decade presents exciting new opportunities and challenges for the expanding field of researchers investigating dynamics of viral infections that will lead to innovation and new insight on virus interactions in both individual hosts and in populations. The compilation of articles in this Special Issue on “Virus Dynamics and Evolution” is comprised of reviews and primary research, summarized below, that provide new perspectives on virus interactions with host organisms through

  9. Development of a Family Dynamic Environment Scale for Korean adolescents.

    Science.gov (United States)

    Kim, Hyun-Sil; Kim, Hun-Soo

    2007-01-01

    The objective of this study was to develop a short and reliable Family Dynamic Environment Scale (FDES) that would better serve the needs of mental health professionals in detecting the potential for delinquent behavior in Korean adolescents related to a dysfunctional family dynamic environment. Semi-structured interviews with 30 adolescents were initially conducted to generate a set of items, after which, 44 participants were included in method test-retest reliability test. Finally, 544 participants recruited by proportional stratified random sampling were included in a factor analysis. The original version of the FDES had 60 items in 7 categories; the final version included 42 items grouped into 5 factors. Both test-retest reliability and Cronbach's alpha coefficient were high for the final version of the scale. As a result of factor analysis, five factors were extracted: family psychological climate, parent-child relationship, paternal parenting attitude, family cohesion, and maternal parenting attitude. These contributed 50.3% of the variance in the item scores. All 42 items loaded above .35 on their respective factors. The Cronbach's alpha coefficients for internal consistency were .95 for the total 42 items and .92, .81, .82, .78, and .71, respectively, for each of the 5 factors.

  10. Large-scale filaments-newtonian vs. modified dynamics

    CERN Document Server

    Milgrom, M

    1996-01-01

    Eisenstein Loeb and Turner (ELT) have recently proposed a method for estimating the dynamical masses of large-scale filaments, whereby the filament is modeled by an axisymmetric, isothermal cylinder, for which ELT derive a global relation between the (constant) velocity dispersion and the total line density. We first show that the model assumptions of ELT can be relaxed materially: an exact relation between the velocity and line density is derived for any cylinder (not necessarily axisymmetric), with an arbitrary constituent distribution function (so isothermality need not be assumed). We then consider the same problem in the context of the modified dynamics (MOND). After a brief comparison between scaling properties in the two theories, we study idealized MOND model filaments. A preliminary application to the segment of the Perseus-Pisces filament treated by ELT, gives MOND M/L estimates of order 10 s.u., compared with the Newtonian value of about 450, which ELT find. In spite of the large uncertainties stil...

  11. Complex processes from dynamical architectures with time-scale hierarchy.

    Directory of Open Access Journals (Sweden)

    Dionysios Perdikis

    Full Text Available The idea that complex motor, perceptual, and cognitive behaviors are composed of smaller units, which are somehow brought into a meaningful relation, permeates the biological and life sciences. However, no principled framework defining the constituent elementary processes has been developed to this date. Consequently, functional configurations (or architectures relating elementary processes and external influences are mostly piecemeal formulations suitable to particular instances only. Here, we develop a general dynamical framework for distinct functional architectures characterized by the time-scale separation of their constituents and evaluate their efficiency. Thereto, we build on the (phase flow of a system, which prescribes the temporal evolution of its state variables. The phase flow topology allows for the unambiguous classification of qualitatively distinct processes, which we consider to represent the functional units or modes within the dynamical architecture. Using the example of a composite movement we illustrate how different architectures can be characterized by their degree of time scale separation between the internal elements of the architecture (i.e. the functional modes and external interventions. We reveal a tradeoff of the interactions between internal and external influences, which offers a theoretical justification for the efficient composition of complex processes out of non-trivial elementary processes or functional modes.

  12. Complex processes from dynamical architectures with time-scale hierarchy.

    Science.gov (United States)

    Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor

    2011-02-10

    The idea that complex motor, perceptual, and cognitive behaviors are composed of smaller units, which are somehow brought into a meaningful relation, permeates the biological and life sciences. However, no principled framework defining the constituent elementary processes has been developed to this date. Consequently, functional configurations (or architectures) relating elementary processes and external influences are mostly piecemeal formulations suitable to particular instances only. Here, we develop a general dynamical framework for distinct functional architectures characterized by the time-scale separation of their constituents and evaluate their efficiency. Thereto, we build on the (phase) flow of a system, which prescribes the temporal evolution of its state variables. The phase flow topology allows for the unambiguous classification of qualitatively distinct processes, which we consider to represent the functional units or modes within the dynamical architecture. Using the example of a composite movement we illustrate how different architectures can be characterized by their degree of time scale separation between the internal elements of the architecture (i.e. the functional modes) and external interventions. We reveal a tradeoff of the interactions between internal and external influences, which offers a theoretical justification for the efficient composition of complex processes out of non-trivial elementary processes or functional modes.

  13. Forest fragmentation and bird community dynamics: inference at regional scales

    Science.gov (United States)

    Boulinier, T.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Flather, C.H.; Pollock, K.H.

    2001-01-01

    With increasing fragmentation of natural areas and a dramatic reduction of forest cover in several parts of the world, quantifying the impact of such changes on species richness and community dynamics has been a subject of much concern. Here, we tested whether in more fragmented landscapes there was a lower number of area-sensitive species and higher local extinction and turnover rates, which could explain higher temporal variability in species richness. To investigate such potential landscape effects at a regional scale, we merged two independent, large-scale monitoring efforts: the North American Breeding Bird Survey (BBS) and the Land Use and Land Cover Classification data from the U.S. Geological Survey. We used methods that accounted for heterogeneity in the probability of detecting species to estimate species richness and temporal changes in the bird communities for BBS routes in three mid-Atlantic U.S. states. Forest breeding bird species were grouped prior to the analyses into area-sensitive and non-area-sensitive species according to previous studies. We tested predictions relating measures of forest structure at one point in time (1974) to species richness at that time and to parameters of forest bird community change over the following 22-yr-period (1975-1996). We used the mean size of forest patches to characterize landscape structure, as high correlations among landscape variables did not allow us to disentangle the relative roles of habitat fragmentation per se and habitat loss. As predicted, together with lower species richness for area-sensitive species on routes surrounded by landscapes with lower mean forest-patch size, we found higher mean year-to-year rates of local extinction. Moreover, the mean year-to-year rates of local turnover (proportion of locally new species) for area-sensitive species were also higher in landscapes with lower mean forest-patch size. These associations were not observed for the non-area-sensitive species group. These

  14. Large-Scale Filaments: Newtonian versus Modified Dynamics

    Science.gov (United States)

    Milgrom, Mordehai

    1997-03-01

    Eisenstein, Loeb, & Turner (ELT) have recently proposed a method for estimating the dynamical masses of large-scale filaments, whereby the filament is modeled by an infinite, axisymmetric, isothermal, self-gravitating, radially virialized cylinder, for which ELT derive a global relation between the (constant) velocity dispersion and the total line density. We show that the model assumptions of ELT can be relaxed materially: an exact relation between the rms velocity and the line density can be derived for any infinite cylinder (not necessarily axisymmetric) with an arbitrary constituent distribution function (so isothermality need not be assumed). We also consider the same problem in the context of the modified Newtonian dynamics (MOND). After we compare the scaling properties in the two theories, we study two idealized MOND model filaments, one with assumptions similar to those of ELT, which we can only solve numerically, and another, which we solve in closed form. A preliminary application to the same segment of the Perseus-Pisces filament treated by ELT gives MOND M/L estimates of order 10(M/L)⊙, compared with the Newtonian value M/L ~ 450(H0/100 km s-1 Mpc-1)(M/L)⊙ that ELT find. In spite of the large uncertainties still besetting the analysis, this instance of MOND application is of particular interest because (1) objects of this geometry have not been dealt with before; (2) it pertains to large-scale structure; and (3) the typical accelerations involved are the lowest so far encountered in a semivirialized system--only a few percent of the critical MOND acceleration--leading to a large predicted mass discrepancy.

  15. Lightweight computational steering of very large scale molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Beazley, D.M. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Computer Science; Lomdahl, P.S. [Los Alamos National Lab., NM (United States)

    1996-09-01

    We present a computational steering approach for controlling, analyzing, and visualizing very large scale molecular dynamics simulations involving tens to hundreds of millions of atoms. Our approach relies on extensible scripting languages and an easy to use tool for building extensions and modules. The system is extremely easy to modify, works with existing C code, is memory efficient, and can be used from inexpensive workstations and networks. We demonstrate how we have used this system to manipulate data from production MD simulations involving as many as 104 million atoms running on the CM-5 and Cray T3D. We also show how this approach can be used to build systems that integrate common scripting languages (including Tcl/Tk, Perl, and Python), simulation code, user extensions, and commercial data analysis packages.

  16. Paleowattmeters: A scaling relation for dynamically recrystallized grain size

    Science.gov (United States)

    Austin, Nicholas J.; Evans, Brian

    2007-04-01

    During dislocation creep, mineral grains often evolve to a stable size, dictated by the deformation conditions. We suggest that grain-size evolution during deformation is determined by the rate of mechanical work. Provided that other elements of microstructure have achieved steady state and that the dissipation rate is roughly constant, then changes in internal energy will be proportional to changes in grain-boundary area. If normal grain-growth and dynamic grain-size reduction occur simultaneously, then the steady-state grain size is determined by the balance of those rates. A scaling model using these assumptions and published grain-growth and mechanical relations matches stress grain-size relations for quartz and olivine rocks with no fitting. For marbles, the model also explains scatter not rationalized by assuming that recrystallized grain size is a function of stress alone. When extrapolated to conditions typical for natural mylonites, the model is consistent with field constraints on stresses and strain rates.

  17. Urban Traffic Dynamics: A Scale-Free Network Perspective

    CERN Document Server

    Hu, M B; Jiang, R; Wu, Q S; Wang, B H; Wu, Y H; Hu, Mao-Bin; Wang, Wen-Xu; Jiang, Rui; Wu, Qing-Song; Wang, Bing-Hong; Wu, Yong-Hong

    2006-01-01

    This letter propose a new model for characterizing traffic dynamics in scale-free networks. With a replotted road map of cities with roads mapped to vertices and intersections to edges, and introducing the road capacity L and its handling ability at intersections C, the model can be applied to urban traffic system. Simulations give the overall capacity of the traffic system which is quantified by a phase transition from free flow to congestion. Moreover, we report the fundamental diagram of flow against density, in which hysteresis is found, indicating that the system is bistable in a certain range of vehicle density. In addition, the fundamental diagram is significantly different from single-lane traffic model and 2-D BML model with four states: free flow, saturated flow, bistable and jammed.

  18. Millennial-scale dynamics of southern Amazonian rain forests.

    Science.gov (United States)

    Mayle, F E; Burbridge, R; Killeen, T J

    2000-12-22

    Amazonian rain forest-savanna boundaries are highly sensitive to climatic change and may also play an important role in rain forest speciation. However, their dynamics over millennial time scales are poorly understood. Here, we present late Quaternary pollen records from the southern margin of Amazonia, which show that the humid evergreen rain forests of eastern Bolivia have been expanding southward over the past 3000 years and that their present-day limit represents the southernmost extent of Amazonian rain forest over at least the past 50,000 years. This rain forest expansion is attributed to increased seasonal latitudinal migration of the Intertropical Convergence Zone, which can in turn be explained by Milankovitch astronomic forcing.

  19. Chip-scale spacecraft swarms: Dynamics, control, and exploration

    Science.gov (United States)

    Weis, Lorraine

    Chip-scale spacecraft (chipsats) swarms will open new avenues for space exploration, both near Earth and in interplanetary space. The ability to create distributed sensor networks through swarms of low-cost, low-mass spacecraft shall enable the exploration of asteroids, icy moons, and the Earths magnetosphere become more feasible. This research develops new techniques for analyzing swarm dynamics, both in the limited case of the Kepler problem, and in general gravity environments, investigates several techniques for providing chipsat propulsion, and develops possible mission strategies. This work applies the Kustaanheimo-Stiefel (KS) transformation to the stochastic exploration presented by chipsat swarms. The contributions towards understanding swarm dynamics include analytical and numerical study of swarms in the purely Kepler problem as well as in general potential fields. A study of swarm evolution near an asteroid provides an example of the richness of behaviors that can be provided by chip-scale spacecraft swarms. Swarm actuation can be achieved through a number of means. This research presents a novel attitude control and propulsion system for chipsat swarms near Earth using a mutliple electrodynamic tethers. A numerical study of tether configurations for the greatest control authority is also presented. In addition, active solar sails are evaluated for swarm actuation beyond Earth, and a visualization of available control authority is presented. An example mission of swarm deployment near the Earth-Moon Lagrange point highlights the utility of swarm-based exploration. The candidate mission shows that a swarm with minimal actuation and a simple control scheme might provide distributed sensors in the region for a year or more, or dissipate quickly if uncontrolled. Such a chip-spacecraft mission would be a valuable precursor to further space development in these regions.

  20. Monitoring Large-Scale Sediment Transport Dynamics with Multibeam Sonar

    Science.gov (United States)

    Parsons, D. R.; Simmons, S. M.; Best, J. L.; Keevil, G. M.; Oberg, K.; Czuba, J. A.

    2009-05-01

    Multibeam Echo-Sounder systems have developed rapidly over recent decades and are routinely deployed to provide high-resolution bathymetric information in and range of environments. Modern data handling and storage technologies now facilitate the logging of the raw acoustic back-scatter information that was previously discarded by these systems. This paper describes methodologies that exploit this logging capability to quantify both the concentration and dynamics of suspended sediment within the water column. This development provides a multi-purpose tool for the holistic surveying of sediment transport dynamics by imaging suspended sediment concentration, the associated flows and providing concurrent high-resolution bathymetry. Results obtained a RESON 7125 MBES are presented from both well constrained dock-side testing and full field deployment over dune bedforms in the Mississippi. The capacity of the system to image suspended sediment structures is demonstrated and a novel methodology for estimating 2D flow velocities, based on frame cross-correlation methods, is introduced. The results demonstrate the capability of MBES systems to successfully map spatial and temporal variations in suspended sediment concentration throughout a 2D swath and application of the velocity estimation algorithms allow real-time holistic monitoring of turbulent flow processes and suspended sediment fluxes at a scale previously unrealisable. Turbulent flow over a natural dune bedform on the Mississippi is used to highlight the process information provided and the insights that can be gleaned for this technical development.

  1. Static and Dynamic Frequency Scaling on Multicore CPUs

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Wenlei [The Ohio State University, Columbus, Ohio; Hong, Changwan [The Ohio State University, Columbus, Ohio; Chunduri, Sudheer [IBM Research India, S. Cass Avenue Lemont, IL; Krishnamoorthy, Sriram [Pacific Northwest National Laboratory, Richland, WA; Pouchet, Louis-Noël [Colorado State University, Fort Collins, CO; Rastello, Fabrice [University Grenoble Alpes, Grenoble France; Sadayappan, P. [The Ohio State University, Columbus, Ohio

    2016-12-28

    Dynamic voltage and frequency scaling (DVFS) adapts CPU power consumption by modifying a processor’s operating frequency (and the associated voltage). Typical approaches employing DVFS involve default strategies such as running at the lowest or the highest frequency, or observing the CPU’s runtime behavior and dynamically adapting the voltage/frequency configuration based on CPU usage. In this paper, we argue that many previous approaches suffer from inherent limitations, such as not account- ing for processor-specific impact of frequency changes on energy for different workload types. We first propose a lightweight runtime-based approach to automatically adapt the frequency based on the CPU workload, that is agnostic of the processor characteristics. We then show that further improvements can be achieved for affine kernels in the application, using a compile-time characterization instead of run-time monitoring to select the frequency and number of CPU cores to use. Our framework relies on a one-time energy characterization of CPU-specific DVFS profiles followed by a compile-time categorization of loop-based code segments in the application. These are combined to determine a priori of the frequency and the number of cores to use to execute the application so as to optimize energy or energy-delay product, outperforming runtime approach. Extensive evaluation on 60 benchmarks and five multi-core CPUs show that our approach systematically outperforms the powersave Linux governor, while improving overall performance.

  2. Large Scale Molecular Dynamics Simulations of Homogeneous Nucleation

    CERN Document Server

    Tanaka, Kyoko K

    2013-01-01

    We present results from large-scale molecular dynamics (MD) simulations of homogeneous vapor-to-liquid nucleation. The simulations contain between one and eight billion Lennard-Jones (LJ) atoms, covering up to 1.2 {\\mu}s (56 million time-steps). They cover a wide range of supersaturation ratios, S=1.55 to 10^4, and temperatures from kT = 0.3 to 1.0 {\\epsilon} (where {\\epsilon} is the depth of the LJ potential, and k the Boltzmann constant). We have resolved nucleation rates as low as 10^{17} cm^{-3} s^{-1} (in the argon system), and critical cluster sizes as large as 100 atoms. Recent argon nucleation experiments probe nucleation rates in an overlapping range, making the first direct comparison between laboratory experiments and molecular dynamics simulations possible: We find very good agreement within the uncertainties, which are mainly due to the extrapolations of argon and LJ saturation curves to very low temperatures. The self-consistent, modified classical nucleation model of Girshick and Chiu [J. Chem....

  3. Huge-scale molecular dynamics simulation of multibubble nuclei

    KAUST Repository

    Watanabe, Hiroshi

    2013-12-01

    We have developed molecular dynamics codes for a short-range interaction potential that adopt both the flat-MPI and MPI/OpenMP hybrid parallelizations on the basis of a full domain decomposition strategy. Benchmark simulations involving up to 38.4 billion Lennard-Jones particles were performed on Fujitsu PRIMEHPC FX10, consisting of 4800 SPARC64 IXfx 1.848 GHz processors, at the Information Technology Center of the University of Tokyo, and a performance of 193 teraflops was achieved, which corresponds to a 17.0% execution efficiency. Cavitation processes were also simulated on PRIMEHPC FX10 and SGI Altix ICE 8400EX at the Institute of Solid State Physics of the University of Tokyo, which involved 1.45 billion and 22.9 million particles, respectively. Ostwald-like ripening was observed after the multibubble nuclei. Our results demonstrate that direct simulations of multiscale phenomena involving phase transitions from the atomic scale are possible and that the molecular dynamics method is a promising method that can be applied to petascale computers. © 2013 Elsevier B.V. All rights reserved.

  4. Large scale molecular dynamics study of polymer-surfactant complex

    Science.gov (United States)

    Goswami, Monojoy; Sumpter, Bobby

    2012-02-01

    In this work, we study the self-assembly of cationic polyelectrolytes mediated by anionic surfactants in dilute or semi-dilute and gel states. The understanding of the dilute system is a requirement for the understanding of gel states. The importance of polyelectrolyte with oppositely charged colloidal particles can be found in biological systems, such as immobilization of enzymes in polyelectrolyte complexes or nonspecific association of DNA with protein. With the same understanding, interaction of surfactants with polyelectrolytes shows intriguing phenomena that are important for both in academic research as well as industrial applications. Many useful properties of PE surfactant complexes come from the highly ordered structures of surfactant self-assembly inside the PE aggregate. We do large scale molecular dynamics simulation using LAMMPS to understand the structure and dynamics of PE-surfactant systems. Our investigation shows highly ordered ring-string structures that have been observed experimentally in biological systems. We will investigate many different properties of PE-surfactant complexation which will be helpful for pharmaceutical, engineering and biological applications.

  5. Dynamic models for magnetospheric oscillations on the minute scale

    Science.gov (United States)

    Sato, H.; Pecseli, H.; Børve, S.; Trulsen, J.

    2012-12-01

    Sudden pulses in the model solar wind sets the Earth's magnetosphere into damped oscillatory motions. Oscillation periods on the order of 5-10 min have been observed by instrumented spacecrafts. A simple model is capable of explaining the basic properties of these oscillations and give scaling laws for their characteristics in terms of the parameters of the problem, such as the Solar wind momentum density. The period of the oscillations, their damping and anharmonic nature are accounted for.The model has no free adjustable numerical parameters and can be seen as an effort to predict some dynamic properties of the magnetosphere on the basis of measurable steady state characteristics. A simple test of the model is found by comparing its prediction of the Earth-Magnetopause distance with observed values. The results agree well with observations. The analysis is supported by numerical simulations solving the Magneto-Hydro-Dynamic (MHD) equations in two spatial dimensions, where we let a solar wind interact with a magnetic dipole representing a magnetized Earth. Two tilt-angles of the magnetic dipole axis were considered. We observe the formation of a magnetosheath, with the magnetopause at a distance corresponding well to the analytical results. The analytical model seem to be robust, and gives good qualitative agreement with the numerical simulations for a range of parameters, also concerning oscillation periods and damping times for cases where the dynamic response to perturbations are considered. The analysis allows also for predicting the magnetic field perturbations detected on Earth due to changes in the magnetosheath current. In order to improve the model we study a conformal mapping that brings the shape of the magnetosheath model closer to observations.

  6. Relativistic Fluid Dynamics: Physics for Many Different Scales

    Directory of Open Access Journals (Sweden)

    Comer Gregory L.

    2007-01-01

    Full Text Available The relativistic fluid is a highly successful model used to describe the dynamics of many-particle, relativistic systems. It takes as input basic physics from microscopic scales and yields as output predictions of bulk, macroscopic motion. By inverting the process, an understanding of bulk features can lead to insight into physics on the microscopic scale. Relativistic fluids have been used to model systems as “small” as heavy ions in collisions, and as large as the Universe itself, with “intermediate” sized objects like neutron stars being considered along the way. The purpose of this review is to discuss the mathematical and theoretical physics underpinnings of the relativistic (multiple fluid model. We focus on the variational principle approach championed by Brandon Carter and his collaborators, in which a crucial element is to distinguish the momenta that are conjugate to the particle number density currents. This approach differs from the “standard” text-book derivation of the equations of motion from the divergence of the stress-energy tensor in that one explicitly obtains the relativistic Euler equation as an “integrability” condition on the relativistic vorticity. We discuss the conservation laws and the equations of motion in detail, and provide a number of (in our opinion interesting and relevant applications of the general theory.

  7. Intertidal population genetic dynamics at a microgeographic seascape scale.

    Science.gov (United States)

    Hu, Zi-Min

    2013-06-01

    The intertidal community is among the most physically harsh niches on earth, with highly heterogeneous environmental and biological factors that impose strong habitat selection on population abundance, genetic connectivity and ecological adaptation of organisms in nature. However, most genetic studies to date have concentrated on the influence of basin-wide or regional marine environments (e.g. habitat discontinuities, oceanic currents and fronts, and geographic barriers) on spatiotemporal distribution and composition of intertidal invertebrates having planktonic stages or long-distance dispersal capability. Little is known about sessile marine organisms (e.g. seaweeds) in the context of topographic tidal gradients and reproductive traits at the microgeographic scale. In this issue of Molecular Ecology, Krueger-Hadfield et al. () implemented an elaborate sampling strategy with red seaweed (Chondrus crispus) from a 90-m transect stand near Roscoff and comprehensively detected genome-scale genetic differentiation and biases in ploidy level. This study not only revealed that tidal height resulted in genetic differentiation between high- and low-shore stands and restricted the genetic exchange within the high-shore habitat, but also demonstrated that intergametophytic nonrandom fertilization in C. crispus can cause significant deviation from Hardy-Weinberg equilibrium. Such new genetic insights highlight the importance of microgeographic genetic dynamics and life history characteristics for better understanding the evolutionary processes of speciation and diversification of intertidal marine organisms. © 2013 John Wiley & Sons Ltd.

  8. Dynamic Scaling of Ramified Clusters Formed on Liquid Surfaces

    Institute of Scientific and Technical Information of China (English)

    WU Feng-Min; XU You-Sheng; LI Qiao-Wen

    2006-01-01

    A comprehensive simulation model -deposition,diffusion, rotation, reaction and aggregation model is presented to simulate the formation processes of ramified clusters on liquid surfaces, where clusters can diffuse and rotate easily. The mobility (including diffusion and rotation) of clusters is related to its mass, which is given by Dm = Dos-γD and θm =′θos-γθ, respectively. The influence of the reaction probability on the kinetics and structure formation is included in the simulation model. We concentrate on revealing dynamic scaling during ramified cluster formation. For this purpose, the time evolution of the cluster density and the weight-average cluster size as well as the cluster-size distribution scaling function at different time are determined for various conditions. The dependence of the cluster density on the deposition flux and time-dependence of fractal dimension are also investigated. The obtained results are helpful in understanding the formation of clusters or thin film growth on liquid surfaces.

  9. Social and Ecological Dynamics of Small-Scale Fisheries

    Science.gov (United States)

    Stevens, K.; Kramer, D.; Frank, K.

    2012-12-01

    Globalization's reach is rapidly extending to touch some of the most remote communities of the world, but we have yet to understand its scale and impact. On Nicaragua's previously remote Miskitu Coast, the introduction of new markets and global demand for seafood has resulted in changes in fishermen's harvest behavior manifested within the local fishery. Small-scale fisheries are a significant component in sustaining global fish trade, ensuring food security, and alleviating poverty, but because the fishermen are disperse, numerous and located in remote areas, the social and ecological dynamics of the system are poorly understood. Previous work has indicated a decline in fish abundance as a result of connection to markets, yet fishermen's response to this decline and the resulting shift in harvest strategy requires further examination. I identify the ecological and social factors that explain changes in fishermen behavior and use an innovative application of social network analysis to understand these changes. I also use interviews with fishermen and fishery-dependent surveys to measure catch and release behavior and seasonal gear use. Results demonstrate multiple cliques within a community that mitigate the response of fishermen to changes in the fishery. This research applies techniques in social science to address challenges in sustainable management of fisheries. As fisheries managers consider implementing new regulations, such as seasonal restrictions on gear, it is essential to understand not just how this might impact fish abundance, but how and why human systems respond as they do.

  10. Energy Conservation Using Dynamic Voltage Frequency Scaling for Computational Cloud

    Directory of Open Access Journals (Sweden)

    A. Paulin Florence

    2016-01-01

    Full Text Available Cloud computing is a new technology which supports resource sharing on a “Pay as you go” basis around the world. It provides various services such as SaaS, IaaS, and PaaS. Computation is a part of IaaS and the entire computational requests are to be served efficiently with optimal power utilization in the cloud. Recently, various algorithms are developed to reduce power consumption and even Dynamic Voltage and Frequency Scaling (DVFS scheme is also used in this perspective. In this paper we have devised methodology which analyzes the behavior of the given cloud request and identifies the associated type of algorithm. Once the type of algorithm is identified, using their asymptotic notations, its time complexity is calculated. Using best fit strategy the appropriate host is identified and the incoming job is allocated to the victimized host. Using the measured time complexity the required clock frequency of the host is measured. According to that CPU frequency is scaled up or down using DVFS scheme, enabling energy to be saved up to 55% of total Watts consumption.

  11. Energy Conservation Using Dynamic Voltage Frequency Scaling for Computational Cloud.

    Science.gov (United States)

    Florence, A Paulin; Shanthi, V; Simon, C B Sunil

    2016-01-01

    Cloud computing is a new technology which supports resource sharing on a "Pay as you go" basis around the world. It provides various services such as SaaS, IaaS, and PaaS. Computation is a part of IaaS and the entire computational requests are to be served efficiently with optimal power utilization in the cloud. Recently, various algorithms are developed to reduce power consumption and even Dynamic Voltage and Frequency Scaling (DVFS) scheme is also used in this perspective. In this paper we have devised methodology which analyzes the behavior of the given cloud request and identifies the associated type of algorithm. Once the type of algorithm is identified, using their asymptotic notations, its time complexity is calculated. Using best fit strategy the appropriate host is identified and the incoming job is allocated to the victimized host. Using the measured time complexity the required clock frequency of the host is measured. According to that CPU frequency is scaled up or down using DVFS scheme, enabling energy to be saved up to 55% of total Watts consumption.

  12. Pediatric fasting times before surgical and radiologic procedures: benchmarking institutional practices against national standards.

    Science.gov (United States)

    Williams, Catherine; Johnson, Pat A; Guzzetta, Cathie E; Guzzetta, Philip C; Cohen, Ira Todd; Sill, Anne M; Vezina, Gilbert; Cain, Sherry; Harris, Christine; Murray, Jodi

    2014-01-01

    Prolonged preoperative fasting can be associated with adverse outcomes, particularly in children. Our aims were to assess the time pediatric patients fasted prior to surgical or radiologic procedures and evaluate whether fasting (NPO) orders complied with national guidelines. We measured NPO start time, time of last intake, and time test or surgery was scheduled, took place, or was cancelled in 219 pediatric patients. Findings demonstrate that pediatric patients experienced prolonged fasting before procedures and that the majority of NPO orders were non-compliant with national guidelines. We have developed strategies to reduce fasting times and ensure compliance with recommended national fasting standards.

  13. OFDM receiver for fast time-varying channels using block-sparse Bayesian learning

    DEFF Research Database (Denmark)

    Barbu, Oana-Elena; Manchón, Carles Navarro; Rom, Christian;

    2016-01-01

    We propose an iterative algorithm for OFDM receivers operating over fast time-varying channels. The design relies on the assumptions that the channel response can be characterized by a few non-negligible separable multipath components, and the temporal variation of each component gain can be well...... inference, we embed the channel estimator in a receiver structure that performs iterative channel and noise precision estimation, intercarrier interference cancellation, detection and decoding. Simulation results illustrate the superior performance of the proposed receiver over state-of-art receivers....

  14. A linear systems analysis of the yaw dynamics of a dynamically scaled insect model.

    Science.gov (United States)

    Dickson, William B; Polidoro, Peter; Tanner, Melissa M; Dickinson, Michael H

    2010-09-01

    Recent studies suggest that fruit flies use subtle changes to their wing motion to actively generate forces during aerial maneuvers. In addition, it has been estimated that the passive rotational damping caused by the flapping wings of an insect is around two orders of magnitude greater than that for the body alone. At present, however, the relationships between the active regulation of wing kinematics, passive damping produced by the flapping wings and the overall trajectory of the animal are still poorly understood. In this study, we use a dynamically scaled robotic model equipped with a torque feedback mechanism to study the dynamics of yaw turns in the fruit fly Drosophila melanogaster. Four plausible mechanisms for the active generation of yaw torque are examined. The mechanisms deform the wing kinematics of hovering in order to introduce asymmetry that results in the active production of yaw torque by the flapping wings. The results demonstrate that the stroke-averaged yaw torque is well approximated by a model that is linear with respect to both the yaw velocity and the magnitude of the kinematic deformations. Dynamic measurements, in which the yaw torque produced by the flapping wings was used in real-time to determine the rotation of the robot, suggest that a first-order linear model with stroke-average coefficients accurately captures the yaw dynamics of the system. Finally, an analysis of the stroke-average dynamics suggests that both damping and inertia will be important factors during rapid body saccades of a fruit fly.

  15. The dynamical complexity of work-hardening: a large-scale molecular dynamics simulation

    Institute of Scientific and Technical Information of China (English)

    Markus J. Buehler; Alexander Hartmaier; Mark A. Duchaineau; Farid F. Abraham; Huajian Gao

    2005-01-01

    We analyze a large-scale molecular dynamics simulation of work hardening in a model system of a ductile solid.With tensile loading, we observe emission of thousands of dislocations from two sharp cracks. The dislocations interact in a complex way, revealing three fundamental mechanisms of work-hardening in this ductile material. These are (1) dislocation cutting processes, jog formation and generation of trails of point defects; (2) activation of secondary slip systems by Frank-Read and cross-slip mechanisms; and (3) formation of sessile dislocations such as Lomer-Cottrell locks.We report the discovery of a new class of point defects referred to as trail of partial point defects, which could play an important role in situations when partial dislocations dominate plasticity. Another important result of the present work is the rediscovery of the Fleischer-mechanism of cross-slip of partial dislocations that was theoretically proposed more than 50 years ago, and is now, for the first time, confirmed by atomistic simulation. On the typical time scale of molecular dynamics simulations, the dislocations self-organize into a complex sessile defect topology. Our analysis illustrates numerous mechanisms formerly only conjectured in textbooks and observed indirectly in experiments. It is the first time that such a rich set of fundamental phenomena have been revealed in a single computer simulation, and its dynamical evolution has been studied. The present study exemplifies the simulation and analysis of the complex nonlinear dynamics of a many-particle system during failure using ultra-large scale computing.

  16. Dynamic occupancy models for analyzing species' range dynamics across large geographic scales

    Science.gov (United States)

    Bled, Florent; Nichols, James D; Altwegg, Res

    2013-01-01

    Large-scale biodiversity data are needed to predict species' responses to global change and to address basic questions in macroecology. While such data are increasingly becoming available, their analysis is challenging because of the typically large heterogeneity in spatial sampling intensity and the need to account for observation processes. Two further challenges are accounting for spatial effects that are not explained by covariates, and drawing inference on dynamics at these large spatial scales. We developed dynamic occupancy models to analyze large-scale atlas data. In addition to occupancy, these models estimate local colonization and persistence probabilities. We accounted for spatial autocorrelation using conditional autoregressive models and autologistic models. We fitted the models to detection/nondetection data collected on a quarter-degree grid across southern Africa during two atlas projects, using the hadeda ibis (Bostrychia hagedash) as an example. The model accurately reproduced the range expansion between the first (SABAP1: 1987–1992) and second (SABAP2: 2007–2012) Southern African Bird Atlas Project into the drier parts of interior South Africa. Grid cells occupied during SABAP1 generally remained occupied, but colonization of unoccupied grid cells was strongly dependent on the number of occupied grid cells in the neighborhood. The detection probability strongly varied across space due to variation in effort, observer identity, seasonality, and unexplained spatial effects. We present a flexible hierarchical approach for analyzing grid-based atlas data using dynamical occupancy models. Our model is similar to a species' distribution model obtained using generalized additive models but has a number of advantages. Our model accounts for the heterogeneous sampling process, spatial correlation, and perhaps most importantly, allows us to examine dynamic aspects of species ranges. PMID:24455124

  17. Taxi Time Prediction at Charlotte Airport Using Fast-Time Simulation and Machine Learning Techniques

    Science.gov (United States)

    Lee, Hanbong

    2016-01-01

    Accurate taxi time prediction is required for enabling efficient runway scheduling that can increase runway throughput and reduce taxi times and fuel consumptions on the airport surface. Currently NASA and American Airlines are jointly developing a decision-support tool called Spot and Runway Departure Advisor (SARDA) that assists airport ramp controllers to make gate pushback decisions and improve the overall efficiency of airport surface traffic. In this presentation, we propose to use Linear Optimized Sequencing (LINOS), a discrete-event fast-time simulation tool, to predict taxi times and provide the estimates to the runway scheduler in real-time airport operations. To assess its prediction accuracy, we also introduce a data-driven analytical method using machine learning techniques. These two taxi time prediction methods are evaluated with actual taxi time data obtained from the SARDA human-in-the-loop (HITL) simulation for Charlotte Douglas International Airport (CLT) using various performance measurement metrics. Based on the taxi time prediction results, we also discuss how the prediction accuracy can be affected by the operational complexity at this airport and how we can improve the fast time simulation model before implementing it with an airport scheduling algorithm in a real-time environment.

  18. Are you hungry? Are you thirsty?--fasting times in elective outpatient pediatric patients.

    Science.gov (United States)

    Engelhardt, Thomas; Wilson, Graham; Horne, Lesley; Weiss, Markus; Schmitz, Achim

    2011-09-01

    This study assessed the duration of pre-operative fasting in children and its impact on the subjective feeling of hunger and thirst prior to elective outpatient anesthesia. Pediatric fasting guidelines are designed to reduce the risk of pulmonary aspiration of gastric contents during general anesthesia, and a fasting regimen of 6-8 h for solids, 4 h for breast milk, and 2 h for clear fluids is commonly used. Anecdotal evidence suggests that fasting times are often excessive. A total of 1350 consecutive healthy children aged fasting times were 12:05 (00:45-21:50) hours and 07:57 (00:05-20:50) hours for solids and fluids, respectively. The majority of children were very hungry or starving (756/1350=56%), but less than a third of all children were very thirsty (361/1350=27%). Duration of solid food fast and severity of hunger correlated for patients fasted from before midnight (r=0.92) but not for food after midnight. No correlation was found for fluid intake and perception of thirst. This study shows that children presenting for elective outpatient surgery are suffering from a considerable amount of pre-operative discomfort because of excessive fasting. Strategies to guarantee minimal fasting at hospital admission are urgently needed. © 2011 Blackwell Publishing Ltd.

  19. A LaBr{sub 3}: Ce fast-timing array for DESPEC at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Oliver J., E-mail: O.J.Roberts@brighton.ac.uk [School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ (United Kingdom); Bruce, Alison M. [School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ (United Kingdom); Regan, Patrick H. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); National Physics Laboratory, Teddington, TW11 0LW (United Kingdom); Podolyák, Zsolt; Townsley, Christopher M. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Smith, John F.; Mulholland, Kieran F. [School of Engineering, The University of the West of Scotland, Paisley PA1 2BE (United Kingdom); Smith, Andrew [The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2014-06-01

    The design of a fast-timing γ-ray detection array aimed at measuring sub-nanosecond half-lives using LaBr{sub 3}:Ce scintillation crystals is presented. This array will complement novel and existing charged particle and neutron detector arrays at the low-energy branch of a fragment separator (Super-FRS) to be built within the NuSTAR collaboration as part of the future Facility for Anti-proton and Ion Research (FAIR). The array will be used in conjunction with the Advanced Implantation Detector Array (AIDA), to measure implant-decay correlations. Monte-Carlo simulations have been performed to determine the design of the proposed fast-timing array around a localised implantation point. In particular, simulations were used to determine the full-energy peak efficiencies for single cylindrical, conical and ‘hybrid’ detector geometries, as well as complete array configurations of ‘hybrid’ and ∅1.5 in.×2 in. cylindrical crystals. Timing precision calculations were then used to determine the timing response for each configuration based on its simulated efficiency. An informed decision based on the simulated efficiencies and timing precision calculations allowed the optimum configuration for the array to be determined.

  20. Time scales of relaxation dynamics during transient conditions in two-phase flow: RELAXATION DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Schlüter, Steffen [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA; Department Soil Physics, Helmholtz-Centre for Environmental Research-UFZ, Halle Germany; Berg, Steffen [Shell Global Solutions International B.V., Rijswijk Netherlands; Li, Tianyi [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA; Vogel, Hans-Jörg [Department Soil Physics, Helmholtz-Centre for Environmental Research-UFZ, Halle Germany; Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Halle Germany; Wildenschild, Dorthe [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA

    2017-06-01

    The relaxation dynamics toward a hydrostatic equilibrium after a change in phase saturation in porous media is governed by fluid reconfiguration at the pore scale. Little is known whether a hydrostatic equilibrium in which all interfaces come to rest is ever reached and which microscopic processes govern the time scales of relaxation. Here we apply fast synchrotron-based X-ray tomography (X-ray CT) to measure the slow relaxation dynamics of fluid interfaces in a glass bead pack after fast drainage of the sample. The relaxation of interfaces triggers internal redistribution of fluids, reduces the surface energy stored in the fluid interfaces, and relaxes the contact angle toward the equilibrium value while the fluid topology remains unchanged. The equilibration of capillary pressures occurs in two stages: (i) a quick relaxation within seconds in which most of the pressure drop that built up during drainage is dissipated, a process that is to fast to be captured with fast X-ray CT, and (ii) a slow relaxation with characteristic time scales of 1–4 h which manifests itself as a spontaneous imbibition process that is well described by the Washburn equation for capillary rise in porous media. The slow relaxation implies that a hydrostatic equilibrium is hardly ever attained in practice when conducting two-phase experiments in which a flux boundary condition is changed from flow to no-flow. Implications for experiments with pressure boundary conditions are discussed.

  1. Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics

    Science.gov (United States)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.

  2. Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics

    Science.gov (United States)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.

  3. Small-scale nonlinear dynamics of K-mouflage theories

    Science.gov (United States)

    Brax, Philippe; Valageas, Patrick

    2014-12-01

    We investigate the small-scale static configurations of K-mouflage models defined by a general function K (χ ) of the kinetic terms. The fifth force is screened by the nonlinear K-mouflage mechanism if K'(χ ) grows sufficiently fast for large negative χ . In the general nonspherically symmetric case, the fifth force is not aligned with the Newtonian force. For spherically symmetric static matter density profiles, we show that the results depend on the potential function W-(y )=y K'(-y2/2 ) ; i.e., W-(y ) must be monotonically increasing to +∞ for y ≥0 to guarantee the existence of a single solution throughout space for any matter density profile. Small radial perturbations around these static profiles propagate as travelling waves with a velocity greater than the speed of light. Starting from vanishing initial conditions for the scalar field and for a time-dependent matter density corresponding to the formation of an overdensity, we numerically check that the scalar field converges to the static solution. If W- is bounded, for high-density objects there are no static solutions throughout space, but one can still define a static solution restricted to large radii. Our dynamical study shows that the scalar field relaxes to this static solution at large radii, whereas spatial gradients keep growing with time at smaller radii. If W- is not bounded but nonmonotonic, there is an infinite number of discontinuous static solutions. However, the Klein-Gordon equation is no longer a well-defined hyperbolic equation, which leads to complex characteristic speeds and exponential instabilities. Therefore, these discontinuous static solutions are not physical, and these models are not theoretically sound. Such K-mouflage scenarios provide an example of theories that can appear viable at the cosmological level, for the cosmological background and perturbative analysis, while being meaningless at a nonlinear level for small-scale configurations. This shows the importance of

  4. ISM and dynamical scaling relations in the local Universe

    Science.gov (United States)

    Cortese, L.

    2016-06-01

    In the last decade we have seen a tremendous progress in our understanding of the life cycle of galaxies. Particularly powerful has been the synergy between representative surveys of cold gas, dust and metals and improved theoretical models able to follow the evolution of the different phases of the ISM in a self-consistent way. At the same time, the advent of optical integral field spectroscopic surveys is finally allowing us to quantify how the kinematical properties of gas and stars vary across the Hubble sequence. In this talk, I will review recent observational work aimed at providing a local benchmark for the study of the star formation cycle in galaxies and dynamical scaling relations in galaxies. By combining observations obtained as part the Herschel Reference Survey, the GALEX Arecibo SDSS survey, the ALFALFA survey and the SAMI Galaxy Survey, I will discuss what nearby galaxies can teach us about the interplay between kinematics, star formation, chemical enrichment and environmental effects in our neighbourhoods.

  5. Dynamics of particle--turbulence interaction at the dissipative scales

    Science.gov (United States)

    Bocanegra Evans, Humberto; Dam, Nico; van de Water, Willem; JM Burgerscentrum Collaboration; COST Action, Particles in Turbulence Collaboration

    2013-11-01

    We present results of a novel phosphorescent tagging technique that is particularly suited to study particle-laden flows. Using phosphorescent droplets we probe the dynamics of particle-turbulence interaction at the dissipative length scales. We create a cloud of droplets within a chamber capable of generating homogeneous, isotropic turbulence with zero-mean flow. The droplets have Stokes number St ~ 1 , and the flow is intensely turbulent, with Reynolds number Reλ ~ 500 . Using a frequency-tripled Nd:YAG laser, we can tag a variety of volumes, such as thin slabs or thin, pencil-like cylinders. The droplets in these volumes glow during a few Kolmogorov times. By tracking the fate of pencil-shaped clouds using a fast (5 kHz) camera, we come to the surprising conclusion that they disperse faster than fluid elements, with a spreading rate reaching a maximum at St ~ 2 . Sheets of tagged droplets display preferential concentration at work; we discuss statistical quantities that can capture these events. This project is funded by Fundamenteel Onderzoek der Materie (FOM).

  6. Scaling in Gravitational Clustering, 2D and 3D Dynamics

    CERN Document Server

    Munshi, D; Melott, A L; Schäffer, R

    1999-01-01

    Perturbation Theory (PT) applied to a cosmological density field with Gaussian initial fluctuations suggests a specific hierarchy for the correlation functions when the variance is small. In particular quantitative predictions have been made for the moments and the shape of the one-point probability distribution function (PDF) of the top-hat smoothed density. In this paper we perform a series of systematic checks of these predictions against N-body computations both in 2D and 3D with a wide range of featureless power spectra. In agreement with previous studies, we found that the reconstructed PDF-s work remarkably well down to very low probabilities, even when the variance approaches unity. Our results for 2D reproduce the features for the 3D dynamics. In particular we found that the PT predictions are more accurate for spectra with less power on small scales. The nonlinear regime has been explored with various tools, PDF-s, moments and Void Probability Function (VPF). These studies have been done with unprec...

  7. Effects of finishing diet and pre-slaughter fasting time on meat quality in crossbred pigs

    Directory of Open Access Journals (Sweden)

    K. PARTANEN

    2008-12-01

    Full Text Available The effects of the carbohydrate composition of finishing diet (fed from 80 to 107 kg of body weight and the length of pre-slaughter fasting on pork quality were studied in a 2 × 2 factorial experiment with 80 crossbred pigs. The control finishing diet was based on barley and soybean meal, and the fibrous finishing diet was based on barley, barley fibre, faba beans, and rapeseed cake. These diets contained 465 and 362 g starch and 177 and 250 g dietary fibre per kg, respectively. The fasting times of 25 and 41 h were obtained by giving the pigs their last meal at different times. Longer fasting lowered the glycolytic potential of the longissimus lumborum muscle (P = 0.01, whereas the finishing diet had no effect. Different muscles responded differently to the treatments. Longer fasting increased the ultimate pH of the semimembranosus muscle (P = 0.02, but did not affect that of the longissimus lumborum and semispinalis capitis muscles. The finishing diets did not affect the ultimate pH of the investigated muscles. A diet × fasting time interaction was seen in the lightness of the semimembranosus muscle (P = 0.05. The fibrous diet resulted in darker meat than the control diet did in pigs that were fasted for 25 h (P < 0.05. Longer fasting darkened the meat colour in pigs fed the fibrous diet (P < 0.05 but not in those fed the control diet. The meat from the semispinalis capitis muscle was darker in pigs fed the fibrous than those fed the control diet (P = 0.04. The treatments did not affect the colour of the longissimus lumborum muscle. Longer fasting decreased drip loss from the meat of pigs fed the control diet (P < 0.05. The eating quality of the pork was not influenced by the finishing diets or the fasting time. The pigs also grew equally fast on both finishing diets. In conclusion, a moderate alteration in the carbohydrate composition of a finishing diet or longer pre-slaughter fasting can have some effects on pork quality in crossbred pigs

  8. Optimal Fasting Time before Measurement of Serum Triglyceride Levels in Healthy Volunteers.

    Science.gov (United States)

    Pongsuthana, Surapun; Tivatunsakul, Naris

    2016-02-01

    Coronary heart disease is a major public health problem. Elevated triglyceride levels are a risk factor for atherosclerosis and coronary heart disease. Food intake interferes with the measurement of serum triglyceride levels, and in previous studies, fasting for 12 hours was recommended before blood sampling. In real-world practice, long fasting times cause patient discomfort and poor compliance, and the present study was, therefore, designed to determine the appropriate fasting time prior to measuring serum triglyceride levels. To determine the appropriate fasting time before measuring serum triglyceride levels. This was a pilot study performed using healthy volunteers aged between 20 and 30 years old from November 2013 to December 2013 at Rajavithi Hospital. The first blood sample was measured in the morning after fasting over 12 hours. The subjects then took their regular breakfast, after which they fasted for 8 hours. Blood samples were taken 6 and 8 hours later and sent to the laboratory for measurement of serum triglyceride levels. 40 volunteers, of whom 25 were female, were enrolled. Their mean age was 25.9 ± 2.81 years old, and their mean weight, height, and body mass index were 61.5 ± 12.5 kg, 167.2 ± 8.3 cm and 21.84 ± 3.1 kg/m2, respectively. Mean fasting serum triglyceride level at 12 hours was 80.23 ± 36.33 mg/dl, at 6 hours it was 110.65 ± 73.45 mg/dl, and at 8 hours it was 75.62 ± 46.81 mg/dl. The group fasting for 12 hours had significantly lower serum triglyceride levels than the group fasting for 6 hours (p-value = 0.003), but no significant difference was found between the group fasting for 12 hours and the one fasting for 8 hours (p-value = 0.493). The present study showed no significant difference in triglyceride levels in patients who had fasted or 8 hours and those who had done so for 12 hours. Fasting for only 8 hours before measurement of serum triglyceride may be sufficient.

  9. Ex Ante Scale Dynamics Analysis in the Policy Debate on Sustainable Biofuels in Mozambique

    Directory of Open Access Journals (Sweden)

    Marc Schut

    2013-03-01

    Full Text Available In this paper, we explore how ex ante scale dynamics analysis can contribute to better understanding of interactions between scales and levels, and how these interactions influence solution space in policy processes. In so doing, we address opportunities and challenges of conducting ex ante scale dynamics analysis as part of an action-oriented social science research approach that seeks to enhance its contribution to more scale-sensitive policy development. The policy debate on sustainable biofuels in Mozambique provides the empirical context in which we analyze interactions across administrative, institutional, and economic scales and levels, and how these interactions influence the space in which policy solutions can be explored and designed. On the basis of the analysis, we conclude that ex ante scale dynamics analysis can contribute to: (1 increasing awareness of interactions between scales and levels, and their implications for policy, (2 identifying immediate and potential matches and mismatches between scales and levels, and developing (adaptive capacity to address them, and (3 identifying stakeholders and their scale- and level-related interests that can provide the basis for collaborative multi-stakeholder learning. Consequently, ex ante scale dynamics analysis can provide an important contribution to balancing and harmonizing interactions across different scales and levels, from which innovative and scale-sensitive policy responses can emerge. As part of an action-oriented, social science research approach, careful attention needs to be paid to processes of scale and level inclusion and exclusion when conducting scale dynamics analysis.

  10. New Photonis XP20D0 photomultiplier for fast timing in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Moszynski, M. [Soltan Institute for Nuclear Studies, PL 05-400 Swierk-Otwock (Poland)]. E-mail: marek@ipj.gov.pl; Gierlik, M. [Soltan Institute for Nuclear Studies, PL 05-400 Swierk-Otwock (Poland); Kapusta, M. [Soltan Institute for Nuclear Studies, PL 05-400 Swierk-Otwock (Poland); Nassalski, A. [Soltan Institute for Nuclear Studies, PL 05-400 Swierk-Otwock (Poland); Szczesniak, T. [Soltan Institute for Nuclear Studies, PL 05-400 Swierk-Otwock (Poland); Fontaine, Ch. [Photonis. Av. Roger Roncier, B.P. 520, F 19106 Brive La Gaillarde Cedex (France); Lavoute, P. [Photonis. Av. Roger Roncier, B.P. 520, F 19106 Brive La Gaillarde Cedex (France)

    2006-11-01

    Growing interest in the time-of-flight positron emission tomography (TOF PET) prompts the study of a new Photonis XP20D0 photomultiplier, equipped with a screening grid at the anode, in application to a fast timing with LSO and LaBr{sub 3} crystals. The high time resolution of 200{+-}4 and 210{+-}4 ps was obtained for 511 keV annihilation quanta using LaBr{sub 3} and LSO crystals in the coincidence experiment with a small BaF{sub 2} crystal, respectively. It reflects an importance of the grid and high quantum efficiency of the XP20D0. A high-time resolution observed in the present experiments makes good prospects for a development of TOF PET.

  11. Evaluation of Fast-Time Wake Models Using Denver 2006 Field Experiment Data

    Science.gov (United States)

    Ahmad, Nash’at N.; Pruis, Matthew J.

    2015-01-01

    The National Aeronautics and Space Administration conducted a series of wake vortex field experiments at Denver in 2003, 2005, and 2006. This paper describes the lidar wake vortex measurements and associated meteorological data collected during the 2006 deployment, and includes results of recent reprocessing of the lidar data using a new wake vortex algorithm and estimates of the atmospheric turbulence using a new algorithm to estimate eddy dissipation rate from the lidar data. The configuration and set-up of the 2006 field experiment allowed out-of-ground effect vortices to be tracked in lateral transport further than any previous campaign and thereby provides an opportunity to study long-lived wake vortices in moderate to low crosswinds. An evaluation of NASA's fast-time wake vortex transport and decay models using the dataset shows similar performance as previous studies using other field data.

  12. In-beam fast-timing measurements in 103,105,107Cd

    CERN Document Server

    Kisyov, S; Marginean, N; Bucurescu, D; Atanasova, L; Balabanski, D L; Cata-Danil, Gh; Cata-Danil, I; Daugas, J -M; Deleanu, D; Detistov, P; Filipescu, D; Georgiev, G; Ghita, D; Glodariu, T; Jolie, J; Judson, D S; Lozeva, R; Marginean, R; Mihai, C; Negret, A; Pascu, S; Radulov, D; Regis, J -M; Rudigier, M; Sava, T; Stroe, L; Suliman, G; Zamfir, N V; Zell, K O; Zhekova, M

    2011-01-01

    Fast-timing measurements were performed recently in the region of the medium-mass 103,105,107Cd isotopes, produced in fusion evaporation reactions. Emitted gamma-rays were detected by eight HPGe and five LaBr3:Ce detectors working in coincidence. Results on new and re-evaluated half-lives are discussed within a systematic of transition rates. The $7/2_1^+$ states in 103,105,107Cd are interpreted as arising from a single-particle excitation. The half-life analysis of the $11/2_1^-$ states in 103,105,107Cd shows no change in the single-particle transition strength as a function of the neutron number.

  13. R and D on a new type of micropattern gaseous detector the Fast Timing Micropattern detector.

    CERN Document Server

    Vai, Ilaria

    2016-01-01

    Micropattern gaseous detectors (MPGD) underwent significant upgrades in recent years, introducing resistive materials to build compact spark-protected devices. Exploiting this technology further, various features such as space and time resolution, rate capability, sensitive area, operational stability and radiation hardness can be improved. This contribution introduces a new type of MPGD, namely the Fast Timing Micropattern (FTM) detector, utilizing a fully resistive WELL structure. It consists of a stack of several coupled layers where drift and WELL multiplication stages alternate in the structure, yielding a significant improvement in timing properties due to competing ionization processes in the different drift regions. Two FTM prototypes have been developed so far. The first one is uWELL-like, where multiplication takes place in the holes of a kapton foil covered on both sides with resistive material. The second one has a resistive Micromegas-like structure, with multiplication developing in a region del...

  14. Detecting Fast Time Variations in the Supernova Neutrino Flux with Hyper-Kamiokande

    CERN Document Server

    Migenda, Jost

    2016-01-01

    For detection of neutrinos from galactic supernovae, the planned Hyper-Kamiokande detector will be the first detector that delivers both a high event rate (about one third of the IceCube rate) and event-by-event energy information. In this thesis, we use a three-dimensional computer simulation by the Garching group to find out whether this additional information can be used to improve the detection prospects of fast time variations in the neutrino flux. We find that the amplitude of SASI oscillations of the neutrino number flux is energy-dependent. However, in this simulation, the larger amplitude in some energy bins is not sufficient to counteract the increased noise caused by the lower event rate. Finally, we derive a condition describing when it is advantageous to consider an energy bin instead of the total signal and show that this condition is satisfied if the oscillation of the mean neutrino energy is increased slightly.

  15. Nuclear physics experiments with in-beam fast-timing and plunger techniques

    Science.gov (United States)

    Sotty, C.

    2017-06-01

    Nuclear lifetime and g factor are crucial observables in nuclear physics, as they give access to the excited states nuclear wave functions using the well-known electromagnetic transition operators. Thus, they are benchmarks to validate or discard nuclear structure theories. During the last decades, the evolution of the nuclear instruments and methods gave birth to several techniques used to measure lifetimes and moments. Among them, the in-beam Fast Electronic Scintillation Timing (FEST) technique is used to measure lifetimes of nuclear states in the picosecond to nanosecond range. Plunger devices originally developed to perform lifetime measurements of excited states in the picosecond range using the Recoil Distance Doppler Shift (RDDS) are now also employed to measure g factor using the new Time-Differential Recoil-In-Vacuum (TDRIV) technique. Recently commissioned, the ROmanian array for SPectroscopy in HEavy ion REactions (ROSPHERE) is dedicated to perform γ-ray spectroscopy, specially suited for lifetime measurements using the RDDS and in-beam fast-timing techniques at the 9 MV Bucharest-Tandem accelerator facility of the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH). An introduction of above-mentioned techniques is provided and selected results are illustrating them with physics cases. The in-beam fast-timing and RDDS techniques are described using lifetime measurements respectively in 67Cu and 120Te measured at the 9 MV Bucharest-Tandem accelerator. Finally, the precise g factor measurement of the first-excited state in 24Mg using by the new TDRIV technique at the ALTO-Tandem Orsay facility is presented.

  16. Exploring Dimensions, Scales, and Cross-scale Dynamics from the Perspectives of Change Agents in Social-ecological Systems.

    Directory of Open Access Journals (Sweden)

    Joost M. Vervoort

    2012-12-01

    Full Text Available Issues of scale play a crucial role in the governance of social-ecological systems. Yet, attempts to bridge interdisciplinary perspectives on the role of scale have thus far largely been limited to the science arena. This study has extended the scale vocabulary to allow for the inclusion of practice-based perspectives on scale. We introduced "dimensions," used to describe the bare aspects of phenomena, such as time, space, and power, structured by scales and levels. We argued that this extension allows for a clearer understanding of the diversity of dimensions and scales that can be used to explore social-ecological systems. We used this scale vocabulary in a practical case study to elicit perspectives on dimensions, scales, and cross-dimensional dynamics from change agents in Dutch social-ecological systems. Through a visual interview method based in the extended scale vocabulary, our participants identified a large diversity of dimensions they saw as instrumental to understanding insights and lessons about effecting systems change. These dimensions were framed by a large number of scales to describe cross-dimensional interactions. The results illustrate the value of practice-based perspectives for the development of scale theory. We also argue that the introduction of dimensions in the scale vocabulary is useful for clarifying scale theory aimed at linking different disciplines and sectors, and that the framework and methods based on it can also provide clarity for practical scale challenges.

  17. Dynamic Scaling of Lipofuscin Deposition in Aging Cells

    Science.gov (United States)

    Family, Fereydoon; Mazzitello, K. I.; Arizmendi, C. M.; Grossniklaus, H. E.

    2011-07-01

    Lipofuscin is a membrane-bound cellular waste that can be neither degraded nor ejected from the cell but can only be diluted through cell division and subsequent growth. The fate of postmitotic (non-dividing) cells such as neurons, cardiac myocytes, skeletal muscle fibers, and retinal pigment epithelial cells (RPE) is to accumulate lipofuscin, which as an "aging pigment" has been considered a reliable biomarker for the age of cells. Environmental stress can accelerate the accumulation of lipofuscin. For example, accumulation in brain cells appears to be an important issue connected with heavy consumption of alcohol. Lipofuscin is made of free-radical-damaged protein and fat, whose abnormal accumulation is related to a range of disorders including Type IV mucolipidosis (ML4), Amyotrophic Lateral Sclerosis (ALS), Alzheimer's disease, Parkinson disease, and age-related macular degeneration (AMD) which is the leading cause of blindness beyond the age of 50 years. The study of lipofuscin formation and growth is important, because of their association with cellular aging. We introduce a model of non-equilibrium cluster growth and aggregation that we have developed for studying the formation and growth of lipofuscin. As an example of lipofuscin deposit in a given kind of postmitotic cell, we study the kinetics of lipofuscin growth in a RPE cell. Our results agree with a linear growth of the number of lipofuscin granules with age. We apply the dynamic scaling approach to our model and find excellent data collapse for the cluster size distribution. An unusual feature of our model is that while small particles are removed from the cell the larger ones become fixed and grow by aggregation.

  18. Enhancements for a Dynamic Data Warehousing and Mining System for Large-scale HSCB Data

    Science.gov (United States)

    2016-08-29

    Intelligent Automation Incorporated Enhancements for a Dynamic Data Warehousing and Mining ...Page | 2 Intelligent Automation Incorporated Monthly Report No. 5 Enhancements for a Dynamic Data Warehousing and Mining System Large-Scale HSCB...System for Large-scale HSCB Data Monthly Report No. 5 Reporting Period: July 20, 2016 – Aug 19, 2016 Contract No. N00014-16-P-3014

  19. Scaling of the dynamics of flexible Lennard-Jones chains

    DEFF Research Database (Denmark)

    Veldhorst, Arno; Dyre, J. C.; Schrøder, Thomas

    2014-01-01

    The isomorph theory provides an explanation for the so-called power law density scaling which has been observed in many molecular and polymeric glass formers, both experimentally and in simulations. Power law density scaling (relaxation times and transport coefficients being functions of ργ......S/T , where ρ is density, T is temperature, and γ S is a material specific scaling exponent) is an approximation to a more general scaling predicted by the isomorph theory. Furthermore, the isomorph theory provides an explanation for Rosenfeld scaling (relaxation times and transport coefficients being...... provide a possible explanation for why power-law density scaling is observed experimentally in alkanes and many polymeric systems. The theory provides an independent method of determining the scaling exponent, which is usually treated as an empirical scaling parameter....

  20. Determination of Scaling Parameter and Dynamical Resonances in Complex-Rotated Hamiltonian Ⅱ: Numerical Analysis

    Institute of Scientific and Technical Information of China (English)

    LIU Zong-Liang; ZHAO Fang; LI Shao-Hua; ZHAO Mei-Shan; CHEN Chang-Yong

    2008-01-01

    This paper is concerned with the determination of a unique scaling parameter in complex scaling analysis and with accurate calculation of dynamics resonances. In the preceding paper we have presented a theoretical analysis and provided a formalism for dynamical resonance calculations. In this paper we present accurate numerical results for two non-trivial dynamical processes, namely, models of diatomie molecular predissoeiation and of barrier potential scattering for resonances. The results presented in this paper confirm our theoretical analysis, remove a theoretical ambiguity on determination of the complex scaling parameter, and provide an improved understanding for dynamical resonance calculations in rigged Hilbert space.

  1. Dynamic Reactive Power Compensation of Large Scale Wind Integrated Power System

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul

    2015-01-01

    Due to progressive displacement of conventional power plants by wind turbines, dynamic security of large scale wind integrated power systems gets significantly compromised. In this paper we first highlight the importance of dynamic reactive power support/voltage security in large scale wind...... integrated power systems with least presence of conventional power plants. Then we propose a mixed integer dynamic optimization based method for optimal dynamic reactive power allocation in large scale wind integrated power systems. One of the important aspects of the proposed methodology is that unlike...... static optimal power flow based approaches, the proposed method considers detailed system dynamics and wind turbine grid code fulfilment while optimizing the allocation of dynamic reactive power sources. We also argue that in large scale wind integrated power systems, i) better utilization of existing...

  2. Curvature Perturbation and Domain Wall Formation with Pseudo Scaling Scalar Dynamics

    CERN Document Server

    Ema, Yohei; Takimoto, Masahiro

    2015-01-01

    Cosmological dynamics of scalar field with a monomial potential $\\phi^{n}$ with a general background equation of state is revisited. It is known that if $n$ is smaller than a critical value, the scalar field exhibits a coherent oscillation and if $n$ is larger it obeys a scaling solution without oscillation. We study in detail the case where $n$ is equal to the critical value, and find a peculiar scalar dynamics which is neither oscillating nor scaling solution, and we call it a pseudo scaling solution. We also discuss cosmological implications of a pseudo scaling scalar dynamics, such as the curvature perturbation and the domain wall problem.

  3. OSCILLATION FOR NONLINEAR SECOND-ORDER DYNAMIC EQUATIONS ON TIME SCALES

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Through the use of generalized Riccati transformation techniques, we establish some oscillation criteria for one type of nonlinear dynamic equation on time scales. Several examples, including a semilinear dynamic equation and a nonlinear Emden-Fowler dynamic equation, are also given to illustrate these criteria and to improve the results obtained in some references.

  4. Geometry of Dynamic Large Networks: A Scaling and Renormalization Group Approach

    Science.gov (United States)

    2013-12-11

    Geometry of Dynamic Large Networks - A Scaling and Renormalization Group Approach IRAJ SANIEE LUCENT TECHNOLOGIES INC 12/11/2013 Final Report...Z39.18 Final Performance Report Grant Title: Geometry of Dynamic Large Networks: A Scaling and Renormalization Group Approach Grant Award Number...test itself may be scaled to much larger graphs than those we examined via renormalization group methodology. Using well-understood mechanisms, we

  5. Stability and Control of Large-Scale Dynamical Systems A Vector Dissipative Systems Approach

    CERN Document Server

    Haddad, Wassim M

    2011-01-01

    Modern complex large-scale dynamical systems exist in virtually every aspect of science and engineering, and are associated with a wide variety of physical, technological, environmental, and social phenomena, including aerospace, power, communications, and network systems, to name just a few. This book develops a general stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems, and presents the most complete treatment on vector Lyapunov function methods, vector dissipativity theory, and decentralized control architectures. Large-scale dynami

  6. A numerical model for dynamic crustal-scale fluid flow

    Science.gov (United States)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel

    2015-04-01

    Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude

  7. Sputtering of Ge(001): transition between dynamic scaling regimes

    DEFF Research Database (Denmark)

    Smilgies, D.-M.; Eng, P.J.; Landemark, E.;

    1997-01-01

    We have studied the dynamic behavior of the Ge(001) surface during sputtering in situ and in real time using synchrotron X-ray diffraction. We find two dynamic regimes as a function of surface temperature and sputter current which are separated by a sharp transition. The boundary between these two...

  8. Toward the Optimal Configuration of Dynamic Voltage Scaling Points in Real-Time Applications

    Institute of Scientific and Technical Information of China (English)

    Hui-Zhan Yi; Xue-Jun Yang

    2006-01-01

    In real-time applications, compiler-directed dynamic voltage scaling (DVS) could reduce energy consumption efficiently, where compiler put voltage scaling points in the proper places, and the supply voltage and clock frequency were adjusted to the relationship between the reduced time and the reduced workload. This paper presents the optimal configuration of dynamic voltage scaling points without voltage scaling overhead, which minimizes energy consumption. The conclusion is proved theoretically. Finally, it is confirmed by simulations with equally-spaced voltage scaling configuration.

  9. Ex Ante Scale Dynamics Analysis in the Policy Debate on Sustainable Biofuels in Mozambique

    NARCIS (Netherlands)

    Schut, M.; Leeuwis, C.; Paassen, van A.

    2013-01-01

    In this paper, we explore how ex ante scale dynamics analysis can contribute to better understanding of interactions between scales and levels, and how these interactions influence solution space in policy processes. In so doing, we address opportunities and challenges of conducting ex ante scale dy

  10. Commissioning of the IDS Neutron Detector and $\\beta$-decay fast-timing studies at IDS

    CERN Document Server

    Piersa, Monika

    2016-01-01

    The following report describes my scientific activities performed during the Summer Student Programme at ISOLDE. The main part of my project was focused on commissioning the neutron detector dedicated to nuclear decay studies at ISOLDE Decay Station (IDS). I have participated in all the steps needed to make it operational for the IS609 experiment. In the testing phase, we obtained expected detector response and calibrations confirmed its successful commissioning. The detector was mounted in the desired geometry at IDS and used in measurements of the beta-delayed neutron emission of $^8$He. After completing aforementioned part of my project, I became familiar with the fast-timing method. This technique was applied at IDS in the IS610 experiment performed in June 2016 to explore the structure of neutron-rich $^{130-134}$Sn nuclei. Since the main part of my PhD studies will be the analysis of data collected in this experiment, the second part of my project was dedicated to acquiring knowledge about technical de...

  11. Reduced fasting time improves comfort and satisfaction of elderly patients undergoing anesthesia for hip fracture

    Directory of Open Access Journals (Sweden)

    Luiz Eduardo Imbelloni

    2015-04-01

    Full Text Available BACKGROUND AND OBJECTIVES: Patient's satisfaction is a standard indicator of care quality. The aim of this study was to evaluate whether a preoperative oral ingestion of 200 mL of a carbohydrate drink can improve comfort and satisfaction with anesthesia in elderly patients with hip fracture. METHOD: Prospective randomized clinical trial conducted in a Brazilian public hospital, with patients ASA I-III undergoing surgery for hip fracture. The control group (NPO received nothing by mouth after 9:00 p.m. the night before, while patients in the experimental group (CHO received 200 mL of a carbohydrate drink 2-4 h before the operation. Patients' characteristics, subjective perceptions, thirst and hunger and satisfaction were determined in four steps. Mann-Whitney U-test and Fisher exact test were used for comparison of control and experimental groups. A p-value <0.05 was considered significant. RESULTS: A total of 100 patients were included in one of the two regimens of preoperative fasting. Fasting time decreased significantly in the study group. Patients drank 200 mL 2:59 h before surgery and showed no hunger (p < 0.00 and thirst on arrival to OR (p < 0.00, resulting in increased satisfaction with the perioperative anesthesia care (p < 0.00. CONCLUSIONS: The satisfaction questionnaire for surgical patient could become a useful tool in assessing the quality of care. In conclusion, CHO significantly reduces preoperative discomfort and increases satisfaction with anesthesia care.

  12. A Fast Time-Delay Calculation Method in Through-Wall-Radar Detection Scenario

    Directory of Open Access Journals (Sweden)

    Zhang Qi

    2016-01-01

    Full Text Available In TWR (Through Wall Radar signal processing procedure, time delay estimation is one of the key steps in target localization and high resolution imaging. In time domain imaging procedure such as back projection imaging algorithm, round trip propagation time delay at the path of “transmitter-target-receiver” needs to be calculated for each pixel in imaging region. In typical TWR scenario, transmitter and receiver are at one side and targets at the other side of a wall. Based on two-dimensional searching algorithm or solving two variables equation of four times, traditional time delay calculation algorithms are complex and time consuming, and cannot be used to real-time imaging procedure. In this paper, a new fast time-delay (FTD algorithm is presented. Because of that incident angle at one side equals to refracting angle at the other side, an equation of lateral distance through the wall can be established. By solving this equation, the lateral distance can be obtained and total propagation time delay can be calculated subsequently. Through processing simulation data, the result shows that new algorithm can be applied effectively to real-time time-delay calculation in TWR signal processing.

  13. Modelling Protein Dynamics on the Microsecond Time Scale

    DEFF Research Database (Denmark)

    Siuda, Iwona Anna

    Recent years have shown an increase in coarse-grained (CG) molecular dynamics simulations, providing structural and dynamic details of large proteins and enabling studies of self-assembly of biological materials. It is not easy to acquire such data experimentally, and access is also still limited...... in atomistic simulations. During her PhD studies, Iwona Siuda used MARTINI CG models to study the dynamics of different globular and membrane proteins. In several cases, the MARTINI model was sufficient to study conformational changes of small, purely alpha-helical proteins. However, in studies of larger...... family....

  14. Understanding the complexity of temperature dynamics in Xinjiang, China, from multitemporal scale and spatial perspectives.

    Science.gov (United States)

    Xu, Jianhua; Chen, Yaning; Li, Weihong; Liu, Zuhan; Wei, Chunmeng; Tang, Jie

    2013-01-01

    Based on the observed data from 51 meteorological stations during the period from 1958 to 2012 in Xinjiang, China, we investigated the complexity of temperature dynamics from the temporal and spatial perspectives by using a comprehensive approach including the correlation dimension (CD), classical statistics, and geostatistics. The main conclusions are as follows (1) The integer CD values indicate that the temperature dynamics are a complex and chaotic system, which is sensitive to the initial conditions. (2) The complexity of temperature dynamics decreases along with the increase of temporal scale. To describe the temperature dynamics, at least 3 independent variables are needed at daily scale, whereas at least 2 independent variables are needed at monthly, seasonal, and annual scales. (3) The spatial patterns of CD values at different temporal scales indicate that the complex temperature dynamics are derived from the complex landform.

  15. Understanding the Complexity of Temperature Dynamics in Xinjiang, China, from Multitemporal Scale and Spatial Perspectives

    Directory of Open Access Journals (Sweden)

    Jianhua Xu

    2013-01-01

    Full Text Available Based on the observed data from 51 meteorological stations during the period from 1958 to 2012 in Xinjiang, China, we investigated the complexity of temperature dynamics from the temporal and spatial perspectives by using a comprehensive approach including the correlation dimension (CD, classical statistics, and geostatistics. The main conclusions are as follows (1 The integer CD values indicate that the temperature dynamics are a complex and chaotic system, which is sensitive to the initial conditions. (2 The complexity of temperature dynamics decreases along with the increase of temporal scale. To describe the temperature dynamics, at least 3 independent variables are needed at daily scale, whereas at least 2 independent variables are needed at monthly, seasonal, and annual scales. (3 The spatial patterns of CD values at different temporal scales indicate that the complex temperature dynamics are derived from the complex landform.

  16. Temporal changes in vegetation of a virgin beech woodland remnant: stand-scale stability with intensive fine-scale dynamics governed by stand dynamic events

    Directory of Open Access Journals (Sweden)

    Tibor Standovár

    2017-03-01

    Full Text Available The aim of this resurvey study is to check if herbaceous vegetation on the forest floor exhibits overall stability at the stand-scale in spite of intensive dynamics at the scale of individual plots and stand dynamic events (driven by natural fine scale canopy gap dynamics. In 1996, we sampled a 1.5 ha patch using 0.25 m² plots placed along a 5 m × 5 m grid in the best remnant of central European montane beech woods in Hungary. All species in the herbaceous layer and their cover estimates were recorded. Five patches representing different stand developmental situations (SDS were selected for resurvey. In 2013, 306 plots were resurveyed by using blocks of four 0.25 m² plots to test the effects of imperfect relocation. We found very intensive fine-scale dynamics in the herbaceous layer with high species turnover and sharp changes in ground layer cover at the local-scale (< 1 m2. A decrease in species richness and herbaceous layer cover, as well as high species turnover, characterized the closing gaps. Colonization events and increasing species richness and herbaceous layer cover prevailed in the two newly created gaps. A pronounced decrease in the total cover, but low species turnover and survival of the majority of the closed forest specialists was detected by the resurvey at the stand-scale. The test aiming at assessing the effect of relocation showed a higher time effect than the effect of imprecise relocation. The very intensive fine-scale dynamics of the studied beech forest are profoundly determined by natural stand dynamics. Extinction and colonisation episodes even out at the stand-scale, implying an overall compositional stability of the herbaceous vegetation at the given spatial and temporal scale. We argue that fine-scale gap dynamics, driven by natural processes or applied as a management method, can warrant the survival of many closed forest specialist species in the long-run. Nomenclature: Flora Europaea (Tutin et al. 2010 for

  17. Scaling of Langevin and molecular dynamics persistence times of nonhomogeneous fluids.

    Science.gov (United States)

    Olivares-Rivas, Wilmer; Colmenares, Pedro J

    2012-01-01

    The existing solution for the Langevin equation of an anisotropic fluid allowed the evaluation of the position-dependent perpendicular and parallel diffusion coefficients, using molecular dynamics data. However, the time scale of the Langevin dynamics and molecular dynamics are different and an ansatz for the persistence probability relaxation time was needed. Here we show how the solution for the average persistence probability obtained from the backward Smoluchowski-Fokker-Planck equation (SE), associated to the Langevin dynamics, scales with the corresponding molecular dynamics quantity. Our SE perpendicular persistence time is evaluated in terms of simple integrals over the equilibrium local density. When properly scaled by the perpendicular diffusion coefficient, it gives a good match with that obtained from molecular dynamics.

  18. Scaling up predator–prey dynamics using spatial moment equations

    National Research Council Canada - National Science Library

    Barraquand, Frédéric; Murrell, David J; Spencer, Matthew

    2013-01-01

    Classical models of predator–prey dynamics, commonly used in community and evolutionary ecology to explain population cycles, species coexistence, the effects of enrichment, or predict the evolution of behavioural traits...

  19. Dynamic DNA methylation controls glutamate receptor trafficking and synaptic scaling.

    Science.gov (United States)

    Sweatt, J David

    2016-05-01

    Hebbian plasticity, including long-term potentiation and long-term depression, has long been regarded as important for local circuit refinement in the context of memory formation and stabilization. However, circuit development and stabilization additionally relies on non-Hebbian, homeostatic, forms of plasticity such as synaptic scaling. Synaptic scaling is induced by chronic increases or decreases in neuronal activity. Synaptic scaling is associated with cell-wide adjustments in postsynaptic receptor density, and can occur in a multiplicative manner resulting in preservation of relative synaptic strengths across the entire neuron's population of synapses. Both active DNA methylation and demethylation have been validated as crucial regulators of gene transcription during learning, and synaptic scaling is known to be transcriptionally dependent. However, it has been unclear whether homeostatic forms of plasticity such as synaptic scaling are regulated via epigenetic mechanisms. This review describes exciting recent work that has demonstrated a role for active changes in neuronal DNA methylation and demethylation as a controller of synaptic scaling and glutamate receptor trafficking. These findings bring together three major categories of memory-associated mechanisms that were previously largely considered separately: DNA methylation, homeostatic plasticity, and glutamate receptor trafficking. This review describes exciting recent work that has demonstrated a role for active changes in neuronal DNA methylation and demethylation as a controller of synaptic scaling and glutamate receptor trafficking. These findings bring together three major categories of memory-associated mechanisms that were previously considered separately: glutamate receptor trafficking, DNA methylation, and homeostatic plasticity.

  20. BOUNDARY VALUE PROBLEM TO DYNAMIC EQUATION ON TIME SCALE

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper we consider a nonlinear first-order boundary value problem on a time scale. The existence results of three positive solutions are obtained using fixed point theorems. Finally,examples are presented to illustrate the main results.

  1. STRUCTURE AND DYNAMICS OF POLYMERIC MATERIALS IN NANO-SCALE

    Institute of Scientific and Technical Information of China (English)

    Toshio Nishi; So Fujinami; Dong Wang; Hao Liu; Ken Nakajima

    2011-01-01

    The nano-palpation technique, i.e., nanometer-scale elastic and viscoelastic measurements based on atomic force microscope, is introduced. It is demonstrated to be very useful in analyzing nanometer-scale materials properties for the surfaces and interfaces of various types of soft materials. It enables us to obtain not only structural information but also mechanical information about a material at the same place and at the same time.

  2. The role of large-scale, extratropical dynamics in climate change

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, T.G. [ed.

    1994-02-01

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop`s University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database.

  3. A Fast-Time Study of Aircraft Reordering in Arrival Sequencing and Scheduling

    Science.gov (United States)

    Carr, Greg; Neuman, Frank; Tobias, Leonard (Technical Monitor)

    1998-01-01

    on estimated times of arrival, it does not take into account individual airline priorities among incoming flights. NASA is exploring the possibility of allowing airlines to express relative arrival priorities to air traffic management through the development of new CTAS scheduling algorithms which take into consideration airline arrival preferences. The accommodation of airline priorities in arrival sequencing and scheduling would under most circumstances result in a deviation from a "natural" or FCFS arrival order. As a First step toward developing airline influenced sequencing algorithms, an investigation was conducted to determine the feasibility of reordering arrival traffic from a strict FCFS sequence. A fast-time simulation has been developed which allows statistical evaluation of sequencing and scheduling algorithms for arrival traffic at the Dallas/Fort Worth Airport. In contrast to real-time simulation or field tests, which would require on the order of ninety minutes to examine a single traffic rush period, the fast-time simulation allows examination of multiple rush periods in a matter of seconds.

  4. A large scale molecular dynamics calculation of a lipid bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Susumu [Tokyo Inst. of Tech. (Japan)

    1998-03-01

    Long time molecular dynamics simulations for the dipalmitoylphosphatidylcholine lipid bilayer in the liquid crystal phase could successfully be performed in the isothermal-isobaric ensemble using the Nose-Parrinello-Rahman extended system method. Three independent 2 ns calculations show excellent convergence to the same equilibrium state of the system in about 0.5 ns. Various structural properties such a atomic distribution, order parameter, gauche fraction in the alkyl chains, and bent structure of the head group and sn-2 chain were satisfactorily reproduced. Dynamic quantities such as trans-gauche transition were qualitatively in good correspondence the experiment. The calculations presented a microscopic picture of the whole molecular conformations, including the finding that there is not a collective tilt in bilayer. Some interesting dynamical observations concerning large structural fluctuations and pendulum motion of the alkyl chains were also made. (author)

  5. Renormalization of Collective Modes in Large-Scale Neural Dynamics

    Science.gov (United States)

    Moirogiannis, Dimitrios; Piro, Oreste; Magnasco, Marcelo O.

    2017-03-01

    The bulk of studies of coupled oscillators use, as is appropriate in Physics, a global coupling constant controlling all individual interactions. However, because as the coupling is increased, the number of relevant degrees of freedom also increases, this setting conflates the strength of the coupling with the effective dimensionality of the resulting dynamics. We propose a coupling more appropriate to neural circuitry, where synaptic strengths are under biological, activity-dependent control and where the coupling strength and the dimensionality can be controlled separately. Here we study a set of N→ ∞ strongly- and nonsymmetrically-coupled, dissipative, powered, rotational dynamical systems, and derive the equations of motion of the reduced system for dimensions 2 and 4. Our setting highlights the statistical structure of the eigenvectors of the connectivity matrix as the fundamental determinant of collective behavior, inheriting from this structure symmetries and singularities absent from the original microscopic dynamics.

  6. Stratospheric Imaging of Polar Mesospheric Clouds: A New Window on Small-Scale Atmospheric Dynamics

    CERN Document Server

    Miller, A D; Chapman, D; Jones, G; Limon, M; Araujo, D; Didier, J; Hillbrand, S; Kjellstrand, C B; Korotkov, A; Tucker, G; Vinokurov, Y; Wan, K; Wang, L

    2015-01-01

    Instabilities and turbulence extending to the smallest dynamical scales play important roles in the deposition of energy and momentum by gravity waves throughout the atmosphere. However, these dynamics and their effects have been impossible to quantify to date due to lack of observational guidance. Serendipitous optical images of polar mesospheric clouds at ~82 km obtained by star cameras aboard a cosmology experiment deployed on a stratospheric balloon provide a new observational tool, revealing instability and turbulence structures extending to spatial scales < 20 m. At 82 km, this resolution provides sensitivity extending to the smallest turbulence scale not strongly influenced by viscosity: the "inner scale" of turbulence, $l_0\\sim$10($\

  7. Fasting time and vitamin B12 levels in a community-based population.

    Science.gov (United States)

    Orton, Dennis J; Naugler, Christopher; Sadrzadeh, S M Hossein

    2016-07-01

    Vitamin B12, also known as cobalamin (Cbl), is an essential vitamin that manifests with numerous severe but non-specific symptoms in cases of deficiency. Assessing Cbl status often requires fasting, although this requirement is not standard between institutions. This study evaluated the impact of fasting on Cbl levels in a large community-based cohort in an effort to promote standardization of Cbl testing between sites. Laboratory data for Cbl, fasting time, patient age and sex were obtained from laboratory information service from Calgary Laboratory Services (CLS) for the period of April 2011 to June 2015. CLS is the sole supplier of laboratory services in the Southern Alberta region in Canada (population, approximately 1.4 million). To investigate potential sex-specific effects of fasting on Cbl levels, males and females were analyzed separately using linear regression models. A total of 346,957 individual patient results (196,849 females, 146,085 males) were obtained. The mean plasma Cbl level was 386.5 (±195.6) pmol/L and 412.0 (±220.8) pmol/L for males and females, respectively. Linear regression analysis showed fasting had no significant association with Cbl levels in females; however a statistically significant decrease of 0.9pmol/L/hour fasting (pfasting has the potential to contribute to higher rates of Cbl deficiency in men. Together, these data suggest fasting should be excluded as a requirement for evaluating plasma Cbl. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Particle-scale modelling of financial price dynamics

    Science.gov (United States)

    Liu, David

    2017-02-01

    This paper proposes a particle-based computational framework for modeling of financial price dynamics, which is an extension of the recent empirical work of Financial Brownian Particle (FBP), and discretizes and solves the Langevin equation that is the continuum representation of a financial market. The framework enables us to simulate the limit order book of the USD/JPY exchange rates. The research yields results that are in good agreement with the published empirical results. Our framework of modelling financial prices is of multidisciplinary nature, and can bridge the fields of empirical studies of financial order books, particle dynamics simulation, and modelling of financial market.

  9. Critical scaling in hidden state inference for linear Langevin dynamics

    OpenAIRE

    Bravi, Barbara; Sollich, Peter

    2016-01-01

    We consider the problem of inferring the dynamics of unknown (i.e. hidden) nodes from a set of observed trajectories and we study analytically the average prediction error given by the Extended Plefka Expansion applied to it, as presented in [1]. We focus on a stochastic linear dynamics of continuous degrees of freedom interacting via random Gaussian couplings in the infinite network size limit. The expected error on the hidden time courses can be found as the equal-time hidden-to-hidden cova...

  10. Towards a Nano Geometry? Geometry and Dynamics on Nano Scale

    CERN Document Server

    Booss-Bavnbek, Bernhelm

    2012-01-01

    This paper applies I.M. Gelfand's distinction between adequate and non-adequate use of mathematical language in different contexts to the newly opened window of model-based measurements of intracellular dynamics. The specifics of geometry and dynamics on the mesoscale of cell physiology are elaborated - in contrast to the familiar Newtonian mechanics and the more recent, but by now also rather well established quantum field theories. Examples are given originating from the systems biology of insulin secreting pancreatic beta-cells and the mathematical challenges of an envisioned non-invasive control of magnetic nanoparticles.

  11. An efficient non hydrostatic dynamical care far high-resolution simulations down to the urban scale

    Energy Technology Data Exchange (ETDEWEB)

    Bonaventura, L. [MOX-Politecnico, Milano (Italy); Cesari, D. [ARPA, Bologna (Italy). Servizio Idro Meteo

    2005-03-15

    Numerical simulations of idealized stratified flows aver obstacles at different spatial scales demonstrate the very general applicability and the parallel efficiency of a new non hydrostatic dynamical care far simulation of mesoscale flows aver complex terrain.

  12. Oscillation Criteria for Fourth-Order Nonlinear Dynamic Equations on Time Scales

    Directory of Open Access Journals (Sweden)

    Xin Wu

    2013-01-01

    Full Text Available We establish some new oscillation criteria for nonlinear dynamic equation of the form on an arbitrary time scale with , where are positive rd-continuous functions. An example illustrating the importance of our result is included.

  13. Small scale substructure, collapse time and dynamical friction

    CERN Document Server

    Gambera, M

    1996-01-01

    We solve numerically the equations of motion for the collapse of a shell of baryonic matter, made of galaxies and substructure of $ 10^{6} M_{\\odot} \\div 10^{9} M_{\\odot}$, taking into account the dynamical friction and the parameters on which it depends: the peaks' height $\

  14. Coarse graining and scaling in dissipative particle dynamics

    DEFF Research Database (Denmark)

    Füchslin, Rudolf M; Fellermann, Harold; Eriksson, Anders

    2009-01-01

    Dissipative particle dynamics (DPD) is now a well-established method for simulating soft matter systems. However, its applicability was recently questioned because some investigations showed an upper coarse-graining limit that would prevent the applicability of the method to the whole mesoscopic ...

  15. Coarse-graining and scaling in dissipative particle dynamics

    DEFF Research Database (Denmark)

    Fuechslin, Rudolf; Fellermann, Harold; Eriksson, Anders

    2009-01-01

    Dissipative particle dynamics (DPD) is now a well-established method for simulating soft matter systems. However, its applicability was recently questioned because some investigations showed an upper coarse-graining limit that would prevent the applicability of the method to the whole mesoscopic...

  16. Reasoning with Atomic-Scale Molecular Dynamic Models

    Science.gov (United States)

    Pallant, Amy; Tinker, Robert F.

    2004-01-01

    The studies reported in this paper are an initial effort to explore the applicability of computational models in introductory science learning. Two instructional interventions are described that use a molecular dynamics model embedded in a set of online learning activities with middle and high school students in 10 classrooms. The studies indicate…

  17. Multiple time scales and multiform dynamics in learning to juggle.

    NARCIS (Netherlands)

    Huys, R.; Daffertshofer, A.; Beek, P.J.

    2004-01-01

    To study the acquisition of perceptual-motor skills as an instance of dynamic pattern formation, we examined the evolution of postural sway and eye and head movements in relation to changes in performance, while 13 novices practiced 3-ball cascade juggling for 9 weeks. Ball trajectories, postural

  18. Sandpile Dynamics Driven by Degree on Scale-Free Networks

    Institute of Scientific and Technical Information of China (English)

    YIN Yan-Ping; ZHANG Duan-Ming; PAN Gui-Jun; HE Min-Hua

    2007-01-01

    @@ We introduce a sandpile model driven by degree on scale-free networks, where the perturbation is triggered at nodes with the same degree. We numerically investigate the avalanche behaviour of sandpile driven by different degrees on scale-free networks. It is observed that the avalanche area has the same behaviour with avalanche size. When the sandpile is driven at nodes with the minimal degree, the avalanches of our model behave similarly to those of the original Bak-Tang-Wiesenfeld (BTW) model on scale-free networks. As the degree of driven nodes increases from the minimal value to the maximal value, the avalanche distribution gradually changes from a clean power law, then a mixture of Poissonian and power laws, finally to a Poisson-like distribution. The average avalanche area is found to increase with the degree of driven nodes so that perturbation triggered on higher-degree nodes will result in broader spreading of avalanche propagation.

  19. Oscillation of Second-order Nonlinear Dynamic Equation on Time Scales

    Institute of Scientific and Technical Information of China (English)

    YANG Jia-shan

    2013-01-01

    The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article.By using the generalized Riccati technique,integral averaging technique and the time scales theory,some new sufficient conditions for oscillation of the equation are proposed.These results generalize and extend many known results for second order dynamic equations.Some examples are given to illustrate the main results of this article.

  20. Scaling limit of a discrete prion dynamics model

    CERN Document Server

    Doumic, Marie; Lepoutre, Thomas

    2009-01-01

    This paper investigates the connection between discrete and continuous models describing prion proliferation. The scaling parameters are interpreted on biological grounds and we establish rigorous convergence statements. We also discuss, based on the asymptotic analysis, relevant boundary conditions that can be used to complete the continuous model.

  1. Advanced Dynamically Adaptive Algorithms for Stochastic Simulations on Extreme Scales

    Energy Technology Data Exchange (ETDEWEB)

    Xiu, Dongbin [Univ. of Utah, Salt Lake City, UT (United States)

    2017-03-03

    The focus of the project is the development of mathematical methods and high-performance computational tools for stochastic simulations, with a particular emphasis on computations on extreme scales. The core of the project revolves around the design of highly efficient and scalable numerical algorithms that can adaptively and accurately, in high dimensional spaces, resolve stochastic problems with limited smoothness, even containing discontinuities.

  2. Nonlinear wave mechanics from classical dynamics and scale covariance

    Energy Technology Data Exchange (ETDEWEB)

    Hammad, F. [Departement TC-SETI, Universite A.Mira de Bejaia, Route Targa Ouzemmour, 06000 Bejaia (Algeria)], E-mail: fayhammad@yahoo.fr

    2007-10-29

    Nonlinear Schroedinger equations proposed by Kostin and by Doebner and Goldin are rederived from Nottale's prescription for obtaining quantum mechanics from classical mechanics in nondifferentiable spaces; i.e., from hydrodynamical concepts and scale covariance. Some soliton and plane wave solutions are discussed.

  3. Scaling laws for density correlations and fluctuations in multiparticle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, E.A. de [Universitaire Instelling Antwerpen, Wilrijk (Belgium). Dept. of Physics]|[Interuniversity Inst. for High Energies, Brussels (Belgium); Dremin, I.M. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Fizicheskij Inst.; Kittel, W. [Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Nijmegen (Netherlands)

    1996-05-01

    Experimental data on particle correlations and fluctuations in various high-energy multiparticle collisions are presented, with special emphasis on evidence for scaling-law evolution in small phase-space domains. The notions of intermittency and fractality as related to the above findings are described. Phenomenological and theoretical work on the subject is reviewed. (orig.).

  4. Dynamic properties of small-scale solar wind plasma fluctuations.

    Science.gov (United States)

    Riazantseva, M O; Budaev, V P; Zelenyi, L M; Zastenker, G N; Pavlos, G P; Safrankova, J; Nemecek, Z; Prech, L; Nemec, F

    2015-05-13

    The paper presents the latest results of the studies of small-scale fluctuations in a turbulent flow of solar wind (SW) using measurements with extremely high temporal resolution (up to 0.03 s) of the bright monitor of SW (BMSW) plasma spectrometer operating on astrophysical SPECTR-R spacecraft at distances up to 350,000 km from the Earth. The spectra of SW ion flux fluctuations in the range of scales between 0.03 and 100 s are systematically analysed. The difference of slopes in low- and high-frequency parts of spectra and the frequency of the break point between these two characteristic slopes was analysed for different conditions in the SW. The statistical properties of the SW ion flux fluctuations were thoroughly analysed on scales less than 10 s. A high level of intermittency is demonstrated. The extended self-similarity of SW ion flux turbulent flow is constantly observed. The approximation of non-Gaussian probability distribution function of ion flux fluctuations by the Tsallis statistics shows the non-extensive character of SW fluctuations. Statistical characteristics of ion flux fluctuations are compared with the predictions of a log-Poisson model. The log-Poisson parametrization of the structure function scaling has shown that well-defined filament-like plasma structures are, as a rule, observed in the turbulent SW flows.

  5. Unique Testing Capabilities of the NASA Langley Transonic Dynamics Tunnel, an Exercise in Aeroelastic Scaling

    Science.gov (United States)

    Ivanco, Thomas G.

    2013-01-01

    NASA Langley Research Center's Transonic Dynamics Tunnel (TDT) is the world's most capable aeroelastic test facility. Its large size, transonic speed range, variable pressure capability, and use of either air or R-134a heavy gas as a test medium enable unparalleled manipulation of flow-dependent scaling quantities. Matching these scaling quantities enables dynamic similitude of a full-scale vehicle with a sub-scale model, a requirement for proper characterization of any dynamic phenomenon, and many static elastic phenomena. Select scaling parameters are presented in order to quantify the scaling advantages of TDT and the consequence of testing in other facilities. In addition to dynamic testing, the TDT is uniquely well-suited for high risk testing or for those tests that require unusual model mount or support systems. Examples of recently conducted dynamic tests requiring unusual model support are presented. In addition to its unique dynamic test capabilities, the TDT is also evaluated in its capability to conduct aerodynamic performance tests as a result of its flow quality. Results of flow quality studies and a comparison to a many other transonic facilities are presented. Finally, the ability of the TDT to support future NASA research thrusts and likely vehicle designs is discussed.

  6. Dynamical Volume Element in Scale-Invariant and Supergravity Theories

    CERN Document Server

    Guendelman, Eduardo; Pacheva, Svetlana; Vasihoun, Mahary

    2013-01-01

    The use in the action integral of a volume element of the form $\\Phi d^{D}x$, where $\\Phi$ is a metric-independent measure density, can yield new interesting results in all types of known generally coordinate-invariant theories: (1) 4-D theories of gravity plus matter fields; (2) reparametrization invariant theories of extended objects (strings and branes); (3) supergravity theories. In case (1) we obtain interesting insights concerning the cosmological constant problem, inflation and quintessence without the fifth force problem. In case (2) the above formalism leads to dynamically induced tension and to string models of non-abelian confinement. In case (3), we show that the modified-measure supergravity generates an arbitrary dynamically induced cosmological constant.

  7. Dynamics of Phononic Dissipation at the Atomic Scale

    Science.gov (United States)

    Sevincli, Haldun; Mukhopadhay, Soma; Tugrul Senger, R.; Ciraci, Salim

    2007-03-01

    Dynamics of dissipation of a local phonon distribution to the bulk is a key issue in boundary lubrication and friction between sliding surfaces. We consider a highly excited molecule which interacts weakly with the substrate surface. We study different types of coupling and substrates having different types of dimensionality and phonon densities of states. We propose three different methods to solve the dynamics of the combined system, namely the equation of mation technique, Fano-Anderson method and the Green's function method. Using this theoretical framework we present an analysis of transient properties of energy dissipation via phonon discharge at the microscopic level. The methods allow the theoretical calculations to be extended to include any density of states for the substrate including experimental ones and any type of molecule that represent the lubricant or the asperity.

  8. Dynamical chaos in chip-scale optomechanical oscillators

    CERN Document Server

    Wu, Jiagui; Huang, Yongjun; Zhou, Hao; Yang, Jinghui; Liu, Jia-Ming; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Xia, Guangqiong; Wong, Chee Wei

    2016-01-01

    Chaos has revolutionized the field of nonlinear science and stimulated foundational studies from neural networks, extreme event statistics, to physics of electron transport. Recent studies in cavity optomechanics provide a new platform to uncover quintessential architectures of chaos generation and the underlying physics. Here we report the first generation of dynamical chaos in silicon optomechanical oscillators, enabled by the strong and coupled nonlinearities of Drude electron-hole plasma. Deterministic chaotic oscillation is achieved, and statistical and entropic characterization quantifies the complexity of chaos. The correlation dimension D2 is determined at ~ 1.67 for the chaotic attractor, along with a maximal Lyapunov exponent rate about 2.94*the fundamental optomechanical oscillation. The corresponding nonlinear dynamical maps demonstrate the plethora of subharmonics, bifurcations, and stable regimes, along with distinct transitional routes into chaotic states. The chaos generation in our mesoscopic...

  9. On the formulation of the dynamic mixed subgrid-scale model

    NARCIS (Netherlands)

    Vreman, A.W.; Geurts, Bernardus J.; Kuerten, Johannes G.M.

    1994-01-01

    The dynamic mixed subgrid‐scale model of Zang et al. [Phys. Fluids A 5, 3186 (1993)] (DMM1) is modified with respect to the incorporation of the similarity model in order to remove a mathematical inconsistency. Compared to DMM1, the magnitude of the dynamic model coefficient of the modified model

  10. Multi-scale analysis of soil erosion dynamics in Kwazulu-natal, South Africa

    NARCIS (Netherlands)

    Sonneveld, M.P.W.; Everson, T.M.; Veldkamp, A.

    2005-01-01

    For a case study area in the Okhombe catchment in the province of KwaZulu-Natal, South Africa, a multi-scale analysis of soil erosion dynamics was performed. At sub-catchment level, the dynamics of erosional features were investigated by means of aerial photographs. At site level, the changes in soi

  11. Firms Growth Dynamics, Competition and Power Law Scaling

    OpenAIRE

    Hari M. Gupta; Campanha, Jose R.

    2002-01-01

    We study the growth dynamics of the size of manufacturing firms considering competition and normal distribution of competency. We start with the fact that all components of the system struggle with each other for growth as happened in real competitive bussiness world. The detailed quantitative agreement of the theory with empirical results of firms growth based on a large economic database spanning over 20 years is good .Further we find that this basic law of competition leads approximately a...

  12. Scaling laws in the dynamics of crime growth rate

    Science.gov (United States)

    Alves, Luiz G. A.; Ribeiro, Haroldo V.; Mendes, Renio S.

    2013-06-01

    The increasing number of crimes in areas with large concentrations of people have made cities one of the main sources of violence. Understanding characteristics of how crime rate expands and its relations with the cities size goes beyond an academic question, being a central issue for contemporary society. Here, we characterize and analyze quantitative aspects of murders in the period from 1980 to 2009 in Brazilian cities. We find that the distribution of the annual, biannual and triannual logarithmic homicide growth rates exhibit the same functional form for distinct scales, that is, a scale invariant behavior. We also identify asymptotic power-law decay relations between the standard deviations of these three growth rates and the initial size. Further, we discuss similarities with complex organizations.

  13. Scaling laws in the dynamics of crime growth rate

    CERN Document Server

    Alves, Luiz Gustavo de Andrade; Mendes, Renio dos Santos

    2013-01-01

    The increasing number of crimes in areas with large concentrations of people have made cities one of the main source of violence. Understanding characteristics of how crime rate expands and its relations with the cities size goes beyond an academic question, being a central issue for the contemporary society. Here, we characterize and analyze quantitative aspects of murders in the period from 1980 to 2009 in Brazilian cities. We find that the distribution of the annual, biannual and triannual logarithmic homicide growth rates exhibit the same functional form for distinct scales, that is, a scale invariant behaviour. We also identify asymptotic power-law decay relations between the standard deviations of these three growth rates and the initial size. Further, we discuss similarities with complex organizations.

  14. Cluster Galaxy Dynamics and the Effects of Large Scale Environment

    CERN Document Server

    White, Martin; Smit, Renske

    2010-01-01

    We use a high-resolution N-body simulation to study how the influence of large-scale structure in and around clusters causes correlated signals in different physical probes and discuss some implications this has for multi-physics probes of clusters. We pay particular attention to velocity dispersions, matching galaxies to subhalos which are explicitly tracked in the simulation. We find that not only do halos persist as subhalos when they fall into a larger host, groups of subhalos retain their identity for long periods within larger host halos. The highly anisotropic nature of infall into massive clusters, and their triaxiality, translates into an anisotropic velocity ellipsoid: line-of-sight galaxy velocity dispersions for any individual halo show large variance depending on viewing angle. The orientation of the velocity ellipsoid is correlated with the large-scale structure, and thus velocity outliers correlate with outliers caused by projection in other probes. We quantify this orientation uncertainty and ...

  15. Error estimates for asymptotic solutions of dynamic equations on time scales

    Directory of Open Access Journals (Sweden)

    Gro Hovhannisyan

    2007-02-01

    Full Text Available We establish error estimates for first-order linear systems of equations and linear second-order dynamic equations on time scales by using calculus on a time scales [1,4,5] and Birkhoff-Levinson's method of asymptotic solutions [3,6,8,9].

  16. Advanced Dynamically Adaptive Algorithms for Stochastic Simulations on Extreme Scales

    Energy Technology Data Exchange (ETDEWEB)

    Xiu, Dongbin [Purdue Univ., West Lafayette, IN (United States)

    2016-06-21

    The focus of the project is the development of mathematical methods and high-performance com- putational tools for stochastic simulations, with a particular emphasis on computations on extreme scales. The core of the project revolves around the design of highly e cient and scalable numer- ical algorithms that can adaptively and accurately, in high dimensional spaces, resolve stochastic problems with limited smoothness, even containing discontinuities.

  17. Interplay between functional connectivity and scale-free dynamics in intrinsic fMRI networks.

    Science.gov (United States)

    Ciuciu, Philippe; Abry, Patrice; He, Biyu J

    2014-07-15

    Studies employing functional connectivity-type analyses have established that spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals are organized within large-scale brain networks. Meanwhile, fMRI signals have been shown to exhibit 1/f-type power spectra - a hallmark of scale-free dynamics. We studied the interplay between functional connectivity and scale-free dynamics in fMRI signals, utilizing the fractal connectivity framework - a multivariate extension of the univariate fractional Gaussian noise model, which relies on a wavelet formulation for robust parameter estimation. We applied this framework to fMRI data acquired from healthy young adults at rest and while performing a visual detection task. First, we found that scale-invariance existed beyond univariate dynamics, being present also in bivariate cross-temporal dynamics. Second, we observed that frequencies within the scale-free range do not contribute evenly to inter-regional connectivity, with a systematically stronger contribution of the lowest frequencies, both at rest and during task. Third, in addition to a decrease of the Hurst exponent and inter-regional correlations, task performance modified cross-temporal dynamics, inducing a larger contribution of the highest frequencies within the scale-free range to global correlation. Lastly, we found that across individuals, a weaker task modulation of the frequency contribution to inter-regional connectivity was associated with better task performance manifesting as shorter and less variable reaction times. These findings bring together two related fields that have hitherto been studied separately - resting-state networks and scale-free dynamics, and show that scale-free dynamics of human brain activity manifest in cross-regional interactions as well.

  18. Dynamical properties of a dissipative discontinuous map: A scaling investigation

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Sánchez, R. [Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Leonel, Edson D. [Departamento de Física, UNESP – Univ. Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900 Rio Claro, SP (Brazil); Méndez-Bermúdez, J.A. [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570 (Mexico)

    2013-12-13

    The effects of dissipation on the scaling properties of nonlinear discontinuous maps are investigated by analyzing the behavior of the average squared action 〈I{sup 2}〉 as a function of the n-th iteration of the map as well as the parameters K and γ, controlling nonlinearity and dissipation, respectively. We concentrate our efforts to study the case where the nonlinearity is large; i.e., K≫1. In this regime and for large initial action I{sub 0}≫K, we prove that dissipation produces an exponential decay for the average action 〈I〉. Also, for I{sub 0}≅0, we describe the behavior of 〈I{sup 2}〉 using a scaling function and analytically obtain critical exponents which are used to overlap different curves of 〈I{sup 2}〉 onto a universal plot. We complete our study with the analysis of the scaling properties of the deviation around the average action ω.

  19. Static and dynamic length scales in supercooled liquids: insights from molecular dynamics simulations of water and tri-propylene oxide.

    Science.gov (United States)

    Klameth, F; Henritzi, P; Vogel, M

    2014-04-14

    We perform molecular dynamics simulations to study static and dynamic length scales in molecular supercooled liquids, in particular, water. For a determination of these scales, we use equilibrium configurations and pin appropriate subsets of molecules so as to obtain random matrices, cylindrical pores, and slit confinements. Static length scales ξ(s) are determined by analyzing overlap correlation functions for various fractions of pinned molecules or distances to the confining walls. For water in all confinements and for propylene oxide trimers in random geometry, a linear increase of ξ(s) with inverse temperature is found. Dynamic length scales ξ(d) are determined by analogous analysis of fraction-dependent or position-resolved correlation times of structural relaxation. While ξ(d) continuously grows upon cooling in the cylindrical and slit confinements, we find no evidence for a temperature dependence in random matrices, implying that molecular dynamics in parsed volumes is qualitatively different from that in bulk liquids. Finally, we study possible connections between the growth of the static and dynamic length scales and the slowdown of the structural relaxation of the supercooled bulk liquids. For water, we observe a linear relation between ln τ(α) and ξ(s)²/T in the whole accessible range down to the critical temperature of mode-coupling theory, T(c). In the weakly supercooled regime, the same relation holds also for ξ(d), as obtained from cylindrical and slit confinements, but deviations from this behavior are observed near T(c). The results are discussed in connection with random first-order theory and experimental studies of liquid dynamics in nanoscopic confinements and binary mixtures.

  20. Uniformly Almost Periodic Functions and Almost Periodic Solutions to Dynamic Equations on Time Scales

    Directory of Open Access Journals (Sweden)

    Yongkun Li

    2011-01-01

    Full Text Available Firstly, we propose a concept of uniformly almost periodic functions on almost periodic time scales and investigate some basic properties of them. When time scale T=ℝ or ℤ, our definition of the uniformly almost periodic functions is equivalent to the classical definitions of uniformly almost periodic functions and the uniformly almost periodic sequences, respectively. Then, based on these, we study the existence and uniqueness of almost periodic solutions and derive some fundamental conditions of admitting an exponential dichotomy to linear dynamic equations. Finally, as an application of our results, we study the existence of almost periodic solutions for an almost periodic nonlinear dynamic equations on time scales.

  1. Dynamic length-scale characterization and nonequilibrium statistical mechanics of transport in open-cell foams.

    Science.gov (United States)

    Brosten, Tyler R; Codd, Sarah L; Maier, Robert S; Seymour, Joseph D

    2009-11-20

    Nuclear magnetic resonance measurements of scale dependent dynamics in a random solid open-cell foam reveal a characteristic length scale for transport processes in this novel type of porous medium. These measurements and lattice Boltzmann simulations for a model foam structure indicate dynamical behavior analogous to lower porosity consolidated granular porous media, despite extremely high porosity in solid cellular foams. Scaling by the measured characteristic length collapses data for different foam structures as well as consolidated granular media. The nonequilibrium statistical mechanics theory of preasymptotic dispersion, developed for hierarchical porous media, is shown to model the hydrodynamic dispersive transport in a foam structure.

  2. Dynamical process upscaling for deriving catchment scale state variables and constitutive relations for meso-scale process models

    Directory of Open Access Journals (Sweden)

    E. Zehe

    2006-01-01

    Full Text Available In this study we propose an uspcaling approach to derive time series of (a REW scale state variables, and (b effective REW scale soil hydraulic functions to test and parameterise models based on the REW approach. To this end we employed a physically based hydrological model, that represents the typical patterns and structures in the study catchment, and has previously been shown to reproduce observed runoff response and state dynamics well. This landscape- and process-compatible model is used to simulate numerical drainage and wetting experiments. The effective soil water retention curve and soil hydraulic conductivity curve are derived using the spatially averaged saturation and capillary pressure as well as averaged fluxes. When driven with observed boundary conditions during a one year simulation the model is used to estimate how the spatial pattern of soil moisture evolved during this period in the catchment. The time series of the volume integrated soil moisture is deemed as best estimate for the average catchment scale soil moisture. The approach is applied to the extensively monitored Weiherbach catchment in Germany. A sensitivity analysis showed that catchment scale model structures different from the landscape- and process compatible one yielded different times series of average catchment scale soil moisture and where not able to reproduce the observed rainfall runoff response. Hence, subscale typical heterogeneity leaves a clear fingerprint in the time series of average catchment scale saturation. In case of the Weiherbach catchment local scale heterogeneity of ks could be neglected and a simple representation of the typical hillslope scale patterns of soil types and macroporosity was sufficient for obtaining effective REW scale soil hydraulic functions. Both the effective soil hydraulic functions and time series of catchment scale saturation turned out to be useful to parameterise and test the CREW model, which is based on the REW

  3. From Single-Cell Dynamics to Scaling Laws in Oncology

    Science.gov (United States)

    Chignola, Roberto; Sega, Michela; Stella, Sabrina; Vyshemirsky, Vladislav; Milotti, Edoardo

    We are developing a biophysical model of tumor biology. We follow a strictly quantitative approach where each step of model development is validated by comparing simulation outputs with experimental data. While this strategy may slow down our advancements, at the same time it provides an invaluable reward: we can trust simulation outputs and use the model to explore territories of cancer biology where current experimental techniques fail. Here, we review our multi-scale biophysical modeling approach and show how a description of cancer at the cellular level has led us to general laws obeyed by both in vitro and in vivo tumors.

  4. Anomalous Metapopulation Dynamics on Scale-Free Networks

    Science.gov (United States)

    Fedotov, Sergei; Stage, Helena

    2017-03-01

    We model transport of individuals across a heterogeneous scale-free network where a few weakly connected nodes exhibit heavy-tailed residence times. Using the empirical law of the axiom of cumulative inertia and fractional analysis, we show that "anomalous cumulative inertia" overpowers highly connected nodes in attracting network individuals. This fundamentally challenges the classical result that individuals tend to accumulate in high-order nodes. The derived residence time distribution has a nontrivial U shape which we encounter empirically across human residence and employment times.

  5. Anomalous metapopulation dynamics on scale-free networks

    CERN Document Server

    Fedotov, Sergei

    2016-01-01

    We model transport of individuals across a heterogeneous scale-free network where a few weakly connected nodes exhibit heavy-tailed residence times. Such power laws are consistent with the Axiom of Cumulative Inertia, an empirical law stating that the rate at which people leave a place decreases with the associated residence time. We show numerically and analytically that "cumulative inertia" overpowers highly connected nodes in attracting network individuals. Our result, confirmed by empirical evidence, challenges the classical view that individuals will accumulate in highly connected nodes.

  6. Study of unsteady cavitation on NACA66 hydrofoil using dynamic cubic nonlinear subgrid-scale model

    Directory of Open Access Journals (Sweden)

    Xianbei Huang

    2015-11-01

    Full Text Available In this article, we describe the use of a new dynamic cubic nonlinear model, a new nonlinear subgrid-scale model, for simulating the cavitating flow around an NACA66 series hydrofoil. For comparison, the dynamic Smagorinsky model is also used. It is found that the dynamic cubic nonlinear model can capture the turbulence spectrum, while the dynamic Smagorinsky model fails. Both models reproduce the cavity growth/destabilization cycle, but the results of the dynamic cubic nonlinear model are much smoother. The re-entrant jet is clearly captured by the models, and it is shown that the re-entrant jet cuts the cavity into two parts. In general, the dynamic cubic nonlinear model provides improvement over the dynamic Smagorinsky model for the calculation of cavitating flow.

  7. On Scale Determination in Lattice QCD with Dynamical Quarks

    CERN Document Server

    De, A K; Maiti, J

    2008-01-01

    Dependence of $a/r_c$ (inverse Sommer parameter in units of lattice spacing $a$) on $am_q$ (quark mass in lattice unit) has been observed in all lattice QCD simulations with sea quarks including the ones with improved actions. How much of this dependence is a scaling violation has remained an intriguing question. Our approach has been to investigate the issue with an action with known lattice artifacts, i.e., the standard Wilson quark and gauge action with $\\beta=5.6$ and 2 degenerate flavors of sea quarks on $ 16^3 \\times 32 $ lattices. In order to study in detail the sea quark mass dependence, measurements are carried out at eight values of the Wilson hopping parameter $\\kappa$ in the range 0.156 - 0.158 corresponding to PCAC quark mass values $am_q$ from about 0.07 to below 0.015. We analyze the static potential by fitting to the familiar phenomenological form and extract $a/r_c$. Though scaling violations may indeed be present for relatively large $am_q$, a consistent scenario at sufficiently small $am_q$...

  8. On Scale Determination in Lattice QCD with Dynamical Quarks

    CERN Document Server

    De, Asit K; Maiti, Jyotirmoy

    2008-01-01

    Dependence of a/r_c (inverse Sommer parameter in units of lattice spacing a) on am_q (quark mass in lattice unit) has been observed in all lattice QCD simulations with sea quarks including the ones with improved actions. How much of this dependence is a scaling violation has remained an intriguing question. Our approach has been to investigate the issue with an action with known lattice artifacts, i.e., the standard Wilson quark and gauge action with beta=5.6 and 2 degenerate flavors of sea quarks on 16^3 times 32 lattices. In order to study in detail the sea quark mass dependence, measurements are carried out at eight values of the PCAC quark mass values am_q from about 0.07 to below 0.015. Though scaling violations may indeed be present for relatively large am_q, a consistent scenario at sufficiently small am_q seems to emerge in the mass-independent scheme where for a fixed beta, 1/r_0 and sqrt{sigma} have linear dependence on m_q as physical effects similar to the quark mass dependence of the rho mass. We...

  9. Cortical Entropy, Mutual Information and Scale-Free Dynamics in Waking Mice

    Science.gov (United States)

    Fagerholm, Erik D.; Scott, Gregory; Shew, Woodrow L.; Song, Chenchen; Leech, Robert; Knöpfel, Thomas; Sharp, David J.

    2016-01-01

    Some neural circuits operate with simple dynamics characterized by one or a few well-defined spatiotemporal scales (e.g. central pattern generators). In contrast, cortical neuronal networks often exhibit richer activity patterns in which all spatiotemporal scales are represented. Such “scale-free” cortical dynamics manifest as cascades of activity with cascade sizes that are distributed according to a power-law. Theory and in vitro experiments suggest that information transmission among cortical circuits is optimized by scale-free dynamics. In vivo tests of this hypothesis have been limited by experimental techniques with insufficient spatial coverage and resolution, i.e., restricted access to a wide range of scales. We overcame these limitations by using genetically encoded voltage imaging to track neural activity in layer 2/3 pyramidal cells across the cortex in mice. As mice recovered from anesthesia, we observed three changes: (a) cortical information capacity increased, (b) information transmission among cortical regions increased and (c) neural activity became scale-free. Our results demonstrate that both information capacity and information transmission are maximized in the awake state in cortical regions with scale-free network dynamics. PMID:27384059

  10. From seconds to months: an overview of multi-scale dynamics of mobile telephone calls

    Science.gov (United States)

    Saramäki, Jari; Moro, Esteban

    2015-06-01

    Big Data on electronic records of social interactions allow approaching human behaviour and sociality from a quantitative point of view with unforeseen statistical power. Mobile telephone Call Detail Records (CDRs), automatically collected by telecom operators for billing purposes, have proven especially fruitful for understanding one-to-one communication patterns as well as the dynamics of social networks that are reflected in such patterns. We present an overview of empirical results on the multi-scale dynamics of social dynamics and networks inferred from mobile telephone calls. We begin with the shortest timescales and fastest dynamics, such as burstiness of call sequences between individuals, and "zoom out" towards longer temporal and larger structural scales, from temporal motifs formed by correlated calls between multiple individuals to long-term dynamics of social groups. We conclude this overview with a future outlook.

  11. From seconds to months: multi-scale dynamics of mobile telephone calls

    CERN Document Server

    Saramaki, Jari

    2015-01-01

    Big Data on electronic records of social interactions allow approaching human behaviour and sociality from a quantitative point of view with unforeseen statistical power. Mobile telephone Call Detail Records (CDRs), automatically collected by telecom operators for billing purposes, have proven especially fruitful for understanding one-to-one communication patterns as well as the dynamics of social networks that are reflected in such patterns. We present an overview of empirical results on the multi-scale dynamics of social dynamics and networks inferred from mobile telephone calls. We begin with the shortest timescales and fastest dynamics, such as burstiness of call sequences between individuals, and "zoom out" towards longer temporal and larger structural scales, from temporal motifs formed by correlated calls between multiple individuals to long-term dynamics of social groups. We conclude this overview with a future outlook.

  12. Dynamical stabilization of the Fermi scale. Towards a composite universe

    Energy Technology Data Exchange (ETDEWEB)

    Sannino, Francesco [Univ. of Southern Denmark, Odense (Denmark). CP3-Origins, Center for Particle Physics

    2013-02-01

    This lecture-based, concise primer introduces and summarize basic features associated with dynamical breaking of the electroweak symmetry in elementary particle physics. In particular, the phase diagram of strongly-coupled theories as function of the number of colors, flavors and matter representation, playing a fundamental role when trying to construct viable extensions of the standard model, are examined for SU(N) gauge theories with fermionic matter transforming according to arbitrary representations of the underlying gauge group. We further discuss how the phase diagram can be used to construct unparticle models and then review Minimal Walking Technicolor (MWT) and other extensions, such as partially gauged and split technicolor. Eventually, the unification of the standard model gauge couplings are revisited within technicolor extensions of the standard model. A number of appendices helps student and newcomers to the field reviewing some basic methods and provide them with useful details.

  13. EIGENVALUE PROBLEM OF A LARGE SCALE INDEFINITE GYROSCOPIC DYNAMIC SYSTEM

    Institute of Scientific and Technical Information of China (English)

    SUI Yong-feng; ZHONG Wan-xie

    2006-01-01

    Gyroscopic dynamic system can be introduced to Hamiltonian system. Based on an adjoint symplectic subspace iteration method of Hamiltonian gyroscopic system,an adjoint symplectic subspace iteration method of indefinite Hamiltonian function gyroscopic system was proposed to solve the eigenvalue problem of indefinite Hamiltonian function gyroscopic system. The character that the eigenvalues of Hamiltonian gyroscopic system are only pure imaginary or zero was used. The eigenvalues that Hamiltonian function is negative can be separated so that the eigenvalue problem of positive definite Hamiltonian function system was presented, and an adjoint symplectic subspace iteration method of positive definite Hamiltonian function system was used to solve the separated eigenvalue problem. Therefore, the eigenvalue problem of indefinite Hamiltonian function gyroscopic system was solved, and two numerical examples were given to demonstrate that the eigensolutions converge exactly.

  14. Scale effects in the dynamic transfer functions for cavitating inducers

    Science.gov (United States)

    Brennen, C. E.; Meissner, C.; Lo, E. Y.; Hoffman, G. S.

    1980-01-01

    Dynamic transfer functions for two cavitating inducers of the same geometry but different size are presented, compared and discussed. The transfer functions for each inducer indicate similar trends as the cavitation number is decreased; only minor changes are noted with changes in the flow coefficient, the uniformity of the inlet flow or the temperature of the water (21-74 C). The non-dimensional results for the two sizes are compared with themselves and with theoretical calculations based on the bubbly flow model. All three sets of results compare well and lend further credence to the theoretical model. The best values of the two parameters in the model are evaluated and recommended for use in applications.

  15. Femtosecond structural dynamics on the atomic length scale

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongfang

    2014-03-15

    This thesis reports on the development and application of two different but complementary ultrafast electron diffraction setups built at the Max Planck Research Department for Structural Dynamics. One is an ultra-compact femtosecond electron diffraction (FED) setup (Egun300), which is currently operational (with a maximum electron energy of 150 keV) and provides ultrashort (∝300 fs) and bright (∝10 e/μm{sup 2}) electron bunches. The other one, named as Relativistic Electron Gun for Atomic Exploration (REGAE) is a radio frequency driven 2 to 5 MeV FED setup built in collaboration with different groups from DESY. REGAE was developed as a facility that will provide high quality diffraction with sufficient coherence to even address structural protein dynamics and with electron pulses as short as 20 fs (FWHM). As one of the first students in Prof. R.J. Dwayne Miller's group, I led the femtosecond (fs) laser sub-group at REGAE being responsible for the construction of different key optical elements required to drive both of aforementioned FED systems. A third harmonic generation (THG) and a nonlinear optical parametric amplifier (NOPA) have been used for the photo-generation of ultrashort electron bursts as well as sample laser excitation. Different diagnostic tools have been constructed to monitor the performance of the fs optical system. A fast autocorrelator was developed to provide on the fly pulse duration correction. A transient-grating frequency-resolved optical gating (TG-FROG) was built to obtain detail information about the characteristics of fs optical pulse, i.e. phase and amplitude of its spectral components. In addition to these optical setups, I developed a fs optical pump-probe system, which supports broadband probe pulses. This setup was successfully applied to investigate the semiconductor-to-metal photoinduced phase transition in VO{sub 2} and the ultrafast photo-reduction mechanism of graphene oxide. In regard to FED setups, I have been

  16. Dynamics of fingering convection I: Small-scale fluxes and large-scale instabilities

    CERN Document Server

    Traxler, A; Garaud, P; Radko, T; Brummell, N

    2010-01-01

    Double-diffusive instabilities are often invoked to explain enhanced transport in stably-stratified fluids. The most-studied natural manifestation of this process, fingering convection, commonly occurs in the ocean's thermocline and typically increases diapycnal mixing by two orders of magnitude over molecular diffusion. Fingering convection is also often associated with structures on much larger scales, such as thermohaline intrusions, gravity waves and thermohaline staircases. In this paper, we present an exhaustive study of the phenomenon from small to large scales. We perform the first three-dimensional simulations of the process at realistic values of the heat and salt diffusivities and provide accurate estimates of the induced turbulent transport. Our results are consistent with oceanic field measurements of diapycnal mixing in fingering regions. We then develop a generalized mean-field theory to study the stability of fingering systems to large-scale perturbations, using our calculated turbulent fluxes...

  17. Transient dynamics of large scale vortices in Keplerian disk

    CERN Document Server

    Razdoburdin, D N

    2016-01-01

    The mechanism of transition from laminar state to turbulent state in Keplerian disks is still unknown. The most popular version today is generation of turbulence due to magnetorotational instability (MRI). However magnetohydrodynamic simulations give the value of Shakura-Sunyaev parameter more then an order of magnitude smaller rather than that found from observations. One way to solve this problem is the existence of an alternative or additional mechanism for generating turbulence. It can be the bypass mechanism, which is responsible for transition to turbulence in Couette and Poiseuille flows. This mechanism is based on the transient growth of linear perturbations in the flow with the subsequent transition to the nonlinear stage. In order to clarify the role of this mechanism in astrophysical disks first of all it is necessary to calculate the maximal possible growth factor of linear perturbations in the flow. In this paper the results of such calculations are presented for perturbations on different scales...

  18. Soft and Hard scale QCD Dynamics in Mesons

    CERN Document Server

    Nguyen, Trang; Tandy, Peter C

    2010-01-01

    Using a ladder-rainbow kernel previously established for the soft scale of light quark hadrons, we explore the extension to masses and electroweak decay constants of ground state pseudoscalar and vector quarkonia and heavy-light mesons in the c- and b-quark regions. We make a systematic study of the effectiveness of a constituent mass concept as a replacement for a heavy quark dressed propagator. The difference between vector and axial vector current correlators is examined to estimate the four quark chiral condensate. The valence quark distributions, in the pion and kaon, defined in deep inelastic scattering, and measured in the Drell Yan process, are investigated with the same ladder-rainbow truncation of the Dyson-Schwinger and Bethe-Salpeter equations.

  19. Unfolding large-scale online collaborative human dynamics

    CERN Document Server

    Zha, Yilong; Zhou, Changsong

    2015-01-01

    Large-scale interacting human activities underlie all social and economic phenomena, but quantitative understanding of regular patterns and mechanism is very challenging and still rare. Self-organized online collaborative activities with precise record of event timing provide unprecedented opportunity. Our empirical analysis of the history of millions of updates in Wikipedia shows a universal double power-law distribution of time intervals between consecutive updates of an article. We then propose a generic model to unfold collaborative human activities into three modules: (i) individual behavior characterized by Poissonian initiation of an action, (ii) human interaction captured by a cascading response to others with a power-law waiting time, and (iii) population growth due to increasing number of interacting individuals. This unfolding allows us to obtain analytical formula that is fully supported by the universal patterns in empirical data. Our modeling approaches reveal "simplicity" beyond complex interac...

  20. Multidimensional scaling analysis of the dynamics of a country economy.

    Science.gov (United States)

    Tenreiro Machado, J A; Mata, Maria Eugénia

    2013-01-01

    This paper analyzes the Portuguese short-run business cycles over the last 150 years and presents the multidimensional scaling (MDS) for visualizing the results. The analytical and numerical assessment of this long-run perspective reveals periods with close connections between the macroeconomic variables related to government accounts equilibrium, balance of payments equilibrium, and economic growth. The MDS method is adopted for a quantitative statistical analysis. In this way, similarity clusters of several historical periods emerge in the MDS maps, namely, in identifying similarities and dissimilarities that identify periods of prosperity and crises, growth, and stagnation. Such features are major aspects of collective national achievement, to which can be associated the impact of international problems such as the World Wars, the Great Depression, or the current global financial crisis, as well as national events in the context of broad political blueprints for the Portuguese society in the rising globalization process.

  1. Optimal satellite sampling to resolve global-scale dynamics in the I-T system

    Science.gov (United States)

    Rowland, D. E.; Zesta, E.; Connor, H. K.; Pfaff, R. F., Jr.

    2016-12-01

    The recent Decadal Survey highlighted the need for multipoint measurements of ion-neutral coupling processes to study the pathways by which solar wind energy drives dynamics in the I-T system. The emphasis in the Decadal Survey is on global-scale dynamics and processes, and in particular, mission concepts making use of multiple identical spacecraft in low earth orbit were considered for the GDC and DYNAMIC missions. This presentation will provide quantitative assessments of the optimal spacecraft sampling needed to significantly advance our knowledge of I-T dynamics on the global scale.We will examine storm time and quiet time conditions as simulated by global circulation models, and determine how well various candidate satellite constellations and satellite schemes can quantify the plasma and neutral convection patterns and global-scale distributions of plasma density, neutral density, and composition, and their response to changes in the IMF. While the global circulation models are data-starved, and do not contain all the physics that we might expect to observe with a global-scale constellation mission, they are nonetheless an excellent "starting point" for discussions of the implementation of such a mission. The result will be of great utility for the design of future missions, such as GDC, to study the global-scale dynamics of the I-T system.

  2. Dynamic scaling of migration-driven aggregate growth

    Institute of Scientific and Technical Information of China (English)

    Ke Jian-Hong; Wang Xiang-Hong; Lin Zhen-Quan; Zhuang You-Yi

    2004-01-01

    We study the kinetic behaviour of the growth of aggregates driven by reversible migration between any two aggregates. For a simple model with the migration rate K(i; j) = K'(i; j)∝ iujv at which the monomers migrate from the aggregates of size i to those of size j, we find that the aggregate size distribution in the system with u + v ≤ 3and u < 2 approaches a conventional scaling form, which reduces to the Smoluchovski form in the u = 1 case. On the other hand, for the system with u < 2, the average aggregate size S(t) grows exponentially in the u + v = 3 case and as(t lnt)1/(5-2u) in another special case of v = u - 2. Moreover, this typical size S(t) grows as t1/(3 ) in the general u -- 2 < v < 3 - u case; while it always grows as t1/(5-2u) in the v < u - 2 case.

  3. Event scale variability of mixed alluvial-bedrock channel dynamics

    Science.gov (United States)

    Cook, Kristen; Turowski, Jens; Hovius, Niels

    2015-04-01

    between sediment supply, channel width, and flood characteristics on aggradation and erosion of the channel bed. Heimann, F. U. M., Rickenmann, D., Turowski, J. M., and Kirchner, J. W.: sedFlow - an efficient tool for simulating bedload transport, bed roughness, and longitudinal profile evolution in mountain streams, Earth Surf. Dynam. Discuss., 2, 733-772, doi:10.5194/esurfd-2-733-2014, 2014.

  4. Universality and extremal aging for dynamics of spin glasses on sub-exponential time scales

    CERN Document Server

    Arous, G Ben

    2010-01-01

    We consider Random Hopping Time (RHT) dynamics of the Sherrington - Kirkpatrick (SK) model and p-spin models of spin glasses. For any of these models and for any inverse temperature we prove that, on time scales that are sub-exponential in the dimension, the properly scaled clock process (time-change process) of the dynamics converges to an extremal process. Moreover, on these time scales, the system exhibits aging like behavior which we called extremal aging. In other words, the dynamics of these models ages as the random energy model (REM) does. Hence, by extension, this confirms Bouchaud's REM-like trap model as a universal aging mechanism for a wide range of systems which, for the first time, includes the SK model.

  5. Pervasive influence of large-scale climate in the dynamics of a terrestrial vertebrate community

    Directory of Open Access Journals (Sweden)

    Forchhammer Mads C

    2001-12-01

    Full Text Available Abstract Background Large-scale climatic variability has been implicated in the population dynamics of many vertebrates throughout the Northern Hemisphere, but has not been demonstrated to directly influence dynamics at multiple trophic levels of any single system. Using data from Isle Royale, USA, comprising time series on the long-term dynamics at three trophic levels (wolves, moose, and balsam fir, we analyzed the relative contributions of density dependence, inter-specific interactions, and climate to the dynamics of each level of the community. Results Despite differences in dynamic complexity among the predator, herbivore, and vegetation levels, large-scale climatic variability influenced dynamics directly at all three levels. The strength of the climatic influence on dynamics was, however, strongest at the top and bottom trophic levels, where density dependence was weakest. Conclusions Because of the conflicting influences of environmental variability and intrinsic processes on population stability, a direct influence of climate on the dynamics at all three levels suggests that climate change may alter stability of this community. Theoretical considerations suggest that if it does, such alteration is most likely to result from changes in stability at the top or bottom trophic levels, where the influence of climate was strongest.

  6. Temperature dynamics and velocity scaling laws for interchange driven, warm ion plasma filaments

    Science.gov (United States)

    Olsen, Jeppe; Madsen, Jens; Nielsen, Anders Henry; Rasmussen, Jens Juul; Naulin, Volker

    2016-04-01

    The influence of electron and ion temperature dynamics on the radial convection of isolated structures in magnetically confined plasmas is investigated by means of numerical simulations. It is demonstrated that the maximum radial velocity of these plasma blobs roughly follows the inertial velocity scaling, which is proportional to the ion acoustic speed times the square root of the filament particle density times the sum of the electron and ion temperature perturbations. Only for small blobs the cross field convection does not follow this scaling. The influence of finite Larmor radius effects on the cross-field blob convection is shown not to depend strongly on the dynamical ion temperature field. The blob dynamics of constant finite and dynamical ion temperature blobs is similar. When the blob size is on the order of 10 times the ion Larmor radius the blobs stay coherent and decelerate slowly compared to larger blobs which dissipate faster due to fragmentation and turbulent mixing.

  7. A new dynamics of electroweak symmetry breaking with classically scale invariance

    CERN Document Server

    Haba, Naoyuki; Kitazawa, Noriaki; Yamaguchi, Yuya

    2015-01-01

    We propose a new dynamics of the electroweak symmetry breaking in a classically scale invariant version of the standard model. The scale invariance is broken by the condensations of additional fermions under a strong coupling dynamics. The electroweak symmetry breaking is triggered by negative mass squared of the elementary Higgs doublet, which is dynamically generated through the bosonic seesaw mechanism. We introduce a real pseudo-scalar singlet field interacting with additional fermions and Higgs doublet in order to avoid massless Nambu-Goldstone bosons from the chiral symmetry breaking in a strong coupling sector. We investigate the mass spectra and decay rates of these pseudo-Nambu-Goldstone bosons, and show they can decay fast enough without cosmological problems. We further evaluate the energy dependences of the couplings between elementary fields perturbatively, and find that our model is the first one which realizes the flatland scenario with the dimensional transmutation by the strong coupling dynam...

  8. SS 433 Radio\\/X-ray anti-correlation and fast-time variability

    CERN Document Server

    Safi-Harb, S; Safi-Harb, Samar; Kotani, Taro

    2002-01-01

    We briefly review the Galactic microquasar SS 433/W50 and present a new RXTE spectral and timing study. We show that the X-ray flux decreases during radio flares, a behavior seen in other microquasars. We also find short time-scale variability unveiling emission regions from within the binary system.

  9. Dynamical scaling and crossover from algebraic to logarithmic growth in dilute systems

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Shah, Peter Jivan

    1989-01-01

    The ordering dynamics of the two-dimensional Ising antiferromagnet with mobile vacancies and nonconserved order parameter is studied by Monte Carlo temperature-quenching experiments. The domain-size distribution function is shown to obey dynamical scaling. A crossover is found from an algebraic g...... growth law for the pure system to effectively logarithmic growth behavior in the dilute system, in accordance with recent experiments on ordering kinetics in impure chemisorbed overlayers and off-stoichiometric alloys....

  10. The Large-Scale Environment of Dynamical Young Clusters of Galaxies

    OpenAIRE

    Plionis, M.; Basilakos, S.

    2001-01-01

    We investigate whether the dynamical status of clusters is related to the large-scale structure of the Universe. We find that cluster substructure is strongly correlated with the tendency of clusters to be aligned with their nearest neighbour and in general with the nearby clusters that belong to the same supercluster. Furthermore, dynamically young clusters are more clustered than the overall cluster population. These are strong indications that clusters develop in a hierarchical fashion by ...

  11. Dynamic Single-Use Bioreactors Used in Modern Liter- and m(3)- Scale Biotechnological Processes: Engineering Characteristics and Scaling Up.

    Science.gov (United States)

    Löffelholz, Christian; Kaiser, Stephan C; Kraume, Matthias; Eibl, Regine; Eibl, Dieter

    2014-01-01

    During the past 10 years, single-use bioreactors have been well accepted in modern biopharmaceutical production processes targeting high-value products. Up to now, such processes have mainly been small- or medium-scale mammalian cell culture-based seed inoculum, vaccine or antibody productions. However, recently first attempts have been made to modify existing single-use bioreactors for the cultivation of plant cells and tissue cultures, and microorganisms. This has even led to the development of new single-use bioreactor types. Moreover, due to safety issues it has become clear that single-use bioreactors are the "must have" for expanding human stem cells delivering cell therapeutics, the biopharmaceuticals of the next generation. So it comes as no surprise that numerous different dynamic single-use bioreactor types, which are suitable for a wide range of applications, already dominate the market today. Bioreactor working principles, main applications, and bioengineering data are presented in this review, based on a current overview of greater than milliliter-scale, commercially available, dynamic single-use bioreactors. The focus is on stirred versions, which are omnipresent in R&D and manufacturing, and in particular Sartorius Stedim's BIOSTAT family. Finally, we examine development trends for single-use bioreactors, after discussing proven approaches for fast scaling-up processes.

  12. Ultrahigh-Speed Dynamics of Micrometer-Scale Inertial Cavitation from Nanoparticles

    Science.gov (United States)

    Kwan, J. J.; Lajoinie, G.; de Jong, N.; Stride, E.; Versluis, M.; Coussios, C. C.

    2016-10-01

    Direct imaging of cavitation from solid nanoparticles has been a challenge due to the combined nanosized length and time scales involved. We report on high-speed microscopic imaging of inertial cavitation from gas trapped on nanoparticles with a tunable hemispherical depression (nanocups) at nanosecond time scales. The high-speed recordings establish that nanocups facilitate bubble growth followed by inertial collapse. Nanoparticle size, acoustic pressure amplitude, and frequency influence bubble dynamics and are compared to model predictions. Understanding these cavitation dynamics is critical for applications enhanced by acoustic cavitation.

  13. Oscillation Criteria for Second-Order Quasilinear Neutral Delay Dynamic Equations on Time Scales

    Directory of Open Access Journals (Sweden)

    Guangrong Zhang

    2010-01-01

    Full Text Available We establish some new oscillation criteria for the second-order quasilinear neutral delay dynamic equations [r(t(zΔ(tγ]Δ+q1(txα(τ1(t+q2(txβ(τ2(t=0 on a time scale 𝕋, where z(t=x(t+p(tx(τ0(t, 0<α<γ<β. Our results generalize and improve some known results for oscillation of second-order nonlinear delay dynamic equations on time scales. Some examples are considered to illustrate our main results.

  14. Experimental Evidence of Dynamical Scaling in a Two-Dimensional Fractal Growth

    Science.gov (United States)

    Miyashita, Satoru; Saito, Yukio; Uwaha, Makio

    1997-04-01

    A dynamical scaling law of fractal aggregation is testedusing electrochemical deposition without an external electric field.Silver metal leaves grow on the edge of a Cu plate placed in a thin cell containing an AgNO3-water solution due to the difference in ionization tendency between Ag and Cu. We find that the tip height h(t) satisfies the dynamical scaling relationh(t)= c-1/(d-D_f) \\tilde{g}(tc2/(d-D_f)) with respect to the solute concentration cin the space dimension d=2 with the fractal dimension Df=1.71 of the diffusion-limited aggregation.

  15. DYNAMIC SCALING OF GROWING SURFACES WITH GROWTH INHOMOGENEITIES OF SCREENED COULOMBIC FUNCTION

    Institute of Scientific and Technical Information of China (English)

    TANG GANG; MA BEN-KUN

    2000-01-01

    The dynamic scaling properties of growing surfaces with growth inhomogeneities are studied by applying a dy namic renormalization-group analysis to the generalized Kardar-Parisi-Zhang(hereafter abbreviated to KPZ) equation, which contains an additional term of growth inhomogeneities. In a practical crystal growth process, these growth inho mogeneities can be induced by surface impurities and defects and are modeled by a screened Coulomb function in this paper. Our results show that the existence of the growth inhomogeneities can significantly change the dynamic scaling properties of a growing surface and can lead to a rougher surface.

  16. Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition

    CERN Document Server

    Clark, Logan W; Chin, Cheng

    2016-01-01

    The dynamics of many-body systems spanning condensed matter, cosmology, and beyond is hypothesized to be universal when the systems cross continuous phase transitions. The universal dynamics is expected to satisfy a scaling symmetry of space and time with the crossing rate, inspired by the Kibble-Zurek mechanism. We test this symmetry based on Bose condensates in a shaken optical lattice. Shaking the lattice drives condensates across an effectively ferromagnetic quantum phase transition. After crossing the critical point, the condensates manifest delayed growth of spin fluctuations and develop anti-ferromagnetic spatial correlations resulting from sub-Poisson generation of topological defects. The characteristic times and lengths scale as power-laws of the crossing rate, yielding the temporal exponent 0.50(2) and the spatial exponent 0.26(2), consistent with theory. Furthermore, the fluctuations and correlations are invariant in scaled space-time coordinates, in support of the scaling symmetry of quantum crit...

  17. Small scale experimental study of the dynamic response of a tension leg platform wind turbine

    DEFF Research Database (Denmark)

    Hansen, Anders Mandrup; Laugesen, Robert; Bredmose, Henrik

    2014-01-01

    A floating Tension Leg Platform (TLP) wind turbine was constructed at scale 1/200 and its dynamic response was analysed experimentally in co-directional wind and waves. The wind turbine was Froude scaled and a new rotor was designed to yield maximum power and Froude scaled thrust at the low model...... Reynolds number. Physical limitations due to the large scaling ratio further meant that some structural adjustments were necessary. Nacelle and floater accelerations were measured by means of two accelerometers. The TLP was moored with four different tendon configurations and exposed to different constant...... increases the occurrence of slack tendons and the magnitude of the pitch accelerations. In a robust commercial design, however, slack tendons must be avoided. The experiments demonstrate the ability of the wind turbine model and the experimental setup to give insight to the dynamic characteristics...

  18. Verification of energy dissipation rate scalability in pilot and production scale bioreactors using computational fluid dynamics.

    Science.gov (United States)

    Johnson, Chris; Natarajan, Venkatesh; Antoniou, Chris

    2014-01-01

    Suspension mammalian cell cultures in aerated stirred tank bioreactors are widely used in the production of monoclonal antibodies. Given that production scale cell culture operations are typically performed in very large bioreactors (≥ 10,000 L), bioreactor scale-down and scale-up become crucial in the development of robust cell-culture processes. For successful scale-up and scale-down of cell culture operations, it is important to understand the scale-dependence of the distribution of the energy dissipation rates in a bioreactor. Computational fluid dynamics (CFD) simulations can provide an additional layer of depth to bioreactor scalability analysis. In this communication, we use CFD analyses of five bioreactor configurations to evaluate energy dissipation rates and Kolmogorov length scale distributions at various scales. The results show that hydrodynamic scalability is achievable as long as major design features (# of baffles, impellers) remain consistent across the scales. Finally, in all configurations, the mean Kolmogorov length scale is substantially higher than the average cell size, indicating that catastrophic cell damage due to mechanical agitation is highly unlikely at all scales.

  19. Low Parametric Sensitivity Realizations with relaxed L2-dynamic-range-scaling constraints

    OpenAIRE

    Hilaire, Thibault

    2009-01-01

    This paper presents a new dynamic-range scaling for the implementation of filters/controllers in state-space form. Relaxing the classical L2-scaling constraints by specific fixed-point considerations allows for a higher degree of freedom for the optimal L2-parametric sensitivity problem. However, overflows in the implementation are still prevented. The underlying constrained problem is converted into an unconstrained problem for which a solution can be provided. This leads to realizations whi...

  20. Improved dynamical scaling analysis using the kernel method for nonequilibrium relaxation.

    Science.gov (United States)

    Echinaka, Yuki; Ozeki, Yukiyasu

    2016-10-01

    The dynamical scaling analysis for the Kosterlitz-Thouless transition in the nonequilibrium relaxation method is improved by the use of Bayesian statistics and the kernel method. This allows data to be fitted to a scaling function without using any parametric model function, which makes the results more reliable and reproducible and enables automatic and faster parameter estimation. Applying this method, the bootstrap method is introduced and a numerical discrimination for the transition type is proposed.

  1. Low Parametric Sensitivity Realizations with relaxed L2-dynamic-range-scaling constraints

    OpenAIRE

    Hilaire, Thibault

    2009-01-01

    This paper presents a new dynamic-range scaling for the implementation of filters/controllers in state-space form. Relaxing the classical L2-scaling constraints by specific fixed-point considerations allows for a higher degree of freedom for the optimal L2-parametric sensitivity problem. However, overflows in the implementation are still prevented. The underlying constrained problem is converted into an unconstrained problem for which a solution can be provided. This leads to realizations whi...

  2. Large scale molecular dynamics simulations of a liquid crystalline droplet with fast multipole implementations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.; Lupo, J.; Patnaik, S.S.; McKenney, A.; Pachter, R.

    1999-07-01

    The Fast Multipole Method (FMM) offers an efficient way (order O(N)) to handle long range electrostatic interactions, thus enabling more realistic molecular dynamics simulations of large molecular systems. The performance of the fast molecular dynamics (FMD) code, a parallel MD code being developed in the group, using the three-dimensional fast multipole method, shows a good speedup. The application to the full atomic-scale molecular dynamics simulation of a liquid crystalline droplet of 4-n-pentyl-4{prime}-cyanobiphenyl (5CB) molecules, of size 35,872 atoms, shows strong surface effects on various orientational order parameters.

  3. Finite-size scaling study of dynamic critical phenomena in a vapor-liquid transition

    Science.gov (United States)

    Midya, Jiarul; Das, Subir K.

    2017-01-01

    Via a combination of molecular dynamics (MD) simulations and finite-size scaling (FSS) analysis, we study dynamic critical phenomena for the vapor-liquid transition in a three dimensional Lennard-Jones system. The phase behavior of the model has been obtained via the Monte Carlo simulations. The transport properties, viz., the bulk viscosity and the thermal conductivity, are calculated via the Green-Kubo relations, by taking inputs from the MD simulations in the microcanonical ensemble. The critical singularities of these quantities are estimated via the FSS method. The results thus obtained are in nice agreement with the predictions of the dynamic renormalization group and mode-coupling theories.

  4. Nonlinear dynamics of magnetic islands imbedded in small-scale turbulence.

    Science.gov (United States)

    Muraglia, M; Agullo, O; Benkadda, S; Garbet, X; Beyer, P; Sen, A

    2009-10-02

    The nonlinear dynamics of magnetic tearing islands imbedded in a pressure gradient driven turbulence is investigated numerically in a reduced magnetohydrodynamic model. The study reveals regimes where the linear and nonlinear phases of the tearing instability are controlled by the properties of the pressure gradient. In these regimes, the interplay between the pressure and the magnetic flux determines the dynamics of the saturated state. A secondary instability can occur and strongly modify the magnetic island dynamics by triggering a poloidal rotation. It is shown that the complex nonlinear interaction between the islands and turbulence is nonlocal and involves small scales.

  5. Nonlinear Dynamics of Magnetic Islands Imbedded in Small-Scale Turbulence

    CERN Document Server

    Muraglia, Magali; Benkadda, Sadruddin; Garbet, Xavier; Beyer, P; Sen, Abhijit; 10.1103/PhysRevLett.103.145001

    2011-01-01

    The nonlinear dynamics of magnetic tearing islands imbedded in a pressure gradient driven turbulence is investigated numerically in a reduced magnetohydrodynamic model. The study reveals regimes where the linear and nonlinear phases of the tearing instability are controlled by the properties of the pressure gradient. In these regimes, the interplay between the pressure and the magnetic flux determines the dynamics of the saturated state. A secondary instability can occur and strongly modify the magnetic island dynamics by triggering a poloidal rotation. It is shown that the complex nonlinear interaction between the islands and turbulence is nonlocal and involves small scales.

  6. TOPICAL REVIEW: Current-driven dynamics in molecular-scale devices

    Science.gov (United States)

    Seideman, Tamar

    2003-04-01

    We review recent theoretical work on current-triggered processes in molecular-scale devices - a field at the interface between solid state physics and chemical dynamics with potential applications in diverse areas, including artificial molecular machines, unimolecular transport, surface nanochemistry and nanolithography. The qualitative physics underlying current-triggered dynamics is first discussed and placed in context with several well-studied phenomena with which it shares aspects. A theory for modelling these dynamics is next formulated within a time-dependent scattering approach. Our end result provides useful insight into the system properties that determine the reaction outcome as well as a computationally convenient framework for numerical realization. The theory is applied to study single-molecule surface reactions induced by a scanning tunnelling microscope and current-triggered dynamics in single-molecule transistors. We close with a discussion of several potential applications of current-induced dynamics in molecular devices and several opportunities for future research.

  7. Structural dynamics flexibility informs function and evolution at a proteome scale

    Science.gov (United States)

    Nevin Gerek, Zeynep; Kumar, Sudhir; Banu Ozkan, Sefika

    2013-01-01

    Protein structures are dynamic entities with a myriad of atomic fluctuations, side-chain rotations, and collective domain movements. Although the importance of these dynamics to proper functioning of proteins is emerging in the studies of many protein families, there is a lack of broad evidence for the critical role of protein dynamics in shaping the biological functions of a substantial fraction of residues for a large number of proteins in the human proteome. Here, we propose a novel dynamic flexibility index (dfi) to quantify the dynamic properties of individual residues in any protein and use it to assess the importance of protein dynamics in 100 human proteins. Our analyses involving functionally critical positions, disease-associated and putatively neutral population variations, and the rate of interspecific substitutions per residue produce concordant patterns at a proteome scale. They establish that the preservation of dynamic properties of residues in a protein structure is critical for maintaining the protein/biological function. Therefore, structural dynamics needs to become a major component of the analysis of protein function and evolution. Such analyses will be facilitated by the dfi, which will also enable the integrative use of structural dynamics with evolutionary conservation in genomic medicine as well as functional genomics investigations. PMID:23745135

  8. Cable dynamics applied to long-length scale mechanics of DNA

    OpenAIRE

    Goyal, Sachin; Lillian, Todd; Noel C Perkins; Meyhofer, Edgar

    2007-01-01

    This paper introduces the use of cable dynamics models as a means to explore the mechanics of DNA on long-length scales. It is on these length scales that DNA forms twisted and curved three-dimensional shapes known as supercoils and loops. These long-length scale DNA structures have a pronounced influence on the functions of this molecule within the cell including the packing of DNA in the cell nucleus, transcription, replication and gene repair. We provide a short background to the mechanics...

  9. Dynamical determination of the unification scale by gauge-mediated supersymmetry breaking

    OpenAIRE

    1998-01-01

    We propose a mechanism for generating the GUT scale dynamically from the Planck scale. The idea is that the GUT scale is fixed by the vacuum expectation value of a "GUT modulus" field whose potential is exactly flat in the supersymmetric limit. If supersymmetry is broken by gauge mediation, a potential for the GUT modulus is generated at 2 loops, and slopes away from the origin for a wide range of parameters. This potential is stabilized by Planck-suppressed operators in the Kahler potential,...

  10. Fine-scale population dynamics in a marine fish species inferred from dynamic state-space models.

    Science.gov (United States)

    Rogers, Lauren A; Storvik, Geir O; Knutsen, Halvor; Olsen, Esben M; Stenseth, Nils C

    2017-07-01

    Identifying the spatial scale of population structuring is critical for the conservation of natural populations and for drawing accurate ecological inferences. However, population studies often use spatially aggregated data to draw inferences about population trends and drivers, potentially masking ecologically relevant population sub-structure and dynamics. The goals of this study were to investigate how population dynamics models with and without spatial structure affect inferences on population trends and the identification of intrinsic drivers of population dynamics (e.g. density dependence). Specifically, we developed dynamic, age-structured, state-space models to test different hypotheses regarding the spatial structure of a population complex of coastal Atlantic cod (Gadus morhua). Data were from a 93-year survey of juvenile (age 0 and 1) cod sampled along >200 km of the Norwegian Skagerrak coast. We compared two models: one which assumes all sampled cod belong to one larger population, and a second which assumes that each fjord contains a unique population with locally determined dynamics. Using the best supported model, we then reconstructed the historical spatial and temporal dynamics of Skagerrak coastal cod. Cross-validation showed that the spatially structured model with local dynamics had better predictive ability. Furthermore, posterior predictive checks showed that a model which assumes one homogeneous population failed to capture the spatial correlation pattern present in the survey data. The spatially structured model indicated that population trends differed markedly among fjords, as did estimates of population parameters including density-dependent survival. Recent biomass was estimated to be at a near-record low all along the coast, but the finer scale model indicated that the decline occurred at different times in different regions. Warm temperatures were associated with poor recruitment, but local changes in habitat and fishing pressure may

  11. Small-scale topology of solar atmosphere dynamics : II : granulation, K2v grains and waves

    NARCIS (Netherlands)

    Hoekzema, N.M.; Rutten, R.J.

    1997-01-01

    We continue studying the small-scale topology of dynamical phenomena in the quiet-sun internetwork atmosphere throug statistical estimation of the co-location probability of different fine-structure elements and wave modes.In this paper we chart spatial alignments between the granular brig tness st

  12. Small-scale topology of solar atmosphere dynamics I: wave sources and wave diffraction

    NARCIS (Netherlands)

    Hoekzema, N.M.; Rutten, R.J.; Brandt, P.N.; Shine, R.A.

    1997-01-01

    We study the small-scale topology of dynamical phenomena in the quiet-sun internet w ork atmosphere,using short-duration Fourier analysis of high-resolution filtergram sequences to obtain statistical estimates for the co-location probability of different fine-structure elements and wave modes. In th

  13. Analysis of critical neutron- scattering data from iron and dynamical scaling theory

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1970-01-01

    Experimental three- axis spectrometer data of critical neutron- scattering data from Fe are reanalyzed and compared with the recent theoretical prediction by P. Resibois and C. Piette. The reason why the spin- diffusion parameter did not obey the prediction of dynamical scaling theory is indicated...

  14. Hardy inequality on time scales and its application to half-linear dynamic equations

    Directory of Open Access Journals (Sweden)

    Řehák Pavel

    2005-01-01

    Full Text Available A time-scale version of the Hardy inequality is presented, which unifies and extends well-known Hardy inequalities in the continuous and in the discrete setting. An application in the oscillation theory of half-linear dynamic equations is given.

  15. QUALITATIVE BEHAVIORS OF LINEAR TIME-INVARIANT DYNAMIC EQUATIONS ON TIME SCALES

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We investigate the type of singularity and qualitative structure of solutions to a time-invariant linear dynamic system on time scales. The results truly unify the qualitative behaviors of the system on the continuous and discrete times with any step size.

  16. POSITIVE SOLUTIONS FOR p-LAPLACIAN DYNAMIC EQUATIONS ON TIME SCALES

    Institute of Scientific and Technical Information of China (English)

    Geng Fengjie; Zhu Deming; Li Hongzhi

    2007-01-01

    The three-point boundary value problems of p-Laplacian dynamic equations on time scales are investigated. By using Krasnosel'skii's fixed-point theorem and fixed-point index theorem, criteria are achieved for the existence of at least one, two or 2n positive solutions.Furthermore, some examples are included to illustrate the main theorems.

  17. A new way of estimating compute-boundedness and its application to dynamic voltage scaling

    DEFF Research Database (Denmark)

    Venkatachalam, Vasanth; Franz, Michael; Probst, Christian W.

    2007-01-01

    Many dynamic voltage scaling algorithms rely on measuring hardware events (such as cache misses) for predicting how much a workload can be slowed down with acceptable performance loss. The events measured, however, are at best indirectly related to execution time and clock frequency. By relating...

  18. Small-scale topology of solar atmosphere dynamics I: wave sources and wave diffraction

    NARCIS (Netherlands)

    Hoekzema, N.M.; Rutten, R.J.; Brandt, P.N.; Shine, R.A.

    2001-01-01

    We study the small-scale topology of dynamical phenomena in the quiet-sun internet w ork atmosphere,using short-duration Fourier analysis of high-resolution filtergram sequences to obtain statistical estimates for the co-location probability of different fine-structure elements and wave modes. In th

  19. Small-scale topology of solar atmosphere dynamics : II : granulation, K2v grains and waves

    NARCIS (Netherlands)

    Hoekzema, N.M.; Rutten, R.J.

    2001-01-01

    We continue studying the small-scale topology of dynamical phenomena in the quiet-sun internetwork atmosphere throug statistical estimation of the co-location probability of different fine-structure elements and wave modes.In this paper we chart spatial alignments between the granular brig tness st

  20. Modeling dynamic functional information flows on large-scale brain networks.

    Science.gov (United States)

    Lv, Peili; Guo, Lei; Hu, Xintao; Li, Xiang; Jin, Changfeng; Han, Junwei; Li, Lingjiang; Liu, Tianming

    2013-01-01

    Growing evidence from the functional neuroimaging field suggests that human brain functions are realized via dynamic functional interactions on large-scale structural networks. Even in resting state, functional brain networks exhibit remarkable temporal dynamics. However, it has been rarely explored to computationally model such dynamic functional information flows on large-scale brain networks. In this paper, we present a novel computational framework to explore this problem using multimodal resting state fMRI (R-fMRI) and diffusion tensor imaging (DTI) data. Basically, recent literature reports including our own studies have demonstrated that the resting state brain networks dynamically undergo a set of distinct brain states. Within each quasi-stable state, functional information flows from one set of structural brain nodes to other sets of nodes, which is analogous to the message package routing on the Internet from the source node to the destination. Therefore, based on the large-scale structural brain networks constructed from DTI data, we employ a dynamic programming strategy to infer functional information transition routines on structural networks, based on which hub routers that most frequently participate in these routines are identified. It is interesting that a majority of those hub routers are located within the default mode network (DMN), revealing a possible mechanism of the critical functional hub roles played by the DMN in resting state. Also, application of this framework on a post trauma stress disorder (PTSD) dataset demonstrated interesting difference in hub router distributions between PTSD patients and healthy controls.

  1. Synaptic scaling enables dynamically distinct short- and long-term memory formation.

    Directory of Open Access Journals (Sweden)

    Christian Tetzlaff

    2013-10-01

    Full Text Available Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling - a slow process usually associated with the maintenance of activity homeostasis - combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes.

  2. Synaptic scaling enables dynamically distinct short- and long-term memory formation.

    Science.gov (United States)

    Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Tsodyks, Misha; Wörgötter, Florentin

    2013-10-01

    Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling - a slow process usually associated with the maintenance of activity homeostasis - combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes.

  3. A two-scale finite element formulation for the dynamic analysis of heterogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Ionita, Axinte [Los Alamos National Laboratory

    2008-01-01

    In the analysis of heterogeneous materials using a two-scale Finite Element Method (FEM) the usual assumption is that the Representative Volume Element (RVE) of the micro-scale is much smaller than the finite element discretization of the macro-scale. However there are situations in which the RVE becomes comparable with, or even bigger than the finite element. These situations are considered in this article from the perspective of a two-scale FEM dynamic analysis. Using the principle of virtual power, new equations for the fluctuating fields are developed in terms of velocities rather than displacements. To allow more flexibility in the analysis, a scaling deformation tensor is introduced together with a procedure for its determination. Numerical examples using the new approach are presented.

  4. The Generalized Centroid Difference method for lifetime measurements via γ-γ coincidences using large fast-timing arrays

    Directory of Open Access Journals (Sweden)

    Régis J.-M.

    2015-01-01

    Full Text Available A novel method for direct electronic “fast-timing” lifetime measurements of nuclear excited states via γ-γ coincidences using an array equipped with N very fast high-resolution LaBr3(Ce scintillator detectors is presented. The generalized centroid difference method provides two independent “start” and “stop” time spectra obtained without any correction by a superposition of the N(N – 1/2 calibrated γ-γ time difference spectra of the N detector fast-timing system. The two fast-timing array time spectra correspond to a forward and reverse gating of a specific γ-γ cascade and the centroid difference as the time shift between the centroids of the two time spectra provides a picosecond-sensitive mirror-symmetric observable of the set-up. The energydependent mean prompt response difference between the start and stop events is calibrated and used as a single correction for lifetime determination. These combined fast-timing array mean γ-γ zero-time responses can be determined for 40 keV < Eγ < 1.4 MeV with a precision better than 10 ps using a 152Eu γ-ray source. The new method is described with examples of (n,γ and (n,f,γ experiments performed at the intense cold-neutron beam facility PF1B of the Institut Laue-Langevin in Grenoble, France, using 16 LaBr3(Ce detectors within the EXILL&FATIMA campaign in 2013. The results are discussed with respect to possible systematic errors induced by background contributions.

  5. Physics and Dynamics Coupling Across Scales in the Next Generation CESM. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bacmeister, Julio T. [University Corporation for Atmospheric Research (UCAR), Boulder, CO (United States)

    2015-06-12

    This project examines physics/dynamics coupling, that is, exchange of meteorological profiles and tendencies between an atmospheric model’s dynamical core and its various physics parameterizations. Most model physics parameterizations seek to represent processes that occur on scales smaller than the smallest scale resolved by the dynamical core. As a consequence a key conceptual aspect of parameterizations is an assumption about the subgrid variability of quantities such as temperature, humidity or vertical wind. Most existing parameterizations of processes such as turbulence, convection, cloud, and gravity wave drag make relatively ad hoc assumptions about this variability and are forced to introduce empirical parameters, i.e., “tuning knobs” to obtain realistic simulations. These knobs make systematic dependences on model grid size difficult to quantify.

  6. Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics.

    Directory of Open Access Journals (Sweden)

    Daniel B Reeves

    Full Text Available Understanding the dynamics of magnetic particles can help to advance several biomedical nanotechnologies. Previously, scaling relationships have been used in magnetic spectroscopy of nanoparticle Brownian motion (MSB to measure biologically relevant properties (e.g., temperature, viscosity, bound state surrounding nanoparticles in vivo. Those scaling relationships can be generalized with the introduction of a master variable found from non-dimensionalizing the dynamical Langevin equation. The variable encapsulates the dynamical variables of the surroundings and additionally includes the particles' size distribution and moment and the applied field's amplitude and frequency. From an applied perspective, the master variable allows tuning to an optimal MSB biosensing sensitivity range by manipulating both frequency and field amplitude. Calculation of magnetization harmonics in an oscillating applied field is also possible with an approximate closed-form solution in terms of the master variable and a single free parameter.

  7. Scaling approach to quantum non-equilibrium dynamics of many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Gritsev, Vladimir; Barmettler, Peter [Physics Department, University of Fribourg, Chemin du Musee 3, 1700 Fribourg (Switzerland); Demler, Eugene, E-mail: vladimir.gritsev@unifr.c [Lyman Laboratory of Physics, Physics Department, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States)

    2010-11-15

    Understanding the non-equilibrium quantum dynamics of many-body systems is one of the most challenging problems in modern theoretical physics. While numerous approximate and exact solutions exist for systems in equilibrium, examples of non-equilibrium dynamics of many-body systems that allow reliable theoretical analysis are few and far between. In this paper, we discuss a broad class of time-dependent interacting systems subject to external linear and parabolic potentials, for which the many-body Schroedinger equation can be solved using a scaling transformation. We demonstrate that scaling solutions exist for both local and non-local interactions, and derive appropriate self-consistency equations. We apply this approach to several specific experimentally relevant examples of interacting bosons in one and two dimensions. As an intriguing result, we find that weakly and strongly interacting Bose gases expanding from a parabolic trap can exhibit very similar dynamics.

  8. A new dynamics of electroweak symmetry breaking with classically scale invariance

    Directory of Open Access Journals (Sweden)

    Naoyuki Haba

    2016-04-01

    Full Text Available We propose a new dynamics of the electroweak symmetry breaking in a classically scale invariant version of the standard model. The scale invariance is broken by the condensations of additional fermions under a strong coupling dynamics. The electroweak symmetry breaking is triggered by negative mass squared of the elementary Higgs doublet, which is dynamically generated through the bosonic seesaw mechanism. We introduce a real pseudo-scalar singlet field interacting with additional fermions and Higgs doublet in order to avoid massless Nambu–Goldstone bosons from the chiral symmetry breaking in a strong coupling sector. We investigate the mass spectra and decay rates of these pseudo-Nambu–Goldstone bosons, and show they can decay fast enough without cosmological problems. We further show that our model can make the electroweak vacuum stable.

  9. Fast Atomic-Scale Chemical Imaging of Crystalline Materials and Dynamic Phase Transformations.

    Science.gov (United States)

    Lu, Ping; Yuan, Ren Liang; Ihlefeld, Jon F; Spoerke, Erik David; Pan, Wei; Zuo, Jian Min

    2016-04-13

    Atomic-scale phenomena fundamentally influence materials form and function that makes the ability to locally probe and study these processes critical to advancing our understanding and development of materials. Atomic-scale chemical imaging by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) is a powerful approach to investigate solid crystal structures. Inefficient X-ray emission and collection, however, require long acquisition times (typically hundreds of seconds), making the technique incompatible with electron-beam sensitive materials and study of dynamic material phenomena. Here we describe an atomic-scale STEM-EDS chemical imaging technique that decreases the acquisition time to as little as one second, a reduction of more than 100 times. We demonstrate this new approach using LaAlO3 single crystal and study dynamic phase transformation in beam-sensitive Li[Li0.2Ni0.2Mn0.6]O2 (LNMO) lithium ion battery cathode material. By capturing a series of time-lapsed chemical maps, we show for the first time clear atomic-scale evidence of preferred Ni-mobility in LNMO transformation, revealing new kinetic mechanisms. These examples highlight the potential of this approach toward temporal, atomic-scale mapping of crystal structure and chemistry for investigating dynamic material phenomena.

  10. A framework towards understanding mesoscopic phenomena: Emergent unpredictability, symmetry breaking and dynamics across scales

    Science.gov (United States)

    Qian, Hong; Ao, Ping; Tu, Yuhai; Wang, Jin

    2016-11-01

    By integrating four lines of thoughts: symmetry breaking originally advanced by Anderson, bifurcation from nonlinear dynamical systems, Landau's phenomenological theory of phase transition, and the mechanism of emergent rare events first studied by Kramers, we introduce a possible framework for understanding mesoscopic dynamics that links (i) fast microscopic (lower level) motions, (ii) movements within each basin-of-attraction at the mid-level, and (iii) higher-level rare transitions between neighboring basins, which have slow rates that decrease exponentially with the size of the system. In this mesoscopic framework, the fast dynamics is represented by a rapidly varying stochastic process and the mid-level by a nonlinear dynamics. Multiple attractors arise as emergent properties of the nonlinear systems. The interplay between the stochastic element and nonlinearity, the essence of Kramers' theory, leads to successive jump-like transitions among different basins. We argue each transition is a dynamic symmetry breaking, with the potential of exhibiting Thom-Zeeman catastrophe as well as phase transition with the breakdown of ergodicity (e.g., cell differentiation). The slow-time dynamics of the nonlinear mesoscopic system is not deterministic, rather it is a discrete stochastic jump process. The existence of these discrete states and the Markov transitions among them are both emergent phenomena. This emergent stochastic jump dynamics then serves as the stochastic element for the nonlinear dynamics of a higher level aggregates on an even larger spatial and slower time scales (e.g., evolution). This description captures the hierarchical structure outlined by Anderson and illustrates two distinct types of limit of a mesoscopic dynamics: A long-time ensemble thermodynamics in terms of time t → ∞ followed by the size of the system N → ∞ , and a short-time trajectory steady state with N → ∞ followed by t → ∞ . With these limits, symmetry breaking and cusp

  11. Where to find the mind: Identifying the scale of cognitive dynamics

    CERN Document Server

    Conlin, Luke; Hammer, David

    2010-01-01

    There are ongoing divisions in the learning sciences between perspectives that treat cognition as occurring within individual minds and those that treat it as irreducibly distributed or situated in material and social contexts. We contend that accounts of individual minds as complex systems are theoretically continuous with distributed and situated cognition. On this view, the difference is a matter of the scale of the dynamics of interest, and the choice of scale can be informed by data. In this paper, we propose heuristics for empirically determining the scale of the relevant cognitive dynamics. We illustrate these heuristics in two contrasting cases, one in which the evidence supports attributing cognition to a group of students and one in which the evidence supports attributing cognition to an individual.

  12. A dynamic procedure based on the scale-similarity hypotheses for large-eddy simulation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bing; CUI Guixiang; CHEN Naixiang

    2007-01-01

    Current dynamic procedures in large-eddy simulation treat the two subgrid-scale stresses in the Germano identity with the same subgrid base model.Thus to get the base model coefficient,the coefficient must be assumed to be constant for test filter operation.However,since the coefficient has sharp fluctuations,this assumption causes some inconsistence.A new dynamic procedure was developed in which these two stresses are modeled by the base model and the scale-similarity hypotheses respectively.Thus the need for the assumption is removed and consistence is restored.The new procedure is tested in the large-eddy simulation of a lid-driven cavity flow at Reynolds number of 10,000.The results show that the new procedure can both improve the prediction of statistics of the flow and effectively relieve the singularity of subgrid-scale (SGS) model coefficient.

  13. Anomalous dynamical scaling in anharmonic chains and plasma models with multi-particle collisions

    CERN Document Server

    Di Cintio, Pierfrancesco; Bufferand, Hugo; Ciraolo, Guido; Lepri, Stefano; Straka, Mika J

    2015-01-01

    We study the anomalous dynamical scaling of equilibrium correlations in one dimensional systems. Two different models are compared: the Fermi-Pasta-Ulam chain with cubic and quartic nonlinearity and a gas of point particles interacting stochastically through the Multi-Particle Collision dynamics. For both models -that admit three conservation laws- by means of detailed numerical simulations we verify the predictions of Nonlinear Fluctuating Hydrodynamics for the structure factors of density and energy fluctuations at equilibrium. Despite of this, violations of the expected scaling in the currents correlation are found in some regimes, hindering the observation of the asymptotic scaling predicted by the theory. In the case of the gas model this crossover is clearly demonstrated upon changing the coupling constant.

  14. Multiple dynamical time-scales in networks with hierarchically nested modular organization

    Indian Academy of Sciences (India)

    Sitabhra Sinha; Swarup Poria

    2011-11-01

    Many natural and engineered complex networks have intricate mesoscopic organization, e.g., the clustering of the constituent nodes into several communities or modules. Often, such modularity is manifested at several different hierarchical levels, where the clusters defined at one level appear as elementary entities at the next higher level. Using a simple model of a hierarchical modular network, we show that such a topological structure gives rise to characteristic time-scale separation between dynamics occurring at different levels of the hierarchy. This generalizes our earlier result for simple modular networks, where fast intramodular and slow intermodular processes were clearly distinguished. Investigating the process of synchronization of oscillators in a hierarchical modular network, we show the existence of as many distinct time-scales as there are hierarchical levels in the system. This suggests a possible functional role of such mesoscopic organization principle in natural systems, viz., in the dynamical separation of events occurring at different spatial scales.

  15. Scaled Group Consensus in Multiagent Systems With First/Second-Order Continuous Dynamics.

    Science.gov (United States)

    Yu, Junyan; Shi, Yang

    2017-08-29

    We investigate scaled group consensus problems of multiagent systems with first/second-order linear continuous dynamics. For a complex network consisting of two subnetworks with different physical quantities or task distributions, it is concerned with this case that the agents' states in one subnetwork converge to a consistent value asymptotically, while the states in the other subnetwork approach another value with a ratio of the former. For the case of the information exchange being directed, novel consensus protocols are designed for both first-order and second-order dynamics to solve the scaled group consensus problems. By utilizing algebra theory, graph theory, and Lyapunov stability theory, several necessary and sufficient conditions are established to guarantee the agents' states reaching the scaled group consensus asymptotically. Finally, several simulation results are presented to demonstrate the effectiveness of the theoretical results.

  16. Connecting Pore Scale Dynamics to Macroscopic Models for Two-Fluid Phase Flow

    Science.gov (United States)

    McClure, J. E.; Dye, A. L.; Miller, C. T.; Gray, W. G.

    2015-12-01

    Imaging technologies such as computed micro-tomography (CMT) provide high resolution three-dimensional images of real porous medium systems that reveal the true geometric structure of fluid and solid phases. Simulation and analysis tools are essential to extract knowledge from this raw data, and can be applied in tandem to provide information that is otherwise inaccessible. Guidance from multi-scale averaging theory is used to develop a multi-scale analysis framework to determine phase connectivity and extract interfacial areas, curvatures, common line length, contact angle and the velocities of the interface and common curve. The approach is applied to analyze pore-scale dynamics based on a multiphase lattice Boltzmann method. Dense sets of simulations are performed to evaluate the equilibrium relationship between capillary pressure, saturation and interfacial area for several experimentally imaged porous media. The approach is also used study the evolution of macroscopic quantities under dynamic conditions, which is compared to the equilibrium data.

  17. Averaging methods for stochastic dynamics of complex reaction networks: description of multi-scale couplings

    CERN Document Server

    Plyasunov, S

    2005-01-01

    This paper is concerned with classes of models of stochastic reaction dynamics with time-scales separation. We demonstrate that the existence of the time-scale separation naturally leads to the application of the averaging principle and elimination of degrees of freedom via the renormalization of transition rates of slow reactions. The method suggested in this work is more general than other approaches presented previously: it is not limited to a particular type of stochastic processes and can be applied to different types of processes describing fast dynamics, and also provides crossover to the case when separation of time scales is not well pronounced. We derive a family of exact fluctuation-dissipation relations which establish the connection between effective rates and the statistics of the reaction events in fast reaction channels. An illustration of the technique is provided. Examples show that renormalized transition rates exhibit in general non-exponential relaxation behavior with a broad range of pos...

  18. Dynamic Subgrid Scale Modeling of Turbulent Flows using Lattice-Boltzmann Method

    CERN Document Server

    Premnath, Kannan N; Banerjee, Sanjoy

    2009-01-01

    In this paper, we discuss the incorporation of dynamic subgrid scale (SGS) models in the lattice-Boltzmann method (LBM) for large-eddy simulation (LES) of turbulent flows. The use of a dynamic procedure, which involves sampling or test-filtering of super-grid turbulence dynamics and subsequent use of scale-invariance for two levels, circumvents the need for empiricism in determining the magnitude of the model coefficient of the SGS models. We employ the multiple relaxation times (MRT) formulation of LBM with a forcing term for simulation of the grid-filtered dynamics of large-eddies. The dynamic procedure is illustrated for use with the common Smagorinsky eddy-viscosity SGS model. We also discuss proper sampling techniques or test-filters that facilitate implementation of dynamic models in the LBM. For accommodating variable resolutions, we employ locally refined grids in this framework. As examples, we consider the canonical fully developed turbulent channel flow at two different shear Reynolds numbers $Re_{...

  19. Chaotic dynamics of large-scale structures in a turbulent wake

    Science.gov (United States)

    Varon, Eliott; Eulalie, Yoann; Edwige, Stephie; Gilotte, Philippe; Aider, Jean-Luc

    2017-03-01

    The dynamics of a three-dimensional (3D) bimodal turbulent wake downstream of a square-back Ahmed body are experimentally studied in a wind tunnel through high-frequency wall-pressure probes mapping the rear of the model and a horizontal two-dimensional (2D) velocity field. The barycenters of the pressure distribution over the rear part of the model and the intensity recirculation are found highly correlated. Both described the most energetic large-scale structures dynamics, confirming the relation between the large-scale recirculation bubble and its wall-pressure footprint. Focusing on the pressure, its barycenter trajectory has a stochastic behavior but its low-frequency dynamics exhibit the same characteristics as a weak strange chaotic attractor system, with two well-defined attractors. The low-frequency dynamics associated to the large-scale structures are then analyzed. The largest Lyapunov exponent is first estimated, leading to a low positive value characteristic of strange attractors and weak chaotic systems. Afterwards, analyzing the autocorrelation function of the timeseries, we compute the correlation dimension, larger than two. The signal is finally transformed and analyzed as a telegraph signal, showing that its dynamics correspond to a quasirandom telegraph signal. This is the first demonstration that the low-frequency dynamics of a turbulent 3D wake are not a purely stochastic process but rather a weak chaotic process exhibiting strange attractors. From the flow control point of view, it also opens the path to more simple closed-loop flow-control strategies aiming at the stabilization of the wake and the control of the dynamics of the wake barycenter.

  20. Adaptive rational block Arnoldi methods for model reductions in large-scale MIMO dynamical systems

    Directory of Open Access Journals (Sweden)

    Khalide Jbilou

    2016-04-01

    Full Text Available In recent years, a great interest has been shown towards Krylov subspace techniques applied to model order reduction of large-scale dynamical systems. A special interest has been devoted to single-input single-output (SISO systems by using moment matching techniques based on Arnoldi or Lanczos algorithms. In this paper, we consider multiple-input multiple-output (MIMO dynamical systems and introduce the rational block Arnoldi process to design low order dynamical systems that are close in some sense to the original MIMO dynamical system. Rational Krylov subspace methods are based on the choice of suitable shifts that are selected a priori or adaptively. In this paper, we propose an adaptive selection of those shifts and show the efficiency of this approach in our numerical tests. We also give some new block Arnoldi-like relations that are used to propose an upper bound for the norm of the error on the transfer function.

  1. Similitude of ice dynamics against scaling of geometry and physical parameters

    Science.gov (United States)

    Feldmann, Johannes; Levermann, Anders

    2016-08-01

    The concept of similitude is commonly employed in the fields of fluid dynamics and engineering but rarely used in cryospheric research. Here we apply this method to the problem of ice flow to examine the dynamic similitude of isothermal ice sheets in shallow-shelf approximation against the scaling of their geometry and physical parameters. Carrying out a dimensional analysis of the stress balance we obtain dimensionless numbers that characterize the flow. Requiring that these numbers remain the same under scaling we obtain conditions that relate the geometric scaling factors, the parameters for the ice softness, surface mass balance and basal friction as well as the ice-sheet intrinsic response time to each other. We demonstrate that these scaling laws are the same for both the (two-dimensional) flow-line case and the three-dimensional case. The theoretically predicted ice-sheet scaling behavior agrees with results from numerical simulations that we conduct in flow-line and three-dimensional conceptual setups. We further investigate analytically the implications of geometric scaling of ice sheets for their response time. With this study we provide a framework which, under several assumptions, allows for a fundamental comparison of the ice-dynamic behavior across different scales. It proves to be useful in the design of conceptual numerical model setups and could also be helpful for designing laboratory glacier experiments. The concept might also be applied to real-world systems, e.g., to examine the response times of glaciers, ice streams or ice sheets to climatic perturbations.

  2. Dynamical modeling of sub-grid scales in 2D turbulence

    Science.gov (United States)

    Laval, Jean-Philippe; Dubrulle, Bérengère; Nazarenko, Sergey

    2000-08-01

    We develop a new numerical method which treats resolved and sub-grid scales as two different fluid components evolving according to their own dynamical equations. These two fluids are nonlinearly interacting and can be transformed one into another when their scale becomes comparable to the grid size. Equations describing the two-fluid dynamics were rigorously derived from Euler equations [B. Dubrulle, S. Nazarenko, Physica D 110 (1997) 123-138] and they do not involve any adjustable parameters. The main assumption of such a derivation is that the large-scale vortices are so strong that they advect the sub-grid scales as a passive scalar, and the interactions of small scales with small and intermediate scales can be neglected. As a test for our numerical method, we performed numerical simulations of 2D turbulence with a spectral gap, and we found a good agreement with analytical results obtained for this case by Nazarenko and Laval [Non-local 2D turbulence and passive scalars in Batchelor’s regime, J. Fluid Mech., in press]. We used the two-fluid method to study three typical problems in 2D dynamics of incompressible fluids: decaying turbulence, vortex merger and forced turbulence. The two-fluid simulations performed on at 128 2 and 256 2 resolution were compared with pseudo-spectral simulations using hyperviscosity performed at the same and at much higher resolution. This comparison shows that performance of the two-fluid method is much better than one of the pseudo-spectral method at the same resolution and comparable computational cost. The most significant improvement is observed in modeling of the small-scale component, so that effective inertial interval increases by about two decades compared to the high-resolution pseudo-spectral method. Using the two-fluid method, we demonstrated that the k-3 tail always exists for the energy spectrum, although its amplitude is slowly decreasing in decaying turbulence.

  3. High rate, fast timing Glass RPC for the high ${\\eta}$ CMS muon detectors

    CERN Document Server

    Lagarde, F; Laktineh, I.; Buridon, V.; Chen, X.; Combaret, C.; Eynard, A.; Germani, L.; Grenier, G.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Wang, Y.; Gong, A.; Moreau, N.; de la Taille, C.; Dulucq, F.; Cimmino, A.; Crucy, S.; Fagot, A.; Gul, M.; Rios, A.A.O.; Tytgat, M.; Zaganidis, N.; Aly, S.; Assran, Y.; Radi, A.; Sayed, A.; Singh, G.; Abbrescia, M.; Iaselli, G.; Maggi, M.; Pugliese, G.; Verwilligen, P.; Van Doninck, W.F.; Colafranceschi, S.; Sharmag, A.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.; Bhatnagar, V.; Kumari, R.; Mehta, A.; Singh, J.; Ahmad, A.; Ahmed, W.; Asghar, M.I.; Awan, I.M.; Hoorani, R.; Muhammad, S.; Shahzad, H.; Shah, M.A.; Cho, S.W.; Choi, S.Y.; Hong, B.; Kang, M.H.; Lee, K.S.; Lim, J.H.; Park, S.K.; Kim, M.S.; Carpinteyro Bernardino, S.; Pedraza, I.; Uribe Estradam, C.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pant, L.M.; Buontempo, S.; Cavallo, N.; Esposito, M.; Fabozzi, F.; Lanza, G.; Orso, I.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Thyssen, F.; Braghieri, A.; Magnani, A.; Montagna, P.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Ban, Y.; Qian, S.J.; Choi, M.; Choi, Y.; Goh, J.; Kim, D.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Bagaturia, I.; Lomidze, D.; Avila, C.; Cabrera, A.; Sanabria, J.C.; Crotty, I.; Vaitkus, J.

    2016-01-01

    The HL-LHC phase is designed to increase by an order of magnitude the amount of data to be collected by the LHC experiments. To achieve this goal in a reasonable time scale the instantaneous luminosity would also increase by an order of magnitude up to $6.10^{34} cm^{-2} s^{-1}$ . The region of the forward muon spectrometer ($|{\\eta}| > 1.6$) is not equipped with RPC stations. The increase of the expected particles rate up to $2 kHz/cm^{2}$ (including a safety factor 3) motivates the installation of RPC chambers to guarantee redundancy with the CSC chambers already present. The actual RPC technology of CMS cannot sustain the expected background level. The new technology that will be chosen should have a high rate capability and provides a good spatial and timing resolution. A new generation of Glass-RPC (GRPC) using low-resistivity (LR) glass is proposed to equip at least the two most far away of the four high ${\\eta}$ muon stations of CMS. First the design of small size prototypes and studies of their perfor...

  4. A laser diode based system for calibration of fast time-of-flight detectors

    CERN Document Server

    Bonesini, M; deBari, A; Rossella, M

    2016-01-01

    A system based on commercially available items, such as a laser diode, emitting in the visible range $\\sim 400$ nm,and multimode fiber patches, fused fiber splitters and optical switches may be assembled,for time calibration of multi-channels time-of-flight (TOF) detectors with photomultipliers' (PMTs') readout. As available laser diode sources have unfortunately limited peak power, the main experimental problem is the tight light power budget of such a system. In addition, while the technology for fused fiber splitters is common in the Telecom wavelength range ($\\lambda \\sim 850, 1300-1500$ nm), it is not easily available in the visible one. Therefore, extensive laboratory tests had to be done on purpose, to qualify the used optical components, and a full scale timing calibration prototype was built. Obtained results show that with such a system, a calibration resolution ($\\sigma$) in the range 20-30 ps may be within reach. Therefore, fast multi-channels TOF detectors, with timing resolutions in the range 50...

  5. High rate, fast timing Glass RPC for the high $\\eta$ CMS muon detectors

    CERN Document Server

    Gouzevitch, Maxime; Laktineh, Imad; Buridon, Victor; Chen, Xiushan; Combaret, Christophe; Eynard, Alexis; Germani, Lionel; Grenier, Gerald; Mathez, Hervé; Mirabito, Laurent; Petrukhin, Alexei; Steen, Arnaud; Tromeur, William; Wang, Yi; Gong, A.; Moreau, Nathalie; de la Taille, Christophe; Dulucq, Fréderic

    2017-01-01

    The HL-LHC phase is designed to increase by an order of magnitude the amount of data to be collected by the LHC experiments. To achieve this goal in a reasonable time scale the instantaneous luminosity would also increase by an order of magnitude up to $6 \\cdot 10^{34}$ cm$^{-2}$s$^{-1}$. The region of the forward muon spectrometer ($|\\eta| > 1.6$) is not equipped with RPC stations. The increase of the expected particles rate up to 2 kHz/cm$^2$ ( including a safety factor 3 ) motivates the installation of RPC chambers to guarantee redundancy with the CSC chambers already present. The actual RPC technology of CMS cannot sustain the expected background level. A new generation Glass-RPC (GRPC) using low resistivity glass (LR) is proposed to equip at least the two most far away of the four high eta muon stations of CMS. The design of small size prototypes and the studies of their performances under high rate particles flux is presented.

  6. A laser diode based system for calibration of fast time-of-flight detectors

    Science.gov (United States)

    Bertoni, R.; Bonesini, M.; de Bari, A.; Rossella, M.

    2016-05-01

    A system based on commercially available items, such as a laser diode, emitting in the visible range ~ 400 nm, and multimode fiber patches, fused fiber splitters and optical switches may be assembled, for time calibration of multi-channels time-of-flight (TOF) detectors with photomultipliers' (PMTs') readout. As available laser diode sources have unfortunately limited peak power, the main experimental problem is the tight light power budget of such a system. In addition, while the technology for fused fiber splitters is common in the Telecom wavelength range (λ ~ 850, 1300-1500 nm), it is not easily available in the visible one. Therefore, extensive laboratory tests had to be done on purpose, to qualify the used optical components, and a full scale timing calibration prototype was built. Obtained results show that with such a system, a calibration resolution (σ) in the range 20-30 ps may be within reach. Therefore, fast multi-channels TOF detectors, with timing resolutions in the range 50-100 ps, may be easily calibrated in time. Results on tested optical components may be of interest also for time calibration of different light detection systems based on PMTs, as the ones used for detection of the vacuum ultraviolet scintillation light emitted by ionizing particles in large LAr TPCs.

  7. Application of two-photon absorption in PWO scintillator for fast timing of interaction with ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Auffray, E. [CERN, Geneva (Switzerland); Buganov, O. [Stepanov Institute of Physics, Minsk (Belarus); Korjik, M.; Fedorov, A. [Research Institute for Nuclear Problems, Belarus State University, 11 Bobruiskaya, 220030 Minsk (Belarus); Nargelas, S.; Tamulaitis, G. [Semiconductor Physics Department and Institute of Applied Research, Vilnius University, Saulėtekio 9-III, LT-10222 Vilnius (Lithuania); Tikhomirov, S. [Stepanov Institute of Physics, Minsk (Belarus); Vaitkevičius, A., E-mail: augustas.vaitkevicius@ff.vu.lt [Semiconductor Physics Department and Institute of Applied Research, Vilnius University, Saulėtekio 9-III, LT-10222 Vilnius (Lithuania)

    2015-12-21

    This work was aimed at searching for fast phenomena in scintillators in sub-10-ps range, a benchmark timing for the time response of radiation detectors in particle colliders. The pump-and-probe optical absorption technique with a tunable-wavelength parametric oscillator as the pump and a continuous-spectrum source as the probe beam was used to study lead tungstate PbWO{sub 4} (PWO) single crystals. It is shown that the rise time of the probe pulse absorption induced by the pump pulse is shorter than the pump pulse width of 200 fs. The approximately linear dependence of the probe absorption on the pump pulse energy density evidences that the induced absorption is caused by two-photon absorption involving one probe and one pump photon. We demonstrate that the intensity of the induced absorption at certain wavelengths is influenced by gamma irradiation, provided that an appropriate light polarization is selected. The application of the irradiation-sensitive nonlinearity for fast timing in radiation detectors is discussed. - Highlights: • Nonlinear transmittance with femtosecond rise time is observed in PWO scintillators. • The nonlinearity is caused by two-photon absorption of pump and probe photons. • Gamma irradiation imposes change in the nonlinearity for certain light polarization. • Application of the nonlinearity for fast timing in radiation detectors is feasible.

  8. Investigation of Fast Timing Capabilities of Silicon Sensors for the CMS High Granularity Calorimeter at HL-LHC

    CERN Document Server

    Apresyan, Artur

    2016-01-01

    The High Granularity Calorimeter (HGCAL) is the technology choice of the CMS collaboration for the endcap calorimetry upgrade planned to cope with the harsh radiation and unprecedented in-time event pileup projected at the High Luminosity-LHC era. In this context, profiting from fast-timing information (~tens of picoseconds) embedded in the calorimeter would represent a unique capability for resolving information from individual collisions at the HL-LHC. This will enhance the reconstruction and physics capabilities of the CMS detector in terms of pileup mitigation and particle identification. The HGCAL is realized as a sampling calorimeter, including 40 layers of silicon pad detectors with pad areas of 0.5 â?? 1.0 cm^2 and three active thicknesses 320, 200 and 120 μm. Prototype p-in-n and n-in-p 5x5mm^2 silicon pads, with thicknesses of 285, 211 and 133μm, were tested with high-energy electrons at the CERN SPS. We present the motivation for this study including the concept and use of fast-timing in th...

  9. High rate particle tracking and ultra-fast timing with a thin hybrid silicon pixel detector

    Science.gov (United States)

    Fiorini, M.; Aglieri Rinella, G.; Carassiti, V.; Ceccucci, A.; Cortina Gil, E.; Cotta Ramusino, A.; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Martin, E.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Perktold, L.; Petagna, P.; Petrucci, F.; Poltorak, K.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.

    2013-08-01

    The Gigatracker (GTK) is a hybrid silicon pixel detector designed for the NA62 experiment at CERN. The beam spectrometer, made of three GTK stations, has to sustain high and non-uniform particle rate (∼ 1 GHz in total) and measure momentum and angles of each beam track with a combined time resolution of 150 ps. In order to reduce multiple scattering and hadronic interactions of beam particles, the material budget of a single GTK station has been fixed to 0.5% X0. The expected fluence for 100 days of running is 2 ×1014 1 MeV neq /cm2, comparable to the one foreseen in the inner trackers of LHC detectors during 10 years of operation. To comply with these requirements, an efficient and very low-mass (architectures have been produced as small-scale prototypes: one is based on a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other makes use of a constant-fraction discriminator followed by an on-pixel TDC. The read-out ASICs are produced in 130 nm IBM CMOS technology and will be thinned down to 100 μm or less. An overview of the Gigatracker detector system will be presented. Experimental results from laboratory and beam tests of prototype bump-bonded assemblies will be described as well. These results show a time resolution of about 170 ps for single hits from minimum ionizing particles, using 200 μm thick silicon sensors.

  10. High rate particle tracking and ultra-fast timing with a thin hybrid silicon pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Fiorini, M., E-mail: Massimiliano.Fiorini@cern.ch [CERN, CH-1211 Geneva 23 (Switzerland); Aglieri Rinella, G. [CERN, CH-1211 Geneva 23 (Switzerland); Carassiti, V. [INFN Sezione di Ferrara (Italy); Ceccucci, A. [CERN, CH-1211 Geneva 23 (Switzerland); Cortina Gil, E. [Université Catholique de Louvain, Louvain-la-Neuve (Belgium); Cotta Ramusino, A. [INFN Sezione di Ferrara (Italy); Dellacasa, G.; Garbolino, S.; Jarron, P. [INFN Sezione di Torino (Italy); Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A. [CERN, CH-1211 Geneva 23 (Switzerland); Martin, E. [Université Catholique de Louvain, Louvain-la-Neuve (Belgium); Mazza, G. [INFN Sezione di Torino (Italy); Morel, M.; Noy, M. [CERN, CH-1211 Geneva 23 (Switzerland); Nuessle, G. [Université Catholique de Louvain, Louvain-la-Neuve (Belgium); Perktold, L.; Petagna, P. [CERN, CH-1211 Geneva 23 (Switzerland); and others

    2013-08-01

    The Gigatracker (GTK) is a hybrid silicon pixel detector designed for the NA62 experiment at CERN. The beam spectrometer, made of three GTK stations, has to sustain high and non-uniform particle rate (∼1GHz in total) and measure momentum and angles of each beam track with a combined time resolution of 150 ps. In order to reduce multiple scattering and hadronic interactions of beam particles, the material budget of a single GTK station has been fixed to 0.5% X{sub 0}. The expected fluence for 100 days of running is 2×10{sup 14} 1 MeV n{sub eq}/cm{sup 2}, comparable to the one foreseen in the inner trackers of LHC detectors during 10 years of operation. To comply with these requirements, an efficient and very low-mass (<0.15%X{sub 0}) cooling system is being constructed, using a novel microchannel cooling silicon plate. Two complementary read-out architectures have been produced as small-scale prototypes: one is based on a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other makes use of a constant-fraction discriminator followed by an on-pixel TDC. The read-out ASICs are produced in 130 nm IBM CMOS technology and will be thinned down to 100μm or less. An overview of the Gigatracker detector system will be presented. Experimental results from laboratory and beam tests of prototype bump-bonded assemblies will be described as well. These results show a time resolution of about 170 ps for single hits from minimum ionizing particles, using 200μm thick silicon sensors.

  11. Disentangling the dynamic core: a research program for a neurodynamics at the large-scale.

    Science.gov (United States)

    Le Van Quyen, Michel

    2003-01-01

    My purpose in this paper is to sketch a research direction based on Francisco Varela's pioneering work in neurodynamics (see also Rudrauf et al. 2003, in this issue). Very early on he argued that the internal coherence of every mental-cognitive state lies in the global self-organization of the brain activities at the large-scale, constituting a fundamental pole of integration called here a "dynamic core". Recent neuroimaging evidence appears to broadly support this hypothesis and suggests that a global brain dynamics emerges at the large scale level from the cooperative interactions among widely distributed neuronal populations. Despite a growing body of evidence supporting this view, our understanding of these large-scale brain processes remains hampered by the lack of a theoretical language for expressing these complex behaviors in dynamical terms. In this paper, I propose a rough cartography of a comprehensive approach that offers a conceptual and mathematical framework to analyze spatio-temporal large-scale brain phenomena. I emphasize how these nonlinear methods can be applied, what property might be inferred from neuronal signals, and where one might productively proceed for the future. This paper is dedicated, with respect and affection, to the memory of Francisco Varela.

  12. Development of a Dynamically Scaled Generic Transport Model Testbed for Flight Research Experiments

    Science.gov (United States)

    Jordan, Thomas; Langford, William; Belcastro, Christine; Foster, John; Shah, Gautam; Howland, Gregory; Kidd, Reggie

    2004-01-01

    This paper details the design and development of the Airborne Subscale Transport Aircraft Research (AirSTAR) test-bed at NASA Langley Research Center (LaRC). The aircraft is a 5.5% dynamically scaled, remotely piloted, twin-turbine, swept wing, Generic Transport Model (GTM) which will be used to provide an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. The unique design challenges arising from the dimensional, weight, dynamic (inertial), and actuator scaling requirements necessitated by the research community are described along with the specific telemetry and control issues associated with a remotely piloted subscale research aircraft. Development of the necessary operational infrastructure, including operational and safety procedures, test site identification, and research pilots is also discussed. The GTM is a unique vehicle that provides significant research capacity due to its scaling, data gathering, and control characteristics. By combining data from this testbed with full-scale flight and accident data, wind tunnel data, and simulation results, NASA will advance and validate control upset prevention and recovery technologies for transport aircraft, thereby reducing vehicle loss-of-control accidents resulting from adverse and upset conditions.

  13. On the dynamical generation of the Maxwell term and scale invariance

    CERN Document Server

    Rabinovici, Eliezer

    2011-01-01

    Gauge theories with no Maxwell term are investigated in various setups. The dynamical generation of the Maxwell term is correlated to the scale invariance properties of the system. This is discussed mainly in the cases where the gauge coupling carries dimensions. The term is generated when the theory contains a scale explicitly, when it is asymptotically free and in particular also when the scale invariance is spontaneously broken. The terms are not generated when the scale invariance is maintained. Examples studied include the large $N$ limit of the $CP^{N-1}$ model in $(2+\\epsilon)$ dimensions, a 3D gauged $\\phi^6$ vector model and its supersymmetric extension. In the latter case the generation of the Maxwell term at a fixed point is explored. The phase structure of the $d=3$ case is investigated in the presence of a Chern-Simons term as well. In the supersymmetric $\\phi^6$ model the emergence of the Maxwell term is accompanied by the dynamical generation of the Chern-Simons term and its multiplet and dynam...

  14. Broad-Scale Environmental Conditions Responsible for Post-Fire Vegetation Dynamics

    Directory of Open Access Journals (Sweden)

    Stuart E. Marsh

    2010-11-01

    Full Text Available Ecosystem response to disturbance is influenced by environmental conditions at a number of scales. Changes in climate have altered fire regimes across the western United States, and have also likely altered spatio-temporal patterns of post-fire vegetation regeneration. Fire occurrence data and a vegetation index (NDVI derived from the NOAA Advanced Very High Resolution Radiometer (AVHRR were used to monitor post-fire vegetation from 1989 to 2007. We first investigated differences in post-fire rates of vegetation regeneration between ecoregions. We then related precipitation, temperature, and elevation records at four temporal scales to rates of post-fire vegetation regeneration to ascertain the influence of climate on post-fire vegetation dynamics. We found that broad-scale climate factors are an important influence on post-fire vegetation regeneration. Most notably, higher rates of post-fire regeneration occurred with warmer minimum temperatures. Increases in precipitation also resulted in higher rates of post-fire vegetation growth. While explanatory power was slight, multiple statistical approaches provided evidence for real ecological drivers of post-fire regeneration that should be investigated further at finer scales. The sensitivity of post-disturbance vegetation dynamics to climatic drivers has important ramifications for the management of ecosystems under changing climatic conditions. Shifts in temperature and precipitation regimes are likely to result in changes in post-disturbance dynamics, which could represent important feedbacks into the global climate system.

  15. Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mehralian, Fahimeh [Mechanical Engineering Department, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Tadi Beni, Yaghoub, E-mail: tadi@eng.sku.ac.ir [Faculty of Engineering, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Karimi Zeverdejani, Mehran [Mechanical Engineering Department, Shahrekord University, Shahrekord (Iran, Islamic Republic of)

    2017-06-01

    Featured by two small length scale parameters, nonlocal strain gradient theory is utilized to investigate the free vibration of nanotubes. A new size-dependent shell model formulation is developed by using the first order shear deformation theory. The governing equations and boundary conditions are obtained using Hamilton's principle and solved for simply supported boundary condition. As main purpose of this study, since the values of two small length scale parameters are still unknown, they are calibrated by the means of molecular dynamics simulations (MDs). Then, the influences of different parameters such as nonlocal parameter, scale factor, length and thickness on vibration characteristics of nanotubes are studied. It is also shown that increase in thickness and decrease in length parameters intensify the effect of nonlocal parameter and scale factor.

  16. Effective Boolean dynamics analysis to identify functionally important genes in large-scale signaling networks.

    Science.gov (United States)

    Trinh, Hung-Cuong; Kwon, Yung-Keun

    2015-11-01

    Efficiently identifying functionally important genes in order to understand the minimal requirements of normal cellular development is challenging. To this end, a variety of structural measures have been proposed and their effectiveness has been investigated in recent literature; however, few studies have shown the effectiveness of dynamics-based measures. This led us to investigate a dynamic measure to identify functionally important genes, and the effectiveness of which was verified through application on two large-scale human signaling networks. We specifically consider Boolean sensitivity-based dynamics against an update-rule perturbation (BSU) as a dynamic measure. Through investigations on two large-scale human signaling networks, we found that genes with relatively high BSU values show slower evolutionary rate and higher proportions of essential genes and drug targets than other genes. Gene-ontology analysis showed clear differences between the former and latter groups of genes. Furthermore, we compare the identification accuracies of essential genes and drug targets via BSU and five well-known structural measures. Although BSU did not always show the best performance, it effectively identified the putative set of genes, which is significantly different from the results obtained via the structural measures. Most interestingly, BSU showed the highest synergy effect in identifying the functionally important genes in conjunction with other measures. Our results imply that Boolean-sensitive dynamics can be used as a measure to effectively identify functionally important genes in signaling networks.

  17. Modeling ramp compression experiments using large-scale molecular dynamics simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I. (University of California, San Diego); Winey, J. Michael (Washington State University); Gupta, Yogendra Mohan (Washington State University); Lane, J. Matthew D.; Ditmire, Todd (University of Texas at Austin); Quevedo, Hernan J. (University of Texas at Austin)

    2011-10-01

    Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.

  18. Dynamical scaling for underdamped strain order parameters quenched below first-order phase transitions

    Science.gov (United States)

    Shankaraiah, N.; Dubey, Awadhesh K.; Puri, Sanjay; Shenoy, Subodh R.

    2016-12-01

    In the conceptual framework of phase ordering after temperature quenches below transition, we consider the underdamped Bales-Gooding-type "momentum conserving" dynamics of a 2D martensitic structural transition from a square-to-rectangle unit cell. The one-component or NOP=1 order parameter is one of the physical strains, and the Landau free energy has a triple well, describing a first-order transition. We numerically study the evolution of the strain-strain correlation, and find that it exhibits dynamical scaling, with a coarsening length L (t ) ˜tα . We find at intermediate and long times that the coarsening exponent sequentially takes on respective values close to α =2 /3 and 1 /2 . For deep quenches, the coarsening can be arrested at long times, with α ≃0 . These exponents are also found in 3D. To understand such behavior, we insert a dynamical-scaling ansatz into the correlation function dynamics to give, at a dominant scaled separation, a nonlinear kinetics of the curvature g (t )≡1 /L (t ) . The curvature solutions have time windows of power-law decays g ˜1 /tα , with exponent values α matching simulations, and manifestly independent of spatial dimension. Applying this curvature-kinetics method to mass-conserving Cahn-Hilliard dynamics for a double-well Landau potential in a scalar NOP=1 order parameter yields exponents α =1 /4 and 1 /3 for intermediate and long times. For vector order parameters with NOP≥2 , the exponents are α =1 /4 only, consistent with previous work. The curvature kinetics method could be useful in extracting coarsening exponents for other phase-ordering dynamics.

  19. Coarse-graining to the meso and continuum scales with molecular-dynamics-like models

    Science.gov (United States)

    Plimpton, Steve

    Many engineering-scale problems that industry or the national labs try to address with particle-based simulations occur at length and time scales well beyond the most optimistic hopes of traditional coarse-graining methods for molecular dynamics (MD), which typically start at the atomic scale and build upward. However classical MD can be viewed as an engine for simulating particles at literally any length or time scale, depending on the models used for individual particles and their interactions. To illustrate I'll highlight several coarse-grained (CG) materials models, some of which are likely familiar to molecular-scale modelers, but others probably not. These include models for water droplet freezing on surfaces, dissipative particle dynamics (DPD) models of explosives where particles have internal state, CG models of nano or colloidal particles in solution, models for aspherical particles, Peridynamics models for fracture, and models of granular materials at the scale of industrial processing. All of these can be implemented as MD-style models for either soft or hard materials; in fact they are all part of our LAMMPS MD package, added either by our group or contributed by collaborators. Unlike most all-atom MD simulations, CG simulations at these scales often involve highly non-uniform particle densities. So I'll also discuss a load-balancing method we've implemented for these kinds of models, which can improve parallel efficiencies. From the physics point-of-view, these models may be viewed as non-traditional or ad hoc. But because they are MD-style simulations, there's an opportunity for physicists to add statistical mechanics rigor to individual models. Or, in keeping with a theme of this session, to devise methods that more accurately bridge models from one scale to the next.

  20. Modeling Topology and Nonlinear Dynamical Behavior of the Weighted Scale-Free Networks

    Institute of Scientific and Technical Information of China (English)

    YANG Qiu-Ying; ZHANG Gui-Qing; ZHANG Ying-Yue; CHEN Tian-Lun

    2008-01-01

    An improved weighted scale-free network,which has two evolution mechanisms:topological growth and strength dynamics,has been introduced.The topology structure of the model will be explored in details in this work.The evolution driven mechanism of Olami-Feder-Christensen (OFC) model is added to our model to study the self-organized criticality and the dynamical behavior.We also.consider attack mechanism and the study of the model with attack is also investigated in this paper.We find there axe differences between the model with attack and without attack.

  1. Length Scale Dependence of the Dynamic Properties of Hyaluronic Acid Solutions in the Presence of Salt

    Energy Technology Data Exchange (ETDEWEB)

    Horkay, Ferenc; Falus, Peter; Hecht, Anne-Marie; Geissler, Erik (CNRS-UMR); (NIH); (ILL)

    2010-12-07

    In solutions of the charged semirigid biopolymer hyaluronic acid in salt-free conditions, the diffusion coefficient D{sub NSE} measured at high transfer momentum q by neutron spin echo is more than an order of magnitude smaller than that determined by dynamic light scattering, D{sub DLS}. This behavior contrasts with neutral polymer solutions. With increasing salt content, D{sub DLS} approaches D{sub NSE}, which is independent of ionic strength. Contrary to theoretical expectation, the ion-polymer coupling, which dominates the low q dynamics of polyelectrolyte solutions, already breaks down at distance scales greater than the Debye-Hueckel length.

  2. Quasi-potential and Two-Scale Large Deviation Theory for Gillespie Dynamics

    KAUST Repository

    Li, Tiejun

    2016-01-07

    The construction of energy landscape for bio-dynamics is attracting more and more attention recent years. In this talk, I will introduce the strategy to construct the landscape from the connection to rare events, which relies on the large deviation theory for Gillespie-type jump dynamics. In the application to a typical genetic switching model, the two-scale large deviation theory is developed to take into account the fast switching of DNA states. The comparison with other proposals are also discussed. We demonstrate different diffusive limits arise when considering different regimes for genetic translation and switching processes.

  3. Dynamic scaling of the restoration of rotational symmetry in Heisenberg quantum antiferromagnets

    Science.gov (United States)

    Weinberg, Phillip; Sandvik, Anders W.

    2017-08-01

    We apply imaginary-time evolution with the operator e-τ H to study relaxation dynamics of gapless quantum antiferromagnets described by the spin-rotation-invariant Heisenberg Hamiltonian H . Using quantum Monte Carlo simulations to obtain unbiased results, we propagate an initial state with maximal order parameter msz (the staggered magnetization) in the z spin direction and monitor the expectation value 〈ms〉 as a function of imaginary time τ . Results for different system sizes (lengths) L exhibit an initial essentially size independent relaxation of 〈ms〉 toward its value in the infinite-size spontaneously symmetry broken state, followed by a strongly size dependent final decay to zero when the O (3 ) rotational symmetry of the order parameter is restored. We develop a generic finite-size scaling theory that shows the relaxation time diverges asymptotically as Lz, where z is the dynamic exponent of the low-energy excitations. We use the scaling theory to develop a practical way of extracting the dynamic exponent from the numerical finite-size data, systematically eliminating scaling corrections. We apply the method to spin-1 /2 Heisenberg antiferromagnets on two different lattice geometries: the standard two-dimensional (2D) square lattice and a site-diluted 2D square lattice at the percolation threshold. In the 2D case we obtain z =2.001 (5 ) , which is consistent with the known value z =2 , while for the site-diluted lattice we find z =3.90 (1 ) or z =2.056 (8 ) Df , where Df=91 /48 is the fractal dimensionality of the percolating system. This is an improvement on previous estimates of z ≈3.7 . The scaling results also show a fundamental difference between the two cases; for the 2D square lattice, the data can be collapsed onto a common scaling function even when 〈ms〉 is relatively large, reflecting the Anderson tower of quantum rotor states with a common dynamic exponent z =2 . For the diluted 2D square lattice, the scaling works well only for

  4. Parallel Computational Fluid Dynamics 2007 : Implementations and Experiences on Large Scale and Grid Computing

    CERN Document Server

    2009-01-01

    At the 19th Annual Conference on Parallel Computational Fluid Dynamics held in Antalya, Turkey, in May 2007, the most recent developments and implementations of large-scale and grid computing were presented. This book, comprised of the invited and selected papers of this conference, details those advances, which are of particular interest to CFD and CFD-related communities. It also offers the results related to applications of various scientific and engineering problems involving flows and flow-related topics. Intended for CFD researchers and graduate students, this book is a state-of-the-art presentation of the relevant methodology and implementation techniques of large-scale computing.

  5. Dynamic Modeling and Validation of a Biomass Hydrothermal Pretreatment Process - A Demonstration Scale Study

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Blanke, Mogens; Jakobsen, Jon Geest

    2015-01-01

    Hydrothermal pretreatment of lignocellulosic biomass is a cost effective technology for second generation biorefineries. The process occurs in large horizontal and pressurized thermal reactors where the biomatrix is opened under the action of steam pressure and temperature to expose cellulose...... for the enzymatic hydrolysis process. Several by-products are also formed, which disturb and act as inhibitors downstream. The objective of this study is to formulate and validate a large scale hydrothermal pretreatment dynamic model based on mass and energy balances, together with a complex conversion mechanism...... of the process, outlining the value of the model for simulation, control design, and optimization for full-scale applications....

  6. Complex dynamics of life at different scales: from genomic to global environmental issues.

    Science.gov (United States)

    Anteneodo, C; da Luz, M G E

    2010-12-28

    This introduction to the Theme Issue, Complex dynamics of life at different scales: from genomic to global environmental issues, gives a short overview on why the ideas and concepts in complexity and nonlinearity are relevant to the understanding of life in its different manifestations. Also, it discusses how life phenomena can be thought of as composing different scales of organization. Finally, the articles in this thematic publication are briefly commented on in terms of their relevance in helping to understand the complexity of life systems.

  7. Self-consistent field theory based molecular dynamics with linear system-size scaling.

    Science.gov (United States)

    Richters, Dorothee; Kühne, Thomas D

    2014-04-01

    We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.

  8. Self-consistent field theory based molecular dynamics with linear system-size scaling

    Energy Technology Data Exchange (ETDEWEB)

    Richters, Dorothee [Institute of Mathematics and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 9, D-55128 Mainz (Germany); Kühne, Thomas D., E-mail: kuehne@uni-mainz.de [Institute of Physical Chemistry and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 7, D-55128 Mainz (Germany); Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)

    2014-04-07

    We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.

  9. A dynamic subgrid-scale model for the large eddy simulation of stratified flow

    Institute of Scientific and Technical Information of China (English)

    刘宁宇; 陆夕云; 庄礼贤

    2000-01-01

    A new dynamic subgrid-scale (SGS) model, including subgrid turbulent stress and heat flux models for stratified shear flow is proposed by using Yoshizawa’ s eddy viscosity model as a base model. Based on our calculated results, the dynamic subgrid-scale model developed here is effective for the large eddy simulation (LES) of stratified turbulent channel flows. The new SGS model is then applied to the large eddy simulation of stratified turbulent channel flow under gravity to investigate the coupled shear and buoyancy effects on the near-wall turbulent statistics and the turbulent heat transfer at different Richardson numbers. The critical Richardson number predicted by the present calculation is in good agreement with the value of theoretical analysis.

  10. A dynamic subgrid-scale model for the large eddy simulation of stratified flow

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new dynamic subgrid-scale (SGS) model, including subgrid turbulent stress and heat flux models for stratified shear flow is proposed by using Yoshizawa's eddy viscosity model as a base model. Based on our calculated results, the dynamic subgrid-scale model developed here is effective for the large eddy simulation (LES) of stratified turbulent channel flows. The new SGS model is then applied to the large eddy simulation of stratified turbulent channel flow under gravity to investigate the coupled shear and buoyancy effects on the near-wall turbulent statistics and the turbulent heat transfer at different Richardson numbers. The critical Richardson number predicted by the present calculation is in good agreement with the value of theoretical analysis.

  11. Mechanism design and dynamic analysis of a large-scale spatial deployable structure for space mission

    Science.gov (United States)

    Xu, Yanling; Lin, Qiuhong; Wang, Xingze; Li, Lin; Cong, Qiang; Pan, Bo

    2017-01-01

    The deployable structure is critical to the overall success of the space mission. This paper introduces a large-scale spatial deployable structure (SDS), which is developed to deploy and support the payload panels in a precise configuration once on the track. And segmental researching in the design, kinematics and dynamics analysis of SDS's prototyping system are presented. Geometric construction method and Bar-groups method are adopted to analysis the dimensions and coordinates of the SDS, which finally construct an well-determined mathematical model to raise the productivity and efficiency during optimization and analysis work. Be reasoned with the large-scale of the truss structures, flexible multibody dynamic simulations are developed, which present much more authentic stress transfer and kinematics behaviors. According to the deployment experiments of SDS's prototyping system, the correctness and validity of the flexible multibody simulation work are well proved.

  12. Minding the gap: Thinking through spatiotemporal scaling challenges in Earth surface dynamics research

    Science.gov (United States)

    Viles, Heather

    2017-04-01

    Research into the dynamics of Earth's surface is diverse, interdisciplinary and challenging, but also an important geoscience contribution to understanding human-landscape interactions in the Anthropocene. Scale issues often thwart our ability to provide answers to important questions of how the Earth's surface has changed in the past and may change in the future. This paper reflects on four major common components of Earth surface dynamics research projects (i.e. how to identify and frame a research question, how to design a study to answer that question, difficulties with data, how to use data to answer the question) and identifies the most important spatiotemporal scale challenges. A case study of an experimental study of rock breakdown in arid environments is used to illustrate these challenges, and to demonstrate the importance of clear conceptualisation and critical thinking in overcoming them.

  13. Earth’s bow shock dynamics and structure scales based on MMS multi-spacecraft data

    Science.gov (United States)

    Alrefay, T. Y.

    2017-06-01

    Space plasmas studies on bow shock dynamics and structure scales continue to attract intense theoretical and experimental investigations. The Earth’s bow shock is the closest shock accessible to scientists through various satellite missions. These missions have enabled investigations on different physical phenomena associated with solar-terrestrial interaction. Access to the interplanetary medium through satellites has provided access to valuable spatial and temporal data on the Earth bow shock, and has furthered understanding on certain aspects of shock physics that were inaccessible until now. The main objective of this study is to quantify the dynamics and structure scales of the Earth’s bow shock using data obtained by the MMS multi-spacecraft during shock crossing.

  14. Towards wafer scale inductive determination of magnetostatic and dynamic parameters of magnetic thin films and multilayers

    CERN Document Server

    Sievers, Sibylle; Nass, Paul; Serrano-Guisan, Santiago; Pasquale, Massimo; Schumacher, Hans Werner

    2013-01-01

    We investigate an inductive probe head suitable for non-invasive characterization of the magnetostatic and dynamic parameters of magnetic thin films and multilayers on the wafer scale. The probe is based on a planar waveguide with rearward high frequency connectors that can be brought in close contact to the wafer surface. Inductive characterization of the magnetic material is carried out by vector network analyzer ferromagnetic resonance. Analysis of the field dispersion of the resonance allows the determination of key material parameters such as the saturation magnetization MS or the effective damping parameter Meff. Three waveguide designs are tested. The broadband frequency response is characterized and the suitability for inductive determination of MS and Meff is compared. Integration of such probes in a wafer prober could in the future allow wafer scale in-line testing of magnetostatic and dynamic key material parameters of magnetic thin films and multilayers.

  15. Large-Scale Structure Formation with Massive Neutrinos and Dynamical Dark Energy

    CERN Document Server

    Upadhye, Amol; Pope, Adrian; Heitmann, Katrin; Habib, Salman; Finkel, Hal; Frontiere, Nicholas

    2013-01-01

    Over the next decade, cosmological measurements of the large-scale structure of the Universe will be sensitive to the combined effects of dynamical dark energy and massive neutrinos. The matter power spectrum is a key repository of this information. We extend higher-order perturbative methods for computing the power spectrum to investigate these effects over quasi-linear scales. Through comparison with N-body simulations we establish the regime of validity of a Time-Renormalization Group (Time-RG) perturbative treatment that includes dynamical dark energy and massive neutrinos. We also quantify the accuracy of Standard (SPT), Renormalized (RPT) and Lagrangian Resummation (LPT) perturbation theories without massive neutrinos. We find that an approximation that neglects neutrino clustering as a source for matter clustering predicts the Baryon Acoustic Oscillation (BAO) peak position to 0.25% accuracy for redshifts 1 < z < 3, justifying the use of Lagrangian perturbation theory for BAO reconstruction in up...

  16. Proposition and Test of the One Scale of the Environmental Dynamism, Complexity and Munificence

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Carvalho

    2014-12-01

    Full Text Available Considering the concernment that the strategy area has about the environment and its impact on organization, this paper discuss about the environment mensuration. Its aim is build and validate scales of mensuration of the perceived dynamism, complexity and munificence dimensions. The scales were built on the revised theory, applied to a sample of 170 Brazilian hotel managers and validate under the factorial analysis with tests of reliability trough communalities, variance explained, Bartlet’s sphericity test, Cronbach’s Alpha, correlation analysis, and split half method. After the Varimax rotation, the constructs showed independent and orthogonal among them. The complexity construct was built by gaining information and environment understanding difficult, by information dispersion and by its unpredictability. Dynamism was validate as the variability in the components of the competitive environments, while the munificence construct reflect the availability of existing resources, the growing of the available resources, the existing of more opportunities than threats, and the growing of the market.

  17. A field-theoretic approach to linear scaling \\textit{ab-initio} molecular dynamics

    CERN Document Server

    Richters, Dorothee; Kühne, Thomas D

    2012-01-01

    We present a field-theoretic method suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is solved by means of a properly modified Langevin equation. The predictive power of this approach is illustrated using the example of liquid methane under extreme conditions.

  18. Benders' Decomposition Based Heuristics for Large-Scale Dynamic Quadratic Assignment Problems

    Directory of Open Access Journals (Sweden)

    Sirirat Muenvanichakul

    2009-01-01

    Full Text Available Problem statement: Dynamic Quadratic Assignment Problem (DQAP is NP hard problem. Benders decomposition based heuristics method is applied to the equivalent mixed-integer linear programming problem of the original DQAP. Approach: Approximate Benders Decomposition (ABD generates the ensemble of a subset of feasible layout for Approximate Dynamic Programming (ADP to determine the sub-optimal optimal solution. A Trust-Region Constraint (TRC for the master problem in ABD and a Successive Adaptation Procedure (SAP were implemented to accelerate the convergence rate of the method. Results: The sub-optimal solutions of large-scales DQAPs from the method and its variants were compared well with other metaheuristic methods. Conclusion: Overall performance of the method is comparable to other metaheuristic methods for large-scale DQAPs.

  19. Time asynchronous relative dimension in space method for multi-scale problems in fluid dynamics

    Science.gov (United States)

    Markesteijn, A. P.; Karabasov, S. A.

    2014-02-01

    A novel computational method is presented for solving fluid dynamics equations in the multi-scale framework when the system size is an important parameter of the governing equations. The method (TARDIS) is based on a concurrent transformation of the governing equations in space and time and solving the transformed equations on a uniform Cartesian grid with the corresponding causality conditions at the grid interfaces. For implementation in the framework of TARDIS, the second-order CABARET scheme of Karabasov and Goloviznin [1] is selected for it provides a good combination of numerical accuracy, computational efficiency and simplicity of realisation. Numerical examples are first provided for several isothermal gas dynamics test problems and then for modelling of molecular fluctuations inside a microscopic flow channel and ultrasound wave propagation through a nano-scale region of molecular fluctuations.

  20. Theoretical and Numerical Studies of Dynamic Scaling of a Six-Degree-of-Freedom Laser Propulsion Vehicle

    Directory of Open Access Journals (Sweden)

    Masayuki Takahashi

    2015-01-01

    Full Text Available To estimate the flight reactions of a full-scale vehicle from reduced-scale tests, we constructed a scaling theory for the vehicle size, input energy, moment of inertia, and pulse frequency needed to maintain dynamic equivalence between a laboratory-scale and full-scale launch of a laser propulsion vehicle. The dynamic scaling law for a single pulse was constructed using translational and angular equations of motion. The analytical scaling was confirmed for a single-pulse incident using a fluid-orbit coupling simulator for the interaction between the blast wave and the vehicle. Motion equivalence was maintained for multiple pulses by adjusting the repetition frequency of the pulse incident to correct for the effect of aerodynamic drag during the free flight of the pulse-to-pulse interval. The flight of a full-scale vehicle can be estimated for single- and multiple-pulse operations from the flight data for a small-scale vehicle using the proposed scaling theory, which provides correlations between the characteristics of small-scale and large-scale flight systems. Small-scale tests were shown to be useful in estimating the flight of a full-scale vehicle using dynamic scaling theory.

  1. A Multi-Scale Modeling and Experimental Program for the Dynamic Mechanical Response of Tissue

    Science.gov (United States)

    2014-12-09

    Invited talk at the department of Biomedical Illustration and Visualization, UIC, (2014). Joseph Orgel (11) "How Collagen Structure and...A Multi-Scale Modeling and Experimental Program for the Dynamic Mechanical Response of Tissue We study the mechanical properties of collagen , which...and experiments to examine the theoretical results. The atomistic structure of collagen is determined by Xray diffraction, which provides the

  2. Simulated control in Aspen Dynamics for the production of limonene epoxide at pilot scale

    OpenAIRE

    Yeison Agudelo Arenas; Rolando Barrera Zapata

    2016-01-01

    In this contribution is reported the study and analysis of the control system (simulated) for the process of obtaining limonene epoxide. The modelling of the process at pilot scale was implemented in the software Aspen Plus from literature reports. Aspen Dynamics was used for the study of the process control. The model allows observing the behavior of the variables of interest in the process such as outflows from the distillation tower, heat duty, operating temperaturas and purity of the fina...

  3. Multiplicity results for a generalized Sturm-Liouville dynamical system on time scales

    OpenAIRE

    Zhang Youwei

    2011-01-01

    Abstract By applying the fixed point theorem in cones, some new and general results on the existence of positive solution to second order generalized Sturm-Liouville dynamical system on time scale T u 1 Δ Δ ( t ) + h 1 ( t ) f 1 ( t , u 1 ( t ) , u 2 ( t ) , u 1 Δ ( t ) , u 2 Δ ( t ) ) = 0 , u 2 Δ Δ ( t ) + h 2 ( t ) f 2 ( t , u 1 ( ...

  4. Poissonian reducibility and thermal scaling within the lattice gas model and molecular dynamics model

    OpenAIRE

    Ma, Y.G.

    2000-01-01

    The emission of clusters in the nuclear disassembly is investigated within the framework of isospin dependent lattice gas model and classical molecular dynamics model. As observed in the recent experimental data, it is found that the emission of individual cluster is poissonian and thermal scaling is observed in the linear Arrhenius plots made from the average multiplicity of each cluster. The mass, isotope and charge dependent "emission barriers" are extracted from the slopes of the Arrheniu...

  5. Dynamic phase microscopy: measurements of translational displacements at sub-nanometer scale

    OpenAIRE

    Tichinsky, V. P.; Kretushev, A. V.; Luskinovich, P. N.

    2006-01-01

    Dynamic phase microscopy has been applied for measurements of nanometer-scale displacements of a piezoelectric scanner. This scanner, which was designed for calibration purposes for scanning probe microscopy and TEM, exhibited a linear and hysteresis-free translation in the 0.05-20 nm range. The voltage-activated motion is described by a coefficient of 0.03 \\pm 0.005 nm/V.

  6. Lyapunov-type inequality for a higher order dynamic equation on time scales.

    Science.gov (United States)

    Sun, Taixiang; Xi, Hongjian

    2016-01-01

    The purpose of this work is to establish a Lyapunov-type inequality for the following dynamic equation [Formula: see text]on some time scale T under the anti-periodic boundary conditions [Formula: see text], where [Formula: see text] for [Formula: see text] and [Formula: see text], [Formula: see text] with [Formula: see text] and [Formula: see text], p is the quotient of two odd positive integers and [Formula: see text] with [Formula: see text].

  7. Scaling aspects of the sea-ice-drift dynamics and pack fracture

    Directory of Open Access Journals (Sweden)

    A. Chmel

    2007-05-01

    Full Text Available A study of the sea-ice dynamics in the periods of time prior to and during the cycles of basin-wide fragmentation of the ice cover in the Arctic Ocean is presented. The fractal geometry of the ice-sheets limited by leads and ridges was assessed using the satellite images, while the data on the correlated sea-ice motion were obtained in the research stations "North Pole 32" and "North Pole 33" established on the ice pack. The revealed decrease of the fractal dimension as a result of large-scale fragmentation is consistent with the localization of the fracture process (leads propagation. At the same time, the scaling properties of the distribution of amplitudes of ice-fields accelerations were insensitive to the event of sea-ice fragmentation. The temporal distribution of the accelerations was scale-invariant during "quiet" periods of sea-ice drift but disordered in the period of mechanical perturbation. The period of decorrelated (in time ice-field motion during the important fracture event was interpreted as an inter-level transition in the hierarchic dynamical system. The mechanism of the long-range correlations in the sea-ice cover, including the fracture process, is suggested to be in relation with the self-organized oscillation dynamics inherent in the ice pack.

  8. Thermodynamics, maximum power, and the dynamics of preferential river flow structures at the continental scale

    Directory of Open Access Journals (Sweden)

    A. Kleidon

    2013-01-01

    Full Text Available The organization of drainage basins shows some reproducible phenomena, as exemplified by self-similar fractal river network structures and typical scaling laws, and these have been related to energetic optimization principles, such as minimization of stream power, minimum energy expenditure or maximum "access". Here we describe the organization and dynamics of drainage systems using thermodynamics, focusing on the generation, dissipation and transfer of free energy associated with river flow and sediment transport. We argue that the organization of drainage basins reflects the fundamental tendency of natural systems to deplete driving gradients as fast as possible through the maximization of free energy generation, thereby accelerating the dynamics of the system. This effectively results in the maximization of sediment export to deplete topographic gradients as fast as possible and potentially involves large-scale feedbacks to continental uplift. We illustrate this thermodynamic description with a set of three highly simplified models related to water and sediment flow and describe the mechanisms and feedbacks involved in the evolution and dynamics of the associated structures. We close by discussing how this thermodynamic perspective is consistent with previous approaches and the implications that such a thermodynamic description has for the understanding and prediction of sub-grid scale organization of drainage systems and preferential flow structures in general.

  9. Scaling aspects of the sea-ice-drift dynamics and pack fracture

    Directory of Open Access Journals (Sweden)

    A. Chmel

    2007-01-01

    Full Text Available A study of the sea-ice dynamics in the periods of time prior to and during the cycles of basin-wide fragmentation of the ice cover in the Arctic Ocean is presented. The fractal geometry of the ice-sheets limited by leads and ridges was assessed using the satellite images, while the data on the correlated sea-ice motion were obtained in the research stations "North Pole 32" and "North Pole 33" established on the ice pack. The revealed decrease of the fractal dimension as a result of large-scale fragmentation is consistent with the localization of the fracture process (leads propagation. At the same time, the scaling properties of the distribution of amplitudes of ice-fields accelerations were insensitive to the event of sea-ice fragmentation. The temporal distribution of the accelerations was scale-invariant during "quiet" periods of sea-ice drift but disordered in the period of mechanical perturbation. The period of decorrelated (in time ice-field motion during the important fracture event was interpreted as an inter-level transition in the hierarchic dynamical system. The mechanism of the long-range correlations in the sea-ice cover, including the fracture process, is suggested to be in relation with the self-organized oscillation dynamics inherent in the ice pack.

  10. INCREASING RETURNS TO SCALE, DYNAMICS OF INDUSTRIAL STRUCTURE AND SIZE DISTRIBUTION OF FIRMS

    Institute of Scientific and Technical Information of China (English)

    Ying FAN; Menghui LI; Zengru DI

    2006-01-01

    A multi-agent model is presented to discuss the market dynamics and the size distribution of firms.The model emphasizes the effects of increasing returns to scale and gives the description of the born and death of adaptive producers. The evolution of market structure and its behavior under the technological shocks are investigated. Its dynamical results are in good agreement with some empirical "stylized facts" of industrial evolution. With the diversity of demand and adaptive growth strategies of firms, the firm size in the generalized model obeys the power-law distribution. Three factors mainly determine the competitive dynamics and the skewed size distributions of firms: 1. Self-reinforcing mechanism; 2. Adaptive firm growing strategies; 3. Demand diversity or widespread heterogeneity in the technological capabilities of firms.

  11. Experimental Evaluation of the Scale Model Method to Simulate Lunar Vehicle Dynamics

    Science.gov (United States)

    Johnson, Kyle; Asnani, Vivake; Polack, Jeff; Plant, Mark

    2016-01-01

    As compared to driving on Earth, the presence of lower gravity and uneven terrain on planetary bodies makes high speed driving difficult. In order to maintain ground contact and control vehicles need to be designed with special attention to dynamic response. The challenge of maintaining control on the Moon was evident during high speed operations of the Lunar Roving Vehicle (LRV) on Apollo 16, as at one point all four tires were off the ground; this event has been referred to as the Lunar Grand Prix. Ultimately, computer simulation should be used to examine these phenomena during the vehicle design process; however, experimental techniques are required for the validation and elucidation of key issues. The objectives of this study were to evaluate the methodology for developing a scale model of a lunar vehicle using similitude relationships and to test how vehicle configuration, six or eight wheel pods, and local tire compliance, soft or stiff, affect the vehicles dynamic performance. A wheel pod consists of a drive and steering transmission and wheel. The Lunar Electric Rover (LER), a human driven vehicle with a pressurized cabin, was selected as an example for which a scale model was built. The scaled vehicle was driven over an obstacle and the dynamic response was observed and then scaled to represent the full-size vehicle in lunar gravity. Loss of ground contact, in terms of vehicle travel distance with tires off the ground, was examined. As expected, local tire compliance allowed ground contact to be maintained over a greater distance. However, switching from a six-tire configuration to an eight-tire configuration with reduced suspension stiffness had a negative effect on ground contact. It is hypothesized that this was due to the increased number or frequency of impacts. The development and testing of this scale model provided practical lessons for future low-gravity vehicle development.

  12. Existence and global exponential stability of periodic solutions for n-dimensional neutral dynamic equations on time scales.

    Science.gov (United States)

    Li, Bing; Li, Yongkun; Zhang, Xuemei

    2016-01-01

    In this paper, by using the existence of the exponential dichotomy of linear dynamic equations on time scales and the theory of calculus on time scales, we study the existence and global exponential stability of periodic solutions for a class of n-dimensional neutral dynamic equations on time scales. We also present an example to illustrate the feasibility of our results. The results of this paper are completely new and complementary to the previously known results even in both the case of differential equations (time scale [Formula: see text]) and the case of difference equations (time scale [Formula: see text]).

  13. Criticality in large-scale brain FMRI dynamics unveiled by a novel point process analysis.

    Science.gov (United States)

    Tagliazucchi, Enzo; Balenzuela, Pablo; Fraiman, Daniel; Chialvo, Dante R

    2012-01-01

    Functional magnetic resonance imaging (fMRI) techniques have contributed significantly to our understanding of brain function. Current methods are based on the analysis of gradual and continuous changes in the brain blood oxygenated level dependent (BOLD) signal. Departing from that approach, recent work has shown that equivalent results can be obtained by inspecting only the relatively large amplitude BOLD signal peaks, suggesting that relevant information can be condensed in discrete events. This idea is further explored here to demonstrate how brain dynamics at resting state can be captured just by the timing and location of such events, i.e., in terms of a spatiotemporal point process. The method allows, for the first time, to define a theoretical framework in terms of an order and control parameter derived from fMRI data, where the dynamical regime can be interpreted as one corresponding to a system close to the critical point of a second order phase transition. The analysis demonstrates that the resting brain spends most of the time near the critical point of such transition and exhibits avalanches of activity ruled by the same dynamical and statistical properties described previously for neuronal events at smaller scales. Given the demonstrated functional relevance of the resting state brain dynamics, its representation as a discrete process might facilitate large-scale analysis of brain function both in health and disease.

  14. Linking river management to species conservation using dynamic landscape scale models

    Science.gov (United States)

    Freeman, Mary C.; Buell, Gary R.; Hay, Lauren E.; Hughes, W. Brian; Jacobson, Robert B.; Jones, John W.; Jones, S.A.; LaFontaine, Jacob H.; Odom, Kenneth R.; Peterson, James T.; Riley, Jeffrey W.; Schindler, J. Stephen; Shea, C.; Weaver, J.D.

    2013-01-01

    Efforts to conserve stream and river biota could benefit from tools that allow managers to evaluate landscape-scale changes in species distributions in response to water management decisions. We present a framework and methods for integrating hydrology, geographic context and metapopulation processes to simulate effects of changes in streamflow on fish occupancy dynamics across a landscape of interconnected stream segments. We illustrate this approach using a 482 km2 catchment in the southeastern US supporting 50 or more stream fish species. A spatially distributed, deterministic and physically based hydrologic model is used to simulate daily streamflow for sub-basins composing the catchment. We use geographic data to characterize stream segments with respect to channel size, confinement, position and connectedness within the stream network. Simulated streamflow dynamics are then applied to model fish metapopulation dynamics in stream segments, using hypothesized effects of streamflow magnitude and variability on population processes, conditioned by channel characteristics. The resulting time series simulate spatially explicit, annual changes in species occurrences or assemblage metrics (e.g. species richness) across the catchment as outcomes of management scenarios. Sensitivity analyses using alternative, plausible links between streamflow components and metapopulation processes, or allowing for alternative modes of fish dispersal, demonstrate large effects of ecological uncertainty on model outcomes and highlight needed research and monitoring. Nonetheless, with uncertainties explicitly acknowledged, dynamic, landscape-scale simulations may prove useful for quantitatively comparing river management alternatives with respect to species conservation.

  15. The Dynamical Masses, Densities, and Star Formation Scaling Relations of Lyman Alpha Galaxies

    CERN Document Server

    Rhoads, James E; Finkelstein, Steven L; Fynbo, Johan P U; McLinden, Emily M; Richardson, Mark L A; Tilvi, Vithal S

    2013-01-01

    We present the first dynamical mass measurements for Lyman alpha galaxies at high redshift, based on velocity dispersion measurements from rest-frame optical emission lines and size measurements from HST imaging, for a sample of nine galaxies drawn from four surveys. These measurements enable us to study the nature of Lyman alpha galaxies in the context of galaxy scaling relations. The resulting dynamical masses range from 1e9 to 1e10 solar masses. We also fit stellar population models to our sample, and use them to plot the Lyman alpha sample on a stellar mass vs. line width relation. Overall, the Lyman alpha galaxies follow well the scaling relation established by observing star forming galaxies at lower redshift (and without regard for Lyman alpha emission), though in 1/3 of the Lyman alpha galaxies, lower-mass fits are also acceptable. In all cases, the dynamical masses agree with established stellarmass-linewidth relation. Using the dynamical masses as an upper limit on gas mass, we show that Lyman alpha...

  16. Pore-scale evaporation-condensation dynamics resolved by synchrotron x-ray tomography

    Science.gov (United States)

    Shahraeeni, Ebrahim; Or, Dani

    2012-01-01

    Capillary processes greatly influence vapor mediated transport dynamics and associated changes in liquid phase content of porous media. Rapid x-ray synchrotron tomography measurements were used to resolve liquid-vapor interfacial dynamics during evaporation and condensation within submillimetric pores forming between sintered glass bead samples subjected to controlled ambient temperature and relative humidity. Evolution of gas-liquid interfacial shapes were in agreement with predictions based on our analytical model for interfacial dynamics in confined wedge-shaped pores. We also compared literature experimental data at the nanoscale to illustrate the capability of our model to describe early stages of condensation giving rise to the onset of capillary forces between rough surfaces. The study provides high resolution, synchrotron-based observations of capillary evaporation-condensation dynamics at the pore scale as the confirmation of the pore scale analytical model for capillary condensation in a pore and enables direct links with evolution of macroscopic vapor gradients within a sintered glass bead sample through their effect on configuration and evolution of the local interfaces. Rapid condensation processes play a critical role in the onset of capillary-induced friction affecting mechanical behavior of physical systems and industrial applications.

  17. Intrastorm scale rainfall interception dynamics in a mature coniferous forest stand

    Science.gov (United States)

    Iida, Shin'ichi; Levia, Delphis F.; Shimizu, Akira; Shimizu, Takanori; Tamai, Koji; Nobuhiro, Tatsuhiko; Kabeya, Naoki; Noguchi, Shoji; Sawano, Shinji; Araki, Makoto

    2017-05-01

    Canopy interception of rainfall is an important process in the water balance of forests. The intrastorm dynamics of canopy interception is less well understood than event scale interception. Accordingly, armed with measurements of hourly interception intensity (i) from the field, this study is among the first to examine the differences in canopy interception dynamics between the first and second halves of rainfall events to quantify dynamic storage values for a coniferous forest in Japan. At this site, experimental results demonstrated that: (1) the relationship between interception loss (I) and gross rainfall (GR) at the event scale is better explained by a parabolic curve than a linear relationship, and there is a low correlation between rainfall intensity (gr) and i; (2) the ratio of accumulated i during the first half (IF) to that of gr (GRF) was larger than the second half (IS/GRS), with no significant correlations between potential evaporation during first half (PEF) vs IF or the second half (PES) vs IS; and (3) water storage capacity was similar to the magnitude of maximum I. By emphasizing the comparison between IF and IS, this study concludes that the water storage on tree surface is more important than losses by wet canopy evaporation and splash during rain. This study also adds insights into intrastorm interception dynamics of coniferous forests which are necessary to better model and forecast interception losses.

  18. R and D on a New Technology of Micro-pattern Gaseous Detectors Fast Timing Micro-pattern Detector

    CERN Document Server

    Salva Diblen, Sinem

    2016-01-01

    After the upgrades of the Large Hadron Collider (LHC) planned for the second and the third Long Shutdown (LS), the LHC luminosity will approach very high values. Such conditions will affect the performance of the CMS muon system, especially in the very forward region, due to the harsh expected background environment and high pile-up conditions. The CMS collaboration considers upgrading the muon forward region to take advantage of the pixel tracking coverage extension a new detector, ME0 station, possibly behind the new forward calorimeter. New resistive micro-pattern gaseous detectors that are able to handle the very demanding spatial, time resolution and rate capability, are being considered. In this contribution we introduce a new type of MPGD technology the Fast Timing Micro-pattern (FTM) detector, utilizing a fully resistive WELL structure. It consists of a stack of several coupled layers where drift and WELL multiplication stages alternate in the structure, yielding a significant improvement in timing p...

  19. Determining dynamic parameters of different-scale ionospheric irregularities over northern Siberia

    Science.gov (United States)

    Afraimovich, E. L.; Lipko, Y. V. Y. V.; Vugmeister, B. O.

    2000-01-01

    In 1995-1996, observations were carried out at Norilsk (geomagnetic latitude and longitude 64.2 degN and 160.4 degE) to determine dynamic parameters of irregularities in the high-latitude ionosphere. The short-baseline spaced-receiver method that has been implemented at the ionospheric facility of the Norilsk Integrated Magnetic-Ionospheric Station, provides a means of simultaneously measuring parameters of small-scale irregularities (spatial scale of 3-5 km) by the Similar-Fading Method (SFM), as well as of medium-scale irregularities (time scale of 10-30 min, spatial scale of hundreds of kilometres) by the Statistical Angle-of-arrival and Doppler Method (SADM). About 20 h of the observational data for the F2-layer under quiet geomagnetic conditions (Kp = 3) and about 15 h for the sporadic E-layer (Kp ~ 3) were processed. It has been found that the propagation directions and velocities of different-scale irregularities do not coincide. Small-scale irregularities of the F2-layer travel predominantly eastward or westward. The velocity of the F2-layer irregularities is about 100 m/s, and under disturbed conditions it is up to 200-250 m/s. Small-scale irregularities of the sporadic E-layer travel mostly in the northward direction. It is confirmed that the Es-layer is characterised by high velocities of the irregularities (as high as 1000 m/s). Medium-scale irregularities with periods in the range of 10-30 min travel mostly in a southward direction with velocities of 20-40 m/s.

  20. General Formalism of Mass Scaling Approach for Replica-Exchange Molecular Dynamics and its Application

    Science.gov (United States)

    Nagai, Tetsuro

    2017-01-01

    Replica-exchange molecular dynamics (REMD) has demonstrated its efficiency by combining trajectories of a wide range of temperatures. As an extension of the method, the author formalizes the mass-manipulating replica-exchange molecular dynamics (MMREMD) method that allows for arbitrary mass scaling with respect to temperature and individual particles. The formalism enables the versatile application of mass-scaling approaches to the REMD method. The key change introduced in the novel formalism is the generalized rules for the velocity and momentum scaling after accepted replica-exchange attempts. As an application of this general formalism, the refinement of the viscosity-REMD (V-REMD) method [P. H. Nguyen, https://doi.org/10.1063/1.3369626" xlink:type="simple">J. Chem. Phys. 132, 144109 (2010)] is presented. Numerical results are provided using a pilot system, demonstrating easier and more optimized applicability of the new version of V-REMD as well as the importance of adherence to the generalized velocity scaling rules. With the new formalism, more sound and efficient simulations will be performed.

  1. A Dynamic Optimization Strategy for the Operation of Large Scale Seawater Reverses Osmosis System

    Directory of Open Access Journals (Sweden)

    Aipeng Jiang

    2014-01-01

    Full Text Available In this work, an efficient strategy was proposed for efficient solution of the dynamic model of SWRO system. Since the dynamic model is formulated by a set of differential-algebraic equations, simultaneous strategies based on collocations on finite element were used to transform the DAOP into large scale nonlinear programming problem named Opt2. Then, simulation of RO process and storage tanks was carried element by element and step by step with fixed control variables. All the obtained values of these variables then were used as the initial value for the optimal solution of SWRO system. Finally, in order to accelerate the computing efficiency and at the same time to keep enough accuracy for the solution of Opt2, a simple but efficient finite element refinement rule was used to reduce the scale of Opt2. The proposed strategy was applied to a large scale SWRO system with 8 RO plants and 4 storage tanks as case study. Computing result shows that the proposed strategy is quite effective for optimal operation of the large scale SWRO system; the optimal problem can be successfully solved within decades of iterations and several minutes when load and other operating parameters fluctuate.

  2. Controls on boundary layer ventilation: Boundary layer processes and large-scale dynamics

    Science.gov (United States)

    Sinclair, V. A.; Gray, S. L.; Belcher, S. E.

    2010-06-01

    Midlatitude cyclones are important contributors to boundary layer ventilation. However, it is uncertain how efficient such systems are at transporting pollutants out of the boundary layer, and variations between cyclones are unexplained. In this study 15 idealized baroclinic life cycles, with a passive tracer included, are simulated to identify the relative importance of two transport processes: horizontal divergence and convergence within the boundary layer and large-scale advection by the warm conveyor belt. Results show that the amount of ventilation is insensitive to surface drag over a realistic range of values. This indicates that although boundary layer processes are necessary for ventilation they do not control the magnitude of ventilation. A diagnostic for the mass flux out of the boundary layer has been developed to identify the synoptic-scale variables controlling the strength of ascent in the warm conveyor belt. A very high level of correlation (R2 values exceeding 0.98) is found between the diagnostic and the actual mass flux computed from the simulations. This demonstrates that the large-scale dynamics control the amount of ventilation, and the efficiency of midlatitude cyclones to ventilate the boundary layer can be estimated using the new mass flux diagnostic. We conclude that meteorological analyses, such as ERA-40, are sufficient to quantify boundary layer ventilation by the large-scale dynamics.

  3. Neocortical dynamics at multiple scales: EEG standing waves, statistical mechanics, and physical analogs.

    Science.gov (United States)

    Ingber, Lester; Nunez, Paul L

    2011-02-01

    The dynamic behavior of scalp potentials (EEG) is apparently due to some combination of global and local processes with important top-down and bottom-up interactions across spatial scales. In treating global mechanisms, we stress the importance of myelinated axon propagation delays and periodic boundary conditions in the cortical-white matter system, which is topologically close to a spherical shell. By contrast, the proposed local mechanisms are multiscale interactions between cortical columns via short-ranged non-myelinated fibers. A mechanical model consisting of a stretched string with attached nonlinear springs demonstrates the general idea. The string produces standing waves analogous to large-scale coherent EEG observed in some brain states. The attached springs are analogous to the smaller (mesoscopic) scale columnar dynamics. Generally, we expect string displacement and EEG at all scales to result from both global and local phenomena. A statistical mechanics of neocortical interactions (SMNI) calculates oscillatory behavior consistent with typical EEG, within columns, between neighboring columns via short-ranged non-myelinated fibers, across cortical regions via myelinated fibers, and also derives a string equation consistent with the global EEG model.

  4. Dynamical scaling in infinitely correlated many-body systems through a quantum phase transition

    Science.gov (United States)

    Acevedo, Oscar Leonardo; Quiroga, Luis; Rodriguez, Ferney Javier; Johnson, Neil

    2013-03-01

    We assess dynamical scaling of many two-level systems (TLSs) infinitely correlated, either through a mediating radiation mode as in the Dicke Model, or through a direct interaction between TLSs as in the Lipkin-Meshkov-Glick model. Those models are characterized by the presence of a Quantum Phase Transition (QPT) in the thermodynamic limit, and they belong to the same universality class. The assessment is done by means of exact computational simulations of finite-size systems under linear rampings of the interaction parameter crossing the quantum critical point. Our results exhibit significant differences with respect to previous works on dynamical scaling across QPTs in the near-adiabatic regime, which have focused on spin-chain models where correlation lengths can be defined. We have confirmed that in infinitely correlated models an effective system size can play the role of the correlation length in traditional scaling arguments. However, due to the infinite correlation among TLSs, the standard Kibble-Zurek mechanism is not realized as the system cannot fully enter an adiabatic evolution during the ordered phase. Also, in the two-level approximation, a suitable deviation from the standard Landau-Zener protocol must be performed in order to obtain scaling collapse.

  5. Scaling symmetries, conservation laws and action principles in one-dimensional gas dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Webb, G M; Zank, G P [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35805 (United States)], E-mail: gary.webb@uah.edu

    2009-11-27

    Scaling symmetries of the planar, one-dimensional gas dynamic equations with adiabatic index {gamma} are used to obtain Lagrangian and Eulerian conservation laws associated with the symmetries. The known Eulerian symmetry operators for the scaling symmetries are converted to the Lagrangian form, in which the Eulerian spatial position of the fluid element is given in terms of the Lagrangian fluid labels. Conditions for a linear combination of the three scaling symmetries to be a divergence or variational symmetry of the action are established. The corresponding Lagrangian and Eulerian form of the conservation laws are determined by application of Noether's theorem. A nonlocal conservation law associated with the scaling symmetries is obtained by applying a nonlocal symmetry operator to the scaling symmetry-conserved vector. An action principle incorporating known conservation laws using Lagrangian constraints is developed. Noether's theorem for the constrained action principle gives the same formulas for the conserved vector as the classical Noether theorem, except that the Lie symmetry vector field now includes the effects of nonlocal potentials. Noether's theorem for the constrained action principle is used to obtain nonlocal conservation laws. The scaling symmetry conservation laws only apply for special forms of the entropy of the gas.

  6. The Dynamic Scaling Study of Vapor Deposition Polymerization: A Monte Carlo Approach

    CERN Document Server

    Tangirala, Sairam; Zhao, Y -P; 10.1103/PhysRevE.81.011605

    2010-01-01

    The morphological scaling properties of linear polymer films grown by vapor deposition polymerization (VDP) are studied by 1+1D Monte Carlo simulations. The model implements the basic processes of random angle ballistic deposition ($F$), free-monomer diffusion ($D$) and monomer adsorption along with the dynamical processes of polymer chain initiation, extension, and merger. The ratio $G=D/F$ is found to have a strong influence on the polymer film morphology. Spatial and temporal behavior of kinetic roughening has been extensively studied using finite-length scaling and height-height correlations $H(r,t)$. The scaling analysis has been performed within the no-overhang approximation and the scaling behaviors at local and global length scales were found to be very different. The global and local scaling exponents for morphological evolution have been evaluated for varying free-monomer diffusion by growing the films at $G$ = $10$, $10^2$, $10^3$, and $10^4$ and fixing the deposition flux $F$. With an increase in ...

  7. Multi-scale dynamical analysis (MSDA) of sea level records versus PDO, AMO, and NAO indexes

    CERN Document Server

    Scafetta, Nicola

    2013-01-01

    Herein I propose a multi-scale dynamical analysis to facilitate the physical interpretation of tide gauge records. The technique uses graphical diagrams. It is applied to six secular-long tide gauge records representative of the world oceans: Sydney, Pacific coast of Australia; Fremantle, Indian Ocean coast of Australia; New York City, Atlantic coast of USA; Honolulu, U.S. state of Hawaii; San Diego, U.S. state of California; and Venice, Mediterranean Sea, Italy. For comparison, an equivalent analysis is applied to the Pacific Decadal Oscillation (PDO) index and to the Atlantic Multidecadal Oscillation (AMO) index. Finally, a global reconstruction of sea level and a reconstruction of the North Atlantic Oscillation (NAO) index are analyzed and compared: both sequences cover about three centuries from 1700 to 2000. The proposed methodology quickly highlights oscillations and teleconnections among the records at the decadal and multidecadal scales. At the secular time scales tide gauge records present relatively...

  8. Investigation of the Static and Dynamic Mechanical Properties of Nano-scale Water

    Science.gov (United States)

    Stambaugh, Corey; Kwon, Soyoung; Jhe, Wonho

    2011-03-01

    The behavior of liquids on the nano-scale has become an area of interest as new fabrication techniques have allowed for increasingly smaller structures to be made. While much work has been done on the interactions forces at liquid and solid interfaces, questions still remain regarding the behavior of nano-scale liquids. By incorporating a micro-electromechanical force sensor (MEMS) into the quartz tuning fork based atomic force microscope (QTF-AFM) probe setup we are able to both manipulate and measure nano-scale water, which in turn provides information beyond the standard AFM approach. Here we look at both the static and dynamic mechanical properties of water formed between the tip of a (QTF-AFM) probe and the polysilicon surface of a MEMS device. Work supported by NSF grant OISE #0853104.

  9. Linking Scales of Sediment Dynamics from Sand Grains to the Synoptic

    Science.gov (United States)

    Calantoni, J.; Palmsten, M.; Penko, A.; Frank, D. P.; Simeonov, J.

    2016-12-01

    In the Sediment Dynamics Section at the U.S. Naval Research Laboratory we perform basic and applied research focused on understanding seafloor, estuarine, and riverine sediments. We are motivated by the need to predict the dynamical properties of sediments. A multi-disciplinary team of scientists and engineers works in a collaborative environment to simulate, model and observe phenomena in both the laboratory and field at scales from the motions of individual sand grains immersed in fluid up to tens of kilometers and several days. Simulation and modeling efforts are focused on a new probabilistic paradigm to bridge the gap from grain scale physics to large-scale morpohdynamics. We propose to utilize a hierarchy of computationally intensive, high fidelity simulations to populate a probabilistic framework to make predictions across a range of cascading length and time scales. The success of our approach relies on rigorous validation of our high fidelity simulations using detailed laboratory and field measurements of fluid-particle turbulence at the scales of interest. Recent advances in optical imaging techniques have made it possible to make highly resolved three-dimensional measurements of fluid-particle turbulent interactions in the laboratory with spatial and temporal resolutions at or near the Kolmogorov scale. Work is ongoing to transition these technologies for use in the field. Synoptic field observational efforts are focused on combining remote sensing with in situ measurements to provide both validation for emerging predictive capabilities and optimization for data assimilation and boundary conditions for operational forecasting. We will present an overview of results from our modeling efforts along with relevant laboratory and field observations.

  10. The spatial scale for cisco recruitment dynamics in Lake Superior during 1978-2007

    Science.gov (United States)

    Rook, Benjamin J.; Hansen, Michael J.; Gorman, Owen T.

    2012-01-01

    The cisco Coregonus artedi was once the most abundant fish species in the Great Lakes, but currently cisco populations are greatly reduced and management agencies are attempting to restore the species throughout the basin. To increase understanding of the spatial scale at which density-independent and density-dependent factors influence cisco recruitment dynamics in the Great Lakes, we used a Ricker stock–recruitment model to identify and quantify the appropriate spatial scale for modeling age-1 cisco recruitment dynamics in Lake Superior. We found that the recruitment variation of ciscoes in Lake Superior was best described by a five-parameter regional model with separate stock–recruitment relationships for the western, southern, eastern, and northern regions. The spatial scale for modeling was about 260 km (range = 230–290 km). We also found that the density-independent recruitment rate and the rate of compensatory density dependence varied among regions at different rates. The density-independent recruitment rate was constant among regions (3.6 age-1 recruits/spawner), whereas the rate of compensatory density dependence varied 16-fold among regions (range = −0.2 to −2.9/spawner). Finally, we found that peak recruitment and the spawning stock size that produced peak recruitment varied among regions. Both peak recruitment (0.5–7.1 age-1 recruits/ha) and the spawning stock size that produced peak recruitment (0.3–5.3 spawners/ha) varied 16-fold among regions. Our findings support the hypothesis that the factors driving cisco recruitment operate within four different regions of Lake Superior, suggest that large-scale abiotic factors are more important than small-scale biotic factors in influencing cisco recruitment, and suggest that fishery managers throughout Lake Superior and the entire Great Lakes basin should address cisco restoration and management efforts on a regional scale in each lake.

  11. Composition Dependence of Dynamic Heterogeneity Time- and Length Scales in [Omim][BF4]/Water Binary Mixtures: Molecular Dynamics Simulation Study.

    Science.gov (United States)

    Pal, Tamisra; Biswas, Ranjit

    2015-12-24

    Composition dependence of four-point dynamic susceptibilities, overlap functions, and other dynamic heterogeneity (DH) parameters have been investigated by using all-atom molecular dynamics simulations for aqueous solutions of the ionic liquid (IL), 1-octyl-3-methyl imidazolium tetrafluoroborate ([Omim][BF4]) covering the pure-to-pure range. Upon addition of water in the IL, the DH time scales become faster and the four-point dynamic susceptibility time scale softens. Evidences for jump motions for both water and ions have been found from the simulated single particle displacements that show strong deviation from Gaussian distribution. Estimated dynamic correlation length for water reflects effects of IL, whereas those for ions remain largely insensitive to the mixture composition. Simulated structural aspects and DH time scales provide microscopic explanations to the existing experimental observations from time-resolved fluorescence and Kerr spectroscopic measurements.

  12. Ammonia oxidizing bacteria community dynamics in a pilot-scale wastewater treatment plant.

    Directory of Open Access Journals (Sweden)

    Xiaohui Wang

    Full Text Available BACKGROUND: Chemoautotrophic ammonia oxidizing bacteria (AOB have the metabolic ability to oxidize ammonia to nitrite aerobically. This metabolic feature has been widely used, in combination with denitrification, to remove nitrogen from wastewater in wastewater treatment plants (WWTPs. However, the relative influence of specific deterministic environmental factors to AOB community dynamics in WWTP is uncertain. The ecological principles underlying AOB community dynamics and nitrification stability and how they are related are also poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: The community dynamics of ammonia oxidizing bacteria (AOB in a pilot-scale WWTP were monitored over a one-year period by Terminal Restriction Fragment Length Polymorphism (T-RFLP. During the study period, the effluent ammonia concentrations were almost below 2 mg/L, except for the first 60 days, indicting stable nitrification. T-RFLP results showed that, during the test period with stable nitrification, the AOB community structures were not stable, and the average change rate (every 15 days of AOB community structures was 10% ± 8%. The correlations between T-RFLP profiles and 10 operational and environmental parameters were tested by Canonical Correlation Analysis (CCA and Mantel test. The results indicated that the dynamics of AOB community correlated most strongly with Dissolved Oxygen (DO, effluent ammonia, effluent Biochemical Oxygen Demand (BOD and temperature. CONCLUSIONS/SIGNIFICANCE: This study suggests that nitrification stability is not necessarily accompanied by a stable AOB community, and provides insight into parameters controlling the AOB community dynamics within bioreactors with stable nitrification.

  13. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L-C [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China); Huang, Y-T [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China); Chang, P-B [Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China)

    2006-10-15

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.

  14. Computational Fluid Dynamics Study on the Effects of RATO Timing on the Scale Model Acoustic Test

    Science.gov (United States)

    Nielsen, Tanner; Williams, B.; West, Jeff

    2015-01-01

    The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). The purpose of this test is to characterize and understand a variety of acoustic phenomena that occur during the early portions of lift off, one being the overpressure environment that develops shortly after booster ignition. The SLS lift off configuration consists of four RS-25 liquid thrusters on the core stage, with two solid boosters connected to each side. Past experience with scale model testing at MSFC (in ER42), has shown that there is a delay in the ignition of the Rocket Assisted Take Off (RATO) motor, which is used as the 5% scale analog of the solid boosters, after the signal to ignite is given. This delay can range from 0 to 16.5ms. While this small of a delay maybe insignificant in the case of the full scale SLS, it can significantly alter the data obtained during the SMAT due to the much smaller geometry. The speed of sound of the air and combustion gas constituents is not scaled, and therefore the SMAT pressure waves propagate at approximately the same speed as occurs during full scale. However, the SMAT geometry is much smaller allowing the pressure waves to move down the exhaust duct, through the trench, and impact the vehicle model much faster than occurs at full scale. To better understand the effect of the RATO timing simultaneity on the SMAT IOP test data, a computational fluid dynamics (CFD) analysis was performed using the Loci/CHEM CFD software program. Five different timing offsets, based on RATO ignition delay statistics, were simulated. A variety of results and comparisons will be given, assessing the overall effect of RATO timing simultaneity on the SMAT overpressure environment.

  15. Stochastic modelling of soil moisture dynamics in a grassland of Qilian Mountain at point scale

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Stochastic modeling of soil moisture dynamics is crucial to the quantitative understanding of plant responses to water stresses, hydrological control of nutrient cycling processes, water competition among plants, and some other ecological dynamics, and thus has become a hotspot in ecohydrology at present. In this paper, we based on the continuously monitored data of soil moisture during 2002-2005 and daily precipitation date of 1992-2006, and tried to make a probabilistic analysis of soil moisture dynamics at point scale in a grassland of Qilian Mountain by integrating the stochastic model improved by Laio and the Monte Carlo method. The results show that the inter-annual variations for the soil moisture patterns at different depths are very significant, and that the coefficient of variance (CV) of surface soil moisture (20 cm) is almost continually kept at about 0.23 whether in the rich or poor rainy years. Interestingly, it has been found that the maximal CV of soil moisture has not always appeared at the surface layer. Comparison of the analytically derived soil moisture probability density function (PDF) with the statistical distribution of the observed soil moisture data suggests that the stochastic model can reasonably describe and predict the soil moisture dynamics of the grassland in Qilian Mountain at point scale. By extracting the statistical information of the historical precipitation data in 1994-2006, and inputting them into the stochastic model, we analytically derived the long-term soil moisture PDF without considering the inter-annual climate fluctuations, and then numerically derived the one when considering the inter-annual fluctuation effects in combination with a Monte-Carlo procedure. It was found that, though the peak position of the probability density distribution significantly moved towards drought when considering the disturbance forces, and its width was narrowed, accordingly its peak value was increased, no significant bimodality was

  16. Dynamics of Particles in Non Scaling Fixed Field Alternating Gradient Accelerators

    Directory of Open Access Journals (Sweden)

    Jones J. K.

    2010-01-01

    Full Text Available Non scaling Fixed-Field Alternating Gradient (FFAG accelerators have an unprece- dented potential for muon acceleration, as well as for medical purposes based on car- bon and proton hadron therapy. They also represent a possible active element for an Accelerator Driven Subcritical Reactor (ADSR. Starting from first principle the Hamil- tonian formalism for the description of the dynamics of particles in non-scaling FFAG machines has been developed. The stationary reference (closed orbit has been found within the Hamiltonian framework. The dependence of the path length on the energy deviation has been described in terms of higher order dispersion functions. The latter have been used subsequently to specify the longitudinal part of the Hamiltonian. It has been shown that higher order phase slip coefficients should be taken into account to adequately describe the acceleration in non-scaling FFAG accelerators. A complete theory of the fast (serpentine acceleration in non-scaling FFAGs has been developed. An example of the theory is presented for the parameters of the Electron Machine with Many Applications (EMMA, a prototype electron non-scaling FFAG to be hosted at Daresbury Laboratory.

  17. Dynamics of Particles in Non Scaling Fixed Field Alternating Gradient Accelerators

    Directory of Open Access Journals (Sweden)

    Tzenov S. I.

    2010-01-01

    Full Text Available Non scaling Fixed-Field Alternating Gradient (FFAG accelerators have an unprecedented potential for muon acceleration, as well as for medical purposes based on carbon and proton hadron therapy. They also represent a possible active element for an Accelerator Driven Subcritical Reactor (ADSR. Starting from first principle the Hamiltonian formalism for the description of the dynamics of particles in non-scaling FFAG machines has been developed. The stationary reference (closed orbit has been found within the Hamiltonian framework. The dependence of the path length on the energy deviation has been described in terms of higher order dispersion functions. The latter have been used subsequently to specify the longitudinal part of the Hamiltonian. It has been shown that higher order phase slip coefficients should be taken into account to adequately describe the acceleration in non-scaling FFAG accelerators. A complete theory of the fast (serpentine acceleration in non-scaling FFAGs has been developed. An example of the theory is presented for the parameters of the Electron Machine with Many Applications (EMMA, a prototype electron non-scaling FFAG to be hosted at Daresbury Laboratory.

  18. Autonomous and Decentralized Optimization of Large-Scale Heterogeneous Wireless Networks by Neural Network Dynamics

    Science.gov (United States)

    Hasegawa, Mikio; Tran, Ha Nguyen; Miyamoto, Goh; Murata, Yoshitoshi; Harada, Hiroshi; Kato, Shuzo

    We propose a neurodynamical approach to a large-scale optimization problem in Cognitive Wireless Clouds, in which a huge number of mobile terminals with multiple different air interfaces autonomously utilize the most appropriate infrastructure wireless networks, by sensing available wireless networks, selecting the most appropriate one, and reconfiguring themselves with seamless handover to the target networks. To deal with such a cognitive radio network, game theory has been applied in order to analyze the stability of the dynamical systems consisting of the mobile terminals' distributed behaviors, but it is not a tool for globally optimizing the state of the network. As a natural optimization dynamical system model suitable for large-scale complex systems, we introduce the neural network dynamics which converges to an optimal state since its property is to continually decrease its energy function. In this paper, we apply such neurodynamics to the optimization problem of radio access technology selection. We compose a neural network that solves the problem, and we show that it is possible to improve total average throughput simply by using distributed and autonomous neuron updates on the terminal side.

  19. Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study

    Science.gov (United States)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.

  20. Direct Numerical Simulations of Small-Scale Gravity Wave Instability Dynamics in Variable Stratification and Shear

    Science.gov (United States)

    Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.

    2015-12-01

    Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.

  1. Individuality manifests in the dynamic reconfiguration of large-scale brain networks during movie viewing

    Science.gov (United States)

    Jang, Changwon; Knight, Elizabeth Quattrocki; Pae, Chongwon; Park, Bumhee; Yoon, Shin-Ae; Park, Hae-Jeong

    2017-01-01

    Individuality, the uniqueness that distinguishes one person from another, may manifest as diverse rearrangements of functional connectivity during heterogeneous cognitive demands; yet, the neurobiological substrates of individuality, reflected in inter-individual variations of large-scale functional connectivity, have not been fully evidenced. Accordingly, we explored inter-individual variations of functional connectivity dynamics, subnetwork patterns and modular architecture while subjects watched identical video clips designed to induce different arousal levels. How inter-individual variations are manifested in the functional brain networks was examined with respect to four contrasting divisions: edges within the anterior versus posterior part of the brain, edges with versus without corresponding anatomically-defined structural pathways, inter- versus intra-module connections, and rich club edge types. Inter-subject variation in dynamic functional connectivity occurred to a greater degree within edges localized to anterior rather than posterior brain regions, without adhering to structural connectivity, between modules as opposed to within modules, and in weak-tie local edges rather than strong-tie rich-club edges. Arousal level significantly modulates inter-subject variability in functional connectivity, edge patterns, and modularity, and particularly enhances the synchrony of rich-club edges. These results imply that individuality resides in the dynamic reconfiguration of large-scale brain networks in response to a stream of cognitive demands. PMID:28112247

  2. The dynamical masses, densities, and star formation scaling relations of Lyα galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Rhoads, James E.; Malhotra, Sangeeta; Richardson, Mark L. A.; McLinden, Emily M. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Finkelstein, Steven L. [Department of Astronomy, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712 (United States); Fynbo, Johan P. U. [DARK Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Tilvi, Vithal S., E-mail: James.Rhoads@asu.edu [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics, Texas A and M University, College Station, TX 77843 (United States)

    2014-01-01

    We present the first dynamical mass measurements for Lyα galaxies at high redshift, based on velocity dispersion measurements from rest-frame optical emission lines and size measurements from Hubble Space Telescope imaging, for nine galaxies drawn from four surveys. We use these measurements to study Lyα galaxies in the context of galaxy scaling relations. The resulting dynamical masses range from 10{sup 9} to 10{sup 10} M {sub ☉}. We also fit stellar population models to our sample and use them to place the Lyα sample on a stellar mass versus line width relation. The Lyα galaxies generally follow the same scaling relation as star-forming galaxies at lower redshift, although, lower stellar mass fits are also acceptable in ∼1/3 of the Lyα galaxies. Using the dynamical masses as an upper limit on gas mass, we show that Lyα galaxies have unusually active star formation for their gas mass surface density. This behavior is consistent with what is observed in starburst galaxies, despite the typically smaller masses and sizes of the Lyα galaxy population. Finally, we examine the mass densities of these galaxies and show that their future evolution likely requires dissipational ('wet') merging. In short, we find that Lyα galaxies are low-mass cousins of larger starbursts.

  3. Scaling Laws in the Transient Dynamics of Firefly-like Oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Rubido, N; Cabeza, C; Marti, A [Igua 4225, Instituto de Fisica, Facultad de Ciencias, Montevideo (Uruguay); Ramirez Avila, G M, E-mail: nrubido@fisica.edu.uy [Institut fuer Physik, Humboldt Universitaet zu Berlin (Germany)

    2011-03-01

    Fireflies constitute a paradigm of pulse-coupled oscillators. In order to tackle the problems related to synchronisation transients of pulse-coupled oscillators, a Light-Controlled Oscillator (LCO) model is presented. A single LCO constitutes a one-dimensional relaxation oscillator described by two distinct time-scales meant to mimic fireflies in the sense that: it is capable of emitting light in a pulse-like fashion and detect the emitted by others in order to adjust its oscillation. We present dynamical results for two interacting LCOs in the torus for all possible coupling configurations. Transient times to the synchronous limit cycle are obtained experimentally and numerically as a function of initial conditions and coupling strengths. Scaling laws are found based on dimensional analysis and critical exponents calculated, thus, global dynamic is restricted. Furthermore, an analytical orthogonal transformation that allows to calculate Floquet multipliers directly from the time series is presented. As a consequence, local dynamics is also fully characterized. This transformation can be easily extended to a system with an arbitrary number of interacting LCOs.

  4. Post-Newtonian dynamical modeling of supermassive black holes in galactic-scale simulations

    CERN Document Server

    Rantala, Antti; Johansson, Peter H; Naab, Thorsten; Lahén, Natalia; Sawala, Till

    2016-01-01

    We present KETJU, a new extension of GADGET-3 based on algorithmic chain regularization. The key feature of the code is the inclusion of regularized regions around every supermassive black hole (SMBH). This allows for simultaneously following global galactic-scale dynamical and astrophysical processes, while solving the dynamics of SMBHs, SMBH binaries and surrounding stellar systems at sub-parsec scales. The KETJU code includes Post-Newtonian terms in the equations of motions of the SMBHs which enables a new SMBH merger criterion based on the gravitational wave coalescence timescale pushing the merger separation of SMBHs down to $\\sim 0.005 \\ \\rm pc$. We test the performance of our code by comparison to NBODY7 and rVINE. We set up dynamically stable multi-component merger progenitor galaxies to study the SMBH binary evolution during galaxy mergers. In our simulation sample the SMBH binaries do not suffer from the final-parsec problem, which we attribute to the triaxiality of the merger remnants. For bulge-on...

  5. Polymer Droplet Dynamic Wetting Measurement at the Nanometer Scale on Smooth Surfaces Using Atomic Force Microscopy

    Science.gov (United States)

    Soleymaniha, Mohammadreza; Felts, Jonathan Robert; Anml Team

    2016-11-01

    Fluid spreading is a complex phenomenon driven strongly by intermolecular forces that requires nanometer scale microscopy to observe and understand. We present a technique for measuring molten polymer spreading dynamics with nanometer scale spatial resolution at elevated temperatures on sapphire, silicon oxide and mica using tapping-mode atomic force microscopy (AFM). The experimental setup is used to measure the spreading dynamics of polystyrene droplets with 2 μ m diameters at 115-175 C. Custom image processing algorithms realize the droplet height, radius, volume and contact angle of the droplet over time. The contact angle evolution followed a power law with time with experimental exponent values of -0.26, -0.08, and -0.2 for sapphire, silicon oxide, and mica, respectively at 115 C. The non-zero steady state contact angles result in a slower evolution of contact angle with time compared to Tanner's Law, as expected. We observe local crystallinity on the molten droplet surface, where crystalline structures appear to nucleate at the contact line and migrate toward the top of the droplet. Increasing the temperature from 115 C to 175 C reduced surface crystallinity from 35% to 12%, consistent with increasingly energetically favorable amorphous phase as the temperature approaches the melting temperature. This platform provides a way to measure spreading dynamics of extremely small volumes of heterogeneously complex fluids not possible through other means. Dr.Jonathan Felts is the principal investigator of the ANML research group in Mechanical Engineering Department of Texas A&M University.

  6. Scale-dependent analyses of precipitation forecasts and cloud properties using the Dynamic State Index

    Directory of Open Access Journals (Sweden)

    Antje Névir Claussnitzer

    2008-12-01

    Full Text Available The objective of this study is a scale-dependent analysis of precipitation forecasts of the German Weather Service's (DWD non-hydrostatic Lokal-Modell (LM, COSMO-DE with regard to dynamical-statistical parameters and cloud properties. We propose a newly designed Dynamic State Index (DSI to evaluate precipitation processes. The DSI is presented in the context of a case study in the synoptic scale and in a statistical approach. The DSI quantitatively describes the deviation from a stationary, adiabatic and reversible solution of the primitive equations. As demonstrated by the example of the winter storm "Kyrill", the analysis of the vertical structure of the DSI gives a relation to the IPV-Thinking, introduced by Hoskins et al. (1985. Furthermore, the DSI-pattern features the characteristic filament-like structure of rainbands with embedded convective cells. In a next step the DSI is not only correlated with modelled precipitation but also with observed precipitation as well as cloud types. The absolute value of the DSI shows moderate correlations with hourly LM and high correlations with hourly COSMO-DE forecast data, based on 24 hour predictions. The statistical analysis of clouds with the index reveals a DSI-threshold, which is used to introduce a novel precipitation activity index of different cloud classes. In conclusion, the results highlight the importance of dynamical processes for the generation of rainfall.

  7. Theory of the dynamics of first-order phase transitions: unstable fixed points, exponents, and dynamical scaling.

    Science.gov (United States)

    Zhong, Fan; Chen, Qizhou

    2005-10-21

    Phase transitions are of great importance in a diversity of fields. They are usually classified into continuous phase transitions and first-order phase transitions (FOPTs). Whereas the former has a well-developed theoretical framework of the renormalization-group (RG) theory, no general theory has yet been developed for the latter that appear far more frequently. Focusing on the dynamics of a generic FOPT in the phi4 model below its critical point, we show by a field-theoretic RG method that it is governed by an unexpected unstable fixed point of the corresponding phi3 model. Accordingly, it exhibits a distinct scaling and universality behavior with unstable exponents different from the critical ones.

  8. Platinum microwire for subdural electrocorticography over human neocortex: millimeter-scale spatiotemporal dynamics.

    Science.gov (United States)

    Kellis, Spencer; Greger, Bradley; Hanrahan, Sara; House, Paul; Brown, Richard

    2011-01-01

    Platinum microwires, terminated at regular intervals to form a grid of contacts, were used to record electric potentials at the surface of the cerebral cortex in human subjects. The microwire grids were manufactured commercially with 75 μm platinum wire and 1 mm grid spacing, and are FDA approved. Because of their small size and spacing, these grids could be used to explore the scale of spatiotemporal dynamics in cortical surface potentials. Electrochemical impedance spectroscopy was used to characterize their recording properties and develop a frequency-dependent electrical model of the micro-electrodes. Data recorded from multiple sites in human cortex were analyzed to explore the relationship between linear correlation and separation distance. A model was developed to explore the impact of cerebrospinal fluid on signal spread among electrodes. Spatial variation in the per-electrode performance decoding articulated speech from face-motor and Wernicke's areas of cortex was explored to understand the scale of information processing at the cortex. We conclude that there are important dynamics at the millimeter scale in human subdural electrocorticography which may be important in maximizing the performance of neural prosthetic applications.

  9. On the simulation of protein folding by short time scale molecular dynamics and distributed computing.

    Science.gov (United States)

    Fersht, Alan R

    2002-10-29

    There are proposals to overcome the current incompatibilities between the time scales of protein folding and molecular dynamics simulation by using a large number of short simulations of only tens of nanoseconds (distributed computing). According to the principles of first-order kinetic processes, a sufficiently large number of short simulations will include, de facto, a small number of long time scale events that have proceeded to completion. But protein folding is not an elementary kinetic step: folding has a series of early conformational steps that lead to lag phases at the beginning of the kinetics. The presence of these lag phases can bias short simulations toward selecting minor pathways that have fewer or faster lag steps and so miss the major folding pathways. Attempts to circumvent the lags by using loosely coupled parallel simulations that search for first-order transitions are also problematic because of the difficulty of detecting transitions in molecular dynamics simulations. Nevertheless, the procedure of using parallel independent simulations is perfectly valid and quite feasible once the time scale of simulation proceeds past the lag phases into a single exponential region.

  10. Dynamical and scale invariance of charged particles slipping on a rough surface with periodic excitation

    Science.gov (United States)

    Zhang, Hao; Luo, Pengcheng; Ding, Huifang

    2017-07-01

    This letter deals with the dynamical and scaling invariance of charged particles slipping on a rough surface with periodic excitation. A variant of the Fermi-Ulam model (FUM) is proposed to describe the transport behavior of the particles when the electric field force Fe is smaller or larger than the friction force Ff, i.e., A 0. For these two cases, the stability of fixed points is analyzed with the help of the eigenvalue analysis method, and further the invariant manifolds are constructed to investigate the dynamical invariance such as energy diffusion for some initial conditions in the case A > 0 and decay process in the case A law of the statistical behavior. It follows that both the FA phenomenon for A > 0 and the velocity decay process for A < 0 satisfy scaling invariance with respect to the nondimensional acceleration A. Besides, for A < 0, the transient number nx is proposed to evaluate the speed of the velocity decay process. More importantly, nx is found to possess the attribute of scaling invariance with respect to both the initial velocity V0 and the nondimensional acceleration A. These results are very useful for the in-depth understanding of the energy transport properties of charged particle systems.

  11. Dynamics of bluff-body-stabilized lean premixed syngas flames in a meso-scale channel

    KAUST Repository

    Lee, Bok Jik

    2016-07-15

    Direct numerical simulations are conducted to investigate the dynamics of lean premixed syngas flames stabilized by a bluff-body in a meso-scale channel at near blow-off conditions, in order to provide fundamental insights into the physical mechanisms responsible for the critical phenomena. Flames in a two-dimensional meso-scale channel with a square flame holder are adopted as the model configuration, and a syngas mixture at an equivalence ratio of 0.5 with the CO:H ratio of 1 is considered. As the inlet velocity is increased, the initially stable steady flames undergo a transition to an unsteady mode of regular asymmetric fluctuation. When the inlet velocity is further increased, the flame is eventually blown off. Between the regular fluctuation mode and blow-off limit, there exists a narrow range of the inlet velocity where the flames exhibit periodic local extinction and recovery. Approaching further to the blow-off limit, the recovery mode fails to occur but the flame survives as a short kernel attached to the base of the bluff-body, until it is completely extinguished as the attached flames are gradually shrunk towards the bluff-body. The results are systematically compared with the hydrogen flame results reported in our earlier study. Examination of the characteristic time scales of relevant processes provided understanding of key mechanisms responsible for the observed differences, thereby allowing improved description of the local extinction and re-ignition dynamics that are critical to flame stabilization.

  12. Cosmological consequences of nearly conformal dynamics at the TeV scale

    Science.gov (United States)

    Konstandin, Thomas; Servant, Géraldine

    2011-12-01

    Nearly conformal dynamics at the TeV scale as motivated by the hierarchy problem can be characterized by a stage of significant supercooling at the electroweak epoch. This has important cosmological consequences. In particular, a common assumption about the history of the universe is that the reheating temperature is high, at least high enough to assume that TeV-mass particles were once in thermal equilibrium. However, as we discuss in this paper, this assumption is not well justified in some models of strong dynamics at the TeV scale. We then need to reexamine how to achieve baryogenesis in these theories as well as reconsider how the dark matter abundance is inherited. We argue that baryonic and dark matter abundances can be explained naturally in these setups where reheating takes place by bubble collisions at the end of the strongly first-order phase transition characterizing conformal symmetry breaking, even if the reheating temperature is below the electroweak scale ~ 100 GeV. In particular, non-thermal production of heavy WIMPs during bubble collisions becomes a well-motivated possibility. We also discuss inflation as well as gravity wave smoking gun signatures of this class of models.

  13. Cosmological Consequences of Nearly Conformal Dynamics at the TeV scale

    CERN Document Server

    Konstandin, Thomas

    2011-01-01

    Nearly conformal dynamics at the TeV scale as motivated by the hierarchy problem can be characterized by a stage of significant supercooling at the electroweak epoch. This has important cosmological consequences. In particular, a common assumption about the history of the universe is that the reheating temperature is high, at least high enough to assume that TeV-mass particles were once in thermal equilibrium. However, as we discuss in this paper, this assumption is not well justified in some models of strong dynamics at the TeV scale. We then need to reexamine how to achieve baryogenesis in these theories as well as reconsider how the dark matter abundance is inherited. We argue that baryonic and dark matter abundances can be explained naturally in these setups where reheating takes place by bubble collisions at the end of the strongly first-order phase transition characterizing conformal symmetry breaking, even if the reheating temperature is below the electroweak scale $\\sim 100$ GeV. We also discuss infla...

  14. Quantification of scaling exponents and dynamical complexity of microwave refractivity in a tropical climate

    Science.gov (United States)

    Fuwape, Ibiyinka A.; Ogunjo, Samuel T.

    2016-12-01

    Radio refractivity index is used to quantify the effect of atmospheric parameters in communication systems. Scaling and dynamical complexities of radio refractivity across different climatic zones of Nigeria have been studied. Scaling property of the radio refractivity across Nigeria was estimated from the Hurst Exponent obtained using two different scaling methods namely: The Rescaled Range (R/S) and the detrended fluctuation analysis(DFA). The delay vector variance (DVV), Largest Lyapunov Exponent (λ1) and Correlation Dimension (D2) methods were used to investigate nonlinearity and the results confirm the presence of deterministic nonlinear profile in the radio refractivity time series. The recurrence quantification analysis (RQA) was used to quantify the degree of chaoticity in the radio refractivity across the different climatic zones. RQA was found to be a good measure for identifying unique fingerprint and signature of chaotic time series data. Microwave radio refractivity was found to be persistent and chaotic in all the study locations. The dynamics of radio refractivity increases in complexity and chaoticity from the Coastal region towards the Sahelian climate. The design, development and deployment of robust and reliable microwave communication link in the region will be greatly affected by the chaotic nature of radio refractivity in the region.

  15. Characterization of the Scale Model Acoustic Test Overpressure Environment using Computational Fluid Dynamics

    Science.gov (United States)

    Nielsen, Tanner; West, Jeff

    2015-01-01

    The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). The purpose of this test is to characterize and understand a variety of acoustic phenomena that occur during the early portions of lift off, one being the overpressure environment that develops shortly after booster ignition. The pressure waves that propagate from the mobile launcher (ML) exhaust hole are defined as the ignition overpressure (IOP), while the portion of the pressure waves that exit the duct or trench are the duct overpressure (DOP). Distinguishing the IOP and DOP in scale model test data has been difficult in past experiences and in early SMAT results, due to the effects of scaling the geometry. The speed of sound of the air and combustion gas constituents is not scaled, and therefore the SMAT pressure waves propagate at approximately the same speed as occurs in full scale. However, the SMAT geometry is twenty times smaller, allowing the pressure waves to move down the exhaust hole, through the trench and duct, and impact the vehicle model much faster than occurs at full scale. The DOP waves impact portions of the vehicle at the same time as the IOP waves, making it difficult to distinguish the different waves and fully understand the data. To better understand the SMAT data, a computational fluid dynamics (CFD) analysis was performed with a fictitious geometry that isolates the IOP and DOP. The upper and lower portions of the domain were segregated to accomplish the isolation in such a way that the flow physics were not significantly altered. The Loci/CHEM CFD software program was used to perform this analysis.

  16. Dynamic hydrophobicity of heterogeneous pillared surfaces at the nano-scale

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Tae Woo; Ha, Man Yeong; Jang, Joon Kyoung [Pusan National University, Busan (Korea, Republic of); Ambrosia, Matthew Stanley [Catholic University of Pusan, Busan (Korea, Republic of)

    2015-04-15

    In this study, the static and dynamic behaviors of nano-scale water droplets on heterogeneous surfaces were investigated using molecular dynamics simulations. The surface consisted of a flat plate and pillar structures. The surface was designed with four pillar heights and three pillar characteristic energies. Simulations were first run so that the water droplet reached the static equilibrium state. Once the static water droplets were in Cassie-Baxter state, increasing the pillar height had very little effect on the contact angle. Droplets on the surface with the strongest pillar characteristic energy never reached the Cassie-Baxter state and contact angles tended to decrease with increasing pillar height. Then five forces were applied to the water droplets parallel to the surface to observe the dynamic behavior of the droplets. Then, the effect of the pillar characteristic energy on the behavior of the dynamic water droplet was discussed using the contact angle hysteresis ( cosθ{sub Re} - cosθ{sub Ad}) as the pillar height and the magnitude of the applied force varied. When compared to the homogeneous cases, it was found that except at the lowest pillar height all of the lower pillar characteristic energy cases were hydrophobic and did not depend much on pillar height or magnitude of force. Whereas the higher pillar characteristic energy cases were generally hydrophilic and the hydrophobicity depended greatly on the magnitude of the force.

  17. Application of scaled boundary finite element method in static and dynamic fracture problems

    Institute of Scientific and Technical Information of China (English)

    Zhenjun Yang

    2006-01-01

    The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM)and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion.F0r dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods.

  18. Phase change in an opinion dynamics model with separation of time scales

    CERN Document Server

    Iñiguez, Gerardo; Kaski, Kimmo K; Barrio, R A

    2010-01-01

    We define an opinion formation model of agents in a 1d ring, where the opinion of an agent evolves due to its interactions with close neighbors and due to its either positive or negative attitude toward the overall mood of all the other agents. While the dynamics of the agent's opinion is described with an appropriate differential equation, from time to time pairs of agents are allowed to change their locations to improve the homogeneity of opinion (or comfort feeling) with respect to their short range environment. In this way the time scale of transaction dynamics and that of environment update are well separated and controlled by a single parameter. By varying this parameter we discovered a phase change in the number of undecided individuals. This phenomenon arises from the fact that too frequent location exchanges among agents result in frustration in their opinion formation. Our mean field analysis supports this picture.

  19. Water hexamer: Self-consistent phonons versus reversible scaling versus replica exchange molecular dynamics

    CERN Document Server

    Brown, Sandra E

    2014-01-01

    Classical free energies for the cage and prism isomers of water hexamer computed by the self- consistent phonons (SCP) method and reversible scaling (RS) method are presented for several flexible water potentials. Both methods have been augmented with a rotational correction for improved accuracy when working with clusters. Comparison of the SCP results with the RS results suggests a fairly broad temperature range over which the SCP approximation can be expected to give accurate results for systems of water clusters, and complements a previously reported assessment of SCP. Discrepancies between the SCP and RS results presented here, and recently published replica exchange molecular dynamics (REMD) results bring into question the convergence of the REMD and accompanying replica exchange path integral molecular dynamics results. In addition to the ever-present specter of unconverged results, several possible sources for the discrepancy are explored based on inherent characteristics of the methods used.

  20. Intrinsic dynamics of heart regulatory systems on short time-scales: from experiment to modelling

    CERN Document Server

    Khovanov, I A; McClintock, P V E; Stefanovska, A

    2009-01-01

    We discuss open problems related to the stochastic modeling of cardiac function. The work is based on an experimental investigation of the dynamics of heart rate variability (HRV) in the absence of respiratory perturbations. We consider first the cardiac control system on short time scales via an analysis of HRV within the framework of a random walk approach. Our experiments show that HRV on timescales of less than a minute takes the form of free diffusion, close to Brownian motion, which can be described as a non-stationary process with stationary increments. Secondly, we consider the inverse problem of modeling the state of the control system so as to reproduce the experimentally observed HRV statistics of. We discuss some simple toy models and identify open problems for the modelling of heart dynamics.

  1. Dynamic, large-scale profiling of transcription factor activity from live cells in 3D culture.

    Directory of Open Access Journals (Sweden)

    Michael S Weiss

    Full Text Available BACKGROUND: Extracellular activation of signal transduction pathways and their downstream target transcription factors (TFs are critical regulators of cellular processes and tissue development. The intracellular signaling network is complex, and techniques that quantify the activities of numerous pathways and connect their activities to the resulting phenotype would identify the signals and mechanisms regulating tissue development. The ability to investigate tissue development should capture the dynamic pathway activity and requires an environment that supports cellular organization into structures that mimic in vivo phenotypes. Taken together, our objective was to develop cellular arrays for dynamic, large-scale quantification of TF activity as cells organized into spherical structures within 3D culture. METHODOLOGY/PRINCIPAL FINDINGS: TF-specific and normalization reporter constructs were delivered in parallel to a cellular array containing a well-established breast cancer cell line cultured in Matrigel. Bioluminescence imaging provided a rapid, non-invasive, and sensitive method to quantify luciferase levels, and was applied repeatedly on each sample to monitor dynamic activity. Arrays measuring 28 TFs identified up to 19 active, with 13 factors changing significantly over time. Stimulation of cells with β-estradiol or activin A resulted in differential TF activity profiles evolving from initial stimulation of the ligand. Many TFs changed as expected based on previous reports, yet arrays were able to replicate these results in a single experiment. Additionally, arrays identified TFs that had not previously been linked with activin A. CONCLUSIONS/SIGNIFICANCE: This system provides a method for large-scale, non-invasive, and dynamic quantification of signaling pathway activity as cells organize into structures. The arrays may find utility for investigating mechanisms regulating normal and abnormal tissue growth, biomaterial design, or as a

  2. Phase Transition Dynamics of Collective Decision in Scale-Free Networks

    Institute of Scientific and Technical Information of China (English)

    DUAN Wen-Qi; CHEN Zhong; LIU Zeng-Rong

    2005-01-01

    @@ A strategic collective decision model is introduced to investigate the role of decision transmission mechanism and interaction networks in determining the collective decision dynamics. Assuming that agents are located in a scale-free network and their decisions are interdependent of each other. In our model, it is found that the effective decision transmission rate -λ exists a threshold -λc = 1, which marks the transition between the two regimes, i.e.the decision spreading and the decision disappearing in the population. Furthermore, -λ is mainly determined by the decision transmission mechanism and interaction network's topology.

  3. Efficient Large Scale Electromagnetics Simulations Using Dynamically Adapted Meshes with the Discontinuous Galerkin Method

    CERN Document Server

    Schnepp, Sascha M

    2011-01-01

    A framework for performing dynamic mesh adaptation with the discontinuous Galerkin method (DGM) is presented. Adaptations include modifications of the local mesh step size (h-adaptation) and the local degree of the approximating polynomials (p-adaptation) as well as their combination. The computation of the approximation within locally adapted elements is based on projections between finite element spaces (FES), which are shown to preserve the upper limit of the electromagnetic energy. The formulation supports high level hanging nodes and applies precomputation of surface integrals for increasing computational efficiency. A full wave simulation of electromagnetic scattering form a radar reflector demonstrates the applicability to large scale problems in three-dimensional space.

  4. A Dynamic Two-Phase Pore-Scale Model of Imbibition

    DEFF Research Database (Denmark)

    Mogensen, Kristian; Stenby, Erling Halfdan

    1998-01-01

    We present a dynamic pore-scale network model of imbibition, capable of calculating residual oil saturation for any given capillary number, viscosity ratio, contact angle, and aspect ratio. Our goal is not to predict the outcome of core floods, but rather to perform a sensitivity analysis...... of the above-mentioned parameters, except from the viscosity ratio. We find that contact angle, aspect ratio, and capillary number all have a significant influence on the competition between piston-lice advance, leading to high recovery, and snap-off, causing oil entrapment. Due to significant CPU...

  5. Oscillation of Third-order Delay Dynamic Equations on Time Scales

    Institute of Scientific and Technical Information of China (English)

    YANG Jia-shan

    2014-01-01

    This paper is concerned with the oscillatory behavior of a class of third-order nonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequality technique, we establish some new oscilla-tion criteria for the equations. Our results extend and improve some known results, but also unify the oscillation of third-order nonlinear variable delay functional differential equations and functional difference equations with a nonlinear neutral term. Some examples are given to illustrate the importance of our results.

  6. Large-Scale Context-Aware Volume Navigation using Dynamic Insets

    KAUST Repository

    Al-Awami, Ali

    2012-07-01

    Latest developments in electron microscopy (EM) technology produce high resolution images that enable neuro-scientists to identify and put together the complex neural connections in a nervous system. However, because of the massive size and underlying complexity of this kind of data, processing, navigation and analysis suffer drastically in terms of time and effort. In this work, we propose the use of state-of- the-art navigation techniques, such as dynamic insets, built on a peta-scale volume visualization framework to provide focus and context-awareness to help neuro-scientists in their mission to analyze, reconstruct, navigate and explore EM neuroscience data.

  7. Origin of end-of-aging and subaging scaling behavior in glassy dynamics

    DEFF Research Database (Denmark)

    Sibani, Paolo; Kenning, Gregory G.

    2010-01-01

    the field change. The response curve obtained for different values of $t_w$ are  usually collapsed using  values of  $\\mu$  slightly below  one, a scaling behavior generally known as \\emph{sub-aging}.    Recent spin glass Thermoremanent Magnetization experiments have  shown that  the value of $\\mu......-aging and end of aging behavior in glassy dynamics. The mechanism  combines real  and configuration space properties of the  state produced by the initial thermal quench which initiates the aging process....

  8. A Study of Maglev Vehicle Dynamics Using a Reduced-Scale Vehicle Model Experiment Apparatus

    Science.gov (United States)

    Suzuki, Erimitsu; Watanabe, Ken; Hoshino, Hironori; Yonezu, Takenori; Nagai, Masao

    An experiment apparatus using a 1/12 scale model of a train car body was constructed to study the characteristics of vehicle dynamics of magnetically levitated high speed surface transport (Maglev) systems that differ from conventional railway systems. Consisting of six-axis parallel link motion bases to reproduce bogie motions, an aluminum car body, and secondary suspension units, this apparatus is expected to be useful in examinations of control methods to reduce vehicle vibrations and to generate data useful in eventually improving the precision of computer simulations. This report provides an overview of the Maglev vehicle model experiment apparatus and results of initial tests examining its fundamental characteristics.

  9. Stability and periodicity of solutions for delay dynamic systems on time scales

    Directory of Open Access Journals (Sweden)

    Zhi-Qiang Zhu

    2014-04-01

    Full Text Available This article concerns the stability and periodicity of solutions to the delay dynamic system $$ x^{\\triangle}(t=A(t x(t + F(t, x(t, x(g(t+C(t $$ on a time scale. By the inequality technique for vectors, we obtain some stability criteria for the above system. Then, by using the Horn fixed point theorem, we present some conditions under which our system is asymptotically periodic and its periodic solution is unique. In particular, the periodic solution is positive under proper assumptions.

  10. Time-dependent fluorescence Stokes shift and molecular-scale dynamics in alginate solutions and hydrogels

    Science.gov (United States)

    Dandapat, Manika; Mandal, Debabrata

    2015-05-01

    Alginates are water-soluble polysaccharides that bind metal cations like Ca2+, producing hydrogels. Here, we have determined time-dependent fluorescence Stokes shift of a guest fluorophore to elucidate molecular length-scale local dynamics within alginate-based solutions and hydrogels. We find a major bulk water-like fast response emanating from large water pools interspersed between the polysaccharide chains, together with a minor but significant slow response. The possible origin of the latter is discussed in terms of either water molecules constituting the polysaccharide hydration shells or ion distribution and diffusion around the fluorophore dipole, or microscopic structural inhomogeneity inside the alginate-based media.

  11. Understanding dynamics of large-scale atmospheric vortices with moist-convective shallow water model

    Science.gov (United States)

    Rostami, M.; Zeitlin, V.

    2016-08-01

    Atmospheric jets and vortices which, together with inertia-gravity waves, constitute the principal dynamical entities of large-scale atmospheric motions, are well described in the framework of one- or multi-layer rotating shallow water models, which are obtained by vertically averaging of full “primitive” equations. There is a simple and physically consistent way to include moist convection in these models by adding a relaxational parameterization of precipitation and coupling precipitation with convective fluxes with the help of moist enthalpy conservation. We recall the construction of moist-convective rotating shallow water model (mcRSW) model and give an example of application to upper-layer atmospheric vortices.

  12. A Temporal Domain Decomposition Algorithmic Scheme for Large-Scale Dynamic Traffic Assignment

    Directory of Open Access Journals (Sweden)

    Eric J. Nava

    2012-03-01

    This paper presents a temporal decomposition scheme for large spatial- and temporal-scale dynamic traffic assignment, in which the entire analysis period is divided into Epochs. Vehicle assignment is performed sequentially in each Epoch, thus improving the model scalability and confining the peak run-time memory requirement regardless of the total analysis period. A proposed self-turning scheme adaptively searches for the run-time-optimal Epoch setting during iterations regardless of the characteristics of the modeled network. Extensive numerical experiments confirm the promising performance of the proposed algorithmic schemes.

  13. Reliable Dynamic Voltage Scaling for Real-Time Systems with Uncertain Execution Time and Resource Constraints

    Directory of Open Access Journals (Sweden)

    G. AZHAGUNILA,

    2011-02-01

    Full Text Available The main aim of this work is to develop a Dynamic Voltage Scaling (DVS algorithm for real- time system with resource constraints and the system thus developed is fault tolerant as well. The system is assumed to contain independent periodic tasks. Earliest Deadline Firstscheduling algorithm is considered in this. The algorithm helps in meeting the deadlines of all the tasks and also ensures that the total power consumption is minimized. The other objective is to develop a fault tolerant system. The proposed system is designed to handle hardware faults. Thus the proposed system is energy efficient and reliable.

  14. Dynamic Performance of On-off Operation for a Small Scale Direct Fired Absorption Chiller

    Institute of Scientific and Technical Information of China (English)

    王磊; 陆震

    2001-01-01

    A part load operation by turning the burner on and off intermittently is effective for a small scale direct fired absorption chiller. The dynamic performance of the system has been investigated. The relationship between pressure, temperature and concentration of the lithium bromide solution have been analyzed. The result obtained indicates that the pressure of the high pressure generator and the temperature of the exhausted smoke are the most sensitive parameters. It is also found that the transition time from a full load to a part load condition is quite long, and part load relative cooling capacity is almost near the intermittent running time ratio and oil consumption ratio.

  15. Cluster Monte Carlo and dynamical scaling for long-range interactions

    CERN Document Server

    Flores-Sola, Emilio; Kenna, Ralph; Berche, Bertrand

    2016-01-01

    Many spin systems affected by critical slowing down can be efficiently simulated using cluster algorithms. Where such systems have long-range interactions, suitable formulations can additionally bring down the computational effort for each update from O($N^2$) to O($N\\ln N$) or even O($N$), thus promising an even more dramatic computational speed-up. Here, we review the available algorithms and propose a new and particularly efficient single-cluster variant. The efficiency and dynamical scaling of the available algorithms are investigated for the Ising model with power-law decaying interactions.

  16. COMPUTATIONAL FLUID DYNAMICS MODELING OF SCALED HANFORD DOUBLE SHELL TANK MIXING - CFD MODELING SENSITIVITY STUDY RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    JACKSON VL

    2011-08-31

    The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.

  17. Dynamical properties of the growing continuum using multiple-scale method

    Directory of Open Access Journals (Sweden)

    Hynčík L.

    2008-12-01

    Full Text Available The theory of growth and remodeling is applied to the 1D continuum. This can be mentioned e.g. as a model of the muscle fibre or piezo-electric stack. Hyperelastic material described by free energy potential suggested by Fung is used whereas the change of stiffness is taken into account. Corresponding equations define the dynamical system with two degrees of freedom. Its stability and the properties of bifurcations are studied using multiple-scale method. There are shown the conditions under which the degenerated Hopf's bifurcation is occuring.

  18. Pore scale investigation of textural effects on salt precipitation dynamics and patterns in drying porous media

    Science.gov (United States)

    Norouzi Rad, Mansoureh; Shokri, Nima

    2014-05-01

    During stage-1 evaporation from saline porous media, the capillary-induced liquid flow from the interior to the surface of porous media supplies the evaporative demand and transfers the dissolved salt toward the surface where evaporation occurs. This mode of mass transfer is influenced by several factors such as properties of the evaporating fluid and transport properties of porous media. In this work, we carried out a comprehensive pore scale study using X-ray micro-tomography to understand the effects of the texture on the dynamics of salt precipitation and deposition patterns in drying saline porous media. To do so, four different samples of quartz sand with different particle size distributions were used enabling us to constrain the effects of particle size on the salt precipitation patterns and dynamics. The packed beds were saturated with NaCl solution of 3 Molal and the X-ray imaging was continued for 22 hours with temporal resolution of 30 min resulting in pore scale information about the evaporation and precipitation dynamics. During evaporation from saline porous media, salt concentration continuously increases in preferential evaporating sites at the surface until it reaches the solubility limit which is followed by salt precipitation. Thanking to the pore-scale information, the effects of pore size distribution on the dynamics and patterns of salt precipitation were delineated with high spatial and temporal resolutions. Our results show more precipitation at the early stage of the evaporation in the case of sand with the larger particle size due to the presence of a fewer evaporation sites at the surface. Having more preferential evaporation sites at the surface of sand with finer particle sizes affects the patterns and thickness of the salt crust deposited on the surface such that a thinner salt crust was formed in the case of sand with smaller particle size which covered a larger area at the surface as opposed to the thicker patchy crusts in samples

  19. Spatial scale invariance of aggregated dynamics - Application to crops cycle observed from space

    Science.gov (United States)

    Mangiarotti, S.; Le Jean, F.

    2014-12-01

    Observational data is always associated to specific time and space scales. When the observed area of study is homogeneous, the same dynamics can be expected at different observed scales. It is generally not the case. This is a common obstacle when comparing data or products of different resolution. This question is investigated here considering the cycles of rainfed crops observed from space in semi-arid regions. In such context, the rainfed crops are coupled to the climatic dynamics in a synchronized way, the observational signal can thus be seen as an aggregation of phase synchronized dynamics. In the first part of this work, a case study is implemented. Rössler chaotic systems are used for this purpose as elementary oscillators relating to homogeneous behavior. The 'observational' signal is obtained by aggregating additively the signals of several elementary chaotic systems. Analytically, it is found that the aggregated signal can be approximated by the Rössler system itself but with some parameterization changes. This result can be generalized to any system for which a canonical approximation is possible. Using the global modeling technique [1], this theoretical result is then illustrated practically, by showing that an approximation of the Rössler dynamics can be retrieved, without any a priori knowledge, from the aggregated signal. In the second part, the cycle of cereal crops observed from space in semi-arid conditions is investigated from real observational data (the GIMMS product of Normalized Difference Vegetation Index [2] is used for this purpose). A low-dimensional chaotic model could recently be obtained from a spatially aggregated signal which presents properties never observed from real data before: a toroidal and weakly dissipative dynamics [3]. These unusual properties are then retrieved at various places and scales. [1] Mangiarotti S., Coudret R., Drapeau L. & Jarlan L., 2012. Polynomial search and Global modelling: two algorithms for modeling

  20. Efficient preconditioning of the electronic structure problem in large scale ab initio molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Schiffmann, Florian; VandeVondele, Joost, E-mail: Joost.VandeVondele@mat.ethz.ch [Nanoscale Simulations, Department of Materials, ETH Zürich, Wolfgang-Pauli-Str. 27, CH-8093 Zürich (Switzerland)

    2015-06-28

    We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling’s iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filtering small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step.

  1. Improved Multibody Dynamics for Investigating Energy Dissipation in Train Collisions Based on Scaling Laws

    Directory of Open Access Journals (Sweden)

    Heng Shao

    2016-01-01

    Full Text Available This study aimed to investigate energy dissipation in train collisions. A 1/8 scaled train model, about one-dimensional in longitudinal direction, was used to carry out a scaled train collision test. Corresponding multibody dynamic simulations were conducted using traditional and improved method model (IMM in ADAMS. In IMM, the connection between two adjacent cars was expressed by a nonlinear spring and energy absorbing structures were equivalently represented by separate forces, instead of one force. IMM was able to simulate the motion of each car and displayed the deformation of structures at both ends of the cars. IMM showed larger deformations and energy absorption of structures in moving cars than those in stationary cars. Moreover, the asymmetry in deformation proportion in main energy absorbing structures decreased with increasing collision speed. The asymmetry decreased from 11.69% to 3.60% when the collision speed increased from 10 km/h to 36 km/h.

  2. Dynamical Properties of Scaled Atomic Wehrl Entropy of Multiphoton JCM in the Presence of Atomic Damping

    Directory of Open Access Journals (Sweden)

    S. Abdel-Khalek

    2013-01-01

    Full Text Available We study the dynamics of the atomic inversion, scaled atomic Wehrl entropy, and marginal atomic Q-function for a single two-level atom interacting with a one-mode cavity field taking in the presence of atomic damping. We obtain the exact solution of the master equation in the interaction picture using specific initial conditions. We examine the effects of atomic damping parameter and number of multiphoton transition on the scaled atomic Wehrl entropy, atomic Q-function, and their marginal distribution. We observe an interesting monotonic relation between the different physical quantities in the case of different values of the number of photon transition during the time evolution.

  3. Solids mixing in bubbling fluidized beds: CFD-based analysis of Bubble Dynamics and Time Scales

    Science.gov (United States)

    Bakshi, Akhilesh; Altantzis, Christos; Ghoniem, Ahmed

    2016-11-01

    In bubbling fluidized bed reactors, solids mixing is critical because it directly affects fuel segregation and residence time. However, there continues to be a lack of understanding because (a) most diagnostic techniques are only feasible in lab-scale setups and (b) the dynamics are sensitive to the operating conditions. Thus, quantitative estimates of mixing (e.g., dispersion coefficient, mixing indices) often span orders of magnitude although it is well accepted that the micro-mixing and gross circulation of solid particles is driven by bubble motion. To quantify this dependence, solids mixing is investigated using fine-grid 3D CFD simulations of a large 50 cm diameter fluidized bed. Detailed diagnostics of the computed flow-field data are performed using MS3DATA, a tool that we developed to detect and track bubbles, and the solids motion is correlated with the spatial and size distribution of bubbles. This study will be useful for quantifying mixing at commercial scales.

  4. Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks.

    Science.gov (United States)

    Uhlhaas, Peter J; Singer, Wolf

    2012-09-20

    In recent years, numerous studies have tested the relevance of neural oscillations in neuropsychiatric conditions, highlighting the potential role of changes in temporal coordination as a pathophysiological mechanism in brain disorders. In the current review, we provide an update on this hypothesis because of the growing evidence that temporal coordination is essential for the context and goal-dependent, dynamic formation of large-scale cortical networks. We shall focus on issues that we consider particularly promising for a translational research program aimed at furthering our understanding of the origins of neuropsychiatric disorders and the development of effective therapies. We will focus on schizophrenia and autism spectrum disorders (ASDs) to highlight important issues and challenges for the implementation of such an approach. Specifically, we will argue that deficits in temporal coordination lead to a disruption of functional large-scale networks, which in turn can account for several specific dysfunctions associated with these disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Dynamic model of frequency control in Danish power system with large scale integration of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2013-01-01

    power system model with large scale of wind power is developed and a case study for an inaccurate wind power forecast is investigated. The goal of this work is to develop an adequate power system model that depicts relevant dynamic features of the power plants and compensates for load generation......This work evaluates the impact of large scale integration of wind power in future power systems when 50% of load demand can be met from wind power. The focus is on active power balance control, where the main source of power imbalance is an inaccurate wind speed forecast. In this study, a Danish...... imbalances, caused by inaccurate wind speed forecast, by an appropriate control of the active power production from power plants....

  6. Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays.

    Science.gov (United States)

    Suzuki, Hiroo; Kaneko, Toshiro; Shibuta, Yasushi; Ohno, Munekazu; Maekawa, Yuki; Kato, Toshiaki

    2016-06-02

    Adding a mechanical degree of freedom to the electrical and optical properties of atomically thin materials can provide an excellent platform to investigate various optoelectrical physics and devices with mechanical motion interaction. The large scale fabrication of such atomically thin materials with suspended structures remains a challenge. Here we demonstrate the wafer-scale bottom-up synthesis of suspended graphene nanoribbon arrays (over 1,000,000 graphene nanoribbons in 2 × 2 cm(2) substrate) with a very high yield (over 98%). Polarized Raman measurements reveal graphene nanoribbons in the array can have relatively uniform-edge structures with near zigzag orientation dominant. A promising growth model of suspended graphene nanoribbons is also established through a comprehensive study that combined experiments, molecular dynamics simulations and theoretical calculations with a phase-diagram analysis. We believe that our results can contribute to pushing the study of graphene nanoribbons into a new stage related to the optoelectrical physics and industrial applications.

  7. A Numerical Method of Large-Scale Concrete Displacing Boom Dynamic and Experimental Validation

    Directory of Open Access Journals (Sweden)

    Wu Ren

    2014-01-01

    Full Text Available Concrete displacing boom is large-scale motion manipulator. During the long distance pouring the postures needs to frequently change. This makes the real-time dynamic analysis and health monitoring difficult. Virtual spring-damper method is adopted to establish the equivalent hydraulic actuator model. Besides boom cylinder joint clearance is taken into account. Then transfer matrix method is used to build the multibody concrete placing boom model by dividing the system into two substructures. Next typical working conditions displacements and accelerations during the pouring process are studied. The results of the numerical method are correct and feasible compared with Recurdyn software and the experimental ones. So it provides reference to the real-time monitoring and structure design for such light weight large scale motion manipulators.

  8. Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays

    Science.gov (United States)

    Suzuki, Hiroo; Kaneko, Toshiro; Shibuta, Yasushi; Ohno, Munekazu; Maekawa, Yuki; Kato, Toshiaki

    2016-06-01

    Adding a mechanical degree of freedom to the electrical and optical properties of atomically thin materials can provide an excellent platform to investigate various optoelectrical physics and devices with mechanical motion interaction. The large scale fabrication of such atomically thin materials with suspended structures remains a challenge. Here we demonstrate the wafer-scale bottom-up synthesis of suspended graphene nanoribbon arrays (over 1,000,000 graphene nanoribbons in 2 × 2 cm2 substrate) with a very high yield (over 98%). Polarized Raman measurements reveal graphene nanoribbons in the array can have relatively uniform-edge structures with near zigzag orientation dominant. A promising growth model of suspended graphene nanoribbons is also established through a comprehensive study that combined experiments, molecular dynamics simulations and theoretical calculations with a phase-diagram analysis. We believe that our results can contribute to pushing the study of graphene nanoribbons into a new stage related to the optoelectrical physics and industrial applications.

  9. Large-scale ruthenium- and enzyme-catalyzed dynamic kinetic resolution of (rac-1-phenylethanol

    Directory of Open Access Journals (Sweden)

    Bäckvall Jan-E

    2007-12-01

    Full Text Available Abstract The scale-up of the ruthenium- and enzyme-catalyzed dynamic kinetic resolution (DKR of (rac-1-phenylethanol (2 is addressed. The immobilized lipase Candida antarctica lipase B (CALB was employed for the resolution, which shows high enantioselectivity in the transesterification. The ruthenium catalyst used, (η 5-C5Ph5RuCl(CO2 1, was shown to possess very high reactivity in the "in situ" redox racemization of 1-phenylethanol (2 in the presence of the immobilized enzyme, and could be used in 0.05 mol% with high efficiency. Commercially available isopropenyl acetate was employed as acylating agent in the lipase-catalyzed transesterifications, which makes the purification of the product very easy. In a successful large-scale DKR of 2, with 0.05 mol% of 1, (R-1-phenylethanol acetate (3 was obtained in 159 g (97% yield in excellent enantiomeric excess (99.8% ee.

  10. Rainwater Harvesting in South India: Understanding Water Storage and Release Dynamics at Tank and Catchment Scales

    Science.gov (United States)

    Basu, N. B.; Van Meter, K. J.; Mclaughlin, D. L.; Steiff, M.

    2015-12-01

    Rainwater harvesting, the small-scale collection and storage of runoff for irrigated agriculture, is recognized as a sustainable strategy for ensuring food security, especially in monsoonal landscapes in the developing world. In south India, these strategies have been used for millennia to mitigate problems of water scarcity. However, in the past 100 years many traditional rainwater harvesting systems have fallen into disrepair due to increasing dependence on groundwater. With elevated declines in groundwater resources, there is increased effort at the state and national levels to revive older systems. Critical to the success of such efforts is an improved understanding of how these ancient water-provisioning systems function in contemporary landscapes with extensive groundwater pumping and shifted climatic regimes. Knowledge is especially lacking regarding the water-exchange dynamics of these rainwater harvesting "tanks" at tank and catchment scales, and how these exchanges regulate tank performance and catchment water balances. Here, we use fine-scale water level variations to quantify daily fluxes of groundwater, evapotranspiration, and sluice outflows in four tanks over the 2013 northeast monsoon season in a tank cascade that covers a catchment area of 28.2 km2. Our results indicate a distinct spatial pattern in groundwater-exchange dynamics, with the frequency and magnitude of groundwater inflow events (as opposed to outflow) increasing down the cascade of tanks. The presence of tanks in the landscape dramatically alters the catchment water balance, with catchment-scale runoff:rainfall ratios decreasing from 0.29 without tanks to 0.04 - 0.09 with tanks. Recharge:rainfall ratios increase in the presence of tanks, from ~0.17 in catchments without tanks to ~ 0.26 in catchments with tanks. Finally, our results demonstrate how more efficient management of sluice outflows can lead to the tanks meeting a higher fraction of crop water requirements.

  11. Quantum dynamics via Planck-scale-stepped action-carrying 'Graph Paths'

    Energy Technology Data Exchange (ETDEWEB)

    Chew, Geoffrey F.

    2003-05-05

    A divergence-free, parameter-free, path-based discrete-time quantum dynamics is designed to not only enlarge the achievements of general relativity and the standard particle model, by approximations at spacetime scales far above Planck scale while far below Hubble scale, but to allow tackling of hitherto inaccessible questions. ''Path space'' is larger than and precursor to Hilbert-space basis. The wave-function-propagating paths are action-carrying structured graphs-cubic and quartic structured vertices connected by structured ''fermionic'' or ''bosonic'' ''particle'' and ''nonparticle'' arcs. A Planck-scale path step determines the gravitational constant while controlling all graph structure. The basis of the theory's (zero-rest-mass) elementary-particle Hilbert space (which includes neither gravitons nor scalar bosons) resides in particle arcs. Nonparticle arcs within a path are responsible for energy and rest mass.

  12. An Empirical Relation Between The Large-Scale Magnetic Field And The Dynamical Mass In Galaxies

    CERN Document Server

    Tabatabaei, F S; Knapen, J H; Beckman, J E; Koribalski, B; Elmegreen, B G

    2015-01-01

    The origin and evolution of cosmic magnetic fields as well as the influence of the magnetic fields on the evolution of galaxies are unknown. Though not without challenges, the dynamo theory can explain the large-scale coherent magnetic fields which govern galaxies, but observational evidence for the theory is so far very scarce. Putting together the available data of non-interacting, non-cluster galaxies with known large-scale magnetic fields, we find a tight correlation between the integrated polarized flux density and the rotation speed, v(rot), of galaxies. This leads to an almost linear correlation between the large-scale magnetic field B and v(rot), assuming that the number of cosmic ray electrons is proportional to the star formation rate. This correlation cannot be attributed to an active linear dynamo processes, as no correlation holds with shear or angular speed. It indicates instead a coupling between the large-scale magnetic field and the dynamical mass of the galaxies, B~M(dyn)^{0.2-0.3}. Hence, f...

  13. SMALL-SCALE MODELING OF DYNAMIC FACILITIES FOR PROTECTION OF HYDROSYSTEM TAILRACES

    Directory of Open Access Journals (Sweden)

    Kuznetsova Y. A.

    2015-11-01

    Full Text Available To study the formation of plunge basin in the Cheboksary hydroplant, we used a scale model of the spillway dam and all structures in the tailrace, installed in the slot flume. When we passed the flow corresponding to the diversion flow of the hydroplant with a glance to the modeling scale, it was found that the plunge basin was formed behind the end fixing of the spillway apron. To research the dynamic facilities of hydrosystem tailrace protection against erosion, we used a small glass flume with a model of the roundcrested weir. For the experiment, the water-surface elevations were built in the flume without the weir, and the uniform motion area was established. In MathCAD software environment, the curve of the flow of measuring rectangular weir of the flume was created. Because of measurements, the curve of water surface by the flow motion through the round-crested weir was made. As the main criterion for modeling, the criterion of Froude was selected. Scale of modeling of flow parameters was determined. For testing, models of hydrodynamic profile and sail structure with streamforming sluice valves were built. The process of sand washout from the flume bottom and formation of the bottom ridges when installing the profile was photographed. Impact of the profile on the flow and its relation with the formation of the bottom topography were studied. Full-scale values of geometric parameters of the bottom ridges and their movement velocity were established as well

  14. Thermodynamic scaling of molecular dynamics in supercooled liquid state of pharmaceuticals: Itraconazole and ketoconazole.

    Science.gov (United States)

    Tarnacka, M; Madejczyk, O; Adrjanowicz, K; Pionteck, J; Kaminska, E; Kamiński, K; Paluch, M

    2015-06-14

    Pressure-Volume-Temperature (PVT) measurements and broadband dielectric spectroscopy were carried out to investigate molecular dynamics and to test the validity of thermodynamic scaling of two homologous compounds of pharmaceutical activity: itraconazole and ketoconazole in the wide range of thermodynamic conditions. The pressure coefficients of the glass transition temperature (dT(g)/dp) for itraconazole and ketoconazole were determined to be equal to 183 and 228 K/GPa, respectively. However, for itraconazole, the additional transition to the nematic phase was observed and characterized by the pressure coefficient dT(n)/dp = 258 K/GPa. From PVT and dielectric data, we obtained that the liquid-nematic phase transition is governed by the relaxation time since it occurred at constant τ(α) = 10(-5) s. Furthermore, we plotted the obtained relaxation times as a function of T(-1)v(-γ), which has revealed that the validity of thermodynamic scaling with the γ exponent equals to 3.69 ± 0.04 and 3.64 ± 0.03 for itraconazole and ketoconazole, respectively. Further analysis of the scaling parameter in itraconazole revealed that it unexpectedly decreases with increasing relaxation time, which resulted in dramatic change of the shape of the thermodynamic scaling master curve. While in the case of ketoconazole, it remained the same within entire range of data (within experimental uncertainty). We suppose that in case of itraconazole, this peculiar behavior is related to the liquid crystals' properties of itraconazole molecule.

  15. Fast-timing study of the l -forbidden 1 /2+→3 /2+ M 1 transition in 129Sn

    Science.gov (United States)

    Licǎ, R.; Mach, H.; Fraile, L. M.; Gargano, A.; Borge, M. J. G.; Mǎrginean, N.; Sotty, C. O.; Vedia, V.; Andreyev, A. N.; Benzoni, G.; Bomans, P.; Borcea, R.; Coraggio, L.; Costache, C.; De Witte, H.; Flavigny, F.; Fynbo, H.; Gaffney, L. P.; Greenlees, P. T.; Harkness-Brennan, L. J.; Huyse, M.; Ibáñez, P.; Judson, D. S.; Konki, J.; Korgul, A.; Kröll, T.; Kurcewicz, J.; Lalkovski, S.; Lazarus, I.; Lund, M. V.; Madurga, M.; Mǎrginean, R.; Marroquín, I.; Mihai, C.; Mihai, R. E.; Morales, A. I.; Nácher, E.; Negret, A.; Page, R. D.; Pakarinen, J.; Pascu, S.; Paziy, V.; Perea, A.; Pérez-Liva, M.; Picado, E.; Pucknell, V.; Rapisarda, E.; Rahkila, P.; Rotaru, F.; Swartz, J. A.; Tengblad, O.; Van Duppen, P.; Vidal, M.; Wadsworth, R.; Walters, W. B.; Warr, N.; IDS Collaboration

    2016-04-01

    The levels in 129Sn populated from the β- decay of 129In isomers were investigated at the ISOLDE facility of CERN using the newly commissioned ISOLDE Decay Station (IDS). The lowest 1 /2+ state and the 3 /2+ ground state in 129Sn are expected to have configurations dominated by the neutron s1 /2 (l =0 ) and d3 /2 (l =2 ) single-particle states, respectively. Consequently, these states should be connected by a somewhat slow l -forbidden M 1 transition. Using fast-timing spectroscopy we have measured the half-life of the 1 /2+ 315.3-keV state, T1 /2= 19(10) ps, which corresponds to a moderately fast M 1 transition. Shell-model calculations using the CD-Bonn effective interaction, with standard effective charges and g factors, predict a 4-ns half-life for this level. We can reconcile the shell-model calculations to the measured T1 /2 value by the renormalization of the M 1 effective operator for neutron holes.

  16. Characterization and application of microearthquake clusters to problems of scaling, fault zone dynamics, and seismic monitoring at Parkfield, California

    Energy Technology Data Exchange (ETDEWEB)

    Nadeau, Robert Michael [Univ. of California, Berkeley, CA (United States)

    1995-10-01

    This document contains information about the characterization and application of microearthquake clusters and fault zone dynamics. Topics discussed include: Seismological studies; fault-zone dynamics; periodic recurrence; scaling of microearthquakes to large earthquakes; implications of fault mechanics and seismic hazards; and wave propagation and temporal changes.

  17. Efficient graph-based dynamic load-balancing for parallel large-scale agent-based traffic simulation

    NARCIS (Netherlands)

    Xu, Y.; Cai, W.; Aydt, H.; Lees, M.; Tolk, A.; Diallo, S.Y.; Ryzhov, I.O.; Yilmaz, L.; Buckley, S.; Miller, J.A.

    2014-01-01

    One of the issues of parallelizing large-scale agent-based traffic simulations is partitioning and load-balancing. Traffic simulations are dynamic applications where the distribution of workload in the spatial domain constantly changes. Dynamic load-balancing at run-time has shown better efficiency

  18. Parallelization of a beam dynamics code and first large scale radio frequency quadrupole simulations

    Directory of Open Access Journals (Sweden)

    J. Xu

    2007-01-01

    Full Text Available The design and operation support of hadron (proton and heavy-ion linear accelerators require substantial use of beam dynamics simulation tools. The beam dynamics code TRACK has been originally developed at Argonne National Laboratory (ANL to fulfill the special requirements of the rare isotope accelerator (RIA accelerator systems. From the beginning, the code has been developed to make it useful in the three stages of a linear accelerator project, namely, the design, commissioning, and operation of the machine. To realize this concept, the code has unique features such as end-to-end simulations from the ion source to the final beam destination and automatic procedures for tuning of a multiple charge state heavy-ion beam. The TRACK code has become a general beam dynamics code for hadron linacs and has found wide applications worldwide. Until recently, the code has remained serial except for a simple parallelization used for the simulation of multiple seeds to study the machine errors. To speed up computation, the TRACK Poisson solver has been parallelized. This paper discusses different parallel models for solving the Poisson equation with the primary goal to extend the scalability of the code onto 1024 and more processors of the new generation of supercomputers known as BlueGene (BG/L. Domain decomposition techniques have been adapted and incorporated into the parallel version of the TRACK code. To demonstrate the new capabilities of the parallelized TRACK code, the dynamics of a 45 mA proton beam represented by 10^{8} particles has been simulated through the 325 MHz radio frequency quadrupole and initial accelerator section of the proposed FNAL proton driver. The results show the benefits and advantages of large-scale parallel computing in beam dynamics simulations.

  19. The socioecohydrology of rainwater harvesting in India: understanding water storage and release dynamics across spatial scales

    Science.gov (United States)

    Van Meter, Kimberly J.; Steiff, Michael; McLaughlin, Daniel L.; Basu, Nandita B.

    2016-07-01

    Rainwater harvesting (RWH), the small-scale collection and storage of runoff for irrigated agriculture, is recognized as a sustainable strategy for ensuring food security, especially in monsoonal landscapes in the developing world. In south India, these strategies have been used for millennia to mitigate problems of water scarcity. However, in the past 100 years many traditional RWH systems have fallen into disrepair due to increasing dependence on groundwater. This dependence has contributed to accelerated decline in groundwater resources, which has in turn led to increased efforts at the state and national levels to revive older RWH systems. Critical to the success of such efforts is an improved understanding of how these ancient systems function in contemporary landscapes with extensive groundwater pumping and shifted climatic regimes. Knowledge is especially lacking regarding the water-exchange dynamics of these RWH tanks at tank and catchment scales, and how these exchanges regulate tank performance and catchment water balances. Here, we use fine-scale, water-level variation to quantify daily fluxes of groundwater, evapotranspiration (ET), and sluice outflows in four tanks over the 2013 northeast monsoon season in a tank cascade that covers a catchment area of 28 km2. At the tank scale, our results indicate that groundwater recharge and irrigation outflows comprise the largest fractions of the tank water budget, with ET accounting for only 13-22 % of the outflows. At the scale of the cascade, we observe a distinct spatial pattern in groundwater-exchange dynamics, with the frequency and magnitude of groundwater inflows increasing down the cascade of tanks. The significant magnitude of return flows along the tank cascade leads to the most downgradient tank in the cascade having an outflow-to-capacity ratio greater than 2. At the catchment scale, the presence of tanks in the landscape dramatically alters the catchment water balance, with runoff decreasing by

  20. Droplets and the three-phase contact line at the nano-scale. Statics and dynamics

    Science.gov (United States)

    Yatsyshin, Petr; Sibley, David; Savva, Nikos; Kalliadasis, Serafim

    2014-11-01

    Understanding the behaviour of the solid-liquid-vapour contact line at the scale of several tens of molecular diameters is important in wetting hydrodynamics with applications in micro- and nano-fluidics, including the design of lab-on-a-chip devices and surfaces with specific wetting properties. Due to the fluid inhomogeneity at the nano-scale, the application of continuum-mechanical approaches is limited, and a natural way to remedy this is to seek descriptions accounting for the non-local molecular-level interactions. Density Functional Theory (DFT) for fluids offers a statistical-mechanical framework based on expressing the free energy of the fluid-solid pair as a functional of the spatially varying fluid density. DFT allows us to investigate small drops deposited on planar substrates whilst keeping track of the microscopic structural details of the fluid. Starting from a model of intermolecular forces, we systematically obtain interfaces, surface tensions, and the microscopic contact angle. Using a dynamic extension of equilibrium DFT, we investigate the diffusion-driven evolution of the three-phase contact line to gain insight into the dynamic behaviour of the microscopic contact angle, which is still under debate.

  1. Role of magnetic shear in dynamics of large-scale structures in electron temperature gradient turbulence

    Science.gov (United States)

    Li, Jiquan; Kishimoto, Y.; Miyato, N.; Matsumoto, T.

    2004-11-01

    We investigate how the magnetic shear governs the dynamics of large-scale structures, such as zonal flows and streamers, in electron temperature gradient (ETG) driven turbulence. Based on the well-known 2D Hasegawa-Mima turbulence modeling, which is the inviscid version of fluid (or gyrofluid) ETG turbulence [1], we derive a general dispersion relation of secondary fluctuations through modulation instability analysis. The results show that the formation of different large-scale structures including zonal flow, streamer and so-called generalized Kelvin-Helmholtz (GKH) mode in ETG turbulence depends on the spectral anisotropy of turbulent fluctuation. In a slab geometry, the magnetic shear closely relates to the ETG mode structures so that it may determine the pattern selection in the quasi-steady ETG turbulence. 3D gyrofluid slab ETG simulations show that turbulent ETG fluctuation energy condenses to the zonal flows in the weak shear plasmas and to the streamer component for the high shears. 2D ETG simulations with rather high resolution not only exhibits the global spectral distribution of zonal flows, but also further confirm a mechanism: enhanced zonal flow in weak shear ETG turbulence is limited by exciting a KH mode [1]. Furthermore, in toroidal ETG simulations, streamer structures are observed at around good curvature region along the flux tube in the quasisteady state in some medium shear regime. Related streamer dynamics are also investigated. [1] Jiquan Li and Y. Kishimoto, Phys. Plasmas 11, 1493(2004)

  2. Stability of conditionally invariant sets and controlled uncertain dynamic systems on time scales

    Directory of Open Access Journals (Sweden)

    Lakshmikantham V.

    1995-01-01

    Full Text Available A basic feedback control problem is that of obtaining some desired stability property from a system which contains uncertainties due to unknown inputs into the system. Despite such imperfect knowledge in the selected mathematical model, we often seek to devise controllers that will steer the system in a certain required fashion. Various classes of controllers whose design is based on the method of Lyapunov are known for both discrete [4], [10], [15], and continuous [3–9], [11] models described by difference and differential equations, respectively. Recently, a theory for what is known as dynamic systems on time scales has been built which incorporates both continuous and discrete times, namely, time as an arbitrary closed sets of reals, and allows us to handle both systems simultaneously [1], [2], [12], [13]. This theory permits one to get some insight into and better understanding of the subtle differences between discrete and continuous systems. We shall, in this paper, utilize the framework of the theory of dynamic systems on time scales to investigate the stability properties of conditionally invariant sets which are then applied to discuss controlled systems with uncertain elements. For the notion of conditionally invariant set and its stability properties, see [14]. Our results offer a new approach to the problem in question.

  3. The horizontal and vertical structure of noctilucent clouds: Small scale dynamics in the summer mesopause region

    Science.gov (United States)

    Baumgarten, Gerd; Fiedler, Jens; Lübken, Franz-Josef; Stober, Gunter

    2017-04-01

    Noctilucent clouds (NLC) are thin ice clouds forming in the summer mesopause region at high latitudes. Their highly structured appearance has attracted scientific interest since more than 130 years as they are found at an altitude of about 83 km where the atmosphere pressure is about 5 orders of magnitude lower than at the earth surface. The structured appearance of NLC has been linked to atmospheric waves and their transition to turbulence, these clouds are therefore used as tracers for dynamics in a height region that is difficult to study otherwise. We use the ALOMAR RMR-lidar, located in Northern Norway at 69°N, that is able to measure NLC with sub-second resolution. Although the ice particles in NLC are only a few tenths of nanometer their size can be measured when observing the clouds at different colors. In combination with ground and space based cameras or radars the horizontal structure is investigated on scales from meters to hundreds of kilometers. We present recent results indicating that the rich structures of NLC - that are even visible to the naked eye - are caused by the peculiar nature of the clouds. Lidar observations give evidence that at times the brightest part of NLC is confined to 100 m vertical extend, giving a superior resolution to small scale atmosphere dynamics compared to, e.g., airglow layers in the Mesosphere lower Thermosphere region.

  4. An improved global dynamic routing strategy for scale-free network with tunable clustering

    Science.gov (United States)

    Sun, Lina; Huang, Ning; Zhang, Yue; Bai, Yannan

    2016-08-01

    An efficient routing strategy can deliver packets quickly to improve the network capacity. Node congestion and transmission path length are inevitable real-time factors for a good routing strategy. Existing dynamic global routing strategies only consider the congestion of neighbor nodes and the shortest path, which ignores other key nodes’ congestion on the path. With the development of detection methods and techniques, global traffic information is readily available and important for the routing choice. Reasonable use of this information can effectively improve the network routing. So, an improved global dynamic routing strategy is proposed, which considers the congestion of all nodes on the shortest path and incorporates the waiting time of the most congested node into the path. We investigate the effectiveness of the proposed routing for scale-free network with different clustering coefficients. The shortest path routing strategy and the traffic awareness routing strategy only considering the waiting time of neighbor node are analyzed comparatively. Simulation results show that network capacity is greatly enhanced compared with the shortest path; congestion state increase is relatively slow compared with the traffic awareness routing strategy. Clustering coefficient increase will not only reduce the network throughput, but also result in transmission average path length increase for scale-free network with tunable clustering. The proposed routing is favorable to ease network congestion and network routing strategy design.

  5. A Simple Laboratory Scale Model of Iceberg Dynamics and its Role in Undergraduate Education

    Science.gov (United States)

    Burton, J. C.; MacAyeal, D. R.; Nakamura, N.

    2011-12-01

    Lab-scale models of geophysical phenomena have a long history in research and education. For example, at the University of Chicago, Dave Fultz developed laboratory-scale models of atmospheric flows. The results from his laboratory were so stimulating that similar laboratories were subsequently established at a number of other institutions. Today, the Dave Fultz Memorial Laboratory for Hydrodynamics (http://geosci.uchicago.edu/~nnn/LAB/) teaches general circulation of the atmosphere and oceans to hundreds of students each year. Following this tradition, we have constructed a lab model of iceberg-capsize dynamics for use in the Fultz Laboratory, which focuses on the interface between glaciology and physical oceanography. The experiment consists of a 2.5 meter long wave tank containing water and plastic "icebergs". The motion of the icebergs is tracked using digital video. Movies can be found at: http://geosci.uchicago.edu/research/glaciology_files/tsunamigenesis_research.shtml. We have had 3 successful undergraduate interns with backgrounds in mathematics, engineering, and geosciences perform experiments, analyze data, and interpret results. In addition to iceberg dynamics, the wave-tank has served as a teaching tool in undergraduate classes studying dam-breaking and tsunami run-up. Motivated by the relatively inexpensive cost of our apparatus (~1K-2K dollars) and positive experiences of undergraduate students, we hope to serve as a model for undergraduate research and education that other universities may follow.

  6. Climate scaling behaviour in the dynamics of the marine interstitial ciliate community

    Science.gov (United States)

    Varotsos, Costas A.; Mazei, Yuri A.; Burkovsky, Igor; Efstathiou, Maria N.; Tzanis, Chris G.

    2016-08-01

    The present paper uses characteristics of the marine interstitial ciliate community in the White Sea intertidal sandflat during the period of 1991-2011, in order to study its long-term dynamics, investigating in particular whether it exhibits scaling behaviour into its fluctuations, which is a characteristic feature of the climate system. To this aim, a recently proposed version of the detrended fluctuation analysis is herewith employed which has been successfully applied to a wide range of simulated and physiologic time series in recent years. In case that the fluctuations of the ciliate community present self-similarity processes, an ideal field test for the currently proposed biological models will be established, allowing to evaluate their reliability. Indeed, we show for the first time that different ciliate species exhibit long-range power-law persistent correlations. This means that ciliate fluctuations in different intervals are positively correlated, obeying a power-law behaviour. Although the origin of power-law temporal evolution of ciliates should be further investigated, this finding is probably associated with the self-organized criticality of ciliates. It should be noted that the long-range correlations obtained do not imply the presence of specific cycles but rather the existence of dynamic links between long-term and short-term temporal evolution. The scaling behaviour found in marine interstitial ciliate community should be taken into account in the investigation of their response to the present or future climate change.

  7. Aberrant intra-salience network dynamic functional connectivity impairs large-scale network interactions in schizophrenia.

    Science.gov (United States)

    Wang, Xiangpeng; Zhang, Wenwen; Sun, Yujing; Hu, Min; Chen, Antao

    2016-12-01

    Aberrant functional interactions between several large-scale networks, especially the central executive network (CEN), the default mode network (DMN) and the salience network (SN), have been postulated as core pathophysiologic features of schizophrenia; however, the attributing factors of which remain unclear. The study employed resting-state fMRI with 77 participants (42 patients and 35 controls). We performed dynamic functional connectivity (DFC) and functional connectivity (FC) analyses to explore the connectivity patterns of these networks. Furthermore, we performed a structural equation model (SEM) analysis to explore the possible role of the SN in modulating network interactions. The results were as follows: (1) The inter-network connectivity showed decreased connectivity strength and increased time-varying instability in schizophrenia; (2) The SN manifested schizophrenic intra-network dysfunctions in both the FC and DFC patterns; (3) The connectivity properties of the SN were effective in discriminating controls from patients; (4) In patients, the dynamic intra-SN connectivity negatively predicted the inter-network FC, and this effect was mediated by intra-SN connectivity strength. These findings suggest that schizophrenia show systematic deficits in temporal stability of large-scale network connectivity. Furthermore, aberrant network interactions in schizophrenia could be attributed to instable intra-SN connectivity and the dysfunction of the SN may be an intrinsic biomarker of the disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Use of Molecular Dynamics Data in Biochemistry Courses: An Amphipathy Scale to Determine Protein [alpha]-Helix Transmembrane Segments

    Science.gov (United States)

    Mazze, Fernanda M.; Fuzo, Carlos A.; Degreve, Leo; Ciancaglini, Pietro

    2008-01-01

    The aim of this manuscript is to explain the application of an amphipathy scale obtained from molecular dynamics simulations and to demonstrate how it can be useful in the protein structure field. It is shown that this scale is easy to be used with the advantage of revealing domains of transmembrane [alpha]-helix of proteins without the need of…

  9. On the physically based modeling of surface tension and moving contact lines with dynamic contact angles on the continuum scale

    NARCIS (Netherlands)

    Huber, M.; Keller, F.; Säckel, W.; Hirschler, M.; Kunz, P.; Hassanizadeh, S.M.; Nieken, U.

    2016-01-01

    The description of wetting phenomena is a challenging problem on every considerable length-scale. The behavior of interfaces and contact lines on the continuum scale is caused by intermolecular interactions like the Van der Waals forces. Therefore, to describe surface tension and the resulting dynam

  10. Use of Molecular Dynamics Data in Biochemistry Courses: An Amphipathy Scale to Determine Protein [alpha]-Helix Transmembrane Segments

    Science.gov (United States)

    Mazze, Fernanda M.; Fuzo, Carlos A.; Degreve, Leo; Ciancaglini, Pietro

    2008-01-01

    The aim of this manuscript is to explain the application of an amphipathy scale obtained from molecular dynamics simulations and to demonstrate how it can be useful in the protein structure field. It is shown that this scale is easy to be used with the advantage of revealing domains of transmembrane [alpha]-helix of proteins without the need of…

  11. The effects of physiologically plausible connectivity structure on local and global dynamics in large scale brain models.

    NARCIS (Netherlands)

    Knock, S.A.; McIntosh, A.R.; Sporns, O.; Kotter, R.; Hagmann, P.; Jirsa, V.K.

    2009-01-01

    Functionally relevant large scale brain dynamics operates within the framework imposed by anatomical connectivity and time delays due to finite transmission speeds. To gain insight on the reliability and comparability of large scale brain network simulations, we investigate the effects of variations

  12. Hierarchical and dynamic seascapes: A quantitative framework for scaling pelagic biogeochemistry and ecology

    Science.gov (United States)

    Kavanaugh, Maria T.; Hales, Burke; Saraceno, Martin; Spitz, Yvette H.; White, Angelicque E.; Letelier, Ricardo M.

    2014-01-01

    Comparative analyses of oceanic ecosystems require an objective framework to define coherent study regions and scale the patterns and processes observed within them. We applied the hierarchical patch mosaic paradigm of landscape ecology to the study of the seasonal variability of the North Pacific to facilitate comparative analysis between pelagic ecosystems and provide spatiotemporal context for Eulerian time-series studies. Using 13-year climatologies of sea surface temperature (SST), photosynthetically active radiation (PAR), and chlorophyll a (chl-a), we classified seascapes in environmental space that were monthly-resolved, dynamic and nested in space and time. To test the assumption that seascapes represent coherent regions with unique biogeochemical function and to determine the hierarchical scale that best characterized variance in biogeochemical parameters, independent data sets were analyzed across seascapes using analysis of variance (ANOVA), nested-ANOVA and multiple linear regression (MLR) analyses. We also compared the classification efficiency (as defined by the ANOVA F-statistic) of resultant dynamic seascapes to a commonly-used static classification system. Variance of nutrients and net primary productivity (NPP) were well characterized in the first two levels of hierarchy of eight seascapes nested within three superseascapes (R2 = 0.5-0.7). Dynamic boundaries at this level resulted in a nearly 2-fold increase in classification efficiency over static boundaries. MLR analyses revealed differential forcing on pCO2 across seascapes and hierarchical levels and a 33% reduction in mean model error with increased partitioning (from 18.5 μatm to 12.0 μatm pCO2). Importantly, the empirical influence of seasonality was minor across seascapes at all hierarchical levels, suggesting that seascape partitioning minimizes the effect of non-hydrographic variables. As part of the emerging field of pelagic seascape ecology, this effort provides an improved means of

  13. Scale-dependent variation in forest structures in naturally dynamic boreal forest landscapes

    Science.gov (United States)

    Kulha, Niko; Pasanen, Leena; De Grandpré, Louis; Kuuluvainen, Timo; Aakala, Tuomas

    2017-04-01

    Natural forest structures vary at multiple spatial scales. This variation reflects the occurrence of driving factors, such as disturbances and variation in soil or topography. To explore and understand the linkages of forest structural characteristics and factors driving their variation, we need to recognize how the structural characteristics vary in relation to spatial scale. This can be achieved by identifying scale-dependent features in forest structure within unmanaged forest landscapes. By identifying these features and examining their relationship with potential driving factors, we can better understand the dynamics of forest structural development. Here, we examine the spatial variation in forest structures at multiple spatial scales, utilizing data from old-growth boreal forests in two regions with contrasting disturbance regimes: northern Finland and north-eastern Québec, Canada ( 67° 45'N, 29° 36'E, 49° 39'N, 67° 55'W, respectively). The three landscapes (4 km2 each) in Finland are dominated by Pinus sylvestris and Picea abies, whereas the two landscapes in Québec are dominated by Abies balsamea and Picea mariana. Québec's forests are a subject to cyclic outbreaks of the eastern spruce budworm, causing extensive mortality especially in A. balsamea-dominated stands. In the Finnish landscapes, gap- to patch-scale disturbances due to tree senescence, fungi and wind, as well as infrequent surface fires in areas dominated by P. sylvestris, prevail. Owing to the differences in the species compositions and the disturbance regimes, we expect differing scales of variation between the landscapes. To quantify patterns of variation, we visually interpret stereopairs of recent aerial photographs. From the photographs, we collect information on forest canopy coverage, species composition and dead wood. For the interpretation, each 4 km2 plot is divided into 0.1ha square cells (4096 per plot). Interpretations are validated against field observations and compiled

  14. Computational Fluid Dynamics Modelling of a Midlatitude Small Scale upper Ocean Front

    Directory of Open Access Journals (Sweden)

    Pablo Cornejo

    2016-01-01

    Full Text Available A numerical model is implemented to describe fluid dynamic processes associated with mid-latitude small- scale (10 km upper ocean fronts by using modified state of the art computational fluid dynamics tools. A periodic system was simulated using three different turbulent closures: 1 URANS-Reynolds Stress Model (RSM, seven equation turbulence model, 2 LES-Standard Smagorinsky (SS, algebraic model, and 3 LES-Modified Smagorinsky, introducing a correction for non-isotropic grids (MS. The results show the front developing instabilities and generating submesoscale structures after four days of simulation. A strongly unstable shear flow is found to be confined within the mixed layer with a high Rossby number (Ro > 1 and high vertical velocity zones. The positive (negative vertical velocity magnitude is found to be approximately O(10−3 m/s(O(10−2 m/s, one (two order(s of magnitude larger than the vertical velocity outside the sub-mesoscale structures, where the magnitude is stable at O(10−4 m/s. The latter value is consistent with previous numerical and experimental studies that use coarser grid sizes and therefore do not explicitly calculate the small scale structures. The nonlinear flow introduced by the sub-mesoscale dynamics within the mixed layer and the non-isotropic grid used in the calculations generates a disparity between the predicted horizontal wave-number spectra computed using the RSM model with respect to the linear eddy viscosity model SS. The MS approach improves SS predictions. This improvement is more significant below the mixed layer in the absence of flow nonlinearities. The horizontal spectra predicted with the RSM model fits a slope of −3 for large scale structures and a slope between −2 and −5/3 for turbulent structures smaller than 300 m. This work contributes to the investigation of the physical and methodological aspects for the detailed modelling and understanding of small scale structures in ocean turbulence.

  15. Emergence of large-scale cell morphology and movement from local actin filament growth dynamics.

    Directory of Open Access Journals (Sweden)

    Catherine I Lacayo

    2007-09-01

    Full Text Available Variations in cell migration and morphology are consequences of changes in underlying cytoskeletal organization and dynamics. We investigated how these large-scale cellular events emerge as direct consequences of small-scale cytoskeletal molecular activities. Because the properties of the actin cytoskeleton can be modulated by actin-remodeling proteins, we quantitatively examined how one such family of proteins, enabled/vasodilator-stimulated phosphoprotein (Ena/VASP, affects the migration and morphology of epithelial fish keratocytes. Keratocytes generally migrate persistently while exhibiting a characteristic smooth-edged "canoe" shape, but may also exhibit less regular morphologies and less persistent movement. When we observed that the smooth-edged canoe keratocyte morphology correlated with enrichment of Ena/VASP at the leading edge, we mislocalized and overexpressed Ena/VASP proteins and found that this led to changes in the morphology and movement persistence of cells within a population. Thus, local changes in actin filament dynamics due to Ena/VASP activity directly caused changes in cell morphology, which is coupled to the motile behavior of keratocytes. We also characterized the range of natural cell-to-cell variation within a population by using measurable morphological and behavioral features--cell shape, leading-edge shape, filamentous actin (F-actin distribution, cell speed, and directional persistence--that we have found to correlate with each other to describe a spectrum of coordinated phenotypes based on Ena/VASP enrichment at the leading edge. This spectrum stretched from smooth-edged, canoe-shaped keratocytes--which had VASP highly enriched at their leading edges and migrated fast with straight trajectories--to more irregular, rounder cells migrating slower with less directional persistence and low levels of VASP at their leading edges. We developed a mathematical model that accounts for these coordinated cell-shape and

  16. Nonlinear Structural Analysis Methodology and Dynamics Scaling of Inflatable Parabolic Reflector Antenna Concepts

    Science.gov (United States)

    Sreekantamurthy, Tham; Gaspar, James L.; Mann, Troy; Behun, Vaughn; Pearson, James C., Jr.; Scarborough, Stephen

    2007-01-01

    Ultra-light weight and ultra-thin membrane inflatable antenna concepts are fast evolving to become the state-of-the-art antenna concepts for deep-space applications. NASA Langley Research Center has been involved in the structural dynamics research on antenna structures. One of the goals of the research is to develop structural analysis methodology for prediction of the static and dynamic response characteristics of the inflatable antenna concepts. This research is focused on the computational studies to use nonlinear large deformation finite element analysis to characterize the ultra-thin membrane responses of the antennas. Recently, structural analyses have been performed on a few parabolic reflector antennas of varying size and shape, which are referred in the paper as 0.3 meters subscale, 2 meters half-scale, and 4 meters full-scale antenna. The various aspects studied included nonlinear analysis methodology and solution techniques, ways to speed convergence in iterative methods, the sensitivities of responses with respect to structural loads, such as inflation pressure, gravity, and pretension loads in the ground and in-space conditions, and the ultra-thin membrane wrinkling characteristics. Several such intrinsic aspects studied have provided valuable insight into evaluation of structural characteristics of such antennas. While analyzing these structural characteristics, a quick study was also made to assess the applicability of dynamics scaling of the half-scale antenna. This paper presents the details of the nonlinear structural analysis results, and discusses the insight gained from the studies on the various intrinsic aspects of the analysis methodology. The predicted reflector surface characteristics of the three inflatable ultra-thin membrane parabolic reflector antenna concepts are presented as easily observable displacement fringe patterns with associated maximum values, and normal mode shapes and associated frequencies. Wrinkling patterns are

  17. NASA AVOSS Fast-Time Models for Aircraft Wake Prediction: User's Guide (APA3.8 and TDP2.1)

    Science.gov (United States)

    Ahmad, Nash'at N.; VanValkenburg, Randal L.; Pruis, Matthew J.; Limon Duparcmeur, Fanny M.

    2016-01-01

    NASA's current distribution of fast-time wake vortex decay and transport models includes APA (Version 3.8) and TDP (Version 2.1). This User's Guide provides detailed information on the model inputs, file formats, and model outputs. A brief description of the Memphis 1995, Dallas/Fort Worth 1997, and the Denver 2003 wake vortex datasets is given along with the evaluation of models. A detailed bibliography is provided which includes publications on model development, wake field experiment descriptions, and applications of the fast-time wake vortex models.

  18. Scale dependency of fracture energy and estimates thereof via dynamic rupture solutions with strong thermal weakening

    Science.gov (United States)

    Viesca, R. C.; Garagash, D.

    2013-12-01

    Seismological estimates of fracture energy show a scaling with the total slip of an earthquake [e.g., Abercrombie and Rice, GJI 2005]. Potential sources for this scale dependency are coseismic fault strength reductions that continue with increasing slip or an increasing amount of off-fault inelastic deformation with dynamic rupture propagation [e.g., Andrews, JGR 2005; Rice, JGR 2006]. Here, we investigate the former mechanism by solving for the slip dependence of fracture energy at the crack tip of a dynamically propagating rupture in which weakening takes place by strong reductions of friction via flash heating of asperity contacts and thermal pressurization of pore fluid leading to reductions in effective normal stress. Laboratory measurements of small characteristic slip evolution distances for friction (~10 μm at low slip rates of μm-mm/s, possibly up to 1 mm for slip rates near 0.1 m/s) [e.g., Marone and Kilgore, Nature 1993; Kohli et al., JGR 2011] imply that flash weakening of friction occurs at small slips before any significant thermal pressurization and may thus have a negligible contribution to the total fracture energy [Brantut and Rice, GRL 2011; Garagash, AGU 2011]. The subsequent manner of weakening under thermal pressurization (the dominant contributor to fracture energy) spans a range of behavior from the deformation of a finite-thickness shear zone in which diffusion is negligible (i.e., undrained-adiabatic) to that in which large-scale diffusion obscures the existence of a thin shear zone and thermal pressurization effectively occurs by the heating of slip on a plane. Separating the contribution of flash heating, the dynamic rupture solutions reduce to a problem with a single parameter, which is the ratio of the undrained-adiabatic slip-weakening distance (δc) to the characteristic slip-on-a-plane slip-weakening distance (L*). However, for any value of the parameter, there are two end-member scalings of the fracture energy: for small slip

  19. Large scale dynamic rupture scenario of the 2004 Sumatra-Andaman megathrust earthquake

    Science.gov (United States)

    Ulrich, Thomas; Madden, Elizabeth H.; Wollherr, Stephanie; Gabriel, Alice A.

    2016-04-01

    The Great Sumatra-Andaman earthquake of 26 December 2004 is one of the strongest and most devastating earthquakes in recent history. Most of the damage and the ~230,000 fatalities were caused by the tsunami generated by the Mw 9.1-9.3 event. Various finite-source models of the earthquake have been proposed, but poor near-field observational coverage has led to distinct differences in source characterization. Even the fault dip angle and depth extent are subject to debate. We present a physically realistic dynamic rupture scenario of the earthquake using state-of-the-art numerical methods and seismotectonic data. Due to the lack of near-field observations, our setup is constrained by the overall characteristics of the rupture, including the magnitude, propagation speed, and extent along strike. In addition, we incorporate the detailed geometry of the subducting fault using Slab1.0 to the south and aftershock locations to the north, combined with high-resolution topography and bathymetry data.The possibility of inhomogeneous background stress, resulting from the curved shape of the slab along strike and the large fault dimensions, is discussed. The possible activation of thrust faults splaying off the megathrust in the vicinity of the hypocenter is also investigated. Dynamic simulation of this 1300 to 1500 km rupture is a computational and geophysical challenge. In addition to capturing the large-scale rupture, the simulation must resolve the process zone at the rupture tip, whose characteristic length is comparable to smaller earthquakes and which shrinks with propagation distance. Thus, the fault must be finely discretised. Moreover, previously published inversions agree on a rupture duration of ~8 to 10 minutes, suggesting an overall slow rupture speed. Hence, both long temporal scales and large spatial dimensions must be captured. We use SeisSol, a software package based on an ADER-DG scheme solving the spontaneous dynamic earthquake rupture problem with high

  20. A dynamic routing strategy with limited buffer on scale-free network

    Science.gov (United States)

    Wang, Yufei; Liu, Feng

    2016-04-01

    In this paper, we propose an integrated routing strategy based on global static topology information and local dynamic data packet queue lengths to improve the transmission efficiency of scale-free networks. The proposed routing strategy is a combination of a global static routing strategy (based on the shortest path algorithm) and local dynamic queue length management, in which, instead of using an infinite buffer, the queue length of each node i in the proposed routing strategy is limited by a critical queue length Qic. When the network traffic is lower and the queue length of each node i is shorter than its critical queue length Qic, it forwards packets according to the global routing table. With increasing network traffic, when the buffers of the nodes with higher degree are full, they do not receive packets due to their limited buffers and the packets have to be delivered to the nodes with lower degree. The global static routing strategy can shorten the transmission time that it takes a packet to reach its destination, and the local limited queue length can balance the network traffic. The optimal critical queue lengths of nodes have been analysed. Simulation results show that the proposed routing strategy can get better performance than that of the global static strategy based on topology, and almost the same performance as that of the global dynamic routing strategy with less complexity.