WorldWideScience

Sample records for fast x-ray timing

  1. Probing Photoinduced Structural Phase Transitions by Fast or Ultra-Fast Time-Resolved X-Ray Diffraction

    Science.gov (United States)

    Cailleau, Hervé Collet, Eric; Buron-Le Cointe, Marylise; Lemée-Cailleau, Marie-Hélène Koshihara, Shin-Ya

    A new frontier in the field of structural science is the emergence of the fast and ultra-fast X-ray science. Recent developments in time-resolved X-ray diffraction promise direct access to the dynamics of electronic, atomic and molecular motions in condensed matter triggered by a pulsed laser irradiation, i.e. to record "molecular movies" during the transformation of matter initiated by light pulse. These laser pump and X-ray probe techniques now provide an outstanding opportunity for the direct observation of a photoinduced structural phase transition as it takes place. The use of X-ray short-pulse of about 100ps around third-generation synchrotron sources allows structural investigations of fast photoinduced processes. Other new X-ray sources, such as laser-produced plasma ones, generate ultra-short pulses down to 100 fs. This opens the way to femtosecond X-ray crystallography, but with rather low X-ray intensities and more limited experimental possibilities at present. However this new ultra-fast science rapidly progresses around these sources and new large-scale projects exist. It is the aim of this contribution to overview the state of art and the perspectives of fast and ultra-fast X-ray scattering techniques to study photoinduced phase transitions (here, the word ultra-fast is used for sub-picosecond time resolution). In particular we would like to largely present the contribution of crystallographic methods in comparison with optical methods, such as pump-probe reflectivity measurements, the reader being not necessary familiar with X-ray scattering. Thus we want to present which type of physical information can be obtained from the positions of the Bragg peaks, their intensity and their shape, as well as from the diffuse scattering beyond Bragg peaks. An important physical feature is to take into consideration the difference in nature between a photoinduced phase transition and conventional homogeneous photoinduced chemical or biochemical processes where

  2. Time response of fast-gated microchannel plates used as x-ray detectors

    International Nuclear Information System (INIS)

    Turner, R.E.; Bell, P.; Hanks, R.; Kilkenny, J.D.; Landen, N.; Power, G.; Wiedwald, J.; Meier, M.

    1990-01-01

    We report measurements of the time response of fast-gated, micro- channel plate (MCP) detectors, using a <10 ps pulsewidth ultra-violet laser and an electronic sampling system to measure time resolutions to better than 25 ps. The results show that framing times of less than 100 ps are attainable with high gain. The data is compared to a Monte Carlo calculation, which shows good agreement. We also measured the relative sensitivity as a function of DC bias, and saturation effects for large signal inputs. In part B, we briefly describe an electrical ''time-of-flight'' technique, which we have used to measure the response time of a fast-gated microchannel plate (MCP). Thinner MCP's than previously used have been tested, and, as expected, show fast gating times and smaller electron multiplication. A preliminary design for an x-ray pinhole camera, using a thin MCP, is presented. 7 refs., 6 figs

  3. An x-ray detector for time-resolved studies

    International Nuclear Information System (INIS)

    Rodricks, B.; Brizard, C.; Clarke, R.; Lowe, W.

    1992-01-01

    The development of ultrahigh-brightness x-ray sources makes time-resolved x-ray studies more and more feasible. Improvements in x-ray optics components are also critical for obtaining the appropriate beam for a particular type of experiment. Moreover, fast parallel detectors will be essential in order to exploit the combination of high intensity x-ray sources and novel optics for time-resolved experiments. A CCD detector with a time resolution of microseconds has been developed at the Advanced Photon Source (APS). This detector is fully programmable using CAMAC electronics and a Micro Vax computer. The techniques of time-resolved x-ray studies, which include scattering, microradiography, microtomography, stroboscopy, etc., can be applied to a range of phenomena (including rapid thermal annealing, surface ordering, crystallization, and the kinetics of phase transition) in order to understand these time-dependent microscopic processes. Some of these applications will be illustrated by recent results performed at synchrotrons. New powerful x-ray sources now under construction offer the opportunity to apply innovative approaches in time-resolved work

  4. Ultra-fast x-ray tomography for multi-phase flow interface dynamic studies

    International Nuclear Information System (INIS)

    Misawa, M.; Ichikawa, N.; Akai, M.; Tiseanu, I.; Prasser, H.-M.

    2003-01-01

    The present paper describes the concept of a fast scanning X-ray tomograph, the hardware development, and measurement results of gas-liquid two-phase flow in a vertical pipe. The device uses 18 pulsed X-ray sources activated in a successive order. In this way, a complete set of 18 independent projections of the object is obtained within 38 ms, i.e. the measuring rate is about 250 frames per second. Finally, to evaluate the measurement capability of the fast X-ray CT, a wire-mesh sensor was installed in the flow loop and both systems were operated for the same two-phase flow simultaneously. Comparison of the time series of the cross section averaged void fraction from both systems showed sufficient agreement for slug flow at large void fractions, while the fast CT underestimated the void fraction of bubbly flow especially in low void fraction range. For the wire-mesh sensor, coerced deformation of slug bubble interface was found. Further hardware improvement is in progress to achieve better resolution with the fast X-ray CT scanner. (orig.)

  5. The Swift Supergiant Fast X-ray Transient Project

    Science.gov (United States)

    Romano, P.; Barthelmy, S.; Bozzo, E.; Burrows, D.; Ducci, L.; Esposito, P.; Evans, P.; Kennea, J.; Krimm, H.; Vercellone, S.

    2017-10-01

    We present the Swift Supergiant Fast X-ray Transients project, a systematic study of SFXTs and classical supergiant X-ray binaries (SGXBs) through efficient long-term monitoring of 17 sources including SFXTs and classical SGXBs across more than 4 orders of magnitude in X-ray luminosity on timescales from hundred seconds to years. We derived dynamic ranges, duty cycles, and luminosity distributions to highlight systematic differences that help discriminate between different theoretical models proposed to explain the differences between the wind accretion processes in SFXTs and classical SGXBs. Our follow-ups of the SFXT outbursts provide a steady advancement in the comprehension of the mechanisms triggering the high X-ray level emission of these sources. In particular, the observations of the outburst of the SFXT prototype IGR J17544-2619, when the source reached a peak X-ray luminosity of 3×10^{38} erg s^{-1}, challenged for the first time the maximum theoretical luminosity achievable by a wind-fed neutron star high mass X-ray binary. We propose that this giant outburst was due to the formation of a transient accretion disc around the compact object. We also created a catalogue of over 1000 BAT flares which we use to predict the observability and perspectives with future missions.

  6. A Fast Detection Algorithm for the X-Ray Pulsar Signal

    Directory of Open Access Journals (Sweden)

    Hao Liang

    2017-01-01

    Full Text Available The detection of the X-ray pulsar signal is important for the autonomous navigation system using X-ray pulsars. In the condition of short observation time and limited number of photons for detection, the noise does not obey the Gaussian distribution. This fact has been little considered extant. In this paper, the model of the X-ray pulsar signal is rebuilt as the nonhomogeneous Poisson distribution and, in the condition of a fixed false alarm rate, a fast detection algorithm based on maximizing the detection probability is proposed. Simulation results show the effectiveness of the proposed detection algorithm.

  7. A high time resolution x-ray diagnostic on the Madison Symmetric Torus

    Science.gov (United States)

    DuBois, Ami M.; Lee, John David; Almagri, Abdulgadar F.

    2015-07-01

    A new high time resolution x-ray detector has been installed on the Madison Symmetric Torus (MST) to make measurements around sawtooth events. The detector system is comprised of a silicon avalanche photodiode, a 20 ns Gaussian shaping amplifier, and a 500 MHz digitizer with 14-bit sampling resolution. The fast shaping time diminishes the need to restrict the amount of x-ray flux reaching the detector, limiting the system dead-time. With a much higher time resolution than systems currently in use in high temperature plasma physics experiments, this new detector has the versatility to be used in a variety of discharges with varying flux and the ability to study dynamics on both slow and fast time scales. This paper discusses the new fast x-ray detector recently installed on MST and the improved time resolution capabilities compared to the existing soft and hard x-ray diagnostics. In addition to the detector hardware, improvements to the detector calibration and x-ray pulse identification software, such as additional fitting parameters and a more sophisticated fitting routine are discussed. Finally, initial data taken in both high confinement and standard reversed-field pinch plasma discharges are compared.

  8. CVD diamond based soft X-ray detector with fast response

    International Nuclear Information System (INIS)

    Li Fang; Hou Lifei; Su Chunxiao; Yang Guohong; Liu Shenye

    2010-01-01

    A soft X-ray detector has been made with high quality chemical vapor deposited (CVD) diamond and the electrical structure of micro-strip. Through the measurement of response time on a laser with the pulse width of 10 ps, the full width at half maximum of the data got in the oscilloscope was 115 ps. The rise time of the CVD diamond detector was calculated to be 49 ps. In the experiment on the laser prototype facility, the signal got by the CVD diamond detector was compared with that got by a soft X-ray spectrometer. Both signals coincided well. The detector is proved to be a kind of reliable soft X-ray detector with fast response and high signal-to-noise ratio. (authors)

  9. Fast synchrotron X-ray tomography study of the rod packing structures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiaodan; Xia Chengjie; Sun Haohua; Wang Yujie [Department of Physics, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China)

    2013-06-18

    We present a fast synchrotron X-ray tomography study of the packing structures of rods under tapping. Utilizing the high flux of the X-rays generated from the third-generation synchrotron source, we can complete a tomography scan within several seconds, after which the three-dimensional (3D) packing structure can be obtained for the subsequent structural analysis. Due to the high-energy nature of the X-ray beam, special image processing steps including image phase-retrieval has been implemented. Overall, this study suggests the possibility of acquiring statistically significant static packing structures within a reasonable time scale using high-intensity X-ray sources.

  10. Time Resolved X-Ray Spot Size Diagnostic

    CERN Document Server

    Richardson, Roger; Falabella, Steven; Guethlein, Gary; Raymond, Brett; Weir, John

    2005-01-01

    A diagnostic was developed for the determination of temporal history of an X-ray spot. A pair of thin (0.5 mm) slits image the x-ray spot to a fast scintillator which is coupled to a fast detector, thus sampling a slice of the X-Ray spot. Two other scintillator/detectors are used to determine the position of the spot and total forward dose. The slit signal is normalized to the dose and the resulting signal is analyzed to get the spot size. The position information is used to compensate for small changes due to spot motion and misalignment. The time resolution of the diagnostic is about 1 ns and measures spots from 0.5 mm to over 3 mm. The theory and equations used to calculate spot size and position are presented, as well as data. The calculations assume a symmetric, Gaussian spot. The spot data is generated by the ETA II accelerator, a 2kA, 5.5 MeV, 60ns electron beam focused on a Tantalum target. The spot generated is typically about 1 mm FWHM. Comparisons are made to an X-ray pinhole camera which images th...

  11. Fast parallel algorithms for the x-ray transform and its adjoint.

    Science.gov (United States)

    Gao, Hao

    2012-11-01

    Iterative reconstruction methods often offer better imaging quality and allow for reconstructions with lower imaging dose than classical methods in computed tomography. However, the computational speed is a major concern for these iterative methods, for which the x-ray transform and its adjoint are two most time-consuming components. The speed issue becomes even notable for the 3D imaging such as cone beam scans or helical scans, since the x-ray transform and its adjoint are frequently computed as there is usually not enough computer memory to save the corresponding system matrix. The purpose of this paper is to optimize the algorithm for computing the x-ray transform and its adjoint, and their parallel computation. The fast and highly parallelizable algorithms for the x-ray transform and its adjoint are proposed for the infinitely narrow beam in both 2D and 3D. The extension of these fast algorithms to the finite-size beam is proposed in 2D and discussed in 3D. The CPU and GPU codes are available at https://sites.google.com/site/fastxraytransform. The proposed algorithm is faster than Siddon's algorithm for computing the x-ray transform. In particular, the improvement for the parallel computation can be an order of magnitude. The authors have proposed fast and highly parallelizable algorithms for the x-ray transform and its adjoint, which are extendable for the finite-size beam. The proposed algorithms are suitable for parallel computing in the sense that the computational cost per parallel thread is O(1).

  12. Flash X-Ray (FXR) Accelerator Optimization Electronic Time-Resolved Measurement of X-Ray Source Size

    International Nuclear Information System (INIS)

    Jacob, J; Ong, M; Wargo, P

    2005-01-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating various approaches to minimize the x-ray source size on the Flash X-Ray (FXR) linear induction accelerator in order to improve x-ray flux and increase resolution for hydrodynamic radiography experiments. In order to effectively gauge improvements to final x-ray source size, a fast, robust, and accurate system for measuring the spot size is required. Timely feedback on x-ray source size allows new and improved accelerator tunes to be deployed and optimized within the limited run-time constraints of a production facility with a busy experimental schedule; in addition, time-resolved measurement capability allows the investigation of not only the time-averaged source size, but also the evolution of the source size, centroid position, and x-ray dose throughout the 70 ns beam pulse. Combined with time-resolved measurements of electron beam parameters such as emittance, energy, and current, key limiting factors can be identified, modeled, and optimized for the best possible spot size. Roll-bar techniques are a widely used method for x-ray source size measurement, and have been the method of choice at FXR for many years. A thick bar of tungsten or other dense metal with a sharp edge is inserted into the path of the x-ray beam so as to heavily attenuate the lower half of the beam, resulting in a half-light, half-dark image as seen downstream of the roll-bar; by measuring the width of the transition from light to dark across the edge of the roll-bar, the source size can be deduced. For many years, film has been the imaging medium of choice for roll-bar measurements thanks to its high resolution, linear response, and excellent contrast ratio. Film measurements, however, are fairly cumbersome and require considerable setup and analysis time; moreover, with the continuing trend towards all-electronic measurement systems, film is becoming increasingly difficult and expensive to procure. Here, we shall

  13. A reengineering success story: process improvement in emergency department x-ray cycle time, leading to breakthrough performance in the ED ambulatory care (Fast Track) process.

    Science.gov (United States)

    Espinosa, J A; Treiber, P M; Kosnik, L

    1997-01-01

    This article describes the journey of a multidisciplinary reengineering team, which worked to reduce a critical, high-leverage process in an emergency department setting. The process selected was emergency department radiology services. This process was selected on a rational basis. The team knew tht 60 percent of our emergency department patients were truly ambulatory, and that most could be seen in a "fast track" process as part of our emergency department's core mission. However, we knew from customer satisfaction data, that patients would like to be "in and out" of emergency department Fast Track in less than an hour. Over half of our Fast Track patients require x-rays. For most, this was their sole reason for seeking emergency care. Our state, at the start of the project, included an average x-ray cycle time of over 60 minutes. The associated Fast-Track cycle time was over 90 minutes median. It was clear to the emergency department leadership, as well as to members of the Fast-Track management team, that a cycle time of 30 minutes or less for x-ray service was needed as a necessary condition to an hour or less Fast Track cycle time. It was also felt that a more rapid x-ray cycle time would allow for more rapid turn over of ED rooms, leading to a virtual greater capacity to the ED. It was hoped that this would lead to a reduction in the time from arrival to treatment by the emergency physician for all patients.

  14. Fast solar hard X-ray bursts and large scale coronal structures

    International Nuclear Information System (INIS)

    Simnett, G.M.

    1982-01-01

    The conditions at the Sun at the times corresponding to a selected set 22 fast impulsive hard X-ray bursts reported by Crannell et al. are examined. It is suggested that one of the bursts must arise from a precipitating beam of subrelativistic electrons; the source of the electrons is postulated to be in a region very remote from the X-ray site on the basis of type III and other radio data. The connection is via a coronal magnetic loop extending to approx.3 R/sub sun/ above the photosphere. The energy in the electron beam is estimated at 3 x 10 27 ergs. Intense soft X-ray and/or microwave radio storms at times corresponding to many of the impulsive X-ray bursts lead the conclusion that 14, and possibly 18, of the 22 bursts could have the same interpretation. The energy in such an electron beam could be important when considering the trigger phase of some flares

  15. Fast Fiber-Coupled Imaging of X-rays Events, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — HyperV Technologies Corp. proposes to construct a long-record-length, fiber-coupled, fast imaging diagnostic for recording X-ray back-lit material flows and X-ray...

  16. An Optical and Infrared Time-domain Study of the Supergiant Fast X-Ray Transient Candidate IC 10 X-2

    Science.gov (United States)

    Kwan, Stephanie; Lau, Ryan M.; Jencson, Jacob; Kasliwal, Mansi M.; Boyer, Martha L.; Ofek, Eran; Masci, Frank; Laher, Russ

    2018-03-01

    We present an optical and infrared (IR) study of IC 10 X-2, a high-mass X-ray binary in the galaxy IC 10. Previous optical and X-ray studies suggest that X-2 is a Supergiant Fast X-ray Transient: a large-amplitude (factor of ∼100), short-duration (hours to weeks) X-ray outburst on 2010 May 21. We analyze R- and g-band light curves of X-2 from the intermediate Palomar Transient Factory taken between 2013 July 15 and 2017 February 14 that show high-amplitude (≳1 mag), short-duration (≲8 days) flares and dips (≳0.5 mag). Near-IR spectroscopy of X-2 from Palomar/TripleSpec show He I, Paschen-γ, and Paschen-β emission lines with similar shapes and amplitudes as those of luminous blue variables (LBVs) and LBV candidates (LBVc). Mid-IR colors and magnitudes from Spitzer/Infrared Array Camera photometry of X-2 resemble those of known LBV/LBVcs. We suggest that the stellar companion in X-2 is an LBV/LBVc and discuss possible origins of the optical flares. Dips in the optical light curve are indicative of eclipses from optically thick clumps formed in the winds of the stellar counterpart. Given the constraints on the flare duration (0.02–0.8 days) and the time between flares (15.1 ± 7.8 days), we estimate the clump volume filling factor in the stellar winds, f V , to be 0.01interpret the origin of the optical flares as the accretion of clumps formed in the winds of an LBV/LBVc onto the compact object.

  17. Fast X-ray imaging of cavitating flows

    Energy Technology Data Exchange (ETDEWEB)

    Khlifa, Ilyass; Fuzier, Sylvie; Roussette, Olivier [Arts et Metiers ParisTech, Lille (France); Vabre, Alexandre [CEA Saclay, Gif-sur-Yvette (France); Hocevar, Marko [Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana (Slovenia); Fezzaa, Kamel [Argonne National Laboratory, Advanced Photon Source, Lemont, IL (United States); Coutier-Delgosha, Olivier [Virginia Tech, Kevin T. Crofton Department of Aerospace and Ocean Engineering, Blacksburg, VA (United States)

    2017-11-15

    A new method based on ultra-fast X-ray imaging was developed in this work for the investigation of the dynamics and the structures of complex two-phase flows. In this paper, cavitation was created inside a millimetric 2D Venturi-type test section, while seeding particles were injected into the flow. Thanks to the phase-contrast enhancement technique provided by the APS (Advanced Photon Source) synchrotron beam, high definition X-ray images of the complex cavitating flows were obtained. These images contain valuable information about both the liquid and the gaseous phases. By means of image processing, the two phases were separated, and velocity fields of each phase were, therefore, calculated using image cross-correlations. The local vapour volume fractions were also obtained, thanks to the local intensity levels within the recorded images. These simultaneous measurements, provided by this new technique, afford more insight into the structure and the dynamic of two-phase flows as well as the interactions between them, and hence enable to improve our understanding of their behaviour. In the case of cavitating flows inside a Venturi-type test section, the X-ray measurements demonstrate, for the first time, the presence of significant slip velocities between the phases within sheet cavities for both steady and unsteady flow configurations. (orig.)

  18. Development of fast parallel multi-technique scanning X-ray imaging at Synchrotron Soleil

    Science.gov (United States)

    Medjoubi, K.; Leclercq, N.; Langlois, F.; Buteau, A.; Lé, S.; Poirier, S.; Mercère, P.; Kewish, C. M.; Somogyi, A.

    2013-10-01

    A fast multimodal scanning X-ray imaging scheme is prototyped at Soleil Synchrotron. It permits the simultaneous acquisition of complementary information on the sample structure, composition and chemistry by measuring transmission, differential phase contrast, small-angle scattering, and X-ray fluorescence by dedicated detectors with ms dwell time per pixel. The results of the proof of principle experiments are presented in this paper.

  19. Ultra fast x-ray streak camera

    International Nuclear Information System (INIS)

    Coleman, L.W.; McConaghy, C.F.

    1975-01-01

    A unique ultrafast x-ray sensitive streak camera, with a time resolution of 50psec, has been built and operated. A 100A thick gold photocathode on a beryllium vacuum window is used in a modified commerical image converter tube. The X-ray streak camera has been used in experiments to observe time resolved emission from laser-produced plasmas. (author)

  20. Supergiant fast X-ray transients with Swift: Spectroscopic and temporal properties

    Science.gov (United States)

    Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Farinelli, R.; Ceccobello, C.; Vercellone, S.; Burrows, D. N.; Kennea, J. A.; Krimm, H. A.; Gehrels, N.

    2012-12-01

    Supergiant fast X-ray transients (SFXTs) are a class of high-mass X-ray binaries with possible counterparts in the high energy gamma rays. The Swift SFXT Project1 has conducted a systematic investigation of the properties of SFTXs on timescales ranging from minutes to years and in several intensity states (from bright flares, to intermediate intensity states, and down to almost quiescence). We also performed broad-band spectroscopy of outbursts, and intensity-selected spectroscopy outside of outbursts. We demonstrated that while the brightest phase of the outburst only lasts a few hours, further activity is observed at lower fluxes for a remarkably longer time, up to weeks. Furthermore, we assessed the fraction of the time these sources spend in each phase, and their duty cycle of inactivity. We present the most recent results from our investigation. The spectroscopic and, most importantly, timing properties of SFXTs we have uncovered with Swift will serve as a guide in search for the high energy emission from these enigmatic objects.

  1. Response Time Measurements of the NIF DANTE XRD-31 X-Ray Diodes (Pre-print)

    International Nuclear Information System (INIS)

    Pellinen, Don; Griffin, Michael

    2009-01-01

    The XRD-31 is a fast, windowless X-ray vacuum photodiode developed by EG and G. It is currently the primary fast X-ray detector used to diagnose the X-rays on NIF and OMEGA on the multichannel DANTE spectrometer. The XRD-31 has a dynamic range of less than 1e-12 amps to more than 10 amps. A technique is described to measure the impulse response of the diodes to a 150 fs pulse of 200 nm laser light and a method to calculate the 'risetime' for a square pulse and compare it with the computed electron transit time from the photocathode to the anode. Measured response time for 5 XRD-31s assembled in early 2004 was 149.7 ps +-2.75 ps

  2. FAST TIMING ANALYSIS OF CYGNUS X-1 USING THE SPECTROMETER ON THE INTERNATIONAL GAMMA-RAY ASTROPHYSICS LABORATORY

    International Nuclear Information System (INIS)

    Cabanac, Clement; Roques, Jean-Pierre; Jourdain, Elisabeth

    2011-01-01

    We report for the first time the high-frequency analysis of Cyg X-1 up to hard X-ray using the spectrometer on International Gamma-Ray Astrophysics Laboratory (INTEGRAL). After analyzing the possible contribution from the background, and using the INTEGRAL archive from 2005 March to 2008 May, power density spectra were obtained up to 130 keV. First, we show that their overall shape is very similar to that observed at lower energies as they are well described by sets of Lorentzians. The strength of this fast variability (up to 40 Hz) does not drop at high energy since we show that it remains at ∼25% rms, even in the highest energy bands. Second, the hard X-ray variability patterns of Cyg X-1 are state dependent: the softer the spectrum (or the lower the hardness ratio), the lower the total fractional variability and the higher the typical frequencies observed. The strength of the total variability as a function of energy and state is then investigated. By comparison with simultaneous and published RXTE/Proportional Counter Array data, we show that in the hard state it remains quite constant in the 2-130 keV energy range. In the softer state it is also flat up to 50 keV and may increase at higher energy. The implications of this behavior on the models are then discussed.

  3. Flash x-ray cinematography

    International Nuclear Information System (INIS)

    Stein, W.E.

    1976-01-01

    Experiments intended to provide an overview of the potential capabilities and limitations of flash x-ray cinematography as a diagnostic technique for a Fast Reactor Safety Test Facility are described. The results provide estimates of the x-ray pulse intensity required to obtain adequate radiographs of an array of fuel pins in a typical reactor configuration. An estimate of the upper limit on the pulse duration imposed by the reactor background radiation was also determined. X-ray cinematography has been demonstrated at a repetition rate limited only by the recording equipment on hand at the time of these measurements. These preliminary results indicate that flash x-ray cinematography of the motion of fuel in a Fast Reactor Test Facility is technically feasible

  4. Fast Soft X-ray Images of MHD Phenomena in NSTX

    International Nuclear Information System (INIS)

    Bush, C.E.; Stratton, B.C.; Robinson, J.; Zakharov, L.E.; Fredrickson, E.D.; Stutman, D.; Tritz, K.

    2008-01-01

    A variety of magnetohydrodynamic (MHD) phenomena have been observed on the National Spherical Torus Experiment (NSTX). Many of these affect fast particle losses, which are of major concern for future burning plasma experiments. Usual diagnostics for studying these phenomena are arrays of Mirnov coils for magnetic oscillations and PIN diode arrays for soft x-ray emission from the plasma core. Data reported here are from an unique fast soft x-ray imaging camera (FSXIC) with a wide-angle (pinhole) tangential view of the entire plasma minor cross section. The camera provides a 64x64 pixel image, on a CCD chip, of light resulting from conversion of soft x-rays incident on a phosphor to the visible. We have acquired plasma images at frame rates of 1-500 kHz (300 frames/shot), and have observed a variety of MHD phenomena: disruptions, sawteeth, fishbones, tearing modes, and ELMs. New data including modes with frequency > 90 kHz are also presented. Data analysis and modeling techniques used to interpret the FSXIC data are described and compared, and FSXIC results are compared to Mirnov and PIN diode array results.

  5. Application of the alanine detector to gamma-ray, X-ray and fast neutron dosimetry

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.; Hansen, J.W.; Byrski, E.

    1987-01-01

    A dosimeter based on alanine has been developed at the INP in Krakow and at Risoe National Laboratory. Due to its near tissue-equivalence and stability of signal, measured using ESR spectrometry at room temperature, this free-radical amino-acid dosimetric system is particularly suitable for measuring X-ray, gamma-ray and fast neutron doses in the range 10-10 5 Gy. The relative effectiveness (with respect to 60 Co γ-rays) of the alanine dosimeter to 250 kVp X-rays and to cyclotron-produced fast neutrons (mean neutron energy 5.6 MeV) is measured to be 0.76± 0.06 and 0.60±0.05, respectively. The suitability of the alanine dosimeter for intercomparison gamma-ray dosimetry is also shown. The estimated absolute difference between 60 Co dosimetry at Risoe National Laboratory and at the Centre of Oncology in Krakow is about 5%, somewhat more than the experimental uncertainty. These results are based on ESR measurements performed in Krakow on about 25% of the exposed detectors. 28 refs., 2 figs., 3 tabs. (author)

  6. Supergiant Fast X-ray Transients with Swift: spectroscopic and temporal properties

    OpenAIRE

    Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Farinelli, R.; Ceccobello, C.; Vercellone, S.; Burrows, D. N.; Kennea, J. A.; Krimm, H. A.; Gehrels, N.

    2012-01-01

    Supergiant fast X-ray transients (SFXTs) are a class of high-mass X-ray binaries with possible counterparts in the high energy gamma rays. The Swift SFXT Project has conducted a systematic investigation of the properties of SFTXs on timescales ranging from minutes to years and in several intensity states (from bright flares, to intermediate intensity states, and down to almost quiescence). We also performed broad-band spectroscopy of outbursts, and intensity-selected spectroscopy outside of o...

  7. Fast X-ray detection systems based on GaAs diodes grown by LPE

    International Nuclear Information System (INIS)

    Rente, C.; Lauter, J.; Apetz, R.; Lueth, H.

    1996-01-01

    We report on the fabrication and characterization of GaAs based X-ray detectors. The detector structures are grown by liquid phase epitaxy (LPE) and show typical background doping in the order of 10 14 cm -3 (n-type) so that active regions up to 43 μm could be realized. Schottky diodes were processed with active areas up to 1mm 2 . Typical dark current densities are as low as 360pA/mm 2 at 100V. The energy resolution of the detector in combination with a charge sensitive preamplifier was determined to be 1.6keV (FWHM) for x-rays with an energy between 6 and 60keV. The time response of the devices coupled to a fast transimpedance amplifier with a bandwidth of 100MHz was investigated. Single photon detection at room temperature was achieved for X-rays having energies of 14 keV and higher. The measured time resolutions were 600ps (FWHM=1.4ns) and 430ps (FWHM=1.0ns) for X-ray photons of 14.4keV and 21.5keV, respectively. The efficiency of the detector having a 43μm thick depleted layer was determined to be 70% at 14.4 keV and 40% at 21.5keV. These detectors open a new field of X-ray spectroscopy especially for high rate applications and timing measurements at synchrotron radiation facilities

  8. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, P. K.; Hustedt, C. J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C. [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Vecchio, K. S. [Department of NanoEngineering, University of California San Diego, La Jolla, California 92093 (United States); Huskins, E. L. [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830 (United States); US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Casem, D. T. [US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Gruner, S. M. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853 (United States); Tate, M. W.; Philipp, H. T.; Purohit, P.; Weiss, J. T. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Woll, A. R. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kannan, V.; Ramesh, K. T. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Kenesei, P.; Okasinski, J. S.; Almer, J. [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-09-15

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ∼10{sup 3}–10{sup 4} s{sup −1} in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10–20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (∼40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.

  9. THE XMM-Newton and integral observations of the Supergiant Fast X-Ray Transient IGR J16328-4726

    OpenAIRE

    Fiocchi, M.; Bazzano, A.; Natalucci, L.; Ubertini, P.; Sguera, V.; Bird, A. J.; Boon, C.M.; Persi, P.; Piro, L.

    2016-01-01

    The accretion mechanism producing the short flares observed from the Supergiant Fast X-ray Transients (SFXT) is still highly debated and forms a major part in our attempts to place these X-ray binaries in the wider context of the High Mass X-ray Binaries. We report on a 216 ks INTEGRAL observation of the SFXT IGR J16328-4726 (2014 August 24–27) simultaneous with two fixed-time observations with XMM-Newton (33 and 20 ks) performed around the putative periastron passage, in order to investigate...

  10. Watching proteins function with time-resolved x-ray crystallography

    Science.gov (United States)

    Šrajer, Vukica; Schmidt, Marius

    2017-09-01

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115-54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201-41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651-9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237-51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5-20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242-6, Barends et al 2015 Science 350 445-50, Pande et al 2016 Science 352 725-9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We also outline

  11. Measurements of fast electron beams and soft X-ray emission from plasma-focus experiments

    Directory of Open Access Journals (Sweden)

    Surała Władysław

    2016-06-01

    Full Text Available The paper reports results of the recent experimental studies of pulsed electron beams and soft X-rays in plasma-focus (PF experiments carried out within a modified PF-360U facility at the NCBJ, Poland. Particular attention was focused on time-resolved measurements of the fast electron beams by means of two different magnetic analyzers, which could record electrons of energy ranging from about 41 keV to about 715 keV in several (6 or 8 measuring channels. For discharges performed with the pure deuterium filling, many strong electron signals were recorded in all the measuring channels. Those signals were well correlated with the first hard X-ray pulse detected by an external scintillation neutron-counter. In some of the analyzer channels, electron spikes (lasting about dozens of nanoseconds and appearing in different instants after the current peculiarity (so-called current dip were also recorded. For several discharges, fast ion beams, which were emitted along the z-axis and recorded with nuclear track detectors, were also investigated. Those measurements confirmed a multibeam character of the ion emission. The time-integrated soft X-ray images, which were taken side-on by means of a pinhole camera and sensitive X-ray films, showed the appearance of some filamentary structures and so-called hot spots. The application of small amounts of admixtures of different heavy noble gases, i.e. of argon (4.8% volumetric, krypton (1.6% volumetric, or xenon (0.8% volumetric, decreased intensity of the recorded electron beams, but increased intensity of the soft X-ray emission and showed more distinct and numerous hot spots. The recorded electron spikes have been explained as signals produced by quasi-mono-energetic microbeams emitted from tiny sources (probably plasma diodes, which can be formed near the observed hot spots.

  12. Time-resolved suprathermal x-rays

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Rosen, M.D.

    1978-01-01

    Temporally resolved x-ray spectra in the range of 1 to 20 keV have been obtained from gold disk targets irradiated by 1.06 μm laser pulses from the Argus facility. The x-ray streak camera used for the measurement has been calibrated for streak speed and dynamic range by using an air-gap Fabry-Perot etalon, and the instrument response has been calibrated using a multi-range monoenergetic x-ray source. The experimental results indicate that we are able to observe the ''hot'' x-ray temperature evolve in time and that the experimentally observed values can be qualitatively predicted by LASNEX code computations when the inhibited transport model is used

  13. Seven years with the Swift Supergiant Fast X-ray Transients project

    Science.gov (United States)

    Romano, P.

    2015-09-01

    Supergiant Fast X-ray Transients (SFXTs) are HMXBs with OB supergiant companions. I review the results of the Swift SFXT project, which since 2007 has been exploiting Swift's capabilities in a systematic study of SFXTs and supergiant X-ray binaries (SGXBs) by combining follow-ups of outbursts, when detailed broad-band spectroscopy is possible, with long-term monitoring campaigns, when the out-of-outburst fainter states can be observed. This strategy has led us to measure their duty cycles as a function of luminosity, to extract their differential luminosity distributions in the soft X-ray domain, and to compare, with unprecedented detail, the X-ray variability in these different classes of sources. I also discuss the ;seventh year crisis;, the challenges that the recent Swift observations are making to the prevailing models attempting to explain the SFXT behavior.

  14. Fast and robust ray casting algorithms for virtual X-ray imaging

    International Nuclear Information System (INIS)

    Freud, N.; Duvauchelle, P.; Letang, J.M.; Babot, D.

    2006-01-01

    Deterministic calculations based on ray casting techniques are known as a powerful alternative to the Monte Carlo approach to simulate X- or γ-ray imaging modalities (e.g. digital radiography and computed tomography), whenever computation time is a critical issue. One of the key components, from the viewpoint of computing resource expense, is the algorithm which determines the path length travelled by each ray through complex 3D objects. This issue has given rise to intensive research in the field of 3D rendering (in the visible light domain) during the last decades. The present work proposes algorithmic solutions adapted from state-of-the-art computer graphics to carry out ray casting in X-ray imaging configurations. This work provides an algorithmic basis to simulate direct transmission of X-rays, as well as scattering and secondary emission of radiation. Emphasis is laid on the speed and robustness issues. Computation times are given in a typical case of radiography simulation

  15. Fast and robust ray casting algorithms for virtual X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freud, N. [CNDRI, Laboratory of Nondestructive Testing Using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, Avenue Albert Einstein, 69621 Villeurbanne Cedex (France)]. E-mail: Nicolas.Freud@insa-lyon.fr; Duvauchelle, P. [CNDRI, Laboratory of Nondestructive Testing Using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, Avenue Albert Einstein, 69621 Villeurbanne Cedex (France); Letang, J.M. [CNDRI, Laboratory of Nondestructive Testing Using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, Avenue Albert Einstein, 69621 Villeurbanne Cedex (France); Babot, D. [CNDRI, Laboratory of Nondestructive Testing Using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, Avenue Albert Einstein, 69621 Villeurbanne Cedex (France)

    2006-07-15

    Deterministic calculations based on ray casting techniques are known as a powerful alternative to the Monte Carlo approach to simulate X- or {gamma}-ray imaging modalities (e.g. digital radiography and computed tomography), whenever computation time is a critical issue. One of the key components, from the viewpoint of computing resource expense, is the algorithm which determines the path length travelled by each ray through complex 3D objects. This issue has given rise to intensive research in the field of 3D rendering (in the visible light domain) during the last decades. The present work proposes algorithmic solutions adapted from state-of-the-art computer graphics to carry out ray casting in X-ray imaging configurations. This work provides an algorithmic basis to simulate direct transmission of X-rays, as well as scattering and secondary emission of radiation. Emphasis is laid on the speed and robustness issues. Computation times are given in a typical case of radiography simulation.

  16. Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lombi, E.; Donner, E. [University of South Australia, Centre for Environmental Risk Assessment and Remediation, Mawson Lakes, South Australia (Australia); CRC CARE, PO Box 486, Salisbury, South Australia (Australia); Jonge, M.D. de; Paterson, D. [Australian Synchrotron, X-ray Fluorescence Microscopy, 800 Blackburn Road, Clayton, Victoria (Australia); Ryan, C.G. [CSIRO Earth Science and Resource Engineering, Normanby Road, Clayton, Victoria (Australia)

    2011-06-15

    Environmental samples are extremely diverse but share a tendency for heterogeneity and complexity. This heterogeneity poses methodological challenges when investigating biogeochemical processes. In recent years, the development of analytical tools capable of probing element distribution and speciation at the microscale have allowed this challenge to be addressed. Of these available tools, laterally resolved synchrotron techniques such as X-ray fluorescence mapping are key methods for the in situ investigation of micronutrients and inorganic contaminants in environmental samples. This article demonstrates how recent advances in X-ray fluorescence detector technology are bringing new possibilities to environmental research. Fast detectors are helping to circumvent major issues such as X-ray beam damage of hydrated samples, as dwell times during scanning are reduced. They are also helping to reduce temporal beamtime requirements, making particularly time-consuming techniques such as micro X-ray fluorescence ({mu}XRF) tomography increasingly feasible. This article focuses on {mu}XRF mapping of nutrients and metalloids in environmental samples, and suggests that the current divide between mapping and speciation techniques will be increasingly blurred by the development of combined approaches. (orig.)

  17. Ultra fast atomic process in X-ray emission by inner-shell ionization

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Tajima, T

    1998-03-01

    An ultra-fast atomic process together with X-ray emission by inner-shell ionization using high intensity (10{sup 18} W/cm{sup 2}) short pulse (20fs) X-ray is studied. A new class of experiment is proposed and a useful pumping source is suggested. In this method, it is found that the gain value of X-ray laser amounts to larger than 1000(1/cm) with use of the density of 10{sup 22}/cm{sup 3} of carbon atom. Electron impact ionization effect and initial density effect as well as intensity of pumping source effect are also discussed. (author)

  18. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Miaja-Avila

    2015-03-01

    Full Text Available We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  19. Watching proteins function with time-resolved x-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Šrajer, Vukica; Schmidt, Marius

    2017-08-22

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115–54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201–41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651–9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237–51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5–20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242–6, Barends et al 2015 Science 350 445–50, Pande et al 2016 Science 352 725–9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We

  20. Watching proteins function with time-resolved x-ray crystallography

    International Nuclear Information System (INIS)

    Šrajer, Vukica; Schmidt, Marius

    2017-01-01

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol . 305 115–54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201–41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol . 22 651–9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237–51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5–20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242–6, Barends et al 2015 Science 350 445–50, Pande et al 2016 Science 352 725–9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs

  1. Development of a fast pixel array detector for use in microsecond time-resolved x-ray diffraction

    International Nuclear Information System (INIS)

    Barna, S.L.; Gruner, S.M.; Shepherd, J.A.

    1995-01-01

    A large-area pixel x-ray detector is being developed to collect eight successive frames of wide dynamic range two-dimensional images at 200kHz rates. Such a detector, in conjunction with a synchrotron radiation x-ray source, will enable time-resolved x-ray studies of proteins and other materials on time scales which have previously been inaccessible. The detector will consist of an array of fully-depleted 150 micron square diodes connected to a CMOS integrated electronics layer with solder bump-bonding. During each framing period, the current resulting from the x-rays stopped in the diodes is integrated in the electronics layer, and then stored in one of eight storage capacitors underneath the pixel. After the last frame, the capacitors are read out at standard data transmission rates. The detector has been designed for a well-depth of at least 10,000 x-rays (at 20keV), and a noise level of one x-ray. Ultimately, the authors intend to construct a detector with over one million pixels (1024 by 1024). They present the results of their development effort and various features of the design. The electronics design is discussed, with special attention to the performance requirements. The choice and design of the detective diodes, as they relate to x-ray stopping power and charge collection, are presented. An analysis of various methods of bump bonding is also presented. Finally, the authors discuss the possible need for a radiation-blocking layer, to be placed between the electronics and the detective layer, and various methods they have pursued in the construction of such a layer

  2. Conceptual design of a novel instrument for producing intense pulses of 10 ps X-rays for ultra-fast fluorescence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, G.J.

    1996-05-01

    A novel bench-top device for producing intense, fast pulses of x-rays has been designed with 10 ps fwhm (full-width at half-maximum) x-ray pulse width, 120 keV maximum energy, 100 kHz repetition rate, and 1 A peak current onto the x-ray anode. The device includes three sections: (1) an electron gun that generates 5 ns wide pulses of 120 keV electrons at 100 kHz; (2) solenoidal magnetic lenses and deflection plates that focus the electrons onto an aperture plate and sweep the pulsed beam past the aperture, respectively; and (3) a tungsten anode onto which the post-aperture electrons are focused, producing pulses of x-rays. At a sweeping rate of 10{sup 13} V/s, the electron pulses and resulting x-ray pulses are reduced to about 10 ps. The design process used EGUN (an electron optics and gun design program) electron trajectory simulations, including calculation of important space charge effects. When built, this instrument will be used to excite new, fast, bright scintillator samples in crystal or powdered form, allowing fluorescent lifetimes and spectra to be measured with a microchannel PMT. The very narrow 10 ps x-ray pulse width is necessary for accurate measurements of the risetimes of very fast scintillators (e.g., BaF{sub 2}). In addition, the large x-ray flux (1 A peak current) is advantageous when using a reflection grating monochromator to measure decay times at different wavelengths.

  3. Conceptual design of a novel instrument for producing intense pulses of 10 ps X-rays for ultra-fast fluorescence measurements

    International Nuclear Information System (INIS)

    Gruber, G.J.

    1996-05-01

    A novel bench-top device for producing intense, fast pulses of x-rays has been designed with 10 ps fwhm (full-width at half-maximum) x-ray pulse width, 120 keV maximum energy, 100 kHz repetition rate, and 1 A peak current onto the x-ray anode. The device includes three sections: (1) an electron gun that generates 5 ns wide pulses of 120 keV electrons at 100 kHz; (2) solenoidal magnetic lenses and deflection plates that focus the electrons onto an aperture plate and sweep the pulsed beam past the aperture, respectively; and (3) a tungsten anode onto which the post-aperture electrons are focused, producing pulses of x-rays. At a sweeping rate of 10 13 V/s, the electron pulses and resulting x-ray pulses are reduced to about 10 ps. The design process used EGUN (an electron optics and gun design program) electron trajectory simulations, including calculation of important space charge effects. When built, this instrument will be used to excite new, fast, bright scintillator samples in crystal or powdered form, allowing fluorescent lifetimes and spectra to be measured with a microchannel PMT. The very narrow 10 ps x-ray pulse width is necessary for accurate measurements of the risetimes of very fast scintillators (e.g., BaF 2 ). In addition, the large x-ray flux (1 A peak current) is advantageous when using a reflection grating monochromator to measure decay times at different wavelengths

  4. OBSERVATIONS OF X-RAY OSCILLATIONS IN ξ BOO: EVIDENCE OF A FAST-KINK MODE IN THE STELLAR LOOPS

    International Nuclear Information System (INIS)

    Pandey, J. C.; Srivastava, A. K.

    2009-01-01

    We report the observations of X-ray oscillations during the flare in a cool active star ξ Boo for the first time. ξ Boo was observed by EPIC/MOS of the XMM-Newton satellite. The X-ray light curve is investigated with wavelet and periodogram analyses. Both analyses clearly show oscillations of the period of ∼1019 s. We interpret these oscillations as a fundamental fast-kink mode of magnetoacoustic waves.

  5. Building X-ray pulsar timing model without the use of radio parameters

    Science.gov (United States)

    Sun, Hai-feng; Sun, Xiong; Fang, Hai-yan; Shen, Li-rong; Cong, Shao-peng; Liu, Yan-ming; Li, Xiao-ping; Bao, Wei-min

    2018-02-01

    This paper develops a timing solution for the X-ray pulsar timing model without the use of the initial radio model parameters. First, we address the problem of phase ambiguities for the pre-fit residuals in the construction of pulsar timing model. To improve the estimation accuracy of the pulse time of arrival (TOA), we have deduced the general form of test statistics in Fourier transform, and discussed their estimation performances. Meanwhile, a fast maximum likelihood (FML) technique is presented to estimate the pulse TOA, which outperforms cross correlation (CC) estimator and exhibits a performance comparable with maximum likelihood (ML) estimator in spite of a much less reduced computational complexity. Depending on the strategy of the difference minimum of pre-fit residuals, we present an effective forced phase-connected technique to achieve initial model parameters. Then, we use the observations with the Rossi X-Ray Timing Explorer (RXTE) and X-ray pulsar navigation-I (XPNAV-1) satellites for experimental studies, and discuss main differences for the root mean square (RMS) residuals calculated with the X-ray and radio ephemerides. Finally, a chi-square value (CSV) of pulse profiles is presented as a complementary indicator to the RMS residuals for evaluating the model parameters. The results show that the proposed timing solution is valid and effective, and the obtained model parameters can be a reasonable alternative to the radio ephemeris.

  6. Development of real-time x-ray microtomography system

    International Nuclear Information System (INIS)

    Takano, H; Morikawa, M; Konishi, S; Azuma, H; Shimomura, S; Tsusaka, Y; Kagoshima, Y; Nakano, S; Kosaka, N; Yamamoto, K

    2013-01-01

    We have developed a four-dimensional (4D) x-ray microcomputed tomography (CT) system that can obtain time-lapse CT volumes in real time. The system consists of a high-speed sample rotation system and a high-frame-rate x-ray imager, which are installed at a synchrotron radiation x-ray beamline. As a result of system optimization and introduction of a 'zoom resolution' procedure, a real-time 4D CT movie with a frame rate of 30 was obtained with a voxel size of 2.5 μm using 10 keV x-rays

  7. Investigation of Lecturer's Chalk by x-ray Florescence and Fast Neutron Activation Techniques

    International Nuclear Information System (INIS)

    Hassan, M.F.

    2011-01-01

    Different samples of lecturer's chalk were studied, using X-ray florescence (XRF) and Fast Neutron Activation Analysis (FNAA) techniques to ensure the safety of its use. The K (X-rays) and the gamma-rays were measured, using Si(Li) and high-purity germanium (HPGe) spectrometers to detect and determine qualitatively and quantitatively the constituents of the studied samples. The concentrations of the elements (Ca and small traces of Al, Fe, Mg and Si) were measured and their presence was confirmed by gamma-ray, lifetime and/or XRF measurements.

  8. An iterative method for unfolding time-resolved soft x-ray spectra of laser plasmas

    International Nuclear Information System (INIS)

    Tang Yongjian; Shen Kexi; Xu Hepin

    1991-01-01

    Dante-recorded temporal waveforms have been unfolded by using Fast Fourier transformation (FFT) and the inverted convolution theorem of Fourier analysis. The conversion of the signals to time-dependent soft x-ray spectra is accomplished on the IBM-PC/XT-286 microcomputer system with the code DTSP including SAND II reported by W.N.Mcelory et al.. An amplitude-limited iterative and periodic smoothing technique has been developed in the code DTSP. Time-resolved soft x-ray spectra with sixteen time-cell, and time-dependent radiation, [T R (t)], have been obtained for hohlraum targets irradiated with laser beams (λ = 1.06 μm) on LF-12 in 1989

  9. Versatile high-repetition-rate phase-locked chopper system for fast timing experiments in the vacuum ultraviolet and x-ray spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Plogmaker, Stefan; Johansson, Erik M. J.; Rensmo, Haakan; Feifel, Raimund; Siegbahn, Hans [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Linusson, Per [Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Eland, John H. D. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ (United Kingdom); Baker, Neville [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ (United Kingdom)

    2012-01-15

    A novel light chopper system for fast timing experiments in the vacuum-ultraviolet (VUV) and x-ray spectral region has been developed. It can be phase-locked and synchronized with a synchrotron radiation storage ring, accommodating repetition rates in the range of {approx}8 to {approx}120 kHz by choosing different sets of apertures and subharmonics of the ring frequency (MHz range). Also the opening time of the system can be varied from some nanoseconds to several microseconds to meet the needs of a broad range of applications. Adjusting these parameters, the device can be used either for the generation of single light pulses or pulse packages from a microwave driven, continuous He gas discharge lamp or from storage rings which are otherwise often considered as quasi-continuous light sources. This chopper can be utilized for many different kinds of experiments enabling, for example, unambiguous time-of-flight (TOF) multi-electron coincidence studies of atoms and molecules excited by a single light pulse as well as time-resolved visible laser pump x-ray probe electron spectroscopy of condensed matter in the valence and core level region.

  10. Diagnostics of underwater electrical wire explosion through a time- and space-resolved hard x-ray source.

    Science.gov (United States)

    Sheftman, D; Shafer, D; Efimov, S; Gruzinsky, K; Gleizer, S; Krasik, Ya E

    2012-10-01

    A time- and space-resolved hard x-ray source was developed as a diagnostic tool for imaging underwater exploding wires. A ~4 ns width pulse of hard x-rays with energies of up to 100 keV was obtained from the discharge in a vacuum diode consisting of point-shaped tungsten electrodes. To improve contrast and image quality, an external pulsed magnetic field produced by Helmholtz coils was used. High resolution x-ray images of an underwater exploding wire were obtained using a sensitive x-ray CCD detector, and were compared to optical fast framing images. Future developments and application of this diagnostic technique are discussed.

  11. The Soft X-ray real time fast trigger system

    International Nuclear Information System (INIS)

    Blackler, K.; Edwards, A.; Holm, J.

    1992-05-01

    Most current diagnostics are limited to recording data either at fixed times and data rates, or in response to certain predefined events - such as the injection of a pellet. The previous Soft X-Ray trigger system at Joint European Torus Joint Undertaking (JET)(A.W. Edwards et al., Rev Sci Instrum. 57(8), p2142, 1986) improved upon this by using Analogue Signal Processors to monitor the analogue data in real time and to provide 'triggers' to the data acquisition system in response to an event such as a sawtooth collapse. This system was however limited in the type of events that could be detected. It was also incapable of being rapidly re-configured. Advances in digital electronics caused a study to be undertaken to see if this situation could be improved. The system described below is the result of this study and has successfully run at JET since the summer of 1990, providing a greatly increased quality of data as well as recording some new phenomena such as the spontaneous snake. This note has been produced to describe the function and operation of the trigger system. (author)

  12. Time-resolved X-ray PIV technique for diagnosing opaque biofluid flow with insufficient X-ray fluxes.

    Science.gov (United States)

    Jung, Sung Yong; Park, Han Wook; Kim, Bo Heum; Lee, Sang Joon

    2013-05-01

    X-ray imaging is used to visualize the biofluid flow phenomena in a nondestructive manner. A technique currently used for quantitative visualization is X-ray particle image velocimetry (PIV). Although this technique provides a high spatial resolution (less than 10 µm), significant hemodynamic parameters are difficult to obtain under actual physiological conditions because of the limited temporal resolution of the technique, which in turn is due to the relatively long exposure time (~10 ms) involved in X-ray imaging. This study combines an image intensifier with a high-speed camera to reduce exposure time, thereby improving temporal resolution. The image intensifier amplifies light flux by emitting secondary electrons in the micro-channel plate. The increased incident light flux greatly reduces the exposure time (below 200 µs). The proposed X-ray PIV system was applied to high-speed blood flows in a tube, and the velocity field information was successfully obtained. The time-resolved X-ray PIV system can be employed to investigate blood flows at beamlines with insufficient X-ray fluxes under specific physiological conditions. This method facilitates understanding of the basic hemodynamic characteristics and pathological mechanism of cardiovascular diseases.

  13. Time switch for X-ray diagnosis apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Distler, G; Goetzl, H

    1977-04-07

    A time switch for dental X-rays consists of a knob to select exposure time. Two scales are concentrically mounted, one for time, and one with the various tooth symbols, in such a way that the various teeth are in correspondence with the usually recommended times. However, should the X-ray tube characteristics vary at some stage, by pressing the knob, then turning, the 'tooth scale' can be rotated for setting the exposure times at higher or lower levels.

  14. Time-Resolved Hard X-Ray Spectrometer

    International Nuclear Information System (INIS)

    Kenneth Moya; Ian McKennaa; Thomas Keenana; Michael Cuneob

    2007-01-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and polar views. UNSPEC1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment

  15. Short irradiation time characteristics of the inverter type X-ray generator

    International Nuclear Information System (INIS)

    Miyazaki, Shigeru; Hara, Takamitu; Matutani, Kazuo; Saito, Kazuhiko.

    1994-01-01

    The linearity of the X-ray output is an important factor in radiography. It is a composite of the linearities of the X-ray tube voltage, the X-ray tube current, and the exposure time. This paper focuses on the linearity of exposure time. Non-linearity of the X-ray output for short-time exposure became a problem when the three-phase X-ray generator was introduced. This paper describes the inverter-type X-ray generator, which is expected to become predominant in the future. Previously, we investigated X-ray output linearity during short-time exposure using the technique of dynamic study. In this paper, we describe the application of a digital memory and a personal computer to further investigation. The non-linearity of the X-ray output was caused by irregular waveforms of the X-ray tube voltage found at the rise time and the fall time. When the rise time was about 0.6 ms, the non-linearity was about 2%, which is negligibly small. The non-linearity due to the fall time of the X-ray tube varied greatly according to the X-ray tube current. For the minimum irradiation time of 1 ms, 4% to 27% of the non-linearity was attributable to the fall time. The main cause was the stray capacitance of the X-ray high-voltage cables. When the X-ray tube current exceeded 400 mA, the rise time was almost equal to the fall time, and the problem did not occur. Consequently, the ideal generator should have a fall time which is equal to the rise time of the X-ray tube voltage. Strictly speaking, such a generator should have rectangular waveforms. (author)

  16. On the theory of time-resolved x-ray diffraction

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Møller, Klaus Braagaard

    2008-01-01

    We derive the basic theoretical formulation for X-ray diffraction with pulsed fields, using a fully quantized description of light and matter. Relevant time scales are discussed for coherent as well as incoherent X-ray pulses, and we provide expressions to be used for calculation...... of the experimental diffraction signal for both types of X-ray sources. We present a simple analysis of time-resolved X-ray scattering for direct bond breaking in diatomic molecules. This essentially analytical approach highlights the relation between the signal and the time-dependent quantum distribution...

  17. Elemental investigation of talcum baby powder by X-Ray florescence and fast neutron activation Techniques

    International Nuclear Information System (INIS)

    Hassan, M. F.; Abd El Wahab, M.; Nada, A.

    2008-01-01

    Different samples of Egyptian and Hungarian talcum powders were studied, using X-ray florescence (XRF) and Fast Neutron Activation Analysis (FNAA) techniques to ensure the safety of its use. The K (X-rays) and the gamma-rays were measured, using Si(Li) and high-purity germanium (HPGe) spectrometers to detect and determine qualitatively and quantitatively the constituents of the studied samples. The concentrations of the elements (Mg, Si, Al, Fe, Zn, and Ba) were measured and their presence was confirmed by X-ray, lifetime and/or XRF measurements. One of these samples was also studied, using the Environmental Scanning Electron Microscope (ESEM)

  18. Colloquium: Femtosecond x-ray crystallography

    International Nuclear Information System (INIS)

    Rousse, Antoine; Rischel, Christian; Gauthier, Jean-Claude

    2001-01-01

    This article gives an overview of recent x-ray diffraction experiments with time resolutions down to 10 -13 s. The scientific motivation behind the development is outlined, using examples from solid state physics and biology. The ultrafast resolution may be provided either by fast detectors or short x-ray pulses, and the limitations of both techniques are discussed on the basis of state of the art experiments. In particular, it is shown that with present designs, high time resolution reduces the structural information attainable with high spatial resolution, thereby limiting feasible experiments on the ultrashort time-scale. The first experiment showing subpicosecond conformation changes was recently achieved with simple solids using an ultrafast laser-produced plasma x-ray source. The principles of this experiment are described in detail

  19. Real-time soft x-ray imaging on composite materials

    International Nuclear Information System (INIS)

    Polichar, R.

    1985-01-01

    The increased use of composite materials in aircraft structures has emphasized many of the unique and difficult aspects of the inspection of such components. Ultrasound has been extensively applied to certain configurations since it is relatively sensitive to laminar discontinuities in structure. Conversely, the use of conventional x-ray examination has been severely hampered by the fact that these composite materials are virtually transparent to the x-ray energies commonly encountered in industrial radiography (25 kv and above). To produce images with contrast approaching conventional radiography, one must use x-ray beams with average energies below 10 KEV where the absorption coefficients begin to rise rapidly for these low atomic number materials. This new regime of soft x-rays presents a major challenge to real-time imaging components. Special screen and window technology is required if these lower energy x-rays are to be effectively detected. Moreover, conventional x-ray tubes become very inefficient for generating the required x-ray flux at potentials much below 29 kv and the increased operating currents put significant limitations on conventional power sources. The purpose of this paper is to explore these special problems related to soft x-ray real-time imaging and to define the optimal technologies. Practical results obtained with the latest commerical and developmental instruments for real-time imaging will be shown. These instruments include recently developed imaging systems, new x-ray tubes and various approaches to generator design. The measured results convincingly demonstrate the effectiveness practicality of real-time soft x-ray imaging. They also indicate the major changes in technology and approach that must be taken for practical systems to be truly effective

  20. Time resolved x-ray photography of a dense plasma focus

    International Nuclear Information System (INIS)

    Burnett, J.C.; Meyer, J.; Rankin, G.

    1977-01-01

    The temporal development of the hot plasma in a dense plasma focus is studied by x-ray streak photography of approximately 2 ns resolution time. It is shown that initially a uniform x-ray emitting pinch plasma is formed which subsequently cools down until x-ray emission stops after approximately 50 ns. At a time of around 100 ns after initial x-ray emission coinciding with the break-up time of the pinch a second burst of x-rays is observed coming from small localized regions. The observations are compared with results obtained from time-resolved shadow and schlieren photography of a similar dense focus discharge. (author)

  1. Neural network Hilbert transform based filtered backprojection for fast inline x-ray inspection

    Science.gov (United States)

    Janssens, Eline; De Beenhouwer, Jan; Van Dael, Mattias; De Schryver, Thomas; Van Hoorebeke, Luc; Verboven, Pieter; Nicolai, Bart; Sijbers, Jan

    2018-03-01

    X-ray imaging is an important tool for quality control since it allows to inspect the interior of products in a non-destructive way. Conventional x-ray imaging, however, is slow and expensive. Inline x-ray inspection, on the other hand, can pave the way towards fast and individual quality control, provided that a sufficiently high throughput can be achieved at a minimal cost. To meet these criteria, an inline inspection acquisition geometry is proposed where the object moves and rotates on a conveyor belt while it passes a fixed source and detector. Moreover, for this acquisition geometry, a new neural-network-based reconstruction algorithm is introduced: the neural network Hilbert transform based filtered backprojection. The proposed algorithm is evaluated both on simulated and real inline x-ray data and has shown to generate high quality reconstructions of 400  ×  400 reconstruction pixels within 200 ms, thereby meeting the high throughput criteria.

  2. SphinX : A fast solar Ph otometer in X -rays

    Czech Academy of Sciences Publication Activity Database

    Sylwester, J.; Kuzin, S.; Kotov, Yu. D.; Fárník, František; Reale, F.

    2008-01-01

    Roč. 29, 1-2 (2008), s. 339-343 ISSN 0250-6335 Institutional research plan: CEZ:AV0Z10030501 Keywords : X-rays * spectrophotometer * high time resolution Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.667, year: 2008

  3. X-ray time and spectral variability as probes of ultraluminous x-ray sources

    Science.gov (United States)

    Pasham, Dheeraj Ranga Reddy

    A long-standing debate in the field of ultraluminous X-ray sources (ULXs: luminosities > 3x1039 ergs s-1) is whether these objects are powered by stellar-mass black holes (mass range of 3-25 solar masses) undergoing hyper-accretion/emission or if they host the long-sought after class of intermediate-mass black holes (mass range of a few 100-1000 solar masses) accreting material at sub-Eddington rates. We present X-ray time and energy spectral variability studies of ULXs in order to understand their physical environments and accurately weigh their compact objects. A sample of ULXs exhibit quasi-periodic oscillations (QPOs) with centroid frequencies in the range of 10-200 mHz. The nature of the power density spectra (PDS) of these sources is qualitatively similar to stellar-mass black holes when they exhibit the so-called type-C low-frequency QPOs (frequency range of 0.2-15 Hz). However, the crucial difference is that the characteristic frequencies within the PDS of ULXs, viz., the break frequencies and the centroid frequencies of the QPOs, are scaled down by a factor of approximately 10-100 compared to stellar-mass black holes. It has thus been argued that the ULX mHz QPOs are the type-C low-frequency QPO analogs of stellar-mass black holes and that the observed difference in the frequencies (a fewx0.01 Hz compared with a few Hz) is due to the presence of intermediate-mass black holes ( MULX = (QPOstellar-mass black hole }/QPOULX)xM stellar-mass black hole, where M and QPO are the mass and the QPO frequency, respectively) within these ULXs. We analyzed all the archival XMM-Newton X-ray data of ULXs NGC 5408 X-1 and M82 X-1 in order to test the hypothesis that the ULX mHz QPOs are the type-C analogs by searching for a correlation between the mHz QPO frequency and the energy spectral power-law index as type-C QPOs show such a dependence. From our multi-epoch timing and spectral analysis of ULXs NGC 5408 X-1 and M82 X-1, we found that the mHz QPOs of these sources vary

  4. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.; Kruger, R.A.; Houk, T.L.

    1982-01-01

    A method of producing visible difference images derived from an x-ray image of an anatomical subject is described. X-rays are directed through the subject, and the image is converted into television fields comprising trains of analog video signals. The analog signals are converted into digital signals, which are then integrated over a predetermined time corresponding to several television fields. Difference video signals are produced by performing a subtraction between the ongoing video signals and the corresponding integrated signals, and are converted into visible television difference images representing changes in the x-ray image

  5. Ultrafast secondary emission x-ray imaging detectors

    International Nuclear Information System (INIS)

    Akkerman, A.; Gibrekhterman, A.; Majewski, S.

    1991-07-01

    Fast high accuracy, x-ray imaging at high photon flux can be achieved when coupling thin solid convertors to gaseous electron multipliers, operating at low gas pressures. Secondary electron emitted from the convertor foil are multiplied in several successive amplification elements. The obvious advantage of solid x-ray detectors, as compared to gaseous conversion, are the production of parallax-free images and the fast (subnanoseconds) response. These x-ray detectors have many potential applications in basic and applied research. Of particular interest is the possibility of an efficient and ultrafast high resolution imaging of transition radiation,with a reduced dE/dx background. We present experimental results on the operation of the secondary emission x-ray (SEX) detectors, their detection efficiency, localization and time resolution. The experimental work is accompanied by mathematical modelling and computer simulation of transition radiation detectors based on CsI transition radiation convertors. (author)

  6. Scientific Challenges for a New X-ray Timing Mission

    International Nuclear Information System (INIS)

    Lamb, Frederick K.

    2004-01-01

    The Rossi X-ray Timing Explorer (RXTE) is an immensely successful mission of exploration and discovery. It has discovered a wealth of rapid X-ray variability phenomena that can be used to address fundamental questions concerning the properties of dense matter and strong gravitational fields as well as important astrophysical questions. It has answered many questions and is likely to answer many more, but to follow up fully on the major discoveries RXTE has made will require a new X-ray timing mission with greater capabilities. This introduction to the present volume describes briefly the advantages of X-ray timing measurements for determining the properties of dense matter and strong gravitational fields, indicates some of the key scientific questions that can be addressed using X-ray timing, and summarizes selected achievements of the RXTE mission. It concludes by citing some of the scientific capabilities a proposed follow-on mission will need in order to be successful

  7. Measuring and understanding ultrafast phenomena using X-rays

    DEFF Research Database (Denmark)

    Haldrup, Kristoffer; Nielsen, Martin Meedom

    2014-01-01

    Within the last decade, significant advances in X-ray sources and instrumentation as well as simultaneous developments in analysis methodology has allowed the field of fast- and ultrafast time-resolved X-ray studies of solution-state systems to truly come of age. We here describe some aspects of ...

  8. Time-resolved x-ray diagnostics

    International Nuclear Information System (INIS)

    Lyons, P.B.

    1981-01-01

    Techniques for time-resolved x-ray diagnostics will be reviewed with emphasis on systems utilizing x-ray diodes or scintillators. System design concerns for high-bandwidth (> 1 GHz) diagnostics will be emphasized. The limitations of a coaxial cable system and a technique for equalizing to improve bandwidth of such a system will be reviewed. Characteristics of new multi-GHz amplifiers will be presented. An example of a complete operational system on the Los Alamos Helios laser will be presented which has a bandwidth near 3 GHz over 38 m of coax. The system includes the cable, an amplifier, an oscilloscope, and a digital camera readout

  9. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.

    1982-01-01

    The invention provides a method of producing visible difference images derived from an X-ray image of an anatomical subject, comprising the steps of directing X-rays through the anatomical subject for producing an image, converting the image into television fields comprising trains of on-going video signals, digitally storing and integrating the on-going video signals over a time interval corresponding to several successive television fields and thereby producing stored and integrated video signals, recovering the video signals from storage and producing integrated video signals, producing video difference signals by performing a subtraction between the integrated video signals and the on-going video signals outside the time interval, and converting the difference signals into visible television difference images representing on-going changes in the X-ray image

  10. Fast x-ray fluorescence microtomography of hydrated biological samples.

    Directory of Open Access Journals (Sweden)

    Enzo Lombi

    Full Text Available Metals and metalloids play a key role in plant and other biological systems as some of them are essential to living organisms and all can be toxic at high concentrations. It is therefore important to understand how they are accumulated, complexed and transported within plants. In situ imaging of metal distribution at physiological relevant concentrations in highly hydrated biological systems is technically challenging. In the case of roots, this is mainly due to the possibility of artifacts arising during sample preparation such as cross sectioning. Synchrotron x-ray fluorescence microtomography has been used to obtain virtual cross sections of elemental distributions. However, traditionally this technique requires long data acquisition times. This has prohibited its application to highly hydrated biological samples which suffer both radiation damage and dehydration during extended analysis. However, recent advances in fast detectors coupled with powerful data acquisition approaches and suitable sample preparation methods can circumvent this problem. We demonstrate the heightened potential of this technique by imaging the distribution of nickel and zinc in hydrated plant roots. Although 3D tomography was still impeded by radiation damage, we successfully collected 2D tomograms of hydrated plant roots exposed to environmentally relevant metal concentrations for short periods of time. To our knowledge, this is the first published example of the possibilities offered by a new generation of fast fluorescence detectors to investigate metal and metalloid distribution in radiation-sensitive, biological samples.

  11. Settling time of dental x-ray tube head after positioning

    International Nuclear Information System (INIS)

    Yun, Suk Ja; Kang, Byung Cheol; Wang, Se Myung; Koh, Chang Sung

    2002-01-01

    The aim of this study was to introduce a method of obtaining the oscillation graphs of the dental x-ray tube heads relative to time using an accelerometer. An Accelerometer, Piezotron type 8704B25 (Kistler Instrument Co., Amherst, NY, USA) was utilized to measure the horizontal oscillation of the x-ray tube head immediately after positioning the tube head for an intraoral radiograph. The signal from the sensor was transferred to a dynamic signal analyzer, which displayed the magnitude of the acceleration on the Y-axis and time lapse on the X-axis. The horizontal oscillation of the tube head was measured relative to time, and the settling time was also determined on the basis of the acceleration graphs for 6 wall type, 5 floor-fixed type, and 4 mobile type dental x-ray machines. The oscillation graphs showed that tube head movement decreased rapidly over time. The settling time varied with x-ray machine types. Wall-type x-ray machines had a settling time of up to 6 seconds, 5 seconds for fixed floor-types, and 11 seconds for the mobile-types. Using an accelerometer, we obtained the oscillation graphs of the dental x-ray tube head relative to time. The oscillation graph with time can guide the operator to decide upon the optimum exposure moment after xray tube head positioning for better radiographic resolution.

  12. Settling time of dental x-ray tube head after positioning

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Suk Ja; Kang, Byung Cheol [Department of Oral and Maxillofacial Radiology, Chonnam National University, Gwangju (Korea, Republic of); Wang, Se Myung; Koh, Chang Sung [Department of Mechatronics, Kwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2002-09-15

    The aim of this study was to introduce a method of obtaining the oscillation graphs of the dental x-ray tube heads relative to time using an accelerometer. An Accelerometer, Piezotron type 8704B25 (Kistler Instrument Co., Amherst, NY, USA) was utilized to measure the horizontal oscillation of the x-ray tube head immediately after positioning the tube head for an intraoral radiograph. The signal from the sensor was transferred to a dynamic signal analyzer, which displayed the magnitude of the acceleration on the Y-axis and time lapse on the X-axis. The horizontal oscillation of the tube head was measured relative to time, and the settling time was also determined on the basis of the acceleration graphs for 6 wall type, 5 floor-fixed type, and 4 mobile type dental x-ray machines. The oscillation graphs showed that tube head movement decreased rapidly over time. The settling time varied with x-ray machine types. Wall-type x-ray machines had a settling time of up to 6 seconds, 5 seconds for fixed floor-types, and 11 seconds for the mobile-types. Using an accelerometer, we obtained the oscillation graphs of the dental x-ray tube head relative to time. The oscillation graph with time can guide the operator to decide upon the optimum exposure moment after xray tube head positioning for better radiographic resolution.

  13. High speed gated x-ray imagers

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Bell, P.; Hanks, R.; Power, G.; Turner, R.E.; Wiedwald, J.

    1988-01-01

    Single and multi-frame gated x-ray images with time-resolution as fast as 150 psec are described. These systems are based on the gating of microchannel plates in a stripline configuration. The gating voltage comes from the avalanche breakdown of reverse biased p-n junction producing high power voltage pulses as short as 70 psec. Results from single and four frame x-ray cameras used on Nova are described. 8 refs., 9 figs

  14. Portable pulse X-ray micro and nanosecond range apparatus for studying fast-going processes in opaque media

    International Nuclear Information System (INIS)

    Goganov, D.A.; Komyak, N.I.; Pelix, E.A.

    Pulse X-radiography (X-ray flash duration in the order of 10 -6 -10 -9 sec) is the principal method for studying fast-going processes in opaque media by serial and parallel radiographic imaging. Description is given and main features are outlined of pulse X-ray apparatus IRA-4b, 5b, 6b producing X-radiation flashes from 0.3 μsec to 10-20 nsec in duration

  15. Shining X-rays on catalysts at work

    DEFF Research Database (Denmark)

    Grunwaldt, Jan-Dierk

    2009-01-01

    excitation spectroscopy). In order to obtain spectroscopic information on the oxidation state inside a microreactor, scanning and full field X-ray microscopy with X-ray absorption spectroscopic contrast were achieved under reaction conditions. If a microbeam is applied, fast scanning techniques like QEXAFS...... are required. In this way, even X-ray absorption spectroscopic tomographic images of a slice of a microreactor were obtained. The studies were recently extended to spatiotemporal studies that give important insight into the dynamics of the catalyst structure in a spatial manner with subsecond time-resolution....

  16. Time-dependent nonequilibrium soft x-ray response during a spin crossover

    Energy Technology Data Exchange (ETDEWEB)

    van Veenendaal, Michel

    2018-03-01

    The rapid development of high-brilliance pulsed X-ray sources with femtosecond time resolution has created a need for a better theoretical understanding of the time-dependent soft-X-ray response of dissipative many-body quantum systems. It is demonstrated how soft-X-ray spectroscopies, such as X-ray absorption and resonant inelastic X-ray scattering at transition-metal L-edges, can provide insight into intersystem crossings, such as a spin crossover. The photoinduced doublet-to-quartet spin crossover on cobalt in Fe-Co Prussian blue analogues is used as an example to demonstrate how the X-ray response is affected by the dissipative nonequilibrium dynamics. The time-dependent soft-X-ray spectra provide a wealth of information that reflect the changes in the nonequilibrium initial state via continuously changing spectral lineshapes that cannot be decomposed into initial photoexcited and final metastable spectra, strong broadenings, a collapse of clear selection rules during the intersystem crossing, strong fluctuations in the isotropic branching ratio in X-ray absorption, and crystal-field collapse/oscillations and strongly time-dependent anti-Stokes processes in RIXS.

  17. Conceptual design of a novel instrument for producing intense pulses of 10 ps X-rays for ultra-fast fluorescence measurements

    International Nuclear Information System (INIS)

    Gruber, G.J.; Derenzo, S.E.

    1996-01-01

    A novel bench-top device for producing intense, fast pulses of x-rays has been designed with 10 ps fwhm (full-width at half-maximum) x-ray pulse width, 120 keV maximum energy, 100 kHz repetition rate, and 1 A peak current onto the x-ray anode. The device includes three sections: (1) an electron gun that generates 5 ns wide pulses of 120 keV electrons at 100 kHz; (2) solenoidal magnetic lenses and deflection plates that focus the electrons onto an aperture plate and sweep the pulsed beam past the aperture, respectively; and (3) a tungsten anode onto which the post-aperture electrons are focused, producing pulses of x-rays. Using solenoidal magnetic lenses with a cur-rent density of 150 A·turns/cm 2 to focus the electron beam, a deflection plate dV/dt of 10 13 V/s is needed to achieve electron pulse widths of about 10 ps. The design process used EGUN (an electron optics and gun design program) electron trajectory simulations, including calculation of important space charge effects. When built, this instrument will be used to excite scintillator samples in crystal or powdered form, allowing fluorescent lifetimes and spectra to be measured with a microchannel PMT. The very narrow 10 ps x-ray pulse width is necessary for accurate measurements of the risetimes of very fast scintillators, (e.g., BaF 2 ). In addition, the large x-ray flux (1 A peak current) is advantageous when using a reflection grating monochromator to measure decay times at different wavelengths

  18. Real-time digital X-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.; Kruger, R.A.; Houk, T.L.

    1979-01-01

    A diagnostic anatomical X-ray apparatus comprising a converter and a television camera for converting an X-ray image of a subject into a series of television fields of video signals is described in detail. A digital memory system stores and integrates the video signals over a time interval corresponding to a plurality of successive television fields. The integrated video signals are recovered from storage and fed to a digital or analogue subtractor, the resulting output being displayed on a television monitor. Thus the display represents on-going changes in the anatomical X-ray image. In a modification, successive groups of fields are stored and integrated in three memories, cyclically, and subtractions are performed between successive pieces of integrated signals to provide a display of successive alterations in the X-ray image. For investigations of the heart, the integrating interval should be of the order of one cardiac cycle. (author)

  19. Ultrashort hard x-ray pulses generated by 90 degrees Thomson scattering

    International Nuclear Information System (INIS)

    Chin, A.H.; Schoenlein, R.W.; Glover, T.E.

    1997-01-01

    Ultrashort x-ray pulses permit observation of fast structural dynamics in a variety of condensed matter systems. The authors have generated 300 femtosecond, 30 keV x-ray pulses by 90 degrees Thomson scattering between femtosecond laser pulses and relativistic electrons. The x-ray and laser pulses are synchronized on a femtosecond time scale, an important prerequisite for ultrafast pump-probe spectroscopy. Analysis of the x-ray beam properties also allows for electron bunch characterization on a femtosecond time scale

  20. Time response characteristics of X-ray detector system on Silex-Ⅰ laser facility

    International Nuclear Information System (INIS)

    Yi Rongqing; He Xiao'an; Li Hang; Du Huabing; Zhang Haiying; Cao Zhurong

    2013-01-01

    On the Silex-Ⅰ laser facility, the time response characteristics of XRD detector were studied. A laser with a pulse of 32 fs and a wavelength of 800 nm was used to irradiate a plane Au target. X-ray calibrated method of time of exposure X-ray framing camera and time resolution of X-ray streak camera was explored. The time response characteristics of XRD detector and time process of X-ray emission were obtained from experiment. We obtained X-ray calibration method of time of exposure X-ray framing camera and time resolution of X-ray streak camera. (authors)

  1. The orbital period in the supergiant fast X-ray transient IGR J16465--4507

    OpenAIRE

    Clark, D. J.; Sguera, V.; Bird, A. J; McBride, V. A.; Hill, A. B.; Scaringi, S.; Drave, S.; Bazzano, A.; Dean, A. J

    2010-01-01

    Timing analysis of the INTEGRAL-IBIS and Swift-BAT light curves of the Supergiant Fast X-ray Transient (SFXT) IGR J16465-4507 has identified a period of 30.32+/-0.02 days which we interpret as the orbital period of the binary system. In addition 11 outbursts (9 of which are previously unpublished) have been found between MJD 52652 to MJD 54764, all of which occur close to the region of the orbit we regard as periastron. From the reported flux outbursts, we found a dynamical range in the inter...

  2. Time Evolving Fission Chain Theory and Fast Neutron and Gamma-Ray Counting Distributions

    International Nuclear Information System (INIS)

    Kim, K. S.; Nakae, L. F.; Prasad, M. K.; Snyderman, N. J.; Verbeke, J. M.

    2015-01-01

    Here, we solve a simple theoretical model of time evolving fission chains due to Feynman that generalizes and asymptotically approaches the point model theory. The point model theory has been used to analyze thermal neutron counting data. This extension of the theory underlies fast counting data for both neutrons and gamma rays from metal systems. Fast neutron and gamma-ray counting is now possible using liquid scintillator arrays with nanosecond time resolution. For individual fission chains, the differential equations describing three correlated probability distributions are solved: the time-dependent internal neutron population, accumulation of fissions in time, and accumulation of leaked neutrons in time. Explicit analytic formulas are given for correlated moments of the time evolving chain populations. The equations for random time gate fast neutron and gamma-ray counting distributions, due to randomly initiated chains, are presented. Correlated moment equations are given for both random time gate and triggered time gate counting. There are explicit formulas for all correlated moments are given up to triple order, for all combinations of correlated fast neutrons and gamma rays. The nonlinear differential equations for probabilities for time dependent fission chain populations have a remarkably simple Monte Carlo realization. A Monte Carlo code was developed for this theory and is shown to statistically realize the solutions to the fission chain theory probability distributions. Combined with random initiation of chains and detection of external quanta, the Monte Carlo code generates time tagged data for neutron and gamma-ray counting and from these data the counting distributions.

  3. Exploring transient X-ray sky with Einstein Probe

    Science.gov (United States)

    Yuan, W.; Zhang, C.; Ling, Z.; Zhao, D.; Chen, Y.; Lu, F.; Zhang, S.

    2017-10-01

    The Einstein Probe is a small satellite in time-domain astronomy to monitor the soft X-ray sky. It is a small mission in the space science programme of the Chinese Academy of Sciences. It will carry out systematic survey and characterisation of high-energy transients at unprecedented sensitivity, spatial resolution, Grasp and monitoring cadence. Its wide-field imaging capability is achieved by using established technology of micro-pore lobster-eye X-ray focusing optics. Complementary to this is X-ray follow-up capability enabled by a narrow-field X-ray telescope. It is capable of on-board triggering and real time downlink of transient alerts, in order to trigger fast follow-up observations at multi-wavelengths. Its scientific goals are concerned with discovering and characterising diverse types of X-ray transients, including tidal disruption events, supernova shock breakouts, high-redshift GRBs, and of particular interest, X-ray counterparts of gravitational wave events.

  4. Time-resolved materials science opportunities using synchrotron x-ray sources

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1995-06-01

    The high brightness, high intensity, and pulsed time-structure of synchrotron sources provide new opportunities for time-resolved x-ray diffraction investigations. With third generation synchrotron sources coming on line, high brilliance and high brightness are now available in x-ray beams with the highest flux. In addition to the high average flux, the instantaneous flux available in synchrotron beams is greatly enhanced by the pulsed time structure, which consists of short bursts of x-rays that are separated by ∼tens to hundreds of nanoseconds. Time-resolved one- and two-dimensional position sensitive detection techniques that take advantage of synchrotron radiation for materials science x-ray diffraction investigations are presented, and time resolved materials science applications are discussed in terms of recent diffraction and spectroscopy results and materials research opportunities

  5. Time-of-flight position-sensitive x-ray detection

    International Nuclear Information System (INIS)

    Mowat, J.W.

    1981-01-01

    A new method for recording beam-foil time-of-flight data is described. A stationary, side-window, position-senstive proportional counter, oriented with anode wire parallel to the ion beam, views the decay in flight of excited ions through a Soller slit x-ray collimator. In contrast to the standard method, the exciter foil, placed within or upstream from the field of view, is not moved during the acquisition of a decay curve. Each point on the anode acts like an independent detector seeing a unique segment of the ion beam. The correspondence between the downstream distance at which an ion decays and the position along the anode at which the x-ray is detected makes a pulse-height spectrum of position pulses equivalent to a time-of-flight decay curve. Thus an entire decay curve can now be acquired without moving the foil. Increased efficiency is the most significant improvement over the standard method in which the radiation detector views only a small segment of the flight path at any one time. Experiments using translating foils are subject to a spurious dependence of x-ray intensity on foil position if the foil is non-uniform (or non-uniformly aged) and wobbles as it moves. This effect is eliminated here. Foil aging effects which influence excitation rates and introduce a slowly varying time dependence of the x-ray intensity are automatically normalized by this multichannel technique. The application of this method to metastable x-ray emitting states of low-Z ions are discussed

  6. Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis

    International Nuclear Information System (INIS)

    Labiche, Jean-Claude; Mathon, Olivier; Pascarelli, Sakura; Newton, Mark A.; Ferre, Gemma Guilera; Curfs, Caroline; Vaughan, Gavin; Homs, Alejandro; Carreiras, David Fernandez

    2007-01-01

    Originally conceived and developed at the European Synchrotron Radiation Facility (ESRF) as an 'area' detector for rapid x-ray imaging studies, the fast readout low noise (FReLoN) detector of the ESRF [J.-C. Labiche, ESRF Newsletter 25, 41 (1996)] has been demonstrated to be a highly versatile and unique detector. Charge coupled device (CCD) cameras at present available on the public market offer either a high dynamic range or a high readout speed. A compromise between signal dynamic range and readout speed is always sought. The parameters of the commercial cameras can sometimes be tuned, in order to better fulfill the needs of specific experiments, but in general these cameras have a poor duty cycle (i.e., the signal integration time is much smaller than the readout time). In order to address scientific problems such as time resolved experiments at the ESRF, a FReLoN camera has been developed by the Instrument Support Group at ESRF. This camera is a low noise CCD camera that combines high dynamic range, high readout speed, accuracy, and improved duty cycle in a single image. In this paper, we show its application in a quasi-one-dimensional sense to dynamic problems in materials science, catalysis, and chemistry that require data acquisition on a time scale of milliseconds or a few tens of milliseconds. It is demonstrated that in this mode the FReLoN can be applied equally to the investigation of rapid changes in long range order (via diffraction) and local order (via energy dispersive extended x-ray absorption fine structure) and in situations of x-ray hardness and flux beyond the capacity of other detectors

  7. Fast photoconductor CdTe detectors for synchrotron x-ray studies

    International Nuclear Information System (INIS)

    Yoo, Sung Shik; Faurie, J.P.; Huang Qiang; Rodricks, B.

    1993-09-01

    The Advanced Photon Source will be that brightest source of synchrotron x-rays when it becomes operational in 1996. During normal operation, the ring will be filled with 20 bunches of positrons with an interbunch spacing of 177 ns and a bunch width of 119 ps. To perform experiments with x-rays generated by positrons on these time scales one needs extremely high speed detectors. To achieve the necessary high speed, we are developing MBE-grown CdTe-base photoconductive position sensitive array detectors. The arrays fabricated have 64 pixels with a gap of 100 μm between pixels. The high speed response of the devices was tested using a short pulse laser. X-ray static measurements were performed using an x-ray tube and synchrotron radiation to study the device's response to flux and wavelength changes. This paper presents the response of the devices to some of these tests and discusses different physics aspects to be considered when designing high speed detectors

  8. Development of an x-ray Talbot-Lau moire deflectometer for fast density profile measurements of dense plasmas generated by beam-target interactions

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dan [National Security Technol., LLC, Los Alamos, NM (United States); Berninger, M; Meidinger, A; Stutman, Dan; Valdivia, Maria Pia

    2015-05-01

    For the first time an x-ray Talbot-Lau moire deflectometer is being developed that will use a flash tube source and fast detector for dynamic density gradient measurements. In Talbot-Lau moire deflectometry, an x-ray grating makes an image of itself on a second grating (the Talbot effect) to produce a moire pattern on a detector. The test object is placed between these gratings, with variations in index of refraction changing the pattern. A third grating in front of an incoherent x-ray source produces an array of coherent sources. With a 150 kV x-ray flash tube as the source, the gratings are placed in a glancing angle setup for performance at ~60 keV. The detector is a gated CCD with a fast scintillator for x-ray conversion. This diagnostic, designed for the Dual-Axis Radiographic Hydrodynamic Test facility (DARHT) at Los Alamos National Laboratory, measures the density profile of dense plasma plumes ejected from beam-target interactions. DARHT has two high-current, pulsed, inductive linear electron accelerators with bremsstrahlung targets at the end of each beam line to create 2-D radiographic images of hydrodynamic tests. One multi-pulse accelerator has up to four beam pulses striking the same target within 2 μs. Computer simulations that model target evolution and ejected material between pulses are used to design these targets for optimal radiographic performance; the x-ray deflectometer will directly measure density gradients in the ejected plumes and provide the first experimental constraints to these models. During the first year, currently underway, the diagnostic systems are being designed. In year two, the flash tube and fast detector will be deployed at DARHT for radiographic imaging while the deflectometer is built and tested on the bench with a continuous source. Finally, in year three, the fast deflectometer will be installed on DARHT and density measurements will be performed.

  9. A final report to the Laboratory Directed Research and Development committee on Project 93-ERP-075: ''X-ray laser propagation and coherence: Diagnosing fast-evolving, high-density laser plasmas using X-ray lasers''

    International Nuclear Information System (INIS)

    Wan, A.S.; Cauble, R.; Da Silva, L.B.; Libby, S.B.; Moreno, J.C.

    1996-02-01

    This report summarizes the major accomplishments of this three-year Laboratory Directed Research and Development (LDRD) Exploratory Research Project (ERP) entitled ''X-ray Laser Propagation and Coherence: Diagnosing Fast-evolving, High-density Laser Plasmas Using X-ray Lasers,'' tracking code 93-ERP-075. The most significant accomplishment of this project is the demonstration of a new laser plasma diagnostic: a soft x-ray Mach-Zehnder interferometer using a neonlike yttrium x-ray laser at 155 angstrom as the probe source. Detailed comparisons of absolute two-dimensional electron density profiles obtained from soft x-ray laser interferograms and profiles obtained from radiation hydrodynamics codes, such as LASNEX, will allow us to validate and benchmark complex numerical models used to study the physics of laser-plasma interactions. Thus the development of soft x-ray interferometry technique provides a mechanism to probe the deficiencies of the numerical models and is an important tool for, the high-energy density physics and science-based stockpile stewardship programs. The authors have used the soft x-ray interferometer to study a number of high-density, fast evolving, laser-produced plasmas, such as the dynamics of exploding foils and colliding plasmas. They are pursuing the application of the soft x-ray interferometer to study ICF-relevant plasmas, such as capsules and hohlraums, on the Nova 10-beam facility. They have also studied the development of enhanced-coherence, shorter-pulse-duration, and high-brightness x-ray lasers. The utilization of improved x-ray laser sources can ultimately enable them to obtain three-dimensional holographic images of laser-produced plasmas

  10. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.

    Science.gov (United States)

    Alnewaini, Zaid; Langer, Eric; Schaber, Philipp; David, Matthias; Kretz, Dominik; Steil, Volker; Hesser, Jürgen

    2017-03-01

    usually detected was mainly from primary scattering (photons), whereas percentage differences between 2.8-20% are found on the side opposite to the x-ray source, where the lowest doses were detected. Dose calculation time of our approach was 0.85 seconds. The proposed approach yields a fast scatter dose estimation where we could run the Monte Carlo simulation only once for each x-ray tube angulation to get the Phase Space Files (PSF) for being used later by our ray casting approach to calculate the dose from only photons which will hit an movable elliptical cylinder shaped phantom and getting an output file for the positions of those hits to be used for visualizing the scatter dose propagation on the phantom surface. With dose calculation times of less than one second, we are saving much time compared to using a Monte Carlo simulation instead. With our approach, larger deviations occur only in regions with very low doses, whereas it provides a high precision in high-dose regions. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  11. Implementation of double-C-arm synchronous real-time X-ray positioning system computer aided for aspiration biopsy of small lung lesion

    International Nuclear Information System (INIS)

    Zhu Hong; Wang Dong; Ye Yukun; Zhou Yuan; Lu Jianfeng; Yang Jingyu; Wang Lining

    2007-01-01

    Objective: To evaluate the feasibility of a new type of real-time three-dimensional X-ray positioning system for aspiration biopsy of small lung lesions. Methods: Using X-ray imaging technology and X-ray collimator technology and combining with double-C-arm X-ray machine, two different synchronous real-time images were obtained from the vertical to the horizontal plane. Then, with the computer image processing and computer vision processing technologies, dynamic tracking for 3D information of a pulmonary lesion and the needle in aspiration, and the relative position of the two, were established. Results: There was no interference while the two imaging perpendicularly X-ray beam met, two synchronous real-time image acquisition and tracking of a lung lesion and a needle could be completed in free respiration. The average positioning system error was about 0.5 mm, the largest positioning error was about 1.0 mm, real-time display rate was 5 screen/sec. Conclusions: the establishment of a new type of double-C-arm synchronous real-time X-ray positioning system is feasible. It is available for the fast and accurate aspiration biopsy of small lung lesions. (authors)

  12. Forge: a short pulse x-ray diagnostic development facility

    International Nuclear Information System (INIS)

    Stradling, G.L.; Hurry, T.R.; Denbow, E.R.; Selph, M.M.; Ameduri, F.P.

    1985-01-01

    A new short pulse x-ray calibration facility has been brought on line at Los Alamos. This facility is being used for the development, testing and calibration of fast x-ray diagnostic systems. The x-ray source consists of a moderate size, sub-nanosecond laser focused at high intensity on an appropriate target material to generate short pulses of x-ray emission from the resulting plasma. Dynamic performance parameters of fast x-ray diagnostic instruments, such as x-ray streak cameras, can be conveniently measured using this facility

  13. Providing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.

    1985-01-01

    This invention provides an apparatus for providing x-rays to an object that may be in an ordinary environment such as air at approximately atmospheric pressure. The apparatus comprises: means (typically a laser beam) for directing energy onto a target to produce x-rays of a selected spectrum and intensity at the target; a fluid-tight enclosure around the target; means for maintaining the pressure in the first enclosure substantially below atmospheric pressure; a fluid-tight second enclosure adjoining the first enclosure, the common wall portion having an opening large enough to permit x-rays to pass through but small enough to allow the pressure reducing means to evacuate gas from the first enclosure at least as fast as it enters through the opening; the second enclosure filled with a gas that is highly transparent to x-rays; the wall of the second enclosure to which the x-rays travel having a portion that is highly transparent to x-rays (usually a beryllium or plastic foil), so that the object to which the x-rays are to be provided may be located outside the second enclosure and adjacent thereto and thus receive the x-rays substantially unimpeded by air or other intervening matter. The apparatus is particularly suited to obtaining EXAFS (extended x-ray fine structure spectroscopy) data on a material

  14. Comparison of x-ray output of inverter-type x-ray equipment

    International Nuclear Information System (INIS)

    Asano, Hiroshi; Miyake, Hiroyuki; Yamamoto, Keiichi

    2000-01-01

    The x-ray output of 54 inverter-type x-ray apparatuses used at 18 institutions was investigated. The reproducibility and linearity of x-ray output and variations among the x-ray equipment were evaluated using the same fluorescence meter. In addition, the x-ray apparatuses were re-measured using the same non-invasive instrument to check for variations in tube voltage, tube current, and irradiation time. The non-invasive instrument was calibrated by simultaneously obtaining measurements with an invasive instrument, employing the tube voltage and current used for the invasive instrument, and the difference was calculated. Reproducibility of x-ray output was satisfactory for all x-ray apparatuses. The coefficient of variation was 0.04 or less for irradiation times of 5 ms or longer. In 84.3% of all x-ray equipment, variation in the linearity of x-ray output was 15% or less for an irradiation time of 5 ms. However, for all the apparatuses, the figure was 50% when irradiation time was the shortest (1 to 3 ms). Variation in x-ray output increased as irradiation time decreased. Variation in x-ray output ranged between 1.8 and 2.5 compared with the maximum and minimum values, excluding those obtained at the shortest irradiation time. The relative standard deviation ranged from ±15.5% to ±21.0%. The largest variation in x-ray output was confirmed in regions irradiated for the shortest time, with smaller variations observed for longer irradiation times. The major factor responsible for variation in x-ray output in regions irradiated for 10 ms or longer, which is a relatively long irradiation time, was variation in tube current. Variation in tube current was slightly greater than 30% at maximum, with an average value of 7% compared with the preset tube current. Variations in x-ray output in regions irradiated for the shortest time were due to photographic effects related to the rise and fall times of the tube voltage waveform. Accordingly, in order to obtain constant x-ray

  15. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp; Arikawa, Yasunobu; Zhang, Zhe; Ikenouchi, Takahito; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishimura, Yasuhiko; Togawa, Hiromi [Toyota Technical Development Corporation, 1-21 Imae, Hanamoto-cho, Toyota, Aichi 470-0334 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu 509-5292 (Japan); Kato, Ryukou [The Institute of Science and Industrial Research, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan)

    2014-11-15

    A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons’ energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is ±0.5 MeV for 6.0 MeV electrons.

  16. Time-resolved x-ray line diagnostics of laser-produced plasmas

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Matthews, D.L.; Kilkenny, J.D.; Lee, R.W.

    1982-11-01

    We have examined the underdense plasma conditions of laser irradiated disks using K x-rays from highly ionized ions. A 900 ps laser pulse of 0.532 μm light is used to irradiate various Z disks which have been doped with low concentrations of tracer materials. The tracers, whose Z's range from 13 to 22, are chosen so that their K x-ray spectrum is sensitive to typical underdense plasma temperatures and densities. Spectra are measured using a time-resolved crystal spectrograph recording the time history of the x-ray spectrum. A spatially-resolved, time-integrated crystal spectrograph also monitors the x-ray lines. Large differences in Al spectra are observed when the host plasms is changed from SiO 2 to PbO or In. Spectra will be presented along with preliminary analysis of the data

  17. Thin film growth studies using time-resolved x-ray scattering

    Science.gov (United States)

    Kowarik, Stefan

    2017-02-01

    Thin-film growth is important for novel functional materials and new generations of devices. The non-equilibrium growth physics involved is very challenging, because the energy landscape for atomic scale processes is determined by many parameters, such as the diffusion and Ehrlich-Schwoebel barriers. We review the in situ real-time techniques of x-ray diffraction (XRD), x-ray growth oscillations and diffuse x-ray scattering (GISAXS) for the determination of structure and morphology on length scales from Å to µm. We give examples of time resolved growth experiments mainly from molecular thin film growth, but also highlight growth of inorganic materials using molecular beam epitaxy (MBE) and electrochemical deposition from liquids. We discuss how scaling parameters of rate equation models and fundamental energy barriers in kinetic Monte Carlo methods can be determined from fits of the real-time x-ray data.

  18. Time-resolved x-ray line diagnostics of laser-produced plasmas

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Matthews, D.L.; Kilkenny, J.D.; Lee, R.W.

    1982-01-01

    We have examined the underdense plasma conditions of laser irradiated disks using K x-rays from highly ionized ions. A 900 ps laser pulse of 0.532 μm light is used to irradiate various Z disks which have been doped with low concentrations of tracer materials. The tracers whose Z's range from 13 to 22 are chosen so that their K x-ray spectrum is sensitive to typical underdense plasma temperatures and densities. Spectra are measured using a time-resolved crystal spectrograph recording the time history of the x-ray spectrum. A spatially-resolved, time-integrated crystal spectrograph also monitors the x-ray lines. Large differences in Al spectra are observed when the host plasma is changed from SiO 2 to PbO or In. Spectra will be presented along with preliminary analysis of the data

  19. Fast optical and X-ray variability in the UCXB 4U0614+09

    Science.gov (United States)

    Hakala, P. J.; Charles, P. A.; Muhli, P.

    2011-09-01

    We present results from several years of fast optical photometry of 4U0614+091 (V1055 Orionis), a candidate ultracompact X-ray binary most likely consisting of a neutron star and a degenerate secondary. We find evidence for strong accretion-driven variability at all epochs, which manifests itself as red noise. This flickering produces transient peaks in the observed power spectrum in the 15-65 min period range. Only in one of our 12 optical data sets can we see evidence for a period that cannot be reproduced using the red noise model. This period of 51 min coincides with the strongest period detected by Shahbaz et al. and can thus be taken as the prime candidate for the orbital period of the system. Furthermore, we find some tentative evidence for the X-ray versus optical flux anticorrelation discovered by Machin et al. using our data together with the all-sky X-ray monitoring data from RXTE/All Sky Monitor. We propose that the complex time series behaviour of 4U0614+09 is a result of drastic changes in the accretion disc geometry/structure on time-scales from hours to days. Finally, we want to draw attention to the interpretation of moderately strong peaks in the power spectra of especially accreting sources. Many of such 'periods' can probably be attributed to the presence of red noise (i.e. correlated events) in the data. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Uses results provided by the ASM/RXTE teams at MIT and at the RXTE SOF and GOF at NASA's GSFC.

  20. Time-resolved X-ray studies using third generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Mills, D.M.

    1991-10-01

    The third generation, high-brilliance, hard x-ray, synchrotron radiation (SR) sources currently under construction (ESRF at Grenoble, France; APS at Argonne, Illinois; and SPring-8 at Harima, Japan) will usher in a new era of x-ray experimentation for both physical and biological sciences. One of the most exciting areas of experimentation will be the extension of x-ray scattering and diffraction techniques to the study of transient or time-evolving systems. The high repetition rate, short-pulse duration, high brilliance, and variable spectral bandwidth of these sources make them ideal for x-ray time-resolved studies. The temporal properties (bunch length, interpulse period, etc.) of these new sources will be summarized. Finally, the scientific potential and the technological challenges of time-resolved x-ray scattering from these new sources will be described. 13 refs., 4 figs

  1. A nondispersive X-ray spectrometer with dead time correction of great accuracy

    International Nuclear Information System (INIS)

    Guillon, H.; Friant, A.

    1976-01-01

    Processing the analog signals from an energy dispersive X-ray spectrometer requires a great number of functions to be assembled. Instead of using function modules, it was decided to build a unit intended for working out digital-input data to the mini-computer, from the signals delivered by the Si(Li) detector. The unit contains six cards intended for the following functions: main amplifier, stabilizer of the threshold level and pile-up detector, amplitude encoder, pulse generator and fast amplifier, chronometer with dead time correction and high voltage polarization [fr

  2. X-ray polarimetry with a conventional gas proportional counter through rise-time analysis

    CERN Document Server

    Hayashida, K; Tsunemi, H; Torii, K; Murakami, H; Ohno, Y; Tamura, K

    1999-01-01

    We have performed an experiment on the signal rise time of a Xe gas proportional counter using a polarized X-ray beam of synchrotron orbital radiation with energies from 10 to 40 keV. When the counter anode is perpendicular to the electric vector of the incident X-ray photons, the average rise time becomes significantly longer than that for the parallel case. This indicates that the conventional gas proportional counters are useful for X-ray polarimetry. The moderate modulation contrast of this rise-time polarimeter (M=0.1 for 10 keV X-rays and M=0.35 for 40 keV X-rays), with capability of the simultaneous measuring X-ray energies and the timing, would be useful for applications in X-ray astronomy and in other fields.

  3. Fourier techniques in X-ray timing

    NARCIS (Netherlands)

    van der Klis, M.

    1988-01-01

    Basic principles of Fourier techniques often used in X-ray time series analysis are reviewed. The relation between the discrete Fourier transform and the continuous Fourier transform is discussed to introduce the concepts of windowing and aliasing. The relation is derived between the power spectrum

  4. SphinX: A Fast Solar Photometer in X-rays J. Sylwester , S. Kuzin ...

    Indian Academy of Sciences (India)

    NAS solar mission. SphinX (Solar Photometer in X-rays) will use PIN silicon detectors for high time resolution (0.01 s) measurements of the solar spectra of .... right panel of Fig. 2. In this NBF concept, three fluorescing targets illuminate a single. PIN detector. The fluorescence radiation is coming from three different pure ...

  5. Time-resolved X-ray spectroscopies of chemical systems: New perspectives

    Directory of Open Access Journals (Sweden)

    Majed Chergui

    2016-05-01

    Full Text Available The past 3–5 years have witnessed a dramatic increase in the number of time-resolved X-ray spectroscopic studies, mainly driven by novel technical and methodological developments. The latter include (i the high repetition rate optical pump/X-ray probe studies, which have greatly boosted the signal-to-noise ratio for picosecond (ps X-ray absorption spectroscopy studies, while enabling ps X-ray emission spectroscopy (XES at synchrotrons; (ii the X-ray free electron lasers (XFELs are a game changer and have allowed the first femtosecond (fs XES and resonant inelastic X-ray scattering experiments to be carried out; (iii XFELs are also opening the road to the development of non-linear X-ray methods. In this perspective, I will mainly focus on the most recent technical developments and briefly address some examples of scientific questions that have been addressed thanks to them. I will look at the novel opportunities in the horizon.

  6. Noise reduction in real time x-ray images

    International Nuclear Information System (INIS)

    Tsuda, Motohisa; Kimura, Yutaro

    1986-01-01

    The signal-to-noise ratio of real-time digital X-ray imaging systems consisting of an X-ray image intensifer-television chain was investigated while concentrating on the effect of the X-ray quantum nature. Along with conventional signal accumulation, logarithmic conversion and subtraction, a new technique called the peak hold method is introduced. Theoretical and simulational studies were made with practical parameters. Theory and simulation showed good agreement. An accumulation of signal is most effective for improving the signal-to-noise ratio; the peak-hold method comes next. The peak hold method, however, offers a new image-display mode. Moreover, this method is superior to signal accumulation for specific conditions. (author)

  7. Atomic motion of resonantly vibrating quartz crystal visualized by time-resolved X-ray diffraction

    International Nuclear Information System (INIS)

    Aoyagi, Shinobu; Osawa, Hitoshi; Sugimoto, Kunihisa; Fujiwara, Akihiko; Takeda, Shoichi; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2015-01-01

    Transient atomic displacements during a resonant thickness-shear vibration of AT-cut α-quartz are revealed by time-resolved X-ray diffraction under an alternating electric field. The lattice strain resonantly amplified by the alternating electric field is ∼10 4 times larger than that induced by a static electric field. The resonantly amplified lattice strain is achieved by fast displacements of oxygen anions and collateral resilient deformation of Si−O−Si angles bridging rigid SiO 4 tetrahedra, which efficiently transduce electric energy into elastic energy

  8. Time-dependent nonequilibrium soft x-ray response during a spin crossover

    Science.gov (United States)

    van Veenendaal, Michel

    2018-03-01

    A theoretical framework is developed for better understanding the time-dependent soft-x-ray response of dissipative quantum many-body systems. It is shown how x-ray absorption and resonant inelastic x-ray scattering (RIXS) at transition-metal L edges can provide insight into ultrafast intersystem crossings of importance for energy conversion, ultrafast magnetism, and catalysis. The photoinduced doublet-to-quartet spin crossover on cobalt in Fe-Co Prussian blue analogs is used as a model system to demonstrate how the x-ray response is affected by the nonequilibrium dynamics on a femtosecond time scale. Changes in local spin and symmetry and the underlying mechanism are reflected in strong broadenings, a collapse of clear selection rules during the intersystem crossing, fluctuations in the isotropic branching ratio in x-ray absorption, crystal-field collapse and/or oscillations, and time-dependent anti-Stokes processes in RIXS.

  9. Development of a fast multi-line x-ray CT detector for NDT

    International Nuclear Information System (INIS)

    Hofmann, T.; Nachtrab, F.; Schlechter, T.; Mühlbauer, J.; Schröpfer, S.; Firsching, M.; Uhlmann, N.; Neubauer, H.; Ernst, J.; Schweiger, T.; Oberst, M.; Meyer, A.

    2015-01-01

    Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm 2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of

  10. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  11. Decimetric type III radio bursts and associated hard X-ray spikes

    Science.gov (United States)

    Dennis, B. R.; Benz, A. O.; Ranieri, M.; Simnett, G. M.

    1984-01-01

    For a relatively weak solar flare on August 6, 1981, at 10:32 UT, a detailed comparison is made between hard X-ray spikes and decimetric type III radio bursts. The hard X-ray observations are made at energies above 30 keV, and the radio data are obtained in the frequency range from 100 to 1000 MHz. The time resolution for all the data sets is approximately 0.1 s or better. The dynamic radio spectrum exhibits many fast drift type III radio bursts with both normal and reverse slope, whereas the X-ray time profile contains many well resolved short spikes with durations less than or equal to 1 s. Some of the X-ray spikes are seen to be associated in time with reverse-slope bursts, indicating either that the electron beams producing the radio burst contain two or three orders of magnitude more fast electrons than has previously been assumed or that the electron beams can induce the acceleration of additional electrons or occur in coincidence with this acceleration. A case is presented in which a normal slope radio burst at approximately 600 MHz occurs in coincidence with the peak of an X-ray spike to within 0.1 s.

  12. Time dependence of X-ray polarizability of a crystal induced by an intense femtosecond X-ray pulse

    Directory of Open Access Journals (Sweden)

    A. Leonov

    2014-11-01

    Full Text Available The time evolution of the electron density and the resulting time dependence of Fourier components of the X-ray polarizability of a crystal irradiated by highly intense femtosecond pulses of an X-ray free-electron laser (XFEL is investigated theoretically on the basis of rate equations for bound electrons and the Boltzmann equation for the kinetics of the unbound electron gas. The photoionization, Auger process, electron-impact ionization, electron–electron scattering and three-body recombination have been implemented in the system of rate equations. An algorithm for the numerical solution of the rate equations was simplified by incorporating analytical expressions for the cross sections of all the electron configurations in ions within the framework of the effective charge model. Using this approach, the time dependence of the inner shell populations during the time of XFEL pulse propagation through the crystal was evaluated for photon energies between 4 and 12 keV and a pulse width of 40 fs considering a flux of 1012 photons pulse−1 (focusing on a spot size of ∼1 µm. This flux corresponds to a fluence ranging between 0.8 and 2.4 mJ µm−2. The time evolution of the X-ray polarizability caused by the change of the atomic scattering factor during the pulse propagation is numerically analyzed for the case of a silicon crystal. The time-integrated polarizability drops dramatically if the fluence of the X-ray pulse exceeds 1.6 mJ µm−2.

  13. Fast Time-Dependent Density Functional Theory Calculations of the X-ray Absorption Spectroscopy of Large Systems.

    Science.gov (United States)

    Besley, Nicholas A

    2016-10-11

    The computational cost of calculations of K-edge X-ray absorption spectra using time-dependent density functional (TDDFT) within the Tamm-Dancoff approximation is significantly reduced through the introduction of a severe integral screening procedure that includes only integrals that involve the core s basis function of the absorbing atom(s) coupled with a reduced quality numerical quadrature for integrals associated with the exchange and correlation functionals. The memory required for the calculations is reduced through construction of the TDDFT matrix within the absorbing core orbitals excitation space and exploiting further truncation of the virtual orbital space. The resulting method, denoted fTDDFTs, leads to much faster calculations and makes the study of large systems tractable. The capability of the method is demonstrated through calculations of the X-ray absorption spectra at the carbon K-edge of chlorophyll a, C 60 and C 70 .

  14. X-ray imaging system

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    A novel, high-speed apparatus for use in X-ray computerised tomography is described in detail. It consists of a semi-circular array of X-ray sources, collimators and an ion chamber array for detection of the X-rays. The X-ray sources may be pulsed in salvos such that the corresponding detectors in the array are only illuminated by one source. The use of computer controlled salvos speeds up the image processing by at least a factor of two. The ion chamber array is designed to have a constant detection efficiency for varying angles of X-ray incidence. A detailed description of the detector construction and suggested gaseous fillings are given. It is claimed that the present tomographic system allows fast and accurate imaging of internal body organs and is insensitive to the blurring effects which motion of these organs tends to produce. (UK)

  15. Timing and Spectral Studies of the Peculiar X-ray Binary Circinus X-1

    Energy Technology Data Exchange (ETDEWEB)

    Saz Parkinson, Pablo M.

    2003-08-26

    Circinus X-1 (Cir X-1) is an X-ray binary displaying an array of phenomena which makes it unique in our Galaxy. Despite several decades of observation, controversy surrounds even the most basic facts about this system. It is generally classified as a Neutron Star (NS) Low Mass X-ray Binary (LMXB),though this classification is based primarily on the observation of Type I X-ray Bursts by EXOSAT in 1985. It is believed to be in a very eccentric {approx} 16.5 day orbit, displaying periodic outbursts in the radio and other frequency bands (including optical and IR) which reinforce the notion that this is in fact the orbital period. Cir X-1 lies in the plane of the Galaxy, where optical identification of the companion is made difficult due to dust obscuration. The companion is thought to be a low mass star, though a high mass companion has not currently been ruled out. In this work, the author analyzes recent observations of Cir X-1 made with the Unconventional Stellar Aspect (USA) experiment, as well as archival observations of Cir X-1 made by a variety of instruments, from as early as 1969. The fast (< 1 s) timing properties of Cir X-1 are studied by performing FFT analyses of the USA data. Quasi-Periodic Oscillations (QPOs) in the 1-50 Hz range are found and discussed in the context of recent correlations which question the leading models invoked for their generation. The energy dependence of the QPOs (rms increasing with energy) argues against them being generated in the disk and favors models in which the QPOs are related to a higher energy Comptonizing component. The power spectrum of Cir X-1 in its soft state is compared to that of Cygnus X-1 (Cyg X-1), the prototypical black hole candidate. Using scaling arguments the author argues that the mass of Cir X-1 could exceed significantly the canonical 1.4 M{circle_dot} mass of a neutron star, possibly partly explaining why this object appears so different to other neutron stars. The spectral evolution of Cir X-1 is

  16. Characterization of Metalloproteins and Biomaterials by X-ray Absorption Spectroscopy and X-ray Diffraction

    DEFF Research Database (Denmark)

    Frankær, Christian Grundahl

    This thesis presents thework on combining complementary X-rays techniques for studying the structures of proteins and other biomaterials, and consists of three different projects: (i) Characterization of protein powders with X-ray powder diffraction (XRPD). (ii) The combination of X-ray...... crystallography and X-ray absorption spectroscopy (XAS) applied to studying different hexameric insulin conformations. (iii) The structures of polymorphs of strontium ranelate and the distribution of strontium in bone tissue. A procedure for fast identification and verification of protein powders using XRPD...... was correction for disordered bulk-solvent, but also correction for background and optimization of unit cell parameters have to be taken into account. A sample holder was designed for collecting powder diffraction data on a standard laboratory X-ray powder diffractometer. The background was reduced by use...

  17. U-shape rotating anti-cathode compact X-ray generator: 20 times stronger than the commercially available X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Sakabe, N., E-mail: sakabe-dsb@sbsp.jp; Sakabe, K. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Foundation for Advancement of International Science (FAIS), Kasuga 3-chome, Tsukuba, Ibaraki 305-0821 (Japan); Ohsawa, S.; Sakai, T.; Kobayakawa, H.; Sugimura, T.; Ikeda, M.; Tawada, M. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Watanabe, N.; Sasaki, K. [Nagoya University, Chikusa, Nagoya, Aichi 464-8603 (Japan); Wakatsuki, M. [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8568 (Japan)

    2013-11-01

    A new type of U-shape anti-cathode X-ray generator in which the inner surface of a cylindrical target is irradiated by an electron beam has been made by modifying a conventional rotating anti-cathode X-ray generator whose brightness in the catalog is 12 kW mm{sup −2}. A brightness of 129 kW mm{sup −2} was thereby obtained with this new U-shape-type X-ray generator. This new X-ray generator is expected to be of keen interest for applications in academia, industry and in hospitals. A new type of U-shape anti-cathode X-ray generator in which the inner surface of a cylindrical target is irradiated by an electron beam has been made by modifying a conventional rotating anti-cathode X-ray generator whose brightness in the catalog is 12 kW mm{sup −2}. The target material (Cu), target radius (50 mm) and rotating speed (6000 r.p.m.) were not changed in this modification. A brightness of 52 kW mm{sup −2} was obtained by this U-shape-type X-ray generator. This means that the brightness of the new type is 4.3 times greater than that of the old unmodified one. Furthermore, the new-type X-ray generator yielded a brightness of 129 kW mm{sup −2} by adding a carbon coating on the Cu target. This means an overall increase of brightness of ten times. The original generator has the highest brightness in the generators of the same class (having a radius of 50 mm and rotation speed of 6000 r.p.m.). Observations showed that Cu Kα counts at vertical incidence of the electron beam onto the surface of the new target, which is initially optically smooth, decrease as the surface is roughened by a severe thermal stress caused by strong electron beam exposure. Further observation reveals, however, that oblique incidence of the electron beam onto the roughened surface drastically increased the X-ray output and amounts to twice as much as that from a smooth surface at vertical incidence. Thus, at the present stage, an overall increase of brightness has been realised at a level 20 times

  18. TIME-DEPENDENT ELECTRON ACCELERATION IN BLAZAR TRANSIENTS: X-RAY TIME LAGS AND SPECTRAL FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Tiffany R.; Becker, Peter A. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030-4444 (United States); Finke, Justin D., E-mail: pbecker@gmu.edu, E-mail: tlewis13@gmu.edu, E-mail: justin.finke@nrl.navy.mil [U.S. Naval Research Laboratory, Code 7653, 4555 Overlook Avenue SW, Washington, DC 20375-5352 (United States)

    2016-06-20

    Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ -ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using Beppo SAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution for the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.

  19. Ultrahigh-speed X-ray imaging of hypervelocity projectiles

    Science.gov (United States)

    Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.

    2011-08-01

    High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.

  20. X-ray lasers for structural and dynamic biology

    International Nuclear Information System (INIS)

    Spence, J C H; Weierstall, U; Chapman, H N

    2012-01-01

    Research opportunities and techniques are reviewed for the application of hard x-ray pulsed free-electron lasers (XFEL) to structural biology. These include the imaging of protein nanocrystals, single particles such as viruses, pump–probe experiments for time-resolved nanocrystallography, and snapshot wide-angle x-ray scattering (WAXS) from molecules in solution. The use of femtosecond exposure times, rather than freezing of samples, as a means of minimizing radiation damage is shown to open up new opportunities for the molecular imaging of biochemical reactions at room temperature in solution. This is possible using a ‘diffract-and-destroy’ mode in which the incident pulse terminates before radiation damage begins. Methods for delivering hundreds of hydrated bioparticles per second (in random orientations) to a pulsed x-ray beam are described. New data analysis approaches are outlined for the correlated fluctuations in fast WAXS, for protein nanocrystals just a few molecules on a side, and for the continuous x-ray scattering from a single virus. Methods for determining the orientation of a molecule from its diffraction pattern are reviewed. Methods for the preparation of protein nanocrystals are also reviewed. New opportunities for solving the phase problem for XFEL data are outlined. A summary of the latest results is given, which now extend to atomic resolution for nanocrystals. Possibilities for time-resolved chemistry using fast WAXS (solution scattering) from mixtures is reviewed, toward the general goal of making molecular movies of biochemical processes. (key issues reviews)

  1. Theory of time-resolved inelastic x-ray diffraction

    DEFF Research Database (Denmark)

    Lorenz, Ulf; Møller, Klaus Braagaard; Henriksen, Niels Engholm

    2010-01-01

    Starting from a general theory of time-resolved x-ray scattering, we derive a convenient expression for the diffraction signal based on a careful analysis of the relevant inelastic scattering processes. We demonstrate that the resulting inelastic limit applies to a wider variety of experimental...... conditions than similar, previously derived formulas, and it directly allows the application of selection rules when interpreting diffraction signals. Furthermore, we present a simple extension to systems simultaneously illuminated by x rays and a laser beam....

  2. Small-Size High-Current Generators for X-Ray Backlighting

    Science.gov (United States)

    Chaikovsky, S. A.; Artyomov, A. P.; Zharova, N. V.; Zhigalin, A. S.; Lavrinovich, I. V.; Oreshkin, V. I.; Ratakhin, N. A.; Rousskikh, A. G.; Fedunin, A. V.; Fedushchak, V. F.; Erfort, A. A.

    2017-12-01

    The paper deals with the soft X-ray backlighting based on the X-pinch as a powerful tool for physical studies of fast processes. Proposed are the unique small-size pulsed power generators operating as a low-inductance capacitor bank. These pulse generators provide the X-pinch-based soft X-ray source (hν = 1-10 keV) of micron size at 2-3 ns pulse duration. The small size and weight of pulse generators allow them to be transported to any laboratory for conducting X-ray backlighting of test objects with micron space resolution and nanosecond exposure time. These generators also allow creating synchronized multi-frame radiographic complexes with frame delay variation in a broad range.

  3. Time resolved x-ray pinhole photography of compressed laser fusion targets

    International Nuclear Information System (INIS)

    Attwood, D.T.

    1976-01-01

    Use of the Livermore x-ray streak camera to temporally record x-ray pinhole images of laser compressed targets is described. Use is made of specially fabricated composite x-ray pinholes which are near diffraction limited for 6 A x-rays, but easily aligned with a He--Ne laser of 6328 A wavelength. With a 6 μm x-ray pinhole, the overall system can be aligned to 5 μm accuracy and provides implosion characteristics with space--time resolutions of approximately 6 μm and 15 psec. Acceptable criteria for pinhole alignment, requisite x-ray flux, and filter characteristics are discussed. Implosion characteristics are presented from our present experiments with 68 μm diameter glass microshell targets and 0.45 terawatt, 70 psec Nd laser pulses. Final implosion velocities in excess of 3 x 10 7 cm/sec are evident

  4. Direct observation of ultrafast atomic motion using time-resolved X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shymanovich, U.

    2007-11-13

    This thesis is dedicated to the study of the atomic motion in laser irradiated solids on a picosecond to subpicosecond time-scale using the time-resolved X-ray diffraction technique. In the second chapter, the laser system, the laser-plasma based X-ray source and the experimental setup for optical pump / X-ray probe measurements were presented. Chapter 3 is devoted to the characterization and comparison of different types of X-ray optics. Chapter 4 presented the time-resolved X-ray diffraction experiments performed for this thesis. The first two sections of this chapter discuss the measurements of initially unexpected strain-induced transient changes of the integrated reflectivity of the X-ray probe beam. The elimination of the strain-induced transient changes of the integrated reflectivity represented an important prerequisite to perform the study of lattice heating in Germanium after femtosecond optical excitation by measuring the transient Debye-Waller effect. The third section describes the investigations of acoustic waves upon ultrafast optical excitation and discusses the two different pressure contributions driving them: the thermal and the electronic ones. (orig.)

  5. Direct observation of ultrafast atomic motion using time-resolved X-ray diffraction

    International Nuclear Information System (INIS)

    Shymanovich, U.

    2007-01-01

    This thesis is dedicated to the study of the atomic motion in laser irradiated solids on a picosecond to subpicosecond time-scale using the time-resolved X-ray diffraction technique. In the second chapter, the laser system, the laser-plasma based X-ray source and the experimental setup for optical pump / X-ray probe measurements were presented. Chapter 3 is devoted to the characterization and comparison of different types of X-ray optics. Chapter 4 presented the time-resolved X-ray diffraction experiments performed for this thesis. The first two sections of this chapter discuss the measurements of initially unexpected strain-induced transient changes of the integrated reflectivity of the X-ray probe beam. The elimination of the strain-induced transient changes of the integrated reflectivity represented an important prerequisite to perform the study of lattice heating in Germanium after femtosecond optical excitation by measuring the transient Debye-Waller effect. The third section describes the investigations of acoustic waves upon ultrafast optical excitation and discusses the two different pressure contributions driving them: the thermal and the electronic ones. (orig.)

  6. Pleiades: A Sub-picosecond Tunable X-ray Source at the LLNL Electron Linac

    International Nuclear Information System (INIS)

    Slaughter, Dennis; Springer, Paul; Le Sage, Greg; Crane, John; Ditmire, Todd; Cowan, Tom; Anderson, Scott G.; Rosenzweig, James B.

    2002-01-01

    The use of ultra fast laser pulses to generate very high brightness, ultra short (fs to ps) pulses of x-rays is a topic of great interest to the x-ray user community. In principle, femto-second-scale pump-probe experiments can be used to temporally resolve structural dynamics of materials on the time scale of atomic motion. The development of sub-ps x-ray pulses will make possible a wide range of materials and plasma physics studies with unprecedented time resolution. A current project at LLNL will provide such a novel x-ray source based on Thomson scattering of high power, short laser pulses with a high peak brightness, relativistic electron bunch. The system is based on a 5 mm-mrad normalized emittance photo-injector, a 100 MeV electron RF linac, and a 300 mJ, 35 fs solid-state laser system. The Thomson x-ray source produces ultra fast pulses with x-ray energies capable of probing into high-Z metals, and a high flux per pulse enabling single shot experiments. The system will also operate at a high repetition rate (∼ 10 Hz). (authors)

  7. Short-time X-ray diffraction with an efficient-optimized, high repetition-rate laser-plasma X-ray-source

    International Nuclear Information System (INIS)

    Kaehle, Stephan

    2009-01-01

    This thesis deals with the production and application of ultrashort X-ray pulses. In the beginning different possibilities for the production of X-ray pulses with pulse durations of below one picosecond are presented, whereby the main topic lies on the so called laser-plasma X-ray sources with high repetition rate. In this case ultrashort laser pulses are focused on a metal, so that in the focus intensities of above 10 16 W/cm 2 dominate. In the ideal case in such way ultrafast electrons are produced, which are responsible for line radiation. In these experiments titanium K α radiation is produced, thes photons possess an energy of 4.51 keV. For the efficient production of line radiation here the Ti:Sa laser is optimized in view of the laser energy and the pulse shape and the influence of the different parameters on the K α production systematically studied. The influences of laser intensity, system-conditioned pre-pulses and of phase modulation are checked. It turns out that beside the increasement of the K α radiation by a suited laser intensity a reduction of the X-ray background radiation is of deciding importance for the obtaining of clear diffraction images. This background radiation is mainly composed of bremsstrahlung. It can be suppressed by the avoidance of intrinsic pre-pulses and by means of 2nd-order phase modulation. By means of optical excitation and X-ray exploration experiments the production of acoustic waves after ultrashort optical excitation in a 150 nm thick Ge(111) film on Si(111) is studied. These acoustic waves are driven by thermal (in this time scale time-independent) and electronic (time dependent) pressure amounts. As essential results it turns out that the relative amount of the electronic pressure increases with decreasing excitation density [de

  8. Real time 2 dimensional detector for charged particle and soft X-ray images

    International Nuclear Information System (INIS)

    Ishikawa, M.; Ito, M.; Endo, T.; Oba, K.

    1995-01-01

    The conventional instruments used in experiments for the soft X-ray region such as X-ray diffraction analysis are X-ray films or imaging plates. However, these instruments are not suitable for real time observation. In this paper, newly developed imaging devices will be presented, which have the capability to take X-ray images in real time with a high detection efficiency. Also, another capability, to take elementary particle tracking images, is described. (orig.)

  9. Laser-produced X-ray sources

    International Nuclear Information System (INIS)

    Hudson, L.T.; Seely, J.F.

    2010-01-01

    A formidable array of advanced laser systems are emerging that produce extreme states of light and matter. By irradiating solid and gaseous targets with lasers of increasing energy densities, new physical regimes of radiation effects are being explored for the first time in controlled laboratory settings. One result that is being accomplished or pursued using a variety of techniques, is the realization of novel sources of X-rays with unprecedented characteristics and light-matter interactions, the mechanisms of which are in many cases still being elucidated. Examples include the megajoule class of laser-produced plasmas designed in pursuit of alternative-energy and security applications and the petawatt class of lasers used for fast ignition and X-ray radiographic applications such as medical imaging and real-time imaging of plasma hydrodynamics. As these technologies mature, increased emphasis will need to be placed on advanced instrumentation and diagnostic metrology to characterize the spectra, time structure, and absolute brightness of X-rays emitted by these unconventional sources. Such customized and absolutely calibrated measurement tools will serve as an enabling technology that can help in assessing the overall system performance and progress, as well as identification of the underlying interaction mechanisms of interest to basic and applied strong-field and high-energy-density science.

  10. Time-resolved X-ray diffraction with accelerator- and laser-plasma-based X-ray sources

    International Nuclear Information System (INIS)

    Nicoul, Matthieu

    2010-01-01

    Femtosecond X-ray pulses are a powerful tool to investigate atomic motions triggered by femtosecond pump pulses. This thesis is dedicated to the production of such pulses and their use in optical pump - X-ray probe measurement. This thesis describes the laser-plasma-based sources available at the University of Duisburg-Essen. Part of it consists of the description of the design, built-up and characterization of a new ''modular'' X-ray source dedicated to optimize the X-ray flux onto the sample under investigation. The acoustic wave generation in femtosecond optically excited semiconductor (gallium arsenide) and metal (gold) was performed using the sources of the University of Duisburg-Essen. The physical answer of the material was modeled by a simple strain model for the semiconductor, pressure model for the metal, in order to gain information on the interplay of the electronic and thermal pressures rising after excitation. Whereas no reliable information could be obtain in gallium arsenide (principally due to the use of a bulk), the model for gold achieved very good agreement, providing useful information. The relaxation time of the electron to lattice energy was found to be (5.0±0.3) ps, and the ratio of the Grueneisen parameters was found to be γ e / γ i = (0.5±0.1). This thesis also describes the Sub-Picosecond Pulse Source (SPPS) which existed at the (formally) Stanford Linear Accelerator Center, an accelerator-based X-ray source, and two measurements performed with it. The first one is the detailed investigation of the phonon softening of the A 1g mode launch in bismuth upon fluence excitation. Detailed information concerning the new equilibrium position and phonon frequency were obtained over extended laser pump fluences. The second measurement concerned the study of the liquid phase dynamics in a newly formed liquid phase following ultrafast melting in indium antimonide. The formation of the liquid phase and its development for excitations close to the

  11. Time-resolved X-ray diffraction with accelerator- and laser-plasma-based X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Nicoul, Matthieu

    2010-09-01

    Femtosecond X-ray pulses are a powerful tool to investigate atomic motions triggered by femtosecond pump pulses. This thesis is dedicated to the production of such pulses and their use in optical pump - X-ray probe measurement. This thesis describes the laser-plasma-based sources available at the University of Duisburg-Essen. Part of it consists of the description of the design, built-up and characterization of a new ''modular'' X-ray source dedicated to optimize the X-ray flux onto the sample under investigation. The acoustic wave generation in femtosecond optically excited semiconductor (gallium arsenide) and metal (gold) was performed using the sources of the University of Duisburg-Essen. The physical answer of the material was modeled by a simple strain model for the semiconductor, pressure model for the metal, in order to gain information on the interplay of the electronic and thermal pressures rising after excitation. Whereas no reliable information could be obtain in gallium arsenide (principally due to the use of a bulk), the model for gold achieved very good agreement, providing useful information. The relaxation time of the electron to lattice energy was found to be (5.0{+-}0.3) ps, and the ratio of the Grueneisen parameters was found to be {gamma}{sub e} / {gamma}{sub i} = (0.5{+-}0.1). This thesis also describes the Sub-Picosecond Pulse Source (SPPS) which existed at the (formally) Stanford Linear Accelerator Center, an accelerator-based X-ray source, and two measurements performed with it. The first one is the detailed investigation of the phonon softening of the A{sub 1g} mode launch in bismuth upon fluence excitation. Detailed information concerning the new equilibrium position and phonon frequency were obtained over extended laser pump fluences. The second measurement concerned the study of the liquid phase dynamics in a newly formed liquid phase following ultrafast melting in indium antimonide. The formation of the liquid phase

  12. Application of An Avalanche Photodiode in Synchrotron-Based Ultra-fast X-Radiography

    International Nuclear Information System (INIS)

    Cheong, S.-K.; Liu Jinyuan; Wang Jin; Powell, Christopher F.

    2004-01-01

    A possibility of using avalanche photodiode has been investigated while operated in current or continuous wave mode to accommodate high-intensity synchrotron x-ray beams in an ultra-fast x-radiography. To achieve a time resolution of 1 μs or better in a time-resolved x-radiograhic experiment, the entire time-sequence of the APD response to the pulsed synchrotron x-ray beam is recorded with time resolution of 1-2 ns. We have characterized the APD detector in the continuous wave mode to reveal its linearity, signal to noise ratio, and the time response with various circuit configurations. We have demonstrated that signal-to-noise ratio better than 1000 can be achieved, which is limited only by Poisson statistics. These detectors, coupled with finely focused x-rays, have been used to study structure and dynamics of supersonic fuel sprays with 50 μm-spatial resolution and μs-temporal resolution in the region close to an injection nozzle

  13. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Maccarone, Thomas J.; Chakrabarty, Deepto; Gendreau, Keith C.; Arzoumanian, Zaven; Jenke, Peter; Ballantyne, David; Bozzo, Enrico; Brandt, Soren; Brenneman, Laura; Christophersen, Marc; DeRosa, Alessandra; Feroci, Marco; Goldstein, Adam; Hartmann, Dieter; Hernanz, Margarita; McDonald, Michael; Phlips, Bernard; Remillard, Ronald; Stevens, Abigail; Tomsick, John; Watts, Anna; Wood, Kent S.; Zane, Silvia; STROBE-X Collaboration

    2018-01-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. We include updated instrument designs resulting from the GSFC IDL run in November 2017.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO/Virgo and neutrino events. Extragalactic science, such as constraining bulk metalicity

  14. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Milliseconds to Years

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Ray, P. S.; Maccarone, T; Chakrabarty, D.; Gendreau, K.; Arzoumanian, Z.; Jenke, P.; Ballantyne, D.; Bozzo, E.; Brandt, S.; hide

    2018-01-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER [1], with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT [2], to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with approx. 20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of

  15. Fast X-ray imaging of two-phase flows: Application to cavitating flows

    International Nuclear Information System (INIS)

    Khlifa, Ilyass

    2014-01-01

    A promising method based on fast X-ray imaging has been developed to investigate the dynamics and the structure of complex two-phase flows. It has been applied in this work on cavitating flows created inside a Venturi-type test section and helped therefore to better understand flows inside cavitation pockets. Seeding particles were injected into the flow to trace the liquid phase. Thanks to the characteristics of the beam provided by the APS synchrotron (Advance Photon Source, USA), high definition X-ray images of the flow containing simultaneously information for both liquid and vapour were obtained. Velocity fields of both phases were thus calculated using image cross-correlation algorithms. Local volume fractions of vapour have also been obtained using local intensities of the images. Beforehand however, image processing is required to separate phases for velocity measurements. Validation methods of all applied treatments were developed, they allowed to characterise the measurement accuracy. This experimental technique helped us to have more insight into the dynamic of cavitating flows and especially demonstrates the presence of significant slip velocities between phases. (author)

  16. Investigations of time resolved x-ray wide-angle scattering and x-ray small-angle scattering at DESY

    International Nuclear Information System (INIS)

    Zachmann, H.G.; Gehrke, R.; Prieske, W.; Riekel, C.

    1985-01-01

    Instrumentation is described for the simultaneous wide-angle and small-angle x-ray scattering. The method was applied to the study of the isothermal crystallization of polyethylene terephthalates. In agreement with the classical theories of crystallization, the data showed that the density difference between the crystals and the non-crystalline regions does not change with time. The mechanisms of melting, recrystallization, and crystal thickening were investigated by small-angle x-ray scattering with stepwise changes and continuous changes of temperature using polyethylene terephthalate

  17. Statistical analysis of fast hard X-ray bursts by SMM observations and microwave bursts by ground-based observations

    Science.gov (United States)

    Li, Chun-Sheng; Jiang, Shu-Ying

    1986-01-01

    In order to understand the relationship between fast hard X-ray bursts (HXRB) and microwave bursts (MWB), data were used from the following publications: NASA Technical Memorandum 84998; Solar Geological Data (1980 to 1983); monthly report of Solar Radio Emission; and NASA and NSF: Solar Geophysical Data (1980 to 1983). For analyzing individual events, the criterion of the same event for HXRB and MWB is determined by peak time difference. There is a good linear correlation between the physical parameter of HXRB and MWB.

  18. A deep X-ray view of the bare AGN Ark 120. III. X-ray timing analysis and multiwavelength variability

    Science.gov (United States)

    Lobban, A. P.; Porquet, D.; Reeves, J. N.; Markowitz, A.; Nardini, E.; Grosso, N.

    2018-03-01

    We present the spectral/timing properties of the bare Seyfert galaxy Ark 120 through a deep ˜420 ks XMM-Newton campaign plus recent NuSTAR observations and a ˜6-month Swift monitoring campaign. We investigate the spectral decomposition through fractional rms, covariance and difference spectra, finding the mid- to long-time-scale (˜day-year) variability to be dominated by a relatively smooth, steep component, peaking in the soft X-ray band. Additionally, we find evidence for variable Fe K emission redward of the Fe Kα core on long time-scales, consistent with previous findings. We detect a clearly defined power spectrum which we model with a power law with a slope of α ˜ 1.9. By extending the power spectrum to lower frequencies through the inclusion of Swift and Rossi X-ray Timing Explorer data, we find tentative evidence of a high-frequency break, consistent with existing scaling relations. We also explore frequency-dependent Fourier time lags, detecting a negative (`soft') lag for the first time in this source with the 0.3-1 keV band lagging behind the 1-4 keV band with a time delay, τ, of ˜900 s. Finally, we analyse the variability in the optical and ultraviolet (UV) bands using the Optical/UV Monitor onboard XMM-Newton and the Ultra-Violet/Optical Telescope onboard Swift and search for time-dependent correlations between the optical/UV/X-ray bands. We find tentative evidence for the U-band emission lagging behind the X-rays with a time delay of τ = 2.4 ± 1.8 d, which we discuss in the context of disc reprocessing.

  19. A method for measuring the time structure of synchrotron x-ray beams

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.

    1989-08-01

    We describe a method employing a plastic scintillator coupled to a fast photomultiplier tube to generate a timing pulse from the x-ray bursts emitted from a synchrotron radiation source. This technique is useful for performing synchrotron experiments where detailed knowledge of the timing distribution is necessary, such as time resolved spectroscopy or fluorescence lifetime experiments. By digitizing the time difference between the timing signal generated on one beam crossing with the timing signal generated on the next beam crossing, the time structure of a synchrotron beam can be analyzed. Using this technique, we have investigated the single bunch time structure at the National Synchrotron Light Source (NSLS) during pilot runs in January, 1989, and found that the majority of the beam (96%) is contained in one rf bucket, while the remainder of the beam (4%) is contained in satellite rf buckets preceeding and following the main rf bucket by 19 ns. 1 ref., 4 figs

  20. Time-resolved X-ray transmission microscopy on magnetic microstructures

    International Nuclear Information System (INIS)

    Puzic, Aleksandar

    2007-01-01

    Three excitation schemes were designed for stroboscopic imaging of magnetization dynamics with time-resolved magnetic transmission X-ray microscopy (TR-MTXM). These techniques were implemented into two types of X-ray microscopes, namely the imaging transmission X-ray microscope (ITXM) and the scanning transmission X-ray microscope (STXM), both installed at the electron storage ring of the Advanced Light Source in Berkeley, USA. Circular diffraction gratings (Fresnel zone plates) used in both microscopes as focusing and imaging elements presently allow for lateral resolution down to 30 nm. Magnetic imaging is performed by using the X-ray magnetic circular dichroism (XMCD) as element specific contrast mechanism. The developed methods have been successfully applied to the experimental investigation of magnetization dynamics in ferromagnetic microstructures. A temporal resolution well below 100 ps was achieved. A conventional pump-probe technique was implemented first. The dynamic response of the magnetization excited by a broadband pulsed magnetic field was imaged spatially resolved using focused X-ray flashes. As a complementary method, the spatially resolved ferromagnetic resonance (SR-FMR) technique was developed for experimental study of magnetization dynamics in the frequency domain. As a third excitation mode, the burst excitation was implemented. The performance and efficiency of the developed methods have been demonstrated by imaging the local magnetization dynamics in laterally patterned ferromagnetic thin-film elements and three-layer stacks. The existence of multiple eigenmodes in the excitation spectra of ferromagnetic microstructures has been verified by using the pump-probe technique. Magnetostatic spin waves were selectively excited and detected with a time resolution of 50 ps using the SR-FMR technique. Thorough analysis of 20 in most cases independently prepared samples has verified that vortices which exhibit a low-amplitude switching of their core

  1. The Large Observatory For x-ray Timing

    DEFF Research Database (Denmark)

    Feroci, M.; Herder, J. W. den; Bozzo, E.

    2014-01-01

    The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study th...

  2. Attosecond time-energy structure of X-ray free-electron laser pulses

    Science.gov (United States)

    Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M. S.; Ilchen, M.; Buck, J.; Lindahl, A. O.; Benko, C.; Grünert, J.; Krzywinski, J.; Liu, J.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Miahnahri, A. A.; Moeller, S. P.; Planas, M.; Robinson, J.; Kazansky, A. K.; Kabachnik, N. M.; Viefhaus, J.; Feurer, T.; Kienberger, R.; Coffee, R. N.; Helml, W.

    2018-04-01

    The time-energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.

  3. Fast GPU-based spot extraction for energy-dispersive X-ray Laue diffraction

    International Nuclear Information System (INIS)

    Alghabi, F.; Schipper, U.; Kolb, A.; Send, S.; Abboud, A.; Pashniak, N.; Pietsch, U.

    2014-01-01

    This paper describes a novel method for fast online analysis of X-ray Laue spots taken by means of an energy-dispersive X-ray 2D detector. Current pnCCD detectors typically operate at some 100 Hz (up to a maximum of 400 Hz) and have a resolution of 384 × 384 pixels, future devices head for even higher pixel counts and frame rates. The proposed online data analysis is based on a computer utilizing multiple Graphics Processing Units (GPUs), which allow for fast and parallel data processing. Our multi-GPU based algorithm is compliant with the rules of stream-based data processing, for which GPUs are optimized. The paper's main contribution is therefore an alternative algorithm for the determination of spot positions and energies over the full sequence of pnCCD data frames. Furthermore, an improved background suppression algorithm is presented.The resulting system is able to process data at the maximum acquisition rate of 400 Hz. We present a detailed analysis of the spot positions and energies deduced from a prior (single-core) CPU-based and the novel GPU-based data processing, showing that the parallel computed results using the GPU implementation are at least of the same quality as prior CPU-based results. Furthermore, the GPU-based algorithm is able to speed up the data processing by a factor of 7 (in comparison to single-core CPU-based algorithm) which effectively makes the detector system more suitable for online data processing

  4. CCD-based X-ray detectors for X-ray diffraction studies

    International Nuclear Information System (INIS)

    Ito, K.; Amemiya, Y.

    1999-01-01

    CCD-based X-ray detectors are getting to be used for X-ray diffraction studies especially in the studies where real time (automated) measurements and time-resolved measurements are required. Principles and designs of two typical types of CCD-based detectors are described; one is ths system in which x-ray image intensifiers are coupled to maximize the detective quantum efficiency for time-resolved measurements, and the other is the system in which tapered optical fibers are coupled for the reduction of the image into the CCD, which is optimized for automated measurements for protein crystallography. These CCD-based X-ray detectors have an image distortion and non-uniformity of response to be corrected by software. Correction schemes which we have developed are also described. (author)

  5. Use of soft x-ray diagnostic on the COMPASS tokamak for investigations of sawteeth crash neighborhood and of plasma position using fast inversion methods

    Energy Technology Data Exchange (ETDEWEB)

    Imrisek, M. [Institute of Plasma Physics ASCR, Prague (Czech Republic); Faculty of Mathematics and Physics, Charles University in Prague, Prague (Czech Republic); Weinzettl, V.; Mlynar, J.; Panek, R.; Hron, M. [Institute of Plasma Physics ASCR, Prague (Czech Republic); Odstrcil, T. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Odstrcil, M. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague (Czech Republic); Optical Research Center, University of Southampton, Southampton (United Kingdom); Ficker, O. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague (Czech Republic); Pinzon, J. R. [Institue Jean Lamour, Université de Lorraine, Nancy (France); Ehrlacher, C. [ENS Cachan, Paris (France)

    2014-11-15

    The soft x-ray diagnostic is suitable for monitoring plasma activity in the tokamak core, e.g., sawtooth instability. Moreover, spatially resolved measurements can provide information about plasma position and shape, which can supplement magnetic measurements. In this contribution, fast algorithms with the potential for a real-time use are tested on the data from the COMPASS tokamak. In addition, the soft x-ray data are compared with data from other diagnostics in order to discuss possible connection between sawtooth instability on one side and the transition to higher confinement mode, edge localized modes and productions of runaway electrons on the other side.

  6. Ultra-Fast Flash Observatory: Fast Response Space Missions for Early Time Phase of Gamma Ray Bursts

    DEFF Research Database (Denmark)

    Park, I.H.; Ahmad, S.; Barrillon, P.

    2013-01-01

    One of the unexplored domains in the study of gamma-ray bursts (GRBs) is the early time phase of the optical light curve. We have proposed Ultra-Fast Flash Observatory (UFFO) to address this question through extraordinary opportunities presented by a series of small space missions. The UFFO...

  7. Time variability of X-ray binaries: observations with INTEGRAL. Modeling

    International Nuclear Information System (INIS)

    Cabanac, Clement

    2007-01-01

    The exact origin of the observed X and Gamma ray variability in X-ray binaries is still an open debate in high energy astrophysics. Among others, these objects are showing aperiodic and quasi-periodic luminosity variations on timescales as small as the millisecond. This erratic behavior must put constraints on the proposed emission processes occurring in the vicinity of the neutrons star or the stellar mass black-hole held by these objects. We propose here to study their behavior following 3 different ways: first we examine the evolution of a particular X-ray source discovered by INTEGRAL, IGR J19140+0951. Using timing and spectral data given by different instruments, we show that the source type is plausibly consistent with a High Mass X-ray Binary hosting a neutrons star. Subsequently, we propose a new method dedicated to the study of timing data coming from coded mask aperture instruments. Using it on INTEGRAL/ISGRI real data, we detect the presence of periodic and quasi-periodic features in some pulsars and micro-quasars at energies as high as a hundred keV. Finally, we suggest a model designed to describe the low frequency variability of X-ray binaries in their hardest state. This model is based on thermal comptonization of soft photons by a warm corona in which a pressure wave is propagating in cylindrical geometry. By computing both numerical simulations and analytical solution, we show that this model should be suitable to describe some of the typical features observed in X-ray binaries power spectra in their hard state and their evolution such as aperiodic noise and low frequency quasi-periodic oscillations. (author) [fr

  8. A high count rate one-dimensional position sensitive detector and a data acquisition system for time resolved X-ray scattering studies

    International Nuclear Information System (INIS)

    Pernot, P.

    1982-01-01

    A curved multiwire proportional drift chamber has been built as a general purpose instrument for X-ray scattering and X-ray diffraction experiments with synchrotron radiation. This parallaxe-free one-dimensional linear position sensitive detector has a parallel readout with a double hit logic. The data acquisition system, installed as a part of the D11 camera at LURE-DCI, is designed to perform time slicing and cyclic experiments; it has been used with either the fast multiwire chamber or a standard position sensitive detector with delay line readout [fr

  9. Spectral encoding method for measuring the relative arrival time between x-ray/optical pulses

    International Nuclear Information System (INIS)

    Bionta, M. R.; Hartmann, N.; Weaver, M.; French, D.; Glownia, J. M.; Bostedt, C.; Chollet, M.; Ding, Y.; Fritz, D. M.; Fry, A. R.; Krzywinski, J.; Lemke, H. T.; Messerschmidt, M.; Schorb, S.; Zhu, D.; White, W. E.; Nicholson, D. J.; Cryan, J. P.; Baker, K.; Kane, D. J.

    2014-01-01

    The advent of few femtosecond x-ray light sources brings promise of x-ray/optical pump-probe experiments that can measure chemical and structural changes in the 10–100 fs time regime. Widely distributed timing systems used at x-ray Free-Electron Laser facilities are typically limited to above 50 fs fwhm jitter in active x-ray/optical synchronization. The approach of single-shot timing measurements is used to sort results in the event processing stage. This has seen wide use to accommodate the insufficient precision of active stabilization schemes. In this article, we review the current technique for “measure-and-sort” at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The relative arrival time between an x-ray pulse and an optical pulse is measured near the experimental interaction region as a spectrally encoded cross-correlation signal. The cross-correlation provides a time-stamp for filter-and-sort algorithms used for real-time sorting. Sub-10 fs rms resolution is common in this technique, placing timing precision at the same scale as the duration of the shortest achievable x-ray pulses

  10. Time-Resolved X-Ray Diffraction: The Dynamics of the Chemical Bond

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Henriksen, Niels Engholm

    2012-01-01

    We review the basic theoretical formulation for pulsed X-ray scattering on nonstationary molecular states. Relevant time scales are discussed for coherent as well as incpherent X-ray pulses. The general formalism is applied to a nonstationary diatomic molecule in order to highlight the relation b...

  11. Observation of material, thickness, and bremsstrahlung x-ray intensity dependent effects in moderate and high Z targets in a gamma and x-ray LIDAR experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: xzhang39@utk.edu [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Ayaz-Maierhafer, Birsen; Laubach, Mitchell A. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Hayward, Jason P. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Oak Ridge National Lab, Oak Ridge, TN 37831 (United States)

    2015-06-01

    A high energy gamma and x-ray LIDAR system consisting of a fast pulse (~50 ps, FWHM) LINAC and a Cherenkov detection system was used to investigate response differences among materials, their thicknesses, and bremsstrahlung x-ray intensities. The energies and pulse width of electrons used to produce bremsstrahlung x-rays were set at 20 or 40 MeV and 50 ps FWHM duration, respectively. The Cherenkov detector was built with a fused silica glass optically coupled to a 51 mm fast timing photomultiplier tube, which has an intrinsic energy threshold of 340.7 keV for Compton backscattered gammas. Such a fast detection system yields a coincidence resolving time of 93 ps FWHM, which is equivalent to a depth resolving capability of about 3 cm FWHM. The thicknesses of iron and lead targets were varied from 1 in. to 7 in. with a step of 1 in., and the thicknesses of DU were varied from 1/3 in. to 1 in. with a step of 1/3 in. The experimental results show that iron targets tend to produce a factor of five less observed x-rays and gammas, with less energetic photoelectron frequency distributions, compared with DU and lead targets for the same beam intensity and target thicknesses. Additionally, the self-shielding effect causes the lead to yield more gammas than the DU considering the experimental observation point. For the setup used in this study, a charge per pulse in the range of 1–2.5 nC yields the best resolving capability between the DU and lead targets.

  12. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage

    Science.gov (United States)

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.

  13. Topics in High-Energy Astrophysics: X-ray Time Lags and Gamma-ray Flares

    Science.gov (United States)

    Kroon, John J.

    2016-03-01

    The Universe is host to a wide variety of high-energy processes that convert gravitational potential energy or rest-mass energy into non-thermal radiation such as bremsstrahlung and synchrotron. Prevailing models of X-ray emission from accreting Black Hole Binaries (BHBs) struggle to simultaneously fit the quiescent X-ray spectrum and the transients which result in the phenomenon known as X-ray time lags. And similarly, classical models of diffusive shock acceleration in pulsar wind nebulae fail to explain the extreme particle acceleration in very short timescales as is inferred from recent gamma-ray flares from the Crab nebula. In this dissertation, I develop new exact analytic models to shed light on these intriguing processes. I take a fresh look at the formation of X-ray time lags in compact sources using a new mathematical approach in which I obtain the exact Green's function solution. The resulting Green's function allows one to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photon injection. I obtain the exact solution for the dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous clouds. The model can successfully reproduce both the observed time lags and the quiescent X-ray spectrum using a single set of coronal parameters. I show that the implied coronal radii in the new model are significantly smaller than those obtained in the Monte Carlo simulations, hence greatly reducing the coronal heating problem. Recent bright gamma-ray flares from the Crab nebula observed by AGILE and Fermi reaching GeV energies and lasting several days challenge the contemporary model for particle acceleration in pulsar wind nebulae, specifically the diffusive shock acceleration model. Simulations indicate electron/positron pairs in the Crab nebula pulsar wind must be accelerated up to PeV energies in the presence of ambient magnetic fields with strength B ~100 microG. No

  14. Time-dependent Takagi-Taupin eikonal theory and applications in the subpicosecond manipulation of X-rays

    International Nuclear Information System (INIS)

    Adams, Bernhard W.

    2004-01-01

    A time-dependent version of the Takagi-Taupin theory of X-ray diffraction is derived in a unified space-time approach, which is particularly applicable to X-ray diffraction in a crystal that is undergoing rapid change on the subpicosecond, and even few-femtosecond, time scale. The theory is applied to the proposal of a class of X-ray optical elements for the subpicosecond manipulation of X-rays

  15. CdTe in photoconductive applications. Fast detector for metrology and X-ray imaging

    International Nuclear Information System (INIS)

    Cuzin, M.

    1991-01-01

    Operating as a photoconductor, the sensitivity and the impulse response of semi-insulating materials greatly depend on the excitation duration compared to electron and hole lifetimes. The requirement of ohmic contact is shortly discussed. Before developing picosecond measurements with integrated autocorrelation system, this paper explains high energy industrial tomographic application with large CdTe detectors (25x15x0.9 mm 3 ). The excitation is typically μs range. X-ray flash radiography, with 10 ns burst, is in an intermediate time domain where excitation is similar to electron life-time. In laser fusion experiment excitation is in the range of 50 ps and we develop photoconductive devices able to study very high speed X-ray emission time behaviour. Thin polycristalline MOCVD CdTe films with picosecond response are suitable to perform optical correlation measurements of single shot pulses with a very large bandwidth (- 50 GHz)

  16. kHz femtosecond laser-plasma hard X-ray and fast ion source

    International Nuclear Information System (INIS)

    Thoss, A.; Korn, G.; Stiel, H.; Voigt, U.; Elsaesser, T.; Richardson, M.C.; Siders, C.W.; Faubel, M.

    2002-01-01

    We describe the first demonstration of a new stable, kHz femtosecond laser-plasma source of hard x-ray continuum and K α emission using a thin liquid metallic jet target. kHz femtosecond x-ray sources will find many applications in time-resolved x-ray diffraction and microscopy studies. As high intensity lasers become more compact and operate at increasingly high repetition-rates, they require a target configuration that is both repeatable from shot-to-shot and is debris-free. We have solved this requirement with the use of a fine (10-30 μm diameter) liquid metal jet target that provides a pristine, unperturbed filament surface at rates >100 kHz. A number of liquid metal targets are considered. We will show hard x-ray spectra recorded from liquid Ga targets that show the generation of the 9.3 keV and 10.3 keV, K α and K β lines superimposed on a multi-keV Bremsstrahlung continuum. This source was generated by a 50fs duration, 1 kHz, 2W, high intensity Ti:Sapphire laser. We will discuss the extension of this source to higher powers and higher repetition rates, providing harder x-ray emission, with the incorporation of pulse-shaping and other techniques to enhance the x-ray conversion efficiency. Using the same liquid target technology, we have also demonstrated the generation of forward-going sub-MeV protons from a 10 μm liquid water target at 1 kHz repetition rates. kHz sources of high energy ions will find many applications in time-resolved particle interaction studies, as well as lead to the efficient generation of short-lived isotopes for use in nuclear medicine and other applications. The protons were detected with CR-39 track detectors both in the forward and backward directions up to energies of ∼500 keV. As the intensity of compact high repetition-rate lasers sources increase, we can expect improvements in the energy, conversion efficiency and directionality to occur. The impact of these developments on a number of fields will be discussed. As compact

  17. SEXTANT - Station Explorer for X-ray Timing and Navigation Technology

    Science.gov (United States)

    Mitchell, Jason W.; Hasouneh, Munther Abdel Hamid; Winternitz, Luke M. B.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Arzoumanian, Zaven; Ray, Paul S.; Wood, Kent S.; hide

    2015-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission, which is scheduled to launch in late 2016 and will be hosted as an externally attached payload on the International Space Station (ISS) via the ExPRESS Logistics Carrier (ELC). During NICER's 18-month baseline science mission to understand ultra-dense matter though observations of neutron stars in the soft X-ray band, SEXTANT will, for the first-time, demonstrate real-time, on-board X-ray pulsar navigation, which is a significant milestone in the quest to establish a GPS-like navigation capability that will be available throughout our Solar System and beyond. Along with NICER, SEXTANT has proceeded through Phase B, Mission Definition, and received numerous refinements in concept of operation, algorithms, flight software, ground system, and ground test capability. NICER/SEXTANT's Phase B work culminated in NASA's confirmation of NICER to Phase C, Design and Development, in March 2014. Recently, NICER/SEXTANT successfully passed its Critical Design Review and SEXTANT received continuation approval in September 2014. In this paper, we describe the X-ray pulsar navigation concept and provide a brief history of previous work, and then summarize the SEXTANT technology demonstration objective, hardware and software components, and development to date.

  18. Fast X-ray imaging at beamline I13L at Diamond Light Source

    International Nuclear Information System (INIS)

    Fanis, A De; Pešić, Z D; Wagner, U; Rau, C

    2013-01-01

    The imaging branch of the dual-branch beamline I13L at Diamond Light Source has been operational since April 2012. This branch is dedicated to hard X-ray imaging (in-line phase contrast radiography and tomography, and full-field microscopy), with energies in the ranges 6-30keV. At present we aim to achieve spatial resolution of the order of 1 μm over a field of view of l-20mm 2 . This branch aims to excel at imaging experiment of fast dynamic processes, where it is of interest to have short exposure times and high frame rates. To accommodate for this, we prepared for the beamline to operate with 'pink' beam to provide higher flux, an efficient detection system, and rapid data acquisition, transfer, and saving to storage. This contributed paper describes the present situation and illustrate the author's goal for the mid-future.

  19. Fast X-ray imaging at beamline I13L at Diamond Light Source

    Science.gov (United States)

    De Fanis, A.; Pešić, Z. D.; Wagner, U.; Rau, C.

    2013-03-01

    The imaging branch of the dual-branch beamline I13L at Diamond Light Source has been operational since April 2012. This branch is dedicated to hard X-ray imaging (in-line phase contrast radiography and tomography, and full-field microscopy), with energies in the ranges 6-30keV. At present we aim to achieve spatial resolution of the order of 1 μm over a field of view of l-20mm2. This branch aims to excel at imaging experiment of fast dynamic processes, where it is of interest to have short exposure times and high frame rates. To accommodate for this, we prepared for the beamline to operate with "pink" beam to provide higher flux, an efficient detection system, and rapid data acquisition, transfer, and saving to storage. This contributed paper describes the present situation and illustrate the author's goal for the mid-future.

  20. Chest X-Ray

    Medline Plus

    Full Text Available ... I’d like to talk with you about chest radiography also known as chest x-rays. Chest x-rays are the most ... far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot org. Thank you for your time! ...

  1. High precision instrumentation for measuring the true exposure time in diagnostic X-ray examinations

    International Nuclear Information System (INIS)

    Silva, Danubia B.; Santos, Marcus A.P.; Barros, Fabio R.; Santos, Luiz A.P.

    2013-01-01

    One of the most important physical quantities to be evaluated in diagnostic radiology is the radiation exposure time experimented by the patient during the X-ray examination. IAEA and WHO organizations have suggested that any country must create a quality surveillance program to verify if each type of ionizing radiation equipment used in the hospitals and medical clinics are in conformity with the accepted uncertainties following the international standards. The purpose of this work is to present a new high precision methodology for measuring true exposure time in diagnostic X-ray examinations: pulsed, continuous or digital one. An electronic system named CronoX, which will be soon registered at the Brazilian Patent Office (INPI), is the equipment that provides such a high precision measurement. The principle of measurement is based on the electrical signal captured by a sensor that enters in a regeneration amplifier to transform it in a digital signal, which is treated by a microprocessor (uP). The signal treatment results in a two measured times: 1) T rx , the true X-ray exposure time; 2) T nx , the time in which the X-ray machine is repeatedly cut off during the pulsed irradiation and there is no delivery dose to the patient. Conventional Polymat X-ray equipment and dental X-ray machines were used to generate X-ray photons and take the measurements with the electronic systems. The results show that such a high precision instrumentation displays the true exposure time in diagnostic X-ray examinations and indicates a new method to be purposed for the quality surveillance programs in radiology. (author)

  2. X-ray and fast neutron-induced mutations in Arabidopsis thaliana, and the effect of dithiothreitol upon the mutant spectrum

    International Nuclear Information System (INIS)

    Dellaert, L.M.W.

    1980-01-01

    The author discusses the genetic effects of X-ray and fast neutron seed-irradiation of Arabidopsis thaliana (L.) Heynh., and the influence of a pre-irradiation treatment with the radio-protector dithiothreitol (DTT). (Auth.)

  3. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    Science.gov (United States)

    Rana, Vikram; Loh, Alan; Corbel, Stephane; Tomsick, John A.; Chakrabarty, Deepto; Walton, Dominic J.; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William; hide

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0.3-30 keV) quiescent luminosity of the source is 8.9 x 10(exp 32) erg per sec for a distance of 2.4 kpc. The source shows clear variability on short timescales (an hour to a couple of hours) in the radio, soft X-ray, and hard X-ray bands in the form of multiple flares. The broadband X-ray spectra obtained from XMM-Newton and NuSTAR can be characterized with a power-law model having a photon index of gamma = 2.12 +/- 0.07 (90% confidence errors); however, residuals at high energies indicate spectral curvature significant at a 3 sigma confidence level with the e-folding energy of the cutoff as 20(sub -7)(sup +20) keV. Such curvature can be explained using synchrotron emission from the base of a jet outflow. Radio observations using the VLA reveal that the spectral index evolves on very fast timescales (as short as 10 minutes), switching between optically thick and thin synchrotron emission, possibly due to instabilities in the compact jet or stochastic instabilities in the accretion rate. We explore different scenarios to explain this very fast variability.

  4. The smoothing and fast Fourier transformation of experimental X-ray and neutron data from amorphous materials

    International Nuclear Information System (INIS)

    Dixon, M.; Wright, A.C.; Hutchinson, P.

    1977-01-01

    The application of fast Fourier transformation techniques to the analysis of experimental X-ray and neutron diffraction patterns from amorphous materials is discussed and compared with conventional techniques using Filon's quadrature. The fast Fourier transform package described also includes cubic spline smoothing and has been extensively tested, using model data to which statistical errors have been added by means of a pseudo-random number generator with Gaussian shaper. Neither cubic spline nor hand smoothing has much effect on the resulting transform since the noise removed is of too high a frequency. (Auth.)

  5. High-speed x-ray imaging with the Keck pixel array detector (Keck PAD) for time-resolved experiments at synchrotron sources

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, Hugh T., E-mail: htp2@cornell.edu; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY (United States); Chamberlain, Darol; Gruner, Sol M. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY (United States)

    2016-07-27

    Modern storage rings are readily capable of providing intense x-ray pulses, tens of picoseconds in duration, millions of times per second. Exploiting the temporal structure of these x-ray sources opens avenues for studying rapid structural changes in materials. Many processes (e.g. crack propagation, deformation on impact, turbulence, etc.) differ in detail from one sample trial to the next and would benefit from the ability to record successive x-ray images with single x-ray sensitivity while framing at 5 to 10 MHz rates. To this end, we have pursued the development of fast x-ray imaging detectors capable of collecting bursts of images that enable the isolation of single synchrotron bunches and/or bunch trains. The detector technology used is the hybrid pixel array detector (PAD) with a charge integrating front-end, and high-speed, in-pixel signal storage elements. A 384×256 pixel version, the Keck-PAD, with 150 µm × 150 µm pixels and 8 dedicated in-pixel storage elements is operational, has been tested at CHESS, and has collected data for compression wave studies. An updated version with 27 dedicated storage capacitors and identical pixel size has been fabricated.

  6. Fast X-ray powder diffraction on I11 at Diamond.

    Science.gov (United States)

    Thompson, Stephen P; Parker, Julia E; Marchal, Julien; Potter, Jonathan; Birt, Adrian; Yuan, Fajin; Fearn, Richard D; Lennie, Alistair R; Street, Steven R; Tang, Chiu C

    2011-07-01

    The commissioning and performance characterization of a position-sensitive detector designed for fast X-ray powder diffraction experiments on beamline I11 at Diamond Light Source are described. The detecting elements comprise 18 detector-readout modules of MYTHEN-II silicon strip technology tiled to provide 90° coverage in 2θ. The modules are located in a rigid housing custom designed at Diamond with control of the device fully integrated into the beamline data acquisition environment. The detector is mounted on the I11 three-circle powder diffractometer to provide an intrinsic resolution of Δ2θ approximately equal to 0.004°. The results of commissioning and performance measurements using reference samples (Si and AgI) are presented, along with new results from scientific experiments selected to demonstrate the suitability of this facility for powder diffraction experiments where conventional angle scanning is too slow to capture rapid structural changes. The real-time dehydrogenation of MgH(2), a potential hydrogen storage compound, is investigated along with ultrafast high-throughput measurements to determine the crystallite quality of different samples of the metastable carbonate phase vaterite (CaCO(3)) precipitated and stabilized in the presence of amino acid molecules in a biomimetic synthesis process.

  7. High-speed X-ray topography

    International Nuclear Information System (INIS)

    Eckers, W.; Oppolzer, H.

    1977-01-01

    The investigation of lattice defects in semiconductor crystals by conventional X-ray diffraction topography is very time-consuming. Exposure times can be reduced by using high-intensity X-rays and X-ray image intensifiers. The described system comprises a high-power rotating-anode X-ray tube, a remote-controlled X-ray topography camera, and a television system operating with an X-ray sensing VIDICON. System performance is demonstrated with reference to exploratory examples. The exposure time for photographic plates is reduced to 1/20 and for the X-ray TV system (resolution of the order of 30 μm) to 1/100 relative to that required when using a conventional topography system. (orig.) [de

  8. Soft x-ray emission from the direction of the Coma cluster

    International Nuclear Information System (INIS)

    Hayakawa, Satio; Tanaka, Yasuo; Yamashita, Koujun; Bleeker, J.A.M.; Deerenberg, A.J.M.

    1975-01-01

    A soft X-ray source was observed in the direction of the Coma cluster. The flux in the energy range 0.2--0.4 keV was found to change within a time scale shorter than 80 s. The fast transient and the energy spectrum prohibit identification of this source with the Coma cluster. It is suggested that this source belongs to a class of nearby transient soft X-ray sources. (auth.)

  9. Optimization of image quality and acquisition time for lab-based X-ray microtomography using an iterative reconstruction algorithm

    Science.gov (United States)

    Lin, Qingyang; Andrew, Matthew; Thompson, William; Blunt, Martin J.; Bijeljic, Branko

    2018-05-01

    Non-invasive laboratory-based X-ray microtomography has been widely applied in many industrial and research disciplines. However, the main barrier to the use of laboratory systems compared to a synchrotron beamline is its much longer image acquisition time (hours per scan compared to seconds to minutes at a synchrotron), which results in limited application for dynamic in situ processes. Therefore, the majority of existing laboratory X-ray microtomography is limited to static imaging; relatively fast imaging (tens of minutes per scan) can only be achieved by sacrificing imaging quality, e.g. reducing exposure time or number of projections. To alleviate this barrier, we introduce an optimized implementation of a well-known iterative reconstruction algorithm that allows users to reconstruct tomographic images with reasonable image quality, but requires lower X-ray signal counts and fewer projections than conventional methods. Quantitative analysis and comparison between the iterative and the conventional filtered back-projection reconstruction algorithm was performed using a sandstone rock sample with and without liquid phases in the pore space. Overall, by implementing the iterative reconstruction algorithm, the required image acquisition time for samples such as this, with sparse object structure, can be reduced by a factor of up to 4 without measurable loss of sharpness or signal to noise ratio.

  10. X-ray detector for a panoramic X-ray unit

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, D; Ensslin, F H

    1976-01-15

    The discovery deals with an X-ray detector suitable for the controlling of panoramic X-ray systems. It consists of a fluorescent image screen and a semiconductor photo cell. The output signal of the detector is proportional to the intensity of the X-radiation and the response time is large enough to follow the change of amplitude of the contours of the modulated X radiation. The detector with band-pass filter regulates, via a control system, the moving rate of the X-ray source and of the film opposite it in dependence of the intensity, so that a uniform exposure is ensured.

  11. X-Ray Scattering Applications Using Pulsed X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1999-05-23

    Pulsed x-ray sources have been used in transient structural phenomena investigations for over fifty years; however, until the advent of synchrotrons sources and the development of table-top picosecond lasers, general access to ligh temporal resolution x-ray diffraction was relatively limited. Advances in diffraction techniques, sample excitation schemes, and detector systems, in addition to IncEased access to pulsed sources, have ld tO what is now a diverse and growing array of pulsed-source measurement applications. A survey of time-resolved investigations using pulsed x-ray sources is presented and research opportunities using both present and planned pulsed x-ray sources are discussed.

  12. Study of the elemental composition of Chenopodium Quinoa Willd by fast neutron activation analysis and X ray fluorescence analysis

    International Nuclear Information System (INIS)

    Soto Moran, R.L.; Szegedi, S.; Llopiz, J.L.

    1996-01-01

    By means of x-ray fluorescence and fast neutron activation analysis the nitrogen content has been determined in samples of roots, stems, leaf, flowers and grains from Quinua (Chenopodium Quinoa Willd), which was previously treated with fertilizer

  13. Perfect-crystal x-ray optics to treat x-ray coherence

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi; Ishikawa, Tetsuya

    2007-01-01

    X-ray diffraction of perfect crystals, which serve as x-ray monochromator and collimator, modifies coherence properties of x-ray beams. From the time-dependent Takagi-Taupin equations that x-ray wavefields obey in crystals, the reflected wavefield is formulated as an integral transform of a general incident wavefield with temporal and spatial inhomogeneity. A reformulation of rocking-curve profiles from the field solution of the Takagi-Taupin equations allows experimental evaluation of the mutual coherence function of x-ray beam. The rigorous relationship of the coherence functions between before and after reflection clarifies how the coherence is transferred by a crystal. These results will be beneficial to developers of beamline optics for the next generation synchrotron sources. (author)

  14. A microchannel plate X-ray multiplier with rising-time less than 170 ps

    International Nuclear Information System (INIS)

    Zhao Shicheng; Ouyang Bin

    1987-01-01

    The time reponse of a microchannel plate X-ray multiplier has been improved considerably by using a coupling construction of coaxial tapers. The experimental calibration results with laser plasma X-ray source show that the rising-time of the multiplier is less than 170 ps

  15. X-ray phase-contrast imaging

    Science.gov (United States)

    Endrizzi, Marco

    2018-01-01

    X-ray imaging is a standard tool for the non-destructive inspection of the internal structure of samples. It finds application in a vast diversity of fields: medicine, biology, many engineering disciplines, palaeontology and earth sciences are just few examples. The fundamental principle underpinning the image formation have remained the same for over a century: the X-rays traversing the sample are subjected to different amount of absorption in different parts of the sample. By means of phase-sensitive techniques it is possible to generate contrast also in relation to the phase shifts imparted by the sample and to extend the capabilities of X-ray imaging to those details that lack enough absorption contrast to be visualised in conventional radiography. A general overview of X-ray phase contrast imaging techniques is presented in this review, along with more recent advances in this fast evolving field and some examples of applications.

  16. Polarization-dependent force driving the Eg mode in bismuth under optical excitation: comparison of first-principles theory with ultra-fast x-ray experiments

    Science.gov (United States)

    Fahy, Stephen; Murray, Eamonn

    2015-03-01

    Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of a ultrafast pulse of polarized light. To compare the results with recent ultra-fast, time-resolved x-ray diffraction experiments, we include the decay of the force due to carrier scattering, as measured in optical Raman scattering experiments, and simulate the optical absorption process, depth-dependent atomic driving forces, and x-ray diffraction in the experimental geometry. We find excellent agreement between the theoretical predictions and the observed oscillations of the x-ray diffraction signal, indicating that first-principles theory of optical absorption is well suited to the calculation of initial atomic driving forces in photo-excited materials following ultrafast excitation. This work is supported by Science Foundation Ireland (Grant No. 12/IA/1601) and EU Commission under the Marie Curie Incoming International Fellowships (Grant No. PIIF-GA-2012-329695).

  17. Fast scattering simulation tool for multi-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sossin, A., E-mail: artur.sossin@cea.fr [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Tabary, J.; Rebuffel, V. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Létang, J.M.; Freud, N. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard (France); Verger, L. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France)

    2015-12-01

    A combination of Monte Carlo (MC) and deterministic approaches was employed as a means of creating a simulation tool capable of providing energy resolved x-ray primary and scatter images within a reasonable time interval. Libraries of Sindbad, a previously developed x-ray simulation software, were used in the development. The scatter simulation capabilities of the tool were validated through simulation with the aid of GATE and through experimentation by using a spectrometric CdTe detector. A simple cylindrical phantom with cavities and an aluminum insert was used. Cross-validation with GATE showed good agreement with a global spatial error of 1.5% and a maximum scatter spectrum error of around 6%. Experimental validation also supported the accuracy of the simulations obtained from the developed software with a global spatial error of 1.8% and a maximum error of around 8.5% in the scatter spectra.

  18. Some new possibilities in direct visible and x ray measurements

    International Nuclear Information System (INIS)

    Gex, J.P.; Sauneuf, R.; Boutot, J.P.; Delmotte, J.C.

    1979-01-01

    Subnanosecond photodetection measurements in visible and X ray range with vacuum cell and very thin microchannel plate phototube (coupled with a fast scintillator or not) in conjunction with fast oscilloscope (5 GHz) are presented. They are compared to those given by a visible or a gold photocathode X-ray streak camera (temporal resolution better than 20 ps). (author)

  19. Time-resolved hard x-ray studies using third-generation synchrotron radiation sources (abstract)

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    The third-generation, high-brilliance, synchrotron radiation sources currently under construction will usher in a new era of x-ray research in the physical, chemical, and biological sciences. One of the most exciting areas of experimentation will be the extension of static x-ray scattering and diffraction techniques to the study of transient or time-evolving systems. The high repetition rate, short-pulse duration, high-brilliance, variable spectral bandwidth, and large particle beam energies of these sources make them ideal for hard x-ray, time-resolved studies. The primary focus of this presentation will be on the novel instrumentation required for time-resolved studies such as optics which can increase the flux on the sample or disperse the x-ray beam, detectors and electronics for parallel data collection, and methods for altering the natural time structure of the radiation. This work is supported by the U.S. Department of Energy, BES-Materials Science, under Contract No. W-31-109-ENG-38

  20. X-rays Provide a New Way to Investigate Exploding Stars

    Science.gov (United States)

    2007-05-01

    The European Space Agency's X-ray observatory XMM-Newton has revealed a new class of exploding stars - where the X-ray emission 'lives fast and dies young'. The identification of this particular class of explosion gives astronomers a valuable new constraint to help them understand stellar explosions. Exploding stars called novae remain a puzzle to astronomers. "Modelling these outbursts is very difficult," says Wolfgang Pietsch, Max Planck Institut für Extraterrestrische Physik. Now, ESA's XMM-Newton and NASA's Chandra have provided valuable information about when individual novae emit X-rays. Between July 2004 and February 2005, the X-ray observatories watched the heart of the nearby Andromeda Galaxy, known to astronomers as M31. During that time, Pietsch and his colleagues monitored novae, looking for the X-rays. X-ray Image of Andromeda Galaxy (M31) Chandra X-ray Image of Andromeda Galaxy (M31) They detected that eleven out of the 34 novae that had exploded in the galaxy during the previous year were shining X-rays into space. "X-rays are an important window onto novae. They show the atmosphere of the white dwarf," says Pietsch. White dwarfs are hot stellar corpses left behind after the rest of the star has been ejected into space. A typical white dwarf contains about the mass of the Sun, in a spherical volume little bigger than the Earth. It has a strong pull of gravity and, if it is in orbit around a normal star, can rip gas from it. This material builds up on the surface of the white dwarf until it reaches sufficient density to nuclear detonate. The resultant explosion creates a nova. However, these particular events are not strong enough to destroy the underlying white dwarf. The X-ray emission becomes visible some time after the detonation, when the matter ejected by the nova thins out enough to allow astronomers to peer down to the nuclear burning white dwarf atmosphere beneath. At the end of the process, the X-ray emission stops when the fuel is

  1. Shield device for controlling the dose of x-rays applied in an x-ray machine

    International Nuclear Information System (INIS)

    Charrier, P.

    1983-01-01

    This invention provides an improved shield for use with an x-ray machine. The shield can control the dose of x-rays applied by the machine in different areas without affecting the power of the x-rays. This is achieved with a shield especially designed and positioned to intercept with x-rays for longer or shorter periods in different areas during the taking of the picture, but not for the whole period of time necessary for taking this picture. Each area of the subject being x-rayed is exposed to full power x-rays. However, owing to the shield, the areas that require smaller dose receive these full power x-rays for a shorter portion of the time required to take the picture while the other areas that require larger dose of x-rays, receive the full power x-rays for a longer portion of the full period of time required to take the picture. To ensure this differential exposure, the shield is placed through the path of the x-rays and rotated about an axis which is generally transverse to the direction of travel of the x-rays to cut out some of said x-rays for different portions of the period of time necessary for taking the picture. The shield is preferably shaped to intercept x-rays for a longer period in some areas than in others depending on the required doses. A plurality of differently shaped shields can be provided to suit different picture taking situations

  2. Tl{sub 2}LaCl{sub 5} (Ce{sup 3+}): New fast and efficient scintillator for X- and γ-ray detection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.J., E-mail: hongjoo@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 41566 (Korea, Republic of); Rooh, Gul [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); Kim, Sunghwan [Department of Radiological Science, Cheongju University, Cheongju 41566 (Korea, Republic of)

    2017-06-15

    Scintillation properties of the new Tl{sub 2}LaCl{sub 5}: xCe{sup 3+} where x=0, 0.5, 1 and 10 mol % (TLC: Ce{sup 3+}) single crystals are presented. Two zones vertical Bridgman technique is used for the growth of this scintillation material. High Z-number (79) of this material offer excellent detection efficiency for X- and γ-rays. Grown samples are characterized under X- and γ-rays excitation in order to find the emission wavelength, energy resolution, light yield, and decay time. Emission spectra exhibit Ce{sup 3+} emission bands between 350–550 nm and peaking at 389 nm. The obtained energy resolution and light yield increases with high Ce-concentration. Energy resolution and light yield of 10%Ce-doped sample are found to be 6.9% (FWHM) and 51,000±5000 ph/MeV, respectively at room temperature. For the grown samples, two exponential decay time constants are found. The measured decay time constants showed variation in their values with respect to Ce-concentrations in the host crystal. Fast decay time constant of 31 ns with 87% light emission is found for 10%Ce sample. Scintillation results suggested that TLC will be one of the promising next generation scintillator for the medical imaging techniques such as Positron Emission Tomography (PET).

  3. An X-ray CCD signal generator with true random arrival time

    International Nuclear Information System (INIS)

    Huo Jia; Xu Yuming; Chen Yong; Cui Weiwei; Li Wei; Zhang Ziliang; Han Dawei; Wang Yusan; Wang Juan

    2011-01-01

    An FPGA-based true random signal generator with adjustable amplitude and exponential distribution of time interval is presented. Since traditional true random number generators (TRNG) are resource costly and difficult to transplant, we employed a method of random number generation based on jitter and phase noise in ring oscillators formed by gates in an FPGA. In order to improve the random characteristics, a combination of two different pseudo-random processing circuits is used for post processing. The effects of the design parameters, such as sample frequency are discussed. Statistical tests indicate that the generator can well simulate the timing behavior of random signals with Poisson distribution. The X-ray CCD signal generator will be used in debugging the CCD readout system of the Low Energy X-ray Instrument onboard the Hard X-ray Modulation Telescope (HXMT). (authors)

  4. Computational time-resolved and resonant x-ray scattering of strongly correlated materials

    Energy Technology Data Exchange (ETDEWEB)

    Bansil, Arun [Northeastern Univ., Boston, MA (United States)

    2016-11-09

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source, literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of x-ray science. In particular, our Collaborative Research Team (CRT) focused on developing viable computational schemes for modeling x-ray scattering and photoemission spectra of strongly correlated materials in the time-domain. The vast arsenal of formal/numerical techniques and approaches encompassed by the members of our CRT were brought to bear through appropriate generalizations and extensions to model the pumped state and the dynamics of this non-equilibrium state, and how it can be probed via x-ray absorption (XAS), emission (XES), resonant and non-resonant x-ray scattering, and photoemission processes. We explored the conceptual connections between the time-domain problems and other second-order spectroscopies, such as resonant inelastic x-ray scattering (RIXS) because RIXS may be effectively thought of as a pump-probe experiment in which the incoming photon acts as the pump, and the fluorescent decay is the probe. Alternatively, when the core-valence interactions are strong, one can view K-edge RIXS for example, as the dynamic response of the material to the transient presence of a strong core-hole potential. Unlike an actual pump-probe experiment, here there is no mechanism for adjusting the time-delay between the pump and the probe. However, the core hole

  5. Characterization of a pulsed x-ray source for fluorescent lifetime measurements

    International Nuclear Information System (INIS)

    Blankespoor, S.C.; Derenzo, S.E.; Moses, W.W.; Rossington, C.S.; Ito, M.; Oba, K.

    1994-01-01

    To search for new, fast, inorganic scintillators, the authors have developed a bench-top pulsed x-ray source for determining fluorescent lifetimes and wavelengths of compounds in crystal or powdered form. This source uses a light-excited x-ray tube which produces x-rays when light from a laser diode strikes its photocathode. The x-ray tube has a tungsten anode, a beryllium exit window, a 30 kV maximum tube bias, and a 50 μA maximum average cathode current. The laser produces 3 x 10 7 photons at 650 nm per ∼100 ps pulse, with up to 10 7 pulses/sec. The time spread for the laser diode, x-ray tube, and a microchannel plate photomultiplier tube is less than 120 ps fwhm. The mean x-ray energy at tube biases of 20, 25, and 30 kV is 9.4, 10.3, and 11.1 keV, respectively. The authors measured 140, 230, and 330 x-ray photons per laser diode pulse per steradian, at tube biases of 20, 25, and 30 kV, respectively. Background x-rays due to dark current occur at a rate of 1 x 10 6 and 3 x 10 6 photons/sec/steradian at biases of 25 and 30 kV, respectively. Data characterizing the x-ray output with an aluminum filter in the x-ray beam are also presented

  6. Real-time observation of epitaxial crystal growth in gaseous environment using x-ray diffraction and x-ray reflectometry

    International Nuclear Information System (INIS)

    Kawamura, Tomoaki; Bhunia, Satyaban; Watanabe, Yoshio; Fujikawa, Seiji

    2008-01-01

    We made the x-ray diffractometer combined with the MOCVD growth system for the real-time observation of epitaxial growth in gaseous environment, and investigated the growth mechanism of InP crystals. Changes of the (-5/2 O) Bragg diffraction during the growth revealed that the growth starts immediately after the In source has been supplied and gradually stopped, owing to the migrating In atoms on the surface. Additionally, one can easily determine the growth modes, including 3-dimensional mode, layer-by-layer mode, and step-flow mode, by observing the change of x-ray reflectivity with various growth conditions. (author)

  7. Developments in time-resolved high pressure x-ray diffraction using rapid compression and decompression

    International Nuclear Information System (INIS)

    Smith, Jesse S.; Sinogeikin, Stanislav V.; Lin, Chuanlong; Rod, Eric; Bai, Ligang; Shen, Guoyin

    2015-01-01

    Complementary advances in high pressure research apparatus and techniques make it possible to carry out time-resolved high pressure research using what would customarily be considered static high pressure apparatus. This work specifically explores time-resolved high pressure x-ray diffraction with rapid compression and/or decompression of a sample in a diamond anvil cell. Key aspects of the synchrotron beamline and ancillary equipment are presented, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable states in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell

  8. Fast automatic segmentation of anatomical structures in x-ray computed tomography images to improve fluorescence molecular tomography reconstruction.

    Science.gov (United States)

    Freyer, Marcus; Ale, Angelique; Schulz, Ralf B; Zientkowska, Marta; Ntziachristos, Vasilis; Englmeier, Karl-Hans

    2010-01-01

    The recent development of hybrid imaging scanners that integrate fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) allows the utilization of x-ray information as image priors for improving optical tomography reconstruction. To fully capitalize on this capacity, we consider a framework for the automatic and fast detection of different anatomic structures in murine XCT images. To accurately differentiate between different structures such as bone, lung, and heart, a combination of image processing steps including thresholding, seed growing, and signal detection are found to offer optimal segmentation performance. The algorithm and its utilization in an inverse FMT scheme that uses priors is demonstrated on mouse images.

  9. X-Pinch And Its Applications In X-ray Radiograph

    International Nuclear Information System (INIS)

    Zou Xiaobing; Wang Xinxin; Liu Rui; Zhao Tong; Zeng Naigong; Zhao Yongchao; Du Yanqiang

    2009-01-01

    An X-pinch device and the related diagnostics of x-ray emission from X-pinch were briefly described. The time-resolved x-ray measurements with photoconducting diodes show that the x-ray pulse usually consists of two subnanosecond peaks with a time interval of about 0.5 ns. Being consistent with these two peaks of the x-ray pulse, two point x-ray sources of size ranging from 100 μm to 5 μm and depending on cut-off x-ray photon energy were usually observed on the pinhole pictures. The x-pinch was used as x-ray source for backlighting of the electrical explosion of single wire and the evolution of X-pinch, and for phase-contrast imaging of soft biological objects such as a small shrimp and a mosquito.

  10. X-ray spectra and time variability of active galactic nuclei

    International Nuclear Information System (INIS)

    Mushotzky, R.F.

    1984-02-01

    The X-ray spectra of broad line active galactic nuclei (AGN) of all types (Seyfert I's, NELG's, broadline radio galaxies) are well fit by a power law in the .5 to 100 keV band of man energy slope alpha .68 + or - .15. There is, as yet, no strong evidence for time variability of this slope in a given object. The constraints that this places on simple models of the central energy source are discussed. BL Lac objects have quite different X-ray spectral properties and show pronounced X-ray spectral variability. On time scales longer than 12 hours most radio quiet AGN do not show strong, delta I/I .5, variability. The probability of variability of these AGN seems to be inversely related to their luminosity. However characteristics timescales for variability have not been measured for many objects. This general lack of variability may imply that most AGN are well below the Eddington limit. Radio bright AGN tend to be more variable than radio quiet AGN on long, tau approx 6 month, timescales

  11. X-ray chemical analyzer for field applications

    International Nuclear Information System (INIS)

    Gamba, O.O.M.

    1977-01-01

    A self-supporting portable field multichannel x-ray chemical analyzer system is claimed. It comprises a lightweight, flexibly connected, remotely locatable, radioisotope-excited sensing probe utilizing a cryogenically-cooled solid state semi-conductor crystal detector for fast in situ non-destructive, qualitative and quantitative analysis of elements in solid, powder, liquid or slurried form, utilizing an x-ray energy dispersive spectrometry technique

  12. Digital signal processors for cryogenic high-resolution x-ray detector readout

    International Nuclear Information System (INIS)

    Friedrich, Stephan; Drury, Owen B.; Bechstein, Sylke; Hennig, Wolfgang; Momayezi, Michael

    2003-01-01

    We are developing fast digital signal processors (DSPs) to read out superconducting high-resolution X-ray detectors with on-line pulse processing. For superconducting tunnel junction (STJ) detector read-out, the DSPs offer online filtering, rise time discrimination and pile-up rejection. Compared to analog pulse processing, DSP readout somewhat degrades the detector resolution, but improves the spectral purity of the detector response. We discuss DSP performance with our 9-channel STJ array for synchrotron-based high-resolution X-ray spectroscopy. (author)

  13. A diamond detector for inertial confinement fusion X-ray bang-time measurements at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    MacPhee, A G; Brown, C; Burns, S; Celeste, J; Glenzer, S H; Hey, D; Jones, O S; Landen, O; Mackinnon, A J; Meezan, N; Parker, J; Edgell, D; Glebov, V Y; Kilkenny, J; Kimbrough, J

    2010-11-09

    An instrument has been developed to measure X-ray bang-time for inertial confinement fusion capsules; the time interval between the start of the laser pulse and peak X-ray emission from the fuel core. The instrument comprises chemical vapor deposited polycrystalline diamond photoconductive X-ray detectors with highly ordered pyrolytic graphite X-ray monochromator crystals at the input. Capsule bang-time can be measured in the presence of relatively high thermal and hard X-ray background components due to the selective band pass of the crystals combined with direct and indirect X-ray shielding of the detector elements. A five channel system is being commissioned at the National Ignition Facility at Lawrence Livermore National Laboratory for implosion optimization measurements as part of the National Ignition Campaign. Characteristics of the instrument have been measured demonstrating that X-ray bang-time can be measured with {+-} 30ps precision, characterizing the soft X-ray drive to +/- 1eV or 1.5%.

  14. Fast and simple method for determination of fatty acid methyl esters (FAME) in biodiesel blends using X-ray spectrometry.

    Science.gov (United States)

    Sitko, Rafal; Zawisza, Beata; Kowalewska, Zofia; Kocot, Karina; Polowniak, Marzena

    2011-09-30

    The determination of fatty acid methyl esters (FAME) in diesel fuel blends is an important aspect of production and blending process as well as quality control of distribution operations. In this study, energy-dispersive X-ray fluorescence spectrometer (EDXRF) is used for the first time for determination of FAME in biodiesel blends. The principle of the method is based on intensity difference of X-ray radiation scattered from hydrocarbons and from FAME. The experiment shows that coherent and incoherent radiation, commonly applied for evaluation of the average atomic number of the sample with light matrix, cannot be applied for FAME determination. However, the application of scattered continuous radiation gives excellent correlation between FAME concentration and intensity of scattered radiation. The best results are obtained if continuum is collected in the range of energy between 10.5 and 15.0 keV for rhodium X-ray tube, operated at 35 kV. Linear relationship between the FAME concentration and the inverse of scattered continuous radiation is obtained with the correlation coefficients of 0.999. Standard deviation of measurement is ca. 0.46% (v/v) of FAME and detection limit is 1.2% (v/v) for 600 s counting time and 50% dead-time loss using Si-PIN detector. The investigation shows that crucial issue in determination of FAME in biodiesel blends using EDXRF spectrometer is the precision of measurements resulting from the counting statistics. Therefore, much better results (0.20% (v/v) standard deviation and 0.52% (v/v) detection limit) can be expected if higher intensity of primary radiation is applied and X-ray spectrum is collected by silicon drift detector of high input count rate. For concentration of FAME from 10 to 100% (v/v), the differences between reference method (Fourier transform infrared spectrometry) and the proposed method usually do not exceed 1% (v/v) of FAME. The proposed method is fast, simple and enables FAME determination in wide range of

  15. Two-dimensional time-resolved X-ray diffraction study of liquid/solid fraction and solid particle size in Fe-C binary system with an electrostatic levitator furnace

    International Nuclear Information System (INIS)

    Yonemura, M; Okada, J; Ishikawa, T; Nanao, S; Watanabe, Y; Shobu, T; Toyokawa, H

    2013-01-01

    Liquid state provides functions such as matter transport or a reaction field and plays an important role in manufacturing processes such as refining, forging or welding. However, experimental procedures are significantly difficult for an observation of solidification process of iron and iron-based alloys in order to identify rapid transformations subjected to fast temperature evolution. Therefore, in order to study the solidification in iron and iron-based alloys, we considered a combination of high energy X-ray diffraction measurements and an electrostatic levitation method (ESL). In order to analyze the liquid/solid fraction, the solidification of melted spherical specimens was measured at a time resolution of 0.1 seconds during rapid cooling using the two-dimensional time-resolved X-ray diffraction. Furthermore, the observation of particle sizes and phase identification was performed on a trial basis using X-ray small angle scattering with X-ray diffraction.

  16. Next generation x-ray all-sky monitor

    International Nuclear Information System (INIS)

    Priedhorsky, W. C.; Peele, A. G.; Nugent, K. A.

    1997-01-01

    We set forth a conceptual design for x-ray all-sky monitor based on lobster-eye wide-field telescopes. This instrument, suitable for a small satellite, would monitor the flux of objects as faint as 2x10 -15 W/m 2 (0.5-2.4 keV) on a daily basis with a signal-to-noise of 5. Sources would be located to 1-2 arc-minutes. Detailed simulations show that crosstalk from the cruciform lobster images would not significantly compromise performance. At this sensitivity limit, we could monitor not just x-ray binaries but fainter classes of x-ray sources. Hundreds of active galactic nuclei, coronal sources, and cataclysmic variables could be tracked on a daily basis. Large numbers of fast transients should be visible, including gamma-ray bursts and the soft x-ray breakout of nearby type II supernovae. Long-term x-ray measurements will advance our understanding of the geometries and perhaps masses of AGN, and coronal energy sources in stars

  17. X-ray detector array

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    The object of the invention (an ionization chamber X-ray detector array for use with high speed computerised tomographic imaging apparatus) is to reduce the time required to produce a tomographic image. The detector array described determines the distribution of X-ray intensities in one or more flat, coplanar X-ray beams. It comprises three flat anode sheets parallel to the X-ray beam, a plurality of rod-like cathodes between the anodes, a detector gas between the electrodes and a means for applying a potential between the electrodes. Each of the X-ray sources is collimated to give a narrow, planar section of X-ray photons. Sets of X-ray sources in the array are pulsed simultaneously to obtain X-ray transmission data for tomographic image reconstruction. (U.K.)

  18. The x-ray time of flight method for investigation of ghosting in amorphous selenium-based flat panel medical x-ray imagers

    International Nuclear Information System (INIS)

    Rau, A.W.; Bakueva, L.; Rowlands, J.A.

    2005-01-01

    Amorphous selenium (a-Se) based real-time flat-panel imagers (FPIs) are finding their way into the digital radiology department because they offer the practical advantages of digital x-ray imaging combined with an image quality that equals or outperforms that of conventional systems. The temporal imaging characteristics of FPIs can be affected by ghosting (i.e., radiation-induced changes of sensitivity) when the dose to the detector is high (e.g., portal imaging and mammography) or the images are acquired at a high frame rate (e.g., fluoroscopy). In this paper, the x-ray time-of-flight (TOF) method is introduced as a tool for the investigation of ghosting in a-Se photoconductor layers. The method consists of irradiating layers of a-Se with short x-ray pulses. From the current generated in the a-Se layer, ghosting is quantified and the ghosting parameters (charge carrier generation rate and carrier lifetimes and mobilities) are assessed. The x-ray TOF method is novel in that (1) x-ray sensitivity (S) and ghosting parameters can be measured simultaneously (2) the transport of both holes and electrons can be isolated, and (3) the method is applicable to the practical a-Se layer structure with blocking contacts used in FPIs. The x-ray TOF method was applied to an analysis of ghosting in a-Se photoconductor layers under portal imaging conditions, i.e., 1 mm thick a-Se layers, biased at 5 V/μm, were irradiated using a 6 MV LINAC x-ray beam to a total dose (ghosting dose) of 30 Gy. The initial sensitivity (S 0 ) of the a-Se layers was 63±2 nC cm -2 cGy -1 . It was found that S decreases to 30% of S 0 after a ghosting dose of 5 Gy and to 21% after 30 Gy at which point no further change in S occurs. At an x-ray intensity of 22 Gy/s (instantaneous dose rate during a LINAC x-ray pulse), the charge carrier generation rate was 1.25±0.1x10 22 ehp m -3 s -1 and, to a first approximation, independent of the ghosting dose. However, both hole and electron transport showed a

  19. Introducing a standard method for experimental determination of the solvent response in laser pump, x-ray probe time-resolved wide-angle x-ray scattering experiments on systems in solution

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Brandt van Driel, Tim; Kehres, Jan

    2013-01-01

    In time-resolved laser pump, X-ray probe wide-angle X-ray scattering experiments on systems in solution the structural response of the system is accompanied by a solvent response. The solvent response is caused by reorganization of the bulk solvent following the laser pump event, and in order...... response-the solvent term-experimentally when applying laser pump, X-ray probe time-resolved wide-angle X-ray scattering. The solvent term describes difference scattering arising from the structural response of the solvent to changes in the hydrodynamic parameters: pressure, temperature and density. We...... is demonstrated to exhibit first order behaviour with respect to the amount of energy deposited in the solution. We introduce a standardized method for recording solvent responses in laser pump, X-ray probe time-resolved X-ray wide-angle scattering experiments by using dye mediated solvent heating. Furthermore...

  20. AN EXTENDED AND MORE SENSITIVE SEARCH FOR PERIODICITIES IN ROSSI X-RAY TIMING EXPLORER/ALL-SKY MONITOR X-RAY LIGHT CURVES

    International Nuclear Information System (INIS)

    Levine, Alan M.; Bradt, Hale V.; Chakrabarty, Deepto; Corbet, Robin H. D.; Harris, Robert J.

    2011-01-01

    We present the results of a systematic search in ∼14 years of Rossi X-ray Timing Explorer All-Sky Monitor (ASM) data for evidence of periodicities. Two variations of the commonly used Fourier analysis search method have been employed to significantly improve upon the sensitivity achieved by Wen et al. in 2006, who also searched for periodicities in ASM data. In addition, the present search is comprehensive in terms of sources studied and frequency range covered, and has yielded the detection of the signatures of the orbital periods of eight low-mass X-ray binary systems and of ten high-mass X-ray binaries not listed in the tables of Wen et al. Orbital periods, epochs, signal amplitudes, modulation fractions, and folded light curves are given for each of these systems. Seven of the orbital periods are the most precise reported to date. In the course of this work, the 18.545 day orbital period of IGR J18483-0311 was co-discovered, and the first detections in X-rays were made of the ∼3.9 day orbital period of LMC X-1 and the ∼3.79 hr orbital period of 4U 1636-536. The results inform future searches for orbital and other periodicities in X-ray binaries.

  1. 'Jet breaks' and 'missing breaks' in the X-Ray afterglow of Gamma Ray Bursts

    CERN Document Server

    Dado, Shlomo; De Rújula, Alvaro

    2008-01-01

    The X-ray afterglows (AGs) of Gamma-Ray Bursts (GRBs) and X-Ray Flashes (XRFs) have, after the fast decline phase of their prompt emission, a temporal behaviour varying between two extremes. A large fraction of these AGs has a 'canonical' light curve which, after an initial shallow-decay 'plateau' phase, 'breaks smoothly' into a fast power-law decline. Very energetic GRBs, contrariwise, appear not to have a 'break', their AG declines like a power-law from the start of the observations. Breaks and 'missing breaks' are intimately related to the geometry and deceleration of the jets responsible for GRBs. In the frame of the 'cannonball' (CB) model of GRBs and XRFs, we analyze the cited extreme behaviours (canonical and pure power-law) and intermediate cases spanning the observed range of X-ray AG shapes. We show that the entire panoply of X-ray light-curve shapes --measured with Swift and other satellites-- are as anticipated, on very limpid grounds, by the CB model. We test the expected correlations between the...

  2. The MEL-X project at the Lawrence Livermore National Laboratory: a mirror-based delay line for x-rays

    Science.gov (United States)

    Pardini, Tom; Hill, Randy; Decker, Todd; Alameda, Jennifer; Soufli, Regina; Aquila, Andy; Guillet, Serge; Boutet, Sébastien; Hau-Riege, Stefan P.

    2015-09-01

    At the Lawrence Livermore National Laboratory (LLNL) in collaboration with the Linac Coherent Light Source (LCLS) we are developing a mirror-based delay line for x-rays (MEL-X) to enable x-ray pump/x-ray probe experiments at Free Electron Lasers (XFELs). The goal of this project is the development and deployment of a proof-of-principle delay line featuring coated x-ray optics. The four-mirror design of the MEL-X is motivated by the need for ease of alignment and use. In order to simplify the overlap of the pump and the probe beam after each delay time change, a scheme involving super-polished rails and mirror-to-motor decoupling has been adopted. The MEL-X, used in combination with a bright pulsed source like LCLS, features a capability for a high intensity pump beam. Its Iridium coating allows it to work at hard x-ray energies all the way up to 9 keV, with a probe beam transmission of 35% up to 8keV, and 14% at 9keV. The delay time can be tailored to each particular experiment, with a nominal range of 70 - 350 fs for this prototype. The MEL-X, combined with established techniques such as x-ray diffraction, absorption or emission, could provide new insights on ultra-fast transitions in highly excited states of matter.

  3. Chest X-Ray

    Medline Plus

    Full Text Available ... X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey Rubin, a radiologist ... about chest x-rays, visit Radiology Info dot org. Thank you for your time! Spotlight Recently posted: ...

  4. Infrared-x-ray pump-probe spectroscopy of the NO molecule

    International Nuclear Information System (INIS)

    Guimaraes, F.F.; Felicissimo, V.C.; Kimberg, V.; Gel'mukhanov, F.; Aagren, H.; Cesar, A.

    2005-01-01

    Two color infrared-x-ray pump-probe spectroscopy of the NO molecule is studied theoretically and numerically in order to obtain a deeper insight of the underlying physics and of the potential of this suggested technology. From the theoretical investigation a number of conclusions could be drawn: It is found that the phase of the infrared field strongly influences the trajectory of the nuclear wave packet, and hence, the x-ray spectrum. The trajectory experiences fast oscillations with the vibrational frequency with a modulation due to the anharmonicity of the potential. The dependences of the x-ray spectra on the delay time, the duration, and the shape of the pulses are studied in detail. It is shown that the x-ray spectrum keep memory about the infrared phase after the pump field left the system. This memory effect is sensitive to the time of switching-off the pump field and the Rabi frequency. The phase effect takes maximum value when the duration of the x-ray pulse is one-fourth of the infrared field period, and can be enhanced by a proper control of the duration and intensity of the pump pulse. The manifestation of the phase is different for oriented and disordered molecules and depends strongly on the intensity of the pump radiation

  5. Infrared x-ray pump-probe spectroscopy of the NO molecule

    Science.gov (United States)

    Guimarães, F. F.; Kimberg, V.; Felicíssimo, V. C.; Gel'Mukhanov, F.; Cesar, A.; Ågren, H.

    2005-07-01

    Two color infrared x-ray pump-probe spectroscopy of the NO molecule is studied theoretically and numerically in order to obtain a deeper insight of the underlying physics and of the potential of this suggested technology. From the theoretical investigation a number of conclusions could be drawn: It is found that the phase of the infrared field strongly influences the trajectory of the nuclear wave packet, and hence, the x-ray spectrum. The trajectory experiences fast oscillations with the vibrational frequency with a modulation due to the anharmonicity of the potential. The dependences of the x-ray spectra on the delay time, the duration, and the shape of the pulses are studied in detail. It is shown that the x-ray spectrum keep memory about the infrared phase after the pump field left the system. This memory effect is sensitive to the time of switching-off the pump field and the Rabi frequency. The phase effect takes maximum value when the duration of the x-ray pulse is one-fourth of the infrared field period, and can be enhanced by a proper control of the duration and intensity of the pump pulse. The manifestation of the phase is different for oriented and disordered molecules and depends strongly on the intensity of the pump radiation.

  6. X-ray testing for short-time dynamic applications

    International Nuclear Information System (INIS)

    Kurfiss, Malte; Moser, Stefan; Popko, Gregor; Nau, Siegfried

    2017-01-01

    For nondestructive testing purposes new challenges are short-time dynamic processes. The application of x-ray flash tubes and modern high-speed cameras allows the observation of the opening of air-bags or the energy absorption of compressed tubes as occurring during a vehicle crash. Special algorithms designed for computerized tomography analyses allow the 3D reconstruction at individual time points of the dynamic process. Possibilities and limitations of the actual techniques are discussed.

  7. Ultrashort X-ray pulse science

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Alan Hap [Univ. of California, Berkeley, CA (US). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90° Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ~ 300 fs, 30 keV (0.4 Å) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been demonstrated as a

  8. Ultrashort X-ray pulse science

    International Nuclear Information System (INIS)

    Chin, A.H.; Lawrence Berkeley National Lab., CA

    1998-01-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90 o Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ∼ 300 fs, 30 keV (0.4 (angstrom)) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been

  9. Time estimate (topening + tclosing) of shutter of an X-ray equipment using a digital chronometer

    International Nuclear Information System (INIS)

    Quaresma, D.S.; Oliveira, P.H.T.M.; Gallo, V.F.M.; Jordao, B.O.; Carvalho, R.J.; Cardoso, R.S.; Peixoto, J.G.P.

    2014-01-01

    In this work the measurement of time t opening + t closing opening and closing the shutter of Pantak HF160 X-ray equipment was performed. It is understood by the shutter device responsible for allowing or not the flow of X-rays that are produced by the X-ray tube through the orifice of a shield. To estimate the running time for a digital chronometer calibrated in the Time Service Division (DSHO) National Observatory (ON) was used. (author)

  10. Fast helicity switching of x-ray circular polarization at beamline P09 at PETRA III

    Energy Technology Data Exchange (ETDEWEB)

    Strempfer, J., E-mail: Joerg.Strempfer@desy.de; Mardegan, J. R. L.; Francoual, S.; Veiga, L. S. I.; Spitzbart, T.; Zink, H. [Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22603 Hamburg (Germany); Bouchenoire, L. [XMaS, ESRF, 6 rue Jules Horowitz, BP220, Grenoble 38043 (France); Department of Physics, University of Liverpool, Liverpool, L69 7ZE (United Kingdom)

    2016-07-27

    At the resonant scattering and diffraction beamline P09 at PETRA III/DESY, polarization manipulation in the X-ray energy range 3-13 keV is possible using wave-plates. Recently, fast flipping of circular polarization helicity using the Raspberry Pi controlled FPGA (PiLC) device developed at DESY and dedicated piezo-electric flippers has been commissioned. Functionality of the PiLC for XMCD and first XMCD measurements at the Fe K-and Dy-L{sub 3} absorption edges are presented.

  11. X-ray imaging of JET. A design study for a streak camera application

    International Nuclear Information System (INIS)

    Bateman, J.E.; Hobby, M.G.

    1980-03-01

    A single dimensional imaging system is proposed which will image a strip of the JET plasma up to 320 times per shot with a time resolution of better than 50 μs using the bremsstrahlung X-rays. The images are obtained by means of a pinhole camera followed by an X-ray image intensifier system the output of which is in turn digitised by a photodiode array. The information is stored digitally in a fast memory and is immediately available for display or analysis. (author)

  12. Different effectiveness of hyperthermia with regard to fast electrons and X-rays with different energy spectra

    International Nuclear Information System (INIS)

    Schrader-Reichhardt, U.; Markus, B.

    1981-01-01

    The synergistic enhancement of the irradiation effect by mild (40.5 0 C) and strong (43 0 C) hyperthermia (TER = temperature enhancement ratio) was examined for different sparsely ionizing radiation qualities (15 MeV electrons in two irradiation depths corresponding to a relative depth dose of 100% and 30%, 200-kV and 29-kV-X-rays). Hypotetraploid ( 4n ) and diploid (2n), asynchronous, exponentially growing CHO fibroblasts were used as experimental subjects. The survival in the colony test was used as criterion to assess the effect. The experiments carried out with 4n cells showed that, for the two temperatures, the TER decreases with increasing ionization density and, when applying fast electrons producing an extremely sparse ionization in an irradiation depth of 100%, the TER shows a maximum increase as compared to the more densely ionizing radiation qualities. Already when mild hyperthermia is employed, fast electrons show a TER of 1.25 which rises to about 2.25 at 43 0 C. In case of 29-kV-X-rays, these values amount to 1 and 1.66 respectively. As to the 2n cells, the TER reaches here the double value and seems to be similarly dependent on the ionization density. (orig.) [de

  13. Cone Beam X-Ray Luminescence Tomography Imaging Based on KA-FEM Method for Small Animals.

    Science.gov (United States)

    Chen, Dongmei; Meng, Fanzhen; Zhao, Fengjun; Xu, Cao

    2016-01-01

    Cone beam X-ray luminescence tomography can realize fast X-ray luminescence tomography imaging with relatively low scanning time compared with narrow beam X-ray luminescence tomography. However, cone beam X-ray luminescence tomography suffers from an ill-posed reconstruction problem. First, the feasibility of experiments with different penetration and multispectra in small animal has been tested using nanophosphor material. Then, the hybrid reconstruction algorithm with KA-FEM method has been applied in cone beam X-ray luminescence tomography for small animals to overcome the ill-posed reconstruction problem, whose advantage and property have been demonstrated in fluorescence tomography imaging. The in vivo mouse experiment proved the feasibility of the proposed method.

  14. Soft x-ray continuum radiation transmitted through metallic filters: An analytical approach to fast electron temperature measurements

    International Nuclear Information System (INIS)

    Delgado-Aparicio, L.; Hill, K.; Bitter, M.; Tritz, K.; Kramer, T.; Stutman, D.; Finkenthal, M.

    2010-01-01

    A new set of analytic formulas describes the transmission of soft x-ray continuum radiation through a metallic foil for its application to fast electron temperature measurements in fusion plasmas. This novel approach shows good agreement with numerical calculations over a wide range of plasma temperatures in contrast with the solutions obtained when using a transmission approximated by a single-Heaviside function [S. von Goeler et al., Rev. Sci. Instrum. 70, 599 (1999)]. The new analytic formulas can improve the interpretation of the experimental results and thus contribute in obtaining fast temperature measurements in between intermittent Thomson scattering data.

  15. An X-ray and optical study of the ultracompact X-ray binary A 1246-58

    NARCIS (Netherlands)

    in 't Zand, J.J.M.; Bassa, C.G.; Jonker, P.G.; Keek, L.; Verbunt, F.W.M.; Méndez, M.; Markwardt, C.B.

    2008-01-01

    Results are discussed of an X-ray and optical observation campaign of the low-mass X-ray binary A 1246-58 performed with instruments on Satellite per Astronomia X ("BeppoSAX"), the Rossi X-ray Timing Explorer (RXTE), the X-ray Multi-mirror Mission ("XMM-Newton"), the Swift mission, and the Very

  16. Automatic classification of time-variable X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2014-05-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.

  17. Automatic classification of time-variable X-ray sources

    International Nuclear Information System (INIS)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M.

    2014-01-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.

  18. Multi-time-scale X-ray reverberation mapping of accreting black holes

    Science.gov (United States)

    Mastroserio, Guglielmo; Ingram, Adam; van der Klis, Michiel

    2018-04-01

    Accreting black holes show characteristic reflection features in their X-ray spectrum, including an iron Kα line, resulting from hard X-ray continuum photons illuminating the accretion disc. The reverberation lag resulting from the path-length difference between direct and reflected emission provides a powerful tool to probe the innermost regions around both stellar-mass and supermassive black holes. Here, we present for the first time a reverberation mapping formalism that enables modelling of energy-dependent time lags and variability amplitude for a wide range of variability time-scales, taking the complete information of the cross-spectrum into account. We use a pivoting power-law model to account for the spectral variability of the continuum that dominates over the reverberation lags for longer time-scale variability. We use an analytic approximation to self-consistently account for the non-linear effects caused by this continuum spectral variability, which have been ignored by all previous reverberation studies. We find that ignoring these non-linear effects can bias measurements of the reverberation lags, particularly at low frequencies. Since our model is analytic, we are able to fit simultaneously for a wide range of Fourier frequencies without prohibitive computational expense. We also introduce a formalism of fitting to real and imaginary parts of our cross-spectrum statistic, which naturally avoids some mistakes/inaccuracies previously common in the literature. We perform proof-of-principle fits to Rossi X-ray Timing Explorer data of Cygnus X-1.

  19. X-Ray Pulsar Based Navigation and Time Determination, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm will build on the Phase I X-ray pulsar-based navigation and timing (XNAV) feasibility assessment to develop a detailed XNAV simulation capability to...

  20. Control of synchrotron x-ray diffraction by means of standing acoustic waves

    International Nuclear Information System (INIS)

    Zolotoyabko, E.; Quintana, J.P.

    2004-01-01

    Synchrotron x-ray diffraction measurements in quartz crystals of different thickness excited by standing acoustic waves were carried out at the Advanced Photon Source of Argonne National Laboratory. We demonstrated the ability to significantly modify the quartz rocking curves for 20-25 keV x rays by changing the shear wave parameters in the frequency range between 15 and 105 MHz. Dynamic deformation introduced into the crystal lattice by acoustic waves resulted in a remarkable broadening of the rocking curves. The broadening effect strongly depends on the strength of the ultrasound, which can be easily regulated by changing the acoustic amplitude or frequency near the resonance. The maximum rocking curve broadening reached 17 times, which corresponds to the wavelength band, Δλ/λ=4x10 -3 , when used as a monochromator or analyzer for 20-25 keV x rays. The initial rocking curve shape is restored by sweeping the acoustic frequency within a 50-100 kHz range near the resonance. The tunable broadening effect allows effective manipulation of x-ray intensities in time domain. Time-resolved x-ray diffraction measurements under a 19.6 MHz acoustic wave excitation were performed by synchronizing the acoustic wave and x-ray burst periodicity. We used the fact that twice per period the standing wave produces a zero net deformation across the crystal thickness. By introducing an oscillating delay to the acoustic excitation, we were able to effectively change the phase of the acoustic wave relative to the x-ray burst periodicity. The x-ray diffraction intensity was strongly affected by tuning the timing of the x-ray arrivals to the minimum or maximum acoustic deformation. A deep modulation of x rays was observed in a wide frequency range between 0.1 Hz and 1 MHz, which certifies that acoustically excited quartz crystals can potentially be used as slow and fast x-ray modulators with high duty cycle

  1. Rossi X-Ray Timing Explorer Observation of PSR B0656+14

    International Nuclear Information System (INIS)

    Chang, H.; Ho, C.

    1999-01-01

    PSR B0656+14 was observed by the Rossi X-Ray Timing Explorer (RXTE) with the proportional counter array (PCA) and the high-energy X-ray timing experiment (HEXTE) for 160 ks during 1997 August 22 - September 3. No pulsation was firmly found in the timing analysis, during which the contemporaneous radio ephemeris and various statistical tests were applied in searching for evidence of pulsation. A marginal detection of pulsation at a confidence level of 95.5% based on the H test was found with data in the whole HEXTE energy band. In the energy band of 2-10 keV the RXTE PCA upper limits are about 1 order of magnitude lower than that from ASCA GIS data. If the Compton Gamma Ray Observatory EGRET detection of this pulsar is real, considering the common trait that most EGRET-detected pulsars have a cooling spectrum in hard X-ray and gamma-ray energy bands, the estimated RXTE upper limits indicate a deviation (low-energy turnover) from a cooling spectrum starting from 20 keV or higher. This in turn suggests an outer magnetospheric synchrotron radiation origin for high-energy emissions from PSR B0656+14. The RXTE PCA upper limits also suggest that a reported power-law component based on ASCA SIS data in 1-10 keV fitted jointly with ROSAT data, if real, should be mainly unpulsed. copyright copyright 1999. The American Astronomical Society

  2. Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers

    Science.gov (United States)

    Harmand, M.; Coffee, R.; Bionta, M. R.; Chollet, M.; French, D.; Zhu, D.; Fritz, D. M.; Lemke, H. T.; Medvedev, N.; Ziaja, B.; Toleikis, S.; Cammarata, M.

    2013-03-01

    Recently, few-femtosecond pulses have become available at hard X-ray free-electron lasers. Coupled with the available sub-10 fs optical pulses, investigations into few-femtosecond dynamics are not far off. However, achieving sufficient synchronization between optical lasers and X-ray pulses continues to be challenging. We report a `measure-and-sort' approach, which achieves sub-10 fs root-mean-squared (r.m.s.) error measurement at hard X-ray FELs, far beyond the 100-200 fs r.m.s. jitter limitations. This timing diagnostic, now routinely available at the Linac Coherent Light Source (LCLS), is based on ultrafast free-carrier generation in optically transparent materials. Correlation between two independent measurements enables unambiguous demonstration of ~6 fs r.m.s. error in reporting the optical/X-ray delay, with single shot error suggesting the possibility of reaching few-femtosecond resolution.

  3. Supercrystallization of KCl from solution irradiated by soft X-rays

    Science.gov (United States)

    Janavičius, A. J.; Rinkūnas, R.; Purlys, R.

    2016-10-01

    The X-rays influence on KCl crystallization in a saturated water solution has been investigated for the aim of comparing it with previously considered NaCl crystallization. The rate of crystallization has been measured in the drying drop in the solution activated by the irradiation. We have measured the influence of the irradiation time of the solution on the rates of KCl crystallization as well as the beginning of the crystallization processes on drying drops. For a longer irradiation time of the solution early crystallization in the drops occurs. A saturated water solution of KCl was irradiated with the diffractometer DRON-3M (Russian device) and this had a great influence on the two-step processes of crystallization. The ionization of the solution by soft X-rays can produce ions, metastable radicals in water, excited crystals' seeds and vacancies in growing crystals by Auger's effect. The X-rays generate a very fast crystallization in the drying drop.

  4. Sub-keV, subnanosecond measurements of x-ray spectra from laser-produced plasmas

    International Nuclear Information System (INIS)

    Kornblum, H.N.; Koppel, L.N.; Slivinsky, V.W.; Glaros, S.S.; Ahlstrom, H.G.; Larsen, J.T.

    1977-01-01

    As part of the effort to extend our x-ray diagnostic capabilities, we have made x-ray spectral measurements of laser-produced plasmas for photon energies down to 100 eV with a time response of 0.5 nsec. Fast, windowless x-ray diodes were used in conjunction with critical angle reflecting mirrors and thin filters for energy definition for two channels, 300 to 600 eV and 800 to 1300 eV. A third channel, using only an x-ray diode and filter, provided spectral information in the 100 to 300 eV region. Results from exploding pusher targets will be presented and compared with those of other diagnostic techniques and Lasnex calculations. Future expansion and modifications of the present system will be discussed

  5. Time-resolved protein nano-crystallography using an X-ray free-electron laser

    International Nuclear Information System (INIS)

    Aquila, Andrew; Hunter, Mark S.; Fromme, Petra; Fromme, Raimund; Grotjohann, Ingo; Doak, R. Bruce; Kirian, Richard A.; Schmidt, Kevin E.; Wang, Xiaoyu; Weierstall, Uwe; Spence, John C.H.; White, Thomas A.; Caleman, Carl; DePonte, Daniel P.; Fleckenstein, Holger; Gumprecht, Lars; Liang, Mengning; Martin, Andrew V.; Schulz, Joachim; Stellato, Francesco; Stern, Stephan; Barty, Anton; Andreasson, Jakob; Davidsson, Jan; Hajdu, Janos; Maia, Filipe R.N.C.; Seibert, M. Marvin; Timneanu, Nicusor; Arnlund, David; Johansson, Linda; Malmerberg, Erik; Neutze, Richard; Bajt, Sasa; Barthelmess, Miriam; Graafsma, Heinz; Hirsemann, Helmut; Wunderer, Cornelia; Barends, Thomas R.M.; Foucar, Lutz; Krasniqi, Faton; Lomb, Lukas; Rolles, Daniel; Schlichting, Ilme; Schmidt, Carlo; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond; Starodub, Dmitri; Bostedt, Christoph; Bozek, John D.; Messerschmidt, Marc; Williams, Garth J.; Bottin, Herve

    2012-01-01

    We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photo-activated states of large membrane protein complexes in the form of nano-crystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 μs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems. (authors)

  6. Simulation of x-rays in refractive structure by the Monte Carlo method using the supercomputer SKIF

    International Nuclear Information System (INIS)

    Yaskevich, Yu.R.; Kravchenko, O.I.; Soroka, I.I.; Chembrovskij, A.G.; Kolesnik, A.S.; Serikova, N.V.; Petrov, P.V.; Kol'chevskij, N.N.

    2013-01-01

    Software 'Xray-SKIF' for the simulation of the X-rays in refractive structures by the Monte-Carlo method using the supercomputer SKIF BSU are developed. The program generates a large number of rays propagated from a source to the refractive structure. The ray trajectory under assumption of geometrical optics is calculated. Absorption is calculated for each ray inside of refractive structure. Dynamic arrays are used for results of calculation rays parameters, its restore the X-ray field distributions very fast at different position of detector. It was found that increasing the number of processors leads to proportional decreasing of calculation time: simulation of 10 8 X-rays using supercomputer with the number of processors from 1 to 30 run-times equal 3 hours and 6 minutes, respectively. 10 9 X-rays are calculated by software 'Xray-SKIF' which allows to reconstruct the X-ray field after refractive structure with a special resolution of 1 micron. (authors)

  7. A synchrotron radiation camera and data acquisition system for time resolved x-ray scattering studies

    International Nuclear Information System (INIS)

    Bordas, J.; Koch, M.H.J.; Clout, P.N.; Dorrington, E.; Boulin, C.; Gabriel, A.

    1980-01-01

    Until recently, time resolved measurements of x-ray scattering patterns have not been feasible because laboratory x-ray sources were too weak and detectors unavailable. Recent developments in both these fields have changed the situation, and it is now possible to follow changes in x-ray scattering patterns with a time resolution of a few ms. The apparatus used to achieve this is described and some examples from recent biological experiments are given. (author)

  8. Clumpy wind accretion in Supergiant X-ray Binaries

    Science.gov (United States)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2017-12-01

    Supergiant X-ray binaries (\\sgx) contain a neutron star (NS) orbiting a Supergiant O/B star. The fraction of the dense and fast line-driven wind from the stellar companion which is accreted by the NS is responsible for most of the X-ray emission from those system. Classic \\sgx display photometric variability of their hard X-ray emission, typically from a few 10^{35} to a few 10^{37}erg\\cdots^{-1}. Inhomogeneities (\\aka clumps) in the wind from the star are expected to play a role in this time variability. We run 3D hydrodynamical (HD) finite volume simulations to follow the accretion of the inhomogeneous stellar wind by the NS over almost 3 orders of magnitude. To model the unperturbed wind far upstream the NS, we use recent simulations which managed to resolve its micro-structure. We observe the formation of a Bondi-Hoyle-Lyttleton (BHL) like bow shock around the accretor and follow the clumps as they cross it, down to the NS magnetosphere. Compared to previous estimations discarding the HD effects, we measure lower time variability due to both the damping effect of the shock and the necessity to evacuate angular momentum to enable accretion. We also compute the associated time-variable column density and compare it to recent observations in Vela X-1.

  9. Phase-contrast X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi [Hitachi Ltd., Saitama (Japan). Advanced Research Laboratory; Takeda, Tohoru; Itai, Yuji

    1995-12-01

    Phase-contrast X-ray computed tomography (CT) enabling the observation of biological soft tissues without contrast enhancement has been developed. The X-ray phase shift caused by an object is measured and input to a standard CT reconstruction algorithm. A thousand times increase in the image sensitivity to soft tissues is achieved compared with the conventional CT using absorption contrast. This is because the X-ray phase shift cross section of light elements is about a thousand times larger than the absorption cross section. The phase shift is detected using an X-ray interferometer and computer analyses of interference patterns. Experiments were performed using a synchrotron X-ray source. Excellent image sensitivity is demonstrated in the observation of cancerous rabbit liver. The CT images distinguish cancer lesion from normal liver tissue and, moreover, visualize the pathological condition in the lesion. Although the X-ray energy employed and the present observation area size are not suitable for medical applications as they are, phase-contrast X-ray CT is promising for investigating the internal structure of soft tissue which is almost transparent for X-rays. The high sensitivity also provides the advantage of reducing X-ray doses. (author).

  10. Transient soft X-ray sources

    International Nuclear Information System (INIS)

    Hayakawa, S.; Murakami, T.; Nagase, F.; Tanaka, Y.; Yamashita, K.

    1976-01-01

    A rocket observation of cosmic soft X-rays suggests the existence of transient, recurrent soft X-ray sources which are found variable during the flight time of the rocket. Some of the soft X-ray sources thus far reported are considered to be of this time. These sources are listed and their positions are shown. (Auth.)

  11. Soft x-ray tomography on TFTR

    International Nuclear Information System (INIS)

    Kuo-Petravic, G.

    1988-12-01

    The tomographic method used for deriving soft x-ray local emissivities on TFTR, using one horizontal array of 60 soft x-ray detectors, is described. This method, which is based on inversion of Fourier components and subsequent reconstruction, has been applied to the study of a sawtooth crash. A flattening in the soft x-ray profile, which we interpret as an m = 1 island, is clearly visible during the precursor phase and its location and width correlate well with those from electron temperature profiles reconstructed from electron cyclotron emission measurement. The limitations of the Fourier method, due notably to the aperiodic nature of the signals in the fast crash phase and the difficulty of obtaining accurately the higher Fourier harmonics, are discussed. 9 refs., 13 figs

  12. Fission times studies of the Z=124 superheavy nucleus by X-ray fluorescence

    International Nuclear Information System (INIS)

    Airiau, Maud

    2016-01-01

    Since the 1960's nuclear structure model have predicted the existence of an island of stability of superheavy elements. It should be located around the next magic numbers expected at N=172 or 184 and between Z=114 and 126 depending on the model. Very high fission barrier of a few MeV are predicted to be generated by microscopic effects for those nuclei for which large fission times distributions extended to very high fission times are induced. Fission time measurements of the superheavy element Z=124 have been made by us using the X-ray fluorescence technique, a method based on the filling of inner-shell electronic vacancies created during the collision leading to the formation of the compound nucleus. The aim of this experiment was to detect in coincidence both fission fragments and characteristic X-rays from the Z=124, created by the reaction 238 U+ 70,76 Ge. The main difficulty was to identify those X-rays due to the fact that gamma-rays from fission fragments were emitted in the same energy range, which affected our photon multiplicities for any fragment selection. This new difficulty brings an important limitation to the study of some particular superheavy elements by the X-ray fluorescence method. K X-rays spectra have been simulated using MCDF (Multi-Configuration-Dirac-Fock) and then compared to the experimental ones in order to get a maximal K X-ray multiplicity compatible with our data. The extracted results were about 6-7% for 76 Ge and from 12 to 14% for 70 Ge. Those values remain compatible with the experimental signature of long lifetime component observed for the same system but using a blocking technique in single crystals. (author) [fr

  13. HST spectrum and timing of the ultracompact X-ray binary candidate 47 Tuc X9

    Science.gov (United States)

    Tudor, V.; Miller-Jones, J. C. A.; Knigge, C.; Maccarone, T. J.; Tauris, T. M.; Bahramian, A.; Chomiuk, L.; Heinke, C. O.; Sivakoff, G. R.; Strader, J.; Plotkin, R. M.; Soria, R.; Albrow, M. D.; Anderson, G. E.; van den Berg, M.; Bernardini, F.; Bogdanov, S.; Britt, C. T.; Russell, D. M.; Zurek, D. R.

    2018-05-01

    To confirm the nature of the donor star in the ultracompact X-ray binary candidate 47 Tuc X9, we obtained optical spectra (3000-10 000 Å) with the Hubble Space Telescope / Space Telescope Imaging Spectrograph. We find no strong emission or absorption features in the spectrum of X9. In particular, we place 3σ upper limits on the H α and He II λ4686 emission line equivalent widths - EWH α ≲ 14 Å and -EW_{He {II}} ≲ 9 Å, respectively. This is much lower than seen for typical X-ray binaries at a similar X-ray luminosity (which, for L_2-10 keV ≈ 10^{33}-10^{34} erg s-1 is typically - EWH α ˜ 50 Å). This supports our previous suggestion, by Bahramian et al., of an H-poor donor in X9. We perform timing analysis on archival far-ultraviolet, V- and I-band data to search for periodicities. In the optical bands, we recover the 7-d superorbital period initially discovered in X-rays, but we do not recover the orbital period. In the far-ultraviolet, we find evidence for a 27.2 min period (shorter than the 28.2 min period seen in X-rays). We find that either a neutron star or black hole could explain the observed properties of X9. We also perform binary evolution calculations, showing that the formation of an initial black hole/ He-star binary early in the life of a globular cluster could evolve into a present-day system such as X9 (should the compact object in this system indeed be a black hole) via mass-transfer driven by gravitational wave radiation.

  14. Ultrafast Structural Dynamics in InSb Probed by Time-Resolved X-Ray Diffraction

    International Nuclear Information System (INIS)

    Chin, A.H.; Shank, C.V.; Chin, A.H.; Schoenlein, R.W.; Shank, C.V.; Glover, T.E.; Leemans, W.P.; Balling, P.

    1999-01-01

    Ultrafast structural dynamics in laser-perturbed InSb are studied using time-resolved x-ray diffraction with a novel femtosecond x-ray source. We report the first observation of a delay in the onset of lattice expansion, which we attribute to energy relaxation processes and lattice strain propagation. In addition, we observe direct indications of ultrafast disordering on a subpicosecond time scale. copyright 1999 The American Physical Society

  15. The Wide Field Imager of the International X-ray Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Stefanescu, A., E-mail: astefan@hll.mpg.d [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Johannes Gutenberg-Universitaet, Inst. f. anorganische und analytische Chemie, 55099 Mainz (Germany); Bautz, M.W. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Burrows, D.N. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Bombelli, L.; Fiorini, C. [Politecnico di Milano, Dipartimento di Elettronica e Informazione, Milano (Italy); INFN Sezione di Milano, Milano (Italy); Fraser, G. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Heinzinger, K. [PNSensor GmbH, Roemerstr. 28, 80803 Muenchen (Germany); Herrmann, S. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstr., 85748 Garching (Germany); Kuster, M. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Schlossgartenstr. 9, 64289 Darmstadt (Germany); Lauf, T. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstr., 85748 Garching (Germany); Lechner, P. [PNSensor GmbH, Roemerstr. 28, 80803 Muenchen (Germany); Lutz, G. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Majewski, P. [PNSensor GmbH, Roemerstr. 28, 80803 Muenchen (Germany); Meuris, A. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstr., 85748 Garching (Germany); Murray, S.S. [Harvard/Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2010-12-11

    The International X-ray Observatory (IXO) will be a joint X-ray observatory mission by ESA, NASA and JAXA. It will have a large effective area (3 m{sup 2} at 1.25 keV) grazing incidence mirror system with good angular resolution (5 arcsec at 0.1-10 keV) and will feature a comprehensive suite of scientific instruments: an X-ray Microcalorimeter Spectrometer, a High Time Resolution Spectrometer, an X-ray Polarimeter, an X-ray Grating Spectrometer, a Hard X-ray Imager and a Wide-Field Imager. The Wide Field Imager (WFI) has a field-of-view of 18 ftx18 ft. It will be sensitive between 0.1 and 15 keV, offer the full angular resolution of the mirrors and good energy resolution. The WFI will be implemented as a 6 in. wafer-scale monolithical array of 1024x1024 pixels of 100x100{mu}m{sup 2} size. The DEpleted P-channel Field-Effect Transistors (DEPFET) forming the individual pixels are devices combining the functionalities of both detector and amplifier. Signal electrons are collected in a potential well below the transistor's gate, modulating the transistor current. Even when the device is powered off, the signal charge is collected and kept in the potential well below the gate until it is explicitly cleared. This makes flexible and fast readout modes possible.

  16. High resolution x-ray lensless imaging by differential holographic encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, D.; Guizar-Sicairos, M.; Wu, B.; Scherz, A.; Acremann, Y.; Tylisczcak, T.; Fischer, P.; Friedenberger, N.; Ollefs, K.; Farle, M.; Fienup, J. R.; Stohr, J.

    2009-11-02

    X-ray free electron lasers (X-FEL{sub s}) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by splitand-delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with stateof- the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  17. High-Resolution X-Ray Lensless Imaging by Differential Holographic Encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Diling [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Guizar-Sicairos, Manuel [Univ. of Rochester, NY (United States). Inst. of Optics; Wu, Benny [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Scherz, Andreas [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Acremann, Yves [SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Tyliszczak, Tolek [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Fischer, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Center for X-ray Optics; Friedenberger, Nina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Ollefs, Katharina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Farle, Michael [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Fienup, James R. [Univ. of Rochester, NY (United States). Inst. of Optics; Stöhr, Joachim [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)

    2010-07-01

    X-ray free electron lasers (X-FELs) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by split and- delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with state of-the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  18. Estimates of Imaging Times for Conventional and Synchrotron X-Ray Sources

    CERN Document Server

    Kinney, J

    2003-01-01

    The following notes are to be taken as estimates of the time requirements for imaging NIF targets in three-dimensions with absorption contrast. The estimates ignore target geometry and detector inefficiency, and focus only on the statistical question of detecting compositional (structural) differences between adjacent volume elements in the presence of noise. The basic equations, from the classic reference by Grodzins, consider imaging times in terms of the required number of photons necessary to provide an image with given resolution and noise. The time estimates, therefore, have been based on the calculated x-ray fluxes from the proposed Advanced Light Source (ALS) imaging beamline, and from the calculated flux for a tungsten anode x-ray generator operated in a point focus mode.

  19. Real-time x-ray fluoroscopy-based catheter detection and tracking for cardiac electrophysiology interventions

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yingliang; Housden, R. James; Razavi, Reza; Rhode, Kawal S. [Division of Imaging Sciences and Biomedical Engineering, King' s College London, London SE1 7EH (United Kingdom); Gogin, Nicolas; Cathier, Pascal [Medisys Research Group, Philips Healthcare, Paris 92156 (France); Gijsbers, Geert [Interventional X-ray, Philips Healthcare, Best 5680 DA (Netherlands); Cooklin, Michael; O' Neill, Mark; Gill, Jaswinder; Rinaldi, C. Aldo [Department of Cardiology, Guys and St. Thomas' Hospitals NHS Foundation Trust, London SE1 7EH (United Kingdom)

    2013-07-15

    Purpose: X-ray fluoroscopically guided cardiac electrophysiology (EP) procedures are commonly carried out to treat patients with arrhythmias. X-ray images have poor soft tissue contrast and, for this reason, overlay of a three-dimensional (3D) roadmap derived from preprocedural volumetric images can be used to add anatomical information. It is useful to know the position of the catheter electrodes relative to the cardiac anatomy, for example, to record ablation therapy locations during atrial fibrillation therapy. Also, the electrode positions of the coronary sinus (CS) catheter or lasso catheter can be used for road map motion correction.Methods: In this paper, the authors present a novel unified computational framework for image-based catheter detection and tracking without any user interaction. The proposed framework includes fast blob detection, shape-constrained searching and model-based detection. In addition, catheter tracking methods were designed based on the customized catheter models input from the detection method. Three real-time detection and tracking methods are derived from the computational framework to detect or track the three most common types of catheters in EP procedures: the ablation catheter, the CS catheter, and the lasso catheter. Since the proposed methods use the same blob detection method to extract key information from x-ray images, the ablation, CS, and lasso catheters can be detected and tracked simultaneously in real-time.Results: The catheter detection methods were tested on 105 different clinical fluoroscopy sequences taken from 31 clinical procedures. Two-dimensional (2D) detection errors of 0.50 {+-} 0.29, 0.92 {+-} 0.61, and 0.63 {+-} 0.45 mm as well as success rates of 99.4%, 97.2%, and 88.9% were achieved for the CS catheter, ablation catheter, and lasso catheter, respectively. With the tracking method, accuracies were increased to 0.45 {+-} 0.28, 0.64 {+-} 0.37, and 0.53 {+-} 0.38 mm and success rates increased to 100%, 99

  20. Two electron response to an intense x-ray free electron laser pulse

    International Nuclear Information System (INIS)

    Moore, L R; Parker, J S; Meharg, K J; Armstrong, G S J; Taylor, K T

    2009-01-01

    New x-ray free electron lasers (FELs) promise an ultra-fast ultra-intense regime in which new physical phenomena, such as double core hole formation in at atom, should become directly observable. Ahead of x-ray FEL experiments, an initial key task is to theoretically explore such fundamental laser-atom interactions and processes. To study the response of a two-electron positive ion to an intense x-ray FEL pulse, our theoretical approach is a direct numerical integration, incorporating non-dipole Hamiltonian terms, of the full six-dimensional time-dependent Schroedinger equation. We present probabilities of double K-shell ionization in the two-electron positive ions Ne 8+ and Ar 16+ exposed to x-ray FEL pulses with frequencies in the range 50 au to 300 au and intensities in the range 10 17 to 10 22 W/cm 2 .

  1. Discovery of Hard Nonthermal Pulsed X-Ray Emission from the Anomalous X-Ray Pulsar 1E 1841-045

    NARCIS (Netherlands)

    Kuiper, L.; Hermsen, W.; Méndez, R.M.

    2004-01-01

    We report the discovery of nonthermal pulsed X-ray/soft gamma-ray emission up to ~150 keV from the anomalous 11.8 s X-ray pulsar AXP 1E 1841-045 located near the center of supernova remnant Kes 73 using Rossi X-Ray Timing Explorer (RXTE) Proportional Counter Array and High Energy X-Ray Timing

  2. Study of fast electrons from hard-X radiation

    International Nuclear Information System (INIS)

    Arslanbekov, R.

    1995-01-01

    The goal of this thesis is the study of fast electron dynamics by means of the hard X-ray diagnosis installed in TORE SUPRA and numerical simulations. Fast electrons are generated in the plasma in the presence of the injected lower hybrid (LH) waves. Two aspects are studied in detail: the lower hybrid wave propagation and absorption in a periodically perturbed media and 2-D Fokker-Planck modelling of the fast electron dynamics in the presence of the LH power. Ripple effects on lower hybrid wave propagation and absorption are investigated using the ray tracing technique. A cylindrical equilibrium is first studied and a strong modification of the ray dynamics is predicted. Calculations are carried out in a real toroidal geometry corresponding to TORE SUPRA. It is shown that the lack of toroidal axisymmetry of the magnetic field may result in a modification of the ray evolution even if the global ray evolution is governed by the larger poloidal inhomogeneity. Simulation of LH experiments are performed for TORE SUPRA tokamak which has a large magnetic ripple (7% at the plasma edge). By considering ripple perturbation in LH current drive simulations, a better agreement is found with experimental results, in particular with the hard-X spectra and the current density profiles. In the second part of the thesis, a 2-D modeling of the fast electron dynamics in the velocity phase space is considered, based on the 2-D relativistic electron Fokker-Planck equation. Electron distribution functions obtained are used to calculate non-thermal Bremsstrahlung emission for different TORE SUPRA shots in a wide range of experimental conditions. (J.S.). 168 refs., 93 figs., 1 tab., 3 appendix

  3. Studies of oxide-based thin-layered heterostructures by X-ray scattering methods

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O. [Thales Research and Technology France, Route Departementale 128, F-91767 Palaiseau Cedex (France)]. E-mail: olivier.durand@thalesgroup.com; Rogers, D. [Nanovation SARL, 103 bis rue de Versailles 91400 Orsay (France); Universite de Technologie de Troyes, 10-12 rue Marie Curie, 10010 (France); Teherani, F. Hosseini [Nanovation SARL, 103 bis rue de Versailles 91400 Orsay (France); Andrieux, M. [LEMHE, ICMMOCNRS-UMR 8182, Universite d' Orsay, Batiment 410, 91410 Orsay (France); Modreanu, M. [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland)

    2007-06-04

    Some X-ray scattering methods (X-ray reflectometry and Diffractometry) dedicated to the study of thin-layered heterostructures are presented with a particular focus, for practical purposes, on the description of fast, accurate and robust techniques. The use of X-ray scattering metrology as a routinely working non-destructive testing method, particularly by using procedures simplifying the data-evaluation, is emphasized. The model-independent Fourier-inversion method applied to a reflectivity curve allows a fast determination of the individual layer thicknesses. We demonstrate the capability of this method by reporting X-ray reflectometry study on multilayered oxide structures, even when the number of the layers constitutive of the stack is not known a-priori. Fast Fourier transform-based procedure has also been employed successfully on high resolution X-ray diffraction profiles. A study of the reliability of the integral-breadth methods in diffraction line-broadening analysis applied to thin layers, in order to determine coherent domain sizes, is also reported. Examples from studies of oxides-based thin-layers heterostructures will illustrate these methods. In particular, X-ray scattering studies performed on high-k HfO{sub 2} and SrZrO{sub 3} thin-layers, a (GaAs/AlOx) waveguide, and a ZnO thin-layer are reported.

  4. Soft x-ray lasers

    International Nuclear Information System (INIS)

    Matthews, D.L.; Rosen, M.D.

    1988-01-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs

  5. Picosecond time-resolved laser pump/X-ray probe experiments using a gated single-photon-counting area detector

    DEFF Research Database (Denmark)

    Ejdrup, T.; Lemke, H.T.; Haldrup, Martin Kristoffer

    2009-01-01

    The recent developments in X-ray detectors have opened new possibilities in the area of time-resolved pump/probe X-ray experiments; this article presents the novel use of a PILATUS detector to achieve X-ray pulse duration limited time-resolution at the Advanced Photon Source (APS), USA...... limited time-resolution of 60 ps using the gated PILATUS detector. This is the first demonstration of X-ray pulse duration limited data recorded using an area detector without the use of a mechanical chopper array at the beamline........ The capability of the gated PILATUS detector to selectively detect the signal from a given X-ray pulse in 24 bunch mode at the APS storage ring is demonstrated. A test experiment performed on polycrystalline organic thin films of [alpha]-perylene illustrates the possibility of reaching an X-ray pulse duration...

  6. X-ray diffraction using the time structure of the SRS

    International Nuclear Information System (INIS)

    Tanner, B.K.

    1983-01-01

    The subject is discussed under the headings: introduction (advances in the techniques of X-ray topography; comparison with transmission electron microscopy); stroboscopic X-ray topography; stroboscopic X-ray topography of travelling surface acoustic waves; possible general diffraction experiments. (U.K.)

  7. Versatile, reprogrammable area pixel array detector for time-resolved synchrotron x-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    Gruner, Sol [Cornell Univ., Ithaca, NY (United States)

    2010-05-01

    The final technical report for DOE grant DE-SC0004079 is presented. The goal of the grant was to perform research, development and application of novel imaging x-ray detectors so as to effectively utilize the high intensity and brightness of the national synchrotron radiation facilities to enable previously unfeasible time-resolved x-ray research. The report summarizes the development of the resultant imaging x-ray detectors. Two types of detector platforms were developed: The first is a detector platform (called a Mixed-Mode Pixel Array Detector, or MM-PAD) that can image continuously at over a thousand images per second while maintaining high efficiency for wide dynamic range signals ranging from 1 to hundreds of millions of x-rays per pixel per image. Research on an even higher dynamic range variant is also described. The second detector platform (called the Keck Pixel Array Detector) is capable of acquiring a burst of x-ray images at a rate of millions of images per second.

  8. Time-resolved soft x-ray spectra from laser-produced Cu plasma

    International Nuclear Information System (INIS)

    Cone, K.V.; Dunn, J.; Baldis, H.A.; May, M.J.; Purvis, M.A.; Scott, H.A.; Schneider, M.B.

    2012-01-01

    The volumetric heating of a thin copper target has been studied with time resolved x-ray spectroscopy. The copper target was heated from a plasma produced using the Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) laser. A variable spaced grating spectrometer coupled to an x-ray streak camera measured soft x-ray emission (800-1550 eV) from the back of the copper target to characterize the bulk heating of the target. Radiation hydrodynamic simulations were modeled in 2-dimensions using the HYDRA code. The target conditions calculated by HYDRA were post-processed with the atomic kinetics code CRETIN to generate synthetic emission spectra. A comparison between the experimental and simulated spectra indicates the presence of specific ionization states of copper and the corresponding electron temperatures and ion densities throughout the laser-heated copper target.

  9. A Recirculating Linac-Based Facility for Ultrafast X-Ray Science

    International Nuclear Information System (INIS)

    Corlett, J. N.; Barletta, W. A.; DeSantis, S.; Doolittle, L.; Fawley, W. M.; Green, M.A.; Heimann, P.; Leone, S.; Lidia, S.; Li, D.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wolski, A.; Zholents, A.; Parmigiani, F.; Placidi, M.; Pirkl, W.; Rimmer, R. A.; Wang, S.

    2003-01-01

    We present an updated design for a proposed source of ultra-fast synchrotron radiation pulses based on a recirculating superconducting linac [1,2], in particular the incorporation of EUV and soft x-ray production. The project has been named LUX--Linac-based Ultrafast X-ray facility. The source produces intense x-ray pulses with duration of 10-100 fs at a 10 kHz repetition rate, with synchronization of 10's fs, optimized for the study of ultra-fast dynamics. The photon range covers the EUV to hard x-ray spectrum by use of seeded harmonic generation in undulators, and a specialized technique for ultra-short pulse photon production in the 1-10 keV range. High brightness rf photocathodes produce electron bunches which are optimized either for coherent emission in free electron lasers, or to provide a large x/y emittance ration and small vertical emittance which allows for manipulation to produce short-pulse hard x-rays. An injector linac accelerates the beam to 120 MeV, and is followed by f our passes through a 600-720 MeV recirculating linac. We outline the major technical components of the proposed facility

  10. Time Delays Between Decimetric Type-Iii Bursts and Associated Hard X-Rays

    Science.gov (United States)

    Sawant, H. S.; Lattari, C. J. B.; Benz, A. O.; Dennis, B. R.

    1990-11-01

    RESUMEN. En julio de 1987, se efectuaron radio observaciones en 1.6 CHz usando la antena de 13.7-m de Itapetinga con un tiempo de resoluci5n de 3 ms. Las observaciones en rayos-X fueron obtenidas del HXRBS en SMM. Comparaciones de observaciones de 1.6 CHz con espectro dinamico en el intervalo de (1000 - 100) MHz y rayos-X duros muestran los siguientes resultados: I) en 12 casos, identificamos la continuaci6n de brotes de tipo Ill-RD hasta 1.6 GHz. ii) Por primera vez, hemos identificadopicos de rayos-X demorados en comparaci6n con el brote decimetrico tipolll-RD. Estos retardos son mas largos - 1 5 - que lo esperado ( " 100 ms) y han sido interpretados suponiendo que la emisi6n decimetrica es la 2a. ar- m6nica y esta causada por el borde delantero del excitador, mientras que los picos de los rayos-X han sido atribuidos a la entrada completa del excitador dentro de la regi6n que produce los rayos-X. ABSTRACT. In July, 1985 radio observations were made at 1.6 GHz using 13.7 m Itapetinga antenna with time resolution of 3 ms. The hard X-ray observations were obtained from HXRBS on SMM. Comparison of 1.6 GHz observations with dynamic spectra in the frequency range of (1000 - 100) MHz and hard X-rays shows the following results: i) In 12 cases, we identify continuation of type Ill-RD bursts up to 1.6 GHz suggesting presence of type Ill-RD bursts at 1.6 GHz. ii) For the first time, we have idetified hard X-ray peaks delayed in comparison to decimetric type Ill-RD bursts. These dalays are longer - 1 5 - than expected ( 100 ms) and have been interpreted assuming that the decimetric emission is at 2 nd harmonic and caused by the leading edge of the exciter, whereas peaks of X-rays have been attributed to entire entry of the exciter into the X-ray producing region. Keq : SUN BURSTS - SUN-

  11. Long time scale hard X-ray variability in Seyfert 1 galaxies

    Science.gov (United States)

    Markowitz, Alex Gary

    This dissertation examines the relationship between long-term X-ray variability characteristics, black hole mass, and luminosity of Seyfert 1 Active Galactic Nuclei. High dynamic range power spectral density functions (PSDs) have been constructed for six Seyfert 1 galaxies. These PSDs show "breaks" or characteristic time scales, typically on the order of a few days. There is resemblance to PSDs of lower-mass Galactic X-ray binaries (XRBs), with the ratios of putative black hole masses and variability time scales approximately the same (106--7) between the two classes of objects. The data are consistent with a linear correlation between Seyfert PSD break time scale and black hole mass estimate; the relation extrapolates reasonably well over 6--7 orders of magnitude to XRBs. All of this strengthens the case for a physical similarity between Seyfert galaxies and XRBs. The first six years of RXTE monitoring of Seyfert 1s have been systematically analyzed to probe hard X-ray variability on multiple time scales in a total of 19 Seyfert is in an expansion of the survey of Markowitz & Edelson (2001). Correlations between variability amplitude, luminosity, and black hole mass are explored, the data support the model of PSD movement with black hole mass suggested by the PSD survey. All of the continuum variability results are consistent with relatively more massive black holes hosting larger X-ray emission regions, resulting in 'slower' observed variability. Nearly all sources in the sample exhibit stronger variability towards softer energies, consistent with softening as they brighten. Direct time-resolved spectral fitting has been performed on continuous RXTE monitoring of seven Seyfert is to study long-term spectral variability and Fe Kalpha variability characteristics. The Fe Kalpha line displays a wide range of behavior but varies less strongly than the broadband continuum. Overall, however, there is no strong evidence for correlated variability between the line and

  12. Here Be Dragons: Effective (X-ray) Timing with the Cospectrum

    Science.gov (United States)

    Huppenkothen, Daniela; Bachetti, Matteo

    2018-01-01

    In recent years, the cross spectrum has received considerable attention as a means of characterising the variability of astronomical sources as a function of wavelength. While much has been written about the statistics of time and phase lags, the cospectrum—the real part of the cross spectrum—has only recently been understood as means of mitigating instrumental effects dependent on temporal frequency in astronomical detectors, as well as a method of characterizing the coherent variability in two wavelength ranges on different time scales. In this talk, I will present recent advances made in understanding the statistical properties of cospectra, leading to much improved inferences for periodic and quasi-periodic signals. I will also present a new method to reliably mitigate instrumental effects such as dead time in X-ray detectors, and show how we can use the cospectrum to model highly variable sources such as X-ray binaries or Active Galactic Nuclei.

  13. Portable X-ray fluorescence analyzer of high sensitivity using X-ray tube excitation

    International Nuclear Information System (INIS)

    Vatai, E.; Ando, L.

    1982-01-01

    A review of the three main methods of X-ray fluorescence analysis and their problems is given. The attainable accuracy and effectiveness of each method are discussed. The main properties of portable X-ray analyzers required by the industry are described. The results and experiences of R and D activities in ATOMKI (Debrecen, Hungary) for developing portable X-ray analyzers are presented. The only way for increasing the accuracy and decreasing the measuring time is the application of X-ray tube excitation instead of radioactive sources. The new ATOMKI equipment presently under construction and patenting uses X-ray tube excitation; it will increase the accuracy of concentration determination by one order of magnitude. (D.Gy.)

  14. Non-scanning x-ray fluorescence microscope: application to real time micro-imaging

    International Nuclear Information System (INIS)

    Sakurai, K.; Eba, H.

    2000-01-01

    So far, x-ray fluorescence (XRF) micro-imaging has been performed by a 2D positional scan of a sample against a collimated beam. Obtaining information on specific elements in a nondestructive manner is an attractive prospect for many scientific applications. Furthermore, a synchrotron micro-beam can enhance the spatial resolution down to 0.1 μm. However, the total measuring time becomes quite long (a few hours to a half day), since one needs a number of scanning points in order to obtain a high-quality image. It is possible to obtain an x-ray image with 1 M pixels and with 20 μm resolution in a very short time of 20 sec - 3 min using a non-scanning XRF microscope, which is based on completely different concept. In the present report, we discuss the application of this technique to real time micro-imaging. The experiments were carried out at BL-4A, Photon Factory, Tsukuba, Japan. We employed a grazing-incidence arrangement to make primary x-rays illuminate the whole sample surface. We adopted parallel-beam optics and extremely-close-geometry in order to detect x-ray fluorescence with a CCD camera. The selective-excitation capability of tunable monochromatic synchrotron radiation is a feasible method for distinguishing the elements of interest. One can obtain an image of each element by differentiating the images obtained above and below the absorption edges of interest. The growth of metallic dendrites from a solution dropped on a substrate was studied successfully. Several different growth patterns, corresponding to concentration and other conditions for diffusion, were observed as x-ray images. Since the present technique requires only 40 sec for each shot, it is possible to record a growing process through repeated exposures like a movie. The authors would like to thank Prof. A. Iida (Photon Factory) for his valuable comments. (author)

  15. Partial Accretion in the Propeller Stage of Low-mass X-Ray Binary Aql X–1

    International Nuclear Information System (INIS)

    Güngör, C.; Ekşi, K. Y.; Göğüş, E.; Güver, T.

    2017-01-01

    Aql X–1 is one of the most prolific low-mass X-ray binary transients (LMXBTs) showing outbursts almost annually. We present the results of our spectral analyses of Rossi X-Ray Timing Explorer /proportional counter-array observations of the 2000 and 2011 outbursts. We investigate the spectral changes related to the changing disk-magnetosphere interaction modes of Aql X–1. The X-ray light curves of the outbursts of LMXBTs typically show phases of fast rise and exponential decay. The decay phase shows a “knee” where the flux goes from the slow-decay to the rapid-decay stage. We assume that the rapid decay corresponds to a weak propeller stage at which a fraction of the inflowing matter in the disk accretes onto the star. We introduce a novel method for inferring, from the light curve, the fraction of the inflowing matter in the disk that accretes onto the neutron star depending on the fastness parameter. We determine the fastness parameter range within which the transition from the accretion to the partial propeller stage is realized. This fastness parameter range is a measure of the scale height of the disk in units of the inner disk radius. We applied the method to a sample of outbursts of Aql X–1 with different maximum flux and duration times. We show that different outbursts with different maximum luminosity and duration follow a similar path in the parameter space of accreted/inflowing mass flux fraction versus fastness parameter.

  16. Partial Accretion in the Propeller Stage of Low-mass X-Ray Binary Aql X–1

    Energy Technology Data Exchange (ETDEWEB)

    Güngör, C.; Ekşi, K. Y. [İstanbul Technical University, Faculty of Science and Letters, Physics Engineering Department, 34469, İstanbul (Turkey); Göğüş, E. [Sabancı University, Faculty of Engineering and Natural Science, Orhanlı—Tuzla, 34956, İstanbul (Turkey); Güver, T., E-mail: gungorcan@itu.edu.tr [İstanbul University, Science Faculty, Department of Astronomy and Space Sciences, Beyazıt, 34119, İstanbul (Turkey)

    2017-10-10

    Aql X–1 is one of the most prolific low-mass X-ray binary transients (LMXBTs) showing outbursts almost annually. We present the results of our spectral analyses of Rossi X-Ray Timing Explorer /proportional counter-array observations of the 2000 and 2011 outbursts. We investigate the spectral changes related to the changing disk-magnetosphere interaction modes of Aql X–1. The X-ray light curves of the outbursts of LMXBTs typically show phases of fast rise and exponential decay. The decay phase shows a “knee” where the flux goes from the slow-decay to the rapid-decay stage. We assume that the rapid decay corresponds to a weak propeller stage at which a fraction of the inflowing matter in the disk accretes onto the star. We introduce a novel method for inferring, from the light curve, the fraction of the inflowing matter in the disk that accretes onto the neutron star depending on the fastness parameter. We determine the fastness parameter range within which the transition from the accretion to the partial propeller stage is realized. This fastness parameter range is a measure of the scale height of the disk in units of the inner disk radius. We applied the method to a sample of outbursts of Aql X–1 with different maximum flux and duration times. We show that different outbursts with different maximum luminosity and duration follow a similar path in the parameter space of accreted/inflowing mass flux fraction versus fastness parameter.

  17. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1982-01-01

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 μg/cm 2 ) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolved x-ray diagnostic capability are applied to energy-transport investigations of 1.06-μm laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10 14 W/cm 2 and 1 x 10 15 W/cm 2

  18. X-ray sources by Z-pinch for inertial confinement fusion

    International Nuclear Information System (INIS)

    Akiyama, Hidenori; Katsuki, Sunao; Lisitsyn, Igor

    1999-01-01

    Inertial confinement nuclear fusion driven by X-ray from Z-pinch plasmas has been developed. Recently, extremely high X-ray power (290 TW) and energy (1.8 MJ) were produced in fast Z-pinch implosions on the Z accelerator (Sandia National Laboratories). Wire arrays are used to produce the initial plasma. The X-ray from Z-pinch plasmas produced by pulsed power has great potential as a driver of inertial confinement nuclear fusion. (author)

  19. Frequencies of X-ray and fast neutron induced chromosome translocations in human peripheral blood lymphocytes as detected by in situ hybridization using chromosome specific DNA libraries

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Darroudi, F.; Vermeulen, S.; Wiegant, J.

    1992-01-01

    DNA libraries of six human chromosomes were used to detect translocations in human lymphocytes induced by different doses of X-rays and fast neutrons. Results show that with X-rays, one can detect about 1.5 to 2.0 fold more translocations in comparison to dicentrics, whereas following fast neutron irradiation, the difference between these two classes of aberrations are significantly different at high doses. In addition, triple fluorescent in situ hybridization technique was used to study the frequencies of radiation-induced translocations involving a specific chromosome. Chromosome number 1 was found to be involved in translocations more frequently than chromosomes number 2, 3, 4, 8 and X. (author). 10 refs., 1 fig., 2 tabs

  20. X-ray filter for x-ray powder diffraction

    Science.gov (United States)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.; Dooryhee, Eric; Ghose, Sanjit

    2018-01-23

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and walls defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.

  1. Fast and Furious: Shock heated gas as the origin of spatially resolved hard X-ray emission in the central 5 kpc of the galaxy merger NGC 6240

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junfeng; Nardini, Emanuele; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Risaliti, Guido; Zezas, Andreas [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pellegrini, Silvia [Dipartimento di Astronomia, Universitá di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Max, Claire [Center for Adaptive Optics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); U, Vivian, E-mail: jfwang@northwestern.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2014-01-20

    We have obtained a deep, subarcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from kT ∼ 6 keV (∼70 MK) hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with a velocity of ∼2200 km s{sup –1}. For the first time, we obtain the spatial distribution of this highly ionized gas emitting Fe XXV, which shows a remarkable correspondence to the large-scale morphology of H{sub 2}(1-0) S(1) line emission and Hα filaments. Propagation of fast shocks originating in the starburst-driven wind into the ambient dense gas can account for this morphological correspondence. With an observed L {sub 0.5-8} {sub keV} = 5.3 × 10{sup 41} erg s{sup –1}, the diffuse hard X-ray emission is ∼100 times more luminous than that observed in the classic starburst galaxy M82. Assuming a filling factor of 1% for the 70 MK temperature gas, we estimate its total mass (M {sub hot} = 1.8 × 10{sup 8} M {sub ☉}) and thermal energy (E {sub th} = 6.5 × 10{sup 57} erg). The total iron mass in the highly ionized plasma is M {sub Fe} = 4.6 × 10{sup 5} M {sub ☉}. Both the energetics and the iron mass in the hot gas are consistent with the expected injection from the supernovae explosion during the starburst that is commensurate with its high star formation rate. No evidence for fluorescent Fe I emission is found in the CO filament connecting the two nuclei.

  2. Fast and Furious: Shock Heated Gas as the Origin of Spatially Resolved Hard X-Ray Emission in the Central 5 kpc of the Galaxy Merger NGC 6240

    Science.gov (United States)

    Wang, Junfeng; Nardini, Emanuele; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Pellegrini, Silvia; Max, Claire; Risaliti, Guido; U, Vivian; Zezas, Andreas

    2014-01-01

    We have obtained a deep, subarcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from kT ~ 6 keV (~70 MK) hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with a velocity of ~2200 km s-1. For the first time, we obtain the spatial distribution of this highly ionized gas emitting Fe XXV, which shows a remarkable correspondence to the large-scale morphology of H2(1-0) S(1) line emission and Hα filaments. Propagation of fast shocks originating in the starburst-driven wind into the ambient dense gas can account for this morphological correspondence. With an observed L 0.5-8 keV = 5.3 × 1041 erg s-1, the diffuse hard X-ray emission is ~100 times more luminous than that observed in the classic starburst galaxy M82. Assuming a filling factor of 1% for the 70 MK temperature gas, we estimate its total mass (M hot = 1.8 × 108 M ⊙) and thermal energy (E th = 6.5 × 1057 erg). The total iron mass in the highly ionized plasma is M Fe = 4.6 × 105 M ⊙. Both the energetics and the iron mass in the hot gas are consistent with the expected injection from the supernovae explosion during the starburst that is commensurate with its high star formation rate. No evidence for fluorescent Fe I emission is found in the CO filament connecting the two nuclei.

  3. Fast and Furious: Shock heated gas as the origin of spatially resolved hard X-ray emission in the central 5 kpc of the galaxy merger NGC 6240

    International Nuclear Information System (INIS)

    Wang, Junfeng; Nardini, Emanuele; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Risaliti, Guido; Zezas, Andreas; Pellegrini, Silvia; Max, Claire; U, Vivian

    2014-01-01

    We have obtained a deep, subarcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from kT ∼ 6 keV (∼70 MK) hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with a velocity of ∼2200 km s –1 . For the first time, we obtain the spatial distribution of this highly ionized gas emitting Fe XXV, which shows a remarkable correspondence to the large-scale morphology of H 2 (1-0) S(1) line emission and Hα filaments. Propagation of fast shocks originating in the starburst-driven wind into the ambient dense gas can account for this morphological correspondence. With an observed L 0.5-8 keV = 5.3 × 10 41 erg s –1 , the diffuse hard X-ray emission is ∼100 times more luminous than that observed in the classic starburst galaxy M82. Assuming a filling factor of 1% for the 70 MK temperature gas, we estimate its total mass (M hot = 1.8 × 10 8 M ☉ ) and thermal energy (E th = 6.5 × 10 57 erg). The total iron mass in the highly ionized plasma is M Fe = 4.6 × 10 5 M ☉ . Both the energetics and the iron mass in the hot gas are consistent with the expected injection from the supernovae explosion during the starburst that is commensurate with its high star formation rate. No evidence for fluorescent Fe I emission is found in the CO filament connecting the two nuclei.

  4. Two electron response to an intense x-ray free electron laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L R; Parker, J S; Meharg, K J; Armstrong, G S J; Taylor, K T, E-mail: l.moore@qub.ac.u [DAMTP, David Bates Building, Queen' s University Belfast, Belfast, BT7 1NN (United Kingdom)

    2009-11-01

    New x-ray free electron lasers (FELs) promise an ultra-fast ultra-intense regime in which new physical phenomena, such as double core hole formation in at atom, should become directly observable. Ahead of x-ray FEL experiments, an initial key task is to theoretically explore such fundamental laser-atom interactions and processes. To study the response of a two-electron positive ion to an intense x-ray FEL pulse, our theoretical approach is a direct numerical integration, incorporating non-dipole Hamiltonian terms, of the full six-dimensional time-dependent Schroedinger equation. We present probabilities of double K-shell ionization in the two-electron positive ions Ne{sup 8+} and Ar{sup 16+} exposed to x-ray FEL pulses with frequencies in the range 50 au to 300 au and intensities in the range 10{sup 17} to 10{sup 22} W/cm{sup 2}.

  5. Nanoparticle-Assisted Scanning Focusing X-Ray Therapy with Needle Beam X Rays.

    Science.gov (United States)

    Davidson, R Andrew; Guo, Ting

    2016-01-01

    In this work, we show a new therapeutic approach using 40-120 keV X rays to deliver a radiation dose at the isocenter located many centimeters below the skin surface several hundred times greater than at the skin and how this dose enhancement can be augmented with nanomaterials to create several thousand-fold total dose enhancement effect. This novel approach employs a needle X-ray beam directed at the isocenter centimeters deep in the body while continuously scanning the beam to cover a large solid angle without overlapping at the skin. A Monte Carlo method was developed to simulate an X-ray dose delivered to the isocenter filled with X-ray absorbing and catalytic nanoparticles in a water phantom. An experimental apparatus consisting of a moving plastic phantom irradiated with a stationary 1 mm needle X-ray beam was built to test the theoretical predictions. X-ray films were used to characterize the dose profiles of the scanning X-ray apparatus. Through this work, it was determined that the X-ray dose delivered to the isocenter in a treatment voxel (t-voxel) underneath a 5 cm deep high-density polyethylene (HDPE) phantom was 295 ± 48 times greater than the surface dose. This measured value was in good agreement with the theoretical predicted value of 339-fold. Adding X-ray-absorbing nanoparticles, catalytic nanoparticles or both into the t-voxel can further augment the dose enhancement. For example, we predicted that adding 1 weight percentage (wp) of gold into water could increase the effective dose delivered to the target by onefold. Dose enhancement using 1 mm X-ray beam could reach about 1,600-fold in the t-voxel when 7.5 wp of 88 nm diameter silica-covered gold nanoparticles were added, which we showed in a previously published study can create a dose enhancement of 5.5 ± 0.46-fold without scanning focusing enhancement. Based on the experimental data from that study, mixing 0.02 wp 2.5 nm diameter small tetrakis hydroxymethyl phosphonium chloride (THPC

  6. Time-resolved x-ray laser induced photoelectron spectroscopy of isochoric heated copper

    International Nuclear Information System (INIS)

    Nelson, A.J.; Dunn, J.; Hunter, J.; Widmann, K.

    2005-01-01

    Time-resolved x-ray photoelectron spectroscopy is used to probe the nonsteady-state evolution of the valence band electronic structure of laser heated ultrathin (50 nm) copper. A metastable phase is studied using a 527 nm wavelength 400 fs laser pulse containing 0.1-2.5 mJ laser energy focused in a large 500x700 μm 2 spot to create heated conditions of 0.07-1.8x10 12 W cm -2 intensity. Valence band photoemission spectra are presented showing the changing occupancy of the Cu 3d level with heating are presented. These picosecond x-ray laser induced time-resolved photoemission spectra of laser-heated ultrathin Cu foil show dynamic changes in the electronic structure. The ultrafast nature of this technique lends itself to true single-state measurements of shocked and heated materials

  7. The effect of fast neutrons, as compared with X-rays upon mutation spectrum and mutation frequency in Arabidopsis thaliana (L.) Heynh. and Hordeum vulgare L. in relation to evaluation of the BARN-reactor

    International Nuclear Information System (INIS)

    Dellaert, L.M.W.

    1980-01-01

    Explanations were sought for the 'saturation' in mutant frequency, observed after relatively high irradiation doses (fast neutrons and X-rays) in Arabidopsis thaliana (L.) Heynh, when scoring for mutants is done in the siliques (Mueller's embryotest) of the 'main' inflorescence of M 1 -plants. Studies have been carried out on the effect of the presence of dithiothreitol (DTT) during irradiation, on fast neutron and X-ray induced M 1 -ovule sterility, M 2 -embryonic lethals, M 2 -chlorophyll mutants and M 2 -viable mutants in Arabidopsis thaliana. It was found that DTT provides considerable protection against both fast neutron and X-ray induced genetic damage. (Auth.)

  8. Remote real time x-ray examination of fuel elements in a hot cell environment

    International Nuclear Information System (INIS)

    Yapuncich, F.L.

    1993-01-01

    This report discusses the Remote Real Time X-ray System which will allow for detailed examination of fuel elements. This task will be accomplished in a highly radioactive hot cell environment. Two remote handling systems win be utilized at the examination station. One handling system will transfer the fuel element to and from the shielded x-ray system. A second handling system will allow for vertical and rotational inspection of the fuel elements. The process win include removing a single nuclear fuel element from a element fabrication magazine(EFM), positioning the fuel element within the shielding envelope of the x-ray system and transferring the fuel element from the station manipulator to the x-ray system manipulator, performing the x-ray inspection, and then transferring the fuel element to either the element storage magazine(ESM) or a reject bin

  9. Comparative study of radiation dose between digital panoramic X-ray unit and general panoramic X-ray unit

    International Nuclear Information System (INIS)

    Li Qingshan; Duan Tao; Wang Xiaoyun; Zhao Li; Dong Jian; Wei Lei

    2010-01-01

    Objective: To compare the actual dose of patients who receive the same medical practice by either digital panoramic X-ray unit and general panoramic X-ray unit and give evidence for better selection of oral X-ray examination method. Methods: Round sheet lithium fluoride (LiF) thermoluminescent dosimeters (TLD) were used. The experiment was divided into natural background contrast group, general panoramic X-ray children group, general panoramic X-ray adults group, digital panoramic X-ray children group and digital panoramic X-ray adults group. The dosimeter of natural background radiation was placed at the office of the doctor, the dosimeters of general panoramic X-ray children group and general panoramic X-ray adults group were irradiated by different conditions according to the clinical application of panoramic X-ray to children and adults, the dosimeters of digital panoramic X-ray children group and digital panoramic X-ray adults group were irradiated by different conditions according to the clinical application of digital panoramic X-ray to children and adults. The thermoluminescent dosimeter was used to count and calculate the exposure doses in various groups. Results: The dose of children exposed in general panoramic X-ray unit was 1.28 times of that in digital panoramic X-ray unit, there was significant difference (t=6.904, P<0.01). The dose of adults exposed in general panoramic X-ray unit was 1.55 times of that in the digital panoramic X-ray unit, there also was significant difference (t=-11.514. P< 0.01). Conclusion: The digital panoramic X-ray unit can reduce the dose of patients, so the digital panoramic X-ray unit should be used as far as possible. (authors)

  10. X-ray fluorescence imaging with polycapillary X-ray optics

    International Nuclear Information System (INIS)

    Yonehara, Tasuku; Yamaguchi, Makoto; Tsuji, Kouichi

    2010-01-01

    X-ray fluorescence spectrometry imaging is a powerful tool to provide information about the chemical composition and elemental distribution of a specimen. X-ray fluorescence spectrometry images were conventionally obtained by using a μ-X-ray fluorescence spectrometry spectrometer, which requires scanning a sample. Faster X-ray fluorescence spectrometry imaging would be achieved by eliminating the process of sample scanning. Thus, we developed an X-ray fluorescence spectrometry imaging instrument without sample scanning by using polycapillary X-ray optics, which had energy filter characteristics caused by the energy dependence of the total reflection phenomenon. In the present paper, we show that two independent straight polycapillary X-ray optics could be used as an energy filter of X-rays for X-ray fluorescence. Only low energy X-rays were detected when the angle between the two optical axes was increased slightly. Energy-selective X-ray fluorescence spectrometry images with projection mode were taken by using an X-ray CCD camera equipped with two polycapillary optics. It was shown that Fe Kα (6.40 keV) and Cu Kα (8.04 keV) could be discriminated for Fe and Cu foils.

  11. X-ray shout echoing through space

    Science.gov (United States)

    2004-01-01

    new gamma-ray satellite, called `Swift', will be launched as part of a collaboration between the USA, United Kingdom and Italy. Swift will add to the flotilla of satellites providing fast and accurate locations of gamma-ray bursts on the sky, which can then be followed with XMM-Newton. This will provide even more opportunities for new discoveries in this cutting-edge field. Notes to editors A scientific paper describing this discovery by Dr. Simon Vaughan and his collaborators has been accepted for publication in ``The Astrophysical Journal'' (see http://arxiv.org/abs/astro-ph/0312603). The other members in Vaughan's team are R. Willingale, P. O'Brien, J. Osborne, A. Levan, M. Watson and J. Tedds from the University of Leicester, United Kingdom; J. Reeves from NASA's Goddard Space Flight Center in Greenbelt, USA; D. Watson from the Neils Bohr Institute for Astronomy in Copenhagen, Denmark; M. Santos-Lleo, P. Rodriguez-Pascual and N. Schartel from ESA's XMM-Newton Science Operations Centre in Villafranca, Spain. Figure caption XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in hours. At their largest size, the rings would appear in the sky about five times smaller than the full moon. Credit: ESA, S. Vaughan (University of Leicester) Video caption XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the

  12. X-ray pulsars in nearby irregular galaxies

    Science.gov (United States)

    Yang, Jun

    2018-01-01

    The Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC) and Irregular Galaxy IC 10 are valuable laboratories to study the physical, temporal and statistical properties of the X-ray pulsar population with multi-satellite observations, in order to probe fundamental physics. The known distance of these galaxies can help us easily categorize the luminosity of the pulsars and their age difference can be helpful for for studying the origin and evolution of compact objects. Therefore, a complete archive of 116 XMM-Newton PN, 151 Chandra (Advanced CCD Imaging Spectrometer) ACIS, and 952 RXTE PCA observations for the pulsars in the Small Magellanic Cloud (SMC) were collected and analyzed, along with 42 XMM-Newton and 30 Chandra observations for the Large Magellanic Cloud, spanning 1997-2014. From a sample of 67 SMC pulsars we generate a suite of products for each pulsar detection: spin period, flux, event list, high time-resolution light-curve, pulse-profile, periodogram, and X-ray spectrum. Combining all three satellites, I generated complete histories of the spin periods, pulse amplitudes, pulsed fractions and X-ray luminosities. Many of the pulsars show variations in pulse period due to the combination of orbital motion and accretion torques. Long-term spin-up/down trends are seen in 28/25 pulsars respectively, pointing to sustained transfer of mass and angular momentum to the neutron star on decadal timescales. The distributions of pulse detection and flux as functions of spin period provide interesting findings: mapping boundaries of accretion-driven X-ray luminosity, and showing that fast pulsars (P<10 s) are rarely detected, which yet are more prone to giant outbursts. In parallel we compare the observed pulse profiles to our general relativity (GR) model of X-ray emission in order to constrain the physical parameters of the pulsars.In addition, we conduct a search for optical counterparts to X-ray sources in the local dwarf galaxy IC 10 to form a comparison

  13. PAL-XFEL soft X-ray scientific instruments and X-ray optics: First commissioning results

    Science.gov (United States)

    Park, Sang Han; Kim, Minseok; Min, Changi-Ki; Eom, Intae; Nam, Inhyuk; Lee, Heung-Soo; Kang, Heung-Sik; Kim, Hyeong-Do; Jang, Ho Young; Kim, Seonghan; Hwang, Sun-min; Park, Gi-Soo; Park, Jaehun; Koo, Tae-Yeong; Kwon, Soonnam

    2018-05-01

    We report an overview of soft X-ray scientific instruments and X-ray optics at the free electron laser (FEL) of the Pohang Accelerator Laboratory, with selected first-commissioning results. The FEL exhibited a pulse energy of 200 μJ/pulse, a pulse width of power of 10 500 was achieved. The estimated total time resolution between optical laser and X-ray pulses was <270 fs. A resonant inelastic X-ray scattering spectrometer was set up; its commissioning results are also reported.

  14. Sub-second pulsations simultaneously observed at microwaves and hard X-rays in a solar burst

    International Nuclear Information System (INIS)

    Takakura, T.; Degaonkar, S.S.; Nitta, N.; Ohki, N.

    1982-11-01

    Sub-second time structures have been found in the emissions during solar bursts in mm-waves and, independently, in hard X-rays. However, simultaneous observations of such fast time structure in mm radio and X-ray ranges has not been available so far. Accordingly, coordinated observations of solar bursts in November 1981 with a high time resolution of a few milliseconds were planned. The hard X-rays (30-40 KeV were observed with hard X-ray monitor (HXM) aboard the Hinotori Satellite with a time resolution of 7.81 ms and the radio emissions were observed on the ground with 45ft dish at Itapetinga Radio Observatory with a high time resolution (1 ms) and high sensitivities at 22 GHz and 44 GHz, supplemented by a patrol observation at 7 GHz with time resolution of 100 ms. The pulsations repeated with a period of about 300 ms. The physical implication of the good correlation is not clear at this stage, but it may give a clue to the understanding of the high energy phenomena occuring during the solar flares. (Author) [pt

  15. Time-resolved soft x-ray absorption setup using multi-bunch operation modes at synchrotrons

    International Nuclear Information System (INIS)

    Stebel, L.; Sigalotti, P.; Ressel, B.; Cautero, G.; Malvestuto, M.; Capogrosso, V.; Bondino, F.; Magnano, E.; Parmigiani, F.

    2011-01-01

    Here, we report on a novel experimental apparatus for performing time-resolved soft x-ray absorption spectroscopy in the sub-ns time scale using non-hybrid multi-bunch mode synchrotron radiation. The present setup is based on a variable repetition rate Ti:sapphire laser (pump pulse) synchronized with the ∼500 MHz x-ray synchrotron radiation bunches and on a detection system that discriminates and singles out the significant x-ray photon pulses by means of a custom made photon counting unit. The whole setup has been validated by measuring the time evolution of the L 3 absorption edge during the melting and the solidification of a Ge single crystal irradiated by an intense ultrafast laser pulse. These results pave the way for performing synchrotron time-resolved experiments in the sub-ns time domain with variable repetition rate exploiting the full flux of the synchrotron radiation.

  16. Synchronization of x-ray pulses to the pump laser in an ultrafast x-ray facility

    International Nuclear Information System (INIS)

    Corlett, J.N.; Barry, W.; Byrd, J.M.; Schoenlein, R.; Zholents, A.

    2002-01-01

    Accurate timing of ultrafast x-ray probe pulses emitted from a synchrotron radiation source with respect to a pump laser exciting processes in the sample under study is critical for the investigation of structural dynamics in the femtosecond regime. We describe a scheme for synchronizing femtosecond x-ray pulses relative to a pump laser. X-ray pulses of <100 fs duration are generated from a proposed source based on a recirculating superconducting linac [1,2,3]. Short x-ray pulses are obtained by a process of electron pulse compression, followed by transverse temporal correlation of the electrons, and ultimately x-ray pulse compression. Timing of the arrival of the x-ray pulse with respect to the pump laser is found to be dominated by the operation of the deflecting cavities which provide the transverse temporal correlation of the electrons. The deflecting cavities are driven from a highly stable RF signal derived from a modelocked laser oscillator which is also the origin of the pump l aser pulses

  17. Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser

    DEFF Research Database (Denmark)

    Lemke, Henrik T.; Bressler, Christian; Chen, Lin X.

    2013-01-01

    X-ray free electron lasers (XFELs) deliver short (current (SASE based) XFELs, they can be used for measuring high......-quality X-ray absorption data and we report femtosecond time-resolved X-ray absorption near-edge spectroscopy (XANES) measurements of a spin-crossover system, iron(II) tris(2,2'-bipyridine) in water. The data indicate that the low-spin to high-spin transition can be modeled by single-exponential kinetics...

  18. X-ray Pulse Length Characterization using the Surface Magneto Optic Kerr Effect

    International Nuclear Information System (INIS)

    Krejcik, P.; SLAC

    2006-01-01

    It will be challenging to measure the temporal profile of the hard X-ray SASE beam independently from the electron beam in the LCLS and other 4th generation light sources. A fast interaction mechanism is needed that can be probed by an ultrafast laser pulse in a pump-probe experiment. It is proposed to exploit the rotation in polarization of light reflected from a thin magnetized film, known as the surface magneto optic Kerr effect (SMOKE), to witness the absorption of the x-ray pulse in the thin film. The change in spin orbit coupling induced by the x-ray pulse occurs on the subfemtosecond time scale and changes the polarization of the probe beam. The limitation to the technique lies with the bandwidth of the probe laser pulse and how short the optical pulse can be made. The SMOKE mechanism will be described and the choices of materials for use with 1.5 (angstrom) x-rays. A schematic description of the pump-probe geometry for x-ray diagnosis is also described

  19. RXTE detects X-ray bursts from Circinus X-1

    NARCIS (Netherlands)

    Linares, M.; Soleri, P.; Watts, A.; Altamirano, D.; Armas-Padilla, M.; Cavecchi, Y.; Degenaar, N.; Kalamkar, M.; Kaur, R.; van der Klis, M.; Patruno, A.; Wijnands, R.; Yang, Y.; Casella, P.; Rea, N.

    After the recent report of X-ray re-brightening (ATel #2608), RXTE has observed the peculiar neutron star X-ray binary Cir X-1 eleven times during the last two weeks (May 11-25, 2010). We report the detection of nine X-ray bursts in RXTE-PCA data, 25 years after the first -and the only previous-

  20. Development of X-ray excitable luminescent probes for scanning X-ray microscopy

    International Nuclear Information System (INIS)

    Moronne, M.M.

    1999-01-01

    Transmission soft X-ray microscopy is now capable of achieving resolutions that are typically 5 times better than the best-visible light microscopes. With expected improvements in zone plate optics, an additional factor of two may be realized within the next few years. Despite the high resolution now available with X-ray microscopes and the high X-ray contrast provided by biological molecules in the soft X-ray region (λ=2-5 nm), molecular probes for localizing specific biological targets have been lacking. To circumvent this problem, X-ray excitable molecular probes are needed that can target unique biological features. In this paper we report our initial results on the development of lanthanide-based fluorescent probes for biological labeling. Using scanning luminescence X-ray microscopy (SLXM, Jacobsen et al., J. Microscopy 172 (1993) 121-129), we show that lanthanide organo-polychelate complexes are sufficiently bright and radiation resistant to be the basis of a new class of X-ray excitable molecular probes capable of providing at least a fivefold improvement in resolution over visible light microscopy. Lanthanide probes, able to bind 80-100 metal ions per molecule, were found to give strong luminescent signals with X-ray doses exceeding 10 8 Gy, and were used to label actin stress fibers and in vitro preparations of polymerized tubulin. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... over time. top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and easiest ... bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams ...

  2. Comparison of the X-Ray and Radio Light Curves of Quasar PKS 1510--089

    Science.gov (United States)

    Aller, M. F.; Marscher, A. P.; Marchenko-Jorstad, S. G.; McHardy, I. M.; Aller, H. D.

    1998-01-01

    We present results for the X-ray-bright superluminal AGN PKS 1510-089 (z=0.36) monitored weekly with the Rossi X-Ray Timing Explorer for the past four years in order to study the origin of X-ray emission from this extremely variable blazer. These RXTE data are compared with weekly cm-band flux and polarization observations from the Michigan Diameter telescope, to identify correlated activity and associated frequency-dependent time delays for constraining X-ray emission models; and bimonthly 7mm VLBA total and linearly polarized intensity imaging to identify temporal associations between X-ray events and the ejection of superluminal components and disturbances in the magnetic field, to test if the X-ray energy release is related to changes in the inner jet flow. Both the X-ray (2-20 keV) and radio flux are highly variable on timescales of weeks. The VLBA mas structure is dominated by a bright core with a weak jet; both the ejection of very fast superluminal knots and changes in the fractional polarization and EVPA of the core on timescales of one to four months are identified. Two outbursts in 1997 are well-resolved in both the centimeter and X-ray bands. Both the strong temporal association and the similar outburst shape support a causal relation, and a discrete cross-correlation analysis identifies that the X-ray lags the radio by 16 days during the bursts. Starting in 1998 the behavior changes: the correlation is weaker with the X-ray possibly leading the radio by six days. During the full time window there is a correlation between bands as expected if the radio photons are upscattered to X-ray energies. The time correlations and difference between the flat X-ray spectral index (0.0 <= alpha <= 0.5 where F(sub v) is proportional to v(exp -alpha)), and the mm-wave synchrotron spectrum (alpha = 0.8) are discussed within the framework of viable SSC models.

  3. X-ray streak crystal spectography

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Brown, T.; Medecki, H.

    1983-01-01

    We have built an x-ray streaked crystal spectrograph for making time-resolved x-ray spectral measurements. This instrument can access Bragg angles from 11 0 to 38 0 and x-ray spectra from 200 eV to greater than 10 keV. We have demonstrated resolving powers, E/δE > 200 at 1 keV and time resolution less than 20 psec. A description of the instrument and an example of the data is given

  4. Using acoustic levitation in synchrotron based laser pump hard x-ray probe experiments

    Science.gov (United States)

    Hu, Bin; Lerch, Jason; Suthar, Kamlesh; Dichiara, Anthony

    Acoustic levitation provides a platform to trap and hold a small amount of material by using standing pressure waves without a container. The technique has a potential to be used for laser pump x-ray probe experiments; x-ray scattering and laser distortion from the container can be avoided, sample consumption can be minimized, and unwanted chemistry that may occur at the container interface can be avoided. The method has been used at synchrotron sources for studying protein and pharmaceutical solutions using x-ray diffraction (XRD) and small angle x-ray scattering (SAXS). However, pump-probe experiments require homogeneously excited samples, smaller than the absorption depth of the material that must be held stably at the intersection of both the laser and x-ray beams. We discuss 1) the role of oscillations in acoustic levitation and the optimal acoustic trapping conditions for x-ray/laser experiments, 2) opportunities to automate acoustic levitation for fast sample loading and manipulation, and 3) our experimental results using SAXS to monitor laser induced thermal expansion in gold nanoparticles solution. We also performed Finite Element Analysis to optimize the trapping performance and stability of droplets ranging from 0.4 mm to 2 mm. Our early x-ray/laser demonstrated the potential of the technique for time-resolved X-ray science.

  5. Time-resolved X-ray photoelectron spectroscopy techniques for the study of interfacial charge dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Neppl, Stefan, E-mail: sneppl@lbl.gov; Gessner, Oliver

    2015-04-15

    Highlights: • Ultrafast interfacial charge transfer is probed with atomic site specificity. • Femtosecond X-ray photoelectron spectroscopy using a free electron laser. • Efficient and flexible picosecond X-ray photoelectron pump–probe scheme using synchrotron radiation. - Abstract: X-ray photoelectron spectroscopy (XPS) is one of the most powerful techniques to quantitatively analyze the chemical composition and electronic structure of surfaces and interfaces in a non-destructive fashion. Extending this technique into the time domain has the exciting potential to shed new light on electronic and chemical dynamics at surfaces by revealing transient charge configurations with element- and site-specificity. Here, we describe prospects and challenges that are associated with the implementation of picosecond and femtosecond time-resolved X-ray photoelectron spectroscopy at third-generation synchrotrons and X-ray free-electron lasers, respectively. In particular, we discuss a series of laser-pump/X-ray-probe photoemission experiments performed on semiconductor surfaces, molecule-semiconductor interfaces, and films of semiconductor nanoparticles that demonstrate the high sensitivity of time-resolved XPS to light-induced charge carrier generation, diffusion and recombination within the space charge layers of these materials. Employing the showcase example of photo-induced electronic dynamics in a dye-sensitized semiconductor system, we highlight the unique possibility to probe heterogeneous charge transfer dynamics from both sides of an interface, i.e., from the perspective of the molecular electron donor and the semiconductor acceptor, simultaneously. Such capabilities will be crucial to improve our microscopic understanding of interfacial charge redistribution and associated chemical dynamics, which are at the heart of emerging energy conversion, solar fuel generation, and energy storage technologies.

  6. Techniques for synchronization of X-Ray pulses to the pump laser in an ultrafast X-Ray facility

    International Nuclear Information System (INIS)

    Corlett, J.N.; Doolittle, L.; Schoenlein, R.; Staples, J.; Wilcox, R.; Zholents, A.

    2003-01-01

    Accurate timing of ultrafast x-ray probe pulses emitted from a synchrotron radiation source with respect to the signal initiating a process in the sample under study is critical for the investigation of structural dynamics in the femtosecond regime. We describe schemes for achieving accurate timing of femtosecond x-ray synchrotron radiation pulses relative to a pump laser, where x-rays pulses of <100 fs duration are generated from the proposed LUX source based on a recirculating superconducting linac. We present a description of the timing signal generation and distribution systems to minimize timing jitter of the x-rays relative to the experimental lasers

  7. Developments in time-resolved x-ray research at APS beamline 7ID

    Energy Technology Data Exchange (ETDEWEB)

    Walko, D. A., E-mail: d-walko@anl.gov; Adams, B. W.; Doumy, G.; Dufresne, E. M.; Li, Yuelin; March, A. M.; Sandy, A. R.; Wang, Jin; Wen, Haidan; Zhu, Yi [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2016-07-27

    The 7ID beamline of the Advanced Photon Source (APS) is dedicated to time-resolved research using x-ray imaging, scattering, and spectroscopy techniques. Time resolution is achieved via gated detectors and/or mechanical choppers in conjunction with the time structure of the x-ray beam. Three experimental hutches allow for a wide variety of experimental setups. Major areas of research include atomic, molecular, and optical physics; chemistry; condensed matter physics in the bulk, thin film, and surface regimes; and fluid-spray dynamics. Recent developments in facilities at 7ID include a high-power, high-repetition-rate picosecond laser to complement the 1 kHz ultrafast laser. For the ultrafast laser, a newly commissioned optical parametric amplifier provides pump wavelength from 0.2 to 15 µm with energy per pulse up to 200 µJ. A nanodiffraction station has also been commissioned, using Fresnel zone-plate optics to achieve a focused x-ray spot of 300 nm. This nanoprobe is not only used to spatially resolve the evolution of small features in samples after optical excitation, but also has been combined with an intense THz source to study material response under ultrafast electric fields.

  8. Large Observatory for x-ray Timing (LOFT-P): a Probe-class mission concept study

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Chakrabarty, Deepto; Feroci, Marco; Alvarez, Laura; Baysinger, Michael; Becker, Chris; Bozzo, Enrico; Brandt, Soren; Carson, Billy; Chapman, Jack; Dominguez, Alexandra; Fabisinski, Leo; Gangl, Bert; Garcia, Jay; Griffith, Christopher; Hernanz, Margarita; Hickman, Robert; Hopkins, Randall; Hui, Michelle; Ingram, Luster; Jenke, Peter; Korpela, Seppo; Maccarone, Tom; Michalska, Malgorzata; Pohl, Martin; Santangelo, Andrea; Schanne, Stephane; Schnell, Andrew; Stella, Luigi; van der Klis, Michiel; Watts, Anna; Winter, Berend; Zane, Silvia

    2016-07-01

    LOFT-P is a mission concept for a NASA Astrophysics Probe-Class (matter? What are the effects of strong gravity on matter spiraling into black holes? It would be optimized for sub-millisecond timing of bright Galactic X-ray sources including X-ray bursters, black hole binaries, and magnetars to study phenomena at the natural timescales of neutron star surfaces and black hole event horizons and to measure mass and spin of black holes. These measurements are synergistic to imaging and high-resolution spectroscopy instruments, addressing much smaller distance scales than are possible without very long baseline X-ray interferometry, and using complementary techniques to address the geometry and dynamics of emission regions. LOFT-P would have an effective area of >6 m2, > 10x that of the highly successful Rossi X-ray Timing Explorer (RXTE). A sky monitor (2-50 keV) acts as a trigger for pointed observations, providing high duty cycle, high time resolution monitoring of the X-ray sky with 20 times the sensitivity of the RXTE All-Sky Monitor, enabling multi-wavelength and multimessenger studies. A probe-class mission concept would employ lightweight collimator technology and large-area solid-state detectors, segmented into pixels or strips, technologies which have been recently greatly advanced during the ESA M3 Phase A study of LOFT. Given the large community interested in LOFT (>800 supporters*, the scientific productivity of this mission is expected to be very high, similar to or greater than RXTE ( 2000 refereed publications). We describe the results of a study, recently completed by the MSFC Advanced Concepts Office, that demonstrates that such a mission is feasible within a NASA probe-class mission budget.

  9. Diffracted X-ray tracking: new system for single molecular detection with X-rays

    CERN Document Server

    Sasaki, Y C; Adachi, S; Suzuki, Y; Yagi, N

    2001-01-01

    We propose a new X-ray methodology for direct observations of the behaviors of single molecular units in real time and real space. This new system, which we call Diffracted X-ray Tracking (DXT), monitors the Brownian motions of a single molecular unit by observations of X-ray diffracted spots from a nanocrystal, tightly bound to the individual single molecular unit in bio-systems. DXT does not determine any translational movements, but only orientational movements.

  10. Diffracted X-ray tracking: new system for single molecular detection with X-rays

    International Nuclear Information System (INIS)

    Sasaki, Y.C.; Okumura, Y.; Adachi, S.; Suzuki, Y.; Yagi, N.

    2001-01-01

    We propose a new X-ray methodology for direct observations of the behaviors of single molecular units in real time and real space. This new system, which we call Diffracted X-ray Tracking (DXT), monitors the Brownian motions of a single molecular unit by observations of X-ray diffracted spots from a nanocrystal, tightly bound to the individual single molecular unit in bio-systems. DXT does not determine any translational movements, but only orientational movements

  11. Topics in Astrophysical X-Ray and Gamma Ray Spectroscopy. Ph.D. Thesis - Maryland Univ.

    Science.gov (United States)

    Bussard, R. W.

    1978-01-01

    A number of topics relating to astrophysical observations that have already been made or are currently planned of spectral features, mostly emission lines, in the X-ray and gamma ray region of the electromagnetic spectrum are investigated. These topics include: the production of characteristic X-ray and gamma ray lines by nonthermal ions, spectral features induced by processes occurring in strong magnetic fields, and the positron annihilation line at 0.5 MeV. The rate of X-ray production at 6.8 keV by the 2p to 1s transition in fast hydrogen- and helium-like iron ions, following both electron capture to excited levels and collisional excitation is calculated. The cross section for electron-ion Coulomb collisions in strong fields is also calculated.

  12. X-ray crystallography

    Science.gov (United States)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  13. Automatic segmentation of mandible in panoramic x-ray

    OpenAIRE

    Abdi, Amir Hossein; Kasaei, Shohreh; Mehdizadeh, Mojdeh

    2015-01-01

    As the panoramic x-ray is the most common extraoral radiography in dentistry, segmentation of its anatomical structures facilitates diagnosis and registration of dental records. This study presents a fast and accurate method for automatic segmentation of mandible in panoramic x-rays. In the proposed four-step algorithm, a superior border is extracted through horizontal integral projections. A modified Canny edge detector accompanied by morphological operators extracts the inferior border of t...

  14. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  15. Fast time-resolved aerosol collector: proof of concept

    Science.gov (United States)

    Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.

    2010-10-01

    Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.

  16. Lightning x-rays inside thunderclouds, in-flight measurements on-board an A350

    Science.gov (United States)

    van Deursen, Alexander; Kochkin, Pavlo; de Boer, Alte; Bardet, Michiel; Boissin, Jean-François

    2015-04-01

    Thunderstorms emit bursts of energetic radiation. Moreover, lightning stepped leader produces x-ray pulses. The phenomena, their interrelation and impact on Earth's atmosphere and near space are not fully understood yet. The In-flight Lightning Strike Damage Assessment System ILDAS was developed in an EU FP6 project ( http://ildas.nlr.nl/ ) to provide information on threat that lightning poses to aircraft. It is intended to localize the lightning attachment points in order to reduce maintenance time and to build statics on lightning current. The system consists of 2 E-field sensors and a varying number of H-field sensors. It has recently been enhanced by two LaBr3 scintillation detectors inside the aircraft. The scintillation detectors are sensitive to x- and gamma-rays above 30 keV. The entire system is installed on-board of an A-350 aircraft and digitizes data with 100Msamples/sec rate when triggered by lightning. A continuously monitoring channel counts the number of occurrences that the x-ray signal exceeds a set of trigger levels. In the beginning of 2014 the aircraft flew through thunderstorm cells collecting the data from the sensors. The x-rays generated by the lightning flash are measured in synchronization better than 40 ns with the lightning current information during a period of 1 second around the strike. The continuous channel stores x-ray information with very limited time and amplitude resolution during the whole flight. That channel would allow x-rays from cosmic ray background, TGFs and continuous gamma-ray glow of thundercloud outside the 1 s time window. In the EGU2014 we presented the ILDAS system and showed that the x-ray detection works as intended. Fast x-ray bursts have been detected during stepped/dart stepped leaders and during interception of lightning. Data analysis of continuous channel recordings will be presented as well.

  17. Observing Solvation Dynamics with Simultaneous Femtosecond X-ray Emission Spectroscopy and X-ray Scattering

    DEFF Research Database (Denmark)

    Haldrup, Kristoffer; Gawelda, Wojciech; Abela, Rafael

    2016-01-01

    and structural changes, and local solvent structural changes are desired. We have studied the intra- and intermolecular dynamics of a model chromophore, aqueous [Fe(bpy)3]2+, with complementary X-ray tools in a single experiment exploiting intense XFEL radiation as a probe. We monitored the ultrafast structural...... rearrangement of the solute with X-ray emission spectroscopy, thus establishing time zero for the ensuing X-ray diffuse scattering analysis. The simultaneously recorded X-ray diffuse scattering atterns reveal slower subpicosecond dynamics triggered by the intramolecular structural dynamics of the photoexcited...

  18. Fast radiographic systems

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1984-08-01

    Industrial radiography can be performed with shorter exposure times, when instead of X-ray film with lead intensifying screens the radiographic paper with fluorescent screen is used. With paper radiography one can obtain lower material, equipment, and labor costs, shorter exposure and processing times, and easier radiation protection. The speed of the radiographic inspection can also be increased by the use of fluorometallic intensifying screens together with a special brand of X-ray film. Before accepting either of the two fast radiographic systems one must be sure that they can produce radiographs of adequate image quality. Therefore an investigation was performed on that subject using ISO wire IQI's and ASTM penetrameters. The radiographic image quality was tested for aluminium and steel up to 30 mm thick using various brands of radiographic paper and X-ray film with fluorometallic screens and comparing them with fast X-ray films with lead screens. Both systems give satisfactory results. (author)

  19. Time-resolved x-ray spectra of laser irradiated high-Z targets

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Attwood, D.T.; Boyle, M.J.; Campbell, E.M.; Coleman, L.C.; Kornblum, H.N.

    1977-01-01

    Recent results obtained by using the Livermore 15 psec x-ray streak camera to record x-ray emission from laser-irradiated high-z targets in the 1-20 keV range are reported. Nine to eleven K-edge filter channels were used for the measurements. In the lower energy channels, a dynamic range of x-ray emission intensity of better than three orders of magnitude have been recorded. Data will be presented which describe temporally and spectrally resolved x-ray spectra of gold disk targets irradiated by laser pulses from the Argus facility, including the temporal evolution of the superthermal x-ray tail

  20. Real-time segmentation of multiple implanted cylindrical liver markers in kilovoltage and megavoltage x-ray images

    International Nuclear Information System (INIS)

    Fledelius, W; Worm, E; Høyer, M; Grau, C; Poulsen, P R

    2014-01-01

    Gold markers implanted in or near a tumor can be used as x-ray visible landmarks for image based tumor localization. The aim of this study was to develop and demonstrate fast and reliable real-time segmentation of multiple liver tumor markers in intra-treatment kV and MV images and in cone-beam CT (CBCT) projections, for real-time motion management. Thirteen patients treated with conformal stereotactic body radiation therapy in three fractions had 2–3 cylindrical gold markers implanted in the liver prior to treatment. At each fraction, the projection images of a pre-treatment CBCT scan were used for automatic generation of a 3D marker model that consisted of the size, orientation, and estimated 3D trajectory of each marker during the CBCT scan. The 3D marker model was used for real-time template based segmentation in subsequent x-ray images by projecting each marker's 3D shape and likely 3D motion range onto the imager plane. The segmentation was performed in intra-treatment kV images (526 marker traces, 92 097 marker projections) and MV images (88 marker traces, 22 382 marker projections), and in post-treatment CBCT projections (42 CBCT scans, 71 381 marker projections). 227 kV marker traces with low mean contrast-to-noise ratio were excluded as markers were not visible due to MV scatter. Online segmentation times measured for a limited dataset were used for estimating real-time segmentation times for all images. The percentage of detected markers was 94.8% (kV), 96.1% (MV), and 98.6% (CBCT). For the detected markers, the real-time segmentation was erroneous in 0.2–0.31% of the cases. The mean segmentation time per marker was 5.6 ms [2.1–12 ms] (kV), 5.5 ms [1.6–13 ms] (MV), and 6.5 ms [1.8–15 ms] (CBCT). Fast and reliable real-time segmentation of multiple liver tumor markers in intra-treatment kV and MV images and in CBCT projections was demonstrated for a large dataset. (paper)

  1. Real-time x-ray fluoroscopy-based catheter detection and tracking for cardiac electrophysiology interventions

    International Nuclear Information System (INIS)

    Ma Yingliang; Housden, R. James; Razavi, Reza; Rhode, Kawal S.; Gogin, Nicolas; Cathier, Pascal; Gijsbers, Geert; Cooklin, Michael; O'Neill, Mark; Gill, Jaswinder; Rinaldi, C. Aldo

    2013-01-01

    Purpose: X-ray fluoroscopically guided cardiac electrophysiology (EP) procedures are commonly carried out to treat patients with arrhythmias. X-ray images have poor soft tissue contrast and, for this reason, overlay of a three-dimensional (3D) roadmap derived from preprocedural volumetric images can be used to add anatomical information. It is useful to know the position of the catheter electrodes relative to the cardiac anatomy, for example, to record ablation therapy locations during atrial fibrillation therapy. Also, the electrode positions of the coronary sinus (CS) catheter or lasso catheter can be used for road map motion correction.Methods: In this paper, the authors present a novel unified computational framework for image-based catheter detection and tracking without any user interaction. The proposed framework includes fast blob detection, shape-constrained searching and model-based detection. In addition, catheter tracking methods were designed based on the customized catheter models input from the detection method. Three real-time detection and tracking methods are derived from the computational framework to detect or track the three most common types of catheters in EP procedures: the ablation catheter, the CS catheter, and the lasso catheter. Since the proposed methods use the same blob detection method to extract key information from x-ray images, the ablation, CS, and lasso catheters can be detected and tracked simultaneously in real-time.Results: The catheter detection methods were tested on 105 different clinical fluoroscopy sequences taken from 31 clinical procedures. Two-dimensional (2D) detection errors of 0.50 ± 0.29, 0.92 ± 0.61, and 0.63 ± 0.45 mm as well as success rates of 99.4%, 97.2%, and 88.9% were achieved for the CS catheter, ablation catheter, and lasso catheter, respectively. With the tracking method, accuracies were increased to 0.45 ± 0.28, 0.64 ± 0.37, and 0.53 ± 0.38 mm and success rates increased to 100%, 99.2%, and 96

  2. Shining X-rays on catalysts at work

    Energy Technology Data Exchange (ETDEWEB)

    Grunwaldt, J-D, E-mail: jdg@kt.dtu.d [Technical University of Denmark, Department of Chemical and Biochemical Engineering, Building 229, DK-2800 Kgs. Lyngby (Denmark)

    2009-11-15

    Structure-performance relationships gained by studying catalysts at work are considered the key to further development of catalysts underlined here by a brief overview on our research in this area. The partial oxidation of methane to hydrogen and carbon monoxide over Pt- and Rh-based catalysts and the total combustion of hydrocarbons demonstrate the importance of structural identification of catalysts in its working state and the measurement of the catalytic performance at the same time. Moreover, proper cell design is a key both here and in liquid phase reactions including preparation or high pressure reactions. In several cases structural changes during preparation, activation and reaction occur on a subminute scale or the catalyst structure varies inside a reactor as a result of temperature or concentration gradients. This, additionally, requires time and spatial resolution. Examples from time-resolved QEXAFS studies during the partial oxidation of methane over Pt- and Rh-based catalysts demonstrate some of the recent developments of the technique (use not only of Si(111) but also Si(311) crystals, angular encoder, full EXAFS spectra at subsecond recording time, and modulation excitation spectroscopy). In order to obtain spectroscopic information on the oxidation state inside a microreactor, scanning and full field X-ray microscopy with X-ray absorption spectroscopic contrast were achieved under reaction conditions. If a microbeam is applied, fast scanning techniques like QEXAFS are required. In this way, even X-ray absorption spectroscopic tomographic images of a slice of a microreactor were obtained. The studies were recently extended to spatiotemporal studies that give important insight into the dynamics of the catalyst structure in a spatial manner with subsecond time-resolution.

  3. Spectral and temporal properties of the X-ray pulsar SMC X-1 at hard X-rays

    Science.gov (United States)

    Kunz, M.; Gruber, D. E.; Kendziorra, E .; Kretschmar, P.; Maisack, M.; Mony, B.; Staubert, R.; Doebereiner, S.; Englhauser, J.; Pietsch, W.

    1993-01-01

    The binary X-ray pulsar SMC X- 1 has been observed at hard X-rays with the High Energy X-Ray Experiment (HEXE) on nine occasions between Nov. 1987 and March 1989. A thin thermal bremsstrahlung fit to the phase averaged spectrum yields a plasma temperature (14.4 +/- 1.3) keV and a luminosity above (1.1 +/- 0.1) x 10 exp 38 erg/s in the 20-80 keV band. Pulse period values have been established for three observations, confirming the remarkably stable spin-up trend of SMC X-1. In one of the three observations the pulse profile was seen to deviate from a dominant double pulsation, while at the same time the pulsed fraction was unusually large. For one observation we determined for the first time the pulsed fraction in narrow energy bands. It increases with photon energy from about 20 percent up to over 60 percent in the energy range from 20 to 80 keV.

  4. The feasibility of independent observations/detections of GRBs in X-rays

    International Nuclear Information System (INIS)

    Hudec, R.; Skulinova, M.; Pina, L.; Sveda, L.; Semencova, V.; Inneman, A.

    2009-01-01

    According to the observational statistics a large majority of all GRBs exhibit X-ray emission. In addition, a dedicated separate group of GRB, the XRFs, exists which emission dominates in the X-ray spectral range. And the third group of GRB related objects (yet hypothetical) are the group of off-axis observed GRBs (orphan afterglows). These facts justify the consideration of an independent experiment for monitoring, detection and analyses of GRBs and others fast X-ray transients in X-rays. We will present and discuss such experiment based on wide-field X-ray telescopes of Lobster Eye type. The wide field and fine sensitivity of Lobster Eye X-ray All-Sky Monitor make such instruments important tools in study of GRBs and related objects.

  5. Detection of X-ray due to gun arcing of high power klystron

    International Nuclear Information System (INIS)

    Vogel, Vladimir; Matsumoto, Shuji

    2004-01-01

    X-ray due to a klystron gun arching was monitored by a detector consists of a plastic scintillation fiber and a photo-multiplier. Observation of the X-ray was done during the processing run of an X-band klystron. A clear signal of X-ray burst is observed when the gun arcing occurs. Possibility of the fast protection for a pulse modulator from the gun arcing is discussed. (author)

  6. The Imaging X-ray Polarimetry Explorer (IXPE

    Directory of Open Access Journals (Sweden)

    Martin C. Weisskopf

    Full Text Available The Imaging X-ray Polarimetry Explorer (IXPE expands observation space by simultaneously adding polarization to the array of X-ray source properties currently measured (energy, time, and location. IXPE will thus open new dimensions for understanding how X-ray emission is produced in astrophysical objects, especially in systems under extreme physical conditions. Keywords: X-ray astronomy, X-ray polarimetry, X-ray imaging

  7. Be Foil ''Filter Knee Imaging'' NSTX Plasma with Fast Soft X-ray Camera

    International Nuclear Information System (INIS)

    B.C. Stratton; S. von Goeler; D. Stutman; K. Tritz; L.E. Zakharov

    2005-01-01

    A fast soft x-ray (SXR) pinhole camera has been implemented on the National Spherical Torus Experiment (NSTX). This paper presents observations and describes the Be foil Filter Knee Imaging (FKI) technique for reconstructions of a m/n=1/1 mode on NSTX. The SXR camera has a wide-angle (28 o ) field of view of the plasma. The camera images nearly the entire diameter of the plasma and a comparable region in the vertical direction. SXR photons pass through a beryllium foil and are imaged by a pinhole onto a P47 scintillator deposited on a fiber optic faceplate. An electrostatic image intensifier demagnifies the visible image by 6:1 to match it to the size of the charge-coupled device (CCD) chip. A pair of lenses couples the image to the CCD chip

  8. Material Discriminated X-Ray CT System by Using New X-Ray Imager with Energy Discriminate Function

    Directory of Open Access Journals (Sweden)

    Toru Aoki

    2008-04-01

    Full Text Available Material discriminated X-ray CT system has been constructed by using conventional X-ray tube (white X-ray source and photon-counting X-ray imager as an application with energy band detection. We have already reported material identify X-ray CT using K-shell edge method elsewhere. In this report the principle of material discrimination was adapted the separation of electron-density and atomic number from attenuation coefficient mapping in X-ray CT reconstructed image in two wavelength X-ray CT method using white X-ray source and energy discriminated X-ray imager by using two monochrome X-ray source method. The measurement phantom was prepared as four kinds material rods (Carbon(C, Iron(Fe, Copper(Cu, Titanium(Ti rods of 3mm-diameter inside an aluminum(Al rod of 20mm-diameter. We could observed material discriminated X-ray CT reconstructed image, however, the discrimination properties were not good than two monochrome X-ray CT method. This results was could be explained because X-ray scattering, beam-hardening and so on based on white X-ray source, which could not observe in two monochrome X-ray CT method. However, since our developed CdTe imager can be detect five energy-bands at the same time, we can use multi-band analysis to decrease the least square error margin. We will be able to obtain more high separation in atomic number mapping in X-ray CT reconstructed image by using this system.

  9. X-ray area monitor

    International Nuclear Information System (INIS)

    Nintrakit, N.

    1983-01-01

    The X-ray area monitor is a nuclear electronic device that is essential in radiation protection in high radiation laboratories, e.g. in medical diagnosis using X-rays and in industrial X-radiography. Accidentally the level of X-radiator may arise above the safe permissible level and in such a case the alarm system of the area monitor will work and disconnect the ac power supply form the X-ray unit. Principally the device is a radiation counter using G.M.tube as radiation detector with high voltage supply variable form 200 to 2,000 volts. The maximum count rate of the scaler is 1.5 MHz and the total count is displayed on 4 digit LED's. A time base is used to control the counting time, the frequency multiplier, radiation safety limit, comparator and the radiation hazard warning signal. The reliability of the instrument is further enhanced through the addition of the random correction circuit, and it is applicable both in X- and γ -radiation

  10. IGR J17544-2619 IN DEPTH WITH SUZAKU: DIRECT EVIDENCE FOR CLUMPY WINDS IN A SUPERGIANT FAST X-RAY TRANSIENT

    International Nuclear Information System (INIS)

    Rampy, Rachel A.; Smith, David M.; Negueruela, Ignacio

    2009-01-01

    We present direct evidence for dense clumps of matter in the companion wind in a Supergiant Fast X-ray Transient (SFXT) binary. This is seen as a brief period of enhanced absorption during one of the bright, fast flares that distinguish these systems. The object under study was IGR J17544-2619, and a total of 236 ks of data were accumulated with the Japanese satellite Suzaku. The activity in this period spans a dynamic range of almost 10 4 in luminosity and gives a detailed look at SFXT behavior.

  11. Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser

    DEFF Research Database (Denmark)

    Arnlund, David; Johansson, Linda C.; Wickstrand, Cecilia

    2014-01-01

    We describe a method to measure ultrafast protein structural changes using time-resolved wide-angle X-ray scattering at an X-ray free-electron laser. We demonstrated this approach using multiphoton excitation of the Blastochloris viridis photosynthetic reaction center, observing an ultrafast glob...

  12. Time-resolved x-ray absorption spectroscopy: Watching atoms dance

    Science.gov (United States)

    Milne, Chris J.; Pham, Van-Thai; Gawelda, Wojciech; van der Veen, Renske M.; El Nahhas, Amal; Johnson, Steven L.; Beaud, Paul; Ingold, Gerhard; Lima, Frederico; Vithanage, Dimali A.; Benfatto, Maurizio; Grolimund, Daniel; Borca, Camelia; Kaiser, Maik; Hauser, Andreas; Abela, Rafael; Bressler, Christian; Chergui, Majed

    2009-11-01

    The introduction of pump-probe techniques to the field of x-ray absorption spectroscopy (XAS) has allowed the monitoring of both structural and electronic dynamics of disordered systems in the condensed phase with unprecedented accuracy, both in time and in space. We present results on the electronically excited high-spin state structure of an Fe(II) molecular species, [FeII(bpy)3]2+, in aqueous solution, resolving the Fe-N bond distance elongation as 0.2 Å. In addition an analysis technique using the reduced χ2 goodness of fit between FEFF EXAFS simulations and the experimental transient absorption signal in energy space has been successfully tested as a function of excited state population and chemical shift, demonstrating its applicability in situations where the fractional excited state population cannot be determined through other measurements. Finally by using a novel ultrafast hard x-ray 'slicing' source the question of how the molecule relaxes after optical excitation has been successfully resolved using femtosecond XANES.

  13. The Mapping X-ray Fluorescence Spectrometer (MapX)

    Science.gov (United States)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  14. Use in plant breeding of acute, chronic or fractionated doses of X-rays or fast neutrons as illustrated with leaves of Saintpaulia

    NARCIS (Netherlands)

    Broertjes, C.

    1971-01-01


    The parameters used were survival of irradiated leaves of S. ionantha , production of adventitious plantlets at the base of the petiole and mutation frequency.

    The differences between unfiltered X-rays from a 250/25 deep therapy apparatus and fast neutrons

  15. Repeated pulsed x-ray emission equipment

    International Nuclear Information System (INIS)

    Terauchi, Hikaru; Iida, Satoshi

    1982-01-01

    X-ray diffraction technique has been applied to determine the spatial positions of atoms which compose a material, and it is needless to say that the technique is a fundamental means regardless of the fields of research. However, the application of X-ray diffraction to the research on physical properties has been so far limited to know the spatial positions of atoms or molecules under thermal equilibrium condition. The addition of time element to the conventional technique, that is, the analysis of material structure including the time-varying processes under non-equilibrium conditions, is considered to approach the elucidation of the essence of materials. The authors call this dynamic structural analysis. The authors have planned to analyze X-ray diffraction intensity which has the resolution of about 10 -8 s in the real time which is conjugate with energy. However, present pulsed X-ray sources are not suitable for diffraction experiment because the pulse width is too long or X-ray wavelength is too short. Accordingly, the authors have made for trial a pulsed X-ray source for diffraction experiment. Its specifications are: diode voltage (X-ray tube voltage) from 200 to 300 kV, diode current from 2 to 5 kA, pulse width of about 30ns, maximum repetition frequency 10 pps, and X-ray focus size of 2 mm diameter. One of the features of this source is the repeated generation of pulsed X-ray. This is the first trial in the world, and is indispensable to the dynamic structural analysis described above. The quality of the emitted X-ray is also written. (Wakatsuki, Y.)

  16. Timing and low-level rf system for an x-ray laser

    Directory of Open Access Journals (Sweden)

    Yuji Otake

    2016-02-01

    Full Text Available An x-ray free-electron laser (XFEL, SACLA, designed to open up new science, was constructed for generating coherent x rays with a peak power of more than 10 GW and a very short pulse of below 30 fs. This feature demands a very highly short-term temporal stability of less than 50 fs to the acceleration rf field of SACLA. For this reason, we developed a timing and low-level rf (LLRF system for SACLA based on that of the SPring8 compact SASE source (SCSS test accelerator for verifying the feasibility of an XFEL. The performance of the system using the in-phase and quadrature rf manipulation method was improved from SCSS’s system. Since the facility length of SACLA is 700 m, which is 10 times longer than that of the SCSS test accelerator, a phase-stabilized optical-fiber system designed to transmit time standard rf signals with low loss was also developed and deployed. This optical-fiber system equips fiber optical-length feedback control in order to mitigate environmental effects, such as temperature and humidity changes. On the other hand, the demanded maximum rf temporal stability is less than 50 fs, which is almost 10 times smaller than that of the SCSS test accelerator. Hence, reducing electric noise and increasing the temperature stability around timing and LLRF instruments were necessary and realized with a very low-noise power supply and a hemathermal 19-inch enclosure. The short-term temporal performance of the timing LLRF system finally attained a temporal stability of less than 13.6 fs in rms measured by a beam arrival-time measurement. This stability greatly helps to achieve the stable x-ray lasing of SACLA for routine operation during user experiments.

  17. The LOFT (Large Observatory for X-ray Timing) background simulations

    DEFF Research Database (Denmark)

    Campana, R.; Feroci, M.; Del Monte, E.

    2012-01-01

    The Large Observatory For X-ray Timing (LOFT) is an innovative medium-class mission selected for an assessment phase in the framework of the ESA M3 Cosmic Vision call. LOFT is intended to answer fundamental questions about the behavior of matter in theh very strong gravitational and magnetic fields...

  18. THERMAL EMISSION IN THE EARLY X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS: FOLLOWING THE PROMPT PHASE TO LATE TIMES

    Energy Technology Data Exchange (ETDEWEB)

    Friis, Mette [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Watson, Darach, E-mail: mef4@hi.is, E-mail: darach@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark)

    2013-07-01

    Thermal radiation, peaking in soft X-rays, has now been detected in a handful of gamma-ray burst (GRB) afterglows and has to date been interpreted as shock break-out of the GRB's progenitor star. We present a search for thermal emission in the early X-ray afterglows of a sample of Swift bursts selected by their brightness in X-rays at early times. We identify a clear thermal component in eight GRBs and track the evolution. We show that at least some of the emission must come from highly relativistic material since two show an apparent super-luminal expansion of the thermal component. Furthermore, we determine very large luminosities and high temperatures for many of the components-too high to originate in a supernova shock break-out. Instead, we suggest that the component may be modeled as late photospheric emission from the jet, linking it to the apparently thermal component observed in the prompt emission of some GRBs at gamma-ray and hard X-ray energies. By comparing the parameters from the prompt emission and the early afterglow emission, we find that the results are compatible with the interpretation that we are observing the prompt quasi-thermal emission component in soft X-rays at a later point in its evolution.

  19. Fast neutron activation analysis and radioisotope X-ray fluorescence study on KALEWA and NAMMA coal

    Energy Technology Data Exchange (ETDEWEB)

    Naing-Win, [Arts and Science University, Yangon (Myanmar)

    1981-07-01

    Kalewa coal was studied with Fast Neutron Activation Analysis (FNAA) technique, employing KAMAN A-710 neutron generator and HP(Ge) detector coupled to ``Canberra`` series 30 MCA. Sequential irradiation and dual aluminium foil monitoring method was employed. Simultaneous multielement analysis was carried out. Namma Coal was studied with radioisotope X-ray Fluorescence (XRF) technique, employing Co-57 exciter source and HP(Ge) detector coupled to ``Canberra`` series 40 MCA. In both FNAA and XRF study, the results obtained were compared to that obtained with Atomic Absorption Spectrophotometry (AAS) technique. Finally, the results were reviewed together with those obtained from similar work on coal with FNAA and XRF techniques. (author).

  20. Fast neutron activation analysis and radioisotope X-ray fluorescence study on KALEWA and NAMMA coal

    International Nuclear Information System (INIS)

    Naing-Win

    1981-07-01

    Kalewa coal was studied with Fast Neutron Activation Analysis (FNAA) technique, employing KAMAN A-710 neutron generator and HP(Ge) detector coupled to ''Canberra'' series 30 MCA. Sequential irradiation and dual aluminium foil monitoring method was employed. Simultaneous multielement analysis was carried out. Namma Coal was studied with radioisotope X-ray Fluorescence (XRF) technique, employing Co-57 exciter source and HP(Ge) detector coupled to ''Canberra'' series 40 MCA. In both FNAA and XRF study, the results obtained were compared to that obtained with Atomic Absorption Spectrophotometry (AAS) technique. Finally, the results were reviewed together with those obtained from similar work on coal with FNAA and XRF techniques. (author)

  1. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Gursky, H.

    1974-01-01

    This text contains ten chapters and three appendices. Following an introduction, chapters two through five deal with observational techniques, mechanisms for the production of x rays in a cosmic setting, the x-ray sky and solar x-ray emission. Chapters six through ten include compact x-ray sources, supernova remnants, the interstellar medium, extragalactic x-ray sources and the cosmic x-ray background. Interactions of x rays with matter, units and conversion factors and a catalog of x-ray sources comprise the three appendices. (U.S.)

  2. X-ray emission from comets

    International Nuclear Information System (INIS)

    Dennerl, Konrad

    1999-01-01

    When comet Hyakutake (C/1996 B2) encountered Earth in March 1996 at a minimum distance of only 15 million kilometers (40 times the distance of the moon), x-ray and extreme ultraviolet emission was discovered for the first time from a comet. The observations were performed with the astronomy satellites ROSAT and EUVE. A systematic search for x-rays from comets in archival data, obtained during the ROSAT all-sky survey in 1990/91, resulted in the discovery of x-ray emission from four additional comets. They were detected at seven occasions in total, when they were optically 300 to 30 000 times fainter than Hyakutake. These findings indicated that comets represent a new class of celestial x-ray sources. Subsequent detections of x-ray emission from additional comets with the satellites ROSAT, EUVE, and BeppoSAX confirmed this conclusion. The x-ray observations have obviously revealed the presence of a process in comets which had escaped attention until recently. This process is most likely charge exchange between highly charged heavy ions in the solar wind and cometary neutrals. The solar wind, a stream of particles continuously emitted from the sun with ≅ 400 km s -1 , consists predominantly of protons, electrons, and alpha particles, but contains also a small fraction (≅0.1%) of highly charged heavier ions, such as C 6+ ,O 6+ ,Ne 8+ ,Si 9+ ,Fe 11+ . When these ions capture electrons from the cometary gas, they attain highly excited states and radiate a large fraction of their excitation energy in the extreme ultraviolet and x-ray part of the spectrum. Charge exchange reproduces the intensity, the morphology and the spectrum of the observed x-ray emission from comets very well

  3. A customizable software for fast reduction and analysis of large X-ray scattering data sets: applications of the new DPDAK package to small-angle X-ray scattering and grazing-incidence small-angle X-ray scattering.

    Science.gov (United States)

    Benecke, Gunthard; Wagermaier, Wolfgang; Li, Chenghao; Schwartzkopf, Matthias; Flucke, Gero; Hoerth, Rebecca; Zizak, Ivo; Burghammer, Manfred; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Trebbin, Martin; Förster, Stephan; Paris, Oskar; Roth, Stephan V; Fratzl, Peter

    2014-10-01

    X-ray scattering experiments at synchrotron sources are characterized by large and constantly increasing amounts of data. The great number of files generated during a synchrotron experiment is often a limiting factor in the analysis of the data, since appropriate software is rarely available to perform fast and tailored data processing. Furthermore, it is often necessary to perform online data reduction and analysis during the experiment in order to interactively optimize experimental design. This article presents an open-source software package developed to process large amounts of data from synchrotron scattering experiments. These data reduction processes involve calibration and correction of raw data, one- or two-dimensional integration, as well as fitting and further analysis of the data, including the extraction of certain parameters. The software, DPDAK (directly programmable data analysis kit), is based on a plug-in structure and allows individual extension in accordance with the requirements of the user. The article demonstrates the use of DPDAK for on- and offline analysis of scanning small-angle X-ray scattering (SAXS) data on biological samples and microfluidic systems, as well as for a comprehensive analysis of grazing-incidence SAXS data. In addition to a comparison with existing software packages, the structure of DPDAK and the possibilities and limitations are discussed.

  4. High resolution time- and 2-dimensional space-resolved x-ray imaging of plasmas at NOVA

    International Nuclear Information System (INIS)

    Landen, O.L.

    1992-01-01

    A streaked multiple pinhole camera technique, first used by P. Choi et al. to record time- and 2-D space-resolved soft X-ray images of plasma pinches, has been implemented on laser plasmas at NOVA. The instrument is particularly useful for time-resolved imaging of small sources ( 2.5 key imaging, complementing the existing 1--3 key streaked X-ray microscope capabilities at NOVA

  5. X-ray image intensifier tube

    International Nuclear Information System (INIS)

    1981-01-01

    An improved real-time x-ray image intensifier tube of the proximity type used for medical x-ray fluoroscopy is described. It is claimed that this intensifier is of sufficient gain and resolution whilst remaining convenient to use and that the design is such that the patient dosage is minimized whilst the x-ray image information content at the scintillator-photocathode screen is maximized. (U.K.)

  6. Soft X-ray radiation damage in EM-CCDs used for Resonant Inelastic X-ray Scattering

    Science.gov (United States)

    Gopinath, D.; Soman, M.; Holland, A.; Keelan, J.; Hall, D.; Holland, K.; Colebrook, D.

    2018-02-01

    Advancement in synchrotron and free electron laser facilities means that X-ray beams with higher intensity than ever before are being created. The high brilliance of the X-ray beam, as well as the ability to use a range of X-ray energies, means that they can be used in a wide range of applications. One such application is Resonant Inelastic X-ray Scattering (RIXS). RIXS uses the intense and tuneable X-ray beams in order to investigate the electronic structure of materials. The photons are focused onto a sample material and the scattered X-ray beam is diffracted off a high resolution grating to disperse the X-ray energies onto a position sensitive detector. Whilst several factors affect the total system energy resolution, the performance of RIXS experiments can be limited by the spatial resolution of the detector used. Electron-Multiplying CCDs (EM-CCDs) at high gain in combination with centroiding of the photon charge cloud across several detector pixels can lead to sub-pixel spatial resolution of 2-3 μm. X-ray radiation can cause damage to CCDs through ionisation damage resulting in increases in dark current and/or a shift in flat band voltage. Understanding the effect of radiation damage on EM-CCDs is important in order to predict lifetime as well as the change in performance over time. Two CCD-97s were taken to PTB at BESSY II and irradiated with large doses of soft X-rays in order to probe the front and back surfaces of the device. The dark current was shown to decay over time with two different exponential components to it. This paper will discuss the use of EM-CCDs for readout of RIXS spectrometers, and limitations on spatial resolution, together with any limitations on instrument use which may arise from X-ray-induced radiation damage.

  7. The response of mouse skin to re-irradiation with x-rays or fast neutrons

    International Nuclear Information System (INIS)

    Tsukiyama, Iwao; Egawa, Sunao; Kumazawa, Akiyoshi; Iino, Yuu.

    1986-01-01

    Effects of neutrons and x-rays on mouse skin which had been previously irradiated with x-rays were investigated. Two tattoo marks were placed in the hairless legs of mice at intervals of 15 mm. The legs were exposed to various doses of x-ray and neutrons to determine the relative biological effectiveness (RBE) using the contraction of the skin as an index. The RBE was 0.93 - 1.73. The legs of the mice were preexposed to 25 Gy of x-ray, and exposed 4 months later. The contraction of the skin began earlier than after the first irradiation. RBE was 2.18 - 2.47. This RBE was higher than that in untreated mice. These results suggest that previously irradiated normal tissues are much more sensitive to neutrons than to x-rays. (author)

  8. Neutron and X-ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Carini, Gabriella [SLAC National Accelerator Lab., Menlo Park, CA (United States); Denes, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gruener, Sol [Cornell Univ., Ithaca, NY (United States); Lessner, Elianne [Dept. of Energy (DOE), Washington DC (United States). Office of Science Office of Basic Energy Sciences

    2012-08-01

    (and two computing hurdles that result from the corresponding increase in data volume) for the detector community to overcome in order to realize the full potential of BES neutron and X-ray facilities. Resolving these detector impediments will improve scientific productivity both by enabling new types of experiments, which will expand the scientific breadth at the X-ray and neutron facilities, and by potentially reducing the beam time required for a given experiment. These research priorities are summarized in the table below. Note that multiple, simultaneous detector improvements are often required to take full advantage of brighter sources. High-efficiency hard X-ray sensors: The fraction of incident particles that are actually detected defines detector efficiency. Silicon, the most common direct-detection X-ray sensor material, is (for typical sensor thicknesses) 100% efficient at 8 keV, 25%efficient at 20 keV, and only 3% efficient at 50 keV. Other materials are needed for hard X-rays. Replacement for 3He for neutron detectors: 3He has long been the neutron detection medium of choice because of its high cross section over a wide neutron energy range for the reaction 3He + n —> 3H + 1H + 0.764 MeV. 3He stockpiles are rapidly dwindling, and what is available can be had only at prohibitively high prices. Doped scintillators hold promise as ways to capture neutrons and convert them into light, although work is needed on brighter, more efficient scintillator solutions. Neutron detectors also require advances in speed and resolution. Fast-framing X-ray detectors: Today’s brighter X-ray sources make time-resolved studies possible. For example, hybrid X-ray pixel detectors, initially developed for particle physics, are becoming fairly mature X-ray detectors, with considerable development in Europe. To truly enable time-resolved studies, higher frame rates and dynamic range are required, and smaller pixel sizes are desirable. High-speed spectroscopic X-ray detectors

  9. X-ray-mediated cross linking of protein and DNA

    International Nuclear Information System (INIS)

    Minsky, B.D.; Braun, A.

    1977-01-01

    Using a simple filter assay for the binding of BSA or lysozyme to DNA, two mechanisms of x-ray-mediated cross linking are shown to occur. One, a fast reaction, appears to involve a radical intermediate, is inhibited by high pH and salt, and seems to be enhanced by deoxygenation. The second mechanism, a slow time-dependent component, differs from the fast reaction in its stimulation by histidine, its inhibition by catalase, and the lack of an oxygen effect. Separate irradiation of DNA or water does not lead to cross linking. However, separate irradiation of protein leads to cross linking which proceeds with slow-component kinetics

  10. Relationship between type III-V radio and hard X-ray bursts

    International Nuclear Information System (INIS)

    Stewart, R.T.

    1978-01-01

    Type III-V radio bursts are found to be closely associated with impulsive hard X-ray bursts. Probably 0.1% to 1% of the fast electrons in the X-ray source region escape to heights >0.1 solar radii in the corona and excite the type III-V burst. (Auth.)

  11. The STAR-X X-Ray Telescope Assembly (XTA)

    Science.gov (United States)

    McClelland, Ryan S.; Bautz, Mark W.; Bonafede, Joseph A.; Miller, Eric D.; Saha, Timo T.; Solly, Peter M.; Zhang, William W.

    2017-01-01

    The Survey and Time-domain Astrophysical Research eXplorer (STAR-X) science goals are to discover what powers the most violent explosions in the Universe, understand how black holes grow across cosmic time and mass scale, and measure how structure formation heats the majority of baryons in the Universe. To achieve these goals, STAR-X requires a powerful X-ray telescope with a large field of view, large collecting area, and excellent point spread function. The STAR-X instrument, the X-Ray Telescope Assembly (XTA), meets these requirements using a powerful X-ray mirror technology based on precision-polished single crystal silicon and a mature CCD detector technology. The XTA is composed of three major subsystems: an X-ray Mirror Assembly (MA) of high resolution, lightweight mirror segments fabricated out of single crystal silicon; a Focal Plane Assembly (FPA) made of back-illuminated CCD's capable of detecting X-rays with excellent quantum efficiency; and a composite Telescope Tube that structurally links the MA and FPA. The MA consists of 5,972 silicon mirror segments mounted into five subassemblies called meta-shells. A meta-shell is constructed from an annular central structural shell covered with interlocking layers of mirror segments. This paper describes the requirements, design, and analysis of the XTA subsystems with particular focus on the MA.

  12. Discriminating cosmic muons and X-rays based on rise time using a GEM detector

    Science.gov (United States)

    Wu, Hui-Yin; Zhao, Sheng-Ying; Wang, Xiao-Dong; Zhang, Xian-Ming; Qi, Hui-Rong; Zhang, Wei; Wu, Ke-Yan; Hu, Bi-Tao; Zhang, Yi

    2016-08-01

    Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × 10 cm is developed, and a method of discriminating between cosmic muons and X-rays based on rise time is tested. The energy resolution of the GEM detector is tested by 55Fe ray source to prove the GEM detector has a good performance. Analysis of the complete signal-cycles allows us to get the rise time and pulse heights. The experiment result indicates that cosmic muons and X-rays can be discriminated with an appropriate rise time threshold. Supported by National Natural Science Foundation of China (11135002, 11275235, 11405077, 11575073)

  13. Soft x-ray streak cameras

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1988-01-01

    This paper is a discussion of the development and of the current state of the art in picosecond soft x-ray streak camera technology. Accomplishments from a number of institutions are discussed. X-ray streak cameras vary from standard visible streak camera designs in the use of an x-ray transmitting window and an x-ray sensitive photocathode. The spectral sensitivity range of these instruments includes portions of the near UV and extends from the subkilovolt x- ray region to several tens of kilovolts. Attendant challenges encountered in the design and use of x-ray streak cameras include the accommodation of high-voltage and vacuum requirements, as well as manipulation of a photocathode structure which is often fragile. The x-ray transmitting window is generally too fragile to withstand atmospheric pressure, necessitating active vacuum pumping and a vacuum line of sight to the x-ray signal source. Because of the difficulty of manipulating x-ray beams with conventional optics, as is done with visible light, the size of the photocathode sensing area, access to the front of the tube, the ability to insert the streak tube into a vacuum chamber and the capability to trigger the sweep with very short internal delay times are issues uniquely relevant to x-ray streak camera use. The physics of electron imaging may place more stringent limitations on the temporal and spatial resolution obtainable with x-ray photocathodes than with the visible counterpart. Other issues which are common to the entire streak camera community also concern the x-ray streak camera users and manufacturers

  14. Einstein pictures the x-ray sky

    International Nuclear Information System (INIS)

    Hartline, B.K.

    1979-01-01

    The second High Energy Astronomy Observatory (HEAO-2, Einstein) is revolutionizing x-ray astronomy just as its namesake revolutionized physics. Earlier x-ray observatories, including HEAO-1, were designed to scan the sky for x-ray emitters. With Einstein, the challenge has shifted from discovering x-ray sources to understanding the processes producing the x-rays. But having 500 times the sensitivity of previous detectors, Einstein makes more than its share of discoveries, too. For example, it sees distant quasars and clusters of galaxies that can barely be detected by the largest optical telescopes

  15. X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope

    International Nuclear Information System (INIS)

    Ikeda, Kenichi; Kotaki, Hideyuki; Nakajima, Kazuhisa

    2002-01-01

    We have developed laser-produced plasma X-ray sources using femtosecond laser pulses at 10Hz repetition rate in a table-top size in order to investigate basic mechanism of X-ray emission from laser-matter interactions and its application to a X-ray microscope. In a soft X-ray region over 5 nm wavelength, laser-plasma X-ray emission from a solid target achieved an intense flux of photons of the order of 1011 photons/rad per pulse with duration of a few 100 ps, which is intense enough to make a clear imaging in a short time exposure. As an application of laser-produced plasma X-ray source, we have developed a soft X-ray imaging microscope operating in the wavelength range around 14 nm. The microscope consists of a cylindrically ellipsoidal condenser mirror and a Schwarzshird objective mirror with highly-reflective multilayers. We report preliminary results of performance tests of the soft X-ray imaging microscope with a compact laser-produced plasma X-ray source

  16. Flash x-ray

    International Nuclear Information System (INIS)

    Johnson, Q.; Pellinen, D.

    1976-01-01

    The complementary techniques of flash x-ray radiography (FXR) and flash x-ray diffraction (FXD) provide access to a unique domain in nondestructive materials testing. FXR is useful in studies of macroscopic properties during extremely short time intervals, and FXD, the newer technique, is used in studies of microscopic properties. Although these techniques are similar in many respects, there are some substantial differences. FXD generally requires low-voltage, line-radiation sources and extremely accurate timing; FXR is usually less demanding. Phenomena which can be profitably studied by FXR often can also be studied by FXD to permit a complete materials characterization

  17. Flash X-ray

    International Nuclear Information System (INIS)

    Sato, Eiichi

    2003-01-01

    Generation of quasi-monochromatic X-ray by production of weakly ionized line plasma (flash X-ray), high-speed imaging by the X-ray and high-contrast imaging by the characteristic X-ray absorption are described. The equipment for the X-ray is consisted from the high-voltage power supply and condenser, turbo molecular pump, and plasma X-ray tube. The tube has a long linear anticathode to produce the line plasma and flash X-ray at 20 kA current at maximum. X-ray spectrum is measured by the imaging plate equipped in the computed radiography system after diffracted by a LiF single crystal bender. Cu anticathode generates sharp peaks of K X-ray series. The tissue images are presented for vertebra, rabbit ear and heart, and dog heart by X-ray fluoroscopy with Ce anticathode. Generation of K-orbit characteristic X-ray with extremely low bremsstrahung is to be attempted for medical use. (N.I.)

  18. X-Ray Timing Analysis of Cyg X-3 Using AstroSat/LAXPC: Detection of Milli-hertz Quasi-periodic Oscillations during the Flaring Hard X-Ray State

    Energy Technology Data Exchange (ETDEWEB)

    Pahari, Mayukh; Misra, Ranjeev [Inter-University Center for Astronomy and Astrophysics, Ganeshkhind, Pune 411007 (India); Antia, H M; Yadav, J S; Chauhan, Jai Verdhan; Chitnis, V R; Dedhia, Dhiraj; Katoch, Tilak; Madhwani, P; Shah, Parag [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Agrawal, P C [UM-DAE Center of Excellence for Basic Sciences, University of Mumbai, Kalina, Mumbai 400098 (India); Manchanda, R K [University of Mumbai, Kalina, Mumbai 400098 (India); Paul, B, E-mail: mayukh@iucaa.in [Department of Astronomy and Astrophysics, Raman Research Institute, Bengaluru 560080 (India)

    2017-11-01

    We present here results from the X-ray timing and spectral analysis of the X-ray binary Cyg X-3 using observations from the Large Area X-ray proportional Counter on board AstroSat . Consecutive light curves observed over a period of one year show the binary orbital period of 17253.56 ± 0.19 s. Another low-amplitude, slow periodicity of the order of 35.8 ± 1.4 days is observed, which may be due to the orbital precession as suggested earlier by Molteni et al. During the rising binary phase, power density spectra from different observations during the flaring hard X-ray state show quasi-periodic oscillations (QPOs) at ∼5–8 mHz, ∼12–14 mHz, and ∼18–24 mHz frequencies at the minimum confidence of 99%. However, during the consecutive binary decay phase, no QPO is detected up to 2 σ significance. Energy-dependent time-lag spectra show soft lag (soft photons lag hard photons) at the mHz QPO frequency and the fractional rms of the QPO increases with the photon energy. During the binary motion, the observation of mHz QPOs during the rising phase of the flaring hard state may be linked to the increase in the supply of the accreting material in the disk and corona via stellar wind from the companion star. During the decay phase, the compact source moves in the outer wind region causing the decrease in supply of material for accretion. This may cause weakening of the mHz QPOs below the detection limit. This is also consistent with the preliminary analysis of the orbital phase-resolved energy spectra presented in this paper.

  19. Development of X-ray diode with high performance

    International Nuclear Information System (INIS)

    Hou Lifei; Yang Gouhong; Liu Shenye; Wei Minxi; Yi Tao; Jiang Shao'en; Sun Kexu

    2011-01-01

    A new type of X-ray diode (XRD-II) with ultrafast response time was developed. XRD-II detector was improved on the basis of old XRD (XRD-I), and its performances were studied on the 8 ps laser facility. The results show that XRD-II has excellent high-Jantage tolerance (to 6 kV) and super-fast response time (rise time is about 40 ps, and full width at half maximum (FWHM) is about 80 ps when bias Jantage is 5 kV). The detector calibration was carried out on Beijing synchrotron radiation facility, which shows that the detector's sensitivity has not deteriorated. (authors)

  20. Fast electron and X-ray scattering as a tool to study target's structure

    International Nuclear Information System (INIS)

    Amusia, M.Ya.

    2007-01-01

    We concentrate on several relatively new aspects of the study of fast electron and X-ray scattering by atoms and atom-like objects, namely endohedral atoms and fullerenes. However, main attention is given to fast charge particle scattering. We show that the corresponding cross-sections, being expressed via so-called generalized oscillator strengths (GOS), give information on the electronic structure of the target and on the role of electron correlations in it. We consider what sort of information became available when analyzing the dependence of GOS upon their multipolarity, transferred momentum q and energy ω. To obtain theoretical results, we employ both the one-electron Hartree-Fock approximation and account for the multi-electron correlation in the target, using the random phase approximation with exchange. We demonstrate the role of non-dipole corrections in the small-angle fast-electron inelastic scattering. There dipole contribution dominates while non-dipole corrections can be considerably and controllably enhanced as compared to the case of low and medium energy photoionization. We show also that analyses of GOS for discrete level excitations permit to clarify their multipolarity. The results of calculations of Compton excitation and ionization cross-sections are presented. Attention is given to cooperative effects in inelastic fast electron-atom scattering that results in directed motion of the secondary electrons, a phenomenon that is similar to 'drag currents' in photoionization. We demonstrate how one should derive GOS for endohedral atoms, e.g. A-C 60 and what is the additional information that can be obtained from corresponding GOS. Most of discussions are illustrated by the results of concrete calculations

  1. X-ray detection capability of a Cs2ZnCl4 single-crystal scintillator

    International Nuclear Information System (INIS)

    Yahaba, Natsuna; Koshimizu, Masanori; Sun, Yan; Asai, Keisuke; Yanagida, Takayuki; Fujimoto, Yutaka; Haruki, Rie; Nishikido, Fumihiko; Kishimoto, Shunji

    2014-01-01

    The X-ray detection capability of a scintillation detector equipped with a Cs 2 ZnCl 4 single crystal was evaluated. The scintillation decay kinetics can be expressed as the sum of two exponential decay components. The fast decay component had a decay time constant of 1.8 ns, and its relative intensity was 95%. The total light output was 630 photons/MeV, and a subnanosecond timing resolution of 0.66 ns was obtained. The detection efficiency of 67.4 keV X-rays was 80% for a detector equipped with a 2.2-mm-thick Cs 2 ZnCl 4 crystal. Thus, excellent timing resolution and high detection efficiency were achieved simultaneously. (author)

  2. Hard X-Ray PHA System on the HT-7 Tokamak

    International Nuclear Information System (INIS)

    Lin Shiyao; Shi Yuejiang; Wan Baonian; Chen Zhongyong; Hu Liqun

    2006-01-01

    A new hard X-ray pulse-height analysis (PHA) system has been established on HT-7 tokamak for long pulse steady-state operation. This PHA system consists of hard X-ray diagnostics and multi-channel analysers (MCA). The hard X-ray diagnostics consists of a vertical X-ray detector array (CdTe) and a horizontal X-ray detector array (NaI). The hard X-ray diagnostics can provide the profile of power deposition and the distribution function of fast electron during radio frequency (RF) current drive. The MCA system is the electronic part of the PHA system, which has been modularized and linked to PC through LAN. Each module of MCA can connect with 8 X-ray detectors. The embedded Ethernet adapter in the MCA module makes the data communication between PC and MCA very convenient. A computer can control several modules of MCA through certain software and a hub. The RAM in MCA can store 1024 or more spectra for each detector and therefore the PHA system can be applied in the long pulse discharge of several minutes

  3. An Expanded Rossi X-Ray Timing Explorer Survey of X-Ray Variability in Seyfert 1 Galaxies

    Science.gov (United States)

    Markowitz, A.; Edelson, R.

    2004-12-01

    The first seven years of RXTE monitoring of Seyfert 1 active galactic nuclei have been systematically analyzed to yield five homogeneous samples of 2-12 keV light curves, probing hard X-ray variability on successively longer durations from ~1 day to ~3.5 yr. The 2-10 keV variability on timescales of ~1 day, as probed by ASCA, is included. All sources exhibit stronger X-ray variability toward longer timescales, but the increase is greater for relatively higher luminosity sources. Variability amplitudes are anticorrelated with X-ray luminosity and black hole mass, but amplitudes saturate and become independent of luminosity or black hole mass toward the longest timescales. The data are consistent with the models of power spectral density (PSD) movement described by Markowitz and coworkers and McHardy and coworkers, whereby Seyfert 1 galaxies' variability can be described by a single, universal PSD shape whose break frequency scales with black hole mass. The best-fitting scaling relations between variability timescale, black hole mass, and X-ray luminosity imply an average accretion rate of ~5% of the Eddington limit for the sample. Nearly all sources exhibit stronger variability in the relatively soft 2-4 keV band compared to the 7-12 keV band on all timescales. There are indications that relatively less luminous or less massive sources exhibit a greater degree of spectral variability for a given increase in overall flux.

  4. Optoelectronic Picosecond Detection of Synchrotron X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Stephen M. [Purdue Univ., West Lafayette, IN (United States)

    2017-08-04

    The goal of this research program was to develop a detector that would measure x-ray time profiles with picosecond resolution. This was specifically aimed for use at x-ray synchrotrons, where x-ray pulse profiles have Gaussian time spreads of 50-100 ps (FWHM), so the successful development of such a detector with picosecond resolution would permit x-ray synchrotron studies to break through the pulse width barrier. That is, synchrotron time-resolved studies are currently limited to pump-probe studies that cannot reveal dynamics faster than ~50 ps, whereas the proposed detector would push this into the physically important 1 ps domain. The results of this research effort, described in detail below, are twofold: 1) the original plan to rely on converting electronic signals from a semiconductor sensor into an optical signal proved to be insufficient for generating signals with the necessary time resolution and sensitivity to be widely applicable; and 2) an all-optical method was discovered whereby the x-rays are directly absorbed in an optoelectronic material, lithium tantalate, which can then be probed by laser pulses with the desired picosecond sensitivity for detection of synchrotron x-rays. This research program has also produced new fundamental understanding of the interaction of x-rays and optical lasers in materials that has now created a viable path for true picosecond detection of synchrotron x-rays.

  5. Toward Femtosecond X-ray Spectroscopy at the Advanced Light Source

    International Nuclear Information System (INIS)

    Chong, Henry Herng Wei

    2004-01-01

    The realization of tunable, ultrashort pulse x-ray sources promises to open new venues of science and to shed new light on long-standing problems in condensed matter physics and chemistry. Fundamentally new information can now be accessed. Used in a pump-probe spectroscopy, ultrashort x-ray pulses provide a means to monitor atomic rearrangement and changes in electronic structure in condensed-matter and chemical systems on the physically-limiting time-scales of atomic motion. This opens the way for the study of fast structural dynamics and the role they play in phase transitions, chemical reactions and the emergence of exotic properties in materials with strongly interacting degrees of freedom. The ultrashort pulse x-ray source developed at the Advanced Light Source at the Lawrence Berkeley Laboratory is based on electron slicing in storage rings, and generates ∼100 femtosecond pulses of synchrotron radiation spanning wavelengths from the far-infrared to the hard x-ray region of the electromagnetic spectrum. The tunability of the source allows for the adaptation of a broad range of static x-ray spectroscopies to useful pump-probe measurements. Initial experiments are attempted on transition metal complexes that exhibit relatively large structural changes upon photo-excitation and which have excited-state evolution determined by strongly interacting structural, electronic and magnetic degrees of freedom. Specifically, iron(II) complexes undergo a spin-crossover transition upon optical irradiation. The dynamics of the transition involve a metal-to-ligand charge transfer, a ΔS = 2 change in magnetic moment and 10% bond dilation in the first coordination shell of the iron. Studies of the electronic dynamics are studied with time-resolved optical absorption measurements. The current progress of time-resolved structural studies to complete the picture of the spin-crossover transition is presented

  6. Radiation-shielded double crystal X-ray monochromator for JET

    International Nuclear Information System (INIS)

    Barnsley, R.; Morsi, H.W.; Rupprecht, G.; Kaellne, E.

    1989-01-01

    A double crystal X-ray monochromator for absolute wavelength and intensity measurements with very effective shielding of its detector against neutrons and hard X-rays was brought into operation at JET. Fast wavelength scans were taken of impurity line radiation in the wavelength region from about 0.1 nm to 2.3 nm, and monochromatic as well as spectral line scans, for different operational modes of JET. (author) 5 refs., 4 figs

  7. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    Science.gov (United States)

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  8. X-Ray

    Science.gov (United States)

    ... enema. What you can expect During the X-ray X-rays are performed at doctors' offices, dentists' offices, ... as those using a contrast medium. Your child's X-ray Restraints or other techniques may be used to ...

  9. Fast calculator for X-ray emission due to Radiative Recombination and Radiative Electron Capture in relativistic heavy-ion atom collisions

    Science.gov (United States)

    Herdrich, M. O.; Weber, G.; Gumberidze, A.; Wu, Z. W.; Stöhlker, Th.

    2017-10-01

    In experiments with highly charged, fast heavy ions the Radiative Recombination (RR) and Radiative Electron Capture (REC) processes have significant cross sections in an energy range of up to a few GeV / u . They are some of the most important charge changing processes in collisions of heavy ions with atoms and electrons, leading to the emission of a photon along with the formation of the ground and excited atomic states. Hence, for the understanding and planning of experiments, in particular for X-ray spectroscopy studies, at accelerator ring facilities, such as FAIR, it is crucial to have a good knowledge of these cross sections and the associated radiation characteristics. In the frame of this work a fast calculator, named RECAL, for the RR and REC process is presented and its capabilities are demonstrated with the analysis of a recently conducted experiment at the Experimental Storage Ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany. A method is presented to determine unknown X-ray emission cross sections via normalization of the recorded spectra to REC cross sections calculated by RECAL.

  10. Transforming Our Understanding of the X-ray Universe: The Imaging X-ray Polarimeter Explorer (IXPE)

    Science.gov (United States)

    Weisskopf, Martin C.; Bellazzini, Ronaldo; Costa, Enrico; Matt, Giorgio; Marshall, Herman; ODell, Stephen L.; Pavlov, George; Ramsey, Brian; Romani, Roger

    2014-01-01

    Accurate X-ray polarimetry can provide unique information on high-energy-astrophysical processes and sources. As there have been no meaningful X-ray polarization measurements of cosmic sources since our pioneering work in the 1970's, the time is ripe to explore this new parameter space in X-ray astronomy. To accomplish this requires a well-calibrated and well understood system that-particularly for an Explorer mission-has technical, cost, and schedule credibility. The system that we shall present satisfies these conditions, being based upon completely calibrated imaging- and polarization-sensitive detectors and proven X-ray-telescope technology.

  11. Guest–Host Interactions Investigated by Time-Resolved X-ray Spectroscopies and Scattering at MHz Rates

    DEFF Research Database (Denmark)

    Haldrup, Martin Kristoffer; Vanko, G.; Gawelda, W.

    2012-01-01

    We have studied the photoinduced low spin (LS) to high spin (HS) conversion of [Fe(bipy)3]2+ in aqueous solution. In a laser pump/X-ray probe synchrotron setup permitting simultaneous, time-resolved X-ray diffuse scattering (XDS) and X-ray spectroscopic measurements at a 3.26 MHz repetition rate...... lifetime, allowing the detection of an ultrafast change in bulk solvent density. An analysis approach directly utilizing the spectroscopic data in the XDS analysis effectively reduces the number of free parameters, and both combined permit extraction of information about the ultrafast structural dynamics...

  12. Real-Time X-ray Radiography Diagnostics of Components in Solid Rocket Motors

    Science.gov (United States)

    Cortopassi, A. C.; Martin, H. T.; Boyer, E.; Kuo, K. K.

    2012-01-01

    the recession of the solid propellant grain can drastically alter the flow-field and effect the recession of internal insulation and nozzle materials. Simultaneous measurement of the overall erosion rate, the development of the char layer, and the recession of the char-virgin interface during the motor operation can be rather difficult. While invasive techniques have been used with limited success, they have serious drawbacks. Break wires or make wire sensors can be installed into a sufficient number of locations in the charring material from which a time history of the charring surface can be deduced. These sensors fundamentally alter the local structure of the material in which they are imbedded. Also, the location of these sensors within the material is not known precisely without the use of an X-ray. To determine instantaneous recession rates, real-time X-ray radiography (X-ray RTR) has been utilized in several SRM experiments at PSU. The X-ray RTR system discussed in this paper consists of an X-ray source, X-ray image intensifier, and CCD camera connected to a capture computer. The system has been used to examine the ablation process of internal insulation as well as nozzle material erosion in a subscale SRM. The X-ray source is rated to 320 kV at 10 mA and has both a large (5.5 mm) and small (3.0 mm) focal spot. The lead-lined cesium iodide X-ray image intensifier produces an image which is captured by a CCD camera with a 1,000 x 1,000 pixel resolution. To produce accurate imagery of the object of interest, the alignment of the X-ray source to the X-ray image intensifier is crucial. The image sequences captured during the operation of an SRM are then processed to enhance the quality of the images. This procedure allows for computer software to extract data on the total erosion rate and the char layer thickness. Figure 1 Error! Reference source not found.shows a sequence of images captured during the operation the subscale SRM with the X-ray RTR system. The X-ray

  13. X-ray film calibration

    International Nuclear Information System (INIS)

    Stone, G.F.; Dittmore, C.H.; Henke, B.L.

    1986-01-01

    This paper discusses the use of silver halide x-ray films for imaging and spectroscopy which is limited by the range of intensities that can be recorded and densitometered. Using the manufacturers processing techniques can result in 10 2-3 range in intensity recorded over 0-5 density range. By modifying the chemistry and processing times, ranges of 10 5-6 can be recorded in the same density range. The authors report on x-ray film calibration work and dynamic range improvements. Changes to the processing chemistry and the resulting changes in dynamic range and x-ray sensitivity are discussed

  14. Picosecond x-ray streak camera studies

    International Nuclear Information System (INIS)

    Kasyanov, Yu.S.; Malyutin, A.A.; Richardson, M.C.; Chevokin, V.K.

    1975-01-01

    Some initial results of direct measurement of picosecond x-ray emission from laser-produced plasmas are presented. A PIM-UMI 93 image converter tube, incorporating an x-ray sensitive photocathode, linear deflection, and three stages of image amplification was used to analyse the x-ray radiation emanating from plasmas produced from solid Ti targets by single high-intensity picosecond laser pulses. From such plasmas, the x-ray emission typically persisted for times of 60psec. However, it is shown that this detection system should be capable of resolving x-ray phenomena of much shorter duration. (author)

  15. A fast search strategy for gravitational waves from low-mass x-ray binaries

    International Nuclear Information System (INIS)

    Messenger, C; Woan, G

    2007-01-01

    We present a new type of search strategy designed specifically to find continuously emitting gravitational wave sources in known binary systems. A component of this strategy is based on the incoherent summation of frequency-modulated binary signal sidebands, a method previously employed in the detection of electromagnetic pulsar signals from radio observations. The search pipeline can be divided into three stages: the first is a wide bandwidth, F-statistic search demodulated for sky position. This is followed by a fast second stage in which areas in frequency space are identified as signal candidates through the frequency domain convolution of the F-statistic with an approximate signal template. For this second stage only precise information on the orbit period and approximate information on the orbital semi-major axis are required a priori. For the final stage we propose a fully coherent Markov chain Monte Carlo based follow-up search on the frequency subspace defined by the candidates identified by the second stage. This search is particularly suited to the low-mass x-ray binaries, for which orbital period and sky position are typically well known and additional orbital parameters and neutron star spin frequency are not. We note that for the accreting x-ray millisecond pulsars, for which spin frequency and orbital parameters are well known, the second stage can be omitted and the fully coherent search stage can be performed. We describe the search pipeline with respect to its application to a simplified phase model and derive the corresponding sensitivity of the search

  16. X-ray evidence for ultra-fast outflows in AGNs

    Science.gov (United States)

    Tombesi, Francesco; Sambruna, Rita; Braito, Valentina; Reeves, James; Reynolds, Christopher; Cappi, Massimo

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 radio galaxies observed with XMM-Newton and Suzaku. We assessed the global detection significance of the absorption lines and performed a detailed photo-ionization modeling. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1} and the associated mechanical power is high, in the range ˜10^{43}--10^{45} erg/s. Therefore, UFOs are capable to provide a significant contribution to the AGN cosmological feedback and their study can provide important clues on the connection between accretion disks, winds and jets.

  17. Synchrotron x-ray microbeam characteristics for x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Iida, Atsuo; Noma, Takashi

    1995-01-01

    X-ray fluorescence analysis using a synchrotron x-ray microprobe has become an indispensable technique for non-destructive micro-analysis. One of the most important parameters that characterize the x-ray microbeam system for x-ray fluorescence analysis is the beam size. For practical analysis, however, the photon flux, the energy resolution and the available energy range are also crucial. Three types of x-ray microbeam systems, including monochromatic and continuum excitation systems, were compared with reference to the sensitivity, the minimum detection limit and the applicability to various types of x-ray spectroscopic analysis. 16 refs., 5 figs

  18. X-rays and magnetism

    International Nuclear Information System (INIS)

    Fischer, Peter; Ohldag, Hendrik

    2015-01-01

    Magnetism is among the most active and attractive areas in modern solid state physics because of intriguing phenomena interesting to fundamental research and a manifold of technological applications. State-of-the-art synthesis of advanced magnetic materials, e.g. in hybrid structures paves the way to new functionalities. To characterize modern magnetic materials and the associated magnetic phenomena, polarized x-rays have emerged as unique probes due to their specific interaction with magnetic materials. A large variety of spectroscopic and microscopic techniques have been developed to quantify in an element, valence and site-sensitive way properties of ferro-, ferri-, and antiferromagnetic systems, such as spin and orbital moments, and to image nanoscale spin textures and their dynamics with sub-ns time and almost 10 nm spatial resolution. The enormous intensity of x-rays and their degree of coherence at next generation x-ray facilities will open the fsec time window to magnetic studies addressing fundamental time scales in magnetism with nanometer spatial resolution. This review will give an introduction into contemporary topics of nanoscale magnetic materials and provide an overview of analytical spectroscopy and microscopy tools based on x-ray dichroism effects. Selected examples of current research will demonstrate the potential and future directions of these techniques. (report on progress)

  19. Characterization of X-ray emission from laser generated plasma

    Science.gov (United States)

    Cannavò, Antonino; Torrisi, Lorenzo; Ceccio, Giovanni; Cutroneo, Mariapompea; Calcagno, Lucia; Sciuto, Antonella; Mazzillo, Massimo

    2018-01-01

    X-ray emission from laser generated plasma was studied at low (1010 W/cm2) and high (1018 W/cm2) intensity using ns and fs laser, respectively. Plasma characteristics were controlled trough the laser parameters, the irradiation conditions and the target properties. The X-ray spectra were acquired using fast detection technique based on SiC diodes with different active regions. The X-ray yield increases with the atomic number of the target, both at low and high intensity, and a similar empirical law has been obtained. The X-ray emission mechanisms from plasma are correlated to the plasma temperature and density and to the Coulomb charge particle acceleration, due to the charge separation effects produced in the non-equilibrium plasma. Functional dependences, theoretical approaches and interpretation of possible mechanism will be presented and discussed.

  20. Characterization of X-ray emission from laser generated plasma

    Directory of Open Access Journals (Sweden)

    Cannavò Antonino

    2018-01-01

    Full Text Available X-ray emission from laser generated plasma was studied at low (1010 W/cm2 and high (1018 W/cm2 intensity using ns and fs laser, respectively. Plasma characteristics were controlled trough the laser parameters, the irradiation conditions and the target properties. The X-ray spectra were acquired using fast detection technique based on SiC diodes with different active regions. The X-ray yield increases with the atomic number of the target, both at low and high intensity, and a similar empirical law has been obtained. The X-ray emission mechanisms from plasma are correlated to the plasma temperature and density and to the Coulomb charge particle acceleration, due to the charge separation effects produced in the non-equilibrium plasma. Functional dependences, theoretical approaches and interpretation of possible mechanism will be presented and discussed.

  1. X-ray sky

    International Nuclear Information System (INIS)

    Gruen, M.; Koubsky, P.

    1977-01-01

    The history is described of the discoveries of X-ray sources in the sky. The individual X-ray detectors are described in more detail, i.e., gas counters, scintillation detectors, semiconductor detectors, and the principles of X-ray spectrometry and of radiation collimation aimed at increased resolution are discussed. Currently, over 200 celestial X-ray sources are known. Some were identified as nebulae, in some pulsations were found or the source was identified as a binary star. X-ray bursts of novae were also observed. The X-ray radiation is briefly mentioned of spherical star clusters and of extragalactic X-ray sources. (Oy)

  2. X-ray fluorescence system for thin film composition analysis during deposition

    International Nuclear Information System (INIS)

    Formica, Sarah P.; Lee, Susanne M.

    2005-01-01

    A fast-response-time X-ray fluorescence (XRF) system was designed with a monolithic polycapillary focusing optic for in situ composition profiling during materials deposition. The polycapillary optic produced 10 5 times more intensity at the sample than a pinhole, allowing the detector placement to be outside most deposition chambers. The resultant XRF signals were so strong that measurement times were comparable to monolayer growth times. XRF line scans from Ge 1-x Sn x thin films were used to map Sn concentration versus surface position with a 10 μm resolution. The extrapolated instrumental detection limit using a 20 W Cu source was 10 12 atoms (ng). XRF from a 100-nm ion-implanted Ge 0.72 Sn 0.28 sample demonstrated the system's ability to monitor initial growth stages during deposition

  3. The X-ray Astronomy Recovery Mission

    Science.gov (United States)

    Tashiro, M.; Kelley, R.

    2017-10-01

    On 25 March 2016, the Japanese 6th X-ray astronomical satellite ASTRO-H (Hitomi), launched on February 17, lost communication after a series of mishap in its attitude control system. In response to the mishap the X-ray astronomy community and JAXA analyzed the direct and root cause of the mishap and investigated possibility of a recovery mission with the international collaborator NASA and ESA. Thanks to great effort of scientists, agencies, and governments, the X-ray Astronomy Recovery Mission (XARM) are proposed. The recovery mission is planned to resume high resolution X-ray spectroscopy with imaging realized by Hitomi under the international collaboration in the shortest time possible, simply by focusing one of the main science goals of Hitomi Resolving astrophysical problems by precise high-resolution X-ray spectroscopy'. XARM will carry a 6 x 6 pixelized X-ray micro-calorimeter on the focal plane of an X-ray mirror assembly, and an aligned X-ray CCD camera covering the same energy band and wider field of view, but no hard X-ray or soft gamma-ray instruments are onboard. In this paper, we introduce the science objectives, mission concept, and schedule of XARM.

  4. High-speed image converter x-ray studies

    International Nuclear Information System (INIS)

    Bryukhnevitch, G.I.; Kas'yanov, Yu.S.; Korobkin, V.V.; Prokhorov, A.M.; Stepanov, B.M.; Chevokin, V.K.; Schelev, M.Ya.

    1975-01-01

    Two X-ray high-speed image-converter cameras (ICC) have been developed. In the first one a soft X-ray radiation is converted into visible light with the aid of a 0.5ns response time, plastic scintillator. The second camera incorporates a photocathode which is sensitive to visible and X-ray radiation. Its calculated temporal resolution approaches 5 to 7ps. Both developed cameras were employed for studies of X-ray radiation emitted by laser plasma. For the smooth nanosecond excited laser pulses, a noticeable amplitude modulation was recorded in all laser pulses reflected by plasma as well as in each third pulse of X-ray plasma radiation. It was also observed that the duration of X-ray plasma radiation is 20 to 40% shorter than that of the incident nanosecond laser pulses and this duration being 3 to 6 times longer than that of the picosecond irradiating pulses. The half-width of the recorded X-ray plasma pulses was 30 to 60ps. (author)

  5. Proton- and x-ray beams generated by ultra-fast CO2 lasers for medical applications

    Science.gov (United States)

    Pogorelsky, Igor; Polyanskiy, Mikhail; Yakimenko, Vitaly; Ben-Zvi, Ilan; Shkolnikov, Peter; Najmudin, Zulfikar; Palmer, Charlotte A. J.; Dover, Nicholas P.; Oliva, Piernicola; Carpinelli, Massimo

    2011-05-01

    Recent progress in using picosecond CO2 lasers for Thomson scattering and ion-acceleration experiments underlines their potentials for enabling secondary radiation- and particle- sources. These experiments capitalize on certain advantages of long-wavelength CO2 lasers, such as higher number of photons per energy unit, and favorable scaling of the electrons' ponderomotive energy and critical plasma density. The high-flux x-ray bursts produced by Thomson scattering of the CO2 laser off a counter-propagating electron beam enabled high-contrast, time-resolved imaging of biological objects in the picosecond time frame. In different experiments, the laser, focused on a hydrogen jet, generated monoenergetic proton beams via the radiation-pressure mechanism. The strong power-scaling of this regime promises realization of proton beams suitable for laser-driven proton cancer therapy after upgrading the CO2 laser to sub-PW peak power. This planned improvement includes optimizing the 10-μm ultra-short pulse generation, assuring higher amplification in the CO2 gas under combined isotopic- and power-broadening effects, and shortening the postamplification pulse to a few laser cycles (150-200 fs) via chirping and compression. These developments will move us closer to practical applications of ultra-fast CO2 lasers in medicine and other areas.

  6. A FOURIER-TRANSFORMED BREMSSTRAHLUNG FLASH MODEL FOR THE PRODUCTION OF X-RAY TIME LAGS IN ACCRETING BLACK HOLE SOURCES

    International Nuclear Information System (INIS)

    Kroon, John J.; Becker, Peter A.

    2014-01-01

    Accreting black hole sources show a wide variety of rapid time variability, including the manifestation of time lags during X-ray transients, in which a delay (phase shift) is observed between the Fourier components of the hard and soft spectra. Despite a large body of observational evidence for time lags, no fundamental physical explanation for the origin of this phenomenon has been presented. We develop a new theoretical model for the production of X-ray time lags based on an exact analytical solution for the Fourier transform describing the diffusion and Comptonization of seed photons propagating through a spherical corona. The resulting Green's function can be convolved with any source distribution to compute the associated Fourier transform and time lags, hence allowing us to explore a wide variety of injection scenarios. We show that thermal Comptonization is able to self-consistently explain both the X-ray time lags and the steady-state (quiescent) X-ray spectrum observed in the low-hard state of Cyg X-1. The reprocessing of bremsstrahlung seed photons produces X-ray time lags that diminish with increasing Fourier frequency, in agreement with the observations for a wide range of sources

  7. Comparison of neutron and high-energy X-ray dual-beam radiography for air cargo inspection

    International Nuclear Information System (INIS)

    Liu, Y.; Sowerby, B.D.; Tickner, J.R.

    2008-01-01

    Dual-beam radiography techniques utilising various combinations of high-energy X-rays and neutrons are attractive for screening bulk cargo for contraband such as narcotics and explosives. Dual-beam radiography is an important enhancement to conventional single-beam X-ray radiography systems in that it provides additional information on the composition of the object being imaged. By comparing the attenuations of transmitted dual high-energy beams, it is possible to build a 2D image, colour coded to indicate material. Only high-energy X-rays, gamma-rays and neutrons have the required penetration to screen cargo containers. This paper reviews recent developments and applications of dual-beam radiography for air cargo inspection. These developments include dual high-energy X-ray techniques as well as fast neutron and gamma-ray (or X-ray) radiography systems. High-energy X-ray systems have the advantage of generally better penetration than neutron systems, depending on the material being interrogated. However, neutron systems have the advantage of much better sensitivity to material composition compared to dual high-energy X-ray techniques. In particular, fast neutron radiography offers the potential to discriminate between various classes of organic material, unlike dual energy X-ray techniques that realistically only offer the ability to discriminate between organic and metal objects

  8. Discovery of X-Ray Emission from the Galactic Supernova Remnant G32.8-0.1 with Suzaku

    Science.gov (United States)

    Bamba, Aya; Terada, Yukikatsu; Hewitt, John; Petre, Robert; Angelini, Lorella; Safi-Harb, Samar; Zhou, Ping; Bocchino, Fabrizio; Sawada, Makoto

    2016-01-01

    We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8-0.1 (Kes 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT approximately 0.6 kiloelectronvolts) thermal emission in a nonequilibrium ionization state, but also a very high-temperature (approximately 3.4 kiloelectronvolts) component with a very low ionization timescale (approximately 2.7 times 10 (sup 9) per cubic centimeter per second), or a hard nonthermal component with a photon index Gamma approximately equal to 2.3. The average density of the low-temperature plasma is rather low, of the order of 10 (sup -3) - 10 (sup -2) per cubic centimeter, implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in teraelectronvolts with H.E.S.S. (High Energy Stereoscopic System), together with multi-wavelength studies of the remnant and other gamma-ray emitting SNRs, such as W28 and RCW 86. Analysis of a time-variable source, 2XMM J185114.3-000004, found in the northern part of the SNR, is also reported for the first time. Rapid time variability and a heavily absorbed hard-X-ray spectrum suggest that this source could be a new supergiant fast X-ray transient.

  9. X-ray astronomy

    International Nuclear Information System (INIS)

    Culhane, J.L.; Sanford, P.W.

    1981-01-01

    X-ray astronomy has been established as a powerful means of observing matter in its most extreme form. The energy liberated by sources discovered in our Galaxy has confirmed that collapsed stars of great density, and with intense gravitational fields, can be studied by making observations in the X-ray part of the electromagnetic spectrum. The astronomical objects which emit detectable X-rays include our own Sun and extend to quasars at the edge of the Universe. This book describes the history, techniques and results obtained in the first twenty-five years of exploration. Space rockets and satellites are essential for carrying the instruments above the Earth's atmosphere where it becomes possible to view the X-rays from stars and nebulae. The subject is covered in chapters, entitled: the birth of X-ray astronomy; the nature of X-radiation; X-rays from the Sun; solar-flare X-rays; X-rays from beyond the solar system; supernovae and their remnants; X-rays from binary stars; white dwarfs and neutron stars; black holes; X-rays from galaxies and quasars; clusters of galaxies; the observatories of the future. (author)

  10. Device for measuring the exposure time in dental X-ray - Cronox

    International Nuclear Information System (INIS)

    Menezes, Claudio J.M.; Santos, Luiz A.P. dos

    2009-01-01

    The Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE) developed a test device for monitoring the X-ray beam in dental equipment to its application in quality control programs. This device, called Odontologic Dosimetric Card (CDO of Cartao Dosimetrico Odontologico in Portuguese) uses thermoluminescent dosimeters (TLD) for the measurement of some parameters of the X-ray beam as the entrance surface dose, the peak tension and half value layer (HVL). Radiographic films record the size of the radiation field. However, the TLD does not allow the assessment of exposure time, a parameter that complements the requirements of the Diretrizes de Protecao Radiologica em Radiodiagnostico Medico e Odontologico of Department of Health in Brazil for such equipment. Thus was developed a system based on sensitivity to ionizing radiation of phototransistors for measurement of exposure time when a patient is put in a clinical dental radiography. The system, called CRONOX was sized to be inserted within the CDO. The results showed that the measuring error had developed for less than 3% when compared to reference values obtained with the Tektronix digital oscilloscope, TDS2022 model. The readings obtained with the CRONOX were also compared with the nominal values selected in the X-ray equipment and with the values measured with the instrument of trade PTW Diavolt Universal. The results showed that the measuring device developed showed a maximum deviation of 5.92% on the nominal value selected, while for the instrument of PTW was 17.86%. (author)

  11. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  12. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  13. Dilation x-ray imager a new∕faster gated x-ray imager for the NIF.

    Science.gov (United States)

    Nagel, S R; Hilsabeck, T J; Bell, P M; Bradley, D K; Ayers, M J; Barrios, M A; Felker, B; Smith, R F; Collins, G W; Jones, O S; Kilkenny, J D; Chung, T; Piston, K; Raman, K S; Sammuli, B; Hares, J D; Dymoke-Bradshaw, A K L

    2012-10-01

    As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for ∼7 × 10(18) neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for dilation x-ray imager, which utilizes pulse-dilation technology [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010)] to achieve x-ray imaging with temporal gate times below 10 ps. The measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

  14. Dilation x-ray imager a new/faster gated x-ray imager for the NIF [DIXI (Dilation x-ray imager) a new/faster gated x-ray imager for the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, S. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hilsabeck, T. J.; Bell, P. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bradley, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ayers, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barrios, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Felker, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, R. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Collins, G. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jones, O. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kilkenny, J. D. [General Atomics, San Diego, CA (United States); Chung, T. [General Atomics, San Diego, CA (United States); Piston, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Raman, K. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sammuli, B. [General Atomics, San Diego, CA (United States); Hares, J. D. [Kentech Instruments Ltd., Wallingford, Oxfordshire (United Kingdom); Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire (United Kingdom)

    2012-07-19

    As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for ~7 1018 neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for DIXI, which utilizes pulse-dilation technology [1] to achieve x-ray imaging with temporal gate times below 10 ps. Lastly, the measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

  15. X-ray filter for chest X-rays

    International Nuclear Information System (INIS)

    Ferlic, D.J.

    1984-01-01

    A description is given of an X-ray filter comprised of a sheet of radiation absorbing material with an opening corresponding to the spine and central portion of the heart. The upper portion of the filter exhibits a relatively narrow opening which becomes gradually wider toward the lower portion of the filter. This filter will permit an acceptable density level of x-ray exposure for the lungs while allowing a higher level of x-ray exposure for the mediastinum areas of the body. (author)

  16. Effective high voltage at X-ray tube in hard X-ray chest imaging

    International Nuclear Information System (INIS)

    Klein, J.

    1987-01-01

    The FRG standard TGL 36 661 (March 1980) for synoptical chest pictures of large size in adults specifies the 120 kV voltage at the X-ray tube together with maximal, 100% use of the capacity of the tube (hard picture, short exposure time). By means of circular recording and by measuring the high voltage at the X-ray tube it was quantitatively shown that the effective voltage during exposure is (according to the exposure time and the attenuation phase of the generator) always lower than the set-up voltage of 120 kV. This phenomenon is the more marked the shorter the actual exposure time in comparison with the attenuation phase of the generator. The typical characteristic of a hard X-ray chest picture is thus not given only by the setting-up of voltage. The impact of the reduction in voltage is thus quantitatively shown also from the aspect of the radiation burden for the patient. (author). 7 figs., 8 refs

  17. X-ray measurements during plasma current start-up experiments using the lower hybrid wave on the TST-2 spherical tokamak

    International Nuclear Information System (INIS)

    Wakatsuki, Takuma; Ejiri, Akira; Kakuda, Hidetoshi

    2012-01-01

    Non-inductive plasma current start-up experiments using RF power in the lower hybrid frequency range is being conducted on the TST-2 spherical tokamak. Plasma currents of up to 15 kA have been achieved. The effect of direct current drive can be seen by comparing the cases with co-drive and counter-drive. X-rays in various energy ranges were measured to investigate the interaction between the wave and the electrons. Soft X-ray (SX) measurements revealed that the perpendicular SX emission increased significantly as the plasma current increased, and that the tangential SX emission in the direction of RF drive was enhanced more strongly in the co-drive case compared to the counter-drive case. These observations imply that the fast electrons accelerated by the lower hybrid wave contribute to the plasma current. However, RF amplitude modulation experiments showed that the confinement time of these fast electrons are very short (less than 0.05 ms), much shorter than the collisional slowing down time. Hard X-ray spectral measurements showed that the radiation temperature of fast electrons in the co-direction for current drive was higher than that in the counter-direction. These observations are consistent with the existence of RF-driven fast electrons. (author)

  18. An X-ray view of the very faint black hole X-ray transient Swift J1357.2-0933 during its 2011 outburst

    NARCIS (Netherlands)

    Armas Padilla, M.; Wijnands, R.; Altamirano, D.; Méndez, M.; Miller, J. M.; Degenaar, N.

    We report on the X-ray spectral (using XMM-Newton data) and timing behaviour [using XMM-Newton and Rossi X-ray Timing Explorer (RXTE) data] of the very faint X-ray transient and black hole system Swift J1357.2-0933 during its 2011 outburst. The XMM-Newton X-ray spectrum of this source can be

  19. Powerful conveyer belt real-time online detection system based on x-ray

    Science.gov (United States)

    Rong, Feng; Miao, Chang-yun; Meng, Wei

    2009-07-01

    The powerful conveyer belt is widely used in the mine, dock, and so on. After used for a long time, internal steel rope of the conveyor belt may fracture, rust, joints moving, and so on .This would bring potential safety problems. A kind of detection system based on x-ray is designed in this paper. Linear array detector (LDA) is used. LDA cost is low, response fast; technology mature .Output charge of LDA is transformed into differential voltage signal by amplifier. This kind of signal have great ability of anti-noise, is suitable for long-distance transmission. The processor is FPGA. A IP core control 4-channel A/D convertor, achieve parallel output data collection. Soft-core processor MicroBlaze which process tcp/ip protocol is embedded in FPGA. Sampling data are transferred to a computer via Ethernet. In order to improve the image quality, algorithm of getting rid of noise from the measurement result and taking gain normalization for pixel value is studied and designed. Experiments show that this system work well, can real-time online detect conveyor belt of width of 2.0m and speed of 5 m/s, does not affect the production. Image is clear, visual and can easily judge the situation of conveyor belt.

  20. A fast pulse phase estimation method for X-ray pulsar signals based on epoch folding

    Directory of Open Access Journals (Sweden)

    Xue Mengfan

    2016-06-01

    Full Text Available X-ray pulsar-based navigation (XPNAV is an attractive method for autonomous deep-space navigation in the future. The pulse phase estimation is a key task in XPNAV and its accuracy directly determines the navigation accuracy. State-of-the-art pulse phase estimation techniques either suffer from poor estimation accuracy, or involve the maximization of generally non-convex object function, thus resulting in a large computational cost. In this paper, a fast pulse phase estimation method based on epoch folding is presented. The statistical properties of the observed profile obtained through epoch folding are developed. Based on this, we recognize the joint probability distribution of the observed profile as the likelihood function and utilize a fast Fourier transform-based procedure to estimate the pulse phase. Computational complexity of the proposed estimator is analyzed as well. Experimental results show that the proposed estimator significantly outperforms the currently used cross-correlation (CC and nonlinear least squares (NLS estimators, while significantly reduces the computational complexity compared with NLS and maximum likelihood (ML estimators.

  1. Limestone rocks analysis by X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Izquierdo M, G.; Ponce R, R.; Vazquez J, J.

    1996-01-01

    By request of a private company, employing basically X-ray fluorescence analysis (X RF), was established a fast and accurate method for the analysis of the major elements in limestone rocks. Additionally, for complementing analysis was determined by ion chromatography, the chlorides appearance and by atomic absorption of sodium. By gravimetry, was determined the losses by ignition and the alpha quartz. (Author)

  2. X-ray optics and X-ray microscopes: new challenges

    International Nuclear Information System (INIS)

    Susini, J.

    2004-01-01

    Soon after the discovery of X-rays in 1895 by W. Roentgen, it became rapidly clear that the methods traditionally used in the visible light regime, namely refraction, diffraction and reflection were difficult to apply for X-ray optics. The physical origins of these difficulties are closely linked to the very nature of interaction of X-rays with matter. The small deviation δ of the refractive index of condensed matter from unity makes it difficult to extend refraction-based optics from the optical spectral region to the X-ray region because the refraction angle is proportional to δ. Similarly it is very challenging to extend diffraction-based focusing techniques to X-rays because the diffraction angle scales inversely with wavelength. Finally, the use of reflection-based optics is also limited by the very small critical angle for total reflection. All those fundamental limitations prevented for almost one century, the development of X-ray microscopy whereas electron microscopy became a standard tool. In the past twenty years, interests for X-ray microscopy revived, mainly because of several major advances in X-ray sources and X-ray optics. X-ray microscopy techniques are now emerging as powerful and complementary tools for submicron investigations. Soft X-ray microscopes offer traditionally the possibility to form direct images of thick hydrated biological material in near-native environment, at a spatial resolution well beyond that achievable with visible light microscopy. Natural contrast is available in the soft X-ray region, in the so-called ''water-window'', due to the presence of absorption edges of the major constituents (C,N,O). Recent advances in manufacturing techniques have enlarged the accessible energy range of micro-focussing optics and offer new applications in a broad range of disciplines. X-ray microscopy in the 1 - 30 keV energy range is better suited for fluorescence to map trace elements, tomography for 3D imaging and micro-diffraction. The

  3. X-ray filter for chest x-rays

    International Nuclear Information System (INIS)

    Ferlic, D.J.

    1984-01-01

    Filter for use in medical x-ray apparatus to permit higher intensity x-ray exposure in the heart and mediastinum area while maintaining a normal level of x-ray exposure in other areas of the body, particlarly in the lung area. The filter comprises a sheet of radiation absorbing material having an opening therein, said opening corresponding to the spine and central portion of the heart. Accordingly, the upper portion of the filter exhibits a relatively narrow opening which becomes gradually wider toward the lower portion of the filter

  4. Effects of fission neutrons and X-rays on the epithelium of the mouse stomach

    International Nuclear Information System (INIS)

    Kingma-ter Haar, J.M.

    1982-07-01

    A quantitative study is presented of the effects of whole-body irradiation on the stomach of mice. Two types of ionizing radiation were compared - fast fission neutrons of 1.0 MeV mean energy and 300 kVp X-rays. The effects on the functional cell populations, on gastric secretion and on gastric stem cell populations were studied. These effects have been investigated a) for a neutron dose in the lethal dose-range of 4.0 Gy as a function of time and b) at a post-irradiation interval of 3 weeks as a function of neutron and X-ray dose. (Auth.)

  5. X-ray geometrical smoothing effect in indirect x-ray-drive implosion

    International Nuclear Information System (INIS)

    Mochizuki, Takayasu; Sakabe, Shuji; Yamanaka, Chiyoe

    1983-01-01

    X-ray geometrical smoothing effect in indirect X-ray drive pellet implosion for inertial confinement fusion has been numerically analyzed. Attainable X-ray driven ablation pressure has been found to be coupled with X-ray irradiation uniformity. (author)

  6. The Correlation between Hard X-Ray Peak Flux and Soft X-Ray Peak Flux in the Outburst Rise of Low-Mass X-Ray Binaries

    NARCIS (Netherlands)

    Yu, W.; van der Klis, M.; Fender, R.P.

    2004-01-01

    We have analyzed Rossi X-Ray Timing Explorer pointed observations of the outbursts of black hole and neutron star soft X-ray transients in which an initial low/hard state, or ``island'' state, followed by a transition to a softer state was observed. In three sources-the black hole transient XTE

  7. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    International Nuclear Information System (INIS)

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    Scintillator performance in time-resolved, hard, indirect detection X-ray studies on the sub-microsecond timescale at synchrotron light sources is reviewed, modelled and examined experimentally. LYSO:Ce is found to be the only commercially available crystal suitable for these experiments. The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits)

  8. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G. [Imperial College London, London (United Kingdom); Drakopoulos, Michael [Diamond Light Source, I12 Joint Engineering, Environmental, Processing (JEEP) Beamline, Didcot, Oxfordshire (United Kingdom); Rack, Alexander [European Synchrotron Radiation Facility, Grenoble (France); Eakins, Daniel E., E-mail: d.eakins@imperial.ac.uk [Imperial College London, London (United Kingdom)

    2016-03-24

    Scintillator performance in time-resolved, hard, indirect detection X-ray studies on the sub-microsecond timescale at synchrotron light sources is reviewed, modelled and examined experimentally. LYSO:Ce is found to be the only commercially available crystal suitable for these experiments. The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits)

  9. Real time global orbit feedback system for NSLS x-ray ring

    International Nuclear Information System (INIS)

    Yu, L.H.; Biscardi, R.; Bittner, J.; Fauchet, A.M.; Krinsky, F.S.; Nawrocky, R.J.; Rothman, J.; Singh, O.V.; Yang, K.M.

    1991-01-01

    We report on the design and commissioning of a real time harmonic global orbit feedback system for the NSLS X-ray ring. This system uses 8 pick-up electrode position monitors and 16 trim dipole magnets to eliminate 3 harmonic components of the orbit fluctuations. Because of the larger number of position monitors and trim magnets, the X-ray ring feedback system differs from the previously reported VUV ring system in that the Fourier analysis and harmonic generation networks are comprised of MDAC boards controlled by computer. The implementation of the global feedback system has resulted in a dramatic improvement of orbit stability, by more than a factor of five everywhere. Simultaneous operation of the global and several local bump feedback systems has been achieved. 4 refs., 5 figs

  10. Deep Chandra Survey of the Small Magellanic Cloud. II. Timing Analysis of X-Ray Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Hong, JaeSub; Antoniou, Vallia; Zezas, Andreas; Drake, Jeremy J.; Plucinsky, Paul P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Haberl, Frank [Max-Planck-Institut für extraterrestrische Physik, Giessenbach straße, D-85748 Garching (Germany); Sasaki, Manami [Friedrich-Alexander-Universität Erlangen-Nürnberg, Sternwartstrasse 7, 96049 Bamberg (Germany); Laycock, Silas, E-mail: jaesub@head.cfa.harvard.edu [Department of Physics, University of Massachusetts Lowell, MA 01854 (United States)

    2017-09-20

    We report the timing analysis results of X-ray pulsars from a recent deep Chandra survey of the Small Magellanic Cloud (SMC). We analyzed a total exposure of 1.4 Ms from 31 observations over a 1.2 deg{sup 2} region in the SMC under a Chandra X-ray Visionary Program. Using the Lomb–Scargle and epoch-folding techniques, we detected periodic modulations from 20 pulsars and a new candidate pulsar. The survey also covered 11 other pulsars with no clear sign of periodic modulation. The 0.5–8 keV X-ray luminosity ( L {sub X} ) of the pulsars ranges from 10{sup 34} to 10{sup 37} erg s{sup −1} at 60 kpc. All of the Chandra sources with L {sub X} ≳ 4 × 10{sup 35} erg s{sup −1} exhibit X-ray pulsations. The X-ray spectra of the SMC pulsars (and high-mass X-ray binaries) are in general harder than those of the SMC field population. All but SXP 8.02 can be fitted by an absorbed power-law model with a photon index of Γ ≲ 1.5. The X-ray spectrum of the known magnetar SXP 8.02 is better fitted with a two-temperature blackbody model. Newly measured pulsation periods of SXP 51.0, SXP 214, and SXP 701, are significantly different from the previous XMM-Newton and RXTE measurements. This survey provides a rich data set for energy-dependent pulse profile modeling. Six pulsars show an almost eclipse-like dip in the pulse profile. Phase-resolved spectral analysis reveals diverse spectral variations during pulsation cycles: e.g., for an absorbed power-law model, some exhibit an (anti)-correlation between absorption and X-ray flux, while others show more intrinsic spectral variation (i.e., changes in photon indices).

  11. Static and time-resolved 10-1000 keV x-ray imaging detector options for NIF

    International Nuclear Information System (INIS)

    Landen, O.L.; Bell, P.M.; McDonald, J.W.; Park, H.-S.; Weber, F.; Moody, J.D.; Lowry, M.E.; Stewart, R.E.

    2004-01-01

    High energy (>10 keV) x-ray self-emission imaging and radiography will be essential components of many NIF high energy density physics experiments. In preparation for such experiments, we have evaluated the pros and cons of various static [x-ray film, bare charge-coupled device (CCD), and scintillator + CCD] and time-resolved (streaked and gated) 10-1000 keV detectors

  12. Diagnosing high density, fast-evolving plasmas using x-ray lasers

    International Nuclear Information System (INIS)

    Cauble, R.; Da Silva, L.B.; Barbee, T.W. Jr.

    1994-09-01

    As x-ray laser (XRL) research has matured, it has become possible to reliably utilize XRLs for applications in the laboratory. Laser coherence, high brightness and short pulse duration all make the XRL a unique tool for the diagnosis of laboratory plasmas. The high brightness of XRLs makes them well-suited for imaging and for interferometry when used in conjunction with multilayer mirrors and beamsplitters. We have utilized a soft x-ray laser in such an imaging system to examine laser-produced plasmas using radiography, moire deflectometry, and interferometry. Radiography experiments yield 100-200 ps snapshots of laser driven foils at a resolution of 1-2 μm. Moire deflectometry with an XRL has been used to probe plasmas at higher density than by optical means. Interferograms, which allow direct measurement of electron density in laser plasmas, have been obtained with this system

  13. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T., E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Mitsuya, Y. [Nuclear Professional School, The University of Tokyo, Tokai, Naka, Ibaraki 319-1188 (Japan); Fushie, T. [Radiment Lab. Inc., Setagaya, Tokyo 156-0044 (Japan); Murata, K.; Kawamura, A.; Koishikawa, A. [XIT Co., Naruse, Machida, Tokyo 194-0045 (Japan); Toyokawa, H. [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, H. [Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8654 (Japan)

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 µm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  14. Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution

    Energy Technology Data Exchange (ETDEWEB)

    Thil, Ch., E-mail: christophe.thil@ziti.uni-heidelberg.d [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Baron, A.Q.R. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Fajardo, P. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France); Fischer, P. [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Graafsma, H. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Rueffer, R. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France)

    2011-02-01

    The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm{sup 2} active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280{mu}mx280{mu}m size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.

  15. Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution

    International Nuclear Information System (INIS)

    Thil, Ch.; Baron, A.Q.R.; Fajardo, P.; Fischer, P.; Graafsma, H.; Rueffer, R.

    2011-01-01

    The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm 2 active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280μmx280μm size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.

  16. SphinX MEASUREMENTS OF THE 2009 SOLAR MINIMUM X-RAY EMISSION

    OpenAIRE

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Kuzin, S.; Farnik, F.; Reale, F.; Phillips, K. J. H.; Bakala, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B.

    2012-01-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 x 10^47 cm^-3 and 1.1 x 10^48 cm^-3. Comparing Sph...

  17. Quantum effets in nonresonant X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Slowik, Jan Malte

    2015-11-15

    Due to their versatile properties, X rays are a unique tool to investigate the structure and dynamics of matter. X-ray scattering is the fundamental principle of many imaging techniques. Examples are X-ray crystallography, which recently celebrated one hundred years and is currently the leading method in structure determination of proteins, as well as X-ray phase contrast imaging (PCI), which is an imaging technique with countless applications in biology, medicine, etc. The technological development of X-ray free electron lasers (XFEL) has brought X-ray imaging at the edge of a new scientific revolution. XFELs offer ultrashort X-ray pulses with unprecedented high X-ray fluence and excellent spatial coherence properties. These properties make them an outstanding radiation source for X-ray scattering experiments, providing ultrafast temporal resolution as well as atomic spatial resolution. However, the radiation-matter interaction in XFEL experiments also advances into a novel regime. This demands a sound theoretical fundament to describe and explore the new experimental possibilities. This dissertation is dedicated to the theoretical study of nonresonant X-ray scattering. As the first topic, I consider the near-field imaging by propagation based X-ray phase contrast imaging (PCI). I devise a novel theory of PCI, in which radiation and matter are quantized. Remarkably, the crucial interference term automatically excludes contributions from inelastic scattering. This explains the success of the classical description thus far. The second topic of the thesis is the X-ray imaging of coherent electronic motion, where quantum effects become particularly apparent. The electron density of coherent electronic wave packets - important in charge transfer and bond breaking - varies in time, typically on femto- or attosecond time scales. In the near future, XFELs are envisaged to provide attosecond X-ray pulses, opening the possibility for time-resolved ultrafast X-ray scattering

  18. Quantum effets in nonresonant X-ray scattering

    International Nuclear Information System (INIS)

    Slowik, Jan Malte

    2015-11-01

    Due to their versatile properties, X rays are a unique tool to investigate the structure and dynamics of matter. X-ray scattering is the fundamental principle of many imaging techniques. Examples are X-ray crystallography, which recently celebrated one hundred years and is currently the leading method in structure determination of proteins, as well as X-ray phase contrast imaging (PCI), which is an imaging technique with countless applications in biology, medicine, etc. The technological development of X-ray free electron lasers (XFEL) has brought X-ray imaging at the edge of a new scientific revolution. XFELs offer ultrashort X-ray pulses with unprecedented high X-ray fluence and excellent spatial coherence properties. These properties make them an outstanding radiation source for X-ray scattering experiments, providing ultrafast temporal resolution as well as atomic spatial resolution. However, the radiation-matter interaction in XFEL experiments also advances into a novel regime. This demands a sound theoretical fundament to describe and explore the new experimental possibilities. This dissertation is dedicated to the theoretical study of nonresonant X-ray scattering. As the first topic, I consider the near-field imaging by propagation based X-ray phase contrast imaging (PCI). I devise a novel theory of PCI, in which radiation and matter are quantized. Remarkably, the crucial interference term automatically excludes contributions from inelastic scattering. This explains the success of the classical description thus far. The second topic of the thesis is the X-ray imaging of coherent electronic motion, where quantum effects become particularly apparent. The electron density of coherent electronic wave packets - important in charge transfer and bond breaking - varies in time, typically on femto- or attosecond time scales. In the near future, XFELs are envisaged to provide attosecond X-ray pulses, opening the possibility for time-resolved ultrafast X-ray scattering

  19. Low energy (soft) x rays

    International Nuclear Information System (INIS)

    Hoshi, Masaharu; Antoku, Shigetoshi; Russell, W.J.; Miller, R.C.; Nakamura, Nori; Mizuno, Masayoshi; Nishio, Shoji.

    1987-05-01

    Dosimetry of low-energy (soft) X rays produced by the SOFTEX Model CMBW-2 was performed using Nuclear Associates Type 30 - 330 PTW, Exradin Type A2, and Shonka-Wyckoff ionization chambers with a Keithley Model 602 electrometer. Thermoluminescent (BeO chip) dosimeters were used with a Harshaw Detector 2000-A and Picoammeter-B readout system. Beam quality measurements were made using aluminum absorbers; exposure rates were assessed by the current of the X-ray tube and by exposure times. Dose distributions were established, and the average factors for non-uniformity were calculated. The means of obtaining accurate absorbed and exposed doses using these methods are discussed. Survival of V79 cells was assessed by irradiating them with soft X rays, 200 kVp X rays, and 60 Co gamma rays. The relative biological effectiveness (RBE) values for soft X rays with 0, 0.2, 0.7 mm added thicknesses of aluminum were 1.6, which were compared to 60 Co. The RBE of 200 kVp X rays relative to 60 Co was 1.3. Results of this study are available for reference in future RERF studies of cell survival. (author)

  20. Spectral structure of a polycapillary lens shaped X-ray beam

    Science.gov (United States)

    Gogolev, A. S.; Filatov, N. A.; Uglov, S. R.; Hampai, D.; Dabagov, S. B.

    2018-04-01

    Polycapillary X-ray optics is widely used in X-ray analysis techniques to create a small secondary source, for instance, or to deliver X-rays to the point of interest with minimum intensity losses [1]. The main characteristics of the analytical devices on its base are the size and divergence of the focused or translated beam. In this work, we used the photon-counting pixel detector ModuPIX to study the parameters for polycapillary focused X-ray tube radiation as well as the energy and spatial dependences of radiation at the focus. We have characterized the high-speed spectral camera ModuPIX, which is a single Timepix device with a fast parallel readout allowing up to 850 frames per second with 256 × 256 pixels and a 55 μm pitch defined by the frame frequency. By means of the silicon monochromator the energy response function is measured in clustering mode by the energy scan over total X-ray tube spectrum.

  1. Foreign object detection in multispectral X-ray images of food items using sparse discriminant analysis

    DEFF Research Database (Denmark)

    Einarsson, Gudmundur; Jensen, Janus Nørtoft; Paulsen, Rasmus Reinhold

    2017-01-01

    Non-invasive food inspection and quality assurance are becoming viable techniques in food production due to the introduction of fast and accessible multispectral X-ray scanners. However, the novel devices produce massive amount of data and there is a need for fast and accurate algorithms for proc......Non-invasive food inspection and quality assurance are becoming viable techniques in food production due to the introduction of fast and accessible multispectral X-ray scanners. However, the novel devices produce massive amount of data and there is a need for fast and accurate algorithms...... computational properties, which allows for fast classification of items in new images....

  2. An X-ray perspective on a gamma-ray mission

    DEFF Research Database (Denmark)

    Lund, Niels

    2003-01-01

    The most recent astrophysics mission of ESA is INTEGRAL, a mission dedicated to gamma-ray astronomy (Winkler et al. 2003). INTEGRAL carries two gamma-ray instruments: the imager, IBIS, and the spectrometer, SPI, and in addition an optical monitor, OMC, and an X-ray monitor, JEM-X. INTEGRAL is an ...... is an observatory mission with 70% of the observation time available to the general astronomical community through a peer-reviewed selection process. This paper describes the INTEGRAL mission primarily as seen from the JEM-X perspective....

  3. X-RAY AND GAMMA-RAY FLASHES FROM TYPE Ia SUPERNOVAE?

    International Nuclear Information System (INIS)

    Hoeflich, Peter; Schaefer, Bradley E.

    2009-01-01

    We investigate two potential mechanisms that will produce X-ray and γ-ray flashes from Type Ia supernovae (SN-Ia). The first mechanism is the breakout of the thermonuclear burning front as it reaches the surface of the white dwarf (WD). The second mechanism is the interaction of the rapidly expanding envelope with material within an accretion disk in the progenitor system. Our study is based on the delayed detonation scenario because this can account for the majority of light curves, spectra, and statistical properties of 'Branch-normal' SN-Ia. Based on detailed radiation-hydro calculations which include nuclear networks, we find that both mechanisms produce brief flashes of high-energy radiation with peak luminosities of 10 48 -10 50 erg s -1 . The breakout from the WD surface produces flashes with a rapid exponential decay by 3-4 orders of magnitude on timescales of a few tenths of a second and with most of the radiation in the X-ray and soft γ-ray range. The shocks produced in gases in and around the binary will produce flashes with a characteristic duration of a few seconds with most of the radiation coming out as X-rays and γ-rays. In both mechanisms, we expect a fast rise and slow decline and, after the peak, an evolution from hard to softer radiation due to adiabatic expansion. In many cases, flashes from both mechanisms will be superposed. The X- and γ-ray visibility of an SN-Ia will depend strongly on self-absorption within the progenitor system, specifically on the properties of the accretion disk and its orientation toward the observer. Such X-ray and γ-ray flashes could be detected as triggered events by gamma-ray burst (GRB) detectors on satellites, with events in current GRB catalogs. We have searched through the GRB catalogs (for the BATSE, HETE, and Swift experiments) for GRBs that occur at the extrapolated time of explosion and in the correct direction for known Type Ia supernovae with radial velocity of less than 3000 km s -1 . For the Burst

  4. Different X-ray spectral evolution for black hole X-ray binaries in dual tracks of radio-X-ray correlation

    International Nuclear Information System (INIS)

    Cao, Xiao-Feng; Wu, Qingwen; Dong, Ai-Jun

    2014-01-01

    Recently, an 'outlier' track of radio-X-ray correlation was found, which is much steeper than the former universal correlation, where dual tracks were speculated to be triggered by different accretion processes. In this work, we test this issue by exploring hard X-ray spectral evolution in four black-hole X-ray binaries with multiple, quasi-simultaneous radio and X-ray observations. First, we find that hard X-ray photon indices, Γ, are negatively and positively correlated with X-ray fluxes when the X-ray flux, F 3-9 keV , is below and above a critical flux, F X, crit , which are consistent with predictions of the advection-dominated accretion flow and the disk-corona model, respectively. Second, and most importantly, we find that the radio-X-ray correlations are also clearly different when the X-ray fluxes are higher and lower than the critical flux as defined by X-ray spectral evolution. The data points with F 3-9 keV ≳ F X, crit have a steeper radio-X-ray correlation (F X ∝F R b and b ∼ 1.1-1.4), which roughly forms the ''outlier'' track. However, the data points with anti-correlation of Γ – F 3-9 keV either stay in the universal track with b ∼ 0.61 or stay in the transition track (from the universal to 'outlier' tracks or vice versa). Therefore, our results support that the universal and ''outlier'' tracks of radio-X-ray correlations are regulated by radiatively inefficient and radiatively efficient accretion model, respectively.

  5. Experimental characterization of an ultrafast Thomson scattering x-ray source with three-dimensional time and frequency-domain analysis

    Directory of Open Access Journals (Sweden)

    W. J. Brown

    2004-06-01

    Full Text Available We present a detailed comparison of the measured characteristics of Thomson backscattered x rays produced at the Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures facility at Lawrence Livermore National Laboratory to predicted results from a newly developed, fully three-dimensional time and frequency-domain code. Based on the relativistic differential cross section, this code has the capability to calculate time and space dependent spectra of the x-ray photons produced from linear Thomson scattering for both bandwidth-limited and chirped incident laser pulses. Spectral broadening of the scattered x-ray pulse resulting from the incident laser bandwidth, perpendicular wave vector components in the laser focus, and the transverse and longitudinal phase spaces of the electron beam are included. Electron beam energy, energy spread, and transverse phase space measurements of the electron beam at the interaction point are presented, and the corresponding predicted x-ray characteristics are determined. In addition, time-integrated measurements of the x rays produced from the interaction are presented and shown to agree well with the simulations.

  6. Dilation x-ray imager a new/faster gated x-ray imager for the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, S. R.; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Barrios, M. A.; Felker, B.; Smith, R. F.; Collins, G. W.; Jones, O. S.; Piston, K.; Raman, K. S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

    2012-10-15

    As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for {approx}7 Multiplication-Sign 10{sup 18} neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for dilation x-ray imager, which utilizes pulse-dilation technology [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010)] to achieve x-ray imaging with temporal gate times below 10 ps. The measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

  7. A simple method to prevent hard X-ray-induced preheating effects inside the cone tip in indirect-drive fast ignition implosions

    International Nuclear Information System (INIS)

    Liu, Dongxiao; Shan, Lianqiang; Zhou, Weimin; Wu, Yuchi; Zhu, Bin; Zhang, Feng; Bi, Bi; Zhang, Bo; Zhang, Zhimeng; Shui, Min; He, Yingling; Gu, Yuqiu; Zhang, Baohan; Peng, Xiaoshi; Xu, Tao; Wang, Feng; Yang, Zhiwen; Chen, Tao; Chen, Li; Chen, Ming

    2016-01-01

    During fast-ignition implosions, preheating of inside the cone tip caused by hard X-rays can strongly affect the generation and transport of hot electrons in the cone. Although indirect-drive implosions have a higher implosion symmetry, they cause stronger preheating effects than direct-drive implosions. To control the preheating of the cone tip, we propose the use of indirect-drive fast-ignition targets with thicker tips. Experiments carried out at the ShenGuang-III prototype laser facility confirmed that thicker tips are effective for controlling preheating. Moreover, these results were consistent with those of 1D radiation hydrodynamic simulations.

  8. A simple method to prevent hard X-ray-induced preheating effects inside the cone tip in indirect-drive fast ignition implosions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dongxiao; Shan, Lianqiang; Zhou, Weimin; Wu, Yuchi; Zhu, Bin; Zhang, Feng; Bi, Bi; Zhang, Bo; Zhang, Zhimeng; Shui, Min; He, Yingling; Gu, Yuqiu, E-mail: yqgu@caep.cn; Zhang, Baohan [Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics, Mianyang 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Peng, Xiaoshi; Xu, Tao; Wang, Feng; Yang, Zhiwen; Chen, Tao; Chen, Li; Chen, Ming [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); and others

    2016-06-15

    During fast-ignition implosions, preheating of inside the cone tip caused by hard X-rays can strongly affect the generation and transport of hot electrons in the cone. Although indirect-drive implosions have a higher implosion symmetry, they cause stronger preheating effects than direct-drive implosions. To control the preheating of the cone tip, we propose the use of indirect-drive fast-ignition targets with thicker tips. Experiments carried out at the ShenGuang-III prototype laser facility confirmed that thicker tips are effective for controlling preheating. Moreover, these results were consistent with those of 1D radiation hydrodynamic simulations.

  9. X-ray evidence for ultra-fast outflows in Seyfert galaxies

    Science.gov (United States)

    Tombesi, Francesco; Braito, Valentina; Reeves, James; Cappi, Massimo; Dadina, Mauro

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts observed with XMM-Newton. Similar results are also obtained from a Suzaku analysis of 5 radio galaxies. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1}. The associated mechanical power is also high, in the range ˜10^{43}--10^{45} erg/s, which indicates that UFOs are capable to provide a significant contribution to the AGN cosmological feedback.

  10. Antibiofouling polymer coated gold nanoparticles as a dual modal contrast agent for X-ray and photoacoustic imaging

    International Nuclear Information System (INIS)

    Guojia Huang; Yi Yuan; Xing Da

    2011-01-01

    X-ray is one of the most useful diagnostic tools in hospitals in terms of frequency of use and cost, while photoacoustic (PA) imaging is a rapidly emerging non-invasive imaging technology that integrates the merits of high optical contrast with high ultrasound resolution. In this study, for the first time, we used gold nanoparticles (GNPs) as a dual modal contrast agent for X-ray and PA imaging. Soft gelatin phantoms with embedded tumor simulators of GNPs in various concentrations are clearly shown in both X-ray and PA imaging. With GNPs as a dual modal contrast agent, X-ray can fast detect the position of tumor and provide morphological information, whereas PA imaging has important potential applications in the image guided therapy of superficial tumors such as breast cancer, melanoma and Merkel cell carcinoma.

  11. Configuring and Characterizing X-Rays for Laser-Driven Compression Experiments at the Dynamic Compression Sector

    Science.gov (United States)

    Li, Y.; Capatina, D.; D'Amico, K.; Eng, P.; Hawreliak, J.; Graber, T.; Rickerson, D.; Klug, J.; Rigg, P. A.; Gupta, Y. M.

    2017-06-01

    Coupling laser-driven compression experiments to the x-ray beam at the Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS) of Argonne National Laboratory requires state-of-the-art x-ray focusing, pulse isolation, and diagnostics capabilities. The 100J UV pulsed laser system can be fired once every 20 minutes so precise alignment and focusing of the x-rays on each new sample must be fast and reproducible. Multiple Kirkpatrick-Baez (KB) mirrors are used to achieve a focal spot size as small as 50 μm at the target, while the strategic placement of scintillating screens, cameras, and detectors allows for fast diagnosis of the beam shape, intensity, and alignment of the sample to the x-ray beam. In addition, a series of x-ray choppers and shutters are used to ensure that the sample is exposed to only a single x-ray pulse ( 80ps) during the dynamic compression event and require highly precise synchronization. Details of the technical requirements, layout, and performance of these instruments will be presented. Work supported by DOE/NNSA.

  12. SWIFT X-RAY OBSERVATIONS OF CLASSICAL NOVAE. II. THE SUPER SOFT SOURCE SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Greg J. [American Astronomical Society, 2000 Florida Avenue, NW, Suite 400, Washington, DC 20009-1231 (United States); Ness, Jan-Uwe [XMM-Newton Science Operations Centre, ESAC, Apartado 78, 28691 Villanueva de la Canada, Madrid (Spain); Osborne, J. P.; Page, K. L.; Evans, P. A.; Beardmore, A. P. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Walter, Frederick M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Andrew Helton, L. [SOFIA Science Center, USRA, NASA Ames Research Center, M.S. N211-3, Moffett Field, CA 94035 (United States); Woodward, Charles E. [Minnesota Institute of Astrophysics, 116 Church Street S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Bode, Mike [Astrophysics Research Institute, Liverpool John Moores University, Birkenhead CH41 1LD (United Kingdom); Starrfield, Sumner [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States); Drake, Jeremy J., E-mail: Greg.Schwarz@aas.org [Smithsonian Astrophysical Observatory, 60 Garden Street, MS 3, Cambridge, MA 02138 (United States)

    2011-12-01

    The Swift gamma-ray burst satellite is an excellent facility for studying novae. Its rapid response time and sensitive X-ray detector provides an unparalleled opportunity to investigate the previously poorly sampled evolution of novae in the X-ray regime. This paper presents Swift observations of 52 Galactic/Magellanic Cloud novae. We included the X-Ray Telescope (0.3-10 keV) instrument count rates and the UltraViolet and Optical Telescope (1700-8000 A) filter photometry. Also included in the analysis are the publicly available pointed observations of 10 additional novae the X-ray archives. This is the largest X-ray sample of Galactic/Magellanic Cloud novae yet assembled and consists of 26 novae with Super Soft X-ray emission, 19 from Swift observations. The data set shows that the faster novae have an early hard X-ray phase that is usually missing in slower novae. The Super Soft X-ray phase occurs earlier and does not last as long in fast novae compared to slower novae. All the Swift novae with sufficient observations show that novae are highly variable with rapid variability and different periodicities. In the majority of cases, nuclear burning ceases less than three years after the outburst begins. Previous relationships, such as the nuclear burning duration versus t{sub 2} or the expansion velocity of the eject and nuclear burning duration versus the orbital period, are shown to be poorly correlated with the full sample indicating that additional factors beyond the white dwarf mass and binary separation play important roles in the evolution of a nova outburst. Finally, we confirm two optical phenomena that are correlated with strong, soft X-ray emission which can be used to further increase the efficiency of X-ray campaigns.

  13. SWIFT X-RAY OBSERVATIONS OF CLASSICAL NOVAE. II. THE SUPER SOFT SOURCE SAMPLE

    International Nuclear Information System (INIS)

    Schwarz, Greg J.; Ness, Jan-Uwe; Osborne, J. P.; Page, K. L.; Evans, P. A.; Beardmore, A. P.; Walter, Frederick M.; Andrew Helton, L.; Woodward, Charles E.; Bode, Mike; Starrfield, Sumner; Drake, Jeremy J.

    2011-01-01

    The Swift gamma-ray burst satellite is an excellent facility for studying novae. Its rapid response time and sensitive X-ray detector provides an unparalleled opportunity to investigate the previously poorly sampled evolution of novae in the X-ray regime. This paper presents Swift observations of 52 Galactic/Magellanic Cloud novae. We included the X-Ray Telescope (0.3-10 keV) instrument count rates and the UltraViolet and Optical Telescope (1700-8000 Å) filter photometry. Also included in the analysis are the publicly available pointed observations of 10 additional novae the X-ray archives. This is the largest X-ray sample of Galactic/Magellanic Cloud novae yet assembled and consists of 26 novae with Super Soft X-ray emission, 19 from Swift observations. The data set shows that the faster novae have an early hard X-ray phase that is usually missing in slower novae. The Super Soft X-ray phase occurs earlier and does not last as long in fast novae compared to slower novae. All the Swift novae with sufficient observations show that novae are highly variable with rapid variability and different periodicities. In the majority of cases, nuclear burning ceases less than three years after the outburst begins. Previous relationships, such as the nuclear burning duration versus t 2 or the expansion velocity of the eject and nuclear burning duration versus the orbital period, are shown to be poorly correlated with the full sample indicating that additional factors beyond the white dwarf mass and binary separation play important roles in the evolution of a nova outburst. Finally, we confirm two optical phenomena that are correlated with strong, soft X-ray emission which can be used to further increase the efficiency of X-ray campaigns.

  14. Wood density variation in Gmelina arborea trees using X-ray densitometry

    International Nuclear Information System (INIS)

    Roque, Roger Moya; Tomazello, Mario

    2005-01-01

    The wood density constitutes the main wood quality parameter by its relationship with anatomical, physical and chemical properties and wood utilization. The modern and accurate methods - like X-ray densitometry - are applied to determine the density spatial distribution in wood sections and pith-bark direction. On the other hand, emphasis to wood utilization from fast growing plantations, like Gmelina arborea in Costa Rica, has been done. The objectives of this study were to determinate the influence of 2 climatic conditions of Costa Rica on radial wood density variation of gmelina trees form fast growing plantations using the X-ray densitometry method. Wood samples were cut at DBH of gmelina trees and transversal thin laths were selected at north-south direction and conditioned at 12% moisture content equilibrium and X-rayed. The radiographic films were revealed and scanned a 256 gray scale with 1000 dpi resolution and the intra tree-ring density were determined by CRAD and CERD software. The results demonstrated that the climatic and forest management affects the wood density variability and the distinctness of tree-ring boundaries of gmelina trees, as well as, the applicability of X-ray densitometry in wood quality analysis. (author)

  15. Sixa-silicon x-ray array

    International Nuclear Information System (INIS)

    Taylor, I.

    1995-01-01

    Full text: The Spectrum-X-Gamma (SRG) satellite is scheduled for launch in 1995-96. Mission objectives include broad and narrow band imaging spectroscopy over a wide range of energies from the EUV through hard X-rays with an emphasis on studying galactic and extragalactic X-ray sources. Timing and moderate resolution spectroscopy can be performed with the solid state spectrometer SIXA (Silicon X-Ray Array), placed on the focal plane of the SODART telescope with total effective area of 1150 cm 2 at 6 keV (for f = 8 in telescope). The detector consists of 19 circular Si(Li) pixels, each with an active diameter of 9.2 min and thickness of 3 min. A radiative cooler will be used to bring the detector to the proper operating temperature (120-130 K). The energy range 0.5-20 keV is divided into 1024 channels of 20 eV size. Photons can be recorded with 30 μs time resolution and 160-200 eV (1-7 keV) energy resolution. Potential observing programmes (for e.g. time-resolved Iron Kα line spectroscopy) include stellar coronae, cataclysmic variables and X-ray binaries; accretion discs and coronae of neutron stars and black hole candidates; supernova remnants, active galactic nuclei and clusters of galaxies. (author)

  16. Chest X-Ray

    Medline Plus

    Full Text Available ... about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed x-ray exams and use a very small dose of ... of the inside of the chest. A chest x-ray is used to evaluate the lungs, heart and ...

  17. The MIRAX x-ray astronomy transient mission

    Science.gov (United States)

    Braga, João; Mejía, Jorge

    2006-06-01

    The Monitor e Imageador de Raios-X (MIRAX) is a small (~250 kg) X-ray astronomy satellite mission designed to monitor the central Galactic plane for transient phenomena. With a field-of-view of ~1000 square degrees and an angular resolution of ~6 arcmin, MIRAX will provide an unprecedented discovery-space coverage to study X-ray variability in detail, from fast X-ray novae to long-term (~several months) variable phenomena. Chiefly among MIRAX science objectives is its capability of providing simultaneous complete temporal coverage of the evolution of a large number of accreting black holes, including a detailed characterization of the spectral state transitions in these systems. MIRAX's instruments will include a soft X-ray (2-18 keV) and two hard X-ray (10-200 keV) coded-aperture imagers, with sensitivities of ~5 and ~2.6 mCrab/day, respectively. The hard X-ray imagers will be built at the Instituto Nacional de Pesquisas Espaciais (INPE), Brazil, in close collaboration with the Center for Astrophysics & Space Sciences (CASS) of the University of California, San Diego (UCSD) and the Institut fur Astronomie und Astrophysik of the University of Tubingen (IAAT) in Germany; UCSD will provide the crossed-strip position-sensitive (0.5- mm spatial resolution) CdZnTe (CZT) hard X-ray detectors. The soft X-ray camera, provided by the Space Research Organization Netherlands (SRON), will be the spare flight unit of the Wide Field Cameras that flew on the Italian-Dutch satellite BeppoSAX. MIRAX is an approved mission of the Brazilian Space Agency (Agnecia Espacial Brasileira - AEB) and is scheduled to be launched in 2011 in a low-altitude (~550 km) circular equatorial orbit. In this paper we present recent developments in the mission planning and design, as well as Monte Carlo simulations performed on the GEANT-based package MGGPOD environment (Weidenspointner et al. 2004) and new algorithms for image digital processing. Simulated images of the central Galactic plane as it

  18. Parabolic refractive X-ray lenses: a breakthrough in X-ray optics

    CERN Document Server

    Lengeler, B; Benner, B; Guenzler, T F; Kuhlmann, M; Tümmler, J; Simionovici, A S; Drakopoulos, M; Snigirev, A; Snigireva, I

    2001-01-01

    Refractive X-ray lenses, considered for a long time as unfeasible, have been realized with a rotational parabolic profile at our institute: The main features of the new lenses are: they focus in two directions and are free of spherical aberration. By varying the number of individual lenses in the stack the focal length can be chosen in a typical range from 0.5 to 2 m for photon energies between about 6 and 60 keV. The aperture of the lens is about 1 mm matching the angular divergence of undulator beams at 3d generation synchrotron radiation sources. They cope without problems with the heat load from the white beam of an undulator. Finally, they are easy to align and to operate. Refractive X-ray lenses can be used with hard X-rays in the same way as glass lenses can be used for visible light, if it is take into account that the numerical aperture is small (of the order 10 sup - sup 4). Being high-quality optical elements, the refractive X-ray lenses can be used for generating a focal spot in the mu m range wit...

  19. Low Dose X-Ray Speckle Visibility Spectroscopy Reveals Nanoscale Dynamics in Radiation Sensitive Ionic Liquids

    Science.gov (United States)

    Verwohlt, Jan; Reiser, Mario; Randolph, Lisa; Matic, Aleksandar; Medina, Luis Aguilera; Madsen, Anders; Sprung, Michael; Zozulya, Alexey; Gutt, Christian

    2018-04-01

    X-ray radiation damage provides a serious bottleneck for investigating microsecond to second dynamics on nanometer length scales employing x-ray photon correlation spectroscopy. This limitation hinders the investigation of real time dynamics in most soft matter and biological materials which can tolerate only x-ray doses of kGy and below. Here, we show that this bottleneck can be overcome by low dose x-ray speckle visibility spectroscopy. Employing x-ray doses of 22-438 kGy and analyzing the sparse speckle pattern of count rates as low as 6.7 ×10-3 per pixel, we follow the slow nanoscale dynamics of an ionic liquid (IL) at the glass transition. At the prepeak of nanoscale order in the IL, we observe complex dynamics upon approaching the glass transition temperature TG with a freezing in of the alpha relaxation and a multitude of millisecond local relaxations existing well below TG . We identify this fast relaxation as being responsible for the increasing development of nanoscale order observed in ILs at temperatures below TG .

  20. Optomechanical Design of a Hard X-ray Nanoprobe Instrument with Nanometer-Scale Active Vibration Control

    International Nuclear Information System (INIS)

    Shu, D.; Preissner, C.; Smolyanitskiy, A.; Maser, J.; Winarski, R.; Holt, M.; Lai, B.; Vogt, S.; Stephenson, G. B.

    2007-01-01

    We are developing a new hard x-ray nanoprobe instrument that is one of the centerpieces of the characterization facilities of the Center for Nanoscale Materials being constructed at Argonne National Laboratory. This new probe will cover an energy range of 3-30 keV with 30-nm spacial resolution. The system is designed to accommodate x-ray optics with a resolution limit of 10 nm, therefore, it requires staging of x-ray optics and specimens with a mechanical repeatability of better than 5 nm. Fast feedback for differential vibration control between the zone-plate x-ray optics and the sample holder has been implemented in the design using a digital-signal-processor-based real-time closed-loop feedback technique. A specially designed, custom-built laser Doppler displacement meter system provides two-dimensional differential displacement measurements with subnanometer resolution between the zone-plate x-ray optics and the sample holder. The optomechanical design of the instrument positioning stage system with nanometer-scale active vibration control is presented in this paper

  1. Space- and time-resolved diagnostics of soft x-ray emission from laser plasmas

    International Nuclear Information System (INIS)

    Richardson, M.C.; Jaanimagi, P.A.; Chen, H.

    1988-01-01

    The analysis of soft x-ray emission from plasmas created by intense short-wavelength laser radiation can provide much useful information on the density, temperature and ionization distribution of the plasma. Until recently, limitations of sensitivity and the availability of suitable x-ray optical elements have restricted studies of soft x-ray emission from laser plasmas. In this paper, the authors describe novel instrumentation which provides high sensitivity in the soft x-ray spectrum with spatial and temporal resolution in the micron and picosecond ranges respectively. These systems exploit advances made in soft x-ray optic and electro-optic technology. Their application in current studies of laser fusion, x-ray lasers, and high density atomic physics are discussed

  2. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li+ ion beam-driven hohlraums

    International Nuclear Information System (INIS)

    Fehl, D.L.; Chandler, G.A.; Biggs, F.; Dukart, R.J.; Moats, A.R.; Leeper, R.J.

    1996-01-01

    X-ray-producing hohlraums are being studied as indirect drives for Inertial Confinement Fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li + ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The UFO unfold code and its suite of auxiliary functions were used extensively in obtaining time- resolved x-ray spectra and radiation temperatures from this diagnostic. UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies (≤ 100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time-history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum

  3. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li+ ion beam-driven hohlraums

    International Nuclear Information System (INIS)

    Fehl, D.L.; Chandler, G.A.; Biggs, F.; Dukart, R.J.; Moats, A.R.; Leeper, R.J.

    1997-01-01

    X-ray-producing hohlraums are being studied as indirect drives for inertial confinement fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li + ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The unfold operator (UFO) code and its suite of auxiliary functions were used extensively in obtaining time-resolved x-ray spectra and radiation temperatures from this diagnostic. The UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies (≤100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time endash history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum. copyright 1997 American Institute of Physics

  4. Pseudo-single-bunch mode for a 100 MHz storage ring serving soft X-ray timing experiments

    Science.gov (United States)

    Olsson, T.; Leemann, S. C.; Georgiev, G.; Paraskaki, G.

    2018-06-01

    At many storage rings for synchrotron light production there is demand for serving both high-flux and timing users simultaneously. Today this is most commonly achieved by operating inhomogeneous fill patterns, but this is not preferable for rings that employ passive harmonic cavities to damp instabilities and increase Touschek lifetime. For these rings, inhomogeneous fill patterns could severely reduce the effect of the harmonic cavities. It is therefore of interest to develop methods to serve high-flux and timing users simultaneously without requiring gaps in the fill pattern. One such method is pseudo-single-bunch (PSB), where one bunch in the bunch train is kicked onto another orbit by a fast stripline kicker. The light emitted from the kicked bunch can then be separated by an aperture in the beamline. Due to recent developments in fast kicker design, PSB operation in multibunch mode is within reach for rings that operate with a 100 MHz RF system, such as the MAX IV and Solaris storage rings. This paper describes machine requirements and resulting performance for such a mode at the MAX IV 1.5 GeV storage ring. A solution for serving all beamlines is discussed as well as the consequences of beamline design and operation in the soft X-ray energy range.

  5. Real-time x-ray scattering study of the initial growth of organic crystals on polymer brushes

    Energy Technology Data Exchange (ETDEWEB)

    An, Sung Yup; Ahn, Kwangseok; Kim, Doris Yangsoo; Lee, Dong Ryeol, E-mail: drlee@ssu.ac.kr [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Lee, Hyun-Hwi [Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Cho, Jeong Ho, E-mail: jhcho94@skku.edu [Department of Chemical Engineering, SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Suwon 440-476 (Korea, Republic of)

    2014-04-21

    We studied the early-stage growth structures of pentacene organic crystals grown on polymer brushes using real-time x-ray scattering techniques. In situ x-ray reflectivity and atomic force microscopy analyses revealed that at temperatures close to the glass transition temperature of polymer brush, the pentacene overlayer on a polymer brush film showed incomplete condensation and 3D island structures from the first monolayer. A growth model based on these observations was used to quantitatively analyze the real-time anti-Bragg x-ray scattering intensities measured during pentacene growth to obtain the time-dependent layer coverage of the individual pentacene monolayers. The extracted total coverage confirmed significant desorption and incomplete condensation in the pentacene films deposited on the polymer brushes. These effects are ascribed to the change in the surface viscoelasticity of the polymer brushes around the glass transition temperature.

  6. An introduction to three-dimensional X-ray diffraction microscopy

    DEFF Research Database (Denmark)

    Poulsen, Henning Friis

    2012-01-01

    Three-dimensional X-ray diffraction microscopy is a fast and nondestructive structural characterization technique aimed at studies of the individual crystalline elements (grains or subgrains) within millimetre-sized polycrystalline specimens. It is based on two principles: the use of highly...... penetrating hard X-rays from a synchrotron source and the application of tomographic reconstruction algorithms for the analysis of the diffraction data. In favourable cases, the position, morphology, phase and crystallographic orientation can be derived for up to 1000 elements simultaneously. For each grain...

  7. Wide field X-ray telescopes: Detecting X-ray transients/afterglows related to gamma ray bursts

    International Nuclear Information System (INIS)

    Hudec, Rene; Pina, Ladislav; Inneman, Adolf; Gorenstein, Paul; Rezek, Tomas

    1999-01-01

    The recent discovery of X-ray afterglows of GRBs opens the possibility of analyses of GRBs by their X-ray detections. However, imaging X-ray telescopes in current use mostly have limited field of view. Alternative X-ray optics geometries achieving very large fields of view have been theoretically suggested in the 70ies but not constructed and used so far. We review the geometries and basic properties of the wide-field X-ray optical systems based on one- and two-dimensional lobster-eye geometry and suggest technologies for their development and construction. First results of the development of double replicated X-ray reflecting flats for use in one-dimensional X-ray optics of lobster eye type are presented and discussed. Optimum strategy for locating GRBs upon their X-ray counterparts is also presented and discussed

  8. Novel X-ray Communication Based XNAV Augmentation Method Using X-ray Detectors

    Directory of Open Access Journals (Sweden)

    Shibin Song

    2015-09-01

    Full Text Available The further development of X-ray pulsar-based NAVigation (XNAV is hindered by its lack of accuracy, so accuracy improvement has become a critical issue for XNAV. In this paper, an XNAV augmentation method which utilizes both pulsar observation and X-ray ranging observation for navigation filtering is proposed to deal with this issue. As a newly emerged concept, X-ray communication (XCOM shows great potential in space exploration. X-ray ranging, derived from XCOM, could achieve high accuracy in range measurement, which could provide accurate information for XNAV. For the proposed method, the measurement models of pulsar observation and range measurement observation are established, and a Kalman filtering algorithm based on the observations and orbit dynamics is proposed to estimate the position and velocity of a spacecraft. A performance comparison of the proposed method with the traditional pulsar observation method is conducted by numerical experiments. Besides, the parameters that influence the performance of the proposed method, such as the pulsar observation time, the SNR of the ranging signal, etc., are analyzed and evaluated by numerical experiments.

  9. Time-resolved X-ray transmission microscopy on magnetic microstructures; Zeitaufloesende Roentgentransmissionsmikroskopie an magnetischen Mikrostrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Puzic, Aleksandar

    2007-10-23

    Three excitation schemes were designed for stroboscopic imaging of magnetization dynamics with time-resolved magnetic transmission X-ray microscopy (TR-MTXM). These techniques were implemented into two types of X-ray microscopes, namely the imaging transmission X-ray microscope (ITXM) and the scanning transmission X-ray microscope (STXM), both installed at the electron storage ring of the Advanced Light Source in Berkeley, USA. Circular diffraction gratings (Fresnel zone plates) used in both microscopes as focusing and imaging elements presently allow for lateral resolution down to 30 nm. Magnetic imaging is performed by using the X-ray magnetic circular dichroism (XMCD) as element specific contrast mechanism. The developed methods have been successfully applied to the experimental investigation of magnetization dynamics in ferromagnetic microstructures. A temporal resolution well below 100 ps was achieved. A conventional pump-probe technique was implemented first. The dynamic response of the magnetization excited by a broadband pulsed magnetic field was imaged spatially resolved using focused X-ray flashes. As a complementary method, the spatially resolved ferromagnetic resonance (SR-FMR) technique was developed for experimental study of magnetization dynamics in the frequency domain. As a third excitation mode, the burst excitation was implemented. The performance and efficiency of the developed methods have been demonstrated by imaging the local magnetization dynamics in laterally patterned ferromagnetic thin-film elements and three-layer stacks. The existence of multiple eigenmodes in the excitation spectra of ferromagnetic microstructures has been verified by using the pump-probe technique. Magnetostatic spin waves were selectively excited and detected with a time resolution of 50 ps using the SR-FMR technique. Thorough analysis of 20 in most cases independently prepared samples has verified that vortices which exhibit a low-amplitude switching of their core

  10. Hard X-ray bremsstrahlung production in solar flares by high-energy proton beams

    Science.gov (United States)

    Emslie, A. G.; Brown, J. C.

    1985-01-01

    The possibility that solar hard X-ray bremsstrahlung is produced by acceleration of stationary electrons by fast-moving protons, rather than vice versa, as commonly assumed, was investigated. It was found that a beam of protons which involves 1836 times fewer particles, each having an energy 1836 times greater than that of the electrons in the equivalent electron beam model, has exactly the same bremsstrahlung yield for a given target, i.e., the mechanism has an energetic efficiency equal to that of conventional bremsstrahlung models. Allowance for the different degrees of target ionization appropriate to the two models (for conventional flare geometries) makes the proton beam model more efficient than the electron beam model, by a factor of order three. The model places less stringent constraints than a conventional electron beam model on the flare energy release mechanism. It is also consistent with observed X-ray burst spectra, intensities, and directivities. The altitude distribution of hard X-rays predicted by the model agrees with observations only if nonvertical injection of the protons is assumed. The model is inconsistent with gamma-ray data in terms of conventional modeling.

  11. Three dimensional subsurface elemental identification of minerals using confocal micro-X-ray fluorescence and micro-X-ray computed tomography

    International Nuclear Information System (INIS)

    Cordes, Nikolaus L.; Seshadri, Srivatsan; Havrilla, George J.; Yuan, Xiaoli; Feser, Michael; Patterson, Brian M.

    2015-01-01

    Current non-destructive elemental characterization methods, such as scanning electron microscopy-based energy dispersive spectroscopy (SEM–EDS) and micro-X-ray fluorescence spectroscopy (MXRF), are limited to either elemental identification at the surface (SEM–EDS) or suffer from an inability to discriminate between surface or depth information (MXRF). Thus, a non-destructive elemental characterization of individual embedded particles beneath the surface is impossible with either of these techniques. This limitation can be overcome by using laboratory-based 3D confocal micro-X-ray fluorescence spectroscopy (confocal MXRF). This technique utilizes focusing optics on the X-ray source and detector which allows for spatial discrimination in all three dimensions. However, the voxel-by-voxel serial acquisition of a 3D elemental scan can be very time-intensive (~ 1 to 4 weeks) if it is necessary to locate individual embedded particles of interest. As an example, if each point takes a 5 s measurement time, a small volume of 50 × 50 × 50 pixels leads to an acquisition time of approximately 174 h, not including sample stage movement time. Initially screening the samples for particles of interest using micro-X-ray computed tomography (micro-CT) can significantly reduce the time required to spatially locate these particles. Once located, these individual particles can be elementally characterized with confocal MXRF. Herein, we report the elemental identification of high atomic number surface and subsurface particles embedded in a mineralogical matrix by coupling micro-CT and confocal MXRF. Synergistically, these two X-ray based techniques first rapidly locate and then elementally identify individual subsurface particles. - Highlights: • Coupling of confocal X-ray fluorescence spectroscopy and X-ray computed tomography • Qualitative elemental identification of surface and subsurface mineral particles • Non-destructive particle size measurements • Utilization of

  12. Three dimensional subsurface elemental identification of minerals using confocal micro-X-ray fluorescence and micro-X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, Nikolaus L., E-mail: ncordes@lanl.gov [Polymers and Coatings Group, Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Seshadri, Srivatsan, E-mail: srivatsan.seshadri@zeiss.com [Carl Zeiss X-ray Microscopy, Inc., Pleasanton, CA 94588 (United States); Havrilla, George J. [Chemical Diagnostics and Engineering, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Yuan, Xiaoli [Julius Kruttschnitt Mineral Research Centre, University of Queensland, Indooroopilly, Brisbane, QLD 4068 (Australia); Feser, Michael [Carl Zeiss X-ray Microscopy, Inc., Pleasanton, CA 94588 (United States); Patterson, Brian M. [Polymers and Coatings Group, Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-01-01

    Current non-destructive elemental characterization methods, such as scanning electron microscopy-based energy dispersive spectroscopy (SEM–EDS) and micro-X-ray fluorescence spectroscopy (MXRF), are limited to either elemental identification at the surface (SEM–EDS) or suffer from an inability to discriminate between surface or depth information (MXRF). Thus, a non-destructive elemental characterization of individual embedded particles beneath the surface is impossible with either of these techniques. This limitation can be overcome by using laboratory-based 3D confocal micro-X-ray fluorescence spectroscopy (confocal MXRF). This technique utilizes focusing optics on the X-ray source and detector which allows for spatial discrimination in all three dimensions. However, the voxel-by-voxel serial acquisition of a 3D elemental scan can be very time-intensive (~ 1 to 4 weeks) if it is necessary to locate individual embedded particles of interest. As an example, if each point takes a 5 s measurement time, a small volume of 50 × 50 × 50 pixels leads to an acquisition time of approximately 174 h, not including sample stage movement time. Initially screening the samples for particles of interest using micro-X-ray computed tomography (micro-CT) can significantly reduce the time required to spatially locate these particles. Once located, these individual particles can be elementally characterized with confocal MXRF. Herein, we report the elemental identification of high atomic number surface and subsurface particles embedded in a mineralogical matrix by coupling micro-CT and confocal MXRF. Synergistically, these two X-ray based techniques first rapidly locate and then elementally identify individual subsurface particles. - Highlights: • Coupling of confocal X-ray fluorescence spectroscopy and X-ray computed tomography • Qualitative elemental identification of surface and subsurface mineral particles • Non-destructive particle size measurements • Utilization of

  13. A system for time-resolved x-ray diffraction and its application to muscle contraction

    International Nuclear Information System (INIS)

    Amemiya, Yoshiyuki; Hashizume, Hiroo.

    1979-01-01

    A data-collection system has been built which permits time-resolved studies of X-ray diffraction diagrams obtained from contracting muscle on millisecond time scale. The system consists of a linear delay-line position sensitive proportional counter (PSPC), a special data transfer unit and an on-line computer. The PSPC used with a mirror-monochromator camera can detect equatorial reflections from stimulated muscle in a total exposure time of a few seconds. Time-resolved data-collection is achieved by stimulating muscle at a regular time interval, dividing a complete cycle of muscle contraction into many successive time slices and accumulating in computer memory X-ray data for each time slice from many repeated cycles of stimulation. The performances of the system have been demonstrated by recording equatorial reflections from frog skeletal muscle during isometric and isotonic twitch with a time resolution of 25 ms. (author)

  14. On the methods of determination of x-ray sources protection quality in x-ray diagnostic equipment

    International Nuclear Information System (INIS)

    Vladimirov, L.V.

    1973-01-01

    Existing procedures for assessing the quality of shielding of X-ray radiators are compared; these procedures are shown to have a number of shortcomings and to be very time-consuming. A procedure is offered in which shielding quality is tested in two stages: (1) X-ray tests aimed at determining the quality of protection of the X-ray tube unit; and (2) dosimeter tests proper. The results of measurements are compared with maximum permissible dosage rate

  15. Studies of nanostructures using time-resolved x-ray excited optical luminescence*

    International Nuclear Information System (INIS)

    Rosenberg, R.A.; Shenoy, G.K.; Smita, S.; Burda, C.; Sham, T.K.

    2004-01-01

    Full text:The scientific community is currently investing a great deal of effort into understanding the physics and chemistry of nanoscale structures. Synchrotron radiation techniques are being used to study the physical, electronic, and magnetic structure of nanosystems, albeit at a relatively large size (greater than 30 nm). A major challenge facing researchers is finding methods that can probe structures of the smallest scale (less than 10 nm). Optical luminescence has been shown to be directly sensitive to structures in this size range due to quantum confinement phenomena. X-ray-excited optical luminescence (XEOL) provides the capability to chemically map the sites responsible for producing low-energy (1-6 eV) fluorescence. By taking advantage of the time structure of the x-ray pulses at the Advanced Photon Source (70 ps wide, 153 ns separation), it also possible to determine the dynamic behavior of the states involved in the luminescence. In this paper we will present results of time-resolved XEOL experiments on various nanostructures including porous silicon, silicon nanowires, and CdSe nanodots

  16. X-ray scattering studies of non-equilibrium ordering processes: Progress report, November 1, 1988--October 31, 1989

    International Nuclear Information System (INIS)

    Nagler, S.E.

    1989-01-01

    We report on the progress of our project entitled ''X-ray Scattering Studies of Non-Equilibrium Ordering Processes.'' In-house time-resolved x-ray scattering has been used to investigate ordering kinetics in single crystal thin films of Cu 3 Au. Scaling analysis of the results shows that two dimensional kinetic behavior is observed in 260 /angstrom/ thick films. Significant improvements have been made in the local capabilities for fast time resolved measurements and data analysis. Measurements of microphase separation and ordering kinetics have been made in block-co-polymers, and experiments on Au-Cd martensitic material are continuing. 15 refs., 7 figs

  17. X-ray bursts observed with JEM-X

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Chenevez, Jérôme; Lund, Niels

    2006-01-01

    We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found.......We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found....

  18. Stationary scanning x-ray source based on carbon nanotube field emitters

    International Nuclear Information System (INIS)

    Zhang, J.; Yang, G.; Cheng, Y.; Gao, B.; Qiu, Q.; Lee, Y.Z.; Lu, J.P.; Zhou, O.

    2005-01-01

    We report a field emission x-ray source that can generate a scanning x-ray beam to image an object from multiple projection angles without mechanical motion. The key component of the device is a gated carbon nanotube field emission cathode with an array of electron emitting pixels that are individually addressable via a metal-oxide-semiconductor field effect transistor-based electronic circuit. The characteristics of this x-ray source are measured and its imaging capability is demonstrated. The device can potentially lead to a fast data acquisition rate for laminography and tomosynthesis with a simplified experimental setup

  19. Streaked, x-ray-transmission-grating spectrometer

    International Nuclear Information System (INIS)

    Ceglio, N.M.; Roth, M.; Hawryluk, A.M.

    1981-08-01

    A free standing x-ray transmission grating has been coupled with a soft x-ray streak camera to produce a time resolved x-ray spectrometer. The instrument has a temporal resolution of approx. 20 psec, is capable of covering a broad spectral range, 2 to 120 A, has high sensitivity, and is simple to use requiring no complex alignment procedure. In recent laser fusion experiments the spectrometer successfully recorded time resolved spectra over the range 10 to 120 A with a spectral resolving power, lambda/Δlambda of 4 to 50, limited primarily by source size and collimation effects

  20. X-ray time lags in PG 1211+143

    Science.gov (United States)

    Lobban, A. P.; Vaughan, S.; Pounds, K.; Reeves, J. N.

    2018-05-01

    We investigate the X-ray time lags of a recent ˜630 ks XMM-Newton observation of PG 1211+143. We find well-correlated variations across the XMM-Newton EPIC bandpass, with the first detection of a hard lag in this source with a mean time delay of up to ˜3 ks at the lowest frequencies. We find that the energy-dependence of the low-frequency hard lag scales approximately linearly with log(E) when averaged over all orbits, consistent with the propagating fluctuations model. However, we find that the low-frequency lag behaviour becomes more complex on time-scales longer than a single orbit, suggestive of additional modes of variability. We also detect a high-frequency soft lag at ˜10-4 Hz with the magnitude of the delay peaking at ≲ 0.8 ks, consistent with previous observations, which we discuss in terms of small-scale reverberation.

  1. The simulated spectrum of the OGRE X-ray EM-CCD camera system

    Science.gov (United States)

    Lewis, M.; Soman, M.; Holland, A.; Lumb, D.; Tutt, J.; McEntaffer, R.; Schultz, T.; Holland, K.

    2017-12-01

    The X-ray astronomical telescopes in use today, such as Chandra and XMM-Newton, use X-ray grating spectrometers to probe the high energy physics of the Universe. These instruments typically use reflective optics for focussing onto gratings that disperse incident X-rays across a detector, often a Charge-Coupled Device (CCD). The X-ray energy is determined from the position that it was detected on the CCD. Improved technology for the next generation of X-ray grating spectrometers has been developed and will be tested on a sounding rocket experiment known as the Off-plane Grating Rocket Experiment (OGRE). OGRE aims to capture the highest resolution soft X-ray spectrum of Capella, a well-known astronomical X-ray source, during an observation period lasting between 3 and 6 minutes whilst proving the performance and suitability of three key components. These three components consist of a telescope made from silicon mirrors, gold coated silicon X-ray diffraction gratings and a camera that comprises of four Electron-Multiplying (EM)-CCDs that will be arranged to observe the soft X-rays dispersed by the gratings. EM-CCDs have an architecture similar to standard CCDs, with the addition of an EM gain register where the electron signal is amplified so that the effective signal-to-noise ratio of the imager is improved. The devices also have incredibly favourable Quantum Efficiency values for detecting soft X-ray photons. On OGRE, this improved detector performance allows for easier identification of low energy X-rays and fast readouts due to the amplified signal charge making readout noise almost negligible. A simulation that applies the OGRE instrument performance to the Capella soft X-ray spectrum has been developed that allows the distribution of X-rays onto the EM-CCDs to be predicted. A proposed optical model is also discussed which would enable the missions minimum success criteria's photon count requirement to have a high chance of being met with the shortest possible

  2. A microprogrammable high-speed data collection system for position sensitive X-ray detectors

    International Nuclear Information System (INIS)

    Hashizume, H.

    1984-01-01

    A high-speed data acquisition system has been designed which collects digital data from one- and two-dimensional position sensitive X-ray detectors at a maximum average data rate of 1 MHz. The system consists of two separate fast buffer memories, a 64 K word by 20-bit main storage, two timers, a display controller, a computer interface and a keyboard, controlled by a specially designed microprogrammable microprocessor. Data collection is performed by executing a microprogram stored in the control storage; data coming from a detector are first accumulated in a small but fast buffer memory by hardware and transferred to the main storage under control of the microprogram. This design not only permits time-resolved data collections but also provides maximum speed, flexibility and cost-effectiveness simultaneously. The system also accepts data from integrated detectors such as TV cameras. The system has been designed for use in experiments at conventional and synchrotron X-ray sources. (orig.)

  3. Dynamics of oxygen ordering in YBa2CU3O6+x studied by neutron and high-energy synchrotron x-ray diffiaction.

    Science.gov (United States)

    Frello, T.; Andersen, N. H.; Madsen, J.; Ka¨ll, M.; von Zimmermann, M.; Schmidt, O.; Poulsen, H. F.; Schneider, J. R.; Wolf, Th.

    1997-08-01

    The dynamics of the ortho-II oxygen structure in a high purity YBa 2Cu 3O 6+ x single crystal with x=0.50 has been studied by neutron and by X-ray diffraction with a photon energy of 100 keV. Our data show that the oxygen order develops on two different time-scales, one of the order of seconds and a much slower of the order of weeks and months. The mechanism dominating the slow time-scale is related to oxygen diffusion, while the fast mechanism may result from a temperature-dependent change in the average oxygen chain length.

  4. Characteristics of specifications of transportable inverter-type X-ray equipment

    International Nuclear Information System (INIS)

    Yamamoto, Keiichi; Miyazaki, Shigeru

    2003-01-01

    Our X-ray systems study group measured and examined the characteristics of four transportable inverter-type X-ray equipments. X-ray tube voltage and X-ray tube current were measured with the X-ray tube voltage and the X-ray tube current measurement terminals provided with the equipment. X-ray tube voltage, irradiation time, and dose were measured with a non-invasive X-ray tube voltage-measuring device, and X-ray output was measured by fluorescence meter. The items investigated were the reproducibility and linearity of X-ray output, error of pre-set X-ray tube voltage and X-ray tube current, and X-ray tube voltage ripple percentage. The waveforms of X-ray tube voltage, the X-ray tube current, and fluorescence intensity draw were analyzed using the oscilloscope gram and a personal computer. All of the equipment had a preset error of X-ray tube voltage and X-ray tube current that met Japanese Industrial Standards (JIS) standards. The X-ray tube voltage ripple percentage of each equipment conformed to the tendency to decrease when X-ray tube voltage increased. Although the X-ray output reproducibility of system A exceeded the JIS standard, the other systems were within the JIS standard. Equipment A required 40 ms for X-ray tube current to reach the target value, and there was some X-ray output loss because of a trough in X-ray tube current. Owing to the influence of the ripple in X-ray tube current, the strength of the fluorescence waveform rippled in equipments B and C. Waveform analysis could not be done by aliasing of the recording device in equipment D. The maximum X-ray tube current of transportable inverter-type X-ray equipment is as low as 10-20 mA, and the irradiation time of chest X-ray photography exceeds 0.1 sec. However, improvement of the radiophotographic technique is required for patients who cannot move their bodies or halt respiration. It is necessary to make the irradiation time of the equipments shorter for remote medical treatment. (author)

  5. X-Ray and Near-Infrared Spectroscopy of Dim X-Ray Point Sources Constituting the Galactic Ridge X-Ray Emission

    Directory of Open Access Journals (Sweden)

    Kumiko Morihana

    2014-12-01

    Full Text Available We present the results of X-ray and Near-Infrared observations of the Galactic Ridge X-ray Emission (GRXE. We extracted 2,002 X-ray point sources in the Chandra Bulge Field (l =0°.113, b = 1°.424 down to ~10-14.8 ergscm-2s-1 in 2-8 keV band with the longest observation (900 ks of the GRXE. Based on X-ray brightness and hardness, we classied the X-ray point sources into three groups: A (hard, B (soft and broad spectrum, and C (soft and peaked spectrum. In order to know populations of the X-ray point sources, we carried out NIR imaging and spectroscopy observation. We identied 11% of X-ray point sources with NIR and extracted NIR spectra for some of them. Based on X-ray and NIR properties, we concluded that non-thermal sources in the group A are mostly active galactic nuclei and the thermal sources are mostly white dwarf binaries such as cataclysmic variables (CVs and Pre-CVs. We concluded that the group B and C sources are X-ray active stars in flare and quiescence, respectively.

  6. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    Directory of Open Access Journals (Sweden)

    Jasper J. van Thor

    2015-01-01

    Full Text Available In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe” which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF, in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.

  7. Time-resolved measurements of supersonic fuel sprays using synchrotron X-rays.

    Science.gov (United States)

    Powell, C F; Yue, Y; Poola, R; Wang, J

    2000-11-01

    A time-resolved radiographic technique has been developed for probing the fuel distribution close to the nozzle of a high-pressure single-hole diesel injector. The measurement was made using X-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution of better than 1 micros. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date.

  8. Sweeping total reflection X-ray fluorescence optimisation to monitor the metallic contamination into IC manufacturing

    International Nuclear Information System (INIS)

    Borde, Yannick; Danel, Adrien; Roche, Agnes; Veillerot, Marc

    2008-01-01

    Among the methods available on the market today to control as metallic contamination in integrated circuit manufacturing, Sweeping Total reflection X-ray Fluorescence mode appears a very good method, providing fast and entire wafer mapping. With the goal of a pertinent use of Sweeping Total reflection X-ray Fluorescence in advanced Integrated Circuit manufacturing this work discusses how acceptable levels of contamination specified by the production (low levels to be detected) can be taken into account. The relation between measurement results (surface coverage, throughput, low limit of detection, limit of quantification, quantification of localized contamination) and Sweeping Total reflection X-ray Fluorescence parameters (number of measurement points and integration time per point) is presented in details. In particular, a model is proposed to explain the mismatch between actual surface contamination in a localized spot on wafer and Total reflection X-ray Fluorescence reading. Both calibration and geometric issues have been taken into account

  9. LOBSTER - New Space X-Ray telescopes

    International Nuclear Information System (INIS)

    Hudec, R.; Pina, L.; Simon, V.; Sveda, L.; Inneman, A.; Semencova, V.; Skulinova, M.

    2007-01-01

    We discuss the technological and scientific aspects of fully innovative very wide-field X-ray telescopes with high sensitivity. The prototypes of Lobster telescopes designed, developed and tested are very promising, allowing the proposals for space projects with very wide-field Lobster Eye X-ray optics to be considered for the first time. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study of various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. For example, the Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small dose ... limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is ...

  12. Bone X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  13. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very small ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  14. Use of the maximum entropy method in X-ray astronomy

    International Nuclear Information System (INIS)

    Willingale, R.

    1981-01-01

    An algorithm used to apply the maximum entropy method in X-ray astronomy is described. It is easy to programme on a digital computer and fast enough to allow processing of two-dimensional images. The method gives good noise suppression without loss of instrumental resolution and has been successfully applied to several data analysis problems in X-ray astronomy. The restoration of a high-resolution image from the Einstein Observatory demonstrates the use of the algorithm. (author)

  15. CRL X-ray tube

    International Nuclear Information System (INIS)

    Kolchevsky, N.N.; Petrov, P.V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed. (authors)

  16. JEM-X observations of the Be/X-ray binary EXO 2030+375

    DEFF Research Database (Denmark)

    Nunez, S.M.; Reig, P.; Blay, P.

    2003-01-01

    We have used data from the Joint European Monitor (JEM-X) to perform an X-ray spectral and timing analysis of the 42-s transient pulsar EXO 2030+375 during an X-ray outburst. X-ray pulsations are clearly detected with an average pulse period of 41.66+/-0.05 s and an average pulse fraction of 60...

  17. Nanocalorimeter platform for in situ specific heat measurements and x-ray diffraction at low temperature

    Science.gov (United States)

    Willa, K.; Diao, Z.; Campanini, D.; Welp, U.; Divan, R.; Hudl, M.; Islam, Z.; Kwok, W.-K.; Rydh, A.

    2017-12-01

    Recent advances in electronics and nanofabrication have enabled membrane-based nanocalorimetry for measurements of the specific heat of microgram-sized samples. We have integrated a nanocalorimeter platform into a 4.5 T split-pair vertical-field magnet to allow for the simultaneous measurement of the specific heat and x-ray scattering in magnetic fields and at temperatures as low as 4 K. This multi-modal approach empowers researchers to directly correlate scattering experiments with insights from thermodynamic properties including structural, electronic, orbital, and magnetic phase transitions. The use of a nanocalorimeter sample platform enables numerous technical advantages: precise measurement and control of the sample temperature, quantification of beam heating effects, fast and precise positioning of the sample in the x-ray beam, and fast acquisition of x-ray scans over a wide temperature range without the need for time-consuming re-centering and re-alignment. Furthermore, on an YBa2Cu3O7-δ crystal and a copper foil, we demonstrate a novel approach to x-ray absorption spectroscopy by monitoring the change in sample temperature as a function of incident photon energy. Finally, we illustrate the new insights that can be gained from in situ structural and thermodynamic measurements by investigating the superheated state occurring at the first-order magneto-elastic phase transition of Fe2P, a material that is of interest for magnetocaloric applications.

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  19. Novel X-ray telescopes for wide-field X-ray monitoring

    International Nuclear Information System (INIS)

    Hudec, R.; Inneman, A.; Pina, L.; Sveda, L.

    2005-01-01

    We report on fully innovative very wide-field of view X-ray telescopes with high sensitivity as well as large field of view. The prototypes are very promising, allowing the proposals for space projects with very wide-field Lobster-eye X-ray optics to be considered. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study and to understand various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. The Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science

  20. X-ray wavefront characterization using a rotating shearing interferometer technique.

    Science.gov (United States)

    Wang, Hongchang; Sawhney, Kawal; Berujon, Sébastien; Ziegler, Eric; Rutishauser, Simon; David, Christian

    2011-08-15

    A fast and accurate method to characterize the X-ray wavefront by rotating one of the two gratings of an X-ray shearing interferometer is described and investigated step by step. Such a shearing interferometer consists of a phase grating mounted on a rotation stage, and an absorption grating used as a transmission mask. The mathematical relations for X-ray Moiré fringe analysis when using this device are derived and discussed in the context of the previous literature assumptions. X-ray beam wavefronts without and after X-ray reflective optical elements have been characterized at beamline B16 at Diamond Light Source (DLS) using the presented X-ray rotating shearing interferometer (RSI) technique. It has been demonstrated that this improved method allows accurate calculation of the wavefront radius of curvature and the wavefront distortion, even when one has no previous information on the grating projection pattern period, magnification ratio and the initial grating orientation. As the RSI technique does not require any a priori knowledge of the beam features, it is suitable for routine characterization of wavefronts of a wide range of radii of curvature. © 2011 Optical Society of America

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  2. X-Ray Optics: Past, Present, and Future

    Science.gov (United States)

    Zhang, William W.

    2010-01-01

    X-ray astronomy started with a small collimated proportional counter atop a rocket in the early 1960s. It was immediately recognized that focusing X-ray optics would drastically improve both source location accuracy and source detection sensitivity. In the past 5 decades, X-ray astronomy has made significant strides in achieving better angular resolution, large photon collection area, and better spectral and timing resolutions, culminating in the three currently operating X-ray observatories: Chandra, XMM/Newton, and Suzaku. In this talk I will give a brief history of X-ray optics, concentrating on the characteristics of the optics of these three observatories. Then I will discuss current X-ray mirror technologies being developed in several institutions. I will end with a discussion of the optics for the International X-ray Observatory that I have been developing at Goddard Space Flight Center.

  3. Iron overload of human colon adenocarcinoma cells studied by synchrotron-based X-ray techniques

    NARCIS (Netherlands)

    Mihucz, Victor G.; Meirer, Florian; Polgári, Zsófia; Réti, Andrea; Pepponi, Giancarlo; Ingerle, Dieter; Szoboszlai, Norbert; Streli, Christina

    2016-01-01

    Fast- and slow-proliferating human adenocarcinoma colorectal cells, HT-29 and HCA-7, respectively, overloaded with transferrin (Tf), Fe(III) citrate, Fe(III) chloride and Fe(II) sulfate were studied by synchrotron radiation total-reflection X-ray spectrometry (TXRF), TXRF-X-ray absorption near edge

  4. DISCOVERY OF X-RAY EMISSION FROM THE GALACTIC SUPERNOVA REMNANT G32.8-0.1 WITH SUZAKU

    Energy Technology Data Exchange (ETDEWEB)

    Bamba, Aya; Sawada, Makoto [Department of Physics and Mathematics, Aoyama Gakuin University 5-10-1 Fuchinobe Chuo-ku, Sagamihara, Kanagawa 252-5258 (Japan); Terada, Yukikatsu [Department of Physics, Science, Saitama University, Sakura, Saitama 338-8570 (Japan); Hewitt, John; Petre, Robert; Angelini, Lorella [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Safi-Harb, Samar [Department of Physics and Astronomy, University of Manitoba, Winnipeg MB R3T 2N2 (Canada); Zhou, Ping [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Bocchino, Fabrizio [INAF—Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134, Palermo (Italy)

    2016-02-10

    We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8−0.1 (Kes 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT ∼ 0.6 keV) thermal emission in a non-equilibrium ionization state, but also a very high-temperature (kT ∼ 3.4 keV) component with a very low ionization timescale (∼2.7 × 10{sup 9} cm{sup −3} s), or a hard nonthermal component with a photon index Γ ∼ 2.3. The average density of the low-temperature plasma is rather low, of the order of 10{sup −3}–10{sup −2} cm{sup −3}, implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in TeV with H.E.S.S., together with multi-wavelength studies of the remnant and other gamma-ray emitting SNRs, such as W28 and RCW 86. Analysis of a time-variable source, 2XMM J185114.3−000004, found in the northern part of the SNR, is also reported for the first time. Rapid time variability and a heavily absorbed hard-X-ray spectrum suggest that this source could be a new supergiant fast X-ray transient.

  5. X-ray scattering in X-ray fluorescence spectra with X-ray tube excitation - Modelling, experiment, and Monte-Carlo simulation

    International Nuclear Information System (INIS)

    Hodoroaba, V.-D.; Radtke, M.; Vincze, L.; Rackwitz, V.; Reuter, D.

    2010-01-01

    X-ray scattering may contribute significantly to the spectral background of X-ray fluorescence (XRF) spectra. Based on metrological measurements carried out with a scanning electron microscope (SEM) having attached a well characterised X-ray source (polychromatic X-ray tube) and a calibrated energy dispersive X-ray spectrometer (EDS) the accuracy of a physical model for X-ray scattering is systematically evaluated for representative samples. The knowledge of the X-ray spectrometer efficiency, but also of the spectrometer response functions makes it possible to define a physical spectral background of XRF spectra. Background subtraction relying on purely mathematical procedures is state-of-the-art. The results produced by the analytical model are at least as reliable as those obtained by Monte-Carlo simulations, even without considering the very challenging contribution of multiple scattering. Special attention has been paid to Compton broadening. Relevant applications of the implementation of the analytical model presented in this paper are the prediction of the limits of detection for particular cases or the determination of the transmission of X-ray polycapillary lenses.

  6. X-ray diagnostic installation for X-ray tomographic images

    International Nuclear Information System (INIS)

    Haendle, J.; Sklebitz, H.

    1984-01-01

    An exemplary embodiment includes at least one x-ray tube for the generation of an x-ray beam, a patient support, an image detector, and a control generator-connected with the x-ray tube and the image detector-for the purpose of moving the x-ray beam, and in opposition thereto, the image field of the image detector. There is connected to the control generator a layer height computer which calculates the enlargement from the geometric data for the tomogram. The image detector has a circuit-connected with the layer height computer-for the purpose of fading-in a marking for the dimensions in the layer plane

  7. X-ray emission spectroscopy. X-ray fluorescence

    International Nuclear Information System (INIS)

    Despujols, J.

    1992-01-01

    Principles of X-ray emission spectrometry are first recalled, then wave-length dispersive and energy dispersive X-ray fluorescence spectrometer are described. They are essentially designed for qualitative and quantitative analysis of elements (Z>10). Sample preparation, calibration, corrections, interferences, accuracy are reviewed. Examples of use in different industries are given. (71 refs.)

  8. Development and validation of real-time simulation of X-ray imaging with respiratory motion.

    Science.gov (United States)

    Vidal, Franck P; Villard, Pierre-Frédéric

    2016-04-01

    We present a framework that combines evolutionary optimisation, soft tissue modelling and ray tracing on GPU to simultaneously compute the respiratory motion and X-ray imaging in real-time. Our aim is to provide validated building blocks with high fidelity to closely match both the human physiology and the physics of X-rays. A CPU-based set of algorithms is presented to model organ behaviours during respiration. Soft tissue deformation is computed with an extension of the Chain Mail method. Rigid elements move according to kinematic laws. A GPU-based surface rendering method is proposed to compute the X-ray image using the Beer-Lambert law. It is provided as an open-source library. A quantitative validation study is provided to objectively assess the accuracy of both components: (i) the respiration against anatomical data, and (ii) the X-ray against the Beer-Lambert law and the results of Monte Carlo simulations. Our implementation can be used in various applications, such as interactive medical virtual environment to train percutaneous transhepatic cholangiography in interventional radiology, 2D/3D registration, computation of digitally reconstructed radiograph, simulation of 4D sinograms to test tomography reconstruction tools. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. DNA microarray analyses reveal a post-irradiation differential time-dependent gene expression profile in yeast cells exposed to X-rays and gamma-rays.

    Science.gov (United States)

    Kimura, Shinzo; Ishidou, Emi; Kurita, Sakiko; Suzuki, Yoshiteru; Shibato, Junko; Rakwal, Randeep; Iwahashi, Hitoshi

    2006-07-21

    Ionizing radiation (IR) is the most enigmatic of genotoxic stress inducers in our environment that has been around from the eons of time. IR is generally considered harmful, and has been the subject of numerous studies, mostly looking at the DNA damaging effects in cells and the repair mechanisms therein. Moreover, few studies have focused on large-scale identification of cellular responses to IR, and to this end, we describe here an initial study on the transcriptional responses of the unicellular genome model, yeast (Saccharomyces cerevisiae strain S288C), by cDNA microarray. The effect of two different IR, X-rays, and gamma (gamma)-rays, was investigated by irradiating the yeast cells cultured in YPD medium with 50 Gy doses of X- and gamma-rays, followed by resuspension of the cells in YPD for time-course experiments. The samples were collected for microarray analysis at 20, 40, and 80 min after irradiation. Microarray analysis revealed a time-course transcriptional profile of changed gene expressions. Up-regulated genes belonged to the functional categories mainly related to cell cycle and DNA processing, cell rescue defense and virulence, protein and cell fate, and metabolism (X- and gamma-rays). Similarly, for X- and gamma-rays, the down-regulated genes belonged to mostly transcription and protein synthesis, cell cycle and DNA processing, control of cellular organization, cell fate, and C-compound and carbohydrate metabolism categories, respectively. This study provides for the first time a snapshot of the genome-wide mRNA expression profiles in X- and gamma-ray post-irradiated yeast cells and comparatively interprets/discusses the changed gene functional categories as effects of these two radiations vis-à-vis their energy levels.

  10. Characteristics of a molybdenum X-pinch X-ray source as a probe source for X-ray diffraction studies

    International Nuclear Information System (INIS)

    Zucchini, F.; Chauvin, C.; Combes, P.; Sol, D.; Loyen, A.; Roques, B.; Grunenwald, J.; Bland, S. N.

    2015-01-01

    X-ray emission from a molybdenum X-pinch has been investigated as a potential probe for the high pressure states made in dynamic compression experiments. Studies were performed on a novel 300 kA, 400 ns generator which coupled the load directly to a low inductance capacitor and switch combination. The X-pinch load consisted of 4 crossed molybdenum wires of 13 μm diameter, crossed at an angle of 62°. The load height was 10 mm. An initial x-ray burst generated at the wire crossing point, radiated in the soft x-ray range (hυ < 10 keV). This was followed, 2–5 ns later, by at least one harder x-ray burst (hυ > 10 keV) whose power ranged from 1 to 7 MW. Time integrated spectral measurements showed that the harder bursts were dominated by K-alpha emission; though, a lower level, wide band continuum up to at least 30 keV was also present. Initial tests demonstrated that the source was capable of driving Laue diffraction experiments, probing uncompressed samples of LiF and aluminium

  11. Formation and Evolution of X-ray Binaries

    Science.gov (United States)

    Fragkos, Anastasios

    X-ray binaries - mass-transferring binary stellar systems with compact object accretors - are unique astrophysical laboratories. They carry information about many complex physical processes such as star formation, compact object formation, and evolution of interacting binaries. My thesis work involves the study of the formation and evolution of Galactic and extra-galacticX-ray binaries using both detailed and realistic simulation tools, and population synthesis techniques. I applied an innovative analysis method that allows the reconstruction of the full evolutionary history of known black hole X-ray binaries back to the time of compact object formation. This analysis takes into account all the available observationally determined properties of a system, and models in detail four of its evolutionary evolutionary phases: mass transfer through the ongoing X-ray phase, tidal evolution before the onset of Roche-lobe overflow, motion through the Galactic potential after the formation of the black hole, and binary orbital dynamics at the time of core collapse. Motivated by deep extra-galactic Chandra survey observations, I worked on population synthesis models of low-mass X-ray binaries in the two elliptical galaxies NGC3379 and NGC4278. These simulations were targeted at understanding the origin of the shape and normalization of the observed X-ray luminosity functions. In a follow up study, I proposed a physically motivated prescription for the modeling of transient neutron star low-mass X-ray binary properties, such as duty cycle, outburst duration and recurrence time. This prescription enabled the direct comparison of transient low-mass X-ray binary population synthesis models to the Chandra X-ray survey of the two ellipticals NGC3379 and NGC4278. Finally, I worked on population synthesismodels of black holeX-ray binaries in the MilkyWay. This work was motivated by recent developments in observational techniques for the measurement of black hole spin magnitudes in

  12. Do we need X-rays?

    International Nuclear Information System (INIS)

    Sadat, Theo

    2004-01-01

    Do we need X-rays? The answer depends on the cost for 25 kGy sterilization, and the cost for 10 kGy decontamination, compared with the costs of other technologies. In the past, the cost of X-ray was compared with that of Cobalt 60, because treatment by pallet was virtually obsessional. It was considered easier to treat in a Contract Service Center even though several Contract Service Centers equipped with 10 MeV high-power accelerators are in operation, and are profitable. Currently small and reliable accelerators are available, which can be inserted into a production line, i.e. instead of treating a product in its shipment carton or on a pallet, the product can be treated as a unit on the production line. In this case there is no need for extra transport, or intermediate storage facilities, and the product is 'just in time'. So we should compare the cost of treatment, taking all these parameters into account (transport, storage, time lapse, etc.) to find out if X-ray treatment could be competitive. The few studies carried out in the past compared X-ray with Cobalt 60, and the economic result was always in favour of Cobalt due to the poor conversion output. This is still valid today, even if we consider very high-power electron beam accelerators. The performance and cost of e-beam in-line, gamma ray and X-ray will be compared

  13. Results of evaluation of quality control measurement instrument of x-ray diagnostic equipment by non-invasive method

    International Nuclear Information System (INIS)

    Laan, Flavio T. van der; Elbern, Alvin W.

    1996-01-01

    This work shows the results of the tests realized on Santa Rita Hospital (Porto Alegre), using a non invasive quality control measurement instrument, developed in this University for fast measurement of essential parameters of X-rays diagnostic equipment. In the tests we used a diagnostics Siemens X ray, model Heliofos 4E as our standard equipment. The linearity test of sensor probe and the exposure rate calibration was performed, with a Palmer Dosimeter. For the kVp and exposure time we used a RTI commercial instrument. (author)

  14. X-ray imaging with compound refractive lens and microfocus X-ray tube

    OpenAIRE

    Pina, Ladislav; Dudchik, Yury; Jelinek, Vaclav; Sveda, Libor; Marsik, Jiri; Horvath, Martin; Petr, Ondrej

    2008-01-01

    Compound refractive lenses (CRL), consisting of a lot number in-line concave microlenses made of low-Z material were studied. Lenses with focal length 109 mm and 41 mm for 8-keV X-rays, microfocus X-ray tube and X-ray CCD camera were used in experiments. Obtained images show intensity distribution of magnified microfocus X-ray source focal spot. Within the experiments, one lens was also used as an objective lens of the X-ray microscope, where the copper anode X-ray microfocus tube served as a...

  15. Ultra-fast flash observatory for detecting the early photons from gamma-ray bursts

    DEFF Research Database (Denmark)

    Lim, H.; Jeong, S.; Ahn, K.-B.

    ) for the fast measurement of the UV-optical photons from GRBs, and a gamma-ray monitor for energy measurement. The triggering is done by the UFFO burst Alert & Trigger telescope (UBAT) using the hard X-ray from GRBs and the UV/optical Trigger Assistant Telescope (UTAT) using the UV/optical photons from GRBs...

  16. Abdominal x-ray

    Science.gov (United States)

    Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  17. Time-resolved measurements of supersonic fuel sprays using synchrotron x-rays

    International Nuclear Information System (INIS)

    Powell, C.F.; Yue, Y.; Poola, R.; Wang, J.

    2000-11-01

    A time-resolved radiographic technique has been developed for probing the fuel distribution close to the nozzle of a high-pressure single-hole diesel injector. The measurement was made using X-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution of better than 1 μs. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date

  18. Ultrafast laser pump/x-ray probe experiments

    International Nuclear Information System (INIS)

    Larsson, J.; Judd, E.; Schuck, P.J.

    1997-01-01

    In an ongoing project aimed at probing solids using x-rays obtained at the ALS synchrotron with a sub-picosecond time resolution following interactions with a 100 fs laser pulse, the authors have successfully performed pump-probe experiments limited by the temporal duration of ALS-pulse. They observe a drop in the diffraction efficiency following laser heating. They can attribute this to a disordering of the crystal. Studies with higher temporal resolution are required to determine the mechanism. The authors have also incorporated a low-jitter streakcamera as a diagnostic for observing time-dependant x-ray diffraction. The streakcamera triggered by a photoconductive switch was operated at kHz repetition rates. Using UV-pulses, the authors obtain a temporal response of 2 ps when averaging 5000 laser pulses. They demonstrate the ability to detect monochromatized x-ray radiation from a bend-magnet with the streak camera by measuring the pulse duration of a x-ray pulse to 70 ps. In conclusion, the authors show a rapid disordering of an InSb crystal. The resolution was determined by the duration of the ALS pulse. They also demonstrate that they can detect x-ray radiation from a synchrotron source with a temporal resolution of 2ps, by using an ultrafast x-ray streak camera. Their set-up will allow them to pursue laser pump/x-ray probe experiments to monitor structural changes in materials with ultrafast time resolution

  19. Handbook of X-Ray Astronomy

    Science.gov (United States)

    Arnaud, Keith A. (Editor); Smith, Randall K.; Siemiginowska, Aneta

    2011-01-01

    X-ray astronomy was born in the aftermath of World War II as military rockets were repurposed to lift radiation detectors above the atmosphere for a few minutes at a time. These early flights detected and studied X-ray emission from the Solar corona. The first sources beyond the Solar System were detected during a rocket flight in 1962 by a team headed by Riccardo Giaccom at American Science and Engineering, a company founded by physicists from MIT. The rocket used Geiger counters with a system designed to reduce non-X-ray backgrounds and collimators limiting the region of sky seen by the counters. As the rocket spun, the field of view (FOV) happened to pass over what was later found to be the brightest non-Solar X-ray source; later designated See X-1. It also detected a uniform background glow which could not be resolved into individual sources. A follow-up campaign using X-ray detectors with better spatial resolution and optical telescopes identified See X-1 as an interacting binary with a compact (neutron star) primary. This success led to further suborbital rocket flights by a number of groups. More X-ray binaries were discovered, as well as X-ray emission from supernova remnants, the radio galaxies M87 and Cygnus-A, and the Coma cluster. Detectors were improved and Geiger counters were replaced by proportional counters, which provided information about energy spectra of the sources. A constant challenge was determining precise positions of sources as only collimators were available.

  20. Optomechanical design of a hard x-ray nanoprobe instrument with active vibration control in nanometer scale

    International Nuclear Information System (INIS)

    Shu, D.; Maser, J.; Holt, M.; Winarski, R.; Preissner, C.; Smolyanitskiy, A.; Lai, B.; Vogt, S.; Stephenson, G.

    2007-01-01

    We are developing a new hard x-ray nanoprobe instrument that is one of the centerpieces of the characterization facilities of the Center for Nanoscale Materials being constructed at Argonne National Laboratory. This new probe will cover an energy range of 3-30 keV with 30-nm spatial resolution. The system is designed to accommodate x-ray optics with a resolution limit of 10 nm, therefore, it requires staging of x-ray optics and specimens with a mechanical repeatability of better than 5 nm. Fast feedback for differential vibration control between the zone-plate x-ray optics and the sample holder has been implemented in the design using a digital-signal-processor-based real-time closed-loop feedback technique. A specially designed, custom-built laser Doppler displacement meter system provides two-dimensional differential displacement measurements with subnanometer resolution between the zone-plate x-ray optics and the sample holder. The optomechanical design of the instrument positioning stage system with nanometer-scale active vibration control is presented in this paper.

  1. X-ray spectroscopy and X-ray crystallography of metalloenzymes at XFELs

    International Nuclear Information System (INIS)

    Yano, Junko

    2016-01-01

    The ultra-bright femtosecond X-ray pulses provided by X-ray Free Electron Lasers (XFELs) open capabilities for studying the structure and dynamics of a wide variety of biological and inorganic systems beyond what is possible at synchrotron sources. Although the structure and chemistry at the catalytic sites have been studied intensively in both biological and inorganic systems, a full understanding of the atomic-scale chemistry requires new approaches beyond the steady state X-ray crystallography and X-ray spectroscopy at cryogenic temperatures. Following the dynamic changes in the geometric and electronic structure at ambient conditions, while overcoming X-ray damage to the redox active catalytic center, is key for deriving reaction mechanisms. Such studies become possible by using the intense and ultra-short femtosecond X-ray pulses from an XFEL, where sample is probed before it is damaged. We have developed methodology for simultaneously collecting crystallography data and X-ray emission spectra, using an energy dispersive spectrometer at ambient conditions. In addition, we have developed a way to collect metal L-edge data of dilute samples using soft X-rays at XFELs. The advantages and challenges of these methods will be described in this review. (author)

  2. Challenges for energy dispersive X-ray absorption spectroscopy at the ESRF: microsecond time resolution and Mega-bar pressures

    International Nuclear Information System (INIS)

    Aquilanti, G.

    2002-01-01

    This Thesis concerns the development of two different applications of energy-dispersive X-ray absorption spectroscopy at the ESRF: time-resolved studies pushed to the microsecond time resolution and high-pressure studies at the limit of the Mega-bar pressures. The work has been developed in two distinct parts, and the underlying theme has been the exploitation of the capabilities of an X-ray absorption spectrometer in dispersive geometry on a third generation synchrotron source. For time-resolved studies, the study of the triplet excited state following a laser excitation of Pt 2 (P 2 O 5 H 2 ) 4 4- has been chosen to push the technique to the microsecond time resolution. In the high-pressure part, the suitability of the energy dispersive X-ray absorption spectrometer for high-pressure studies using diamond anvils cell is stressed. Some technical developments carried out on beamline ID24 are discussed. Finally, the most extensive scientific part concerns a combined X-ray absorption and diffraction study of InAs under pressure. (author)

  3. X-ray stress measurement by use of synchrotron radiation source

    International Nuclear Information System (INIS)

    Yoshioka, Yasuo; Matsui, Hisaaki; Moro-oka, Toshimasa; Hasegawa, Ken-ichi; Nakajima, Tetsuo.

    1986-01-01

    In the field of X-ray stress measurement of polycrystalline materials, a diffraction plane at higher Bragg angle has to be selected in order to obtain the precise value of stress. However, the stress measurement on an optional (hkl) plane desired is not always possible because the X-ray beam exited from a metal target has a dispersive wave length. Recently, we have been able to use the synchrotron radiation source (SR) as an excellent X-ray source. In Japan, the facility of synchrotron radiation (Photon Factory, PF) was constructed in the National Laboratory for High Energy Physics (KEK) at Tsukuba academic city. The use of this SR enables the stress measurements on many (hkl) planes with high accuracy in the higher Bragg angle region by providing an X-ray beam having an optional wave length. We have started the X-ray stress analysis by use of the synchrotron radiation source. This paper reports the system of measurement and some results of preliminaly experiments. Since a monochromatic X-ray beam is required for the stress measurement, we used a beam line which consists of a double crystal monochrometer and a focusing mirror. X-rays between 4 KeV (λ = 0.31 nm) and 10 KeV (λ = 0.12 nm) are available with this optical system. We adopted a constant Bragg angle of 2θ = 154 deg for all the diffraction planes. A PSPC having a carbon fiber anode is made and used as a detector with the use of a fast digital signal processor. We could observe the diffraction profiles from (200), (211), (220), (310) and (321) crystal plane of alpha iron, respectively, and the residual stresses in these planes except the (200) plane were measured with high accuracy in a short time. Such feature especially suits the stress analysis of the material which has preferred orientation or stress gradient. (author)

  4. Study of x-ray CCD image sensor and application

    Science.gov (United States)

    Wang, Shuyun; Li, Tianze

    2008-12-01

    In this paper, we expounded the composing, specialty, parameter, its working process, key techniques and methods for charge coupled devices (CCD) twice value treatment. Disposal process for CCD video signal quantification was expatiated; X-ray image intensifier's constitutes, function of constitutes, coupling technique of X-ray image intensifier and CCD were analyzed. We analyzed two effective methods to reduce the harm to human beings when X-ray was used in the medical image. One was to reduce X-ray's radiation and adopt to intensify the image penetrated by X-ray to gain the same effect. The other was to use the image sensor to transfer the images to the safe area for observation. On this base, a new method was presented that CCD image sensor and X-ray image intensifier were combined organically. A practical medical X-ray photo electricity system was designed which can be used in the records and time of the human's penetrating images. The system was mainly made up with the medical X-ray, X-ray image intensifier, CCD vidicon with high resolution, image processor, display and so on. Its characteristics are: change the invisible X-ray into the visible light image; output the vivid images; short image recording time etc. At the same time we analyzed the main aspects which affect the system's resolution. Medical photo electricity system using X-ray image sensor can reduce the X-ray harm to human sharply when it is used in the medical diagnoses. At last we analyzed and looked forward the system's application in medical engineering and the related fields.

  5. Chest X-Ray

    Medline Plus

    Full Text Available ... talk with you about chest radiography also known as chest x-rays. Chest x-rays are the ... treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray ...

  6. X-ray microtomography scanner using time-delay integration for elimination of ring artefacts in the reconstructed image

    International Nuclear Information System (INIS)

    Davis, G.R.; London Univ.; Elliott, J.C.; London Univ.

    1997-01-01

    Most X-ray microtomography scanners work on the same principle as third-generation medical CT scanners, that is, the same point in each projection is measured by the same detector element. This leads to ring artefacts in the reconstructed image if the X-ray sensitivities of the individual detector elements, after any analytical correction, are not all identical. We have developed an X-ray microtomography scanner which uses the time-delay integration method of imaging with a CCD detector to average the characteristics of all the detector elements in each linear projection together. This has the added advantage of allowing specimens which are larger than the detector and X-ray field to be scanned. The device also uses a novel mechanical stage to ''average out'' inhomogeneities in the X-ray field. The results show that ring artefacts in microtomographic images are eliminated using this technique. (orig.)

  7. Modern X-ray spectroscopy 3. X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Hayashi, Kouichi

    2008-01-01

    X-ray fluorescence holography (XFH) provides three dimensional atomic images around specified elements. The XFH uses atoms as a wave source or monitor of interference field within a crystal sample, and therefore it can record both intensity and phase of scattered X-rays. Its current performance makes it possible to apply to ultra thin film, impurity and quasicrystal. In this article, I show the theory including solutions for twin image problem, advanced measuring system, data processing for reconstruction of the atomic images and for obtaining accurate atomic positions, applications using resonant X-ray scattering and X-ray excited optical luminescence, and an example of XFH result on the local structure around copper in silicon steal. (author)

  8. X-ray holography: X-ray interactions and their effects

    International Nuclear Information System (INIS)

    London, R.A.; Trebes, J.E.; Rosen, M.D.

    1988-01-01

    The authors summarize a theoretical study of the interactions of x-rays with a biological sample during the creation of a hologram. The choice of an optimal wavelength for x-ray holography is discussed, based on a description of scattering by objects within an aqueous environment. The problem of the motion resulting from the absorption of x-rays during a short exposure is described. The possibility of using very short exposures in order to capture the image before motion can compromise the resolution is explored. The impact of these calculation on the question of the feasibility of using an x-ray laser for holography of biological structures is discussed. 12 refs., 2 figs

  9. Radio and X-Ray Observations of the 1998 Outburst of the Recurrent X-Ray Transient 4U 1630-47

    Science.gov (United States)

    Hjellming, R. M.; Rupen, M. P.; Mioduszewski, A. J.; Kuulkers, E.; McCollough, M.; Harmon, B. A.; Buxton, M.; Sood, R.; Tzioumis, A.; Rayner, D.; Dieters, S.; Durouchoux, P.

    1999-03-01

    We report radio (NRAO VLA and Australia Telescope Compact Array), soft X-ray (Rossi X-Ray Timing Explorer ASM), and hard X-ray (Compton Gamma Ray Observatory BATSE) observations of a 1998 outburst in the recurring X-ray transient 4U 1630-47, where radio emission was detected for the first time. The radio observations identify the position of 4U 1630-47 to within 1". Because the radio emission is optically thin with a spectral index of ~-0.8 during the rise, peak, and decay of the initial radio event, the emission is probably coming from an optically thin radio jet ejected over a period of time. The 20-100 keV emission first appeared 1998 January 28 (MJD 50841), the 2-12 keV emission first appeared 1998 February 3 (MJD 50847), and the first radio emission was detected 1998 February 12.6 (MJD 50856.6). The rise of the radio emission probably began about 1998 February 7 (MJD 50851) when the X-rays were in a very hard fluctuating-hardness state, just before changing to a softer, more stable hardness state.

  10. A new MBE CdTe photoconductor array detector for X-ray applications

    International Nuclear Information System (INIS)

    Yoo, S.S.; Sivananthan, S.; Faurie, J.P.; Rodricks, B.; Bai, J.; Montano, P.A.; Argonne National Lab., IL

    1994-10-01

    A CdTe photoconductor array x-ray detector was grown using Molecular Beam Epitaxially (MBE) on a Si (100) substrate. The temporal response of the photoconductor arrays is as fast as 21 psec risetime and 38 psec Full Width Half Maximum (FWHM). Spatial and energy responses were obtained using x-rays from a rotating anode and synchrotron radiation source. The spatial resolution of the photoconductor was good enough to provide 75 microm FWHM using a 50 microm synchrotron x-ray beam. A substantial number of x-ray photons are absorbed effectively within the MBE CdTe layer as observed from the linear response up to 15 keV. These results demonstrate that MBE grown CdTe is a suitable choice of the detector materials to meet the requirements for x-ray detectors in particular for the new high brightness synchrotron sources

  11. Development of confocal micro X-ray fluorescence instrument using two X-ray beams

    International Nuclear Information System (INIS)

    Tsuji, Kouichi; Nakano, Kazuhiko; Ding Xunliang

    2007-01-01

    A new confocal micro X-ray fluorescence instrument was developed. This instrument has two independent micro X-ray tubes with Mo targets. A full polycapillary X-ray lens was attached to each X-ray tube. Another half polycapillary lens was attached to a silicon drift X-ray detector (SDD). The focal spots of the three lenses were adjusted to a common position. The effects of the excitation of two X-ray beams were investigated. The instrument enabled highly sensitive three-dimensional X-ray fluorescence analysis. We confirmed that the X-ray fluorescence intensity from the sample increased by applying the two independent X-ray tubes in confocal configuration. Elemental depth profiling of black wheat was demonstrated with the result that each element in the surface coat of a wheat grain showed unique distribution

  12. Modern X-ray difraction. X-ray diffractometry for material scientists, physicists, and chemicists

    International Nuclear Information System (INIS)

    Spiess, L.; Schwarzer, R.; Behnken, H.; Teichert, G.

    2005-01-01

    The book yields a comprehensive survey over the applications of X-ray diffraction in fields like material techniques, metallurgy, electrotechniques, machine engineering, as well as micro- and nanotechniques. The necessary fundamental knowledge on X-ray diffraction are mediated foundedly and illustratively. Thereby new techniques and evaluation procedures are presented as well as well known methods. The content: Production and properties of X radiation, diffraction of X radiation, hardware for X-ray diffraction, methods of X-ray diffraction, lattice-constant determination, phase analysis, X-ray profile analysis, crystal structure analysis, X-ray radiographic stress analysis, X-ray radiographic texture analysis, crystal orientation determination, pecularities at thin films, small angle scattering

  13. X-Ray Exam: Pelvis

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Pelvis KidsHealth / For Parents / X-Ray Exam: ... Ray Exam: Hip Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  14. X-ray scattering measurements from thin-foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; BYRNAK, BP; Hornstrup, Allan

    1992-01-01

    Thin foil X-ray mirrors are to be used as the reflecting elements in the telescopes of the X-ray satellites Spectrum-X-Gamma (SRG) and ASTRO-D. High resolution X-ray scattering measurements from the Au coated and dip-lacquered Al foils are presented. These were obtained from SRG mirrors positioned...... in a test quadrant of the telescope structure and from ASTRO-D foils held in a simple fixture. The X-ray data is compared with laser data and other surface structure data such as STM, atomic force microscopy (AFM), TEM, and electron micrography. The data obtained at Cu K-alpha(1), (8.05 keV) from all...

  15. X-ray trace element analysis with positive ion beams

    International Nuclear Information System (INIS)

    Davis, R.H.

    1973-01-01

    A new trace element analysis having the advantage that many elements may be detected in a single measurement, based on positive charged particle induced X-ray florescence and on the production of X-rays by heavy ions, is described. Because of the large cross-sections for the production of discrete X-ray and the low yield of continuum radiation, positive charged particle X-ray florescence is a competitive, fast, analytic tool. In the experiment a beam of positive charged particles from an accelerator was directed toward a target. X-rays induced by the bombardment were detected by a Si(Li) detector the ouput from which was amplified and sorted in a multichannel analyzer. For rapid data handling and analysis, the multichannel analyzer or ADC unit was connected to an on-line computer. A large variety of targets prepared in collaboration with the oceanographers have been studied and spectra obtained for different particles having the same velocity are presented to show that the yield of discrete X-rays increases at least as rapidly as Z 2 . While protons of several MeV appear to be already competitive further advantage may be gained by heavy ions at lower energies since the continuum is reduced while the peak ''signals'' retain strength due to the Z 2 dependence. (S.B.)

  16. X-ray examination apparatus

    NARCIS (Netherlands)

    2000-01-01

    The invention relates to an X-ray apparatus which includes an adjustable X-ray filter. In order to adjust an intensity profile of the X-ray beam, an X-ray absorbing liquid is transported to filter elements of the X-ray filter. Such transport is susceptible to gravitational forces which lead to an

  17. Development of x-ray laminography under an x-ray microscopic condition

    International Nuclear Information System (INIS)

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio; Yagi, Naoto

    2011-01-01

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatial resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.

  18. R&D on a new type of micropattern gaseous detector: The Fast Timing Micropattern detector

    Energy Technology Data Exchange (ETDEWEB)

    Abbaneo, D.; Abbas, M. [CERN, Geneva (Switzerland); Abbrescia, M. [INFN Bari and University of Bari, Bari (Italy); Akl, M. Abi [Texas A& M University at Qatar, Doha (Qatar); Aboamer, O. [Academy of Scientific Research and Technology, Egyptian Network of High Energy Physics, ASRT-ENHEP, Cairo (Egypt); Acosta, D. [University of Florida, Gainesville (United States); Ahmad, A. [National Center for Physics, Quaid-i-Azam University Campus, Islamabad (Pakistan); Ahmed, W. [INFN Bari and University of Bari, Bari (Italy); Aleksandrov, A. [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Altieri, P. [INFN Bari and University of Bari, Bari (Italy); Asawatangtrakuldee, C. [Peking University, Beijing (China); Aspell, P. [CERN, Geneva (Switzerland); Assran, Y. [Academy of Scientific Research and Technology, Egyptian Network of High Energy Physics, ASRT-ENHEP, Cairo (Egypt); Awan, I. [National Center for Physics, Quaid-i-Azam University Campus, Islamabad (Pakistan); Bally, S. [CERN, Geneva (Switzerland); Ban, Y. [Peking University, Beijing (China); Banerjee, S. [Saha Institute of Nuclear Physics, Kolkata (India); Barashko, V. [University of Florida, Gainesville (United States); Barria, P. [Universite Libre de Bruxelles, Brussels (Belgium); Bencze, G. [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest (Hungary); and others

    2017-02-11

    This contribution introduces a new type of Micropattern Gaseous Detector, the Fast Timing Micropattern (FTM) detector, utilizing fully Resistive WELL structures. The structure of the prototype will be described in detail and the results of the characterization study performed with an X-ray gun will be presented, together with the first results on time resolution based on data collected with muon/pion test beams.

  19. Time-dependent wave front propagation simulation of a hard x-ray split-and-delay unit: Towards a measurement of the temporal coherence properties of x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    S. Roling

    2014-11-01

    Full Text Available For the European x-ray free electron laser (XFEL a split-and-delay unit based on geometrical wavefront beam splitting and multilayer mirrors is built which covers the range of photon energies from 5 keV up to 20 keV. Maximum delays between Δτ=±2.5  ps at hν=20  keV and up to Δτ=±23  ps at hν=5  keV will be possible. Time-dependent wave-optics simulations have been performed by means of Synchrotron Radiation Workshop software for XFEL pulses at hν=5  keV. The XFEL radiation was simulated using results of time-dependent simulations applying the self-amplified spontaneous emission code FAST. Main features of the optical layout, including diffraction on the beam splitter edge and optics imperfections measured with a nanometer optic component measuring machine slope measuring profiler, were taken into account. The impact of these effects on the characterization of the temporal properties of XFEL pulses is analyzed. An approach based on fast Fourier transformation allows for the evaluation of the temporal coherence despite large wavefront distortions caused by the optics imperfections. In this way, the fringes resulting from time-dependent two-beam interference can be filtered and evaluated yielding a coherence time of τ_{c}=0.187  fs (HWHM for real, nonperfect mirrors, while for ideal mirrors a coherence time of τ_{c}=0.191  fs (HWHM is expected.

  20. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...