International Nuclear Information System (INIS)
Dwivedi, S.R.; Jain, D.
1979-01-01
The multigroup collision probability equations were solved by the variational method to derive a simple relation between the multiplication factor and the size of a small spherical bare or reflected fast reactor. This relation was verified by a number of 26-group, S 4 , transport theory calculations in one-dimensional spherical geometry for enriched uranium and plutonium systems. It has been shown that further approximations to the above relation lead to the universal empirical relation obtained by Anil Kumar. (orig.) [de
Damay, Nicolas; Forgez, Christophe; Bichat, Marie-Pierre; Friedrich, Guy
2016-11-01
The entropy-variation of a battery is responsible for heat generation or consumption during operation and its prior measurement is mandatory for developing a thermal model. It is generally done through the potentiometric method which is considered as a reference. However, it requires several days or weeks to get a look-up table with a 5 or 10% SoC (State of Charge) resolution. In this study, a calorimetric method based on the inversion of a thermal model is proposed for the fast estimation of a nearly continuous curve of entropy-variation. This is achieved by separating the heats produced while charging and discharging the battery. The entropy-variation is then deduced from the extracted entropic heat. The proposed method is validated by comparing the results obtained with several current rates to measurements made with the potentiometric method.
Fast axisymmetric stability calculations using variational techniques
International Nuclear Information System (INIS)
Haney, S.W., Pearlstein, L.D.; Bulmer, R.H.
1991-01-01
A procedure for treating the axisymmetric (n = 0) stability of diverted plasmas in the presence of arbitrary, but toroidally symmetric, structures and active feedback circuits has been developed and implemented as a module in the TEQ free-boundary equilibrium code. This procedure is based on a variational solution of the ideal MHD normal mode equations. Inertia is ordered small but provides a constraint to allow the calculation of the poloidal and toroidal components of the plasma displacement. Feedback based on flux loop measurements is handled by introducing an adjoint system into the variational principle. Approximately 200 trial functions for the radial component of the plasma displacement and 200 magnetic surfaces are employed to obtain highly accurate estimates of the passive growth rate and the non-rigid eigenfunction. Nevertheless, the method is extremely fast: typically 10-20 sec of Cray 2 CPU time are required to analyze a realistic tokamak configuration. This speed, along with the direct coupling to the MHD equilibrium solver, allows interactive investigations of tokamak axisymmetric stability. Benchmarks with TSC and GATO are presented along with parameter scans for ITER and BPX. The results emphasize the importance of considering non-rigid mode effects which for ITER, yield higher nominal growth rates (non-rigid: 45 Hz, rigid: 25 Hz) and atypical internal inductance dependence (smaller l i more unstable)
Fast Variations In Spectrum of Comet Halley
Borysenko, S. A.
The goal of this work is to research fast variations of spectral lines intensities in spectra of comet Halley. The present research was made on the basis of more then 500 high- resolution spectrogram obtained by L.M. Shulman and H.K. Nazarchuk in November- December, 1985 at the 6-m telescope (SAO, Russia). Some fast variations with different quasiperiods were detected in all the spectrograms. Quasiperiods of these variations were from 15 - 40 min to 1.5 - 2 hours. As data from spacecraft "Vega-2" show, more fast variations with quasiperiods 5 - 10 min are obviously present in cometary time variations. Only the most important lines so as C2, C3, CN, CH and NH2 were analyzed. False periods were checked by comparison of the power spectra of the variations with the computed spectral window of the data. Only false periods about 400 sec (the avarage period of exposition) were detected. An algorithm for analysis of locally Poisson's time series was proposed. Two types of fast variations are detected: 1)high amplitude variations with more long quasiperiods (1.5 - 2 hours) and the coefficient of crosscorrelations between line intensities about 0.9 - 0.95; 2)low amplitude variations with short periods (15 - 40 min), which look like white noise and have the coefficient of crosscorrelations about 0.1 - 0.3. This difference may be caused by nature of variations. The first type variations may be an effect of both active processes in cometary nucleus and streams of solar protons. Analysis of solar proton flux variation with energies >1 MeV in November - Decem- ber 1985 confirms the above-mentioned version. In the second case it may by only inner processes in the nucleus that generate the observed variations. For determination of general parameters of cometary atmosphere, such as the produc- tion rates of radicals C2, C3, CN, CH, and NH2 it was necessary to estimate the contri- bution of dust grains luminiscence into the continuum of the comet. Space and wave- length distribution
International Nuclear Information System (INIS)
Hantash, Jamil; Bartlett, Alan; Denes, Georges; Muntasar, Abdualhafeed; Oldfield, Philip
2005-01-01
A new method of preparation of high performance fluoride ion conductor, BaSnF 4 , by water leaching of newly discovered barium tin(II) chloride fluorides, has been designed, and the materials have been studied and compared to the solid prepared by the usual dry method. The unit-cell parameters and crystallite dimensions were found to vary with the method of preparation. In addition, the crystallite dimensions were found to be highly anisotropic for the samples obtained by the wet method. The Moessbauer spectrum is made of a large tin(II) quadrupole doublet, and a broad tin(IV) oxide peak due to surface oxidation. The tin(II) spectrum is in agreement with covalently bonded tin(II) having a strongly stereoactive lone pair. An unusually high dependence of the quadrupole splitting at low temperatures was observed (5.8 times larger than for α-SnF 2 ).
Conformable variational iteration method
Directory of Open Access Journals (Sweden)
Omer Acan
2017-02-01
Full Text Available In this study, we introduce the conformable variational iteration method based on new defined fractional derivative called conformable fractional derivative. This new method is applied two fractional order ordinary differential equations. To see how the solutions of this method, linear homogeneous and non-linear non-homogeneous fractional ordinary differential equations are selected. Obtained results are compared the exact solutions and their graphics are plotted to demonstrate efficiency and accuracy of the method.
Splines and variational methods
Prenter, P M
2008-01-01
One of the clearest available introductions to variational methods, this text requires only a minimal background in calculus and linear algebra. Its self-contained treatment explains the application of theoretic notions to the kinds of physical problems that engineers regularly encounter. The text's first half concerns approximation theoretic notions, exploring the theory and computation of one- and two-dimensional polynomial and other spline functions. Later chapters examine variational methods in the solution of operator equations, focusing on boundary value problems in one and two dimension
International Nuclear Information System (INIS)
Irwan, Roy; Edens, Mireille A.; Sijens, Paul E.
2008-01-01
A recently published Dixon-based MRI method for quantifying liver fat content using dual-echo breath-hold gradient echo imaging was validated by phantom experiments and compared with results of biopsy in two patients (Radiology 2005;237:1048-1055). We applied this method in ten healthy volunteers and compared the outcomes with the results of MR spectroscopy (MRS), the gold standard in quantifying liver fat content. Novel was the use of spectroscopic imaging yielding the variations in fat content across the liver rather than a single value obtained by single voxel MRS. Compared with the results of MRS, liver fat content according to MRI was too high in nine subjects (range 3.3-10.7% vs. 0.9-7.7%) and correct in one (21.1 vs. 21.3%). Furthermore, in one of the ten subjects the MRI fat content according to the Dixon-based MRI method was incorrect due to a (100-x) versus x percent lipid content mix-up. The second problem was fixed by a minor adjustment of the MRI algorithm. Despite systematic overestimation of liver fat contents by MRI, Spearman's correlation between the adjusted MRI liver fat contents with MRS was high (r = 0.927, P < 0.001). Even after correction of the algorithm, the problem remaining with the Dixon-based MRI method for the assessment of liver fat content,is that, at the lower end range, liver fat content is systematically overestimated by 4%. (orig.)
Variational linear algebraic equations method
International Nuclear Information System (INIS)
Moiseiwitsch, B.L.
1982-01-01
A modification of the linear algebraic equations method is described which ensures a variational bound on the phaseshifts for potentials having a definite sign at all points. The method is illustrated by the elastic scattering of s-wave electrons by the static field of atomic hydrogen. (author)
Variational methods in molecular modeling
2017-01-01
This book presents tutorial overviews for many applications of variational methods to molecular modeling. Topics discussed include the Gibbs-Bogoliubov-Feynman variational principle, square-gradient models, classical density functional theories, self-consistent-field theories, phase-field methods, Ginzburg-Landau and Helfrich-type phenomenological models, dynamical density functional theory, and variational Monte Carlo methods. Illustrative examples are given to facilitate understanding of the basic concepts and quantitative prediction of the properties and rich behavior of diverse many-body systems ranging from inhomogeneous fluids, electrolytes and ionic liquids in micropores, colloidal dispersions, liquid crystals, polymer blends, lipid membranes, microemulsions, magnetic materials and high-temperature superconductors. All chapters are written by leading experts in the field and illustrated with tutorial examples for their practical applications to specific subjects. With emphasis placed on physical unders...
Fast free-form deformable registration via calculus of variations
International Nuclear Information System (INIS)
Lu Weiguo; Chen Mingli; Olivera, Gustavo H; Ruchala, Kenneth J; Mackie, Thomas R
2004-01-01
In this paper, we present a fully automatic, fast and accurate deformable registration technique. This technique deals with free-form deformation. It minimizes an energy functional that combines both similarity and smoothness measures. By using calculus of variations, the minimization problem was represented as a set of nonlinear elliptic partial differential equations (PDEs). A Gauss-Seidel finite difference scheme is used to iteratively solve the PDE. The registration is refined by a multi-resolution approach. The whole process is fully automatic. It takes less than 3 min to register two three-dimensional (3D) image sets of size 256 x 256 x 61 using a single 933 MHz personal computer. Extensive experiments are presented. These experiments include simulations, phantom studies and clinical image studies. Experimental results show that our model and algorithm are suited for registration of temporal images of a deformable body. The registration of inspiration and expiration phases of the lung images shows that the method is able to deal with large deformations. When applied to the daily CT images of a prostate patient, the results show that registration based on iterative refinement of displacement field is appropriate to describe the local deformations in the prostate and the rectum. Similarity measures improved significantly after the registration. The target application of this paper is for radiotherapy treatment planning and evaluation that incorporates internal organ deformation throughout the course of radiation therapy. The registration method could also be equally applied in diagnostic radiology
Linking numbers and variational method
International Nuclear Information System (INIS)
Oda, I.; Yahikozawa, S.
1989-09-01
The ordinary and generalized linking numbers for two surfaces of dimension p and n-p-1 in an n dimensional manifold are derived. We use a variational method based on the properties of topological quantum field theory in order to derive them. (author). 13 refs, 2 figs
Efficient Methods for Fast Shading
Directory of Open Access Journals (Sweden)
ROMANYUK, A.
2008-06-01
Full Text Available On devices without battery consuming and specialized hardware for rendering, it is important to improve the speed and quality so that these methods are suitable for real-time rendering. Furthermore such algorithms are needed on the coming multicore architectures. We show how the methods by Gouraud and Phong, the commonly most used methods for shading, can be improved and made faster for both software rendering as well as simple low energy consuming hardware implementations. Moreover, this paper summarizes the authors' achievements in increasing shading speed and performance and a Bidirectional Reflectance Distribution Function is simplified for faster computing and hardware implementation.
Fast magnetic resonance imaging based on high degree total variation
Wang, Sujie; Lu, Liangliang; Zheng, Junbao; Jiang, Mingfeng
2018-04-01
In order to eliminating the artifacts and "staircase effect" of total variation in Compressive Sensing MRI, high degree total variation model is proposed for dynamic MRI reconstruction. the high degree total variation regularization term is used as a constraint to reconstruct the magnetic resonance image, and the iterative weighted MM algorithm is proposed to solve the convex optimization problem of the reconstructed MR image model, In addtion, one set of cardiac magnetic resonance data is used to verify the proposed algorithm for MRI. The results show that the high degree total variation method has a better reconstruction effect than the total variation and the total generalized variation, which can obtain higher reconstruction SNR and better structural similarity.
Parabolic approximation method for fast magnetosonic wave propagation in tokamaks
International Nuclear Information System (INIS)
Phillips, C.K.; Perkins, F.W.; Hwang, D.Q.
1985-07-01
Fast magnetosonic wave propagation in a cylindrical tokamak model is studied using a parabolic approximation method in which poloidal variations of the wave field are considered weak in comparison to the radial variations. Diffraction effects, which are ignored by ray tracing mthods, are included self-consistently using the parabolic method since continuous representations for the wave electromagnetic fields are computed directly. Numerical results are presented which illustrate the cylindrical convergence of the launched waves into a diffraction-limited focal spot on the cyclotron absorption layer near the magnetic axis for a wide range of plasma confinement parameters
Variational methods for field theories
Energy Technology Data Exchange (ETDEWEB)
Ben-Menahem, S.
1986-09-01
Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.
Dispersion Measure Variation of Repeating Fast Radio Burst Sources
Energy Technology Data Exchange (ETDEWEB)
Yang, Yuan-Pei; Zhang, Bing, E-mail: yypspore@gmail.com, E-mail: zhang@physics.unlv.edu [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)
2017-09-20
The repeating fast radio burst (FRB) 121102 was recently localized in a dwarf galaxy at a cosmological distance. The dispersion measure (DM) derived for each burst from FRB 121102 so far has not shown significant evolution, even though an apparent increase was recently seen with newly detected VLA bursts. It is expected that more repeating FRB sources may be detected in the future. In this work, we investigate a list of possible astrophysical processes that might cause DM variation of a particular FRB source. The processes include (1) cosmological scale effects such as Hubble expansion and large-scale structure fluctuations; (2) FRB local effects such as gas density fluctuation, expansion of a supernova remnant (SNR), a pulsar wind nebula, and an H ii region; and (3) the propagation effect due to plasma lensing. We find that the DM variations contributed by the large-scale structure are extremely small, and any observable DM variation is likely caused by the plasma local to the FRB source. In addition to mechanisms that decrease DM over time, we suggest that an FRB source in an expanding SNR around a nearly neutral ambient medium during the deceleration (Sedov–Taylor and snowplow) phases or in a growing H ii region can increase DM. Some effects (e.g., an FRB source moving in an H ii region or plasma lensing) can produce either positive or negative DM variations. Future observations of DM variations of FRB 121102 and other repeating FRB sources can provide important clues regarding the physical origin of these sources.
Dispersion Measure Variation of Repeating Fast Radio Burst Sources
International Nuclear Information System (INIS)
Yang, Yuan-Pei; Zhang, Bing
2017-01-01
The repeating fast radio burst (FRB) 121102 was recently localized in a dwarf galaxy at a cosmological distance. The dispersion measure (DM) derived for each burst from FRB 121102 so far has not shown significant evolution, even though an apparent increase was recently seen with newly detected VLA bursts. It is expected that more repeating FRB sources may be detected in the future. In this work, we investigate a list of possible astrophysical processes that might cause DM variation of a particular FRB source. The processes include (1) cosmological scale effects such as Hubble expansion and large-scale structure fluctuations; (2) FRB local effects such as gas density fluctuation, expansion of a supernova remnant (SNR), a pulsar wind nebula, and an H ii region; and (3) the propagation effect due to plasma lensing. We find that the DM variations contributed by the large-scale structure are extremely small, and any observable DM variation is likely caused by the plasma local to the FRB source. In addition to mechanisms that decrease DM over time, we suggest that an FRB source in an expanding SNR around a nearly neutral ambient medium during the deceleration (Sedov–Taylor and snowplow) phases or in a growing H ii region can increase DM. Some effects (e.g., an FRB source moving in an H ii region or plasma lensing) can produce either positive or negative DM variations. Future observations of DM variations of FRB 121102 and other repeating FRB sources can provide important clues regarding the physical origin of these sources.
Nodal method for fast reactor analysis
International Nuclear Information System (INIS)
Shober, R.A.
1979-01-01
In this paper, a nodal method applicable to fast reactor diffusion theory analysis has been developed. This method has been shown to be accurate and efficient in comparison to highly optimized finite difference techniques. The use of an analytic solution to the diffusion equation as a means of determining accurate coupling relationships between nodes has been shown to be highly accurate and efficient in specific two-group applications, as well as in the current multigroup method
Novel applications of fast neutron interrogation methods
International Nuclear Information System (INIS)
Gozani, Tsahi
1994-01-01
The development of non-intrusive inspection methods for contraband consisting primarily of carbon, nitrogen, oxygen, and hydrogen requires the use of fast neutrons. While most elements can be sufficiently well detected by the thermal neutron capture process, some important ones, e.g., carbon and in particular oxygen, cannot be detected by this process. Fortunately, fast neutrons, with energies above the threshold for inelastic scattering, stimulate relatively strong and specific gamma ray lines from these elements. The main lines are: 6.13 for O, 4.43 for C, and 5.11, 2.31 and 1.64 MeV for N. Accelerator-generated neutrons in the energy range of 7 to 15 MeV are being considered as interrogating radiations in a variety of non-intrusive inspection systems for contraband, from explosives to drugs and from coal to smuggled, dutiable goods. In some applications, mostly for inspection of small items such as luggage, the decision process involves a rudimentary imaging, akin to emission tomography, to obtain the localized concentration of various elements. This technique is called FNA - Fast Neutron Analysis. While this approach offers improvements over the TNA (Thermal Neutron Analysis), it is not applicable to large objects such as shipping containers and trucks. For these challenging applications, a collimated beam of neutrons is rastered along the height of the moving object. In addition, the neutrons are generated in very narrow nanosecond pulses. The point of their interaction inside the object is determined by the time of flight (TOF) method, that is measuring the time elapsed from the neutron generation to the time of detection of the stimulated gamma rays. This technique, called PFNA (Pulsed Fast Neutron Analysis), thus directly provides the elemental, and by inference, the chemical composition of the material at every volume element (voxel) of the object. The various neutron-based techniques are briefly described below. ((orig.))
Fast and accurate methods for phylogenomic analyses
Directory of Open Access Journals (Sweden)
Warnow Tandy
2011-10-01
Full Text Available Abstract Background Species phylogenies are not estimated directly, but rather through phylogenetic analyses of different gene datasets. However, true gene trees can differ from the true species tree (and hence from one another due to biological processes such as horizontal gene transfer, incomplete lineage sorting, and gene duplication and loss, so that no single gene tree is a reliable estimate of the species tree. Several methods have been developed to estimate species trees from estimated gene trees, differing according to the specific algorithmic technique used and the biological model used to explain differences between species and gene trees. Relatively little is known about the relative performance of these methods. Results We report on a study evaluating several different methods for estimating species trees from sequence datasets, simulating sequence evolution under a complex model including indels (insertions and deletions, substitutions, and incomplete lineage sorting. The most important finding of our study is that some fast and simple methods are nearly as accurate as the most accurate methods, which employ sophisticated statistical methods and are computationally quite intensive. We also observe that methods that explicitly consider errors in the estimated gene trees produce more accurate trees than methods that assume the estimated gene trees are correct. Conclusions Our study shows that highly accurate estimations of species trees are achievable, even when gene trees differ from each other and from the species tree, and that these estimations can be obtained using fairly simple and computationally tractable methods.
FAST PALMPRINT AUTHENTICATION BY SOBEL CODE METHOD
Directory of Open Access Journals (Sweden)
Jyoti Malik
2011-05-01
Full Text Available The ideal real time personal authentication system should be fast and accurate to automatically identify a person’s identity. In this paper, we have proposed a palmprint based biometric authentication method with improvement in time and accuracy, so as to make it a real time palmprint authentication system. Several edge detection methods, wavelet transform, phase congruency etc. are available to extract line feature from the palmprint. In this paper, Multi-scale Sobel Code operators of different orientations (0?, 45?, 90?, and 135? are applied to the palmprint to extract Sobel-Palmprint features in different direc- tions. The Sobel-Palmprint features extracted are stored in Sobel- Palmprint feature vector and matched using sliding window with Hamming Distance similarity measurement method. The sliding win- dow method is accurate but time taking process. In this paper, we have improved the sliding window method so that the matching time reduces. It is observed that there is 39.36% improvement in matching time. In addition, a Min Max Threshold Range (MMTR method is proposed that helps in increasing overall system accuracy by reducing the False Acceptance Rate (FAR. Experimental results indicate that the MMTR method improves the False Acceptance Rate drastically and improvement in sliding window method reduces the comparison time. The accuracy improvement and matching time improvement leads to proposed real time authentication system.
The adjoint variational nodal method
International Nuclear Information System (INIS)
Laurin-Kovitz, K.; Lewis, E.E.
1993-01-01
The widespread use of nodal methods for reactor core calculations in both diffusion and transport approximations has created a demand for the corresponding adjoint solutions as a prerequisite for performing perturbation calculations. With some computational methods, however, the solution of the adjoint problem presents a difficulty; the physical adjoint obtained by discretizing the adjoint equation is not the same as the mathematical adjoint obtained by taking the transpose of the coefficient matrix, which results from the discretization of the forward equation. This difficulty arises, in particular, when interface current nodal methods based on quasi-one-dimensional solution of the diffusion or transport equation are employed. The mathematical adjoint is needed to perform perturbation calculations. The utilization of existing nodal computational algorithms, however, requires the physical adjoint. As a result, similarity transforms or related techniques must be utilized to relate physical and mathematical adjoints. Thus far, such techniques have been developed only for diffusion theory
Doublet method for very fast autocoding
Directory of Open Access Journals (Sweden)
Berman Jules J
2004-09-01
Full Text Available Abstract Background Autocoding (or automatic concept indexing occurs when a software program extracts terms contained within text and maps them to a standard list of concepts contained in a nomenclature. The purpose of autocoding is to provide a way of organizing large documents by the concepts represented in the text. Because textual data accumulates rapidly in biomedical institutions, the computational methods used to autocode text must be very fast. The purpose of this paper is to describe the doublet method, a new algorithm for very fast autocoding. Methods An autocoder was written that transforms plain-text into intercalated word doublets (e.g. "The ciliary body produces aqueous humor" becomes "The ciliary, ciliary body, body produces, produces aqueous, aqueous humor". Each doublet is checked against an index of doublets extracted from a standard nomenclature. Matching doublets are assigned a numeric code specific for each doublet found in the nomenclature. Text doublets that do not match the index of doublets extracted from the nomenclature are not part of valid nomenclature terms. Runs of matching doublets from text are concatenated and matched against nomenclature terms (also represented as runs of doublets. Results The doublet autocoder was compared for speed and performance against a previously published phrase autocoder. Both autocoders are Perl scripts, and both autocoders used an identical text (a 170+ Megabyte collection of abstracts collected through a PubMed search and the same nomenclature (neocl.xml, containing over 102,271 unique names of neoplasms. In side-by-side comparison on the same computer, the doublet method autocoder was 8.4 times faster than the phrase autocoder (211 seconds versus 1,776 seconds. The doublet method codes 0.8 Megabytes of text per second on a desktop computer with a 1.6 GHz processor. In addition, the doublet autocoder successfully matched terms that were missed by the phrase autocoder, while the
Scalable fast multipole accelerated vortex methods
Hu, Qi
2014-05-01
The fast multipole method (FMM) is often used to accelerate the calculation of particle interactions in particle-based methods to simulate incompressible flows. To evaluate the most time-consuming kernels - the Biot-Savart equation and stretching term of the vorticity equation, we mathematically reformulated it so that only two Laplace scalar potentials are used instead of six. This automatically ensuring divergence-free far-field computation. Based on this formulation, we developed a new FMM-based vortex method on heterogeneous architectures, which distributed the work between multicore CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm uses new data structures which can dynamically manage inter-node communication and load balance efficiently, with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching calculation for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s.
Variational method for integrating radial gradient field
Legarda-Saenz, Ricardo; Brito-Loeza, Carlos; Rivera, Mariano; Espinosa-Romero, Arturo
2014-12-01
We propose a variational method for integrating information obtained from circular fringe pattern. The proposed method is a suitable choice for objects with radial symmetry. First, we analyze the information contained in the fringe pattern captured by the experimental setup and then move to formulate the problem of recovering the wavefront using techniques from calculus of variations. The performance of the method is demonstrated by numerical experiments with both synthetic and real data.
A multigrid method for variational inequalities
Energy Technology Data Exchange (ETDEWEB)
Oliveira, S.; Stewart, D.E.; Wu, W.
1996-12-31
Multigrid methods have been used with great success for solving elliptic partial differential equations. Penalty methods have been successful in solving finite-dimensional quadratic programs. In this paper these two techniques are combined to give a fast method for solving obstacle problems. A nonlinear penalized problem is solved using Newton`s method for large values of a penalty parameter. Multigrid methods are used to solve the linear systems in Newton`s method. The overall numerical method developed is based on an exterior penalty function, and numerical results showing the performance of the method have been obtained.
Fast Prediction Method for Steady-State Heat Convection
Wá ng, Yì
2012-01-01
, the nonuniform POD-Galerkin projection method exhibits high accuracy, good suitability, and fast computation. It has universal significance for accurate and fast prediction. Also, the methodology can be applied to more complex modeling in chemical engineering
Newton-type methods for optimization and variational problems
Izmailov, Alexey F
2014-01-01
This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will b...
Performance Benchmarking of Fast Multipole Methods
Al-Harthi, Noha A.
2013-06-01
The current trends in computer architecture are shifting towards smaller byte/flop ratios, while available parallelism is increasing at all levels of granularity – vector length, core count, and MPI process. Intel’s Xeon Phi coprocessor, NVIDIA’s Kepler GPU, and IBM’s BlueGene/Q all have a Byte/flop ratio close to 0.2, which makes it very difficult for most algorithms to extract a high percentage of the theoretical peak flop/s from these architectures. Popular algorithms in scientific computing such as FFT are continuously evolving to keep up with this trend in hardware. In the meantime it is also necessary to invest in novel algorithms that are more suitable for computer architectures of the future. The fast multipole method (FMM) was originally developed as a fast algorithm for ap- proximating the N-body interactions that appear in astrophysics, molecular dynamics, and vortex based fluid dynamics simulations. The FMM possesses have a unique combination of being an efficient O(N) algorithm, while having an operational intensity that is higher than a matrix-matrix multiplication. In fact, the FMM can reduce the requirement of Byte/flop to around 0.01, which means that it will remain compute bound until 2020 even if the cur- rent trend in microprocessors continues. Despite these advantages, there have not been any benchmarks of FMM codes on modern architectures such as Xeon Phi, Kepler, and Blue- Gene/Q. This study aims to provide a comprehensive benchmark of a state of the art FMM code “exaFMM” on the latest architectures, in hopes of providing a useful reference for deciding when the FMM will become useful as the computational engine in a given application code. It may also serve as a warning to certain problem size domains areas where the FMM will exhibit insignificant performance improvements. Such issues depend strongly on the asymptotic constants rather than the asymptotics themselves, and therefore are strongly implementation and hardware
Atat, Rachad
2012-11-20
Cooperative ad hoc networks for the efficient distribution of content of common interest are studied in the case of fast channel variations. Mobiles are grouped into cooperative clusters for the purpose of receiving the content with optimized energy efficiency. Data are sent to mobile terminals on a long range (LR) link, and then, the terminals exchange the content by using an appropriate short range wireless technology. When channel state information is available for the LR links, unicasting is used on the LR. When accurate channel state information is not available, threshold-based multicasting is implemented on the LR. Energy minimization is formulated as an optimization problem for each scenario, and the optimal solutions are determined in closed form in scenarios with fast channel variations. Results show significant energy savings in the proposed schemes compared with the noncooperative case and other previous related work. Furthermore, the energy minimizing solutions are shown to lead to reduced delay in the content distribution process. Practical implementation aspects of the proposed methods are also discussed. © 2012 John Wiley & Sons, Ltd.
Atat, Rachad; Yaacoub, Elias E.; Alouini, Mohamed-Slim; Abu-Dayya, Adnan A.
2012-01-01
Cooperative ad hoc networks for the efficient distribution of content of common interest are studied in the case of fast channel variations. Mobiles are grouped into cooperative clusters for the purpose of receiving the content with optimized energy efficiency. Data are sent to mobile terminals on a long range (LR) link, and then, the terminals exchange the content by using an appropriate short range wireless technology. When channel state information is available for the LR links, unicasting is used on the LR. When accurate channel state information is not available, threshold-based multicasting is implemented on the LR. Energy minimization is formulated as an optimization problem for each scenario, and the optimal solutions are determined in closed form in scenarios with fast channel variations. Results show significant energy savings in the proposed schemes compared with the noncooperative case and other previous related work. Furthermore, the energy minimizing solutions are shown to lead to reduced delay in the content distribution process. Practical implementation aspects of the proposed methods are also discussed. © 2012 John Wiley & Sons, Ltd.
Heterogeneous treatment in the variational nodal method
International Nuclear Information System (INIS)
Fanning, T.H.
1995-01-01
The variational nodal transport method is reduced to its diffusion form and generalized for the treatment of heterogeneous nodes while maintaining nodal balances. Adapting variational methods to heterogeneous nodes requires the ability to integrate over a node with discontinuous cross sections. In this work, integrals are evaluated using composite gaussian quadrature rules, which permit accurate integration while minimizing computing time. Allowing structure within a nodal solution scheme avoids some of the necessity of cross section homogenization, and more accurately defines the intra-nodal flux shape. Ideally, any desired heterogeneity can be constructed within the node; but in reality, the finite set of basis functions limits the practical resolution to which fine detail can be defined within the node. Preliminary comparison tests show that the heterogeneous variational nodal method provides satisfactory results even if some improvements are needed for very difficult, configurations
A variational synthesis nodal discrete ordinates method
International Nuclear Information System (INIS)
Favorite, J.A.; Stacey, W.M.
1999-01-01
A self-consistent nodal approximation method for computing discrete ordinates neutron flux distributions has been developed from a variational functional for neutron transport theory. The advantage of the new nodal method formulation is that it is self-consistent in its definition of the homogenized nodal parameters, the construction of the global nodal equations, and the reconstruction of the detailed flux distribution. The efficacy of the method is demonstrated by two-dimensional test problems
The variational celular method - the code implantation
International Nuclear Information System (INIS)
Rosato, A.; Lima, M.A.P.
1980-12-01
The process to determine the potential energy curve for diatomic molecules by the Variational Cellular Method is discussed. An analysis of the determination of the electronic eigenenergies and the electrostatic energy of these molecules is made. An explanation of the input data and their meaning is also presented. (Author) [pt
Variational method for lattice spectroscopy with ghosts
International Nuclear Information System (INIS)
Burch, Tommy; Hagen, Christian; Gattringer, Christof; Glozman, Leonid Ya.; Lang, C.B.
2006-01-01
We discuss the variational method used in lattice spectroscopy calculations. In particular we address the role of ghost contributions which appear in quenched or partially quenched simulations and have a nonstandard euclidean time dependence. We show that the ghosts can be separated from the physical states. Our result is illustrated with numerical data for the scalar meson
Measured and Predicted Variations in Fast Neutron Spectrum in Massive Shields of Water and Concrete
Energy Technology Data Exchange (ETDEWEB)
Aalto, E; Sandlin, R; Fraeki, R
1965-09-15
The absolute magnitude, and the variations in form, of the fast neutron spectrum during deep penetration (0.8 - 1.1 metre) in massive shields of water, ordinary and magnetite concrete have been studied by using threshold detectors (In (n, h'), S(n,p), Al(n, {alpha})). The results have been compared with predictions by two rigorous (NIOBE, Moments method) and two non-rigorous (multigroup removal-diffusion) shielding codes (NRN, RASH D). The absolute results predicted were in general within 50% of the measured ones, i. e. showed as good or better accuracy than thermal and epithermal flux predictions in the same small-reactor configurations. No difference in accuracy was found between the rigorous and non-rigorous methods. The changes in the relative form of the spectrum (indicated by variations in the (Al/S) and (In/S) reaction rate ratios and amounting to factors up to 3 - 4 during a one metre penetration in water) were rather accurately (within 10 - 30%) predicted by all of the methods. The photonuclear excitation of the 335 keV level used for detecting the In(n, n') reaction was found to distort completely the In results in water at penetrations > 50 cm.
Scalable fast multipole methods for vortex element methods
Hu, Qi
2012-11-01
We use a particle-based method to simulate incompressible flows, where the Fast Multipole Method (FMM) is used to accelerate the calculation of particle interactions. The most time-consuming kernelsâ\\'the Biot-Savart equation and stretching term of the vorticity equationâ\\'are mathematically reformulated so that only two Laplace scalar potentials are used instead of six, while automatically ensuring divergence-free far-field computation. Based on this formulation, and on our previous work for a scalar heterogeneous FMM algorithm, we develop a new FMM-based vortex method capable of simulating general flows including turbulence on heterogeneous architectures, which distributes the work between multi-core CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm also uses new data structures which can dynamically manage inter-node communication and load balance efficiently but with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s. © 2012 IEEE.
International Nuclear Information System (INIS)
Lino, A.T.; Takahashi, E.K.; Leite, J.R.; Ferraz, A.C.
1988-01-01
The band structure of metallic sodium is calculated, using for the first time the self-consistent field variational cellular method. In order to implement the self-consistency in the variational cellular theory, the crystal electronic charge density was calculated within the muffin-tin approximation. The comparison between our results and those derived from other calculations leads to the conclusion that the proposed self-consistent version of the variational cellular method is fast and accurate. (author) [pt
Development of a fast voltage control method for electrostatic accelerators
International Nuclear Information System (INIS)
Lobanov, Nikolai R.; Linardakis, Peter; Tsifakis, Dimitrios
2014-01-01
The concept of a novel fast voltage control loop for tandem electrostatic accelerators is described. This control loop utilises high-frequency components of the ion beam current intercepted by the image slits to generate a correction voltage that is applied to the first few gaps of the low- and high-energy acceleration tubes adjoining the high voltage terminal. New techniques for the direct measurement of the transfer function of an ultra-high impedance structure, such as an electrostatic accelerator, have been developed. For the first time, the transfer function for the fast feedback loop has been measured directly. Slow voltage variations are stabilised with common corona control loop and the relationship between transfer functions for the slow and new fast control loops required for optimum operation is discussed. The main source of terminal voltage instabilities, which are due to variation of the charging current caused by mechanical oscillations of charging chains, has been analysed
Scalable force directed graph layout algorithms using fast multipole methods
Yunis, Enas Abdulrahman; Yokota, Rio; Ahmadia, Aron
2012-01-01
We present an extension to ExaFMM, a Fast Multipole Method library, as a generalized approach for fast and scalable execution of the Force-Directed Graph Layout algorithm. The Force-Directed Graph Layout algorithm is a physics-based approach
Directory of Open Access Journals (Sweden)
Morinaka Tomoko
2012-05-01
Full Text Available Abstract Background From the viewpoint of human physiological adaptability, we previously investigated seasonal variation in the amount of unabsorbed dietary carbohydrates from the intestine after breakfast in Japanese, Polish and Thai participants. In this investigation we found that there were significant seasonal variations in the amount of unabsorbed dietary carbohydrates in Japanese and Polish participants, while we could not find significant seasonal variation in Thai participants. These facts prompted us to examine seasonal variations in the respiratory quotient after an overnight fast (an indicator of the ratio of carbohydrate and fat oxidized after the last meal with female university students living in Osaka (Japan, Poznan (Poland and Chiang Mai (Thailand. Methods We enrolled 30, 33 and 32 paid participants in Japan, Poland and Thailand, respectively, and measurements were taken over the course of one full year. Fasting respiratory quotient was measured with the participants in their postabsorptive state (after 12 hours or more fasting before respiratory quotient measurement. Respiratory quotient measurements were carried out by means of indirect calorimetry using the mixing chamber method. The percent body fat was measured using an electric bioelectrical impedance analysis scale. Food intake of the participants in Osaka and Poznan were carried out by the Food Frequency Questionnaire method. Results There were different seasonal variations in the fasting respiratory quotient values in the three different populations; with a significant seasonal variation in the fasting respiratory quotient values in Japanese participants, while those in Polish and Thai participants were non-significant. We found that there were significant seasonal changes in the percent body fat in the three populations but we could not find any significant correlation between the fasting respiratory quotient values and the percent body fat. Conclusions There were
Directory of Open Access Journals (Sweden)
Rubing Xi
2014-01-01
Full Text Available The variational models with nonlocal regularization offer superior image restoration quality over traditional method. But the processing speed remains a bottleneck due to the calculation quantity brought by the recent iterative algorithms. In this paper, a fast algorithm is proposed to restore the multichannel image in the presence of additive Gaussian noise by minimizing an energy function consisting of an l2-norm fidelity term and a nonlocal vectorial total variational regularization term. This algorithm is based on the variable splitting and penalty techniques in optimization. Following our previous work on the proof of the existence and the uniqueness of the solution of the model, we establish and prove the convergence properties of this algorithm, which are the finite convergence for some variables and the q-linear convergence for the rest. Experiments show that this model has a fabulous texture-preserving property in restoring color images. Both the theoretical derivation of the computation complexity analysis and the experimental results show that the proposed algorithm performs favorably in comparison to the widely used fixed point algorithm.
A proposed method for fast determination of plasma parameters
International Nuclear Information System (INIS)
Braams, B.J.; Lackner, K.
1984-09-01
The method of function parametrization, developed and applied by H. Wind for fast data evaluation in high energy physics, is presented in the context of controlled fusion research. This method relies on statistical analysis of a data base of simulated experiments in order to obtain a functional representation for the intrinsic physical parameters of a system in terms of the values of the measurements. Some variations on Wind's original procedure are suggested. A specific application for tokamak experiments would be the determination of certain global parameters of the plasma, characterizing the current profile, shape of the cross-section, plasma pressure, and the internal inductance. The relevant measurements for this application include values of the poloidal field and flux external to the plasma, and a diamagnetic measurement. These may be combined with other diagnostics, such as electron-cyclotron emission and laser interferometry, in order to obtain also density and temperature profiles. There appears to be a capability for on-line determination of basic physical parameters, in a millisecond timescale on a minicomputer instead of in seconds on a large mainframe. (orig.)
A task parallel implementation of fast multipole methods
Taura, Kenjiro; Nakashima, Jun; Yokota, Rio; Maruyama, Naoya
2012-01-01
This paper describes a task parallel implementation of ExaFMM, an open source implementation of fast multipole methods (FMM), using a lightweight task parallel library MassiveThreads. Although there have been many attempts on parallelizing FMM
A Fast and Robust Method for Measuring Optical Channel Gain
DEFF Research Database (Denmark)
Harbo, Anders La-Cour; Stoustrup, Jakob; Villemoes, L.F.
2000-01-01
We present a numerically stable and computational simple method for fast and robust measurement of optical channel gain. By transmitting adaptively designed signals through the channel, good accuracy is possible even in severe noise conditions......We present a numerically stable and computational simple method for fast and robust measurement of optical channel gain. By transmitting adaptively designed signals through the channel, good accuracy is possible even in severe noise conditions...
Temporal super resolution using variational methods
DEFF Research Database (Denmark)
Keller, Sune Høgild; Lauze, Francois Bernard; Nielsen, Mads
2010-01-01
Temporal super resolution (TSR) is the ability to convert video from one frame rate to another and is as such a key functionality in modern video processing systems. A higher frame rate than what is recorded is desired for high frame rate displays, for super slow-motion, and for video/film format...... observed when watching video on large and bright displays where the motion of high contrast edges often seem jerky and unnatural. A novel motion compensated (MC) TSR algorithm using variational methods for both optical flow calculation and the actual new frame interpolation is presented. The flow...
Nguyen, Leonard T; Buse, Joshua D; Baskin, Leland; Sadrzadeh, S M Hossein; Naugler, Christopher
2017-12-01
Serum iron is an important clinical test to help identify cases of iron deficiency or overload. Fluctuations caused by diurnal variation and diet are thought to influence test results, which may affect clinical patient management. We examined the impact of these preanalytical factors on iron concentrations in a large community-based cohort. Serum iron concentration, blood collection time, fasting duration, patient age and sex were obtained for community-based clinical testing from the Laboratory Information Service at Calgary Laboratory Services for the period of January 2011 to December 2015. A total of 276,307 individual test results were obtained. Iron levels were relatively high over a long period from 8:00 to 15:00. Mean concentrations were highest at blood collection times of 11:00 for adult men and 12:00 for adult women and children, however iron levels peaked as late as 15:00 in teenagers. With regard to fasting, iron levels required approximately 5h post-prandial time to return to a baseline, except for children and teenage females where no significant variation was seen until after 11h fasting. After 10h fasting, iron concentrations in all patient groups gradually increased to higher levels compared to earlier fasting times. Serum iron concentrations remain reasonably stable during most daytime hours for testing purposes. In adults, blood collection after 5 to 9h fasting provides a representative estimate of a patient's iron levels. For patients who have fasted overnight, i.e. ≥12h fasting, clinicians should be aware that iron concentrations may be elevated beyond otherwise usual levels. Copyright © 2017. Published by Elsevier Inc.
Variational-moment method for computing magnetohydrodynamic equilibria
International Nuclear Information System (INIS)
Lao, L.L.
1983-08-01
A fast yet accurate method to compute magnetohydrodynamic equilibria is provided by the variational-moment method, which is similar to the classical Rayleigh-Ritz-Galerkin approximation. The equilibrium solution sought is decomposed into a spectral representation. The partial differential equations describing the equilibrium are then recast into their equivalent variational form and systematically reduced to an optimum finite set of coupled ordinary differential equations. An appropriate spectral decomposition can make the series representing the solution coverge rapidly and hence substantially reduces the amount of computational time involved. The moment method was developed first to compute fixed-boundary inverse equilibria in axisymmetric toroidal geometry, and was demonstrated to be both efficient and accurate. The method since has been generalized to calculate free-boundary axisymmetric equilibria, to include toroidal plasma rotation and pressure anisotropy, and to treat three-dimensional toroidal geometry. In all these formulations, the flux surfaces are assumed to be smooth and nested so that the solutions can be decomposed in Fourier series in inverse coordinates. These recent developments and the advantages and limitations of the moment method are reviewed. The use of alternate coordinates for decomposition is discussed
Fast linear method of illumination classification
Cooper, Ted J.; Baqai, Farhan A.
2003-01-01
We present a simple method for estimating the scene illuminant for images obtained by a Digital Still Camera (DSC). The proposed method utilizes basis vectors obtained from known memory color reflectance to identify the memory color objects in the image. Once the memory color pixels are identified, we use the ratios of the red/green and blue/green to determine the most likely illuminant in the image. The critical part of the method is to estimate the smallest set of basis vectors that closely represent the memory color reflectances. Basis vectors obtained from both Principal Component Analysis (PCA) and Independent Component Analysis (ICA) are used. We will show that only two ICA basis vectors are needed to get an acceptable estimate.
A variational Bayesian method to inverse problems with impulsive noise
Jin, Bangti
2012-01-01
We propose a novel numerical method for solving inverse problems subject to impulsive noises which possibly contain a large number of outliers. The approach is of Bayesian type, and it exploits a heavy-tailed t distribution for data noise to achieve robustness with respect to outliers. A hierarchical model with all hyper-parameters automatically determined from the given data is described. An algorithm of variational type by minimizing the Kullback-Leibler divergence between the true posteriori distribution and a separable approximation is developed. The numerical method is illustrated on several one- and two-dimensional linear and nonlinear inverse problems arising from heat conduction, including estimating boundary temperature, heat flux and heat transfer coefficient. The results show its robustness to outliers and the fast and steady convergence of the algorithm. © 2011 Elsevier Inc.
Fast Multilevel Panel Method for Wind Turbine Rotor Flow Simulations
van Garrel, Arne; Venner, Cornelis H.; Hoeijmakers, Hendrik Willem Marie
2017-01-01
A fast multilevel integral transform method has been developed that enables the rapid analysis of unsteady inviscid flows around wind turbines rotors. A low order panel method is used and the new multi-level multi-integration cluster (MLMIC) method reduces the computational complexity for
A fast method for optimal reactive power flow solution
Energy Technology Data Exchange (ETDEWEB)
Sadasivam, G; Khan, M A [Anna Univ., Madras (IN). Coll. of Engineering
1990-01-01
A fast successive linear programming (SLP) method for minimizing transmission losses and improving the voltage profile is proposed. The method uses the same compactly stored, factorized constant matrices in all the LP steps, both for power flow solution and for constructing the LP model. The inherent oscillatory convergence of SLP methods is overcome by proper selection of initial step sizes and their gradual reduction. Detailed studies on three systems, including a 109-bus system, reveal the fast and reliable convergence property of the method. (author).
Fast sequential Monte Carlo methods for counting and optimization
Rubinstein, Reuven Y; Vaisman, Radislav
2013-01-01
A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the
Fast-timing methods for semiconductor detectors
International Nuclear Information System (INIS)
Spieler, H.
1982-03-01
The basic parameters are discussed which determine the accuracy of timing measurements and their effect in a practical application, specifically timing with thin-surface barrier detectors. The discussion focusses on properties of the detector, low-noise amplifiers, trigger circuits and time converters. New material presented in this paper includes bipolar transistor input stages with noise performance superior to currently available FETs, noiseless input terminations in sub-nanosecond preamplifiers and methods using transmission lines to couple the detector to remotely mounted preamplifiers. Trigger circuits are characterized in terms of effective rise time, equivalent input noise and residual jitter
Fast timing methods for semiconductor detectors. Revision
International Nuclear Information System (INIS)
Spieler, H.
1984-10-01
This tutorial paper discusses the basic parameters which determine the accuracy of timing measurements and their effect in a practical application, specifically timing with thin-surface barrier detectors. The discussion focusses on properties of the detector, low-noise amplifiers, trigger circuits and time converters. New material presented in this paper includes bipolar transistor input stages with noise performance superior to currently available FETs, noiseless input terminations in sub-nanosecond preamplifiers and methods using transmission lines to couple the detector to remotely mounted preamplifiers. Trigger circuits are characterized in terms of effective rise time, equivalent input noise and residual jitter
Fast Implicit Methods For Elliptic Moving Interface Problems
2015-12-11
surfaces [30], and has recently been employed in the geometric nonuniform fast Fourier transform [12] and in the finite element method [31]. We employ...analyzed, and tested for the Fourier transform of piecewise polynomials given on d-dimensional simplices in D-dimensional Euclidean space. These transforms ...evaluation, and one to three orders of magnitude slower than the classical uniform Fast Fourier Transform . Second, bilinear quadratures ---which
New method of fast simulation for a hadron calorimeter response
International Nuclear Information System (INIS)
Kul'chitskij, Yu.; Sutiak, J.; Tokar, S.; Zenis, T.
2003-01-01
In this work we present the new method of a fast Monte-Carlo simulation of a hadron calorimeter response. It is based on the three-dimensional parameterization of the hadronic shower obtained from the ATLAS TILECAL test beam data and GEANT simulations. A new approach of including the longitudinal fluctuations of hadronic shower is described. The obtained results of the fast simulation are in good agreement with the TILECAL experimental data
Fast New Method for Temporary Chemical Passivation
Directory of Open Access Journals (Sweden)
Marek Solčanský
2012-12-01
Full Text Available The main material parameter of silicon, that influences the effectiveness of photovoltaic cells, is the minority carrier bulk lifetime.It may change in the technological process especially during high temperature operations. Monitoring of the carrier bulk-lifetimeis necessary for modifying the whole technological process of production. For the measurement of the minority carrier bulk-lifetimethe characterization method MW PCD (Microwave Photoconductance Decay is used, where the result of measurement is the effectivecarrier lifetime, which is very dependent on the surface recombination velocity and therefore on the quality of a silicon surfacepassivation.This work deals with an examination of a different solution types for the chemical passivation of a silicon surface. Varioussolutions are tested on silicon wafers for their consequent comparison. The main purpose of this work is to find optimal solution, whichsuits the requirements of a time stability and start-up velocity of passivation, reproducibility of the measurements and a possibilityof a perfect cleaning of a passivating solution remains from a silicon surface. Another purpose of this work is to identify the parametersof other quinhydrone solutions with different concentrations as compared with the quinhydrone solution in methanol witha concentration of 0.07 mol/dm³ marked QM007 (referential solution.The method of an effective chemical passivation with a quinhydrone in methanol solution was suggested. The solution witha concentration of 0.07 mol /dm3 fulfills all required criteria. The work also confirms the influence of increased concentrationquinhydrone on the temporal stability of the passivation layer and the effect for textured silicon wafers. In conclusion, the influenceof an illumination and the temperature on the properties of the passivating solution QM007 is discussed.
An Augmented Fast Marching Method for Computing Skeletons and Centerlines
Telea, Alexandru; Wijk, Jarke J. van
2002-01-01
We present a simple and robust method for computing skeletons for arbitrary planar objects and centerlines for 3D objects. We augment the Fast Marching Method (FMM) widely used in level set applications by computing the paramterized boundary location every pixel came from during the boundary
Fast Detection Method in Cooperative Cognitive Radio Networks
Directory of Open Access Journals (Sweden)
Zhengyi Li
2010-01-01
Full Text Available Cognitive Radio (CR technology improves the utilization of spectrum highly via opportunistic spectrum sharing, which requests fast detection as the spectrum utilization is dynamic. Taking into consideration the characteristic of wireless channels, we propose a fast detection scheme for a cooperative cognitive radio network, which consists of multiple CRs and a central control office. Specifically, each CR makes individual detection decision using the sequential probability ratio test combined with Neyman Pearson detection with respect to a specific observation window length. The proposed method upper bounds the detection delay. In addition, a weighted K out of N fusion rule is also proposed for the central control office to reach fast global decision based on the information collected from CRs, with more weights assigned for CRs with good channel conditions. Simulation results show that the proposed scheme can achieve fast detection while maintaining the detection accuracy.
Fiorino, Steven T.; Elmore, Brannon; Schmidt, Jaclyn; Matchefts, Elizabeth; Burley, Jarred L.
2016-05-01
Properly accounting for multiple scattering effects can have important implications for remote sensing and possibly directed energy applications. For example, increasing path radiance can affect signal noise. This study describes the implementation of a fast-calculating two-stream-like multiple scattering algorithm that captures azimuthal and elevation variations into the Laser Environmental Effects Definition and Reference (LEEDR) atmospheric characterization and radiative transfer code. The multiple scattering algorithm fully solves for molecular, aerosol, cloud, and precipitation single-scatter layer effects with a Mie algorithm at every calculation point/layer rather than an interpolated value from a pre-calculated look-up-table. This top-down cumulative diffusivity method first considers the incident solar radiance contribution to a given layer accounting for solid angle and elevation, and it then measures the contribution of diffused energy from previous layers based on the transmission of the current level to produce a cumulative radiance that is reflected from a surface and measured at the aperture at the observer. Then a unique set of asymmetry and backscattering phase function parameter calculations are made which account for the radiance loss due to the molecular and aerosol constituent reflectivity within a level and allows for a more accurate characterization of diffuse layers that contribute to multiple scattered radiances in inhomogeneous atmospheres. The code logic is valid for spectral bands between 200 nm and radio wavelengths, and the accuracy is demonstrated by comparing the results from LEEDR to observed sky radiance data.
Measured and Predicted Variations in Fast Neutron Spectrum when Penetrating Laminated Fe-D2O
International Nuclear Information System (INIS)
Aalto, E.; Sandlin, R.; Fraeki, R.
1965-09-01
Variations of the fast neutron spectrum in thin regions of alternating Fe and D O have been studied using threshold detectors (ln(n, n' ), S(n, p), Al(n, α)). The results have been compared to those calculated by two shielding codes (NRN and RASH D) of multigroup removal-diffusion type. The absolute fast spectrum calculated in our rather complicated configurations was found to agree with measurements within the same accuracy (a factor of two) as did the thermal flux. The calculated spectrum is slightly harder than the measured one, but the detailed variations (covering the range 1:5) in the form of the spectrum when penetrating Fe agree with observations to within 15-20 %. In and Al activities were found to be proportional to the integrated flux over 1 MeV throughout the whole configuration, while S showed the least proportionality
An improved fast neutron radiography quantitative measurement method
International Nuclear Information System (INIS)
Matsubayashi, Masahito; Hibiki, Takashi; Mishima, Kaichiro; Yoshii, Koji; Okamoto, Koji
2004-01-01
The validity of a fast neutron radiography quantification method, the Σ-scaling method, which was originally proposed for thermal neutron radiography was examined with Monte Carlo calculations and experiments conducted at the YAYOI fast neutron source reactor. Water and copper were selected as comparative samples for a thermal neutron radiography case and a dense object, respectively. Although different characteristics on effective macroscopic cross-sections were implied by the simulation, the Σ-scaled experimental results with the fission neutron spectrum cross-sections were well fitted to the measurements for both the water and copper samples. This indicates that the Σ-scaling method could be successfully adopted for quantitative measurements in fast neutron radiography
A Fast LMMSE Channel Estimation Method for OFDM Systems
Directory of Open Access Journals (Sweden)
Zhou Wen
2009-01-01
Full Text Available A fast linear minimum mean square error (LMMSE channel estimation method has been proposed for Orthogonal Frequency Division Multiplexing (OFDM systems. In comparison with the conventional LMMSE channel estimation, the proposed channel estimation method does not require the statistic knowledge of the channel in advance and avoids the inverse operation of a large dimension matrix by using the fast Fourier transform (FFT operation. Therefore, the computational complexity can be reduced significantly. The normalized mean square errors (NMSEs of the proposed method and the conventional LMMSE estimation have been derived. Numerical results show that the NMSE of the proposed method is very close to that of the conventional LMMSE method, which is also verified by computer simulation. In addition, computer simulation shows that the performance of the proposed method is almost the same with that of the conventional LMMSE method in terms of bit error rate (BER.
Comparison of Standard and Fast Charging Methods for Electric Vehicles
Directory of Open Access Journals (Sweden)
Petr Chlebis
2014-01-01
Full Text Available This paper describes a comparison of standard and fast charging methods used in the field of electric vehicles and also comparison of their efficiency in terms of electrical energy consumption. The comparison was performed on three-phase buck converter, which was designed for EV’s fast charging station. The results were obtained by both mathematical and simulation methods. The laboratory model of entire physical application, which will be further used for simulation results verification, is being built in these days.
Influence function method for fast estimation of BWR core performance
International Nuclear Information System (INIS)
Rahnema, F.; Martin, C.L.; Parkos, G.R.; Williams, R.D.
1993-01-01
The model, which is based on the influence function method, provides rapid estimate of important quantities such as margins to fuel operating limits, the effective multiplication factor, nodal power and void and bundle flow distributions as well as the traversing in-core probe (TIP) and local power range monitor (LPRM) readings. The fast model has been incorporated into GE's three-dimensional core monitoring system (3D Monicore). In addition to its predicative capability, the model adapts to LPRM readings in the monitoring mode. Comparisons have shown that the agreement between the results of the fast method and those of the standard 3D Monicore is within a few percent. (orig.)
Fast method and ultra fast screening for determination of 90Sr in milk and dairy products
International Nuclear Information System (INIS)
Kabai, E.; Hornung, L.; Savkin, B.T.; Poppitz-Spuhler, A.; Hiersche, L.
2011-01-01
In emergency situation or in case of defence against nuclear hazards, the rapid analysis of radioisotopes in food products is essential. Radiostrontium is one of the most interesting isotopes in case of emergency. The determination of radiostrontium in milk and dairy products plays an important role especially for infants. The procedures described here were tested for fast determination of 90 Sr. The typical chemical recovery of the proposed fast procedure for determination of strontium from milk and dairy products was 90% and the time needed for analysis was one working day. The achieved detection limit for milk is 0.8 Bq/l. An ultra fast screening method allows the determination of radiostrontium with quantitative recovery within 1 hour. The minimum detectable activity in this case is 230 Bq/l.
Total variation superiorized conjugate gradient method for image reconstruction
Zibetti, Marcelo V. W.; Lin, Chuan; Herman, Gabor T.
2018-03-01
The conjugate gradient (CG) method is commonly used for the relatively-rapid solution of least squares problems. In image reconstruction, the problem can be ill-posed and also contaminated by noise; due to this, approaches such as regularization should be utilized. Total variation (TV) is a useful regularization penalty, frequently utilized in image reconstruction for generating images with sharp edges. When a non-quadratic norm is selected for regularization, as is the case for TV, then it is no longer possible to use CG. Non-linear CG is an alternative, but it does not share the efficiency that CG shows with least squares and methods such as fast iterative shrinkage-thresholding algorithms (FISTA) are preferred for problems with TV norm. A different approach to including prior information is superiorization. In this paper it is shown that the conjugate gradient method can be superiorized. Five different CG variants are proposed, including preconditioned CG. The CG methods superiorized by the total variation norm are presented and their performance in image reconstruction is demonstrated. It is illustrated that some of the proposed variants of the superiorized CG method can produce reconstructions of superior quality to those produced by FISTA and in less computational time, due to the speed of the original CG for least squares problems. In the Appendix we examine the behavior of one of the superiorized CG methods (we call it S-CG); one of its input parameters is a positive number ɛ. It is proved that, for any given ɛ that is greater than the half-squared-residual for the least squares solution, S-CG terminates in a finite number of steps with an output for which the half-squared-residual is less than or equal to ɛ. Importantly, it is also the case that the output will have a lower value of TV than what would be provided by unsuperiorized CG for the same value ɛ of the half-squared residual.
A fast resonance interference treatment scheme with subgroup method
International Nuclear Information System (INIS)
Cao, L.; He, Q.; Wu, H.; Zu, T.; Shen, W.
2015-01-01
A fast Resonance Interference Factor (RIF) scheme is proposed to treat the resonance interference effects between different resonance nuclides. This scheme utilizes the conventional subgroup method to evaluate the self-shielded cross sections of the dominant resonance nuclide in the heterogeneous system and the hyper-fine energy group method to represent the resonance interference effects in a simplified homogeneous model. In this paper, the newly implemented scheme is compared to the background iteration scheme, the Resonance Nuclide Group (RNG) scheme and the conventional RIF scheme. The numerical results show that the errors of the effective self-shielded cross sections are significantly reduced by the fast RIF scheme compared with the background iteration scheme and the RNG scheme. Besides, the fast RIF scheme consumes less computation time than the conventional RIF schemes. The speed-up ratio is ~4.5 for MOX pin cell problems. (author)
Non-linear programming method in optimization of fast reactors
International Nuclear Information System (INIS)
Pavelesku, M.; Dumitresku, Kh.; Adam, S.
1975-01-01
Application of the non-linear programming methods on optimization of nuclear materials distribution in fast reactor is discussed. The programming task composition is made on the basis of the reactor calculation dependent on the fuel distribution strategy. As an illustration of this method application the solution of simple example is given. Solution of the non-linear program is done on the basis of the numerical method SUMT. (I.T.)
Variational methods for chemical and nuclear reactions
International Nuclear Information System (INIS)
Crawford, O.H.
1977-01-01
All the variational functionals are derived which satisfy certain criteria of suitability for molecular and nuclear scattering, below the threshold energy for three-body breakup. The existence and uniqueness of solutions are proven. The most general suitable functional is specialized, by particular values of its parameters, to Kohn's taneta, Kato's cot(eta-theta), the inverse Kohn coeta, Kohn's S matrix, our S matrix, Lane and Robson's functional, and several new functionals, an infinite number of which are contained in the general expression. Four general ways of deriving algebraic methods from a given functional are discussed, and illustrated with specific algebraic results. These include equations of Lane and Robson and of Kohn, the fundamental R matrix relation, and new equations. The relative configuration space is divided as in the Wigner R matrix theory, and trial wavefunctions are needed for only the region where all the particles are interacting. In addition, a version of the general functional is presented which does not require any division of space
Thermal-hydraulic methods in fast reactor safety
International Nuclear Information System (INIS)
Weber, D.P.; Briggs, L.L.
1985-01-01
Methods for the solution of thermal-hydraulic problems in liquid metal fast breeder reactors (LMFBRs) arising primarily from transient accident analysis are reviewed. Principal emphasis is given to the important phenomenological issues of sodium boiling and fuel motion. Descriptions of representative phenomenological and mathematical models, computational algorithms, advantages and limitations of the approaches, and current research needs and directions are provided
Fast and sensitive method for detecting volatile species in liquids
DEFF Research Database (Denmark)
Trimarco, Daniel Bøndergaard; Pedersen, Thomas; Hansen, Ole
2015-01-01
to a mass spectrometer through a narrow capillary without the use of differential pumping. This method inherits features from differential electrochemical mass spectrometry (DEMS) and membrane inlet mass spectrometry (MIMS), but brings the best of both worlds, i.e., the fast time-response of a DEMS system...
A fast method for linear waves based on geometrical optics
Stolk, C.C.
2009-01-01
We develop a fast method for solving the one-dimensional wave equation based on geometrical optics. From geometrical optics (e.g., Fourier integral operator theory or WKB approximation) it is known that high-frequency waves split into forward and backward propagating parts, each propagating with the
Improved Multilevel Fast Multipole Method for Higher-Order discretizations
DEFF Research Database (Denmark)
Borries, Oscar Peter; Meincke, Peter; Jorgensen, Erik
2014-01-01
The Multilevel Fast Multipole Method (MLFMM) allows for a reduced computational complexity when solving electromagnetic scattering problems. Combining this with the reduced number of unknowns provided by Higher-Order discretizations has proven to be a difficult task, with the general conclusion b...
Reactor thermal behaviors under kinetics parameters variations in fast reactivity insertion
Energy Technology Data Exchange (ETDEWEB)
Abou-El-Maaty, Talal [Reactors Department, Atomic Energy Authority, Cairo 13759 (Egypt)], E-mail: talal22969@yahoo.com; Abdelhady, Amr [Reactors Department, Atomic Energy Authority, Cairo 13759 (Egypt)
2009-03-15
The influences of variations in some of the kinetics parameters affecting the reactivity insertion are considered in this study, it has been accomplished in order to acquire knowledge about the role that kinetic parameters play in prompt critical transients from the safety point of view. The kinetics parameters variations are limited to the effective delayed neutron fraction ({beta}{sub eff}) and the prompt neutron generation time ({lambda}). The reactor thermal behaviors under the variations in effective delayed neutron fraction and prompt neutron generation time included, the reactor power, maximum fuel temperature, maximum clad temperature, maximum coolant temperature and the mass flux variations at the hot channel. The analysis is done for a typical swimming pool, plate type research reactor with low enriched uranium. The scram system is disabled during the accidents simulations. Calculations were done using PARET code. As a result of simulations, it is concluded that, the reactor (ETRR2) thermal behavior is considerably more sensitive to the variation in the effective delayed neutron fraction than to the variation in prompt neutron generation time and the fast reactivity insertion in both cases causes a flow expansion and contraction at the hot channel exit. The amplitude of the oscillated flow is a qualitatively increases with the decrease in both {beta}{sub eff} and {lambda}.
A Total Variation-Based Reconstruction Method for Dynamic MRI
Directory of Open Access Journals (Sweden)
Germana Landi
2008-01-01
Full Text Available In recent years, total variation (TV regularization has become a popular and powerful tool for image restoration and enhancement. In this work, we apply TV minimization to improve the quality of dynamic magnetic resonance images. Dynamic magnetic resonance imaging is an increasingly popular clinical technique used to monitor spatio-temporal changes in tissue structure. Fast data acquisition is necessary in order to capture the dynamic process. Most commonly, the requirement of high temporal resolution is fulfilled by sacrificing spatial resolution. Therefore, the numerical methods have to address the issue of images reconstruction from limited Fourier data. One of the most successful techniques for dynamic imaging applications is the reduced-encoded imaging by generalized-series reconstruction method of Liang and Lauterbur. However, even if this method utilizes a priori data for optimal image reconstruction, the produced dynamic images are degraded by truncation artifacts, most notably Gibbs ringing, due to the spatial low resolution of the data. We use a TV regularization strategy in order to reduce these truncation artifacts in the dynamic images. The resulting TV minimization problem is solved by the fixed point iteration method of Vogel and Oman. The results of test problems with simulated and real data are presented to illustrate the effectiveness of the proposed approach in reducing the truncation artifacts of the reconstructed images.
Fast Prediction Method for Steady-State Heat Convection
Wáng, Yì
2012-03-14
A reduced model by proper orthogonal decomposition (POD) and Galerkin projection methods for steady-state heat convection is established on a nonuniform grid. It was verified by thousands of examples that the results are in good agreement with the results obtained from the finite volume method. This model can also predict the cases where model parameters far exceed the sample scope. Moreover, the calculation time needed by the model is much shorter than that needed for the finite volume method. Thus, the nonuniform POD-Galerkin projection method exhibits high accuracy, good suitability, and fast computation. It has universal significance for accurate and fast prediction. Also, the methodology can be applied to more complex modeling in chemical engineering and technology, such as reaction and turbulence. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schroedinger's variational method of quantization revisited
International Nuclear Information System (INIS)
Yasue, K.
1980-01-01
Schroedinger's original quantization procedure is revisited in the light of Nelson's stochastic framework of quantum mechanics. It is clarified why Schroedinger's proposal of a variational problem led us to a true description of quantum mechanics. (orig.)
Symmetrized neutron transport equation and the fast Fourier transform method
International Nuclear Information System (INIS)
Sinh, N.Q.; Kisynski, J.; Mika, J.
1978-01-01
The differential equation obtained from the neutron transport equation by the application of the source iteration method in two-dimensional rectangular geometry is transformed into a symmetrized form with respect to one of the angular variables. The discretization of the symmetrized equation leads to finite difference equations based on the five-point scheme and solved by use of the fast Fourier transform method. Possible advantages of the approach are shown on test calculations
Real time simulation method for fast breeder reactors dynamics
International Nuclear Information System (INIS)
Miki, Tetsushi; Mineo, Yoshiyuki; Ogino, Takamichi; Kishida, Koji; Furuichi, Kenji.
1985-01-01
The development of multi-purpose real time simulator models with suitable plant dynamics was made; these models can be used not only in training operators but also in designing control systems, operation sequences and many other items which must be studied for the development of new type reactors. The prototype fast breeder reactor ''Monju'' is taken as an example. Analysis is made on various factors affecting the accuracy and computer load of its dynamic simulation. A method is presented which determines the optimum number of nodes in distributed systems and time steps. The oscillations due to the numerical instability are observed in the dynamic simulation of evaporators with a small number of nodes, and a method to cancel these oscillations is proposed. It has been verified through the development of plant dynamics simulation codes that these methods can provide efficient real time dynamics models of fast breeder reactors. (author)
Scalable fast multipole methods for vortex element methods
Hu, Qi; Gumerov, Nail A.; Yokota, Rio; Barba, Lorena A.; Duraiswami, Ramani
2012-01-01
work for a scalar heterogeneous FMM algorithm, we develop a new FMM-based vortex method capable of simulating general flows including turbulence on heterogeneous architectures, which distributes the work between multi-core CPUs and GPUs to best utilize
Koulman, A; Bos, R; Medarde, M; Pras, N; Quax, WJ
2001-01-01
A new GC-MS method for monitoring lignans was developed to study the variation in plants and elucidate the biosynthetic steps. A simple and fast extraction procedure for lyophilised plant material was developed, giving a lignan-rich extract. A GC-MS method was set up using an apolar WCOT fused
Wang, Tiange; Huang, Tao; Zheng, Yan; Rood, Jennifer; Bray, George A.; Sacks, Frank M.; Qi, Lu
2016-01-01
Objective Weight loss intervention through diet modification has been widely used to improve obesity-related hyperglycemia; however, little is known about whether genetic variation modifies the intervention effect. We examined the interaction between weight-loss diets and genetic variation of fasting glucose on changes in glycemic traits in a dietary intervention trial. Research Design and Methods The Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial is a randomized, controlled 2-year weight-loss trial. We assessed overall genetic variation of fasting glucose by calculating a genetic risk score (GRS) based on 14 fasting glucose-associated single nucleotide polymorphisms, and examined the progression in fasting glucose and insulin levels, and insulin resistance and insulin sensitivity in 733 adults from this trial. Results The GRS was associated with 6-month changes in fasting glucose (Pfasting insulin (P=0.042), homeostasis model assessment of insulin resistance (HOMA-IR, P=0.009) and insulin sensitivity (HOMA-S, P=0.043). We observed significant interaction between the GRS and dietary fat on 6-month changes in fasting glucose, HOMA-IR and HOMA-S after multivariable adjustment (P-interaction=0.007, 0.045, and 0.028, respectively). After further adjustment for weight loss, the interaction remained significant on change in fasting glucose (P=0.015). In the high-fat diet group, participants in the highest GRS tertile showed increased fasting glucose, whereas participants in the lowest tertile showed decreased fasting glucose (P-trend<0.001); in contrast, the genetic association was not significant in the low-fat diet group (P-trend=0.087). Conclusions Our data suggest that participants with a higher genetic risk may benefit more by eating a low-fat diet to improve glucose metabolism. PMID:27113490
Variation and Commonality in Phenomenographic Research Methods
Akerlind, Gerlese S.
2012-01-01
This paper focuses on the data analysis stage of phenomenographic research, elucidating what is involved in terms of both commonality and variation in accepted practice. The analysis stage of phenomenographic research is often not well understood. This paper helps to clarify the process, initially by collecting together in one location the more…
Asynchronous Execution of the Fast Multipole Method Using Charm++
AbdulJabbar, Mustafa; Yokota, Rio; Keyes, David
2014-01-01
Fast multipole methods (FMM) on distributed mem- ory have traditionally used a bulk-synchronous model of com- municating the local essential tree (LET) and overlapping it with computation of the local data. This could be perceived as an extreme case of data aggregation, where the whole LET is communicated at once. Charm++ allows a much finer control over the granularity of communication, and has a asynchronous execution model that fits well with the structure of our FMM code. Unlike previous ...
Multistep Hybrid Extragradient Method for Triple Hierarchical Variational Inequalities
Directory of Open Access Journals (Sweden)
Zhao-Rong Kong
2013-01-01
Full Text Available We consider a triple hierarchical variational inequality problem (THVIP, that is, a variational inequality problem defined over the set of solutions of another variational inequality problem which is defined over the intersection of the fixed point set of a strict pseudocontractive mapping and the solution set of the classical variational inequality problem. Moreover, we propose a multistep hybrid extragradient method to compute the approximate solutions of the THVIP and present the convergence analysis of the sequence generated by the proposed method. We also derive a solution method for solving a system of hierarchical variational inequalities (SHVI, that is, a system of variational inequalities defined over the intersection of the fixed point set of a strict pseudocontractive mapping and the solution set of the classical variational inequality problem. Under very mild conditions, it is proven that the sequence generated by the proposed method converges strongly to a unique solution of the SHVI.
Fast computation of the characteristics method on vector computers
International Nuclear Information System (INIS)
Kugo, Teruhiko
2001-11-01
Fast computation of the characteristics method to solve the neutron transport equation in a heterogeneous geometry has been studied. Two vector computation algorithms; an odd-even sweep (OES) method and an independent sequential sweep (ISS) method have been developed and their efficiency to a typical fuel assembly calculation has been investigated. For both methods, a vector computation is 15 times faster than a scalar computation. From a viewpoint of comparison between the OES and ISS methods, the followings are found: 1) there is a small difference in a computation speed, 2) the ISS method shows a faster convergence and 3) the ISS method saves about 80% of computer memory size compared with the OES method. It is, therefore, concluded that the ISS method is superior to the OES method as a vectorization method. In the vector computation, a table-look-up method to reduce computation time of an exponential function saves only 20% of a whole computation time. Both the coarse mesh rebalance method and the Aitken acceleration method are effective as acceleration methods for the characteristics method, a combination of them saves 70-80% of outer iterations compared with a free iteration. (author)
Using the Screened Coulomb Potential to Illustrate the Variational Method
Zuniga, Jose; Bastida, Adolfo; Requena, Alberto
2012-01-01
The screened Coulomb potential, or Yukawa potential, is used to illustrate the application of the single and linear variational methods. The trial variational functions are expressed in terms of Slater-type functions, for which the integrals needed to carry out the variational calculations are easily evaluated in closed form. The variational…
Variational iteration method for one dimensional nonlinear thermoelasticity
International Nuclear Information System (INIS)
Sweilam, N.H.; Khader, M.M.
2007-01-01
This paper applies the variational iteration method to solve the Cauchy problem arising in one dimensional nonlinear thermoelasticity. The advantage of this method is to overcome the difficulty of calculation of Adomian's polynomials in the Adomian's decomposition method. The numerical results of this method are compared with the exact solution of an artificial model to show the efficiency of the method. The approximate solutions show that the variational iteration method is a powerful mathematical tool for solving nonlinear problems
Survey Shows Variation in Ph.D. Methods Training.
Steeves, Leslie; And Others
1983-01-01
Reports on a 1982 survey of journalism graduate studies indicating considerable variation in research methods requirements and emphases in 23 universities offering doctoral degrees in mass communication. (HOD)
Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide.
Salguero-Gómez, Roberto; Jones, Owen R; Jongejans, Eelke; Blomberg, Simon P; Hodgson, David J; Mbeau-Ache, Cyril; Zuidema, Pieter A; de Kroon, Hans; Buckley, Yvonne M
2016-01-05
The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous variation in life history are poorly understood. We use demographic data from 418 plant species in the wild, from annual herbs to supercentennial trees, to examine how growth form, habitat, and phylogenetic relationships structure plant life histories and to develop a framework to predict population performance. We show that 55% of the variation in plant life-history strategies is adequately characterized using two independent axes: the fast-slow continuum, including fast-growing, short-lived plant species at one end and slow-growing, long-lived species at the other, and a reproductive strategy axis, with highly reproductive, iteroparous species at one extreme and poorly reproductive, semelparous plants with frequent shrinkage at the other. Our findings remain consistent across major habitats and are minimally affected by plant growth form and phylogenetic ancestry, suggesting that the relative independence of the fast-slow and reproduction strategy axes is general in the plant kingdom. Our findings have similarities with how life-history strategies are structured in mammals, birds, and reptiles. The position of plant species populations in the 2D space produced by both axes predicts their rate of recovery from disturbances and population growth rate. This life-history framework may complement trait-based frameworks on leaf and wood economics; together these frameworks may allow prediction of responses of plants to anthropogenic disturbances and changing environments.
Development of probabilistic fast reactor fuel design method
International Nuclear Information System (INIS)
Ozawa, Takayuki
1997-01-01
Under the current method of evaluating fuel robustness in FBR fuel rod design, a variety of uncertain quantities including fuel production tolerance and power density are estimated conservatively. In the future, in order to proceed with improvements in the FBR core's performance and optimize the fuel's specifications, a rationalization of fuel design tolerance is required. Among the measures aimed at realizing this rationalization, the introduction of a probabilistic fast reactor fuel design method is currently under consideration. I have developed a probabilistic fast reactor fuel design code named BORNFREE, in order to make use of this method in FBR fuel design. At the same time, I have carried out a trial calculation of the cladding stress using this code and made a study and an evaluation of the possibility of employing tolerance rationalization in fuel rod design. In this paper, I provide an outline description of BORNFREE and report the results of the above study and evaluation. After performing cladding stress trial calculations using the probabilistic method, I was able to confirm that this method promises more rational design evaluation results than the conventional deterministic method. (author)
Fast sweeping method for the factored eikonal equation
Fomel, Sergey; Luo, Songting; Zhao, Hongkai
2009-09-01
We develop a fast sweeping method for the factored eikonal equation. By decomposing the solution of a general eikonal equation as the product of two factors: the first factor is the solution to a simple eikonal equation (such as distance) or a previously computed solution to an approximate eikonal equation. The second factor is a necessary modification/correction. Appropriate discretization and a fast sweeping strategy are designed for the equation of the correction part. The key idea is to enforce the causality of the original eikonal equation during the Gauss-Seidel iterations. Using extensive numerical examples we demonstrate that (1) the convergence behavior of the fast sweeping method for the factored eikonal equation is the same as for the original eikonal equation, i.e., the number of iterations for the Gauss-Seidel iterations is independent of the mesh size, (2) the numerical solution from the factored eikonal equation is more accurate than the numerical solution directly computed from the original eikonal equation, especially for point sources.
Scalable force directed graph layout algorithms using fast multipole methods
Yunis, Enas Abdulrahman
2012-06-01
We present an extension to ExaFMM, a Fast Multipole Method library, as a generalized approach for fast and scalable execution of the Force-Directed Graph Layout algorithm. The Force-Directed Graph Layout algorithm is a physics-based approach to graph layout that treats the vertices V as repelling charged particles with the edges E connecting them acting as springs. Traditionally, the amount of work required in applying the Force-Directed Graph Layout algorithm is O(|V|2 + |E|) using direct calculations and O(|V| log |V| + |E|) using truncation, filtering, and/or multi-level techniques. Correct application of the Fast Multipole Method allows us to maintain a lower complexity of O(|V| + |E|) while regaining most of the precision lost in other techniques. Solving layout problems for truly large graphs with millions of vertices still requires a scalable algorithm and implementation. We have been able to leverage the scalability and architectural adaptability of the ExaFMM library to create a Force-Directed Graph Layout implementation that runs efficiently on distributed multicore and multi-GPU architectures. © 2012 IEEE.
Methods and tools to detect thermal noise in fast reactors
International Nuclear Information System (INIS)
Motta, M.; Giovannini, R.
1985-07-01
The Specialists' Meeting on ''Methods and Tools to Detect Thermal Noise in Fast Reactors'' was held in Bologna on 8-10 October 1984. The meeting was hosted by the ENEA and was sponsored by the IAEA on the recommendation of the International Working Group on Fast Reactors. 17 participants attended the meeting from France, the Federal Republic of Germany, Italy, Japan, the United Kingdom, Joint Research Centre of CEC and from IAEA. The meeting was presided over by Prof. Mario Motta of Italy. The purpose of the meeting was to review and discuss methods and tools for temperature noise detection and related analysis as a potential means for detecting local blockages in fuel and blanket subassemblies and other faults in LMFBR. The meeting was divided into four technical sessions as follows: 1. National review presentations on application purposes and research activities for thermal noise detection. (5 papers); 2. Detection instruments and electronic equipment for temperature measurements in fast reactors. (5 papers); 3. Physical models. (2 papers); 4. Signal processing techniques. (3 papers). A separate abstract was prepared for each of these papers
Methods for the sodium cooled fast reactor fire safety provisions
International Nuclear Information System (INIS)
Gryaznov, B.V.; Dergachev, N.P.
1983-01-01
Problems of fire safety provision on NPPs with sodium cooled fast reactor are under discussion. Methods of sodium leak localization, measures eliminating sodium flaring up during leaks and main means of sodium fire extinguishing are considered. An extinguishing of sodium flaring up is performed by means of sodium temperatUre decrease and by limitation of hydrogen access to the flaring up surface. A conclusion is made that the most effective methods of extinguishing are the following: self-extinguishing (due to hydrogen burning out in a limiting volume); extinguishing by a gas mixture of nitrogen and carbonic acid (initial filling and blowing of rooms during sodium flaring up); extinguishing by special powders
Fourier-Based Fast Multipole Method for the Helmholtz Equation
Cecka, Cris
2013-01-01
The fast multipole method (FMM) has had great success in reducing the computational complexity of solving the boundary integral form of the Helmholtz equation. We present a formulation of the Helmholtz FMM that uses Fourier basis functions rather than spherical harmonics. By modifying the transfer function in the precomputation stage of the FMM, time-critical stages of the algorithm are accelerated by causing the interpolation operators to become straightforward applications of fast Fourier transforms, retaining the diagonality of the transfer function, and providing a simplified error analysis. Using Fourier analysis, constructive algorithms are derived to a priori determine an integration quadrature for a given error tolerance. Sharp error bounds are derived and verified numerically. Various optimizations are considered to reduce the number of quadrature points and reduce the cost of computing the transfer function. © 2013 Society for Industrial and Applied Mathematics.
Method for integrating a train of fast, nanosecond wide pulses
International Nuclear Information System (INIS)
Rose, C.R.
1987-01-01
This paper describes a method used to integrate a train of fast, nanosecond wide pulses. The pulses come from current transformers in a RF LINAC beamline. Because they are ac signals and have no dc component, true mathematical integration would yield zero over the pulse train period or an equally erroneous value because of a dc baseline shift. The circuit used to integrate the pulse train first stretches the pulses to 35 ns FWHM. The signals are then fed into a high-speed, precision rectifier which restores a true dc baseline for the following stage - a fast, gated integrator. The rectifier is linear over 55dB in excess of 25 MHz, and the gated integrator is linear over a 60 dB range with input pulse widths as short as 16 ns. The assembled system is linear over 30 dB with a 6 MHz input signal
Time dependent variational method in quantum mechanics
International Nuclear Information System (INIS)
Torres del Castillo, G.F.
1987-01-01
Using the fact that the solutions to the time-dependent Schodinger equation can be obtained from a variational principle, by restricting the evolution of the state vector to some surface in the corresponding Hilbert space, approximations to the exact solutions can be obtained, which are determined by equations similar to Hamilton's equations. It is shown that, in order for the approximate evolution to be well defined on a given surface, the imaginary part of the inner product restricted to the surface must be non-singular. (author)
Parallel Fast Multipole Boundary Element Method for crustal dynamics
International Nuclear Information System (INIS)
Quevedo, Leonardo; Morra, Gabriele; Mueller, R Dietmar
2010-01-01
Crustal faults and sharp material transitions in the crust are usually represented as triangulated surfaces in structural geological models. The complex range of volumes separating such surfaces is typically three-dimensionally meshed in order to solve equations that describe crustal deformation with the finite-difference (FD) or finite-element (FEM) methods. We show here how the Boundary Element Method, combined with the Multipole approach, can revolutionise the calculation of stress and strain, solving the problem of computational scalability from reservoir to basin scales. The Fast Multipole Boundary Element Method (Fast BEM) tackles the difficulty of handling the intricate volume meshes and high resolution of crustal data that has put classical Finite 3D approaches in a performance crisis. The two main performance enhancements of this method: the reduction of required mesh elements from cubic to quadratic with linear size and linear-logarithmic runtime; achieve a reduction of memory and runtime requirements allowing the treatment of a new scale of geodynamic models. This approach was recently tested and applied in a series of papers by [1, 2, 3] for regional and global geodynamics, using KD trees for fast identification of near and far-field interacting elements, and MPI parallelised code on distributed memory architectures, and is now in active development for crustal dynamics. As the method is based on a free-surface, it allows easy data transfer to geological visualisation tools where only changes in boundaries and material properties are required as input parameters. In addition, easy volume mesh sampling of physical quantities enables direct integration with existing FD/FEM code.
Feature extraction from mammographic images using fast marching methods
International Nuclear Information System (INIS)
Bottigli, U.; Golosio, B.
2002-01-01
Features extraction from medical images represents a fundamental step for shape recognition and diagnostic support. The present work faces the problem of the detection of large features, such as massive lesions and organ contours, from mammographic images. The regions of interest are often characterized by an average grayness intensity that is different from the surrounding. In most cases, however, the desired features cannot be extracted by simple gray level thresholding, because of image noise and non-uniform density of the surrounding tissue. In this work, edge detection is achieved through the fast marching method (Level Set Methods and Fast Marching Methods, Cambridge University Press, Cambridge, 1999), which is based on the theory of interface evolution. Starting from a seed point in the shape of interest, a front is generated which evolves according to an appropriate speed function. Such function is expressed in terms of geometric properties of the evolving interface and of image properties, and should become zero when the front reaches the desired boundary. Some examples of application of such method to mammographic images from the CALMA database (Nucl. Instr. and Meth. A 460 (2001) 107) are presented here and discussed
Fast radio burst search: cross spectrum vs. auto spectrum method
Liu, Lei; Zheng, Weimin; Yan, Zhen; Zhang, Juan
2018-06-01
The search for fast radio bursts (FRBs) is a hot topic in current radio astronomy studies. In this work, we carry out a single pulse search with a very long baseline interferometry (VLBI) pulsar observation data set using both auto spectrum and cross spectrum search methods. The cross spectrum method, first proposed in Liu et al., maximizes the signal power by fully utilizing the fringe phase information of the baseline cross spectrum. The auto spectrum search method is based on the popular pulsar software package PRESTO, which extracts single pulses from the auto spectrum of each station. According to our comparison, the cross spectrum method is able to enhance the signal power and therefore extract single pulses from data contaminated by high levels of radio frequency interference (RFI), which makes it possible to carry out a search for FRBs in regular VLBI observations when RFI is present.
On Self-Adaptive Method for General Mixed Variational Inequalities
Directory of Open Access Journals (Sweden)
Abdellah Bnouhachem
2008-01-01
Full Text Available We suggest and analyze a new self-adaptive method for solving general mixed variational inequalities, which can be viewed as an improvement of the method of (Noor 2003. Global convergence of the new method is proved under the same assumptions as Noor's method. Some preliminary computational results are given to illustrate the efficiency of the proposed method. Since the general mixed variational inequalities include general variational inequalities, quasivariational inequalities, and nonlinear (implicit complementarity problems as special cases, results proved in this paper continue to hold for these problems.
A Modified Alternating Direction Method for Variational Inequality Problems
International Nuclear Information System (INIS)
Han, D.
2002-01-01
The alternating direction method is an attractive method for solving large-scale variational inequality problems whenever the subproblems can be solved efficiently. However, the subproblems are still variational inequality problems, which are as structurally difficult to solve as the original one. To overcome this disadvantage, in this paper we propose a new alternating direction method for solving a class of nonlinear monotone variational inequality problems. In each iteration the method just makes an orthogonal projection to a simple set and some function evaluations. We report some preliminary computational results to illustrate the efficiency of the method
Modern methods to improve the accuracy in fast neutron dosimetry
International Nuclear Information System (INIS)
Baers, B.; Karnani, H.; Seren, T.
1985-01-01
In order to improve the quality of fast neutron dose estimates at the reactor pressure vessel (PV) some modern methods are presented. In addition to basic principles, some error reduction procedures are also presented based on the combined use of relative measurements, direct sample taking from the pressure vessel and the use of iron and niobium as dosimeters. The influence of large systematic errors could be significantly reduced by carrying out relative measurements. This report also presents the successful use of niobium as a dosimeter by destructive treatment of PV samples. (author)
Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction.
Nikolova, Mila; Ng, Michael K; Tam, Chi-Pan
2010-12-01
Nonconvex nonsmooth regularization has advantages over convex regularization for restoring images with neat edges. However, its practical interest used to be limited by the difficulty of the computational stage which requires a nonconvex nonsmooth minimization. In this paper, we deal with nonconvex nonsmooth minimization methods for image restoration and reconstruction. Our theoretical results show that the solution of the nonconvex nonsmooth minimization problem is composed of constant regions surrounded by closed contours and neat edges. The main goal of this paper is to develop fast minimization algorithms to solve the nonconvex nonsmooth minimization problem. Our experimental results show that the effectiveness and efficiency of the proposed algorithms.
Fast and accurate methods of independent component analysis: A survey
Czech Academy of Sciences Publication Activity Database
Tichavský, Petr; Koldovský, Zbyněk
2011-01-01
Roč. 47, č. 3 (2011), s. 426-438 ISSN 0023-5954 R&D Projects: GA MŠk 1M0572; GA ČR GA102/09/1278 Institutional research plan: CEZ:AV0Z10750506 Keywords : Blind source separation * artifact removal * electroencephalogram * audio signal processing Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.454, year: 2011 http://library.utia.cas.cz/separaty/2011/SI/tichavsky-fast and accurate methods of independent component analysis a survey.pdf
A Fast Adaptive Receive Antenna Selection Method in MIMO System
Directory of Open Access Journals (Sweden)
Chaowei Wang
2013-01-01
Full Text Available Antenna selection has been regarded as an effective method to acquire the diversity benefits of multiple antennas while potentially reduce hardware costs. This paper focuses on receive antenna selection. According to the proportion between the numbers of total receive antennas and selected antennas and the influence of each antenna on system capacity, we propose a fast adaptive antenna selection algorithm for wireless multiple-input multiple-output (MIMO systems. Mathematical analysis and numerical results show that our algorithm significantly reduces the computational complexity and memory requirement and achieves considerable system capacity gain compared with the optimal selection technique in the same time.
Multilevel Fast Multipole Method for Higher Order Discretizations
DEFF Research Database (Denmark)
Borries, Oscar Peter; Meincke, Peter; Jorgensen, Erik
2014-01-01
The multi-level fast multipole method (MLFMM) for a higher order (HO) discretization is demonstrated on high-frequency (HF) problems, illustrating for the first time how an efficient MLFMM for HO can be achieved even for very large groups. Applying several novel ideas, beneficial to both lower...... order and higher order discretizations, results from a low-memory, high-speed MLFMM implementation of a HO hierarchical discretization are shown. These results challenge the general view that the benefits of HO and HF-MLFMM cannot be combined....
Communications overlapping in fast multipole particle dynamics methods
International Nuclear Information System (INIS)
Kurzak, Jakub; Pettitt, B. Montgomery
2005-01-01
In molecular dynamics the fast multipole method (FMM) is an attractive alternative to Ewald summation for calculating electrostatic interactions due to the operation counts. However when applied to small particle systems and taken to many processors it has a high demand for interprocessor communication. In a distributed memory environment this demand severely limits applicability of the FMM to systems with O(10 K atoms). We present an algorithm that allows for fine grained overlap of communication and computation, while not sacrificing synchronization and determinism in the equations of motion. The method avoids contention in the communication subsystem making it feasible to use the FMM for smaller systems on larger numbers of processors. Our algorithm also facilitates application of multiple time stepping techniques within the FMM. We present scaling at a reasonably high level of accuracy compared with optimized Ewald methods
A method of fast mosaic for massive UAV images
Xiang, Ren; Sun, Min; Jiang, Cheng; Liu, Lei; Zheng, Hui; Li, Xiaodong
2014-11-01
With the development of UAV technology, UAVs are used widely in multiple fields such as agriculture, forest protection, mineral exploration, natural disaster management and surveillances of public security events. In contrast of traditional manned aerial remote sensing platforms, UAVs are cheaper and more flexible to use. So users can obtain massive image data with UAVs, but this requires a lot of time to process the image data, for example, Pix4UAV need approximately 10 hours to process 1000 images in a high performance PC. But disaster management and many other fields require quick respond which is hard to realize with massive image data. Aiming at improving the disadvantage of high time consumption and manual interaction, in this article a solution of fast UAV image stitching is raised. GPS and POS data are used to pre-process the original images from UAV, belts and relation between belts and images are recognized automatically by the program, in the same time useless images are picked out. This can boost the progress of finding match points between images. Levenberg-Marquard algorithm is improved so that parallel computing can be applied to shorten the time of global optimization notably. Besides traditional mosaic result, it can also generate superoverlay result for Google Earth, which can provide a fast and easy way to show the result data. In order to verify the feasibility of this method, a fast mosaic system of massive UAV images is developed, which is fully automated and no manual interaction is needed after original images and GPS data are provided. A test using 800 images of Kelan River in Xinjiang Province shows that this system can reduce 35%-50% time consumption in contrast of traditional methods, and increases respond speed of UAV image processing rapidly.
Fast methods for spatially correlated multilevel functional data
Staicu, A.-M.
2010-01-19
We propose a new methodological framework for the analysis of hierarchical functional data when the functions at the lowest level of the hierarchy are correlated. For small data sets, our methodology leads to a computational algorithm that is orders of magnitude more efficient than its closest competitor (seconds versus hours). For large data sets, our algorithm remains fast and has no current competitors. Thus, in contrast to published methods, we can now conduct routine simulations, leave-one-out analyses, and nonparametric bootstrap sampling. Our methods are inspired by and applied to data obtained from a state-of-the-art colon carcinogenesis scientific experiment. However, our models are general and will be relevant to many new data sets where the object of inference are functions or images that remain dependent even after conditioning on the subject on which they are measured. Supplementary materials are available at Biostatistics online.
A Fast Kurtogram Demodulation Method in Rolling Bearing Fault Diagnosis
Directory of Open Access Journals (Sweden)
Li Li
2016-01-01
Full Text Available Targeting at the problem of finding the best demodulation band when applying envelope analysis in rolling bearing fault diagnosis, this paper proposes a novel Fast Kurtogram Demodulation Method (FKDM to solve the problem. FKDM is established based on the theory of spectrum kurtosis and the short-time Fourier Transform. It determines the best demodulation band firstly, which is also known as the central frequency and frequency resolution. Then, the fault signals can be demodulated in the obtained frequency band by using envelope demodulation algorithm. The FKDM method ensures the fault diagnosis correction by solving the problem of demodulation band selection. Applied FKDM in rolling bearing fault diagnosis and compared with conventional envelope analysis, the results demonstrate FKDM can achieve a better performance.
Hybrid Steepest-Descent Methods for Triple Hierarchical Variational Inequalities
Directory of Open Access Journals (Sweden)
L. C. Ceng
2015-01-01
Full Text Available We introduce and analyze a relaxed iterative algorithm by combining Korpelevich’s extragradient method, hybrid steepest-descent method, and Mann’s iteration method. We prove that, under appropriate assumptions, the proposed algorithm converges strongly to a common element of the fixed point set of infinitely many nonexpansive mappings, the solution set of finitely many generalized mixed equilibrium problems (GMEPs, the solution set of finitely many variational inclusions, and the solution set of general system of variational inequalities (GSVI, which is just a unique solution of a triple hierarchical variational inequality (THVI in a real Hilbert space. In addition, we also consider the application of the proposed algorithm for solving a hierarchical variational inequality problem with constraints of finitely many GMEPs, finitely many variational inclusions, and the GSVI. The results obtained in this paper improve and extend the corresponding results announced by many others.
Treatment of fast reactor liquid waste- electrochemical method
International Nuclear Information System (INIS)
Mahato, Swapan Kumar; Sudha, R.; Anthonysamy, S.; Muralidaran, P.
2015-01-01
During the operation of fast reactors, components get wetted by sodium. The sodium wetted primary components such as pumps and intermediate heat exchangers (IHX) in fast reactors are cleaned free of sodium followed by suitable chemical decontamination process before taking them for maintenance or for disposal. This helps in reduction of radiation dose to the operating personnel. Sodium cleaning and decontamination generates large volumes of liquid effluent. The activity in the liquid effluent during sodium cleaning/decontamination is due to 22 Na, 54 Mn, 58 Co, 60 Co, 59 Fe, 137 Cs and 134 Cs. It is required to chemically treat the effluent to reduce the activity levels prior to storage in tanks and transportation to the waste management facility for final disposal. Conventionally the ion exchange method is used for removal of radionuclides which produces large quantities of secondary waste. A method which is suitable both for removal of radionuclides present in low concentration and that avoids generation of large quantities of secondary waste is required. Hence an electrochemical method for metal ion removal is attempted in this work which produces little or no secondary waste. Electrochemical method towards removal of manganese ions was finalized earlier using reticulated vitreous carbon (RVC) from simulated decontamination solution containing a mixture of sulphuric and phosphoric acids. In continuation of the experiments for the removal of cesium ions from simulated cleaning solution which has an alkaline pH, a thin film of nickel hexacyanoferrate (NiHCF) was deposited electrochemically on the surface of RVC. Hexacyanoferrates are known for selectively binding cesium. This NiHCF coated RVC was used for electrodeposition of Cs ions. NiHCF coated and Cs deposited RVC was characterized using SEM/EDX analysis. EDX analysis confirms the presence of Cs on NiHCF coated RVC. (author)
The use of the spectral method within the fast adaptive composite grid method
Energy Technology Data Exchange (ETDEWEB)
McKay, S.M.
1994-12-31
The use of efficient algorithms for the solution of partial differential equations has been sought for many years. The fast adaptive composite grid (FAC) method combines an efficient algorithm with high accuracy to obtain low cost solutions to partial differential equations. The FAC method achieves fast solution by combining solutions on different grids with varying discretizations and using multigrid like techniques to find fast solution. Recently, the continuous FAC (CFAC) method has been developed which utilizes an analytic solution within a subdomain to iterate to a solution of the problem. This has been shown to achieve excellent results when the analytic solution can be found. The CFAC method will be extended to allow solvers which construct a function for the solution, e.g., spectral and finite element methods. In this discussion, the spectral methods will be used to provide a fast, accurate solution to the partial differential equation. As spectral methods are more accurate than finite difference methods, the ensuing accuracy from this hybrid method outside of the subdomain will be investigated.
Apparatus and method for detecting contraband using fast neutron activation
International Nuclear Information System (INIS)
Gozani, T.; Sawa, Z.P.; Shea, P.M.
1992-01-01
This patent describes a method of detecting contraband within an object under investigation. It comprises: generating a beam of case neutrons; irradiating the object with the beam of fast neutrons, the fast neutrons interacting with atomic nuclei of the elements contained within the object to produce a gamma-ray spectrum having spectral lines characteristic of the elements contained within the object; measuring the spectral lines of the gamma-ray spectrum using a multiplicity of gamma-ray detectors judiciously positioned around the object; detecting the number of neutrons that pass through the object without interacting substantially with atomic nuclei within the object; determining the spatial and density distributions of the atomic nuclei of the elements contained within the object from the measured gamma-ray spectrum obtained from the multiplicity of gamma-ray detectors and the number of neutrons that pass through the object; comparing the measured spatial and density distributions of the atomic nuclei of the elements within the object with known spatial and density distributions of atomic nuclei for elements characteristic of contraband; and determining that contraband is present within the object when the comparison indicates a substantial match
A fast numerical method for the valuation of American lookback put options
Song, Haiming; Zhang, Qi; Zhang, Ran
2015-10-01
A fast and efficient numerical method is proposed and analyzed for the valuation of American lookback options. American lookback option pricing problem is essentially a two-dimensional unbounded nonlinear parabolic problem. We reformulate it into a two-dimensional parabolic linear complementary problem (LCP) on an unbounded domain. The numeraire transformation and domain truncation technique are employed to convert the two-dimensional unbounded LCP into a one-dimensional bounded one. Furthermore, the variational inequality (VI) form corresponding to the one-dimensional bounded LCP is obtained skillfully by some discussions. The resulting bounded VI is discretized by a finite element method. Meanwhile, the stability of the semi-discrete solution and the symmetric positive definiteness of the full-discrete matrix are established for the bounded VI. The discretized VI related to options is solved by a projection and contraction method. Numerical experiments are conducted to test the performance of the proposed method.
Discrete variational methods and their application to electronic structures
International Nuclear Information System (INIS)
Ellis, D.E.
1987-01-01
Some general concepts concerning Discrete Variational methods are developed and applied to problems of determination of eletronic spectra, charge densities and bonding of free molecules, surface-chemisorbed species and bulk solids. (M.W.O.) [pt
A convergent overlapping domain decomposition method for total variation minimization
Fornasier, Massimo; Langer, Andreas; Schö nlieb, Carola-Bibiane
2010-01-01
In this paper we are concerned with the analysis of convergent sequential and parallel overlapping domain decomposition methods for the minimization of functionals formed by a discrepancy term with respect to the data and a total variation
Zhou, Y; Mendonca, S C; Abel, G A; Hamilton, W; Walter, F M; Johnson, S; Shelton, J; Elliss-Brookes, L; McPhail, S; Lyratzopoulos, G
2018-01-01
Background: In England, ‘fast-track’ (also known as ‘two-week wait’) general practitioner referrals for suspected cancer in symptomatic patients are used to shorten diagnostic intervals and are supported by clinical guidelines. However, the use of the fast-track pathway may vary for different patient groups. Methods: We examined data from 669 220 patients with 35 cancers diagnosed in 2006–2010 following either fast-track or ‘routine’ primary-to-secondary care referrals using ‘Routes to Diagnosis’ data. We estimated the proportion of fast-track referrals by sociodemographic characteristic and cancer site and used logistic regression to estimate respective crude and adjusted odds ratios. We additionally explored whether sociodemographic associations varied by cancer. Results: There were large variations in the odds of fast-track referral by cancer (P<0.001). Patients with testicular and breast cancer were most likely to have been diagnosed after a fast-track referral (adjusted odds ratios 2.73 and 2.35, respectively, using rectal cancer as reference); whereas patients with brain cancer and leukaemias least likely (adjusted odds ratios 0.05 and 0.09, respectively, for brain cancer and acute myeloid leukaemia). There were sex, age and deprivation differences in the odds of fast-track referral (P<0.013) that varied in their size and direction for patients with different cancers (P<0.001). For example, fast-track referrals were least likely in younger women with endometrial cancer and in older men with testicular cancer. Conclusions: Fast-track referrals are less likely for cancers characterised by nonspecific presenting symptoms and patients belonging to low cancer incidence demographic groups. Interventions beyond clinical guidelines for ‘alarm’ symptoms are needed to improve diagnostic timeliness. PMID:29182609
A fast summation method for oscillatory lattice sums
Denlinger, Ryan; Gimbutas, Zydrunas; Greengard, Leslie; Rokhlin, Vladimir
2017-02-01
We present a fast summation method for lattice sums of the type which arise when solving wave scattering problems with periodic boundary conditions. While there are a variety of effective algorithms in the literature for such calculations, the approach presented here is new and leads to a rigorous analysis of Wood's anomalies. These arise when illuminating a grating at specific combinations of the angle of incidence and the frequency of the wave, for which the lattice sums diverge. They were discovered by Wood in 1902 as singularities in the spectral response. The primary tools in our approach are the Euler-Maclaurin formula and a steepest descent argument. The resulting algorithm has super-algebraic convergence and requires only milliseconds of CPU time.
Fast calculation method for computer-generated cylindrical holograms.
Yamaguchi, Takeshi; Fujii, Tomohiko; Yoshikawa, Hiroshi
2008-07-01
Since a general flat hologram has a limited viewable area, we usually cannot see the other side of a reconstructed object. There are some holograms that can solve this problem. A cylindrical hologram is well known to be viewable in 360 deg. Most cylindrical holograms are optical holograms, but there are few reports of computer-generated cylindrical holograms. The lack of computer-generated cylindrical holograms is because the spatial resolution of output devices is not great enough; therefore, we have to make a large hologram or use a small object to fulfill the sampling theorem. In addition, in calculating the large fringe, the calculation amount increases in proportion to the hologram size. Therefore, we propose what we believe to be a new calculation method for fast calculation. Then, we print these fringes with our prototype fringe printer. As a result, we obtain a good reconstructed image from a computer-generated cylindrical hologram.
A Fast Radio Burst Search Method for VLBI Observation
Liu, Lei; Tong, Fengxian; Zheng, Weimin; Zhang, Juan; Tong, Li
2018-02-01
We introduce the cross-spectrum-based fast radio burst (FRB) search method for Very Long Baseline Interferometer (VLBI) observation. This method optimizes the fringe fitting scheme in geodetic VLBI data post-processing, which fully utilizes the cross-spectrum fringe phase information and therefore maximizes the power of single-pulse signals. Working with cross-spectrum greatly reduces the effect of radio frequency interference compared with using auto-power spectrum. Single-pulse detection confidence increases by cross-identifying detections from multiple baselines. By combining the power of multiple baselines, we may improve the detection sensitivity. Our method is similar to that of coherent beam forming, but without the computational expense to form a great number of beams to cover the whole field of view of our telescopes. The data processing pipeline designed for this method is easy to implement and parallelize, which can be deployed in various kinds of VLBI observations. In particular, we point out that VGOS observations are very suitable for FRB search.
Solution of problems in calculus of variations via He's variational iteration method
International Nuclear Information System (INIS)
Tatari, Mehdi; Dehghan, Mehdi
2007-01-01
In the modeling of a large class of problems in science and engineering, the minimization of a functional is appeared. Finding the solution of these problems needs to solve the corresponding ordinary differential equations which are generally nonlinear. In recent years He's variational iteration method has been attracted a lot of attention of the researchers for solving nonlinear problems. This method finds the solution of the problem without any discretization of the equation. Since this method gives a closed form solution of the problem and avoids the round off errors, it can be considered as an efficient method for solving various kinds of problems. In this research He's variational iteration method will be employed for solving some problems in calculus of variations. Some examples are presented to show the efficiency of the proposed technique
Bosch, Jessica
2014-04-01
We consider the efficient solution of the Cahn-Hilliard variational inequality using an implicit time discretization, which is formulated as an optimal control problem with pointwise constraints on the control. By applying a semi-smooth Newton method combined with a Moreau-Yosida regularization technique for handling the control constraints we show superlinear convergence in function space. At the heart of this method lies the solution of large and sparse linear systems for which we propose the use of preconditioned Krylov subspace solvers using an effective Schur complement approximation. Numerical results illustrate the competitiveness of this approach. © 2014 Elsevier Inc.
DEFF Research Database (Denmark)
Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.
2012-01-01
ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with aqu...
Fast electronic structure methods for strongly correlated molecular systems
International Nuclear Information System (INIS)
Head-Gordon, Martin; Beran, Gregory J O; Sodt, Alex; Jung, Yousung
2005-01-01
A short review is given of newly developed fast electronic structure methods that are designed to treat molecular systems with strong electron correlations, such as diradicaloid molecules, for which standard electronic structure methods such as density functional theory are inadequate. These new local correlation methods are based on coupled cluster theory within a perfect pairing active space, containing either a linear or quadratic number of pair correlation amplitudes, to yield the perfect pairing (PP) and imperfect pairing (IP) models. This reduces the scaling of the coupled cluster iterations to no worse than cubic, relative to the sixth power dependence of the usual (untruncated) coupled cluster doubles model. A second order perturbation correction, PP(2), to treat the neglected (weaker) correlations is formulated for the PP model. To ensure minimal prefactors, in addition to favorable size-scaling, highly efficient implementations of PP, IP and PP(2) have been completed, using auxiliary basis expansions. This yields speedups of almost an order of magnitude over the best alternatives using 4-center 2-electron integrals. A short discussion of the scope of accessible chemical applications is given
Neutron spectrum determination by activation method in fast neutron fields at the RB reactor
International Nuclear Information System (INIS)
Sokcic-Kostic, M.; Pesic, M.; Antic, D.
1994-01-01
The fast neutron fields of the RB reactor are presented in this paper. The activation method for spectrum determination is described and explained. The obtained results for intermediate and fast spectrum are given and discussed. (author)
Neutron spectrum determination by activation method in fast neutron fields at the RB reactors
International Nuclear Information System (INIS)
Sokcic-Kostic, M.S.; Pesic, M.P.; Antic, D.P.
1994-01-01
The fast neutron fields of the RB reactor are presented in this paper. The activation method for spectrum determination is described and explained. The obtained results for intermediate and fast spectrum are given and discussed. (authors). 7 refs., 3 tabs
DEFF Research Database (Denmark)
Li, Helong; Beczkowski, Szymon; Munk-Nielsen, Stig
2015-01-01
This paper proposes a novel current measurement method with Silicon Steel Current Transformer (SSCT) for the characterization of fast switching power semiconductors. First, the existing current sensors for characterization of fast switching power semiconductors are experimentally evaluated...
International Nuclear Information System (INIS)
Liappis, N.; Hoffmann, U.; Rao, M.L.
1986-01-01
The concentrations of triiodothyronine, thyroxine, thyrotropin and thyroxine-binding globulin were determined in fasting serum from 11 healthy men (age 18-25 years) by radioimmunoassays conducted over a period of 4 weeks on 5 consecutive days per week. The concentrations of thyroxine and thyroxine-binding globulin were very consistent intraindividually, with coefficients of variation of 7.84% and 9.37%, respectively. The triiodothyronine and thyrotropin levels showed significant intraindividual variability with coefficients of variation of 18.38% and 51.85%, respectively. These results point to the type of difficulties encountered in judging serum values, namely intraindividual variations over a given period of time. (orig.) [de
Modeling the Performance of Fast Mulipole Method on HPC platforms
Ibeid, Huda
2012-04-06
The current trend in high performance computing is pushing towards exascale computing. To achieve this exascale performance, future systems will have between 100 million and 1 billion cores assuming gigahertz cores. Currently, there are many efforts studying the hardware and software bottlenecks for building an exascale system. It is important to understand and meet these bottlenecks in order to attain 10 PFLOPS performance. On applications side, there is an urgent need to model application performance and to understand what changes need to be made to ensure continued scalability at this scale. Fast multipole methods (FMM) were originally developed for accelerating N-body problems for particle based methods. Nowadays, FMM is more than an N-body solver, recent trends in HPC have been to use FMMs in unconventional application areas. FMM is likely to be a main player in exascale due to its hierarchical nature and the techniques used to access the data via a tree structure which allow many operations to happen simultaneously at each level of the hierarchy. In this thesis , we discuss the challenges for FMM on current parallel computers and future exasclae architecture. Furthermore, we develop a novel performance model for FMM. Our ultimate aim of this thesis is to ensure the scalability of FMM on the future exascale machines.
A fast iterative method for computing particle beams penetrating matter
International Nuclear Information System (INIS)
Boergers, C.
1997-01-01
Beams of microscopic particles penetrating matter are important in several fields. The application motivating our parameter choices in this paper is electron beam cancer therapy. Mathematically, a steady particle beam penetrating matter, or a configuration of several such beams, is modeled by a boundary value problem for a Boltzmann equation. Grid-based discretization of this problem leads to a system of algebraic equations. This system is typically very large because of the large number of independent variables in the Boltzmann equation (six if time independence is the only dimension-reducing assumption). If grid-based methods are to be practical at all, it is therefore necessary to develop fast solvers for the discretized problems. This is the subject of the present paper. For two-dimensional, mono-energetic, linear particle beam problems, we describe an iterative domain decomposition algorithm based on overlapping decompositions of the set of particle directions and computationally demonstrate its rapid, grid independent convergence. There appears to be no fundamental obstacle to generalizing the method to three-dimensional, energy dependent problems. 34 refs., 15 figs., 6 tabs
Fast and sensitive method for detecting volatile species in liquids
Trimarco, Daniel B.; Pedersen, Thomas; Hansen, Ole; Chorkendorff, Ib; Vesborg, Peter C. K.
2015-07-01
This paper presents a novel apparatus for extracting volatile species from liquids using a "sniffer-chip." By ultrafast transfer of the volatile species through a perforated and hydrophobic membrane into an inert carrier gas stream, the sniffer-chip is able to transport the species directly to a mass spectrometer through a narrow capillary without the use of differential pumping. This method inherits features from differential electrochemical mass spectrometry (DEMS) and membrane inlet mass spectrometry (MIMS), but brings the best of both worlds, i.e., the fast time-response of a DEMS system and the high sensitivity of a MIMS system. In this paper, the concept of the sniffer-chip is thoroughly explained and it is shown how it can be used to quantify hydrogen and oxygen evolution on a polycrystalline platinum thin film in situ at absolute faradaic currents down to ˜30 nA. To benchmark the capabilities of this method, a CO-stripping experiment is performed on a polycrystalline platinum thin film, illustrating how the sniffer-chip system is capable of making a quantitative in situ measurement of <1 % of a monolayer of surface adsorbed CO being electrochemically stripped off an electrode at a potential scan-rate of 50 mV s-1.
A Fast Optimization Method for General Binary Code Learning.
Shen, Fumin; Zhou, Xiang; Yang, Yang; Song, Jingkuan; Shen, Heng; Tao, Dacheng
2016-09-22
Hashing or binary code learning has been recognized to accomplish efficient near neighbor search, and has thus attracted broad interests in recent retrieval, vision and learning studies. One main challenge of learning to hash arises from the involvement of discrete variables in binary code optimization. While the widely-used continuous relaxation may achieve high learning efficiency, the pursued codes are typically less effective due to accumulated quantization error. In this work, we propose a novel binary code optimization method, dubbed Discrete Proximal Linearized Minimization (DPLM), which directly handles the discrete constraints during the learning process. Specifically, the discrete (thus nonsmooth nonconvex) problem is reformulated as minimizing the sum of a smooth loss term with a nonsmooth indicator function. The obtained problem is then efficiently solved by an iterative procedure with each iteration admitting an analytical discrete solution, which is thus shown to converge very fast. In addition, the proposed method supports a large family of empirical loss functions, which is particularly instantiated in this work by both a supervised and an unsupervised hashing losses, together with the bits uncorrelation and balance constraints. In particular, the proposed DPLM with a supervised `2 loss encodes the whole NUS-WIDE database into 64-bit binary codes within 10 seconds on a standard desktop computer. The proposed approach is extensively evaluated on several large-scale datasets and the generated binary codes are shown to achieve very promising results on both retrieval and classification tasks.
Nucleon matrix elements using the variational method in lattice QCD
International Nuclear Information System (INIS)
Dragos, J.; Kamleh, W.; Leinweber, D.B.; Zanotti, J.M.; Rakow, P.E.L.; Young, R.D.; Adelaide Univ., SA
2016-06-01
The extraction of hadron matrix elements in lattice QCD using the standard two- and threepoint correlator functions demands careful attention to systematic uncertainties. One of the most commonly studied sources of systematic error is contamination from excited states. We apply the variational method to calculate the axial vector current g_A, the scalar current g_S and the quark momentum fraction left angle x right angle of the nucleon and we compare the results to the more commonly used summation and two-exponential fit methods. The results demonstrate that the variational approach offers a more efficient and robust method for the determination of nucleon matrix elements.
Improved determination of hadron matrix elements using the variational method
International Nuclear Information System (INIS)
Dragos, J.; Kamleh, W.; Leinweber, D.B.; Zanotti, J.M.; Rakow, P.E.L.; Young, R.D.; Adelaide Univ.
2015-11-01
The extraction of hadron form factors in lattice QCD using the standard two- and three-point correlator functions has its limitations. One of the most commonly studied sources of systematic error is excited state contamination, which occurs when correlators are contaminated with results from higher energy excitations. We apply the variational method to calculate the axial vector current g A and compare the results to the more commonly used summation and two-exponential fit methods. The results demonstrate that the variational approach offers a more efficient and robust method for the determination of nucleon matrix elements.
Use of the Local Variation Methods for Nuclear Design Calculations
International Nuclear Information System (INIS)
Zhukov, A.I.
2006-01-01
A new problem-solving method for steady-state equations, which describe neutron diffusion, is presented. The method bases on a variation principal for steady-state diffusion equations and direct search the minimum of a corresponding functional. Benchmark problem calculation for power of fuel assemblies show ∼ 2% relative accuracy
Variation Iteration Method for The Approximate Solution of Nonlinear ...
African Journals Online (AJOL)
In this study, we considered the numerical solution of the nonlinear Burgers equation using the Variational Iteration Method (VIM). The method seeks to examine the convergence of solutions of the Burgers equation at the expense of the parameters x and t of which the amount of errors depends. Numerical experimentation ...
Some Implicit Methods for Solving Harmonic Variational Inequalities
Directory of Open Access Journals (Sweden)
Muhammad Aslam Noor
2016-08-01
Full Text Available In this paper, we use the auxiliary principle technique to suggest an implicit method for solving the harmonic variational inequalities. It is shown that the convergence of the proposed method only needs pseudo monotonicity of the operator, which is a weaker condition than monotonicity.
Hardware architecture design of a fast global motion estimation method
Liang, Chaobing; Sang, Hongshi; Shen, Xubang
2015-12-01
VLSI implementation of gradient-based global motion estimation (GME) faces two main challenges: irregular data access and high off-chip memory bandwidth requirement. We previously proposed a fast GME method that reduces computational complexity by choosing certain number of small patches containing corners and using them in a gradient-based framework. A hardware architecture is designed to implement this method and further reduce off-chip memory bandwidth requirement. On-chip memories are used to store coordinates of the corners and template patches, while the Gaussian pyramids of both the template and reference frame are stored in off-chip SDRAMs. By performing geometric transform only on the coordinates of the center pixel of a 3-by-3 patch in the template image, a 5-by-5 area containing the warped 3-by-3 patch in the reference image is extracted from the SDRAMs by burst read. Patched-based and burst mode data access helps to keep the off-chip memory bandwidth requirement at the minimum. Although patch size varies at different pyramid level, all patches are processed in term of 3x3 patches, so the utilization of the patch-processing circuit reaches 100%. FPGA implementation results show that the design utilizes 24,080 bits on-chip memory and for a sequence with resolution of 352x288 and frequency of 60Hz, the off-chip bandwidth requirement is only 3.96Mbyte/s, compared with 243.84Mbyte/s of the original gradient-based GME method. This design can be used in applications like video codec, video stabilization, and super-resolution, where real-time GME is a necessity and minimum memory bandwidth requirement is appreciated.
A New Fast Vertical Method for Mining Frequent Patterns
Directory of Open Access Journals (Sweden)
Zhihong Deng
2010-12-01
Full Text Available Vertical mining methods are very effective for mining frequent patterns and usually outperform horizontal mining methods. However, the vertical methods become ineffective since the intersection time starts to be costly when the cardinality of tidset (tid-list or diffset is very large or there are a very large number of transactions. In this paper, we propose a novel vertical algorithm called PPV for fast frequent pattern discovery. PPV works based on a data structure called Node-lists, which is obtained from a coding prefix-tree called PPC-tree. The efficiency of PPV is achieved with three techniques. First, the Node-list is much more compact compared with previous proposed vertical structure (such as tid-lists or diffsets since transactions with common prefixes share the same nodes of the PPC-tree. Second, the counting of support is transformed into the intersection of Node-lists and the complexity of intersecting two Node-lists can be reduced to O(m+n by an efficient strategy, where m and n are the cardinalities of the two Node-lists respectively. Third, the ancestor-descendant relationship of two nodes, which is the basic step of intersecting Node-lists, can be very efficiently verified by Pre-Post codes of nodes. We experimentally compare our algorithm with FP-growth, and two prominent vertical algorithms (Eclat and dEclat on a number of databases. The experimental results show that PPV is an efficient algorithm that outperforms FP-growth, Eclat, and dEclat.
A method for fast automated microscope image stitching.
Yang, Fan; Deng, Zhen-Sheng; Fan, Qiu-Hong
2013-05-01
Image stitching is an important technology to produce a panorama or larger image by combining several images with overlapped areas. In many biomedical researches, image stitching is highly desirable to acquire a panoramic image which represents large areas of certain structures or whole sections, while retaining microscopic resolution. In this study, we develop a fast normal light microscope image stitching algorithm based on feature extraction. At first, an algorithm of scale-space reconstruction of speeded-up robust features (SURF) was proposed to extract features from the images to be stitched with a short time and higher repeatability. Then, the histogram equalization (HE) method was employed to preprocess the images to enhance their contrast for extracting more features. Thirdly, the rough overlapping zones of the images preprocessed were calculated by phase correlation, and the improved SURF was used to extract the image features in the rough overlapping areas. Fourthly, the features were corresponded by matching algorithm and the transformation parameters were estimated, then the images were blended seamlessly. Finally, this procedure was applied to stitch normal light microscope images to verify its validity. Our experimental results demonstrate that the improved SURF algorithm is very robust to viewpoint, illumination, blur, rotation and zoom of the images and our method is able to stitch microscope images automatically with high precision and high speed. Also, the method proposed in this paper is applicable to registration and stitching of common images as well as stitching the microscope images in the field of virtual microscope for the purpose of observing, exchanging, saving, and establishing a database of microscope images. Copyright © 2013 Elsevier Ltd. All rights reserved.
Method of a fast selection of inelastic nucleus-nucleus collisions for the CMS experiment
International Nuclear Information System (INIS)
Krasnov, V.A.; Malakhov, A.I.; Savina, M.V.; Shmatov, S.V.; Zarubin, P.I.
1998-01-01
On the basis of the HIJING generator simulation of heavy ion collisions at ultrarelativistic energy scale, a method of a fast selection of inelastic nucleus-nucleus interactions is proposed for the CMS experiment at LHC. The basic idea is to use the time coincidence of signals with resolution better than 1 ns from the two very forward calorimeter arms covering the acceptance 3<|η|<5. The method efficiency is investigated by variation of energy thresholds in the calorimeters for different colliding ion species, namely, PbPb, NbNb, CaCa, OO, pPb, pCa, pp. It is shown that a stable efficiency of event selection (∼98%) is provided in an energy threshold range up to 100 GeV for nuclear collisions at 5 TeV/nucleon in the centre of mass system. In the pp collision case the relevant efficiency drops from 93% down to 80%
The variational nodal method: history and recent accomplishments
International Nuclear Information System (INIS)
Lewis, E.E.
2004-01-01
The variational nodal method combines spherical harmonics expansions in angle with hybrid finite element techniques is space to obtain multigroup transport response matrix algorithms applicable to both deep penetration and reactor core physics problems. This survey briefly recounts the method's history and reviews its capabilities. The variational basis for the approach is presented and two methods for obtaining discretized equations in the form of response matrices are detailed. The first is that contained the widely used VARIANT code, while the second incorporates newly developed integral transport techniques into the variational nodal framework. The two approaches are combined with a finite sub element formulation to treat heterogeneous nodes. Applications are presented for both a deep penetration problem and to an OECD benchmark consisting of LWR MOX fuel assemblies. Ongoing work is discussed. (Author)
Data-driven execution of fast multipole methods
Ltaief, Hatem
2013-09-17
Fast multipole methods (FMMs) have O (N) complexity, are compute bound, and require very little synchronization, which makes them a favorable algorithm on next-generation supercomputers. Their most common application is to accelerate N-body problems, but they can also be used to solve boundary integral equations. When the particle distribution is irregular and the tree structure is adaptive, load balancing becomes a non-trivial question. A common strategy for load balancing FMMs is to use the work load from the previous step as weights to statically repartition the next step. The authors discuss in the paper another approach based on data-driven execution to efficiently tackle this challenging load balancing problem. The core idea consists of breaking the most time-consuming stages of the FMMs into smaller tasks. The algorithm can then be represented as a directed acyclic graph where nodes represent tasks and edges represent dependencies among them. The execution of the algorithm is performed by asynchronously scheduling the tasks using the queueing and runtime for kernels runtime environment, in a way such that data dependencies are not violated for numerical correctness purposes. This asynchronous scheduling results in an out-of-order execution. The performance results of the data-driven FMM execution outperform the previous strategy and show linear speedup on a quad-socket quad-core Intel Xeon system.Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.
A task parallel implementation of fast multipole methods
Taura, Kenjiro
2012-11-01
This paper describes a task parallel implementation of ExaFMM, an open source implementation of fast multipole methods (FMM), using a lightweight task parallel library MassiveThreads. Although there have been many attempts on parallelizing FMM, experiences have almost exclusively been limited to formulation based on flat homogeneous parallel loops. FMM in fact contains operations that cannot be readily expressed in such conventional but restrictive models. We show that task parallelism, or parallel recursions in particular, allows us to parallelize all operations of FMM naturally and scalably. Moreover it allows us to parallelize a \\'\\'mutual interaction\\'\\' for force/potential evaluation, which is roughly twice as efficient as a more conventional, unidirectional force/potential evaluation. The net result is an open source FMM that is clearly among the fastest single node implementations, including those on GPUs; with a million particles on a 32 cores Sandy Bridge 2.20GHz node, it completes a single time step including tree construction and force/potential evaluation in 65 milliseconds. The study clearly showcases both programmability and performance benefits of flexible parallel constructs over more monolithic parallel loops. © 2012 IEEE.
Method and device for fire extinction of fast breeder reactors
International Nuclear Information System (INIS)
Yokota, Norikatsu; Shimoyashiki, Shigehiro; Hikichi, Takayoshi; Sato, Yoshihiko.
1986-01-01
Purpose: To effectively restrain fires with coolant in liquid-metal fast breeder reactors. Method: The core material of fire-extinguishing agent is coated with a non-combustible material and capsulated to prevent moisture absorption and at the same time the capsule thus made is coated with a suitable material to restrain a fire with a coolant. A desirable coating material to be used is a material which is little reactive to sodium; for example such a low-melting point metal as Pb or Sn, or paraffin, or sodium-silicate should be used. For the core material, Na 2 CO 3 , NaCl sand are recommendable materials. The core material thus made will never absorb moisture during long-time storage and has no hazard to promote a fire likely to be caused by moisture absorption. Furthermore, the coating material and the core material act to each other, restraining a sodium fire. The fire-extinguishing agent, being granular and capsulated, is easy to transport, thereby reducing a cost required for disposition. (Kamimura, M.)
Analysis methods for fast impurity ion dynamics data
International Nuclear Information System (INIS)
Den Hartog, D.J.; Almagri, A.F.; Prager, S.C.; Fonck, R.J.
1994-08-01
A high resolution spectrometer has been developed and used on the MST reversed-field pinch (RFP) to measure passively impurity ion temperatures and flow velocities with 10 μs temporal resolution. Such measurements of MHD-scale fluctuations are particularly relevant in the RFP because the flow velocity fluctuation induced transport of current (the ''MHD dynamo'') may produce the magnetic field reversal characteristic of an RFP. This instrument will also be used to measure rapid changes in the equilibrium flow velocity, such as occur during locking and H-mode transition. The precision of measurements made to date is <0.6 km/s. The authors are developing accurate analysis techniques appropriate to the reduction of this fast ion dynamics data. Moment analysis and curve-fitting routines have been evaluated for noise sensitivity and robustness. Also presented is an analysis method which correctly separates the flux-surface average of the correlated fluctuations in u and B from the fluctuations due to rigid shifts of the plasma column
Nuclear data and multigroup methods in fast reactor calculations
International Nuclear Information System (INIS)
Gur, Y.
1975-03-01
The work deals with fast reactor multigroup calculations, and the efficient treatment of basic nuclear data, which serves as raw material for the calculations. Its purpose is twofold: to build a computer code system that handles a large, detailed library of basic neutron cross section data, (such as ENDF/B-III) and yields a compact set of multigroup cross sections for reactor calculations; to use the code system for comparative analysis of different libraries, in order to discover basic uncertainties that still exist in the measurement of neutron cross sections, and to determine their influence upon uncertainties in nuclear calculations. A program named NANICK which was written in two versions is presented. The first handles the American basic data library, ENDF/B-III, while the second handles the German basic data library, KEDAK. The mathematical algorithm is identical in both versions, and only the file management is different. This program calculates infinitely diluted multigroup cross sections and scattering matrices. It is complemented by the program NASIF that calculates shielding factors from resonance parameters. Different versions of NASIF were written to handle ENDF/B-III or KEDAK. New methods for evaluating in reactor calculations the long term behavior of the neutron flux as well as its fine structure are described and an efficient calculation of the shielding factors from resonance parameters is offered. (B.G.)
International Nuclear Information System (INIS)
Jia Xun; Lou Yifei; Li Ruijiang; Song, William Y.; Jiang, Steve B.
2010-01-01
Purpose: Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. The goal of this work is to develop a fast GPU-based algorithm to reconstruct CBCT from undersampled and noisy projection data so as to lower the imaging dose. Methods: The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. The authors developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. A multigrid technique is also employed. Results: It is found that 20-40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 s on an NVIDIA Tesla C1060 (NVIDIA, Santa Clara, CA) GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studies indicate that the algorithm enables the CBCT to be reconstructed under a scanning protocol with as low as 0.1 mA s/projection. Comparing with currently widely used full-fan head and neck scanning protocol of ∼360 projections with 0.4 mA s/projection, it is estimated that an overall 36-72 times dose reduction has been achieved in our fast CBCT reconstruction algorithm. Conclusions: This work indicates that the developed GPU-based CBCT reconstruction algorithm is capable of lowering imaging dose considerably. The high computation efficiency in this algorithm makes the iterative CBCT reconstruction approach applicable in real clinical environments.
Measured and Predicted Variations in Fast Neutron Spectrum when Penetrating Laminated Fe-D{sub 2}O
Energy Technology Data Exchange (ETDEWEB)
Aalto, E; Sandlin, R; Fraeki, R
1965-09-15
Variations of the fast neutron spectrum in thin regions of alternating Fe and D{sub O} have been studied using threshold detectors (ln(n, n' ), S(n, p), Al(n, {alpha})). The results have been compared to those calculated by two shielding codes (NRN and RASH D) of multigroup removal-diffusion type. The absolute fast spectrum calculated in our rather complicated configurations was found to agree with measurements within the same accuracy (a factor of two) as did the thermal flux. The calculated spectrum is slightly harder than the measured one, but the detailed variations (covering the range 1:5) in the form of the spectrum when penetrating Fe agree with observations to within 15-20 %. In and Al activities were found to be proportional to the integrated flux over 1 MeV throughout the whole configuration, while S showed the least proportionality.
Application of New Variational Homotopy Perturbation Method For ...
African Journals Online (AJOL)
This paper discusses the application of the New Variational Homotopy Perturbation Method (NVHPM) for solving integro-differential equations. The advantage of the new Scheme is that it does not require discretization, linearization or any restrictive assumption of any form be fore it is applied. Several test problems are ...
Discrete gradient methods for solving variational image regularisation models
International Nuclear Information System (INIS)
Grimm, V; McLachlan, Robert I; McLaren, David I; Quispel, G R W; Schönlieb, C-B
2017-01-01
Discrete gradient methods are well-known methods of geometric numerical integration, which preserve the dissipation of gradient systems. In this paper we show that this property of discrete gradient methods can be interesting in the context of variational models for image processing, that is where the processed image is computed as a minimiser of an energy functional. Numerical schemes for computing minimisers of such energies are desired to inherit the dissipative property of the gradient system associated to the energy and consequently guarantee a monotonic decrease of the energy along iterations, avoiding situations in which more computational work might lead to less optimal solutions. Under appropriate smoothness assumptions on the energy functional we prove that discrete gradient methods guarantee a monotonic decrease of the energy towards stationary states, and we promote their use in image processing by exhibiting experiments with convex and non-convex variational models for image deblurring, denoising, and inpainting. (paper)
Variational iteration method for solving coupled-KdV equations
International Nuclear Information System (INIS)
Assas, Laila M.B.
2008-01-01
In this paper, the He's variational iteration method is applied to solve the non-linear coupled-KdV equations. This method is based on the use of Lagrange multipliers for identification of optimal value of a parameter in a functional. This technique provides a sequence of functions which converge to the exact solution of the coupled-KdV equations. This procedure is a powerful tool for solving coupled-KdV equations
Molecular photoionization using the complex Kohn variational method
International Nuclear Information System (INIS)
Lynch, D.L.; Schneider, B.I.
1992-01-01
We have applied the complex Kohn variational method to the study of molecular-photoionization processes. This requires electron-ion scattering calculations enforcing incoming boundary conditions. The sensitivity of these results to the choice of the cutoff function in the Kohn method has been studied and we have demonstrated that a simple matching of the irregular function to a linear combination of regular functions produces accurate scattering phase shifts
Methods for performing fast discrete curvelet transforms of data
Candes, Emmanuel; Donoho, David; Demanet, Laurent
2010-11-23
Fast digital implementations of the second generation curvelet transform for use in data processing are disclosed. One such digital transformation is based on unequally-spaced fast Fourier transforms (USFFT) while another is based on the wrapping of specially selected Fourier samples. Both digital transformations return a table of digital curvelet coefficients indexed by a scale parameter, an orientation parameter, and a spatial location parameter. Both implementations are fast in the sense that they run in about O(n.sup.2 log n) flops for n by n Cartesian arrays or about O(N log N) flops for Cartesian arrays of size N=n.sup.3; in addition, they are also invertible, with rapid inversion algorithms of about the same complexity.
Moments of inertia for solids of revolution and variational methods
International Nuclear Information System (INIS)
Diaz, Rodolfo A; Herrera, William J; Martinez, R
2006-01-01
We present some formulae for the moments of inertia of homogeneous solids of revolution in terms of the functions that generate the solids. The development of these expressions exploits the cylindrical symmetry of these objects and avoids the explicit use of multiple integration, providing an easy and pedagogical approach. The explicit use of the functions that generate the solid gives the possibility of writing the moment of inertia as a functional, which in turn allows us to utilize the calculus of variations to obtain new insight into some properties of this fundamental quantity. In particular, minimization of moments of inertia under certain restrictions is possible by using variational methods
Elastic scattering of positronium: Application of the confined variational method
Zhang, Junyi
2012-08-01
We demonstrate for the first time that the phase shift in elastic positronium-atom scattering can be precisely determined by the confined variational method, in spite of the fact that the Hamiltonian includes an unphysical confining potential acting on the center of mass of the positron and one of the atomic electrons. As an example, we study the S-wave elastic scattering for the positronium-hydrogen scattering system, where the existing 4% discrepancy between the Kohn variational calculation and the R-matrix calculation is resolved. © Copyright EPLA, 2012.
Elastic scattering of positronium: Application of the confined variational method
Zhang, Junyi; Yan, Zong-Chao; Schwingenschlö gl, Udo
2012-01-01
We demonstrate for the first time that the phase shift in elastic positronium-atom scattering can be precisely determined by the confined variational method, in spite of the fact that the Hamiltonian includes an unphysical confining potential acting on the center of mass of the positron and one of the atomic electrons. As an example, we study the S-wave elastic scattering for the positronium-hydrogen scattering system, where the existing 4% discrepancy between the Kohn variational calculation and the R-matrix calculation is resolved. © Copyright EPLA, 2012.
Variation across individuals and items determine learning outcomes from fast mapping.
Coutanche, Marc N; Koch, Griffin E
2017-11-01
An approach to learning words known as "fast mapping" has been linked to unique neurobiological and behavioral markers in adult humans, including rapid lexical integration. However, the mechanisms supporting fast mapping are still not known. In this study, we sought to help change this by examining factors that modulate learning outcomes. In 90 subjects, we systematically manipulated the typicality of the items used to support fast mapping (foils), and quantified learners' inclination to employ semantic, episodic, and spatial memory through the Survey of Autobiographical Memory (SAM). We asked how these factors affect lexical competition and recognition performance, and then asked how foil typicality and lexical competition are related in an independent dataset. We find that both the typicality of fast mapping foils, and individual differences in how different memory systems are employed, influence lexical competition effects after fast mapping, but not after other learning approaches. Specifically, learning a word through fast mapping with an atypical foil led to lexical competition, while a typical foil led to lexical facilitation. This effect was particularly evident in individuals with a strong tendency to employ semantic memory. We further replicated the relationship between continuous foil atypicality and lexical competition in an independent dataset. These findings suggest that semantic properties of the foils that support fast mapping can influence the degree and nature of subsequent lexical integration. Further, the effects of foils differ based on an individual's tendency to draw-on the semantic memory system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fast Edge Detection and Segmentation of Terrestrial Laser Scans Through Normal Variation Analysis
Che, E.; Olsen, M. J.
2017-09-01
Terrestrial Laser Scanning (TLS) utilizes light detection and ranging (lidar) to effectively and efficiently acquire point cloud data for a wide variety of applications. Segmentation is a common procedure of post-processing to group the point cloud into a number of clusters to simplify the data for the sequential modelling and analysis needed for most applications. This paper presents a novel method to rapidly segment TLS data based on edge detection and region growing. First, by computing the projected incidence angles and performing the normal variation analysis, the silhouette edges and intersection edges are separated from the smooth surfaces. Then a modified region growing algorithm groups the points lying on the same smooth surface. The proposed method efficiently exploits the gridded scan pattern utilized during acquisition of TLS data from most sensors and takes advantage of parallel programming to process approximately 1 million points per second. Moreover, the proposed segmentation does not require estimation of the normal at each point, which limits the errors in normal estimation propagating to segmentation. Both an indoor and outdoor scene are used for an experiment to demonstrate and discuss the effectiveness and robustness of the proposed segmentation method.
Transparent fast neutron shielding material and shielding method
International Nuclear Information System (INIS)
Nashimoto, Tetsuji; Katase, Haruhisa.
1993-01-01
Polyisobutylene having a viscosity average molecular weight of 20,000 to 80,000 and a hydrogen atom density of greater than 7.0 x 10 22 /cm 3 is used as a fast neutron shielding material. The shielding material is excellent in the shielding performance against fast neutrons, and there is no worry of leakage even when holes should be formed to a vessel. Further, it is excellent in fabricability, relatively safe even upon occurrence of fire and, in addition, it is transparent to enable to observe contents easily. (T.M.)
Minimizers with discontinuous velocities for the electromagnetic variational method
International Nuclear Information System (INIS)
De Luca, Jayme
2010-01-01
The electromagnetic two-body problem has neutral differential delay equations of motion that, for generic boundary data, can have solutions with discontinuous derivatives. If one wants to use these neutral differential delay equations with arbitrary boundary data, solutions with discontinuous derivatives must be expected and allowed. Surprisingly, Wheeler-Feynman electrodynamics has a boundary value variational method for which minimizer trajectories with discontinuous derivatives are also expected, as we show here. The variational method defines continuous trajectories with piecewise defined velocities and accelerations, and electromagnetic fields defined by the Euler-Lagrange equations on trajectory points. Here we use the piecewise defined minimizers with the Lienard-Wierchert formulas to define generalized electromagnetic fields almost everywhere (but on sets of points of zero measure where the advanced/retarded velocities and/or accelerations are discontinuous). Along with this generalization we formulate the generalized absorber hypothesis that the far fields vanish asymptotically almost everywhere and show that localized orbits with far fields vanishing almost everywhere must have discontinuous velocities on sewing chains of breaking points. We give the general solution for localized orbits with vanishing far fields by solving a (linear) neutral differential delay equation for these far fields. We discuss the physics of orbits with discontinuous derivatives stressing the differences to the variational methods of classical mechanics and the existence of a spinorial four-current associated with the generalized variational electrodynamics.
The variational nodal method: some history and recent activity
International Nuclear Information System (INIS)
Lewis, E.E.; Smith, M.A.; Palmiotti, G.
2005-01-01
The variational nodal method combines spherical harmonics expansions in angle with hybrid finite element techniques in space to obtain multigroup transport response matrix algorithms applicable to a wide variety of reactor physics problems. This survey briefly recounts the method's history and reviews its capabilities. Two methods for obtaining discretized equations in the form of response matrices are compared. The first is that contained the widely used VARIANT code, while the second incorporates more recently developed integral transport techniques into the variational nodal framework. The two approaches are combined with a finite sub-element formulation to treat heterogeneous nodes. Results are presented for application to a deep penetration problem and to an OECD benchmark consisting of LWR Mox fuel assemblies. Ongoing work is discussed. (authors)
Variationally derived coarse mesh methods using an alternative flux representation
International Nuclear Information System (INIS)
Wojtowicz, G.; Holloway, J.P.
1995-01-01
Investigation of a previously reported variational technique for the solution of the 1-D, 1-group neutron transport equation in reactor lattices has inspired the development of a finite element formulation of the method. Compared to conventional homogenization methods in which node homogenized cross sections are used, the coefficients describing this system take on greater spatial dependence. However, the methods employ an alternative flux representation which allows the transport equation to be cast into a form whose solution has only a slow spatial variation and, hence, requires relatively few variables to describe. This alternative flux representation and the stationary property of a variational principle define a class of coarse mesh discretizations of transport theory capable of achieving order of magnitude reductions of eigenvalue and pointwise scalar flux errors as compared with diffusion theory while retaining diffusion theory's relatively low cost. Initial results of a 1-D spectral element approach are reviewed and used to motivate the finite element implementation which is more efficient and almost as accurate; one and two group results of this method are described
THE CONTROL VARIATIONAL METHOD FOR ELASTIC CONTACT PROBLEMS
Directory of Open Access Journals (Sweden)
Mircea Sofonea
2010-07-01
Full Text Available We consider a multivalued equation of the form Ay + F(y = fin a real Hilbert space, where A is a linear operator and F represents the (Clarke subdifferential of some function. We prove existence and uniqueness results of the solution by using the control variational method. The main idea in this method is to minimize the energy functional associated to the nonlinear equation by arguments of optimal control theory. Then we consider a general mathematical model describing the contact between a linearly elastic body and an obstacle which leads to a variational formulation as above, for the displacement field. We apply the abstract existence and uniqueness results to prove the unique weak solvability of the corresponding contact problem. Finally, we present examples of contact and friction laws for which our results work.
The variational method in the atomic structure calcularion
International Nuclear Information System (INIS)
Tomimura, A.
1970-01-01
The importance and limitations of variational methods on the atomic structure calculations is set into relevance. Comparisons are made to the Perturbation Theory. Ilustrating it, the method is applied to the H - , H + and H + 2 simple atomic structure systems, and the results are analysed with basis on the study of the associated essential eigenvalue spectrum. Hydrogenic functions (where the screening constants are replaced by variational parameters) are combined to construct the wave function with proper symmetry for each one of the systems. This shows the existence of a bound state for H - , but no conclusions can be made for the others, where it may or may not be necessary to use more flexible wave functions, i.e., with greater number of terms and parameters. (author) [pt
A variational method in out-of-equilibrium physical systems.
Pinheiro, Mario J
2013-12-09
We propose a new variational principle for out-of-equilibrium dynamic systems that are fundamentally based on the method of Lagrange multipliers applied to the total entropy of an ensemble of particles. However, we use the fundamental equation of thermodynamics on differential forms, considering U and S as 0-forms. We obtain a set of two first order differential equations that reveal the same formal symplectic structure shared by classical mechanics, fluid mechanics and thermodynamics. From this approach, a topological torsion current emerges of the form , where Aj and ωk denote the components of the vector potential (gravitational and/or electromagnetic) and where ω denotes the angular velocity of the accelerated frame. We derive a special form of the Umov-Poynting theorem for rotating gravito-electromagnetic systems. The variational method is then applied to clarify the working mechanism of particular devices.
Fast Computation and Assessment Methods in Power System Analysis
Nagata, Masaki
Power system analysis is essential for efficient and reliable power system operation and control. Recently, online security assessment system has become of importance, as more efficient use of power networks is eagerly required. In this article, fast power system analysis techniques such as contingency screening, parallel processing and intelligent systems application are briefly surveyed from the view point of their application to online dynamic security assessment.
Variational method for magnetic impurities in metals: impurity pairs
Energy Technology Data Exchange (ETDEWEB)
Oles, A M [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany, F.R.); Chao, K A [Linkoeping Univ. (Sweden). Dept. of Physics and Measurement Technology
1980-01-01
Applying a variational method to the generalized Wolff model, we have investigated the effect of impurity-impurity interaction on the formation of local moments in the ground state. The direct coupling between the impurities is found to be more important than the interaction between the impurities and the host conduction electrons, as far as the formation of local moments is concerned. Under certain conditions we also observe different valences on different impurities.
The variational method in quantum mechanics: an elementary introduction
Borghi, Riccardo
2018-05-01
Variational methods in quantum mechanics are customarily presented as invaluable techniques to find approximate estimates of ground state energies. In the present paper a short catalogue of different celebrated potential distributions (both 1D and 3D), for which an exact and complete (energy and wavefunction) ground state determination can be achieved in an elementary way, is illustrated. No previous knowledge of calculus of variations is required. Rather, in all presented cases the exact energy functional minimization is achieved by using only a couple of simple mathematical tricks: ‘completion of square’ and integration by parts. This makes our approach particularly suitable for undergraduates. Moreover, the key role played by particle localization is emphasized through the entire analysis. This gentle introduction to the variational method could also be potentially attractive for more expert students as a possible elementary route toward a rather advanced topic on quantum mechanics: the factorization method. Such an unexpected connection is outlined in the final part of the paper.
Neutronics methods for transient and safety analysis of fast reactors
Energy Technology Data Exchange (ETDEWEB)
Marchetti, Marco
2017-07-01
Modeling the evolution of possible or postulated accidents in nuclear reactors is fundamental in designing safe systems. For the next generation of reactors, in particular fast reactors, fuel movement during an accident can, in principle, drive an energetic event. Such is the issue of recriticality. The thermal energy produced during these events will, possibly, be converted into mechanical energy by some mechanisms. For example, the nuclear heat deposited in the fuel could cause fuel vaporization and its subsequent expansion. This movement would accelerate the surrounding sodium: part of the initial energy in the fuel is thus converted into sodium kinetic energy. This mechanical energy will finally be absorbed, in some way or another, by the reactor vessel. Providing an accurate estimate for the maximum mechanical work that any accidental sequence can do onto the reactor vessel is an essential step in designing a reactor containment that would withstand any load generated by any accident. That would assure accident containment, without consequences for the general public. Fast reactor accident modeling is a complicated task. The outcome of an accident is determined by different physical phenomena, all acting at almost the same time. Safety analysts must track all these different phenomena. Multi-physics codes have been developed for this task. They must contain accurate models for fluid-dynamics, neutronics, and structures. This work has to do with neutronics modeling of such accidents. Past and recent analyses have been limited to the approximate description of the neutronic field, for example by using a rough description of the energy and/or of the angular dependence of the neutron flux. In this work, different neutronic solvers are selected and coupled into a general multi-physics code for fast reactor accident analysis. Performances of each of them is then assessed. Some emphasis has been put also in assessing the speed of these solvers for determining the
A fast collocation method for a variable-coefficient nonlocal diffusion model
Wang, Che; Wang, Hong
2017-02-01
We develop a fast collocation scheme for a variable-coefficient nonlocal diffusion model, for which a numerical discretization would yield a dense stiffness matrix. The development of the fast method is achieved by carefully handling the variable coefficients appearing inside the singular integral operator and exploiting the structure of the dense stiffness matrix. The resulting fast method reduces the computational work from O (N3) required by a commonly used direct solver to O (Nlog N) per iteration and the memory requirement from O (N2) to O (N). Furthermore, the fast method reduces the computational work of assembling the stiffness matrix from O (N2) to O (N). Numerical results are presented to show the utility of the fast method.
Variations in gastric acid secretion during periods of fasting between two species of shark.
Papastamatiou, Yannis P; Lowe, Christopher G
2005-06-01
Vertebrates differ in their regulation of gastric acid secretion during periods of fasting, yet it is unknown why these differences occur. Elasmobranch fishes are the earliest known vertebrates to develop an acid secreting stomach and as such may make a good comparative model for determining the causative factors behind these differences. We measured gastric pH and temperature continuously during periods of fasting in captive free-swimming nurse sharks (Ginglymostoma cirratum) using autonomous pH/temperature data-loggers. All nurse sharks secreted strong gastric acids (minimum pH 0.4) after feeding; however, for most of the sharks, pH increased to 8.2-8.7, 2-3 days after feeding. Half of the sharks also exhibited periodic oscillations in pH when the stomach was empty that ranged from 1.1 to 8.7 (acid secretion ceased for 11.3 +/- 4.3 h day(-1)). This is in contrast to the gastric pH changes observed from leopard sharks (Triakis semifasciata) in a previous study, where the stomach remains acidic during fasting. The leopard shark is a relatively active, more frequently feeding predator, and continuous acid secretion may increase digestive efficiency. In contrast, the nurse shark is less active and is thought to feed less frequently. Periodic cessation of acid secretion may be an energy conserving mechanism used by animals that feed infrequently and experience extended periods of fasting.
Storm surge model based on variational data assimilation method
Directory of Open Access Journals (Sweden)
Shi-li Huang
2010-06-01
Full Text Available By combining computation and observation information, the variational data assimilation method has the ability to eliminate errors caused by the uncertainty of parameters in practical forecasting. It was applied to a storm surge model based on unstructured grids with high spatial resolution meant for improving the forecasting accuracy of the storm surge. By controlling the wind stress drag coefficient, the variation-based model was developed and validated through data assimilation tests in an actual storm surge induced by a typhoon. In the data assimilation tests, the model accurately identified the wind stress drag coefficient and obtained results close to the true state. Then, the actual storm surge induced by Typhoon 0515 was forecast by the developed model, and the results demonstrate its efficiency in practical application.
A convergent overlapping domain decomposition method for total variation minimization
Fornasier, Massimo
2010-06-22
In this paper we are concerned with the analysis of convergent sequential and parallel overlapping domain decomposition methods for the minimization of functionals formed by a discrepancy term with respect to the data and a total variation constraint. To our knowledge, this is the first successful attempt of addressing such a strategy for the nonlinear, nonadditive, and nonsmooth problem of total variation minimization. We provide several numerical experiments, showing the successful application of the algorithm for the restoration of 1D signals and 2D images in interpolation/inpainting problems, respectively, and in a compressed sensing problem, for recovering piecewise constant medical-type images from partial Fourier ensembles. © 2010 Springer-Verlag.
General formulation of the variational cellular method for molecules and crystals
International Nuclear Information System (INIS)
Ferreira, L.G.; Leite, J.R.
A variational form of the cellular method is proposed as a new model to solve the one-electron Schroedinger equation for molecules and crystals. The model keeps the good features of the traditional cellular method, as the arbitrary partition of space, and eliminates its main drawback, the slow convergency of the cellular expansion series. With the aid of a criterion of precision on the trial wave functions, we discuss the possibilities offered by the method for more accurate calculations of the electronic structures of molecules and solids. As an example of the accuracy and fast convergency of the model, computation of the energy spectrum of the hydrogen molecular ion H 2 + is presented
Bosch, Jessica; Stoll, Martin; Benner, Peter
2014-01-01
We consider the efficient solution of the Cahn-Hilliard variational inequality using an implicit time discretization, which is formulated as an optimal control problem with pointwise constraints on the control. By applying a semi-smooth Newton
Gao, WenZhi; Li, ZhuFei; Yang, JiMing
2015-10-01
A hybrid CFD/characteristic method (CCM) was proposed for fast design and evaluation of hypersonic inlet flow with nose bluntness, which targets the combined advantages of CFD and method of characteristics. Both the accuracy and efficiency of the developed CCM were verified reliably, and it was well demonstrated for the external surfaces design of a hypersonic forebody/inlet with nose bluntness. With the help of CCM method, effects of nose bluntness on forebody shock shapes and the flowfield qualities which dominate inlet performance were examined and analyzed on the two-dimensional and axisymmetric configurations. The results showed that blunt effects of a wedge forebody are more substantial than that of related cone cases. For a conical forebody with a properly blunted nose, a recovery of the shock front back to that of corresponding sharp nose is exhibited, accompanied with a gradually fading out of entropy layer effects. Consequently a simplification is thought to be reasonable for an axisymmetric inlet with a proper compression angle, and a blunt nose of limited radius can be idealized as a sharp nose, as the spillage and flow variations at the entrance are negligible, even though the nose scale increases to 10% cowl lip radius. Whereas for two-dimensional inlets, the blunt effects are substantial since not only the inlet capturing/starting capabilities, but also the flow uniformities are obviously degraded.
de Andrade, Jucimara Kulek; de Andrade, Camila Kulek; Komatsu, Emy; Perreault, Hélène; Torres, Yohandra Reyes; da Rosa, Marcos Roberto; Felsner, Maria Lurdes
2017-08-01
Corn syrups, important ingredients used in food and beverage industries, often contain high levels of 5-hydroxymethyl-2-furfural (HMF), a toxic contaminant. In this work, an in house validation of a difference spectrophotometric method for HMF analysis in corn syrups was developed using sophisticated statistical tools by the first time. The methodology showed excellent analytical performance with good selectivity, linearity (R 2 =99.9%, r>0.99), accuracy and low limits (LOD=0.10mgL -1 and LOQ=0.34mgL -1 ). An excellent precision was confirmed by repeatability (RSD (%)=0.30) and intermediate precision (RSD (%)=0.36) estimates and by Horrat value (0.07). A detailed study of method precision using a nested design demonstrated that variation sources such as instruments, operators and time did not interfere in the variability of results within laboratory and consequently in its intermediate precision. The developed method is environmentally friendly, fast, cheap and easy to implement resulting in an attractive alternative for corn syrups quality control in industries and official laboratories. Copyright © 2017 Elsevier Ltd. All rights reserved.
Experimental Methods Related to Coupled Fast-Thermal Systems at the RB Reactor
International Nuclear Information System (INIS)
Pesic, M.
2002-01-01
In addition to the review of RB reactor characteristics this presentation is focused on the coupled fast-thermal systems achieved at the reactor. The following experimental methods are presented: neutron spectra measurements; steady state experiments and kinetic measurements ( β eff ) related to the coupled fast-thermal cores
Preliminary experiment of fast neutron imaging with direct-film method
International Nuclear Information System (INIS)
Pei Yuyang; Tang Guoyou; Guo Zhiyu; Zhang Guohui
2005-01-01
A preliminary experiment is conducted with direct-film method under the condition that fast neutron is generated by the reaction of 9 Be(d, n) on the Beijing University 4.5 MV Van de Graaff, whose energy is lower than 7 MeV. Basic characteristics of direct-film neutron radiography system are investigated with the help of samples in different materials, different thickness and holes of different diameter. The fast neutron converter, which is vital for fast neutron imaging, is produced with the materials made in China. The result indicates that fast neutron converter can meet the requirement of fast neutron imaging; further research of fast neutron imaging can be conducted on the accelerator and neutron-generator in China. (authors)
Investigation on generalized Variational Nodal Methods for heterogeneous nodes
International Nuclear Information System (INIS)
Wang, Yongping; Wu, Hongchun; Li, Yunzhao; Cao, Liangzhi; Shen, Wei
2017-01-01
Highlights: • We developed two heterogeneous nodal methods based on the Variational Nodal Method. • Four problems were solved to evaluate the two heterogeneous nodal methods. • The function expansion method is good at treating continuous-changing heterogeneity. • The finite sub-element method is good at treating discontinuous-changing heterogeneity. - Abstract: The Variational Nodal Method (VNM) is generalized for heterogeneous nodes and applied to four kinds of problems including Molten Salt Reactor (MSR) core problem with continuous cross section profile, Pressurized Water Reactor (PWR) control rod cusping effect problem, PWR whole-core pin-by-pin problem, and heterogeneous PWR core problem without fuel-coolant homogenization in each pin cell. Two approaches have been investigated for the treatment of the nodal heterogeneity in this paper. To concentrate on spatial heterogeneity, diffusion approximation was adopted for the angular variable in neutron transport equation. To provide demonstrative numerical results, the codes in this paper were developed in slab geometry. The first method, named as function expansion (FE) method, expands nodal flux by orthogonal polynomials and the nodal cross sections are also expressed as spatial depended functions. The second path, named as finite sub-element (FS) method, takes advantage of the finite-element method by dividing each node into numbers of homogeneous sub-elements and expanding nodal flux into the combination of linear sub-element trial functions. Numerical tests have been carried out to evaluate the ability of the two nodal (coarse-mesh) heterogeneous VNMs by comparing with the fine-mesh homogeneous VNM. It has been demonstrated that both heterogeneous approaches can handle heterogeneous nodes. The FE method is good at continuous-changing heterogeneity as in the MSR core problem, while the FS method is good at discontinuous-changing heterogeneity such as the PWR pin-by-pin problem and heterogeneous PWR core
Fast LCMV-based Methods for Fundamental Frequency Estimation
DEFF Research Database (Denmark)
Jensen, Jesper Rindom; Glentis, George-Othon; Christensen, Mads Græsbøll
2013-01-01
peaks and require matrix inversions for each point in the search grid. In this paper, we therefore consider fast implementations of LCMV-based fundamental frequency estimators, exploiting the estimators' inherently low displacement rank of the used Toeplitz-like data covariance matrices, using...... with several orders of magnitude, but, as we show, further computational savings can be obtained by the adoption of an approximative IAA-based data covariance matrix estimator, reminiscent of the recently proposed Quasi-Newton IAA technique. Furthermore, it is shown how the considered pitch estimators can...... as such either the classic time domain averaging covariance matrix estimator, or, if aiming for an increased spectral resolution, the covariance matrix resulting from the application of the recent iterative adaptive approach (IAA). The proposed exact implementations reduce the required computational complexity...
An integral nodal variational method for multigroup criticality calculations
International Nuclear Information System (INIS)
Lewis, E.E.; Tsoulfanidis, N.
2003-01-01
An integral formulation of the variational nodal method is presented and applied to a series of benchmark critically problems. The method combines an integral transport treatment of the even-parity flux within the spatial node with an odd-parity spherical harmonics expansion of the Lagrange multipliers at the node interfaces. The response matrices that result from this formulation are compatible with those in the VARIANT code at Argonne National Laboratory. Either homogeneous or heterogeneous nodes may be employed. In general, for calculations requiring higher-order angular approximations, the integral method yields solutions with comparable accuracy while requiring substantially less CPU time and memory than the standard spherical harmonics expansion using the same spatial approximations. (author)
Equivalence of the generalized and complex Kohn variational methods
Energy Technology Data Exchange (ETDEWEB)
Cooper, J N; Armour, E A G [School of Mathematical Sciences, University Park, Nottingham NG7 2RD (United Kingdom); Plummer, M, E-mail: pmxjnc@googlemail.co [STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom)
2010-04-30
For Kohn variational calculations on low energy (e{sup +} - H{sub 2}) elastic scattering, we prove that the phase shift approximation, obtained using the complex Kohn method, is precisely equal to a value which can be obtained immediately via the real-generalized Kohn method. Our treatment is sufficiently general to be applied directly to arbitrary potential scattering or single open channel scattering problems, with exchange if required. In the course of our analysis, we develop a framework formally to describe the anomalous behaviour of our generalized Kohn calculations in the regions of the well-known Schwartz singularities. This framework also explains the mathematical origin of the anomaly-free singularities we reported in a previous article. Moreover, we demonstrate a novelty: that explicit solutions of the Kohn equations are not required in order to calculate optimal phase shift approximations. We relate our rigorous framework to earlier descriptions of the Kohn-type methods.
Equivalence of the generalized and complex Kohn variational methods
International Nuclear Information System (INIS)
Cooper, J N; Armour, E A G; Plummer, M
2010-01-01
For Kohn variational calculations on low energy (e + - H 2 ) elastic scattering, we prove that the phase shift approximation, obtained using the complex Kohn method, is precisely equal to a value which can be obtained immediately via the real-generalized Kohn method. Our treatment is sufficiently general to be applied directly to arbitrary potential scattering or single open channel scattering problems, with exchange if required. In the course of our analysis, we develop a framework formally to describe the anomalous behaviour of our generalized Kohn calculations in the regions of the well-known Schwartz singularities. This framework also explains the mathematical origin of the anomaly-free singularities we reported in a previous article. Moreover, we demonstrate a novelty: that explicit solutions of the Kohn equations are not required in order to calculate optimal phase shift approximations. We relate our rigorous framework to earlier descriptions of the Kohn-type methods.
A fast non-Fourier method for Landau-fluid operators
Energy Technology Data Exchange (ETDEWEB)
Dimits, A. M., E-mail: dimits1@llnl.gov; Joseph, I.; Umansky, M. V. [Lawrence Livermore National Laboratory, L-637, P.O. Box 808, Livermore, California 94511-0808 (United States)
2014-05-15
An efficient and versatile non-Fourier method for the computation of Landau-fluid (LF) closure operators [Hammett and Perkins, Phys. Rev. Lett. 64, 3019 (1990)] is presented, based on an approximation by a sum of modified-Helmholtz-equation solves (SMHS) in configuration space. This method can yield fast-Fourier-like scaling of the computational time requirements and also provides a very compact data representation of these operators, even for plasmas with large spatial nonuniformity. As a result, the method can give significant savings compared with direct application of “delocalization kernels” [e.g., Schurtz et al., Phys. Plasmas 7, 4238 (2000)], both in terms of computational cost and memory requirements. The method is of interest for the implementation of Landau-fluid models in situations where the spatial nonuniformity, particular geometry, or boundary conditions render a Fourier implementation difficult or impossible. Systematic procedures have been developed to optimize the resulting operators for accuracy and computational cost. The four-moment Landau-fluid model of Hammett and Perkins has been implemented in the BOUT++ code using the SMHS method for LF closure. Excellent agreement has been obtained for the one-dimensional plasma density response function between driven initial-value calculations using this BOUT++ implementation and matrix eigenvalue calculations using both Fourier and SMHS non-Fourier implementations of the LF closures. The SMHS method also forms the basis for the implementation, which has been carried out in the BOUT++ code, of the parallel and toroidal drift-resonance LF closures. The method is a key enabling tool for the extension of gyro-Landau-fluid models [e.g., Beer and Hammett, Phys. Plasmas 3, 4046 (1996)] to codes that treat regions with strong profile variation, such as the tokamak edge and scrapeoff-layer.
Directory of Open Access Journals (Sweden)
Osayomi Tolulope
2017-12-01
Full Text Available Overweight and obesity are two related health issues of epidemic proportions. In Nigeria, these health conditions have been emerging only recently. The extant literature shows inter-city variations in the prevalence of overweight and obesity in Nigeria. However, they say little about intra-city variations of these health problems in Nigerian urban centres. Thus, the focus of the study was to determine the small-area variations in the prevalence of overweight and obesity in an urban area of Nigeria and its association with socio-economic, environmental, dietary and lifestyle risk factors. With the aid of a questionnaire, information on the demographic, socio-economic, lifestyle, household and neighbourhood characteristics of respondents was obtained from respondents. Overweight and obesity were computed based on the self-reported height and weight of respondents, using the Body Mass Index (BMI formula. A simple linear regression model was estimated to determine the individual and collective effects of risk factors. Findings showed that there were noticeable spatial variations in the prevalence of overweight and obesity which result from the varying contextual and compositional characteristics among the political wards of the Ibadan North LGA. Physical proximity to fast food outlets was the only significant factor driving the spatial pattern of obesity (b = 0.645; R2 = 0.416. The paper suggests that government and health officials should formulate area-specific obesity prevention and control plans to curb this growing epidemic in Nigeria.
Comparison study on cell calculation method of fast reactor
International Nuclear Information System (INIS)
Chiba, Gou
2002-10-01
Effective cross sections obtained by cell calculations are used in core calculations in current deterministic methods. Therefore, it is important to calculate the effective cross sections accurately and several methods have been proposed. In this study, some of the methods are compared to each other using a continuous energy Monte Carlo method as a reference. The result shows that the table look-up method used in Japan Nuclear Cycle Development Institute (JNC) sometimes has a difference over 10% in effective microscopic cross sections and be inferior to the sub-group method. The problem was overcome by introducing a new nuclear constant system developed in JNC, in which the ultra free energy group library is used. The system can also deal with resonance interaction effects between nuclides which are not able to be considered by other methods. In addition, a new method was proposed to calculate effective cross section accurately for power reactor fuel subassembly where the new nuclear constant system cannot be applied. This method uses the sub-group method and the ultra fine energy group collision probability method. The microscopic effective cross sections obtained by this method agree with the reference values within 5% difference. (author)
Nondestructive, fast methods for burn-up study
International Nuclear Information System (INIS)
Schaechter, L.; Hacman, D.; Mot, O.
1977-01-01
Nondestructive methods, based on high resolution-spectrometry successfully applied at Institute for Atomic Physics are presented. These methods are preferred to destructive chemical methods; the latter being costly and lengthy and not suitable for statistical prediction of nuclear fuel behaviour. The following methods are developed: methods for determining the burn up of fuel elements and fuel assemblies; a method for determining the U 235 and Pu 239 contributions to the burn up and a code written in FORTRAN IV for numerical calculation of Pu 239 fission vs. burn up; a high precision method for burnup determination by adding burnable poison; a method for prediction of specific power distribution in the fuel elements of a research or power reactors; a method for determining the power output of the fuel element in an operating power reactor; a method for determining the content of Pu 239 of the fuel element irradiated in a reactor. The results which were obtained by these methods improved the fuel management at the VVR-S reactor at Institute for Atomic Physics, Bucharest and may be applied to other reactor types [fr
Novel crystal timing calibration method based on total variation
Yu, Xingjian; Isobe, Takashi; Watanabe, Mitsuo; Liu, Huafeng
2016-11-01
A novel crystal timing calibration method based on total variation (TV), abbreviated as ‘TV merge’, has been developed for a high-resolution positron emission tomography (PET) system. The proposed method was developed for a system with a large number of crystals, it can provide timing calibration at the crystal level. In the proposed method, the timing calibration process was formulated as a linear problem. To robustly optimize the timing resolution, a TV constraint was added to the linear equation. Moreover, to solve the computer memory problem associated with the calculation of the timing calibration factors for systems with a large number of crystals, the merge component was used for obtaining the crystal level timing calibration values. Compared with other conventional methods, the data measured from a standard cylindrical phantom filled with a radioisotope solution was sufficient for performing a high-precision crystal-level timing calibration. In this paper, both simulation and experimental studies were performed to demonstrate the effectiveness and robustness of the TV merge method. We compare the timing resolutions of a 22Na point source, which was located in the field of view (FOV) of the brain PET system, with various calibration techniques. After implementing the TV merge method, the timing resolution improved from 3.34 ns at full width at half maximum (FWHM) to 2.31 ns FWHM.
Fast-time Variations of Supernova Neutrino Fluxes and Detection Perspectives
Tamborra, I.; Hanke, F.; Müller, B.; Janka, H.T.; Raffelt, G.G.
2015-01-01
In the delayed explosion scenario of a core-collapse supernova, the accretion phase shows pronounced convective over-turns and a low-multipole hydrodynamic instability, the so-called standing accretion shock instability (SASI). Neutrino signal variations from the first full-scale three-dimensional
Method of advancing research and development of fast breeder reactors
International Nuclear Information System (INIS)
1988-01-01
In the long term plan of atomic energy development and utilization, fast breeder reactors are to be developed as the main of the future nuclear power generation in Japan, and when their development is advanced, it has been decided to positively aim at building up the plutonium utilization system using FBRs superior to the uranium utilization system using LWRs. Also it has been decided that the development of FBRs requires to exert incessant efforts for a considerable long period under the proper cooperation system of government and people, and as for its concrete development, hereafter the deliberation is to be carried out in succession by the expert subcommittee on FBR development projects of the Atomic Energy Commission. The subcommittee was founded in May, 1986, to deliberate on the long term promotion measures for FBR development, the measures for promoting the research and development, the examination of the basic specification of a demonstration FBR, the measures for promoting international cooperation, and other important matters. As the results of investigation, the situation around the development of FBRs, the fundamentals at the time of promoting the research and development, the subjects of the research and development and so on are reported. (Kako, I.)
Newton, Richard J G; Stuart, Grant M; Willdridge, Daniel J; Thomas, Mark
2017-08-01
We applied quality improvement (QI) methodology to identify the different aspects of why children fasted for prolonged periods in our institution. Our aim was for 75% of all children to be fasted for clear fluid for less than 4 hours. Prolonged fasting in children can increase thirst and irritability and have adverse effects on haemodynamic stability on induction. By reducing this, children may be less irritable, more comfortable and more physiologically stable, improving the preoperative experience for both children and carers. We conducted a QI project from January 2014 until August 2016 at a large tertiary pediatric teaching hospital. Baseline data and the magnitude of the problem were obtained from pilot studies. This allowed us to build a key driver diagram, a process map and conduct a failure mode and effects analysis. Using a framework of Plan-Do-Study-Act cycles our key interventions primarily focused on reducing confusion over procedure start times, giving parents accurate information, empowering staff and reducing variation by allowing children to drink on arrival (up to one hour) before surgery. Prior to this project, using the 6,4,2 fasting rule for solids, breast milk, and clear fluids, respectively, 19% of children were fasted for fluid for less than 4 hours, mean fluid fasting time was 6.3 hours (SD 4.48). At the conclusion 72% of patients received a drink within 4 hours, mean fluid fasting reduced to 3.1 hours (SD 2.33). The secondary measures of aspiration (4.14:10 000) and cancellations have not increased since starting this project. By using established QI methodology we reduced the mean fluid fasting time for day admissions at our hospital to 3.1 hours and increased the proportion of children fasting for less than 4 hours from 19% to 72%. © 2017 John Wiley & Sons Ltd.
DEFF Research Database (Denmark)
Nielsen, Kristian Fog; Thrane, Ulf
2001-01-01
The paper presents a fast method for trichothecene profiling and chemotaxonomic studies in species of Fusarium, Stachybotrys, Trichoderma and Memnoniella. Micro scale extracted crude Fusarium extracts were derivatised using pentafluoropropionic anhydride and analysed by gas chromatography...
A program-compiling method of nuclear data on-line fast analysis
International Nuclear Information System (INIS)
Li Shangbai
1990-01-01
This paper discusses how to perform assembly float point operation by using some subroutine of applesoft system, and a program compiling method of nuclear data fast analysis in apple microcomputer is introduced
Improved method of generating bit reversed numbers for calculating fast fourier transform
Digital Repository Service at National Institute of Oceanography (India)
Suresh, T.
Fast Fourier Transform (FFT) is an important tool required for signal processing in defence applications. This paper reports an improved method for generating bit reversed numbers needed in calculating FFT using radix-2. The refined algorithm takes...
Hamiltonian lattice field theory: Computer calculations using variational methods
International Nuclear Information System (INIS)
Zako, R.L.
1991-01-01
I develop a variational method for systematic numerical computation of physical quantities -- bound state energies and scattering amplitudes -- in quantum field theory. An infinite-volume, continuum theory is approximated by a theory on a finite spatial lattice, which is amenable to numerical computation. I present an algorithm for computing approximate energy eigenvalues and eigenstates in the lattice theory and for bounding the resulting errors. I also show how to select basis states and choose variational parameters in order to minimize errors. The algorithm is based on the Rayleigh-Ritz principle and Kato's generalizations of Temple's formula. The algorithm could be adapted to systems such as atoms and molecules. I show how to compute Green's functions from energy eigenvalues and eigenstates in the lattice theory, and relate these to physical (renormalized) coupling constants, bound state energies and Green's functions. Thus one can compute approximate physical quantities in a lattice theory that approximates a quantum field theory with specified physical coupling constants. I discuss the errors in both approximations. In principle, the errors can be made arbitrarily small by increasing the size of the lattice, decreasing the lattice spacing and computing sufficiently long. Unfortunately, I do not understand the infinite-volume and continuum limits well enough to quantify errors due to the lattice approximation. Thus the method is currently incomplete. I apply the method to real scalar field theories using a Fock basis of free particle states. All needed quantities can be calculated efficiently with this basis. The generalization to more complicated theories is straightforward. I describe a computer implementation of the method and present numerical results for simple quantum mechanical systems
Hamiltonian lattice field theory: Computer calculations using variational methods
International Nuclear Information System (INIS)
Zako, R.L.
1991-01-01
A variational method is developed for systematic numerical computation of physical quantities-bound state energies and scattering amplitudes-in quantum field theory. An infinite-volume, continuum theory is approximated by a theory on a finite spatial lattice, which is amenable to numerical computation. An algorithm is presented for computing approximate energy eigenvalues and eigenstates in the lattice theory and for bounding the resulting errors. It is shown how to select basis states and choose variational parameters in order to minimize errors. The algorithm is based on the Rayleigh-Ritz principle and Kato's generalizations of Temple's formula. The algorithm could be adapted to systems such as atoms and molecules. It is shown how to compute Green's functions from energy eigenvalues and eigenstates in the lattice theory, and relate these to physical (renormalized) coupling constants, bound state energies and Green's functions. Thus one can compute approximate physical quantities in a lattice theory that approximates a quantum field theory with specified physical coupling constants. The author discusses the errors in both approximations. In principle, the errors can be made arbitrarily small by increasing the size of the lattice, decreasing the lattice spacing and computing sufficiently long. Unfortunately, the author does not understand the infinite-volume and continuum limits well enough to quantify errors due to the lattice approximation. Thus the method is currently incomplete. The method is applied to real scalar field theories using a Fock basis of free particle states. All needed quantities can be calculated efficiently with this basis. The generalization to more complicated theories is straightforward. The author describes a computer implementation of the method and present numerical results for simple quantum mechanical systems
The analysis of RPV fast neutron flux calculation for PWR with three-dimensional SN method
International Nuclear Information System (INIS)
Yang Shouhai; Chen Yixue; Wang Weijin; Shi Shengchun; Lu Daogang
2011-01-01
Discrete ordinates (S N ) method is one of the most widely used method for reactor pressure vessel (RPV) design. As the fast development of computer CPU speed and memory capacity and consummation of three-dimensional discrete-ordinates method, it is mature for 3-D S N method to be used to engineering design for nuclear facilities. This work was done specifically for PWR model, with the results of 3-D core neutron transport calculation by 3-D core calculation, 3-D RPV fast neutron flux distribution obtain by 3-D S N method were compared with gained by 1-D and 2-D S N method and the 3-D Monte Carlo (MC) method. In this paper, the application of three-dimensional S N method in calculating RPV fast neutron flux distribution for pressurized water reactor (PWR) is presented and discussed. (authors)
Methods to determine fast-ion distribution functions from multi-diagnostic measurements
DEFF Research Database (Denmark)
Jacobsen, Asger Schou; Salewski, Mirko
-ion diagnostic views, it is possible to infer the distribution function using a tomography approach. Several inversion methods for solving this tomography problem in velocity space are implemented and compared. It is found that the best quality it obtained when using inversion methods which penalise steep......Understanding the behaviour of fast ions in a fusion plasma is very important, since the fusion-born alpha particles are expected to be the main source of heating in a fusion power plant. Preferably, the entire fast-ion velocity-space distribution function would be measured. However, no fast...
International Nuclear Information System (INIS)
Hunter, Stuart N.
2000-01-01
Sensitivity studies were carried out on a 600 MW(e) Pu burning fast reactor, to determine the effects of changing Pu vector and the core design changes needed to adapt to a varying Pu vector. The applicability to Pu burner cores of models developed for breeder reactors was examined. The high flexibility of a fast reactor core for Pu burning was demonstrated by an optimization study to show the feasibility of using a single reactor design with Pu vectors varying from highly enriched (military) Pu to degraded Pu produced by multiple recycling. With fuel limited to MOX (∼45% Pu) and a single sub-assembly geometry for all grades of Pu, effective compensation for changes in Pu vector was achieved by replacing fuel with diluent material. The most suitable diluent had two components-absorber ( 10 B 4 C) and a moderator or neutron-transparent material (ZrH was most effective)-this gave an additional degree of freedom for optimizing safety-related core parameters. Where pin power ratings were high, hollow pellets introducing void as diluent were effective. Calculations demonstrated a possibility of flux distortions and anomalous rating distributions; these were a consequence of significant moderation of the flux in combination with the interaction between the core and the above/below core structures in the absence of breeder blankets. (author)
Calculation of the fast multiplication factor by the fission matrix method
International Nuclear Information System (INIS)
Naumov, V.A.; Rozin, S.G.; Ehl'perin, T.I.
1976-01-01
A variation of the Monte Carlo method to calculate an effective breeding factor of a nuclear reactor is described. The evaluation procedure of reactivity perturbations by the Monte Carlo method in the first order perturbation theory is considered. The method consists in reducing an integral neutron transport equation to a set of linear algebraic equations. The coefficients of this set are elements of a fission matrix. The fission matrix being a Grin function of the neutron transport equation, is evaluated by the Monte Carlo method. In the program realizing the suggested algorithm, the game for initial neutron energy of a fission spectrum and then for the region of neutron birth, ΔVsub(f)sup(i)has been played in proportion to the product of Σsub(f)sup(i)ΔVsub(f)sup(i), where Σsub(f)sup(i) is a macroscopic cross section in the region numbered at the birth energy. Further iterations of a space distribution of neutrons in the system are performed by the generation method. In the adopted scheme of simulation of neutron histories the emission of secondary neutrons is controlled by weights; it occurs at every collision and not only in the end on the history. The breeding factor is calculated simultaneously with the space distribution of neutron worth in the system relative to the fission process and neutron flux. Efficiency of the described procedure has been tested on the calculation of the breeding factor for the Godiva assembly, simulating a fast reactor with a hard spectrum. A high accuracy of calculations at moderate number of zones in the core and reasonable statistics has been stated
Hervé, G.; Schnepp, E.; Metzler-Nebelsick, C.; Lhuillier, F.; Gilder, S.; Genevey, A.; Fassbinder, J.; Gallet, Y.
2017-12-01
Thirty-five mean archaeointensity data were obtained on ceramic sherds dated between 1400 and 400 BCE from sites located near Munich, Germany. The 453 sherds were collected from 52 graves, pits and wells dated by archaeological correlation, radiocarbon and/or dendrochronology. Rock magnetic analyses indicate that the remanent magnetization was mainly carried by magnetite. Data from Thellier-Thellier experiments were corrected for anisotropy and cooling rate effects. Triaxe and multispecimen (MSP-DSC) protocols were also measured on a subset of specimens. Around 60% of the samples provide reliable results when using stringent criteria selection. The 35 average archaeointensity values based on 154 pots are consistent with previous data and triple the Western Europe database between 1400 and 400 BCE. A secular variation curve for central-western Europe, built using a Bayesian approach, shows a double oscillation in geomagnetic field strength with intensity maxima of 70 μT around 1000-900 BCE and another up to 90 μT around 600-500 BCE. The maximum rate of variation was 0.25 μT/yr circa 700 BCE. The secular variation trend in Western Europe is similar to that observed in the Middle East and the Caucasus except that we find no evidence for hyper-rapid field variations (i.e. geomagnetic spikes). Virtual Axial Dipole Moments from Western Europe, the Middle East and central Asia differ by more than 20 ZA·m2 prior to 600 BCE, which signifies a departure from an axial dipole field especially between 1000 and 600 BCE. Our observations suggest that the regional Levantine Iron Age anomaly has been accompanied by an increase of the axial dipole moment together with a tilt of the dipole.
Directory of Open Access Journals (Sweden)
Gunetti Monica
2012-05-01
Full Text Available Abstract Background The quality and safety of advanced therapy products must be maintained throughout their production and quality control cycle to ensure their final use in patients. We validated the cell count method according to the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use and European Pharmacopoeia, considering the tests’ accuracy, precision, repeatability, linearity and range. Methods As the cell count is a potency test, we checked accuracy, precision, and linearity, according to ICH Q2. Briefly our experimental approach was first to evaluate the accuracy of Fast Read 102® compared to the Bürker chamber. Once the accuracy of the alternative method was demonstrated, we checked the precision and linearity test only using Fast Read 102®. The data were statistically analyzed by average, standard deviation and coefficient of variation percentages inter and intra operator. Results All the tests performed met the established acceptance criteria of a coefficient of variation of less than ten percent. For the cell count, the precision reached by each operator had a coefficient of variation of less than ten percent (total cells and under five percent (viable cells. The best range of dilution, to obtain a slope line value very similar to 1, was between 1:8 and 1:128. Conclusions Our data demonstrated that the Fast Read 102® count method is accurate, precise and ensures the linearity of the results obtained in a range of cell dilution. Under our standard method procedures, this assay may thus be considered a good quality control method for the cell count as a batch release quality control test. Moreover, the Fast Read 102® chamber is a plastic, disposable device that allows a number of samples to be counted in the same chamber. Last but not least, it overcomes the problem of chamber washing after use and so allows a cell count in a clean environment such as that in a
A fast template matching method for LED chip Localization
Directory of Open Access Journals (Sweden)
Zhong Fuqiang
2015-01-01
Full Text Available Efficiency determines the profits of the semiconductor producers. So the producers spare no effort to enhance the efficiency of every procedure. The purpose of the paper is to present a method to shorten the time to locate the LED chips on wafer. The method consists of 3 steps. Firstly, image segmentation and blob analyzation are used to predict the positions of potential chips. Then predict the orientations of potential chips based on their dominant orientations. Finally, according to the positions and orientations predicted above, locate the chips precisely based on gradient orientation features. Experiments show that the algorithm is faster than the traditional method we choose to locate the LED chips. Besides, even the orientations of the chips on wafer are of big deviation to the orientation of the template, the efficiency of this method won't be affected.
A fast nodal neutron diffusion method for cartesian geometry
International Nuclear Information System (INIS)
Makai, M.; Maeder, C.
1983-01-01
A numerical method based on an analytical solution to the three-dimensional two-group diffusion equation has been derived assuming that the flux is a sum of the functions of one variable. In each mesh the incoming currents are used as boundary conditions. The final equations for the average flux and the outgoing currents are of the response matrix type. The method is presented in a form that can be extended to the general multigroup case. In the SEXI computer program developed on the basis of this method, the response matrix elements are recalculated in each outer iteration to minimize the data transfer between disk storage and central memory. The efficiency of the method is demonstrated for a light water reactor (LWR) benchmark problem. The SEXI program has been incorporated into the LWR simulator SILWER code as a possible option
Photostimulated luminescence, fast method of detection of irradiated foodstuffs
International Nuclear Information System (INIS)
Guzik, G.P.; Stachowicz, W.
2005-01-01
The principle of pulsed photostimulated luminescence (PPSL) method, description of instrumentation and methodology of measurements are presented. The pathway of operational procedure and testing of the PPSL instrument in the Laboratory for Detection of Irradiated Food of the Institute of Nuclear Chemistry and Technology are described. Attention has been paid to the positives of the new method while some limitation of its application have been also discussed. (author)
The Cluster Variation Method: A Primer for Neuroscientists.
Maren, Alianna J
2016-09-30
Effective Brain-Computer Interfaces (BCIs) require that the time-varying activation patterns of 2-D neural ensembles be modelled. The cluster variation method (CVM) offers a means for the characterization of 2-D local pattern distributions. This paper provides neuroscientists and BCI researchers with a CVM tutorial that will help them to understand how the CVM statistical thermodynamics formulation can model 2-D pattern distributions expressing structural and functional dynamics in the brain. The premise is that local-in-time free energy minimization works alongside neural connectivity adaptation, supporting the development and stabilization of consistent stimulus-specific responsive activation patterns. The equilibrium distribution of local patterns, or configuration variables , is defined in terms of a single interaction enthalpy parameter ( h ) for the case of an equiprobable distribution of bistate (neural/neural ensemble) units. Thus, either one enthalpy parameter (or two, for the case of non-equiprobable distribution) yields equilibrium configuration variable values. Modeling 2-D neural activation distribution patterns with the representational layer of a computational engine, we can thus correlate variational free energy minimization with specific configuration variable distributions. The CVM triplet configuration variables also map well to the notion of a M = 3 functional motif. This paper addresses the special case of an equiprobable unit distribution, for which an analytic solution can be found.
The Cluster Variation Method: A Primer for Neuroscientists
Directory of Open Access Journals (Sweden)
Alianna J. Maren
2016-09-01
Full Text Available Effective Brain–Computer Interfaces (BCIs require that the time-varying activation patterns of 2-D neural ensembles be modelled. The cluster variation method (CVM offers a means for the characterization of 2-D local pattern distributions. This paper provides neuroscientists and BCI researchers with a CVM tutorial that will help them to understand how the CVM statistical thermodynamics formulation can model 2-D pattern distributions expressing structural and functional dynamics in the brain. The premise is that local-in-time free energy minimization works alongside neural connectivity adaptation, supporting the development and stabilization of consistent stimulus-specific responsive activation patterns. The equilibrium distribution of local patterns, or configuration variables, is defined in terms of a single interaction enthalpy parameter (h for the case of an equiprobable distribution of bistate (neural/neural ensemble units. Thus, either one enthalpy parameter (or two, for the case of non-equiprobable distribution yields equilibrium configuration variable values. Modeling 2-D neural activation distribution patterns with the representational layer of a computational engine, we can thus correlate variational free energy minimization with specific configuration variable distributions. The CVM triplet configuration variables also map well to the notion of a M = 3 functional motif. This paper addresses the special case of an equiprobable unit distribution, for which an analytic solution can be found.
Abiotic versus biotic drivers of ocean pH variation under fast sea ice in McMurdo Sound, Antarctica.
Matson, Paul G; Washburn, Libe; Martz, Todd R; Hofmann, Gretchen E
2014-01-01
Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula) and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor). Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only), tide (Cape Evans and New Harbor), and water mass properties (temperature and salinity) during spring and early summer 2011. These collective observations showed that (1) pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007) and range of pH (Cape Evans: 0.090; Hut Point: 0.036), and (2) pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes--in this case algal photosynthesis--to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities) to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound.
Abiotic versus biotic drivers of ocean pH variation under fast sea ice in McMurdo Sound, Antarctica.
Directory of Open Access Journals (Sweden)
Paul G Matson
Full Text Available Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor. Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only, tide (Cape Evans and New Harbor, and water mass properties (temperature and salinity during spring and early summer 2011. These collective observations showed that (1 pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007 and range of pH (Cape Evans: 0.090; Hut Point: 0.036, and (2 pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes--in this case algal photosynthesis--to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound.
A Fast Soft Bit Error Rate Estimation Method
Directory of Open Access Journals (Sweden)
Ait-Idir Tarik
2010-01-01
Full Text Available We have suggested in a previous publication a method to estimate the Bit Error Rate (BER of a digital communications system instead of using the famous Monte Carlo (MC simulation. This method was based on the estimation of the probability density function (pdf of soft observed samples. The kernel method was used for the pdf estimation. In this paper, we suggest to use a Gaussian Mixture (GM model. The Expectation Maximisation algorithm is used to estimate the parameters of this mixture. The optimal number of Gaussians is computed by using Mutual Information Theory. The analytical expression of the BER is therefore simply given by using the different estimated parameters of the Gaussian Mixture. Simulation results are presented to compare the three mentioned methods: Monte Carlo, Kernel and Gaussian Mixture. We analyze the performance of the proposed BER estimator in the framework of a multiuser code division multiple access system and show that attractive performance is achieved compared with conventional MC or Kernel aided techniques. The results show that the GM method can drastically reduce the needed number of samples to estimate the BER in order to reduce the required simulation run-time, even at very low BER.
Fast Reduction Method in Dominance-Based Information Systems
Li, Yan; Zhou, Qinghua; Wen, Yongchuan
2018-01-01
In real world applications, there are often some data with continuous values or preference-ordered values. Rough sets based on dominance relations can effectively deal with these kinds of data. Attribute reduction can be done in the framework of dominance-relation based approach to better extract decision rules. However, the computational cost of the dominance classes greatly affects the efficiency of attribute reduction and rule extraction. This paper presents an efficient method of computing dominance classes, and further compares it with traditional method with increasing attributes and samples. Experiments on UCI data sets show that the proposed algorithm obviously improves the efficiency of the traditional method, especially for large-scale data.
Fast analytical method for the addition of random variables
International Nuclear Information System (INIS)
Senna, V.; Milidiu, R.L.; Fleming, P.V.; Salles, M.R.; Oliveria, L.F.S.
1983-01-01
Using the minimal cut sets representation of a fault tree, a new approach to the method of moments is proposed in order to estimate confidence bounds to the top event probability. The method utilizes two or three moments either to fit a distribution (the normal and lognormal families) or to evaluate bounds from standard inequalities (e.g. Markov, Tchebycheff, etc.) Examples indicate that the results obtained by the log-normal family are in good agreement with those obtained by Monte Carlo simulation
Variational principles for Ginzburg-Landau equation by He's semi-inverse method
International Nuclear Information System (INIS)
Liu, W.Y.; Yu, Y.J.; Chen, L.D.
2007-01-01
Via the semi-inverse method of establishing variational principles proposed by He, a generalized variational principle is established for Ginzburg-Landau equation. The present theory provides a quite straightforward tool to the search for various variational principles for physical problems. This paper aims at providing a more complete theoretical basis for applications using finite element and other direct variational methods
Space-angle approximations in the variational nodal method
International Nuclear Information System (INIS)
Lewis, E. E.; Palmiotti, G.; Taiwo, T.
1999-01-01
The variational nodal method is formulated such that the angular and spatial approximations maybe examined separately. Spherical harmonic, simplified spherical harmonic, and discrete ordinate approximations are coupled to the primal hybrid finite element treatment of the spatial variables. Within this framework, two classes of spatial trial functions are presented: (1) orthogonal polynomials for the treatment of homogeneous nodes and (2) bilinear finite subelement trial functions for the treatment of fuel assembly sized nodes in which fuel-pin cell cross sections are represented explicitly. Polynomial and subelement trial functions are applied to benchmark water-reactor problems containing MOX fuel using spherical harmonic and simplified spherical harmonic approximations. The resulting accuracy and computing costs are compared
Subspace Correction Methods for Total Variation and $\\ell_1$-Minimization
Fornasier, Massimo
2009-01-01
This paper is concerned with the numerical minimization of energy functionals in Hilbert spaces involving convex constraints coinciding with a seminorm for a subspace. The optimization is realized by alternating minimizations of the functional on a sequence of orthogonal subspaces. On each subspace an iterative proximity-map algorithm is implemented via oblique thresholding, which is the main new tool introduced in this work. We provide convergence conditions for the algorithm in order to compute minimizers of the target energy. Analogous results are derived for a parallel variant of the algorithm. Applications are presented in domain decomposition methods for degenerate elliptic PDEs arising in total variation minimization and in accelerated sparse recovery algorithms based on 1-minimization. We include numerical examples which show e.cient solutions to classical problems in signal and image processing. © 2009 Society for Industrial and Applied Physics.
Variational methods for high-order multiphoton processes
International Nuclear Information System (INIS)
Gao, B.; Pan, C.; Liu, C.; Starace, A.F.
1990-01-01
Methods for applying the variationally stable procedure for Nth-order perturbative transition matrix elements of Gao and Starace [Phys. Rev. Lett. 61, 404 (1988); Phys. Rev. A 39, 4550 (1989)] to multiphoton processes involving systems other than atomic H are presented. Three specific cases are discussed: one-electron ions or atoms in which the electron--ion interaction is described by a central potential; two-electron ions or atoms in which the electronic states are described by the adiabatic hyperspherical representation; and closed-shell ions or atoms in which the electronic states are described by the multiconfiguration Hartree--Fock representation. Applications are made to the dynamic polarizability of He and the two-photon ionization cross section of Ar
Gunetti, Monica; Castiglia, Sara; Rustichelli, Deborah; Mareschi, Katia; Sanavio, Fiorella; Muraro, Michela; Signorino, Elena; Castello, Laura; Ferrero, Ivana; Fagioli, Franca
2012-05-31
The quality and safety of advanced therapy products must be maintained throughout their production and quality control cycle to ensure their final use in patients. We validated the cell count method according to the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use and European Pharmacopoeia, considering the tests' accuracy, precision, repeatability, linearity and range. As the cell count is a potency test, we checked accuracy, precision, and linearity, according to ICH Q2. Briefly our experimental approach was first to evaluate the accuracy of Fast Read 102® compared to the Bürker chamber. Once the accuracy of the alternative method was demonstrated, we checked the precision and linearity test only using Fast Read 102®. The data were statistically analyzed by average, standard deviation and coefficient of variation percentages inter and intra operator. All the tests performed met the established acceptance criteria of a coefficient of variation of less than ten percent. For the cell count, the precision reached by each operator had a coefficient of variation of less than ten percent (total cells) and under five percent (viable cells). The best range of dilution, to obtain a slope line value very similar to 1, was between 1:8 and 1:128. Our data demonstrated that the Fast Read 102® count method is accurate, precise and ensures the linearity of the results obtained in a range of cell dilution. Under our standard method procedures, this assay may thus be considered a good quality control method for the cell count as a batch release quality control test. Moreover, the Fast Read 102® chamber is a plastic, disposable device that allows a number of samples to be counted in the same chamber. Last but not least, it overcomes the problem of chamber washing after use and so allows a cell count in a clean environment such as that in a Cell Factory. In a good manufacturing practice setting the disposable
Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide
DEFF Research Database (Denmark)
Salguero-Gómez, Roberto; Jones, Owen R; Jongejans, Eelke
2016-01-01
The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous...... variation in life history are poorly understood. We use demographic data from 418 plant species in the wild, from annual herbs to supercentennial trees, to examine how growth form, habitat, and phylogenetic relationships structure plant life histories and to develop a framework to predict population...
A New Variational Method for Bias Correction and Its Applications to Rodent Brain Extraction.
Chang, Huibin; Huang, Weimin; Wu, Chunlin; Huang, Su; Guan, Cuntai; Sekar, Sakthivel; Bhakoo, Kishore Kumar; Duan, Yuping
2017-03-01
Brain extraction is an important preprocessing step for further analysis of brain MR images. Significant intensity inhomogeneity can be observed in rodent brain images due to the high-field MRI technique. Unlike most existing brain extraction methods that require bias corrected MRI, we present a high-order and L 0 regularized variational model for bias correction and brain extraction. The model is composed of a data fitting term, a piecewise constant regularization and a smooth regularization, which is constructed on a 3-D formulation for medical images with anisotropic voxel sizes. We propose an efficient multi-resolution algorithm for fast computation. At each resolution layer, we solve an alternating direction scheme, all subproblems of which have the closed-form solutions. The method is tested on three T2 weighted acquisition configurations comprising a total of 50 rodent brain volumes, which are with the acquisition field strengths of 4.7 Tesla, 9.4 Tesla and 17.6 Tesla, respectively. On one hand, we compare the results of bias correction with N3 and N4 in terms of the coefficient of variations on 20 different tissues of rodent brain. On the other hand, the results of brain extraction are compared against manually segmented gold standards, BET, BSE and 3-D PCNN based on a number of metrics. With the high accuracy and efficiency, our proposed method can facilitate automatic processing of large-scale brain studies.
A Fast and Effective Block Adjustment Method with Big Data
Directory of Open Access Journals (Sweden)
ZHENG Maoteng
2017-02-01
Full Text Available To deal with multi-source, complex and massive data in photogrammetry, and solve the high memory requirement and low computation efficiency of irregular normal equation caused by the randomly aligned and large scale datasets, we introduce the preconditioned conjugate gradient combined with inexact Newton method to solve the normal equation which do not have strip characteristics due to the randomly aligned images. We also use an effective sparse matrix compression format to compress the big normal matrix, a brand new workflow of bundle adjustment is developed. Our method can avoid the direct inversion of the big normal matrix, the memory requirement of the normal matrix is also decreased by the proposed sparse matrix compression format. Combining all these techniques, the proposed method can not only decrease the memory requirement of normal matrix, but also largely improve the efficiency of bundle adjustment while maintaining the same accuracy as the conventional method. Preliminary experiment results show that the bundle adjustment of a dataset with about 4500 images and 9 million image points can be done in only 15 minutes while achieving sub-pixel accuracy.
Fast Numerical Methods for Stochastic Partial Differential Equations
2016-04-15
Particle Swarm Optimization (PSO) method. Inspired by the social behavior of the bird flocking or fish schooling, the particle swarm optimization (PSO...Weerasinghe, Hongmei Chi and Yanzhao Cao, Particle Swarm Optimization Simulation via Optimal Halton Sequences, accepted by Procedia Computer Science (2016...Optimization Simulation via Optimal Halton Sequences, accepted by Procedia Computer Science (2016). 2. Haiyan Tian, Hongmei Chi and Yanzhao Cao
Fast methods for spatially correlated multilevel functional data
Staicu, A.-M.; Crainiceanu, C. M.; Carroll, R. J.
2010-01-01
-one-out analyses, and nonparametric bootstrap sampling. Our methods are inspired by and applied to data obtained from a state-of-the-art colon carcinogenesis scientific experiment. However, our models are general and will be relevant to many new data sets where
A fast 4D cone beam CT reconstruction method based on the OSC-TV algorithm.
Mascolo-Fortin, Julia; Matenine, Dmitri; Archambault, Louis; Després, Philippe
2018-01-01
Four-dimensional cone beam computed tomography allows for temporally resolved imaging with useful applications in radiotherapy, but raises particular challenges in terms of image quality and computation time. The purpose of this work is to develop a fast and accurate 4D algorithm by adapting a GPU-accelerated ordered subsets convex algorithm (OSC), combined with the total variation minimization regularization technique (TV). Different initialization schemes were studied to adapt the OSC-TV algorithm to 4D reconstruction: each respiratory phase was initialized either with a 3D reconstruction or a blank image. Reconstruction algorithms were tested on a dynamic numerical phantom and on a clinical dataset. 4D iterations were implemented for a cluster of 8 GPUs. All developed methods allowed for an adequate visualization of the respiratory movement and compared favorably to the McKinnon-Bates and adaptive steepest descent projection onto convex sets algorithms, while the 4D reconstructions initialized from a prior 3D reconstruction led to better overall image quality. The most suitable adaptation of OSC-TV to 4D CBCT was found to be a combination of a prior FDK reconstruction and a 4D OSC-TV reconstruction with a reconstruction time of 4.5 minutes. This relatively short reconstruction time could facilitate a clinical use.
On the implementation of fast marching methods for 3D lattices
DEFF Research Database (Denmark)
Bærentzen, Jakob Andreas
2001-01-01
This technical report discusses Sethian's Fast Marching Method and its higher accuracy variant. Both methods may be used to compute the arrival times at the points of a discrete lattice of a front which is monotonously expanding. Applications of the method include arrival time computation and the...
Captive solvent methods for fast, simple carbon-11 radioalkylations
International Nuclear Information System (INIS)
Jewett, D.M.; Mangner, T.J.; Watkins, G.L.
1991-01-01
Carbon-11 labeled radiopharmaceuticals for receptor studies usually require final purification by high performance liquid chromatography (HPLC). A significant simplification of the apparatus is possible if the radiolabeling reaction can be done directly in the HPLC injection circuit. Captive solvent methods in which the reaction is done in a small volume of solvent absorbed in a porous solid matrix are a general approach to this problem. For N-methylations with [ 11 C] methyl iodide, a basic catalyst may be incorporated in the polymeric or alumina solid phase. Reaction volumes are from 20 to 100 ML. Often no heating or cooling of the reaction column is necessary. The syntheses of [ 11 C]PK11195 and [ 11 C] flumazenil are described to illustrate some of the advantages and limitations of captive solvent methods
Energy spectra of fast neutrons by nuclear emulsion method
International Nuclear Information System (INIS)
Quaresma, A.A.
1977-01-01
An experimental method which uses nuclear emulsion plates to determine the energy spectrum of fission neutrons is described. By using this technique, we have obtained the energy distribution of neutrons from spontaneous fission of Cf 2 5 2 . The results are in good agreement with whose obtained previously by others authors who have used different detection techniques, and they are consistent with a Maxwellian distribution as expected by Weisskopf's nuclear evaporation theory. (author)
Fast film dosimetry calibration method for IMRT treatment plan verification
International Nuclear Information System (INIS)
Schwob, N.; Wygoda, A.
2004-01-01
Intensity-Modulated Radiation Therapy (IMRT) treatments are delivered dynamically and as so, require routinely performed verification measurements [1]. Radiographic film dosimetry is a well-adapted method for integral measurements of dynamic treatments fields, with some drawbacks related to the known problems of dose calibration of films. Classically, several films are exposed to increasing doses, and a Net Optical Density (N.O.D) vs. dose sensitometric curve (S.C.) is generated. In order to speed up the process, some authors have developed a method based on the irradiation of a single film with a non-uniform pattern of O.D., delivered with a dynamic MLC. However, this curve still needs to be calibrated to dose by the means of measurements in a water phantom. It is recommended to make a new calibration for every series of measurements, in order to avoid the processing quality dependence of the film response. These frequent measurements are very time consuming. We developed a simple method for quick dose calibration of films, including a check of the accuracy of the calibration curve obtained
Energy Technology Data Exchange (ETDEWEB)
Cambou, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1961-02-15
This research aimed at improving fast-neutron electronic detectors based on n-p elastic scattering. The first part concerns proportional counters; careful constructional methods have made it possible to plot mono-energetic neutron spectra in the range 700 keV - 3 MeV with a resolution of 7 per cent. The second part concerns scintillation counters: an organic scintillator and an inorganic scintillator covered with a thin layer of a scattering agent. An exact study of the types of scintillation has made it possible to develop efficient discriminator circuits. Different neutron spectra plotted in the presence of a strong gamma background are presented. The last part deals with the development of form discrimination methods for the study, in the actual beam, of the elastic scattering of 14.58 MeV electrons. With hydrogen, the distribution f ({phi}) of the recoil protons is f({phi}) = 1 + 0.034 cos {phi} + 0.042 cos{sup 2} {phi}. With tritium the scattering is strongly anisotropic; the curve representing the variation of the differential cross-section for the elastic scattering in the centre of mass system is obtained with a target containing 1 cm{sup 3} of tritium. (author) [French] Le travail a porte sur l'amelioration des detecteurs electroniques de neutrons rapides bases sur la diffusion elastique n-p. La premiere partie est relative aux compteurs proportionnels; des methodes soignees de fabrication ont permis des traces de spectres de neutrons monoenergetiques dans le domaine 700 keV - 3 MeV avec une resolution de 7 pour cent. La deuxieme partie est relative au compteur a scintillations; scintillateur organique et scintillateur mineral recouvert d'un diffuseur mince. Une etude precise des formes de scintillations a permis la mise au point de circuits discriminateurs efficaces. Differents spectres de neutrons traces en presence d'un fond gamma intense sont presentes. La derniere partie est relative a la mise en oeuvre des methodes de discrimination de forme pour l
New simple method for fast and accurate measurement of volumes
International Nuclear Information System (INIS)
Frattolillo, Antonio
2006-01-01
A new simple method is presented, which allows us to measure in just a few minutes but with reasonable accuracy (less than 1%) the volume confined inside a generic enclosure, regardless of the complexity of its shape. The technique proposed also allows us to measure the volume of any portion of a complex manifold, including, for instance, pipes and pipe fittings, valves, gauge heads, and so on, without disassembling the manifold at all. To this purpose an airtight variable volume is used, whose volume adjustment can be precisely measured; it has an overall capacity larger than that of the unknown volume. Such a variable volume is initially filled with a suitable test gas (for instance, air) at a known pressure, as carefully measured by means of a high precision capacitive gauge. By opening a valve, the test gas is allowed to expand into the previously evacuated unknown volume. A feedback control loop reacts to the resulting finite pressure drop, thus contracting the variable volume until the pressure exactly retrieves its initial value. The overall reduction of the variable volume achieved at the end of this process gives a direct measurement of the unknown volume, and definitively gets rid of the problem of dead spaces. The method proposed actually does not require the test gas to be rigorously held at a constant temperature, thus resulting in a huge simplification as compared to complex arrangements commonly used in metrology (gas expansion method), which can grant extremely accurate measurement but requires rather expensive equipments and results in time consuming methods, being therefore impractical in most applications. A simple theoretical analysis of the thermodynamic cycle and the results of experimental tests are described, which demonstrate that, in spite of its simplicity, the method provides a measurement accuracy within 0.5%. The system requires just a few minutes to complete a single measurement, and is ready immediately at the end of the process. The
A contribution to the method of fast reactor thermal output calculation
International Nuclear Information System (INIS)
Harant, M.
1978-01-01
The method of stating the heat sources is discussed as being one of the factors influencing the accuracy of the thermal output calculation of fast reactors. The distribution of heat sources in the core and in other inner parts of the fast reactor is described using the least square fit method. Relations are derived of outputs of both individual components of fuel elements and of whole inner parts of the reactor. A comparison is made of various methods used for obtaining source integrals. The optimum integration method was found. (author)
A second order discontinuous Galerkin fast sweeping method for Eikonal equations
Li, Fengyan; Shu, Chi-Wang; Zhang, Yong-Tao; Zhao, Hongkai
2008-09-01
In this paper, we construct a second order fast sweeping method with a discontinuous Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is built on a DG method developed recently [Y. Cheng, C.-W. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations, Journal of Computational Physics 223 (2007) 398-415] for the time-dependent Hamilton-Jacobi equations. The causality property of Eikonal equations is incorporated into the design of this solver. The resulting local nonlinear system in the Gauss-Seidel iterations is a simple quadratic system and can be solved explicitly. The compactness of the DG method and the fast sweeping strategy lead to fast convergence of the new scheme for Eikonal equations. Extensive numerical examples verify efficiency, convergence and second order accuracy of the proposed method.
Fast and precise method of contingency ranking in modern power system
DEFF Research Database (Denmark)
Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul
2011-01-01
Contingency Analysis is one of the most important aspect of Power System Security Analysis. This paper presents a fast and precise method of contingency ranking for effective power system security analysis. The method proposed in this research work takes due consideration of both apparent power o...... is based on realistic approach taking practical situations into account. Besides taking real situations into consideration the proposed method is fast enough to be considered for on-line security analysis.......Contingency Analysis is one of the most important aspect of Power System Security Analysis. This paper presents a fast and precise method of contingency ranking for effective power system security analysis. The method proposed in this research work takes due consideration of both apparent power...
Infrared thermography method for fast estimation of phase diagrams
Energy Technology Data Exchange (ETDEWEB)
Palomo Del Barrio, Elena [Université de Bordeaux, Institut de Mécanique et d’Ingénierie, Esplanade des Arts et Métiers, 33405 Talence (France); Cadoret, Régis [Centre National de la Recherche Scientifique, Institut de Mécanique et d’Ingénierie, Esplanade des Arts et Métiers, 33405 Talence (France); Daranlot, Julien [Solvay, Laboratoire du Futur, 178 Av du Dr Schweitzer, 33608 Pessac (France); Achchaq, Fouzia, E-mail: fouzia.achchaq@u-bordeaux.fr [Université de Bordeaux, Institut de Mécanique et d’Ingénierie, Esplanade des Arts et Métiers, 33405 Talence (France)
2016-02-10
Highlights: • Infrared thermography is proposed to determine phase diagrams in record time. • Phase boundaries are detected by means of emissivity changes during heating. • Transition lines are identified by using Singular Value Decomposition techniques. • Different binary systems have been used for validation purposes. - Abstract: Phase change materials (PCM) are widely used today in thermal energy storage applications. Pure PCMs are rarely used because of non adapted melting points. Instead of them, mixtures are preferred. The search of suitable mixtures, preferably eutectics, is often a tedious and time consuming task which requires the determination of phase diagrams. In order to accelerate this screening step, a new method for estimating phase diagrams in record time (1–3 h) has been established and validated. A sample composed by small droplets of mixtures with different compositions (as many as necessary to have a good coverage of the phase diagram) deposited on a flat substrate is first prepared and cooled down to ambient temperature so that all droplets crystallize. The plate is then heated at constant heating rate up to a sufficiently high temperature for melting all the small crystals. The heating process is imaged by using an infrared camera. An appropriate method based on singular values decomposition technique has been developed to analyze the recorded images and to determine the transition lines of the phase diagram. The method has been applied to determine several simple eutectic phase diagrams and the reached results have been validated by comparison with the phase diagrams obtained by Differential Scanning Calorimeter measurements and by thermodynamic modelling.
A fast mollified impulse method for biomolecular atomistic simulations
Energy Technology Data Exchange (ETDEWEB)
Fath, L., E-mail: lukas.fath@kit.edu [Institute for App. and Num. Mathematics, Karlsruhe Institute of Technology (Germany); Hochbruck, M., E-mail: marlis.hochbruck@kit.edu [Institute for App. and Num. Mathematics, Karlsruhe Institute of Technology (Germany); Singh, C.V., E-mail: chandraveer.singh@utoronto.ca [Department of Materials Science & Engineering, University of Toronto (Canada)
2017-03-15
Classical integration methods for molecular dynamics are inherently limited due to resonance phenomena occurring at certain time-step sizes. The mollified impulse method can partially avoid this problem by using appropriate filters based on averaging or projection techniques. However, existing filters are computationally expensive and tedious in implementation since they require either analytical Hessians or they need to solve nonlinear systems from constraints. In this work we follow a different approach based on corotation for the construction of a new filter for (flexible) biomolecular simulations. The main advantages of the proposed filter are its excellent stability properties and ease of implementation in standard softwares without Hessians or solving constraint systems. By simulating multiple realistic examples such as peptide, protein, ice equilibrium and ice–ice friction, the new filter is shown to speed up the computations of long-range interactions by approximately 20%. The proposed filtered integrators allow step sizes as large as 10 fs while keeping the energy drift less than 1% on a 50 ps simulation.
Comparison of fast neutron-induced tracks in plastics using the electrochemical etching method
International Nuclear Information System (INIS)
Cotter, S.J.; Gammage, R.B.; Thorngate, J.H.; Ziemer, P.L.
1979-01-01
Four plastics were examined by the electrochemical etching method for their suitability in registering fast neutron-induced recoil particle tracks. The plastics were cellulose acetate, cellulose triacetate, cellulose acetobutyrate and polycarbonate. Cellulose acetate and triacetate displayed high levels of water absorptivity during etching while the acetobutyrate foils cracked due to electromechanical stresses at high frequencies (>500 Hz). The clarity of the etched track was superior in the polycarbonate foils, suggesting the latter as the generally preferred dosimeter for fast neutrons. (author)
The essential theory of fast wave current drive with full wave method
International Nuclear Information System (INIS)
Liu Yan; Gong Xueyu; Yang Lei; Yin Chenyan; Yin Lan
2007-01-01
The full wave numerical method is developed for analyzing fast wave current drive in the range of ion cyclotron waves in tokamak plasmas, taking into account finite larmor radius effects and parallel dispersion. the physical model, the dispersion relation on the assumption of Finite Larmor Radius (FLR) effects and the form of full wave be used for computer simulation are developed. All of the work will contribute to further study of fast wave current drive. (authors)
International Nuclear Information System (INIS)
Van Rooijen, W. F. G.; Lathouwers, D.
2007-01-01
In advanced Generation IV (fast) reactors an integral fuel cycle is envisaged, where all Heavy Metal is recycled in the reactor. This leads to a nuclear fuel with a considerable content of Minor Actinides. For many of these isotopes the nuclear data is not very well known. In this paper the sensitivity of the kinetic behaviour of the reactor to the dynamic parameters λ k , β k and the delayed spectrum χ d,k is studied using first order perturbation theory. In the current study, feedback due to Doppler and/or thermohydraulic effects are not treated. The theoretical framework is applied to a Generation IV Gas Cooled Fast Reactor. The results indicate that the first-order approach is satisfactory for small variations of the data. Sensitivities to delayed neutron data are similar for increasing and decreasing transients. Sensitivities generally increase with reactivity for increasing transients. For decreasing transients, there are less clearly defined trends, although the sensitivity to the delayed neutron spectrum decreases with larger sub-criticality, as expected. For this research, an adjoint capable version of the time-dependent diffusion code DALTON is under development. (authors)
Comment on “Variational Iteration Method for Fractional Calculus Using He’s Polynomials”
Directory of Open Access Journals (Sweden)
Ji-Huan He
2012-01-01
boundary value problems. This note concludes that the method is a modified variational iteration method using He’s polynomials. A standard variational iteration algorithm for fractional differential equations is suggested.
Spectrographical method for determining temperature variations of cosmic rays
International Nuclear Information System (INIS)
Dorman, L.I.; Krest'yannikov, Yu.Ya.; AN SSSR, Irkutsk. Sibirskij Inst. Zemnogo Magnetizma Ionosfery i Rasprostraneniya Radiovoln)
1977-01-01
A spectrographic method for determining [sigmaJsup(μ)/Jsup(μ)]sub(T) temperature variations in cosmic rays is proposed. The value of (sigmaJsup(μ)/Jsup(μ)]sub(T) is determined from three equations for neutron supermonitors and the equation for the muon component of cosmic rays. It is assumed that all the observation data include corrections for the barometric effect. No temperature effect is observed in the neutron component. To improve the reliability and accuracy of the results obtained the surface area of the existing devices and the number of spectrographic equations should be increased as compared with that of the unknown values. The value of [sigmaJsup(μ)/Jsup(μ)]sub(T) for time instants when the aerological probing was carried out, was determined from the data of observations of cosmic rays with the aid of a spectrographic complex of devices of Sib IZMIR. The r.m.s. dispersion of the difference is about 0.2%, which agrees with the expected dispersion. The agreement obtained can be regarded as an independent proof of the correctness of the theory of meteorological effects of cosmic rays. With the existing detection accuracy the spectrographic method can be used for determining the hourly values of temperature corrections for the muon component
Variational methods in electron-atom scattering theory
Nesbet, Robert K
1980-01-01
The investigation of scattering phenomena is a major theme of modern physics. A scattered particle provides a dynamical probe of the target system. The practical problem of interest here is the scattering of a low energy electron by an N-electron atom. It has been difficult in this area of study to achieve theoretical results that are even qualitatively correct, yet quantitative accuracy is often needed as an adjunct to experiment. The present book describes a quantitative theoretical method, or class of methods, that has been applied effectively to this problem. Quantum mechanical theory relevant to the scattering of an electron by an N-electron atom, which may gain or lose energy in the process, is summarized in Chapter 1. The variational theory itself is presented in Chapter 2, both as currently used and in forms that may facilitate future applications. The theory of multichannel resonance and threshold effects, which provide a rich structure to observed electron-atom scattering data, is presented in Cha...
Fast synthesize ZnO quantum dots via ultrasonic method.
Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu
2016-05-01
Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.
Fast polarimetric dehazing method for visibility enhancement in HSI colour space
Zhang, Wenfei; Liang, Jian; Ren, Liyong; Ju, Haijuan; Bai, Zhaofeng; Wu, Zhaoxin
2017-09-01
Image haze removal has attracted much attention in optics and computer vision fields in recent years due to its wide applications. In particular, the fast and real-time dehazing methods are of significance. In this paper, we propose a fast dehazing method in hue, saturation and intensity colour space based on the polarimetric imaging technique. We implement the polarimetric dehazing method in the intensity channel, and the colour distortion of the image is corrected using the white patch retinex method. This method not only reserves the detailed information restoration capacity, but also improves the efficiency of the polarimetric dehazing method. Comparison studies with state of the art methods demonstrate that the proposed method obtains equal or better quality results and moreover the implementation is much faster. The proposed method is promising in real-time image haze removal and video haze removal applications.
Fast crawling methods of exploring content distributed over large graphs
Wang, Pinghui
2018-03-15
Despite recent effort to estimate topology characteristics of large graphs (e.g., online social networks and peer-to-peer networks), little attention has been given to develop a formal crawling methodology to characterize the vast amount of content distributed over these networks. Due to the large-scale nature of these networks and a limited query rate imposed by network service providers, exhaustively crawling and enumerating content maintained by each vertex is computationally prohibitive. In this paper, we show how one can obtain content properties by crawling only a small fraction of vertices and collecting their content. We first show that when sampling is naively applied, this can produce a huge bias in content statistics (i.e., average number of content replicas). To remove this bias, one may use maximum likelihood estimation to estimate content characteristics. However, our experimental results show that this straightforward method requires to sample most vertices to obtain accurate estimates. To address this challenge, we propose two efficient estimators: special copy estimator (SCE) and weighted copy estimator (WCE) to estimate content characteristics using available information in sampled content. SCE uses the special content copy indicator to compute the estimate, while WCE derives the estimate based on meta-information in sampled vertices. We conduct experiments on a variety of real-word and synthetic datasets, and the results show that WCE and SCE are cost effective and also “asymptotically unbiased”. Our methodology provides a new tool for researchers to efficiently query content distributed in large-scale networks.
A fast computing method to distinguish the hyperbolic trajectory of an non-autonomous system
Jia, Meng; Fan, Yang-Yu; Tian, Wei-Jian
2011-03-01
Attempting to find a fast computing method to DHT (distinguished hyperbolic trajectory), this study first proves that the errors of the stable DHT can be ignored in normal direction when they are computed as the trajectories extend. This conclusion means that the stable flow with perturbation will approach to the real trajectory as it extends over time. Based on this theory and combined with the improved DHT computing method, this paper reports a new fast computing method to DHT, which magnifies the DHT computing speed without decreasing its accuracy. Project supported by the National Natural Science Foundation of China (Grant No. 60872159).
A fast computing method to distinguish the hyperbolic trajectory of an non-autonomous system
International Nuclear Information System (INIS)
Jia Meng; Fan Yang-Yu; Tian Wei-Jian
2011-01-01
Attempting to find a fast computing method to DHT (distinguished hyperbolic trajectory), this study first proves that the errors of the stable DHT can be ignored in normal direction when they are computed as the trajectories extend. This conclusion means that the stable flow with perturbation will approach to the real trajectory as it extends over time. Based on this theory and combined with the improved DHT computing method, this paper reports a new fast computing method to DHT, which magnifies the DHT computing speed without decreasing its accuracy. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Fast sweeping methods for hyperbolic systems of conservation laws at steady state II
Engquist, Björn; Froese, Brittany D.; Tsai, Yen-Hsi Richard
2015-04-01
The idea of using fast sweeping methods for solving stationary systems of conservation laws has previously been proposed for efficiently computing solutions with sharp shocks. We further develop these methods to allow for a more challenging class of problems including problems with sonic points, shocks originating in the interior of the domain, rarefaction waves, and two-dimensional systems. We show that fast sweeping methods can produce higher-order accuracy. Computational results validate the claims of accuracy, sharp shock curves, and optimal computational efficiency.
A highly scalable massively parallel fast marching method for the Eikonal equation
Yang, Jianming; Stern, Frederick
2017-03-01
The fast marching method is a widely used numerical method for solving the Eikonal equation arising from a variety of scientific and engineering fields. It is long deemed inherently sequential and an efficient parallel algorithm applicable to large-scale practical applications is not available in the literature. In this study, we present a highly scalable massively parallel implementation of the fast marching method using a domain decomposition approach. Central to this algorithm is a novel restarted narrow band approach that coordinates the frequency of communications and the amount of computations extra to a sequential run for achieving an unprecedented parallel performance. Within each restart, the narrow band fast marching method is executed; simple synchronous local exchanges and global reductions are adopted for communicating updated data in the overlapping regions between neighboring subdomains and getting the latest front status, respectively. The independence of front characteristics is exploited through special data structures and augmented status tags to extract the masked parallelism within the fast marching method. The efficiency, flexibility, and applicability of the parallel algorithm are demonstrated through several examples. These problems are extensively tested on six grids with up to 1 billion points using different numbers of processes ranging from 1 to 65536. Remarkable parallel speedups are achieved using tens of thousands of processes. Detailed pseudo-codes for both the sequential and parallel algorithms are provided to illustrate the simplicity of the parallel implementation and its similarity to the sequential narrow band fast marching algorithm.
Gauge-invariant variational methods for Hamiltonian lattice gauge theories
International Nuclear Information System (INIS)
Horn, D.; Weinstein, M.
1982-01-01
This paper develops variational methods for calculating the ground-state and excited-state spectrum of Hamiltonian lattice gauge theories defined in the A 0 = 0 gauge. The scheme introduced in this paper has the advantage of allowing one to convert more familiar tools such as mean-field, Hartree-Fock, and real-space renormalization-group approximation, which are by their very nature gauge-noninvariant methods, into fully gauge-invariant techniques. We show that these methods apply in the same way to both Abelian and non-Abelian theories, and that they are at least powerful enough to describe correctly the physics of periodic quantum electrodynamics (PQED) in (2+1) and (3+1) space-time dimensions. This paper formulates the problem for both Abelian and non-Abelian theories and shows how to reduce the Rayleigh-Ritz problem to that of computing the partition function of a classical spin system. We discuss the evaluation of the effective spin problem which one derives the PQED and then discuss ways of carrying out the evaluation of the partition function for the system equivalent to a non-Abelian theory. The explicit form of the effective partition function for the non-Abelian theory is derived, but because the evaluation of this function is considerably more complicated than the one derived in the Abelian theory no explicit evaluation of this function is presented. However, by comparing the gauge-projected Hartree-Fock wave function for PQED with that of the pure SU(2) gauge theory, we are able to show that extremely interesting differences emerge between these theories even at this simple level. We close with a discussion of fermions and a discussion of how one can extend these ideas to allow the computation of the glueball and hadron spectrum
Directory of Open Access Journals (Sweden)
Ai-Min Yang
2014-01-01
Full Text Available The local fractional Laplace variational iteration method was applied to solve the linear local fractional partial differential equations. The local fractional Laplace variational iteration method is coupled by the local fractional variational iteration method and Laplace transform. The nondifferentiable approximate solutions are obtained and their graphs are also shown.
Directory of Open Access Journals (Sweden)
Mehmet Tarik Atay
2013-01-01
Full Text Available The Variational Iteration Method (VIM and Modified Variational Iteration Method (MVIM are used to find solutions of systems of stiff ordinary differential equations for both linear and nonlinear problems. Some examples are given to illustrate the accuracy and effectiveness of these methods. We compare our results with exact results. In some studies related to stiff ordinary differential equations, problems were solved by Adomian Decomposition Method and VIM and Homotopy Perturbation Method. Comparisons with exact solutions reveal that the Variational Iteration Method (VIM and the Modified Variational Iteration Method (MVIM are easier to implement. In fact, these methods are promising methods for various systems of linear and nonlinear stiff ordinary differential equations. Furthermore, VIM, or in some cases MVIM, is giving exact solutions in linear cases and very satisfactory solutions when compared to exact solutions for nonlinear cases depending on the stiffness ratio of the stiff system to be solved.
Energy Technology Data Exchange (ETDEWEB)
Cojazzi, G.G.M.; Renda, G. [European Commission, Joint Research Centre, Institute for the Protection and Security of the Citizen, TP 210, Via E. Fermi 2749, I-21027, Ispra - Va (Italy); Hassberger, J. [Lawrence Livermore National Laboratory (United States)
2009-06-15
The Generation IV International Forum (GIF) Proliferation Resistance and Physical Protection (PR and PP) Working Group has developed a methodology for the PR and PP evaluation of advanced nuclear energy systems. The methodology is organised as a progressive approach applying alternative methods at different levels of thoroughness as more design information becomes available and research improves the depth of technical knowledge. The GIF Proliferation Resistance and Physical Protection (PR and PP) Working Group developed a notional sodium cooled fast neutron nuclear reactor, named the Example Sodium Fast Reactor (ESFR), for use in developing and testing the methodology. The ESFR is a hypothetical nuclear energy system consisting of four sodium-cooled fast reactors of medium size, co-located with an on-site dry fuel storage facility and a Fuel Cycle Facility with pyrochemical processing of the spent fuel and re-fabrication of new ESFR fuel elements. The baseline design is an actinide burner, with LWR spent fuel elements as feed material processed on the site. In the years 2007 and 2008 the GIF PR and PP Working Group performed a case study designed to both test the methodology and demonstrate how it can provide useful feedback to designers even during pre-conceptual design. The Study analysed the response of the entire ESFR system to different proliferation and theft strategies. Three proliferation threats were considered: Concealed diversion, Concealed Misuse and Abrogation. An overt theft threat was also studied. One of the objectives of the case study is to confirm the capability of the methodology to capture PR and PP differences among varied design configurations. To this aim Design Variations (DV) have been also defined corresponding respectively to a) a small variation of the baseline design (DV0), b) a deep burner configuration (DV1), c) a self sufficient core (DV2), and c) a breeder configuration (DV3). This paper builds on the approach followed for the
Direct fourier method reconstruction based on unequally spaced fast fourier transform
International Nuclear Information System (INIS)
Wu Xiaofeng; Zhao Ming; Liu Li
2003-01-01
First, We give an Unequally Spaced Fast Fourier Transform (USFFT) method, which is more exact and theoretically more comprehensible than its former counterpart. Then, with an interesting interpolation scheme, we discusse how to apply USFFT to Direct Fourier Method (DFM) reconstruction of parallel projection data. At last, an emulation experiment result is given. (authors)
Design Method for Fast Switching Seat Valves for Digital Displacement Machines
DEFF Research Database (Denmark)
Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik C.
2014-01-01
corresponding to the piston movement, which has been shown to facilitate superior part load efficiency combined with high bandwidth compared to traditional displacement machines. However, DD machines need fast switching on-off valves with low pressure loss for efficient operation, especially in fast rotating......Digital Displacement (DD) machines are upcoming technology where the displacement of each pressure chamber is controlled electronically by use of two fast switching seat valves. The effective displacement and operation type (pumping/motoring) may be controlled by manipulating the seat valves...... method for DD seat valves are presented, taking into account the significant aspects related to obtaining efficient DD valves with basis in a given DD machine specifications. The seat area is minimized and the stroke length is minimized to obtain fast switching times while considering the pressure loss...
DEFF Research Database (Denmark)
McCloskey, Douglas; Utrilla, Jose; Naviaux, Robert K.
2015-01-01
, we develop a fast-filtration method using pressuredriven Swinnex filters. We show that the method is fast enough to provide an accurate snapshot of intracellular metabolism, reduces matrix interference from the media to improve the number of compounds that can be detected, and is applicable...... to anaerobic and aerobic liquid cultures grown in a variety of culturing systems. Furthermore, we apply the fast filtration method to investigate differences in the absolute intracellular metabolite levels of anaerobic cultures grown in minimal and complex media....
Free vibration of finite cylindrical shells by the variational method
International Nuclear Information System (INIS)
Campen, D.H. van; Huetink, J.
1975-01-01
The calculation of the free vibrations of circular cylindrical shells of finite length has been of engineer's interest for a long time. The motive for the present calculations originates from a particular type of construction at the inlet of a sodium heated superheater with helix heating bundle for SNR-Kalkar. The variational analysis is based on a modified energy functional for cylindrical shells, proposed by Koiter and resulting in Morley's equilibrium equations. As usual, the dispacement amplitude is assumed to be distributed harmonically in the circumferential direction of the shell. Following the method of Gontkevich, the dependence between the displacements of the shell middle surface and the axial shell co-ordinate is expressed approximately by a set of eigenfunctions of a free vibrating beam satisfying the desired boundary conditions. Substitution of this displacement expression into the virtual work equation for the complete shell leads to a characteristic equation determining the natural frequencies. The calculations are carried out for a clamped-clamped and a clamped-free cylinder. A comparison is given between the above numerical results and experimental and theoretical results from literature. In addition, the influence of surrounding fluid mass on the above frequencies is analysed for a clamped-clamped shell. The solution for the velocity potential used in this case differs from the solutions used in literature until now in that not only travelling waves in the axial direction are considered. (Auth.)
Variational methods applied to problems of diffusion and reaction
Strieder, William
1973-01-01
This monograph is an account of some problems involving diffusion or diffusion with simultaneous reaction that can be illuminated by the use of variational principles. It was written during a period that included sabbatical leaves of one of us (W. S. ) at the University of Minnesota and the other (R. A. ) at the University of Cambridge and we are grateful to the Petroleum Research Fund for helping to support the former and the Guggenheim Foundation for making possible the latter. We would also like to thank Stephen Prager for getting us together in the first place and for showing how interesting and useful these methods can be. We have also benefitted from correspondence with Dr. A. M. Arthurs of the University of York and from the counsel of Dr. B. D. Coleman the general editor of this series. Table of Contents Chapter 1. Introduction and Preliminaries . 1. 1. General Survey 1 1. 2. Phenomenological Descriptions of Diffusion and Reaction 2 1. 3. Correlation Functions for Random Suspensions 4 1. 4. Mean Free ...
Variational method for infinite nuclear matter with noncentral forces
International Nuclear Information System (INIS)
Takano, M.; Yamada, M.
1998-01-01
Approximate energy expressions are proposed for infinite zero-temperature nuclear matter by taking into account noncentral forces. They are explicitly expressed as functionals of spin- (isospin-) dependent radial distribution functions, tensor distribution functions and spin-orbit distribution functions, and can be used conveniently in the variational method. A notable feature of these expressions is that they automatically guarantee the necessary conditions on the spin-isospin-dependent structure functions. The Euler-Lagrange equations are derived from these energy expressions and numerically solved for neutron matter and symmetric nuclear matter. The results show that the noncentral forces bring down the total energies too much with too dense saturation densities. Since the main reason for these undesirable results seems to be the long tails of the noncentral distribution functions, an effective theory is proposed by introducing a density-dependent damping function into the noncentral potentials to suppress the long tails of the non-central distribution functions. By adjusting the value of a parameter included in the damping function, we can reproduce the saturation point (both the energy and density) of symmetric nuclear matter with the Hamada-Johnston potential. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
Chen, Fan; Huang, Shaoxiong; Ding, Jinjin; Ding, Jinjin; Gao, Bo; Xie, Yuguang; Wang, Xiaoming
2018-01-01
This paper proposes a fast reliability assessing method for distribution grid with distributed renewable energy generation. First, the Weibull distribution and the Beta distribution are used to describe the probability distribution characteristics of wind speed and solar irradiance respectively, and the models of wind farm, solar park and local load are built for reliability assessment. Then based on power system production cost simulation probability discretization and linearization power flow, a optimal power flow objected with minimum cost of conventional power generation is to be resolved. Thus a reliability assessment for distribution grid is implemented fast and accurately. The Loss Of Load Probability (LOLP) and Expected Energy Not Supplied (EENS) are selected as the reliability index, a simulation for IEEE RBTS BUS6 system in MATLAB indicates that the fast reliability assessing method calculates the reliability index much faster with the accuracy ensured when compared with Monte Carlo method.
Hybrid massively parallel fast sweeping method for static Hamilton–Jacobi equations
Energy Technology Data Exchange (ETDEWEB)
Detrixhe, Miles, E-mail: mdetrixhe@engineering.ucsb.edu [Department of Mechanical Engineering (United States); University of California Santa Barbara, Santa Barbara, CA, 93106 (United States); Gibou, Frédéric, E-mail: fgibou@engineering.ucsb.edu [Department of Mechanical Engineering (United States); University of California Santa Barbara, Santa Barbara, CA, 93106 (United States); Department of Computer Science (United States); Department of Mathematics (United States)
2016-10-01
The fast sweeping method is a popular algorithm for solving a variety of static Hamilton–Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling, and show state-of-the-art speedup values for the fast sweeping method.
Hybrid massively parallel fast sweeping method for static Hamilton–Jacobi equations
International Nuclear Information System (INIS)
Detrixhe, Miles; Gibou, Frédéric
2016-01-01
The fast sweeping method is a popular algorithm for solving a variety of static Hamilton–Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling, and show state-of-the-art speedup values for the fast sweeping method.
International Nuclear Information System (INIS)
Krylov, V.I.; Sorokin, S.V.
1998-01-01
The dynamics of a Euler-Bernoulli beam with a time-and-space dependent bending stiffness is studied. The , problem is considered in connection with the application of noise control using smart structures. It is shown that a control for the vibrations of the beam can be achieved by varying the bending stiffness. The technique of direct separation of fast and slow motion coupled with a Green's function method is used to analyze the dynamics of the beam with high-frequency modulation of the stiffness
Snow, M E; Crippen, G M
1991-08-01
The structure of the AMBER potential energy surface of the cyclic tetrapeptide cyclotetrasarcosyl is analyzed as a function of the dimensionality of coordinate space. It is found that the number of local energy minima decreases as the dimensionality of the space increases until some limit at which point equipotential subspaces appear. The applicability of energy embedding methods to finding global energy minima in this type of energy-conformation space is explored. Dimensional oscillation, a computationally fast variant of energy embedding is introduced and found to sample conformation space widely and to do a good job of finding global and near-global energy minima.
Combined method for the fast determination of pure beta emitting radioisotopes in food samples
International Nuclear Information System (INIS)
Kabai, Eva; Savkin, Birgit; Mehlsam, Isabell; Poppitz-Spuhler, Angela
2017-01-01
Fast radioanalytical methods are essential for a rapid response of decision makers. A fast method for the simultaneous determination of the pure beta emitting radionuclides 89 Sr/ 90 Sr and 99 Tc in food samples was developed. It includes the precipitation of fat and proteins with trichloroacetic acid for milk and dairy products and microwave digestion for other food products, followed by an anion exchange step to separate strontium from technetium. The purification steps for strontium and technetium are done using Sr-resin and TEVA-resin, respectively. Typical chemical yields are around 70 % for both radionuclides. The whole determination takes only around 20 h. (author)
International Nuclear Information System (INIS)
Kawashima, N.; Katori, M.; Tsallis, C.; Suzuki, M.
1989-01-01
A general procedure to study critical phenomena of magnetic systems is discussed. It consists of systematic series of Landau-like approximations (Extended Variational Method) and the coherent-anomaly method (CAM). As for susceptibility, the present method is equivalent to the power-series CAM theory. On the other hand, the EVM gives a set of new approximants for other physical quantities. Applications to d-dimensional Ising ferromagnets are also described. The critical points and exponents are estimated with high accuracy. (author) [pt
Furihata, Daisuke
2010-01-01
Nonlinear Partial Differential Equations (PDEs) have become increasingly important in the description of physical phenomena. Unlike Ordinary Differential Equations, PDEs can be used to effectively model multidimensional systems. The methods put forward in Discrete Variational Derivative Method concentrate on a new class of ""structure-preserving numerical equations"" which improves the qualitative behaviour of the PDE solutions and allows for stable computing. The authors have also taken care to present their methods in an accessible manner, which means that the book will be useful to engineer
Jia, Xun; Lou, Yifei; Li, Ruijiang; Song, William Y; Jiang, Steve B
2010-04-01
Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. The goal of this work is to develop a fast GPU-based algorithm to reconstruct CBCT from undersampled and noisy projection data so as to lower the imaging dose. The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. The authors developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. A multigrid technique is also employed. It is found that 20-40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 s on an NVIDIA Tesla C1060 (NVIDIA, Santa Clara, CA) GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studies indicate that the algorithm enables the CBCT to be reconstructed under a scanning protocol with as low as 0.1 mA s/projection. Comparing with currently widely used full-fan head and neck scanning protocol of approximately 360 projections with 0.4 mA s/projection, it is estimated that an overall 36-72 times dose reduction has been achieved in our fast CBCT reconstruction algorithm. This work indicates that the developed GPU-based CBCT reconstruction algorithm is capable of lowering imaging dose considerably. The high computation efficiency in this algorithm makes the iterative CBCT reconstruction approach applicable in real clinical environments.
Technical Note: A fast online adaptive replanning method for VMAT using flattening filter free beams
Energy Technology Data Exchange (ETDEWEB)
Ates, Ozgur; Ahunbay, Ergun E.; Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States); Moreau, Michel [Elekta, Inc., Maryland Heights, Missouri 63043 (United States)
2016-06-15
Purpose: To develop a fast replanning algorithm based on segment aperture morphing (SAM) for online replanning of volumetric modulated arc therapy (VMAT) with flattening filter free (FFF) beams. Methods: A software tool was developed to interface with a VMAT research planning system, which enables the input and output of beam and machine parameters of VMAT plans. The SAM algorithm was used to modify multileaf collimator positions for each segment aperture based on the changes of the target from the planning (CT/MR) to daily image [CT/CBCT/magnetic resonance imaging (MRI)]. The leaf travel distance was controlled for large shifts to prevent the increase of VMAT delivery time. The SAM algorithm was tested for 11 patient cases including prostate, pancreatic, and lung cancers. For each daily image set, three types of VMAT plans, image-guided radiation therapy (IGRT) repositioning, SAM adaptive, and full-scope reoptimization plans, were generated and compared. Results: The SAM adaptive plans were found to have improved the plan quality in target and/or critical organs when compared to the IGRT repositioning plans and were comparable to the reoptimization plans based on the data of planning target volume (PTV)-V100 (volume covered by 100% of prescription dose). For the cases studied, the average PTV-V100 was 98.85% ± 1.13%, 97.61% ± 1.45%, and 92.84% ± 1.61% with FFF beams for the reoptimization, SAM adaptive, and repositioning plans, respectively. The execution of the SAM algorithm takes less than 10 s using 16-CPU (2.6 GHz dual core) hardware. Conclusions: The SAM algorithm can generate adaptive VMAT plans using FFF beams with comparable plan qualities as those from the full-scope reoptimization plans based on daily CT/CBCT/MRI and can be used for online replanning to address interfractional variations.
Variational methods and effective actions in string models
International Nuclear Information System (INIS)
Dereli, T.; Tucker, R.W.
1987-01-01
Effective actions motivated by zero-order and first-order actions are examined. Particular attention is devoted to a variational procedure that is consistent with the structure equations involving the Lorentz connection. Attention is drawn to subtleties that can arise in varying higher-order actions and an efficient procedure developed to handle these cases using the calculus of forms. The effect of constrained variations on the field equations is discussed. (author)
Application of synthesis methods to two-dimensional fast reactor transient study
International Nuclear Information System (INIS)
Izutsu, Sadayuki; Hirakawa, Naohiro
1978-01-01
Space time synthesis and time synthesis codes were developed and applied to the space-dependent kinetics benchmark problem of a two-dimensional fast reactor model, and it was found both methods are accurate and economical for the fast reactor kinetics study. Comparison between the space time synthesis and the time synthesis was made. Also, in space time synthesis, the influence of the number of trial functions on the error and on the computing time and the effect of degeneration of expansion coefficients are investigated. The matrix factorization method is applied to the inversion of the matrix equation derived from the synthesis equation, and it is indicated that by the use of this scheme space-dependent kinetics problem of a fast reactor can be solved efficiently by space time synthesis. (auth.)
FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule
Lu Si; Jie Yu; Shasha Li; Jun Ma; Lei Luo; Qingbo Wu; Yongqi Ma; Zhengji Liu
2017-01-01
Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rul...
Sui, Sai; Ma, Hua; Lv, Yueguang; Wang, Jiafu; Li, Zhiqiang; Zhang, Jieqiu; Xu, Zhuo; Qu, Shaobo
2018-01-22
Arbitrary control of electromagnetic waves remains a significant challenge although it promises many important applications. Here, we proposed a fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry (PB) phase, of which the elements are non-absorptive and capable of predicting the wideband and smooth phase-shift. In our design method, the metasurface is composed of low-Q-factor resonant elements without using the PB phase, and is optimized by the genetic algorithm and nonlinear fitting method, having the advantages that the far field scattering patterns can be quickly synthesized by the hybrid array patterns. To validate the design method, a wideband low radar cross section metasurface is demonstrated, showing good feasibility and performance of wideband RCS reduction. This work reveals an opportunity arising from a metasurface in effective manipulation of microwave and flexible fast optimal design method.
Using the SAND-II and MLM methods to reconstruct fast neutron spectra
International Nuclear Information System (INIS)
Bondars, Kh.Ya.; Kamnev, V.A.; Lapenas, A.A.; Troshin, V.S.
1981-01-01
The reconstruction of fast neutron spectra from measured reaction rates may be reduced to the solution of Fredholm's integral equation of the first kind. This problem falls in the category of incorrectly formulated problems, and so additional information is required concerning the unknown function i.e. concerning the differential energy dependence of the neutron, flux density sup(phi)(E). There are various methods for seeking a solution to the problem as formulated above. One of the best-known methods used in the USSR is the maximum likelihood method (MLM) (or directional difference method (DDM)), whereas SAND-II is commonly used abroad. The purpose of this paper is to compare the MLM and SAND-II methods, taking as an example the processing of measurement data which were obtained in the B-2 beam line at the BR-10 reactor in order to determine the composition of shielding for a fast reactor
Energy Technology Data Exchange (ETDEWEB)
Yu, Hua-Gen, E-mail: hgy@bnl.gov [Division of Chemistry, Department of Energy and Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)
2016-08-28
We report a new full-dimensional variational algorithm to calculate rovibrational spectra of polyatomic molecules using an exact quantum mechanical Hamiltonian. The rovibrational Hamiltonian of system is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame. It is expressed in an explicitly Hermitian form. The Hamiltonian has a universal formulation regardless of the choice of orthogonal polyspherical coordinates and the number of atoms in molecule, which is suitable for developing a general program to study the spectra of many polyatomic systems. An efficient coupled-state approach is also proposed to solve the eigenvalue problem of the Hamiltonian using a multi-layer Lanczos iterative diagonalization approach via a set of direct product basis set in three coordinate groups: radial coordinates, angular variables, and overall rotational angles. A simple set of symmetric top rotational functions is used for the overall rotation whereas a potential-optimized discrete variable representation method is employed in radial coordinates. A set of contracted vibrationally diabatic basis functions is adopted in internal angular variables. Those diabatic functions are first computed using a neural network iterative diagonalization method based on a reduced-dimension Hamiltonian but only once. The final rovibrational energies are computed using a modified Lanczos method for a given total angular momentum J, which is usually fast. Two numerical applications to CH{sub 4} and H{sub 2}CO are given, together with a comparison with previous results.
DEFF Research Database (Denmark)
Meier, Robert J.; Gundersen Deslauriers, Maria; Woodley, John
2015-01-01
A simple, easy-to-use, and fast approach method is proposed and validated that can predict whether a transaminase reaction is thermodynamically unfavourable. This allowed us to de-select, in the present case, at least 50% of the reactions because they were thermodynamically unfavourable as confir...
Recent Development of Radioanalytical Methods at the IBR-2 Pulsed Fast Reactor
International Nuclear Information System (INIS)
Nazarov, V.M.; Peresedov, V.F.
1994-01-01
Experience in the application of radioanalytical methods, including NAA, at the IBR-2 pulsed fast reactor is reviewed. Details of the instruments dedicated to neutron activation analysis and radiography studies are reported. Applications of resonance neutrons to environmental monitoring and to the investigation of high-purity materials, are examplified. 15 refs. 9 figs., 9 tabs
A fast nonlinear conjugate gradient based method for 3D frictional contact problems
Zhao, J.; Vollebregt, E.A.H.; Oosterlee, C.W.
2014-01-01
This paper presents a fast numerical solver for a nonlinear constrained optimization problem, arising from a 3D frictional contact problem. It incorporates an active set strategy with a nonlinear conjugate gradient method. One novelty is to consider the tractions of each slip element in a polar
A fast nonlinear conjugate gradient based method for 3D concentrated frictional contact problems
J. Zhao (Jing); E.A.H. Vollebregt (Edwin); C.W. Oosterlee (Cornelis)
2015-01-01
htmlabstractThis paper presents a fast numerical solver for a nonlinear constrained optimization problem, arising from 3D concentrated frictional shift and rolling contact problems with dry Coulomb friction. The solver combines an active set strategy with a nonlinear conjugate gradient method. One
Veselovskiy, R. V.; Latyshev, A. V.; Pavlov, V. E.
2011-12-01
We have studied the lowest part of the Permo-Triassic Siberian trap sequence which is located in the middle course of the Angara river (Southern Siberia). This sequenced is composed by 200m thick volcanoclastic rocks (tuffs with bombs of different composition) and includes numerous mafic subvolcanic bodies (dykes and sills). Altogether more than 20 sites representing tuffs, bombs, dykes and sills stretched along the valley of the Angara river over the distance more than 30 km have been sampled and studied. Obtained site mean paleomagnetic directions are tightly grouped, showing very lower scatter. Taking into account that amplitude of geomagnetic secular variation at the P-T boundary was about of same order as in Late Cenozoic (Pavlov et al., 2011) this lower scatter can be either a sequence of very fast traps emplacement which could have disastrous environmental impact or a result of subsequent regional remagnetization. The only geological event in the region which seems to be capable to cause this remagnetization is emplacement of Early Triassic sills in nearby areas. In such the case we should expect that mean paleomagnetic directions from these sills will be very close to these ones obtained from site presented in this report. We present results of paleomagnetic studies of these sills and make a choice in favor of one of discussed options. This work was supported by grants NSF EAR 0807585 ("The Siberian Traps and end-Permian extinction") and RFBR 09-05-01180, 10-05-00557.
Study on the betterment of fast drying quality of Myamar lacquer through modification method
International Nuclear Information System (INIS)
Khine-Khine-Tun; Khin-May-Lwin
2001-08-01
Nowadays, only crude resins are used for lacquer wares. In Myanmar lacquer ware makers have not yet used modification methods for fast drying and brightness to improve the quality as in the Japanese lacquer wares. Thus it takes about three months to season the lacquer wares. The main factor which delays the seasoning is the slow process of drying of thitsi (Myanmar lacquer), which is extracted from naturally grown Melanorrhoea usitata Wall. This paper is attempted to find ways for fast drying process. It was found that drying in the oven at 100 0 C is the suitable treatment for commercial scale production. (author)
Palmesi, P.; Abert, C.; Bruckner, F.; Suess, D.
2018-05-01
Fast stray field calculation is commonly considered of great importance for micromagnetic simulations, since it is the most time consuming part of the simulation. The Fast Multipole Method (FMM) has displayed linear O(N) parallelization behavior on many cores. This article investigates the error of a recent FMM approach approximating sources using linear—instead of constant—finite elements in the singular integral for calculating the stray field and the corresponding potential. After measuring performance in an earlier manuscript, this manuscript investigates the convergence of the relative L2 error for several FMM simulation parameters. Various scenarios either calculating the stray field directly or via potential are discussed.
Energy Technology Data Exchange (ETDEWEB)
Girardi, E.; Ruggieri, J.M. [CEA Cadarache (DER/SPRC/LEPH), 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Reacteurs; Santandrea, S. [CEA Saclay, Dept. Modelisation de Systemes et Structures DM2S/SERMA/LENR, 91 - Gif sur Yvette (France)
2005-07-01
This paper describes a recently-developed extension of our 'Multi-methods,multi-domains' (MM-MD) method for the solution of the multigroup transport equation. Based on a domain decomposition technique, our approach allows us to treat the one-group equation by cooperatively employing several numerical methods together. In this work, we describe the coupling between the Method of Characteristics (integro-differential equation, unstructured meshes) with the Variational Nodal Method (even parity equation, cartesian meshes). Then, the coupling method is applied to the benchmark model of the Phebus experimental facility (Cea Cadarache). Our domain decomposition method give us the capability to employ a very fine mesh in describing a particular fuel bundle with an appropriate numerical method (MOC), while using a much large mesh size in the rest of the core, in conjunction with a coarse-mesh method (VNM). This application shows the benefits of our MM-MD approach, in terms of accuracy and computing time: the domain decomposition method allows us to reduce the Cpu time, while preserving a good accuracy of the neutronic indicators: reactivity, core-to-bundle power coupling coefficient and flux error. (authors)
International Nuclear Information System (INIS)
Girardi, E.; Ruggieri, J.M.
2005-01-01
This paper describes a recently-developed extension of our 'Multi-methods,multi-domains' (MM-MD) method for the solution of the multigroup transport equation. Based on a domain decomposition technique, our approach allows us to treat the one-group equation by cooperatively employing several numerical methods together. In this work, we describe the coupling between the Method of Characteristics (integro-differential equation, unstructured meshes) with the Variational Nodal Method (even parity equation, cartesian meshes). Then, the coupling method is applied to the benchmark model of the Phebus experimental facility (Cea Cadarache). Our domain decomposition method give us the capability to employ a very fine mesh in describing a particular fuel bundle with an appropriate numerical method (MOC), while using a much large mesh size in the rest of the core, in conjunction with a coarse-mesh method (VNM). This application shows the benefits of our MM-MD approach, in terms of accuracy and computing time: the domain decomposition method allows us to reduce the Cpu time, while preserving a good accuracy of the neutronic indicators: reactivity, core-to-bundle power coupling coefficient and flux error. (authors)
A hybrid source-driven method to compute fast neutron fluence in reactor pressure vessel - 017
International Nuclear Information System (INIS)
Ren-Tai, Chiang
2010-01-01
A hybrid source-driven method is developed to compute fast neutron fluence with neutron energy greater than 1 MeV in nuclear reactor pressure vessel (RPV). The method determines neutron flux by solving a steady-state neutron transport equation with hybrid neutron sources composed of peripheral fixed fission neutron sources and interior chain-reacted fission neutron sources. The relative rod-by-rod power distribution of the peripheral assemblies in a nuclear reactor obtained from reactor core depletion calculations and subsequent rod-by-rod power reconstruction is employed as the relative rod-by-rod fixed fission neutron source distribution. All fissionable nuclides other than U-238 (such as U-234, U-235, U-236, Pu-239 etc) are replaced with U-238 to avoid counting the fission contribution twice and to preserve fast neutron attenuation for heavy nuclides in the peripheral assemblies. An example is provided to show the feasibility of the method. Since the interior fuels only have a marginal impact on RPV fluence results due to rapid attenuation of interior fast fission neutrons, a generic set or one of several generic sets of interior fuels can be used as the driver and only the neutron sources in the peripheral assemblies will be changed in subsequent hybrid source-driven fluence calculations. Consequently, this hybrid source-driven method can simplify and reduce cost for fast neutron fluence computations. This newly developed hybrid source-driven method should be a useful and simplified tool for computing fast neutron fluence at selected locations of interest in RPV of contemporary nuclear power reactors. (authors)
Fast methods for long-range interactions in complex systems. Lecture notes
International Nuclear Information System (INIS)
Sutmann, Godehard; Gibbon, Paul; Lippert, Thomas
2011-01-01
Parallel computing and computer simulations of complex particle systems including charges have an ever increasing impact in a broad range of fields in the physical sciences, e.g. in astrophysics, statistical physics, plasma physics, material sciences, physical chemistry, and biophysics. The present summer school, funded by the German Heraeus-Foundation, took place at the Juelich Supercomputing Centre from 6 - 10 September 2010. The focus was on providing an introduction and overview over different methods, algorithms and new trends for the computational treatment of long-range interactions in particle systems. The Lecture Notes contain an introduction into particle simulation, as well as five different fast methods, i.e. the Fast Multipole Method, Barnes-Hut Tree Method, Multigrid, FFT based methods, and Fast Summation using the non-equidistant FFT. In addition to introducing the methods, efficient parallelization of the methods is presented in detail. This publication was edited at the Juelich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Juelich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Juelich which use simulation on supercomputers as their main research methodology. (orig.)
Fast methods for long-range interactions in complex systems. Lecture notes
Energy Technology Data Exchange (ETDEWEB)
Sutmann, Godehard; Gibbon, Paul; Lippert, Thomas (eds.)
2011-10-13
Parallel computing and computer simulations of complex particle systems including charges have an ever increasing impact in a broad range of fields in the physical sciences, e.g. in astrophysics, statistical physics, plasma physics, material sciences, physical chemistry, and biophysics. The present summer school, funded by the German Heraeus-Foundation, took place at the Juelich Supercomputing Centre from 6 - 10 September 2010. The focus was on providing an introduction and overview over different methods, algorithms and new trends for the computational treatment of long-range interactions in particle systems. The Lecture Notes contain an introduction into particle simulation, as well as five different fast methods, i.e. the Fast Multipole Method, Barnes-Hut Tree Method, Multigrid, FFT based methods, and Fast Summation using the non-equidistant FFT. In addition to introducing the methods, efficient parallelization of the methods is presented in detail. This publication was edited at the Juelich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Juelich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Juelich which use simulation on supercomputers as their main research methodology. (orig.)
Zhao, Yu; Shi, Chen-Xiao; Kwon, Ki-Chul; Piao, Yan-Ling; Piao, Mei-Lan; Kim, Nam
2018-03-01
We propose a fast calculation method for a computer-generated hologram (CGH) of real objects that uses a point cloud gridding method. The depth information of the scene is acquired using a depth camera and the point cloud model is reconstructed virtually. Because each point of the point cloud is distributed precisely to the exact coordinates of each layer, each point of the point cloud can be classified into grids according to its depth. A diffraction calculation is performed on the grids using a fast Fourier transform (FFT) to obtain a CGH. The computational complexity is reduced dramatically in comparison with conventional methods. The feasibility of the proposed method was confirmed by numerical and optical experiments.
Analysis of spin and gauge models with variational methods
International Nuclear Information System (INIS)
Dagotto, E.; Masperi, L.; Moreo, A.; Della Selva, A.; Fiore, R.
1985-01-01
Since independent-site (link) or independent-link (plaquette) variational states enhance the order or the disorder, respectively, in the treatment of spin (gauge) models, we prove that mixed states are able to improve the critical coupling while giving the qualitatively correct behavior of the relevant parameters
Perturbative vs. variational methods in the study of carbon nanotubes
DEFF Research Database (Denmark)
Cornean, Horia; Pedersen, Thomas Garm; Ricaud, Benjamin
2007-01-01
Recent two-photon photo-luminescence experiments give accurate data for the ground and first excited excitonic energies at different nanotube radii. In this paper we compare the analytic approximations proved in [CDR], with a standard variational approach. We show an excellent agreement at suffic...
Variational method for inverting the Kohn-Sham procedure
International Nuclear Information System (INIS)
Kadantsev, Eugene S.; Stott, M.J.
2004-01-01
A procedure based on a variational principle is developed for determining the local Kohn-Sham (KS) potential corresponding to a given ground-state electron density. This procedure is applied to calculate the exchange-correlation part of the effective Kohn-Sham (KS) potential for the neon atom and the methane molecule
Infrared video based gas leak detection method using modified FAST features
Wang, Min; Hong, Hanyu; Huang, Likun
2018-03-01
In order to detect the invisible leaking gas that is usually dangerous and easily leads to fire or explosion in time, many new technologies have arisen in the recent years, among which the infrared video based gas leak detection is widely recognized as a viable tool. However, all the moving regions of a video frame can be detected as leaking gas regions by the existing infrared video based gas leak detection methods, without discriminating the property of each detected region, e.g., a walking person in a video frame may be also detected as gas by the current gas leak detection methods.To solve this problem, we propose a novel infrared video based gas leak detection method in this paper, which is able to effectively suppress strong motion disturbances.Firstly, the Gaussian mixture model(GMM) is used to establish the background model.Then due to the observation that the shapes of gas regions are different from most rigid moving objects, we modify the Features From Accelerated Segment Test (FAST) algorithm and use the modified FAST (mFAST) features to describe each connected component. In view of the fact that the statistical property of the mFAST features extracted from gas regions is different from that of other motion regions, we propose the Pixel-Per-Points (PPP) condition to further select candidate connected components.Experimental results show that the algorithm is able to effectively suppress most strong motion disturbances and achieve real-time leaking gas detection.
International Nuclear Information System (INIS)
Corcuera, Roberto.
1975-12-01
The present work is a contribution to the neutronics calculational methods of fast neutron reactors. The first step is devoted to the analysis of the validity of the few-groups (of the order of 25) multigroup scheme, and of the transport-correction approximation for the treatment of the scattering anisotropy. This analysis includes both the reactor core, where the usual approximations are found to be satisfactory, and the reflector, where it turns out that the rapid variations of the neutron flux and of it's spectrum necessitate the improvement of the multigroup cross-sections' generation. Therefore, a zero-dimensional simple and accurate model for the average spectrum in the reflector is developed by the space-energy synthesis method. Finally using the Rayleigh-Ritz method, a model is developed in which the flux is spatially represented by an analytical function. This model is applied to the analysis of the sensitivity of reflector neutronics parameters to the variations of the cross sections [fr
International Nuclear Information System (INIS)
Nigg, D.W.; Wemple, C.A.; Hartwell, J.K.; Harker, Y.D.; Venhuizen, J.R.; Risler, R.
1997-12-01
A closed-form direct method for unfolding neutron spectra from foil activation data is presented. The method is applied to measurements of the free-field neutron spectrum produced by the proton-cyclotron-based fast-neutron radiotherapy facility at the University of Washington (UW) School of Medicine. The results compare favorably with theoretical expectations based on an a-priori calculational model of the target and neutron beamline configuration of the UW facility
Bai, Bing
2012-03-01
There has been a lot of work on total variation (TV) regularized tomographic image reconstruction recently. Many of them use gradient-based optimization algorithms with a differentiable approximation of the TV functional. In this paper we apply TV regularization in Positron Emission Tomography (PET) image reconstruction. We reconstruct the PET image in a Bayesian framework, using Poisson noise model and TV prior functional. The original optimization problem is transformed to an equivalent problem with inequality constraints by adding auxiliary variables. Then we use an interior point method with logarithmic barrier functions to solve the constrained optimization problem. In this method, a series of points approaching the solution from inside the feasible region are found by solving a sequence of subproblems characterized by an increasing positive parameter. We use preconditioned conjugate gradient (PCG) algorithm to solve the subproblems directly. The nonnegativity constraint is enforced by bend line search. The exact expression of the TV functional is used in our calculations. Simulation results show that the algorithm converges fast and the convergence is insensitive to the values of the regularization and reconstruction parameters.
Directory of Open Access Journals (Sweden)
Wouter D Weeda
Full Text Available The amplitude and latency of single-trial EEG/MEG signals may provide valuable information concerning human brain functioning. In this article we propose a new method to reliably estimate single-trial amplitude and latency of EEG/MEG signals. The advantages of the method are fourfold. First, no a-priori specified template function is required. Second, the method allows for multiple signals that may vary independently in amplitude and/or latency. Third, the method is less sensitive to noise as it models data with a parsimonious set of basis functions. Finally, the method is very fast since it is based on an iterative linear least squares algorithm. A simulation study shows that the method yields reliable estimates under different levels of latency variation and signal-to-noise ratioÕs. Furthermore, it shows that the existence of multiple signals can be correctly determined. An application to empirical data from a choice reaction time study indicates that the method describes these data accurately.
Colour based fire detection method with temporal intensity variation filtration
Trambitckii, K.; Anding, K.; Musalimov, V.; Linß, G.
2015-02-01
Development of video, computing technologies and computer vision gives a possibility of automatic fire detection on video information. Under that project different algorithms was implemented to find more efficient way of fire detection. In that article colour based fire detection algorithm is described. But it is not enough to use only colour information to detect fire properly. The main reason of this is that in the shooting conditions may be a lot of things having colour similar to fire. A temporary intensity variation of pixels is used to separate them from the fire. These variations are averaged over the series of several frames. This algorithm shows robust work and was realised as a computer program by using of the OpenCV library.
Colour based fire detection method with temporal intensity variation filtration
International Nuclear Information System (INIS)
Trambitckii, K; Musalimov, V; Anding, K; Linß, G
2015-01-01
Development of video, computing technologies and computer vision gives a possibility of automatic fire detection on video information. Under that project different algorithms was implemented to find more efficient way of fire detection. In that article colour based fire detection algorithm is described. But it is not enough to use only colour information to detect fire properly. The main reason of this is that in the shooting conditions may be a lot of things having colour similar to fire. A temporary intensity variation of pixels is used to separate them from the fire. These variations are averaged over the series of several frames. This algorithm shows robust work and was realised as a computer program by using of the OpenCV library
Energy Technology Data Exchange (ETDEWEB)
Magome, Taiki [Department of Radiological Sciences, Faculty of Health Sciences, Komazawa University, Tokyo (Japan); Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota (United States); Haga, Akihiro [Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Takahashi, Yutaka [Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota (United States); Department of Radiation Oncology, Osaka University, Osaka (Japan); Nakagawa, Keiichi [Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Dusenbery, Kathryn E. [Department of Therapeutic Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Hui, Susanta K., E-mail: shui@coh.org [Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota (United States); Department of Therapeutic Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Department of Radiation Oncology and Beckman Research Institute, City of Hope, Duarte, California (United States)
2016-11-01
Purpose: Megavoltage computed tomographic (MVCT) imaging has been widely used for the 3-dimensional (3-D) setup of patients treated with helical tomotherapy (HT). One drawback of MVCT is its very long imaging time, the result of slow couch speeds of approximately 1 mm/s, which can be difficult for the patient to tolerate. We sought to develop an MVCT imaging method allowing faster couch speeds and to assess its accuracy for image guidance for HT. Methods and Materials: Three cadavers were scanned 4 times with couch speeds of 1, 2, 3, and 4 mm/s. The resulting MVCT images were reconstructed using an iterative reconstruction (IR) algorithm with a penalty term of total variation and with a conventional filtered back projection (FBP) algorithm. The MVCT images were registered with kilovoltage CT images, and the registration errors from the 2 reconstruction algorithms were compared. This fast MVCT imaging was tested in 3 cases of total marrow irradiation as a clinical trial. Results: The 3-D registration errors of the MVCT images reconstructed with the IR algorithm were smaller than the errors of images reconstructed with the FBP algorithm at fast couch speeds (2, 3, 4 mm/s). The scan time and imaging dose at a speed of 4 mm/s were reduced to 30% of those from a conventional coarse mode scan. For the patient imaging, faster MVCT (3 mm/s couch speed) scanning reduced the imaging time and still generated images useful for anatomic registration. Conclusions: Fast MVCT with the IR algorithm is clinically feasible for large 3-D target localization, which may reduce the overall time for the treatment procedure. This technique may also be useful for calculating daily dose distributions or organ motion analyses in HT treatment over a wide area. Automated integration of this imaging is at least needed to further assess its clinical benefits.
Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.
2014-05-01
Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in ambient air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C9-C15 BVOC composition of single plant emissions may be characterised within a 14.5 min analysis time. Moreover, in-situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an 11.7 min chromatographic separation time (increasing to 19.7 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). These analysis times potentially allow for a twofold to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in-situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC (OBVOC) linalool in ambient air. During this field deployment within a suburban forest
Some new mathematical methods for variational objective analysis
Wahba, Grace; Johnson, Donald R.
1994-01-01
Numerous results were obtained relevant to remote sensing, variational objective analysis, and data assimilation. A list of publications relevant in whole or in part is attached. The principal investigator gave many invited lectures, disseminating the results to the meteorological community as well as the statistical community. A list of invited lectures at meetings is attached, as well as a list of departmental colloquia at various universities and institutes.
Inversion methods for fast-ion velocity-space tomography in fusion plasmas
DEFF Research Database (Denmark)
Jacobsen, Asger Schou; Stagner, L.; Salewski, Mirko
2016-01-01
Velocity-space tomography has been used to infer 2D fast-ion velocity distribution functions. Here we compare the performance of five different tomographic inversion methods: truncated singular value decomposition, maximum entropy, minimum Fisher information and zeroth and first-order Tikhonov...... regularization. The inversion methods are applied to fast-ion Dα measurements taken just before and just after a sawtooth crash in the ASDEX Upgrade tokamak as well as to synthetic measurements from different test distributions. We find that the methods regularizing by penalizing steep gradients or maximizing...... entropy perform best. We assess the uncertainty of the calculated inversions taking into account photon noise, uncertainties in the forward model as well as uncertainties introduced by the regularization which allows us to distinguish regions of high and low confidence in the tomographies. In high...
Fast multipole acceleration of the MEG/EEG boundary element method
International Nuclear Information System (INIS)
Kybic, Jan; Clerc, Maureen; Faugeras, Olivier; Keriven, Renaud; Papadopoulo, Theo
2005-01-01
The accurate solution of the forward electrostatic problem is an essential first step before solving the inverse problem of magneto- and electroencephalography (MEG/EEG). The symmetric Galerkin boundary element method is accurate but cannot be used for very large problems because of its computational complexity and memory requirements. We describe a fast multipole-based acceleration for the symmetric boundary element method (BEM). It creates a hierarchical structure of the elements and approximates far interactions using spherical harmonics expansions. The accelerated method is shown to be as accurate as the direct method, yet for large problems it is both faster and more economical in terms of memory consumption
Zhou, Y; Mendonca, S C; Abel, G A; Hamilton, W; Walter, F M; Johnson, S; Shelton, J; Elliss-Brookes, L; McPhail, S; Lyratzopoulos, G
2018-01-01
In England, 'fast-track' (also known as 'two-week wait') general practitioner referrals for suspected cancer in symptomatic patients are used to shorten diagnostic intervals and are supported by clinical guidelines. However, the use of the fast-track pathway may vary for different patient groups. We examined data from 669 220 patients with 35 cancers diagnosed in 2006-2010 following either fast-track or 'routine' primary-to-secondary care referrals using 'Routes to Diagnosis' data. We estimated the proportion of fast-track referrals by sociodemographic characteristic and cancer site and used logistic regression to estimate respective crude and adjusted odds ratios. We additionally explored whether sociodemographic associations varied by cancer. There were large variations in the odds of fast-track referral by cancer (P<0.001). Patients with testicular and breast cancer were most likely to have been diagnosed after a fast-track referral (adjusted odds ratios 2.73 and 2.35, respectively, using rectal cancer as reference); whereas patients with brain cancer and leukaemias least likely (adjusted odds ratios 0.05 and 0.09, respectively, for brain cancer and acute myeloid leukaemia). There were sex, age and deprivation differences in the odds of fast-track referral (P<0.013) that varied in their size and direction for patients with different cancers (P<0.001). For example, fast-track referrals were least likely in younger women with endometrial cancer and in older men with testicular cancer. Fast-track referrals are less likely for cancers characterised by nonspecific presenting symptoms and patients belonging to low cancer incidence demographic groups. Interventions beyond clinical guidelines for 'alarm' symptoms are needed to improve diagnostic timeliness.
Energy Technology Data Exchange (ETDEWEB)
Kumar, A; Srinivasan, M; Basu, T K; Subba Rao, K [Bhabha Atomic Research Centre, Bombay (India). Neutron Physics Section
1977-01-01
A number of 26-group, S/sub 4/, transport theory calculations in spherical geometry were carried out to study the variation of ksub(eff) with core radius of bare and reflected small hard spectrum fast assemblies. For each system ksub(eff) was calculated for various core radii keeping reflector thickness and density constant. A plot of ksub(eff) vs. R/Rsub(c) gave an almost universal curve independent of core material, density and reflector properties. An empirical relation of the form ksub(eff) = k infinitely* (1 - exp(-Theta R/Rsub(c))) could be fitted to the ksub(eff) vs. R/Rsub(c) plot where Rsub(c) is the critical radius, and the constants k infinitely* and Theta are related through Theta = ln(k infinitely*/(k infinitely* - 1)). Thus the ksub(eff) vs. R/Rsub(c) relation is found to be governed by a single constant k infinitely*, valid for both bare and reflected systems. The agreement between DTF-IV calculated ksub(eff) values and that given by the empirical relation is better than 3% except in the highly subcritical domain where the discrepancy is a bit higher. The best fit value of k infinitely* for Pu 239 systems is found to be 2.88 and for U 235 systems 2.224. The paper discusses the physical interpretation of the form of the relation, its region of validity and makes an attempt to extend it to non-spherical geometries also.
Influence of Neutron Spectra Unfolding Method on Fast Neutron Dose Determination
International Nuclear Information System (INIS)
Marinkovic, P.
1991-01-01
Full text: Accuracy of knowing the fast neutron spectra has great influence on equivalent dose determination. In usual fast neutron spectrum measurements with scintillation detectors based on proton recoil, the main difficulty is confidence of unfolding method. In former ones variance of obtained result is usually great and negative values are possible too, which does means that we don't now exactly is obtained neutron spectrum real one. The new unfolding method based on Shanon's information theory, which gives non-negative spectrum and relative low variance, is obtained and appropriate numerical code for application in fast neutron spectrometry based on proton recoil is realized. In this method principle of maximum entropy and maximum likelihood are used together. Unknown group density distribution functions, which are considered as desired normalized mean neutron group flux, are constl u cted using only constrain of knowing mean value. Obtained distributions are consistent to available information (counts in NCA from proton recoil), while being maximally noncommittal with respect to all other unknown circumstances. For maximum likelihood principle, distribution functions around mean value of counts in the channels of MCA are taken to be Gauss function shape. Optimal non-negative solution is searched by means of Lagrange parameter method. Nonlinear system of equations, is solved using gradient and Newton iterative algorithm. Error covariance matrix is obtained too. (author)
Enhanced method of fast re-routing with load balancing in software-defined networks
Lemeshko, Oleksandr; Yeremenko, Oleksandra
2017-11-01
A two-level method of fast re-routing with load balancing in a software-defined network (SDN) is proposed. The novelty of the method consists, firstly, in the introduction of a two-level hierarchy of calculating the routing variables responsible for the formation of the primary and backup paths, and secondly, in ensuring a balanced load of the communication links of the network, which meets the requirements of the traffic engineering concept. The method provides implementation of link, node, path, and bandwidth protection schemes for fast re-routing in SDN. The separation in accordance with the interaction prediction principle along two hierarchical levels of the calculation functions of the primary (lower level) and backup (upper level) routes allowed to abandon the initial sufficiently large and nonlinear optimization problem by transiting to the iterative solution of linear optimization problems of half the dimension. The analysis of the proposed method confirmed its efficiency and effectiveness in terms of obtaining optimal solutions for ensuring balanced load of communication links and implementing the required network element protection schemes for fast re-routing in SDN.
Variational methods for crystalline microstructure analysis and computation
Dolzmann, Georg
2003-01-01
Phase transformations in solids typically lead to surprising mechanical behaviour with far reaching technological applications. The mathematical modeling of these transformations in the late 80s initiated a new field of research in applied mathematics, often referred to as mathematical materials science, with deep connections to the calculus of variations and the theory of partial differential equations. This volume gives a brief introduction to the essential physical background, in particular for shape memory alloys and a special class of polymers (nematic elastomers). Then the underlying mathematical concepts are presented with a strong emphasis on the importance of quasiconvex hulls of sets for experiments, analytical approaches, and numerical simulations.
Quantum Monte Carlo diagonalization method as a variational calculation
International Nuclear Information System (INIS)
Mizusaki, Takahiro; Otsuka, Takaharu; Honma, Michio.
1997-01-01
A stochastic method for performing large-scale shell model calculations is presented, which utilizes the auxiliary field Monte Carlo technique and diagonalization method. This method overcomes the limitation of the conventional shell model diagonalization and can extremely widen the feasibility of shell model calculations with realistic interactions for spectroscopic study of nuclear structure. (author)
Directory of Open Access Journals (Sweden)
Hui Liu
2015-01-01
Full Text Available The key problem of computer-aided diagnosis (CAD of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO pulmonary nodules than other typical algorithms.
A Fast Channel Switching Method in EPON System for IPTV Service
Nie, Yaling; Yoshiuchi, Hideya
This paper presents a fast channel switching method in Ethernet Passive Optical Network (EPON) system for IPTV service. Fast channel switching is one of the important features of successful IPTV systems. Users surely prefer IPTV systems with small channel switching time rather than a longer one. Thus a channel switching control module and a channel/permission list in EPON system’s ONU or OLT is designed. When EPON system receives channel switching message from IPTV end user, the channel switching control module will catch the message and search the channel list and permission list maintained in EPON system, then got the matching parameter of EPON for the new channel. The new channel’s data transmission will be enabled by directly updating the optical filter of the ONU that end user connected. By using this method in EPON system, it provides a solution for dealing with channel switching delays in IPTV service.
Methods for monitoring the initial load to critical in the fast test reactor
International Nuclear Information System (INIS)
Johnson, D.L.
1975-08-01
Conventional symmetric fuel loadings for the initial loading to critical of the Fast Test Reactor (FTR) are predicted to be more time consuming than asymmetric or trisector loadings. Potentially significant time savings can be realized by the latter, since adequate intermediate assessments of neutron multiplication can be made periodically without control rod reconnection in all trisectors. Experimental simulation of both loading schemes was carried out in the Reverse Approach to Critical (RAC) experiments in the Fast Test Reactor-Engineering Mockup Critical facility. Analyses of these experiments indicated that conventional source multiplication methods can be applied for monitoring either a symmetric or asymmetric fuel loading scheme equally well provided that detection efficiency corrections are employed. Methods for refining predictions of reactivity and count rates for the stages in a load to critical were also investigated. (auth)
International Nuclear Information System (INIS)
Takeda, T.; Usami, S.; Fujimura, K.; Takakuwa, M.
2015-01-01
The Ministry of Education, Culture, Sports, Science and Technology in Japan has launched a national project entitled 'technology development for the environmental burden reduction' in 2013. The present study is one of the studies adopted as the national project. The objective of the study is the efficient and safe transmutation and volume reduction of minor actinides (MA) with long-lived radioactivity and high decay heat contained in high level radioactive wastes by using sodium cooled fast reactors. We are developing MA transmutation core concepts which harmonize efficient MA transmutation with core safety. To accurately design the core concepts we have improved calculation methods for estimating the transmutation rate of individual MA nuclides, and estimating and reducing uncertainty of MA transmutation. The overview of the present project is first described. Then the method improvement is presented with numerical results for a minor-actinide transmutation fast reactor. The analysis is based on Monju reactor data. (authors)
Perfect Form: Variational Principles, Methods, and Applications in Elementary Physics
International Nuclear Information System (INIS)
Isenberg, C
1997-01-01
This short book is concerned with the physical applications of variational principles of the calculus. It is intended for undergraduate students who have taken some introductory lectures on the subject and have been exposed to Lagrangian and Hamiltonian mechanics. Throughout the book the author emphasizes the historical background to the subject and provides numerous problems, mainly from the fields of mechanics and optics. Some of these problems are provided with an answer, while others, regretfully, are not. It would have been an added help to the undergraduate reader if complete solutions could have been provided in an appendix. The introductory chapter is concerned with Fermat's Principle and image formation. This is followed by the derivation of the Euler - Lagrange equation. The third chapter returns to the subject of optical paths without making the link with a mechanical variational principle - that comes later. Chapters on the subjects of minimum potential energy, least action and Hamilton's principle follow. This volume provides an 'easy read' for a student keen to learn more about the subject. It is well illustrated and will make a useful addition to all undergraduate physics libraries. (book review)
Energy Technology Data Exchange (ETDEWEB)
Samsahl, K
1966-02-15
An anion-exchange method based on fast selective sorption steps from mixtures of sulfuric, hydrobromic, and hydrochloric acid solutions has been developed for the separation of five different groups of radioactive trace elements in neutron-irradiated biological material. The separations are performed automatically with a simple proportioning pump apparatus. The apparatus allows the exact adjustment of influent solutions to the series of ion-exchange columns. The practical application of the method is described in detail. The successful use of the method is practically independent on the level of Na activity present in the sample.
Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron
American Society for Testing and Materials. Philadelphia
2009-01-01
DESIG: E 263 09 ^TITLE: Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron ^SIGNUSE: Refer to Guide E 844 for guidance on the selection, irradiation, and quality control of neutron dosimeters. Refer to Practice E 261 for a general discussion of the determination of fast-neutron fluence rate with threshold detectors. Pure iron in the form of foil or wire is readily available and easily handled. Fig. 1 shows a plot of cross section as a function of neutron energy for the fast-neutron reaction 54Fe(n,p)54Mn (1). This figure is for illustrative purposes only to indicate the range of response of the 54Fe(n,p)54Mn reaction. Refer to Guide E 1018 for descriptions of recommended tabulated dosimetry cross sections. 54Mn has a half-life of 312.13 days (3) (2) and emits a gamma ray with an energy of 834.845 keV (5). (2) Interfering activities generated by neutron activation arising from thermal or fast neutron interactions are 2.57878 (46)-h 56Mn, 44.95-d (8) 59Fe, and 5.27...
Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Niobium
American Society for Testing and Materials. Philadelphia
2008-01-01
1.1 This test method describes procedures for measuring reaction rates by the activation reaction 93Nb(n,n′)93mNb. 1.2 This activation reaction is useful for monitoring neutrons with energies above approximately 0.5 MeV and for irradiation times up to about 30 years. 1.3 With suitable techniques, fast-neutron reaction rates for neutrons with energy distribution similar to fission neutrons can be determined in fast-neutron fluences above about 1016cm−2. In the presence of high thermal-neutron fluence rates (>1012cm−2·s−1), the transmutation of 93mNb due to neutron capture should be investigated. In the presence of high-energy neutron spectra such as are associated with fusion and spallation sources, the transmutation of 93mNb by reactions such as (n,2n) may occur and should be investigated. 1.4 Procedures for other fast-neutron monitors are referenced in Practice E 261. 1.5 Fast-neutron fluence rates can be determined from the reaction rates provided that the appropriate cross section information ...
Tzong-Shi Lu; Szu-Yu Yiao; Kenneth Lim; Roderick V. Jensen; Li-Li Hsiao
2010-01-01
Background: The identification of differences in protein expression resulting from methodical variations is an essential component to the interpretation of true, biologically significant results. Aims: We used the Lowry and Bradford methods- two most commonly used methods for protein quantification, to assess whether differential protein expressions are a result of true biological or methodical variations. Material & Methods: Differential protein expression patterns was assessed by western bl...
Iterative method of the parameter variation for solution of nonlinear functional equations
International Nuclear Information System (INIS)
Davidenko, D.F.
1975-01-01
The iteration method of parameter variation is used for solving nonlinear functional equations in Banach spaces. The authors consider some methods for numerical integration of ordinary first-order differential equations and construct the relevant iteration methods of parameter variation, both one- and multifactor. They also discuss problems of mathematical substantiation of the method, study the conditions and rate of convergence, estimate the error. The paper considers the application of the method to specific functional equations
Directory of Open Access Journals (Sweden)
Yonghan Choi
2014-01-01
Full Text Available An adjoint sensitivity-based data assimilation (ASDA method is proposed and applied to a heavy rainfall case over the Korean Peninsula. The heavy rainfall case, which occurred on 26 July 2006, caused torrential rainfall over the central part of the Korean Peninsula. The mesoscale convective system (MCS related to the heavy rainfall was classified as training line/adjoining stratiform (TL/AS-type for the earlier period, and back building (BB-type for the later period. In the ASDA method, an adjoint model is run backwards with forecast-error gradient as input, and the adjoint sensitivity of the forecast error to the initial condition is scaled by an optimal scaling factor. The optimal scaling factor is determined by minimising the observational cost function of the four-dimensional variational (4D-Var method, and the scaled sensitivity is added to the original first guess. Finally, the observations at the analysis time are assimilated using a 3D-Var method with the improved first guess. The simulated rainfall distribution is shifted northeastward compared to the observations when no radar data are assimilated or when radar data are assimilated using the 3D-Var method. The rainfall forecasts are improved when radar data are assimilated using the 4D-Var or ASDA method. Simulated atmospheric fields such as horizontal winds, temperature, and water vapour mixing ratio are also improved via the 4D-Var or ASDA method. Due to the improvement in the analysis, subsequent forecasts appropriately simulate the observed features of the TL/AS- and BB-type MCSs and the corresponding heavy rainfall. The computational cost associated with the ASDA method is significantly lower than that of the 4D-Var method.
Gopi, Varun P; Palanisamy, P; Wahid, Khan A; Babyn, Paul; Cooper, David
2013-01-01
Micro-computed tomography (micro-CT) plays an important role in pre-clinical imaging. The radiation from micro-CT can result in excess radiation exposure to the specimen under test, hence the reduction of radiation from micro-CT is essential. The proposed research focused on analyzing and testing an alternating direction augmented Lagrangian (ADAL) algorithm to recover images from random projections using total variation (TV) regularization. The use of TV regularization in compressed sensing problems makes the recovered image quality sharper by preserving the edges or boundaries more accurately. In this work TV regularization problem is addressed by ADAL which is a variant of the classic augmented Lagrangian method for structured optimization. The per-iteration computational complexity of the algorithm is two fast Fourier transforms, two matrix vector multiplications and a linear time shrinkage operation. Comparison of experimental results indicate that the proposed algorithm is stable, efficient and competitive with the existing algorithms for solving TV regularization problems. Copyright © 2013 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Feit, M.D.; Fleck, J.A. Jr.
1989-01-01
We describe a spectral method for solving the paraxial wave equation in cylindrical geometry that is based on expansion of the exponential evolution operator in a Taylor series and use of fast Fourier transforms to evaluate derivatives. A fourth-order expansion gives excellent agreement with a two-transverse-dimensional split-operator calculation at a fraction of the cost in computation time per z step and at a considerable savings in storage
Swarm: robust and fast clustering method for amplicon-based studies
Rognes, Torbjørn; Quince, Christopher; de Vargas, Colomban; Dunthorn, Micah
2014-01-01
Popular de novo amplicon clustering methods suffer from two fundamental flaws: arbitrary global clustering thresholds, and input-order dependency induced by centroid selection. Swarm was developed to address these issues by first clustering nearly identical amplicons iteratively using a local threshold, and then by using clusters’ internal structure and amplicon abundances to refine its results. This fast, scalable, and input-order independent approach reduces the influence of clustering parameters and produces robust operational taxonomic units. PMID:25276506
Swarm: robust and fast clustering method for amplicon-based studies
Directory of Open Access Journals (Sweden)
Frédéric Mahé
2014-09-01
Full Text Available Popular de novo amplicon clustering methods suffer from two fundamental flaws: arbitrary global clustering thresholds, and input-order dependency induced by centroid selection. Swarm was developed to address these issues by first clustering nearly identical amplicons iteratively using a local threshold, and then by using clusters’ internal structure and amplicon abundances to refine its results. This fast, scalable, and input-order independent approach reduces the influence of clustering parameters and produces robust operational taxonomic units.
Fast and Sensitive Method for Determination of Domoic Acid in Mussel Tissue
Directory of Open Access Journals (Sweden)
Elena Barbaro
2016-01-01
Full Text Available Domoic acid (DA, a neurotoxic amino acid produced by diatoms, is the main cause of amnesic shellfish poisoning (ASP. In this work, we propose a very simple and fast analytical method to determine DA in mussel tissue. The method consists of two consecutive extractions and requires no purification steps, due to a reduction of the extraction of the interfering species and the application of very sensitive and selective HILIC-MS/MS method. The procedural method was validated through the estimation of trueness, extract yield, precision, detection, and quantification limits of analytical method. The sample preparation was also evaluated through qualitative and quantitative evaluations of the matrix effect. These evaluations were conducted both on the DA-free matrix spiked with known DA concentration and on the reference certified material (RCM. We developed a very selective LC-MS/MS method with a very low value of method detection limit (9 ng g−1 without cleanup steps.
Directory of Open Access Journals (Sweden)
Wu Guo-Cheng
2012-01-01
Full Text Available This note presents a Laplace transform approach in the determination of the Lagrange multiplier when the variational iteration method is applied to time fractional heat diffusion equation. The presented approach is more straightforward and allows some simplification in application of the variational iteration method to fractional differential equations, thus improving the convergence of the successive iterations.
A fast and automatic mosaic method for high-resolution satellite images
Chen, Hongshun; He, Hui; Xiao, Hongyu; Huang, Jing
2015-12-01
We proposed a fast and fully automatic mosaic method for high-resolution satellite images. First, the overlapped rectangle is computed according to geographical locations of the reference and mosaic images and feature points on both the reference and mosaic images are extracted by a scale-invariant feature transform (SIFT) algorithm only from the overlapped region. Then, the RANSAC method is used to match feature points of both images. Finally, the two images are fused into a seamlessly panoramic image by the simple linear weighted fusion method or other method. The proposed method is implemented in C++ language based on OpenCV and GDAL, and tested by Worldview-2 multispectral images with a spatial resolution of 2 meters. Results show that the proposed method can detect feature points efficiently and mosaic images automatically.
A fast dose calculation method based on table lookup for IMRT optimization
International Nuclear Information System (INIS)
Wu Qiuwen; Djajaputra, David; Lauterbach, Marc; Wu Yan; Mohan, Radhe
2003-01-01
This note describes a fast dose calculation method that can be used to speed up the optimization process in intensity-modulated radiotherapy (IMRT). Most iterative optimization algorithms in IMRT require a large number of dose calculations to achieve convergence and therefore the total amount of time needed for the IMRT planning can be substantially reduced by using a faster dose calculation method. The method that is described in this note relies on an accurate dose calculation engine that is used to calculate an approximate dose kernel for each beam used in the treatment plan. Once the kernel is computed and saved, subsequent dose calculations can be done rapidly by looking up this kernel. Inaccuracies due to the approximate nature of the kernel in this method can be reduced by performing scheduled kernel updates. This fast dose calculation method can be performed more than two orders of magnitude faster than the typical superposition/convolution methods and therefore is suitable for applications in which speed is critical, e.g., in an IMRT optimization that requires a simulated annealing optimization algorithm or in a practical IMRT beam-angle optimization system. (note)
Methods for reactor physics calculations for control rods in fast reactors
International Nuclear Information System (INIS)
Grimstone, M.J.; Rowlands, J.L.
1988-12-01
The IAEA Specialists' Meeting on ''Methods for Reactor Physics Calculations for Control Rods in Fast Reactors'' was held in Winfrith, United Kingdom, on 6-8 December, 1988. The meeting was attended by 23 participants from nine countries. The purpose of the meeting was to review the current calculational methods and their accuracy as assessed by theoretical studies and comparisons with measurements, and then to identify the requirements for improved methods or additional studies and comparisons. The control rod properties or effects to be considered were their reactivity worths, their effect on the power distribution through the core, and the reaction rates and energy deposition both within and adjacent to the rods. The meeting was divided into five sessions, in the first of which each national delegation presented a brief overview of their programme of work on calculational methods for fast reactor control rods. In the next three sessions a total of seventeen papers were presented describing calculational methods and assessments of their accuracy. The final session was a discussion to draw conclusions regarding the current status of methods and the further developments and validation work required. A separate abstract was prepared for each of the 23 papers presented at the meeting. Refs, figs and tabs
Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.
Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing
2016-10-01
The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.
Variational, projection methods and Pade approximants in scattering theory
International Nuclear Information System (INIS)
Turchetti, G.
1980-12-01
Several aspects on the scattering theory are discussed in a perturbative scheme. The Pade approximant method plays an important role in such a scheme. Solitons solutions are also discussed in this same scheme. (L.C.) [pt
International Nuclear Information System (INIS)
Schmid, E.
1987-03-01
Today important chemical substances like proteins can be produced easily and in large amounts. The primary structure of proteins can be analysed automatically, however the procedure can take some months of time. A novel method, fast atom bombardment mass spectrometry (FAB-MS) in combination with enzymatic degradation not only decreases the analysis time, but gives also additional information about the primary structure. Especially for the verification of protein structures - which is important for recombinant proteins - FAB-MS is a very useful method. 40 refs., 56 figs. (P.W.)
A time-dependent semiclassical wavepacket method using a fast Fourier transform (FFT) algorithm
International Nuclear Information System (INIS)
Gauss, J.; Heller, E.J.
1991-01-01
A new semiclassical propagator based on a local expansion of the potential up to second order around the moving center of the wavepackt is proposed. Formulas for the propagator are derived and the implementation using grid and fast Fourier transform (FFT) methods is discussed. The semiclassical propagator can be improved up to the exact quantum mechanical limit by including anharmonic corrections using a split operator approach. Preliminary applications to the CH 3 I photodissociation problem show the applicability and accuracy of the proposed method. (orig.)D
The effect of the neutron spectra unfolding method on the fast neutron dose determination
International Nuclear Information System (INIS)
Marinkovic, P.; Zavaljevski, N.
1992-01-01
Based on Shanon's information theory, a new unfolding method which gives non-negative spectrum values and a relatively low variance, is proposed, and a numerical code suitable for application in fast neutron spectroscopy based on proton recoil is developed. The principles of maximum entropy and maximum likelihood are jointly applied. According to the principle of maximum likelihood, the distribution functions around the mean value of the counts in the MCA channels are assumed to be Gaussians. The Lagrange parameter method is applied in the search for an optimal non-negative solution. The nonlinear system of equations is solved using the gradient and Newton iterative algorithms. (orig.)
International Nuclear Information System (INIS)
Abashin, E.G.; Lisovskij, I.P.; Smakhtin, L.A.
1980-01-01
A neutron-activation method is suggested for determination of fluorine in fodder phosphates and phosphorite flour. Used as the source of fast neutrons was an NG-150M neutron generator with a maximum yield of 10 8 nxcm -2 xs -1 . Samples were irradiated in polyethylene ampoules using a pneumatic shuttle. Fluorine was determined with reference to the fluorine-18 isotope. The accuracy of determining fluorine in fodder phosphates and phosphorite flour is 1 to 4% (rel.) at a rate of not less than 10 samples per hour. The method is suitable for in-process testing of products
International Nuclear Information System (INIS)
Samsahl, K.
1964-12-01
A method has been developed for the determination with neutron-activation analysis of the following trace elements in soft biological tissues: Br, Ca, Cl, Cu, K, Mg, Mn, Mo, Na, P, Sr and Zn. The method consists in performing a short-term irradiation of the samples with a high thermal neutron flux, followed by fast chemical separations and gamma-spectrometric measurements. The chemical separations and the measurements of short-lived nuclides from a run are finished within 70 min, after the end of irradiation
Fast method of NMR imaging based on trains of spin echoes
International Nuclear Information System (INIS)
Hennel, F.
1993-01-01
A theoretical introduction to Fourier NMR imaging and a discussion of fast methods are presented. Then an application of the method of echo-planar imaging (EPI) with spin echoes in a micro-imaging system is described together with introduced modifications of the sequence. A new technique for the measurement of flow profiles in liquids which results from a modification of x-pulsed EPI is presented. The development of new software for a NMR micro-imaging system is described, too. 51 refs, 29 refs
Energy Technology Data Exchange (ETDEWEB)
Samsahl, K
1964-12-15
A method has been developed for the determination with neutron-activation analysis of the following trace elements in soft biological tissues: Br, Ca, Cl, Cu, K, Mg, Mn, Mo, Na, P, Sr and Zn. The method consists in performing a short-term irradiation of the samples with a high thermal neutron flux, followed by fast chemical separations and gamma-spectrometric measurements. The chemical separations and the measurements of short-lived nuclides from a run are finished within 70 min, after the end of irradiation.
Energy Technology Data Exchange (ETDEWEB)
Abashin, E G; Lisovskii, I P; Smakhtin, L A
1980-01-01
A neutron-activation method is suggested for determination of fluorine in fodder phosphates and phosphorite flour. Used as the source of fast neutrons was an NG-150M neutron generator with a maximum yield of 10/sup 8/ nxcm/sup -2/xs/sup -1/. Samples were irradiated in polyethylene ampoules using a pneumatic shuttle. Fluorine was determined with reference to the fluorine-18 isotope. The accuracy of determining fluorine in fodder phosphates and phosphorite flour is 1 to 4% (rel.) at a rate of not less than 10 samples per hour. The method is suitable for in-process testing of products.
The effect of the neutron spectra unfolding method on the fast neutron dose determination
International Nuclear Information System (INIS)
Marinkovic, P.; Avdic, S.; Pesic, M.; Zavaljevski, N
1992-09-01
Based on Shanon's information theory, a new unfolding method which gives non-negative spectrum values and a relatively low variance, is proposed, and a numerical code suitable for application in fast neutron spectroscopy based on proton recoil is developed. The principles of maximum entropy and maximum likelihood are jointly applied. According to the principle of maximum likelihood, the distribution functions around the mean value of the counts in the MCA channels are assumed to be Gaussians. The Lagrange parameter method is applied in the search for an optimal non-negative solution. The nonlinear system of equations is solved using the gradient and Newton iterative algorithms. (author)
Absolute calibration method for fast-streaked, fiber optic light collection, spectroscopy systems
International Nuclear Information System (INIS)
Johnston, Mark D.; Frogget, Brent; Oliver, Bryan Velten; Maron, Yitzhak; Droemer, Darryl W.; Crain, Marlon D.
2010-01-01
This report outlines a convenient method to calibrate fast (<1ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such a system is used to collect spectral data on plasmas generated in the A-K gap of electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA). On RITS, light is collected through a small diameter (200 micron) optical fiber and recorded on a fast streak camera at the output of 1 meter Czerny-Turner monochromator (F/7 optics). To calibrate such a system, it is necessary to efficiently couple light from a spectral lamp into a 200 micron diameter fiber, split it into its spectral components, with 10 Angstroms or less resolution, and record it on a streak camera with 1ns or less temporal resolution.
Periodic boundary conditions and the error-controlled fast multipole method
Energy Technology Data Exchange (ETDEWEB)
Kabadshow, Ivo
2012-08-22
The simulation of pairwise interactions in huge particle ensembles is a vital issue in scientific research. Especially the calculation of long-range interactions poses limitations to the system size, since these interactions scale quadratically with the number of particles. Fast summation techniques like the Fast Multipole Method (FMM) can help to reduce the complexity to O(N). This work extends the possible range of applications of the FMM to periodic systems in one, two and three dimensions with one unique approach. Together with a tight error control, this contribution enables the simulation of periodic particle systems for different applications without the need to know and tune the FMM specific parameters. The implemented error control scheme automatically optimizes the parameters to obtain an approximation for the minimal runtime for a given energy error bound.
Fast Bound Methods for Large Scale Simulation with Application for Engineering Optimization
Patera, Anthony T.; Peraire, Jaime; Zang, Thomas A. (Technical Monitor)
2002-01-01
In this work, we have focused on fast bound methods for large scale simulation with application for engineering optimization. The emphasis is on the development of techniques that provide both very fast turnaround and a certificate of Fidelity; these attributes ensure that the results are indeed relevant to - and trustworthy within - the engineering context. The bound methodology which underlies this work has many different instantiations: finite element approximation; iterative solution techniques; and reduced-basis (parameter) approximation. In this grant we have, in fact, treated all three, but most of our effort has been concentrated on the first and third. We describe these below briefly - but with a pointer to an Appendix which describes, in some detail, the current "state of the art."
Comparison of the methods of seismic analysis applicable to fast reactors in the EEC countries
International Nuclear Information System (INIS)
Defalque, M.; Kunsch, P.; Preumont, A.
1986-01-01
The countries in the Community which are concerned by this study are those currently involved in the operation or development of fast reactors, namely: FRANCE (Phenix - Superphenix), FRG - BELGIUM - THE NETHERLANDS associated within DeBeNe (SNR - 300), UNITED KINGDOM (UK) (PFR-CDFR), ITALY (PEC). The first aim of the study is to enumerate the common points and differences in the national rules and regulations for the seismic analysis of fast breeder reactors. Such divergences may be encountered at different design stages, namely: in the definition of the seismic input data, in the choice of design limits and in the degree of conservatism applied to the calculation methods employed. For every one of these three stages, it is necessary to identify the points likely to influence the results of the analysis and consequently the over-all safety margin with regard to the event concerned. 73 refs
Blanchard, Philippe
2015-01-01
The second edition of this textbook presents the basic mathematical knowledge and skills that are needed for courses on modern theoretical physics, such as those on quantum mechanics, classical and quantum field theory, and related areas. The authors stress that learning mathematical physics is not a passive process and include numerous detailed proofs, examples, and over 200 exercises, as well as hints linking mathematical concepts and results to the relevant physical concepts and theories. All of the material from the first edition has been updated, and five new chapters have been added on such topics as distributions, Hilbert space operators, and variational methods. The text is divided into three main parts. Part I is a brief introduction to distribution theory, in which elements from the theories of ultradistributions and hyperfunctions are considered in addition to some deeper results for Schwartz distributions, thus providing a comprehensive introduction to the theory of generalized functions. P...
Fast beam cut-off method in RF-knockout extraction for spot-scanning
Furukawa, T
2002-01-01
An irradiation method with magnetic scanning has been developed in order to provide accurate irradiation even for an irregular target shape. The scanning method has strongly required a lower ripple of the beam spill and a faster response to beam-on/off in slow extraction from a synchrotron ring. At HIMAC, RF-knockout extraction has utilized a bunched beam to reduce the beam-spill ripple. Therefore, particles near the resonance can be spilled out from the separatrices by synchrotron oscillation as well as by a transverse RF field. From this point of view, a fast beam cut-off method has been proposed and verified by both simulations and experiments. The maximum delay from the beam cut-off signal to beam-off has been improved to around 60 mu s from 700 mu s by a usual method. Unwanted dose has been considerably reduced by around a factor of 10 compared with that by the usual method.
A fast point-cloud computing method based on spatial symmetry of Fresnel field
Wang, Xiangxiang; Zhang, Kai; Shen, Chuan; Zhu, Wenliang; Wei, Sui
2017-10-01
Aiming at the great challenge for Computer Generated Hologram (CGH) duo to the production of high spatial-bandwidth product (SBP) is required in the real-time holographic video display systems. The paper is based on point-cloud method and it takes advantage of the propagating reversibility of Fresnel diffraction in the propagating direction and the fringe pattern of a point source, known as Gabor zone plate has spatial symmetry, so it can be used as a basis for fast calculation of diffraction field in CGH. A fast Fresnel CGH method based on the novel look-up table (N-LUT) method is proposed, the principle fringe patterns (PFPs) at the virtual plane is pre-calculated by the acceleration algorithm and be stored. Secondly, the Fresnel diffraction fringe pattern at dummy plane can be obtained. Finally, the Fresnel propagation from dummy plan to hologram plane. The simulation experiments and optical experiments based on Liquid Crystal On Silicon (LCOS) is setup to demonstrate the validity of the proposed method under the premise of ensuring the quality of 3D reconstruction the method proposed in the paper can be applied to shorten the computational time and improve computational efficiency.
A variational Bayesian method to inverse problems with impulsive noise
Jin, Bangti
2012-01-01
We propose a novel numerical method for solving inverse problems subject to impulsive noises which possibly contain a large number of outliers. The approach is of Bayesian type, and it exploits a heavy-tailed t distribution for data noise to achieve
Directory of Open Access Journals (Sweden)
R. Darzi
2010-01-01
Full Text Available We applied the variational iteration method and the homotopy perturbation method to solve Sturm-Liouville eigenvalue and boundary value problems. The main advantage of these methods is the flexibility to give approximate and exact solutions to both linear and nonlinear problems without linearization or discretization. The results show that both methods are simple and effective.
Darzi R; Neamaty A
2010-01-01
We applied the variational iteration method and the homotopy perturbation method to solve Sturm-Liouville eigenvalue and boundary value problems. The main advantage of these methods is the flexibility to give approximate and exact solutions to both linear and nonlinear problems without linearization or discretization. The results show that both methods are simple and effective.
Energy Technology Data Exchange (ETDEWEB)
Jacquet, P.
2011-05-23
Due to safety rules running on fourth generation reactors' core development, neutronics simulation tools have to be as accurate as never before. First part of this report enumerates every step of fast reactor's neutronics simulation implemented in current reference code: ECCO. Considering the field of fast reactors that meet criteria of fourth generation, ability of models to describe self-shielding phenomenon, to simulate neutrons leakage in a lattice of fuel assemblies and to produce representative macroscopic sections is evaluated. The second part of this thesis is dedicated to the simulation of fast reactors' core with steel reflector. These require the development of advanced methods of condensation and homogenization. Several methods are proposed and compared on a typical case: the ZONA2B core of MASURCA reactor. (author) [French] Les criteres de surete qui regissent le developpement de coeurs de reacteurs de quatrieme generation implique l'usage d'outils de calcul neutronique performants. Une premiere partie de la these reprend toutes les etapes de modelisation neutronique des reacteurs rapides actuellement d'usage dans le code de reference ECCO. La capacite des modeles a decrire le phenomene d'autoprotection, a representer les fuites neutroniques au niveau d'un reseau d'assemblages combustibles et a generer des sections macroscopiques representatives est appreciee sur le domaine des reacteurs rapides innovants respectant les criteres de quatrieme generation. La deuxieme partie de ce memoire se consacre a la modelisation des coeurs rapides avec reflecteur acier. Ces derniers necessitent le developpement de methodes avancees de condensation et d'homogenisation. Plusieurs methodes sont proposees et confrontees sur un probleme de modelisation typique: le coeur ZONA2B du reacteur maquette MASURCA
Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels
DEFF Research Database (Denmark)
Chen, Wei-Min; Erdos, Michael R; Jackson, Anne U
2008-01-01
Identifying the genetic variants that regulate fasting glucose concentrations may further our understanding of the pathogenesis of diabetes. We therefore investigated the association of fasting glucose levels with SNPs in 2 genome-wide scans including a total of 5,088 nondiabetic individuals from...... Finland and Sardinia. We found a significant association between the SNP rs563694 and fasting glucose concentrations (P = 3.5 x 10(-7)). This association was further investigated in an additional 18,436 nondiabetic individuals of mixed European descent from 7 different studies. The combined P value...... for association in these follow-up samples was 6.9 x 10(-26), and combining results from all studies resulted in an overall P value for association of 6.4 x 10(-33). Across these studies, fasting glucose concentrations increased 0.01-0.16 mM with each copy of the major allele, accounting for approximately 1...
Venom On-a-Chip: A Fast and Efficient Method for Comparative Venomics.
Zancolli, Giulia; Sanz, Libia; Calvete, Juan J; Wüster, Wolfgang
2017-05-28
Venom research has attracted an increasing interest in disparate fields, from drug development and pharmacology, to evolutionary biology and ecology, and rational antivenom production. Advances in "-omics" technologies have allowed the characterization of an increasing number of animal venoms, but the methodology currently available is suboptimal for large-scale comparisons of venom profiles. Here, we describe a fast, reproducible and semi-automated protocol for investigating snake venom variability, especially at the intraspecific level, using the Agilent Bioanalyzer on-chip technology. Our protocol generated a phenotype matrix which can be used for robust statistical analysis and correlations of venom variation with ecological correlates, or other extrinsic factors. We also demonstrate the ease and utility of combining on-chip technology with previously fractionated venoms for detection of specific individual toxin proteins. Our study describes a novel strategy for rapid venom discrimination and analysis of compositional variation at multiple taxonomic levels, allowing researchers to tackle evolutionary questions and unveiling the drivers of the incredible biodiversity of venoms.
VARIATIONS OF THE ENERGY METHOD FOR STUDYING CONSTRUCTION STABILITY
Directory of Open Access Journals (Sweden)
A. M. Dibirgadzhiev
2017-01-01
Full Text Available Objectives. The aim of the work is to find the most rational form of expression of the potential energy of a nonlinear system with the subsequent use of algebraic means and geometric images of catastrophe theory for studying the behaviour of a construction under load. Various forms of stability criteria for the equilibrium states of constructions are investigated. Some aspects of the using various forms of expression of the system’s total energy are considered, oriented to the subsequent use of the catastrophe theory methods for solving the nonlinear problems of construction calculation associated with discontinuous phenomena.Methods. According to the form of the potential energy expression, the mathematical description of the problem being solved is linked to a specific catastrophe of a universal character from the list of catastrophes. After this, the behaviour of the system can be predicted on the basis of the fundamental propositions formulated in catastrophe theory without integrating the corresponding system of nonlinear differential equations of high order in partial derivatives, to which the solution of such problems is reduced.Results. The result is presented in the form of uniform geometric images containing all the necessary qualitative and quantitative information about the deformation of whole construction classes under load for a wide range of changes in the values of external (control and internal (behavioural parameters.Conclusion. Methods based on catastrophe theory are an effective mathematical tool for solving non-linear boundary-value problems with parameters associated with discontinuous phenomena, which are poorly analysable by conventional methods. However, they have not yet received due attention from researchers, especially in the field of stability calculations, which remains a complex, relevant and attractive problem within structural mechanics. To solve a concrete nonlinear boundary value problem for calculating
Iterative and variational homogenization methods for filled elastomers
Goudarzi, Taha
Elastomeric composites have increasingly proved invaluable in commercial technological applications due to their unique mechanical properties, especially their ability to undergo large reversible deformation in response to a variety of stimuli (e.g., mechanical forces, electric and magnetic fields, changes in temperature). Modern advances in organic materials science have revealed that elastomeric composites hold also tremendous potential to enable new high-end technologies, especially as the next generation of sensors and actuators featured by their low cost together with their biocompatibility, and processability into arbitrary shapes. This potential calls for an in-depth investigation of the macroscopic mechanical/physical behavior of elastomeric composites directly in terms of their microscopic behavior with the objective of creating the knowledge base needed to guide their bottom-up design. The purpose of this thesis is to generate a mathematical framework to describe, explain, and predict the macroscopic nonlinear elastic behavior of filled elastomers, arguably the most prominent class of elastomeric composites, directly in terms of the behavior of their constituents --- i.e., the elastomeric matrix and the filler particles --- and their microstructure --- i.e., the content, size, shape, and spatial distribution of the filler particles. This will be accomplished via a combination of novel iterative and variational homogenization techniques capable of accounting for interphasial phenomena and finite deformations. Exact and approximate analytical solutions for the fundamental nonlinear elastic response of dilute suspensions of rigid spherical particles (either firmly bonded or bonded through finite size interphases) in Gaussian rubber are first generated. These results are in turn utilized to construct approximate solutions for the nonlinear elastic response of non-Gaussian elastomers filled with a random distribution of rigid particles (again, either firmly
Variational method for objective analysis of scalar variable and its ...
Indian Academy of Sciences (India)
e-mail: sinha@tropmet.res.in. In this study real time data have been used to compare the standard and triangle method by ... The work presented in this paper is about a vari- ... But when the balance is needed ..... tred at 17:30h IST of 11 June within half a degree of ..... Ogura Y and Chen Y L 1977 A life history of an intense.
Method and apparatus for dual-spaced fast/epithermal neutron porosity measurements
International Nuclear Information System (INIS)
Smith, H.D. Jr.
1986-01-01
A method is described for determining the porosity of earth formations in the vicinity of a well borehole, comprising: (a) irradiating the earth formations in the vicinity of the well borehole with a continuous chemical type source of fast neutrons, (b) detecting the fast neutron population at a first shorter spaced distance from the neutron source in the borehole and generating signals representative thereof, (c) detecting the epithermal neutron population at a second space distance from the neutron source in the borehole and generating signals representative thereof, the second spaced distance being greater than the first spaced distance from the neutron source, (d) forming a ratio of the signals representing the fast and epithermal neutron populations to derive a measurement signal functionally related to the porosity of the earth formations in the vicinity of the borehole, and (e) calibrating the measurement signal according to a predetermined functional relationship to derive a porosity signal quantitatively representative of the porosity of the earth formations in the vicinity of the borehole
A Fast Calculation Method for Analyzing the Effect of Wind Generation on ATC
Directory of Open Access Journals (Sweden)
M.A Armin
2015-12-01
Full Text Available Wind energy penetration in power system has been increased very fast and large amount of capitals invested for wind farms all around the world. Meanwhile, in power systems with wind turbine generators (WTGs, the value of Available transfer capability (ATC is influenced by the probabilistic nature of the wind power. The Mont Carlo Simulation (MCS is the most common method to model the uncertainty of WTG. However, the MCS method suffers from low convergence rate. To overcome this shortcoming, the proposed technique in this paper uses a new formulation for solving ATC problem analytically. This lowers the computational burden of the ATC computation and hence results in increased convergence rate of the MCS. Using this fast technique to evaluate the ATC, wind generation and load correlation is required to get into modeling. A numerical method is presented to consider load and wind correlation. The proposed method is tested on the modified IEEE 118 bus to analyze the impacts of the WTGs on the ATC. The obtained results show that wind generation capacity and its correlation with system load has significant impacts on the network transfer capability. In other words, ATC probability distribution is sensitive to the wind generation capacity.
Prosthetic component segmentation with blur compensation: a fast method for 3D fluoroscopy.
Tarroni, Giacomo; Tersi, Luca; Corsi, Cristiana; Stagni, Rita
2012-06-01
A new method for prosthetic component segmentation from fluoroscopic images is presented. The hybrid approach we propose combines diffusion filtering, region growing and level-set techniques without exploiting any a priori knowledge of the analyzed geometry. The method was evaluated on a synthetic dataset including 270 images of knee and hip prosthesis merged to real fluoroscopic data simulating different conditions of blurring and illumination gradient. The performance of the method was assessed by comparing estimated contours to references using different metrics. Results showed that the segmentation procedure is fast, accurate, independent on the operator as well as on the specific geometrical characteristics of the prosthetic component, and able to compensate for amount of blurring and illumination gradient. Importantly, the method allows a strong reduction of required user interaction time when compared to traditional segmentation techniques. Its effectiveness and robustness in different image conditions, together with simplicity and fast implementation, make this prosthetic component segmentation procedure promising and suitable for multiple clinical applications including assessment of in vivo joint kinematics in a variety of cases.
Utilization of OR method toward realization of better fast breeder reactor cycle
International Nuclear Information System (INIS)
Shiotani, Hiroki
2008-01-01
Fast Reactor Cycle Technology Development (FaCT) Project was now started aiming at commercialization of new nuclear power plants system. In parallel with development of component technology and technology demonstration by test, development of comprehensive evaluation method of the FBR cycle system is under way and scenario study, discounted cash flow (DCF) method, analytic hierarchy process (AHP), real option, supply chain management (SCM) and others are used. Since commercialized FBR cycle would request long-term and large-scale development contributed by so many participants, modeling of nuclear system and knowledge management are beneficial even for development of evaluation method and further utilization of OR technology is highly expected. Comprehensive evaluation methods now utilized or developing were overlooked from the standpoint of OR, 'Science of Better'. (T. Tanaka)
Fall, Mandiaye; Boutami, Salim; Glière, Alain; Stout, Brian; Hazart, Jerome
2013-06-01
A combination of the multilevel fast multipole method (MLFMM) and boundary element method (BEM) can solve large scale photonics problems of arbitrary geometry. Here, MLFMM-BEM algorithm based on a scalar and vector potential formulation, instead of the more conventional electric and magnetic field formulations, is described. The method can deal with multiple lossy or lossless dielectric objects of arbitrary geometry, be they nested, in contact, or dispersed. Several examples are used to demonstrate that this method is able to efficiently handle 3D photonic scatterers involving large numbers of unknowns. Absorption, scattering, and extinction efficiencies of gold nanoparticle spheres, calculated by the MLFMM, are compared with Mie's theory. MLFMM calculations of the bistatic radar cross section (RCS) of a gold sphere near the plasmon resonance and of a silica coated gold sphere are also compared with Mie theory predictions. Finally, the bistatic RCS of a nanoparticle gold-silver heterodimer calculated with MLFMM is compared with unmodified BEM calculations.
Fast multiview three-dimensional reconstruction method using cost volume filtering
Lee, Seung Joo; Park, Min Ki; Jang, In Yeop; Lee, Kwan H.
2014-03-01
As the number of customers who want to record three-dimensional (3-D) information using a mobile electronic device increases, it becomes more and more important to develop a method which quickly reconstructs a 3-D model from multiview images. A fast multiview-based 3-D reconstruction method is presented, which is suitable for the mobile environment by constructing a cost volume of the 3-D height field. This method consists of two steps: the construction of a reliable base surface and the recovery of shape details. In each step, the cost volume is constructed using photoconsistency and then it is filtered according to the multiscale. The multiscale-based cost volume filtering allows the 3-D reconstruction to maintain the overall shape and to preserve the shape details. We demonstrate the strength of the proposed method in terms of computation time, accuracy, and unconstrained acquisition environment.
A fast and efficient method for sequential cone-beam tomography
International Nuclear Information System (INIS)
Koehler, Th.; Proksa, R.; Grass, M.
2001-01-01
Sequential cone-beam tomography is a method that uses data of two or more parallel circular trajectories of a cone-beam scanner to reconstruct the object function. We propose a condition for the data acquisition that ensures that all object points between two successive circles are irradiated over an angular span of the x-ray source position of exactly 360 deg. in total as seen along the rotation axis. A fast and efficient approximative reconstruction method for the proposed acquisition is presented which uses data from exactly 360 deg. for every object point. It is based on the Tent-FDK method which was recently developed for single circular cone-beam CT. The measurement geometry does not provide sufficient data for exact reconstruction but it is shown that the proposed reconstruction method provides satisfying image quality for small cone angles
Fast method for geometric calibration of detectors and matching testing between two detectors
International Nuclear Information System (INIS)
Pechenova, O.Yu.
2002-01-01
A fast method of geometric calibration of detectors has been proposed. The main idea of this method is to determine offsets by fitting the real data distribution by analytic functions which describe the motion of one detector relative to the other one. This method can be applicable to offsets determination for one detector relative to the other detector or for one part of the detector relative to its other part. The detectors should be placed perpendicular to the beam axis. The form of analytic functions depends on the geometry of the experiment and direction of the coordinate axes. The analytic functions have been obtained using the rotation matrices. This method can be applied to the matching testing between two detectors
International Nuclear Information System (INIS)
Zhan, Shuyue; Wang, Xiaoping; Liu, Yuling
2011-01-01
To simplify the algorithm for determining the surface plasmon resonance (SPR) angle for special applications and development trends, a fast method for determining an SPR angle, called the fixed-boundary centroid algorithm, has been proposed. Two experiments were conducted to compare three centroid algorithms from the aspects of the operation time, sensitivity to shot noise, signal-to-noise ratio (SNR), resolution, and measurement range. Although the measurement range of this method was narrower, the other performance indices were all better than the other two centroid methods. This method has outstanding performance, high speed, good conformity, low error and a high SNR and resolution. It thus has the potential to be widely adopted
International Nuclear Information System (INIS)
Nakata, Noboru; Fukutomi, Yasuo
1998-01-01
To prevent and treat infections diseases caused by pathogenic acid-fast bacteria such as Mycobacterium leprae, Tubercle bacillus, it is important to elucidate the mechanisms of intracellular proliferations of these bacteria. This research project was started to make DNA library using a new constructed shuttle vector. Development of in vitro evaluation method for intracellular proliferation of mycobacterium and its transformed cells was attempted on the basis of Buddemeyer method. This method was able to precisely determine the metabolic activities as low as those in leprae and its modified method using 14 C-palmitic acid was highly sensitive and the results were obtainable in a shorter period. The generated CO 2 was satisfactorily absorbed into scintillator without using a filter paper. A new culture medium from which arginine, a NO-producing compound was eliminated was used to repress the sterilizing effects of NO, but the metabolic activities of leprae was not enhanced. (M.N.)
Energy Technology Data Exchange (ETDEWEB)
Nakata, Noboru; Fukutomi, Yasuo [National Inst. of Infectious Deseases, Tokyo (Japan)
1998-02-01
To prevent and treat infections diseases caused by pathogenic acid-fast bacteria such as Mycobacterium leprae, Tubercle bacillus, it is important to elucidate the mechanisms of intracellular proliferations of these bacteria. This research project was started to make DNA library using a new constructed shuttle vector. Development of in vitro evaluation method for intracellular proliferation of mycobacterium and its transformed cells was attempted on the basis of Buddemeyer method. This method was able to precisely determine the metabolic activities as low as those in leprae and its modified method using {sup 14}C-palmitic acid was highly sensitive and the results were obtainable in a shorter period. The generated CO{sub 2} was satisfactorily absorbed into scintillator without using a filter paper. A new culture medium from which arginine, a NO-producing compound was eliminated was used to repress the sterilizing effects of NO, but the metabolic activities of leprae was not enhanced. (M.N.)
DEFF Research Database (Denmark)
Hou, Yong; Wu, Kui; Shi, Xulian
2015-01-01
methods, focusing particularly on variations detection. Low-coverage whole-genome sequencing revealed that DOP-PCR had the highest duplication ratio, but an even read distribution and the best reproducibility and accuracy for detection of copy-number variations (CNVs). However, MDA had significantly...... performance using SCRS amplified by different WGA methods. It will guide researchers to determine which WGA method is best suited to individual experimental needs at single-cell level....
Variational configuration interaction methods and comparison with perturbation theory
International Nuclear Information System (INIS)
Pople, J.A.; Seeger, R.; Krishnan, R.
1977-01-01
A configuration interaction (CI) procedure which includes all single and double substitutions from an unrestricted Hartree-Fock single determinant is described. This has the feature that Moller-Plesset perturbation results to second and third order are obtained in the first CI iterative cycle. The procedure also avoids the necessity of a full two-electron integral transformation. A simple expression for correcting the final CI energy for lack of size consistency is proposed. Finally, calculations on a series of small molecules are presented to compare these CI methods with perturbation theory
Total error components - isolation of laboratory variation from method performance
International Nuclear Information System (INIS)
Bottrell, D.; Bleyler, R.; Fisk, J.; Hiatt, M.
1992-01-01
The consideration of total error across sampling and analytical components of environmental measurements is relatively recent. The U.S. Environmental Protection Agency (EPA), through the Contract Laboratory Program (CLP), provides complete analyses and documented reports on approximately 70,000 samples per year. The quality assurance (QA) functions of the CLP procedures provide an ideal data base-CLP Automated Results Data Base (CARD)-to evaluate program performance relative to quality control (QC) criteria and to evaluate the analysis of blind samples. Repetitive analyses of blind samples within each participating laboratory provide a mechanism to separate laboratory and method performance. Isolation of error sources is necessary to identify effective options to establish performance expectations, and to improve procedures. In addition, optimized method performance is necessary to identify significant effects that result from the selection among alternative procedures in the data collection process (e.g., sampling device, storage container, mode of sample transit, etc.). This information is necessary to evaluate data quality; to understand overall quality; and to provide appropriate, cost-effective information required to support a specific decision
Directory of Open Access Journals (Sweden)
Annam Vamseedhar
2009-07-01
Full Text Available Objectives: To improve the smear microscopy for detection of acid-fast bacilli (AFB in fine needle aspiration cytology (FNAC of lymph node using the bleach method and also to compare this with cytological diagnosis and the conventional Ziehl-Neelsen (ZN method. Study Design: In 99 consecutive patients with clinical suspicion of tuberculosis (TB presenting with lymphadenopathy, FNACs were performed. Smears from the aspirates were processed for routine cytology and the conventional ZN method. The remaining material in the needle hub and/or the syringe was used for the bleach method. The significance of the bleach method over the conventional ZN method and cytology was analyzed using the χ2 test. Results: Of 99 aspirates, 93 were studied and the remaining six were excluded from the study due to diagnosis of malignancy in 4.04% (4/6 and inadequate aspiration in 2.02% (2/6. Among the 93 aspirates, 33.33% (31/93 were positive for AFB on conventional ZN method, 41.94% (39/93 were indicative of TB on cytology and the smear positivity increased to 63.44% (59/93 on bleach method. Conclusion: The bleach method is simple, inexpensive and potent disinfectant, also limiting the risk of laboratory-acquired infections. The implementation of the bleach method clearly improves microscopic detection and can be a useful contribution to routine cytology.
International Nuclear Information System (INIS)
Faucher, V.
2014-01-01
This HDR is dedicated to the research in the framework of fast transient dynamics for industrial fluid-structure systems carried in the Laboratory of Dynamic Studies from CEA, implementing new numerical methods for the modelling of complex systems and the parallel solution of large coupled problems on supercomputers. One key issue for the proposed approaches is the limitation to its minimum of the number of non-physical parameters, to cope with constraints arising from the area of usage of the concepts: safety for both nuclear applications (CEA, EDF) and aeronautics (ONERA), protection of the citizen (EC/JRC) in particular. Kinematic constraints strongly coupling structures (namely through unilateral contact) or fluid and structures (with both conformant or non-conformant meshes depending on the geometrical situation) are handled through exact methods including Lagrange Multipliers, with consequences on the solution strategy to be dealt with. This latter aspect makes EPX, the simulation code where the methods are integrated, a singular tool in the community of fast transient dynamics software. The document mainly relies on a description of the modelling needs for industrial fast transient scenarios, for nuclear applications in particular, and the proposed solutions built in the framework of the collaboration between CEA, EDF (via the LaMSID laboratory) and the LaMCoS laboratory from INSA Lyon. The main considered examples are the tearing of the fluid-filled tank after impact, the Code Disruptive Accident for a Generation IV reactor or the ruin of reinforced concrete structures under impact. Innovative models and parallel algorithms are thus proposed, allowing to carry out with robustness and performance the corresponding simulations on supercomputers made of interconnected multi-core nodes, with a strict preservation of the quality of the physical solution. This was particularly the main point of the ANR RePDyn project (2010-2013), with CEA as the pilot. (author
Microscopic description of nuclear few-body systems with the stochastic variational method
International Nuclear Information System (INIS)
Suzuki, Yasuyuki
2000-01-01
A simple gambling procedure called the stochastic variational method can be applied, together with appropriate variational trial functions, to solve a few-body system where the correlation between the constituents plays an important role in determining its structure. The usefulness of the method is tested by comparing to other accurate solutions for Coulombic systems. Examples of application shown here include few-nucleon systems interacting with realistic forces and few-cluster systems with the Pauli principle being taken into account properly. These examples confirm the power of the stochastic variational method. There still remain many problems for extending to a system consisting of more particles. (author)
Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dósa, Katalin; Pfammatter, Jesse
2014-01-01
Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question “What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev),” we developed a 4-wk unit for an inquiry-based laboratory course focused on the inheritance and expression of a quantitative trait in varying environments. We utilized Brassica rapa Fast Plants as a model organism to study variation in the phenotype anthocyanin pigment intensity. As an initial curriculum assessment, we used free word association to examine students’ cognitive structures before and after the unit and explanations in students’ final research posters with particular focus on variation (Pv = Gv + Ev). Comparison of pre- and postunit word frequency revealed a shift in words and a pattern of co-occurring concepts indicative of change in cognitive structure, with particular focus on “variation” as a proposed threshold concept and primary goal for students’ explanations. Given review of 53 posters, we found ∼50% of students capable of intermediate to high-level explanations combining both Gv and Ev influence on expression of anthocyanin intensity (Pv). While far from “plug and play,” this conceptually rich, inquiry-based unit holds promise for effective integration of quantitative and Mendelian genetics. PMID:25185225
Large-scale atomic calculations using variational methods
Energy Technology Data Exchange (ETDEWEB)
Joensson, Per
1995-01-01
Atomic properties, such as radiative lifetimes, hyperfine structures and isotope shift, have been studied both theoretically and experimentally. Computer programs which calculate these properties from multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) wave functions have been developed and tested. To study relativistic effects, a program which calculates hyperfine structures from multiconfiguration Dirac-Fock (MCDF) wave functions has also been written. A new method of dealing with radial non-orthogonalities in transition matrix elements has been investigated. This method allows two separate orbital sets to be used for the initial and final states, respectively. It is shown that, once the usual orthogonality restrictions have been overcome, systematic MCHF calculations are able to predict oscillator strengths in light atoms with high accuracy. In connection with recent high-power laser experiments, time-dependent calculations of the atomic response to intense laser fields have been performed. Using the frozen-core approximation, where the atom is modeled as an active electron moving in the average field of the core electrons and the nucleus, the active electron has been propagated in time under the influence of the laser field. Radiative lifetimes and hyperfine structures of excited states in sodium and silver have been experimentally determined using time-resolved laser spectroscopy. By recording the fluorescence light decay following laser excitation in the vacuum ultraviolet spectral region, the radiative lifetimes and hyperfine structures of the 7p{sup 2}P states in silver have been measured. The delayed-coincidence technique has been used to make very accurate measurements of the radiative lifetimes and hyperfine structures of the lowest 2P states in sodium and silver. 77 refs, 2 figs, 14 tabs.
Large-scale atomic calculations using variational methods
International Nuclear Information System (INIS)
Joensson, Per.
1995-01-01
Atomic properties, such as radiative lifetimes, hyperfine structures and isotope shift, have been studied both theoretically and experimentally. Computer programs which calculate these properties from multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) wave functions have been developed and tested. To study relativistic effects, a program which calculates hyperfine structures from multiconfiguration Dirac-Fock (MCDF) wave functions has also been written. A new method of dealing with radial non-orthogonalities in transition matrix elements has been investigated. This method allows two separate orbital sets to be used for the initial and final states, respectively. It is shown that, once the usual orthogonality restrictions have been overcome, systematic MCHF calculations are able to predict oscillator strengths in light atoms with high accuracy. In connection with recent high-power laser experiments, time-dependent calculations of the atomic response to intense laser fields have been performed. Using the frozen-core approximation, where the atom is modeled as an active electron moving in the average field of the core electrons and the nucleus, the active electron has been propagated in time under the influence of the laser field. Radiative lifetimes and hyperfine structures of excited states in sodium and silver have been experimentally determined using time-resolved laser spectroscopy. By recording the fluorescence light decay following laser excitation in the vacuum ultraviolet spectral region, the radiative lifetimes and hyperfine structures of the 7p 2 P states in silver have been measured. The delayed-coincidence technique has been used to make very accurate measurements of the radiative lifetimes and hyperfine structures of the lowest 2P states in sodium and silver. 77 refs, 2 figs, 14 tabs
Recent development of radioanalytical method at IBR-2 pulsed fast reactor of the JINR
International Nuclear Information System (INIS)
Nazarov, V.M.; Pavlov, S.S.; Herrera, E.
1991-01-01
The experience of the use of radioanalytical methods, including NAA at IBR-2 pilsed fast reactor of the JINR, is discussed. Physical and technical parameters of the experimental installation designed for NAA and radiography are given. The detailed examples of the application of resonance neutrons to the control of the environment in the geology of oil, in multi-element analysis of food products and superpure materials as well as in nuclear physics are reviewed. The works on the application of the neutron isotopes sources for express determination of nitrogen content in original and synthetic materials are introduced. 7 refs.; 8 figs.; 3 tabs
Palmesi, P.; Exl, L.; Bruckner, F.; Abert, C.; Suess, D.
2017-11-01
The long-range magnetic field is the most time-consuming part in micromagnetic simulations. Computational improvements can relieve problems related to this bottleneck. This work presents an efficient implementation of the Fast Multipole Method [FMM] for the magnetic scalar potential as used in micromagnetics. The novelty lies in extending FMM to linearly magnetized tetrahedral sources making it interesting also for other areas of computational physics. We treat the near field directly and in use (exact) numerical integration on the multipole expansion in the far field. This approach tackles important issues like the vectorial and continuous nature of the magnetic field. By using FMM the calculations scale linearly in time and memory.
Adaptive grouping for the higher-order multilevel fast multipole method
DEFF Research Database (Denmark)
Borries, Oscar Peter; Jørgensen, Erik; Meincke, Peter
2014-01-01
An alternative parameter-free adaptive approach for the grouping of the basis function patterns in the multilevel fast multipole method is presented, yielding significant memory savings compared to the traditional Octree grouping for most discretizations, particularly when using higher-order basis...... functions. Results from both a uniformly and nonuniformly meshed scatterer are presented, showing how the technique is worthwhile even for regular meshes, and demonstrating that there is no loss of accuracy in spite of the large reduction in memory requirements and the relatively low computational cost....
A fast learning method for large scale and multi-class samples of SVM
Fan, Yu; Guo, Huiming
2017-06-01
A multi-class classification SVM(Support Vector Machine) fast learning method based on binary tree is presented to solve its low learning efficiency when SVM processing large scale multi-class samples. This paper adopts bottom-up method to set up binary tree hierarchy structure, according to achieved hierarchy structure, sub-classifier learns from corresponding samples of each node. During the learning, several class clusters are generated after the first clustering of the training samples. Firstly, central points are extracted from those class clusters which just have one type of samples. For those which have two types of samples, cluster numbers of their positive and negative samples are set respectively according to their mixture degree, secondary clustering undertaken afterwards, after which, central points are extracted from achieved sub-class clusters. By learning from the reduced samples formed by the integration of extracted central points above, sub-classifiers are obtained. Simulation experiment shows that, this fast learning method, which is based on multi-level clustering, can guarantee higher classification accuracy, greatly reduce sample numbers and effectively improve learning efficiency.
Energy Technology Data Exchange (ETDEWEB)
Hu, Rui, E-mail: rhu@anl.gov; Yu, Yiqi
2016-11-15
Highlights: • Developed a computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors. • Applied fully-coupled JFNK solution scheme to avoid the operator-splitting errors. • The accuracy and efficiency of the method is confirmed with a 7-assembly test problem. • The effects of different spatial discretization schemes are investigated and compared to the RANS-based CFD simulations. - Abstract: For efficient and accurate temperature predictions of sodium fast reactor structures, a 3-D full-core conjugate heat transfer modeling capability is developed for an advanced system analysis tool, SAM. The hexagon lattice core is modeled with 1-D parallel channels representing the subassembly flow, and 2-D duct walls and inter-assembly gaps. The six sides of the hexagon duct wall and near-wall coolant region are modeled separately to account for different temperatures and heat transfer between coolant flow and each side of the duct wall. The Jacobian Free Newton Krylov (JFNK) solution method is applied to solve the fluid and solid field simultaneously in a fully coupled fashion. The 3-D full-core conjugate heat transfer modeling capability in SAM has been demonstrated by a verification test problem with 7 fuel assemblies in a hexagon lattice layout. Additionally, the SAM simulation results are compared with RANS-based CFD simulations. Very good agreements have been achieved between the results of the two approaches.
An assessment of methods of calculating sodium voiding reactivity in plutonium fuelled fast reactors
International Nuclear Information System (INIS)
Butland, A.T.D.; Simmons, W.N.; Stevenson, J.M.
1979-01-01
After a survey of the requirements an assessment of the accuracy of calculations of the sodium void effect using UK methods and data is made on the basis of the following work. First, the analysis of small and large sodium voids in the MOZART and Zebra 13 small (300 MW(E)) fast reactor mock-ups and the BIZET large fast reactor mock-ups, all of conventional design. The analysis was carried out using the UK FGL5 fine group nuclear data library, the MURAL cell code, whole reactor diffusion theory calculations of the neutron flux and perturbation theory methods. Exact perturbation theory was used in many cases, otherwise first order perturbation theory calculations were adjusted to give results equivalent to exact perturbation theory. Second, theoretical studies of some effects, including, the effects of extrapolating to fuel operating temperatures, fuel cycle and burn-up effects, and the heterogeneity effects of large fuelled subassemblies in pin geometry. Third, theoretical studies of approximations in the calculational methods including, the importance in the whole reactor calculation of the energy group structure and the spatial mesh, the importance of reactor material boundaries in the calculation of resonance shielding effects, and the use of neutron fluxes calculated using neutron diffusion theory rather than transport theory. (U.K.)
Optimization in radiotherapy treatment planning thanks to a fast dose calculation method
International Nuclear Information System (INIS)
Yang, Mingchao
2014-01-01
This thesis deals with the radiotherapy treatments planning issue which need a fast and reliable treatment planning system (TPS). The TPS is composed of a dose calculation algorithm and an optimization method. The objective is to design a plan to deliver the dose to the tumor while preserving the surrounding healthy and sensitive tissues. The treatment planning aims to determine the best suited radiation parameters for each patient's treatment. In this thesis, the parameters of treatment with IMRT (Intensity modulated radiation therapy) are the beam angle and the beam intensity. The objective function is multi-criteria with linear constraints. The main objective of this thesis is to demonstrate the feasibility of a treatment planning optimization method based on a fast dose-calculation technique developed by (Blanpain, 2009). This technique proposes to compute the dose by segmenting the patient's phantom into homogeneous meshes. The dose computation is divided into two steps. The first step impacts the meshes: projections and weights are set according to physical and geometrical criteria. The second step impacts the voxels: the dose is computed by evaluating the functions previously associated to their mesh. A reformulation of this technique makes possible to solve the optimization problem by the gradient descent algorithm. The main advantage of this method is that the beam angle parameters could be optimized continuously in 3 dimensions. The obtained results in this thesis offer many opportunities in the field of radiotherapy treatment planning optimization. (author) [fr
Directory of Open Access Journals (Sweden)
A. D. Chernyshov
2017-01-01
Full Text Available The brief presentation of the method of fast expansions is given to solve nonlinear differential equations. Application rules of the operator of fast expansions are specified for solving differential equations. According to the method of fast expansions, an unknown function can be represented as the sum of the boundary function and Fourier series sines and cosines for one variable. The special construction of the boundary functions leads to reasonably fast convergence of the Fourier series, so that for engineering calculations, it is sufficient to consider only the first three members. The method is applicable both to linear and nonlinear integro-differential systems. By means of applying the method of fast expansions to nonlinear Navier-Stokes equations the problem is reduced to a closed system of ordinary differential equations, which solution doesn't represent special difficulties. We can reapply the method of fast expansions to the resulting system of differential equations and reduce the original problem to a system of algebraic equations. If the problem is n-dimensional, then after n-fold application of the method of fast expansions the problem will be reduced to a closed algebraic system. Finally, we obtain an analytic-form solution of complicated boundary value problem in partial derivatives. The flow of an incompressible viscous fluid of Navier–Stokes is considered in a curvilinear pipe. The problem is reduced to solving a closed system of ordinary differential equations with boundary conditions by the method of fast expansions. The article considers peculiarities of finding the coefficients of boundary functions and Fourier coefficients for the zero-order and first-order operators of fast expansions. Obtaining the analytic-form solution is of great interest, because it allows to analyze and to investigate the influence of various factors on the properties of the viscous fluid in specific cases.
A Fast Gradient Method for Nonnegative Sparse Regression With Self-Dictionary
Gillis, Nicolas; Luce, Robert
2018-01-01
A nonnegative matrix factorization (NMF) can be computed efficiently under the separability assumption, which asserts that all the columns of the given input data matrix belong to the cone generated by a (small) subset of them. The provably most robust methods to identify these conic basis columns are based on nonnegative sparse regression and self dictionaries, and require the solution of large-scale convex optimization problems. In this paper we study a particular nonnegative sparse regression model with self dictionary. As opposed to previously proposed models, this model yields a smooth optimization problem where the sparsity is enforced through linear constraints. We show that the Euclidean projection on the polyhedron defined by these constraints can be computed efficiently, and propose a fast gradient method to solve our model. We compare our algorithm with several state-of-the-art methods on synthetic data sets and real-world hyperspectral images.
A fast tomographic method for searching the minimum free energy path
International Nuclear Information System (INIS)
Chen, Changjun; Huang, Yanzhao; Xiao, Yi; Jiang, Xuewei
2014-01-01
Minimum Free Energy Path (MFEP) provides a lot of important information about the chemical reactions, like the free energy barrier, the location of the transition state, and the relative stability between reactant and product. With MFEP, one can study the mechanisms of the reaction in an efficient way. Due to a large number of degrees of freedom, searching the MFEP is a very time-consuming process. Here, we present a fast tomographic method to perform the search. Our approach first calculates the free energy surfaces in a sequence of hyperplanes perpendicular to a transition path. Based on an objective function and the free energy gradient, the transition path is optimized in the collective variable space iteratively. Applications of the present method to model systems show that our method is practical. It can be an alternative approach for finding the state-to-state MFEP
Biochemical method for fast affinity diagnosis in grape-vine transplantation
International Nuclear Information System (INIS)
Lilov, D.
1977-01-01
Long term experiments have proved the affinity of cv. Mavroud in transplantations on various root stocks. Best affinity was observed in the combination cv. Mavroud X Riparia tomanteau, followed, in a descending order, by the combinations Mavroud X Mavroud (autotransplantation), Mavroud X Berlandieri X Riparia Kobber SBB and Mavroud X Riparia 33 EM. In view to establish indices for predicting the transplantation affinity a great number of physiological-biochemical and morphological-anatomical studies were carried out. The results obtained showed that a most clearly expressed positive, statistically significant correlation exists between the amount of 15 N transported from the root stock to the scions, shoots and leaves. As a result, a biochemical method for fast affinity diagnosis in grape-vine transplantation has been developed. The reliability of the method has been checked up also with other cultivars. Up to the present no such method was known in grape-vine science and practice. (author)
International Nuclear Information System (INIS)
Dang Van Mien, H.; Irving, E.; Rousseau, I.
1982-01-01
Motivated by the limitations inherent in the standard approach, a new model reference multivariable adaptive control method is described. This latter control method utilizes as a design tool a simple vector difference equation of the controlled system. The adaptive control method is of the series-parallel direct reference model type and the adjustment algorithm is the standard least squares estimation technics with hyperstability conditions, controlled convergence speed forgetting, regularization and threshold operations. Numerical results are presented which illustrate the interest of the latter approach. The precise problem which has been tackled is the control of the steam generator of the second fast breeder French nuclear reactor called Super-Phenix. After a short description of the plant and its responses at different loads, the principles and the performances of the standard technique control scheme which has been adopted are discussed [fr
Integral equation models for image restoration: high accuracy methods and fast algorithms
International Nuclear Information System (INIS)
Lu, Yao; Shen, Lixin; Xu, Yuesheng
2010-01-01
Discrete models are consistently used as practical models for image restoration. They are piecewise constant approximations of true physical (continuous) models, and hence, inevitably impose bottleneck model errors. We propose to work directly with continuous models for image restoration aiming at suppressing the model errors caused by the discrete models. A systematic study is conducted in this paper for the continuous out-of-focus image models which can be formulated as an integral equation of the first kind. The resulting integral equation is regularized by the Lavrentiev method and the Tikhonov method. We develop fast multiscale algorithms having high accuracy to solve the regularized integral equations of the second kind. Numerical experiments show that the methods based on the continuous model perform much better than those based on discrete models, in terms of PSNR values and visual quality of the reconstructed images
Ben Issaid, Chaouki; Rached, Nadhir B.; Kammoun, Abla; Alouini, Mohamed-Slim; Tempone, Raul
2017-01-01
The Gamma-Gamma distribution has recently emerged in a number of applications ranging from modeling scattering and reverbation in sonar and radar systems to modeling atmospheric turbulence in wireless optical channels. In this respect, assessing the outage probability achieved by some diversity techniques over this kind of channels is of major practical importance. In many circumstances, this is intimately related to the difficult question of analyzing the statistics of a sum of Gamma-Gamma random variables. Answering this question is not a simple matter. This is essentially because outage probabilities encountered in practice are often very small, and hence the use of classical Monte Carlo methods is not a reasonable choice. This lies behind the main motivation of the present work. In particular, this paper proposes a new approach to estimate the left tail of the sum of independent and identically distributed Gamma-Gamma variates. More specifically, we propose a mean-shift importance sampling scheme that efficiently evaluates the outage probability of L-branch maximum ratio combining diversity receivers over Gamma-Gamma fading channels. The proposed estimator satisfies the well-known bounded relative error criterion. We show the accuracy and the efficiency of our approach compared to naive Monte Carlo via some selected numerical simulations.
Ben Issaid, Chaouki
2017-04-01
The Gamma-Gamma distribution has recently emerged in a number of applications ranging from modeling scattering and reverbation in sonar and radar systems to modeling atmospheric turbulence in wireless optical channels. In this respect, assessing the outage probability achieved by some diversity techniques over this kind of channels is of major practical importance. In many circumstances, this is intimately related to the difficult question of analyzing the statistics of a sum of Gamma-Gamma random variables. Answering this question is not a simple matter. This is essentially because outage probabilities encountered in practice are often very small, and hence the use of classical Monte Carlo methods is not a reasonable choice. This lies behind the main motivation of the present work. In particular, this paper proposes a new approach to estimate the left tail of the sum of independent and identically distributed Gamma-Gamma variates. More specifically, we propose a mean-shift importance sampling scheme that efficiently evaluates the outage probability of L-branch maximum ratio combining diversity receivers over Gamma-Gamma fading channels. The proposed estimator satisfies the well-known bounded relative error criterion. We show the accuracy and the efficiency of our approach compared to naive Monte Carlo via some selected numerical simulations.
A data-driven prediction method for fast-slow systems
Groth, Andreas; Chekroun, Mickael; Kondrashov, Dmitri; Ghil, Michael
2016-04-01
In this work, we present a prediction method for processes that exhibit a mixture of variability on low and fast scales. The method relies on combining empirical model reduction (EMR) with singular spectrum analysis (SSA). EMR is a data-driven methodology for constructing stochastic low-dimensional models that account for nonlinearity and serial correlation in the estimated noise, while SSA provides a decomposition of the complex dynamics into low-order components that capture spatio-temporal behavior on different time scales. Our study focuses on the data-driven modeling of partial observations from dynamical systems that exhibit power spectra with broad peaks. The main result in this talk is that the combination of SSA pre-filtering with EMR modeling improves, under certain circumstances, the modeling and prediction skill of such a system, as compared to a standard EMR prediction based on raw data. Specifically, it is the separation into "fast" and "slow" temporal scales by the SSA pre-filtering that achieves the improvement. We show, in particular that the resulting EMR-SSA emulators help predict intermittent behavior such as rapid transitions between specific regions of the system's phase space. This capability of the EMR-SSA prediction will be demonstrated on two low-dimensional models: the Rössler system and a Lotka-Volterra model for interspecies competition. In either case, the chaotic dynamics is produced through a Shilnikov-type mechanism and we argue that the latter seems to be an important ingredient for the good prediction skills of EMR-SSA emulators. Shilnikov-type behavior has been shown to arise in various complex geophysical fluid models, such as baroclinic quasi-geostrophic flows in the mid-latitude atmosphere and wind-driven double-gyre ocean circulation models. This pervasiveness of the Shilnikow mechanism of fast-slow transition opens interesting perspectives for the extension of the proposed EMR-SSA approach to more realistic situations.
A FAST METHOD FOR MEASURING THE SIMILARITY BETWEEN 3D MODEL AND 3D POINT CLOUD
Directory of Open Access Journals (Sweden)
Z. Zhang
2016-06-01
Full Text Available This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC. It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.
Lu, Tzong-Shi; Yiao, Szu-Yu; Lim, Kenneth; Jensen, Roderick V; Hsiao, Li-Li
2010-07-01
The identification of differences in protein expression resulting from methodical variations is an essential component to the interpretation of true, biologically significant results. We used the Lowry and Bradford methods- two most commonly used methods for protein quantification, to assess whether differential protein expressions are a result of true biological or methodical variations. MATERIAL #ENTITYSTARTX00026; Differential protein expression patterns was assessed by western blot following protein quantification by the Lowry and Bradford methods. We have observed significant variations in protein concentrations following assessment with the Lowry versus Bradford methods, using identical samples. Greater variations in protein concentration readings were observed over time and in samples with higher concentrations, with the Bradford method. Identical samples quantified using both methods yielded significantly different expression patterns on Western blot. We show for the first time that methodical variations observed in these protein assay techniques, can potentially translate into differential protein expression patterns, that can be falsely taken to be biologically significant. Our study therefore highlights the pivotal need to carefully consider methodical approaches to protein quantification in techniques that report quantitative differences.
International Nuclear Information System (INIS)
Avinash Chandra; Tewari, S.N.
1978-01-01
The seeds of mung bean (Phaseolus aureus Roxb.) varieties S-8 and Pusa Baisakhi were irradiated with 15, 30, 45 and 60 k rads of gamma-rays and 500, 1000, 2000 and 3000 rads of fast neutrons. The results showed that there is a gradual reduction in amount of germination of seeds, pollen and ovule fertility with increasing doses of both mutagens. These mutagens also cause leaf abnormalities such as unifoliate, bifoliate, trifoliate, tetrafoliate and pentafoliate. Both tetra and pentafoliate leaves observed on the same plant of S-8 variety under fast neutron irradiation appear to have been associated with enhanced luxuriance of the plant resulting in satisfactory pod formation. (author)
Hakamada, Kenichi; Narumi, Shunji; Toyoki, Yoshikazu; Nara, Masaki; Ishido, Kenosuke; Miura, Takuya; Kubo, Norihito; Sasaki, Mutsuo
2008-01-01
AIM: To clarify the usefulness of a new method for performing a pancreaticojejunostomy by using a fast-absorbable suture material irradiated polyglactin 910, and a temporary stent tube for a narrow pancreatic duct with a soft pancreatic texture.
Theoretical study of the F2 molecule using the variational cellular method
International Nuclear Information System (INIS)
Lima, M.A.P.; Leite, J.R.; Fazzio, A.
1981-02-01
Variational Cellular Method calculations for F 2 have been carried out at several internuclear distances. The ground and excited state potential curves are presented. The overall agreement between the VCM results and ab initio calculations is fairly good. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Sehgal, A K; Gupta, S C [Punjabi Univ., Patiala (India). Dept. of Physics
1982-12-14
The complementary variational principles method (CVP) is applied to the thermal conductivities of a plasma in a uniform magnetic field. The results of computations show that the CVP derived results are very useful.
International Nuclear Information System (INIS)
Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C.; Santos, A. D.; Moraes, J. C. S.
2013-01-01
The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10 −3 cm 2 /s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s 0.5 /cm 2 K and volume heat capacity (5.2 ± 0.7) J/cm 3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)
Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Santos, A. D.; Moraes, J. C. S.; Bento, A. C.
2013-11-01
The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (˜7 min) and with similar thermal expansion (˜12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10-3 cm2/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s0.5/cm2 K and volume heat capacity (5.2 ± 0.7) J/cm3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water).
Energy Technology Data Exchange (ETDEWEB)
Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C., E-mail: acbento@uem.br [Departamento de Física, Grupo de Espectroscopia Fotoacústica e Fototérmica, Universidade Estadual de Maringá – UEM, Av. Colombo 5790, 87020-900 Maringá, Paraná (Brazil); Santos, A. D.; Moraes, J. C. S. [Departamento de Física e Química, Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP, Av. Brasil 56, 15385-000 Ilha Solteira, SP (Brazil)
2013-11-21
The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10{sup −3} cm{sup 2}/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s{sup 0.5}/cm{sup 2} K and volume heat capacity (5.2 ± 0.7) J/cm{sup 3} K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)
Directory of Open Access Journals (Sweden)
Muhammad Aslam Noor
2008-01-01
Full Text Available We suggest and analyze a technique by combining the variational iteration method and the homotopy perturbation method. This method is called the variational homotopy perturbation method (VHPM. We use this method for solving higher dimensional initial boundary value problems with variable coefficients. The developed algorithm is quite efficient and is practically well suited for use in these problems. The proposed scheme finds the solution without any discritization, transformation, or restrictive assumptions and avoids the round-off errors. Several examples are given to check the reliability and efficiency of the proposed technique.
Rubino, Stefano; Akhtar, Sultan; Leifer, Klaus
2016-02-01
We present a simple, fast method for thickness characterization of suspended graphene/graphite flakes that is based on transmission electron microscopy (TEM). We derive an analytical expression for the intensity of the transmitted electron beam I 0(t), as a function of the specimen thickness t (tgraphite). We show that in thin graphite crystals the transmitted intensity is a linear function of t. Furthermore, high-resolution (HR) TEM simulations are performed to obtain λ for a 001 zone axis orientation, in a two-beam case and in a low symmetry orientation. Subsequently, HR (used to determine t) and bright-field (to measure I 0(0) and I 0(t)) images were acquired to experimentally determine λ. The experimental value measured in low symmetry orientation matches the calculated value (i.e., λ=225±9 nm). The simulations also show that the linear approximation is valid up to a sample thickness of 3-4 nm regardless of the orientation and up to several ten nanometers for a low symmetry orientation. When compared with standard techniques for thickness determination of graphene/graphite, the method we propose has the advantage of being simple and fast, requiring only the acquisition of bright-field images.
A fast pulse phase estimation method for X-ray pulsar signals based on epoch folding
Directory of Open Access Journals (Sweden)
Xue Mengfan
2016-06-01
Full Text Available X-ray pulsar-based navigation (XPNAV is an attractive method for autonomous deep-space navigation in the future. The pulse phase estimation is a key task in XPNAV and its accuracy directly determines the navigation accuracy. State-of-the-art pulse phase estimation techniques either suffer from poor estimation accuracy, or involve the maximization of generally non-convex object function, thus resulting in a large computational cost. In this paper, a fast pulse phase estimation method based on epoch folding is presented. The statistical properties of the observed profile obtained through epoch folding are developed. Based on this, we recognize the joint probability distribution of the observed profile as the likelihood function and utilize a fast Fourier transform-based procedure to estimate the pulse phase. Computational complexity of the proposed estimator is analyzed as well. Experimental results show that the proposed estimator significantly outperforms the currently used cross-correlation (CC and nonlinear least squares (NLS estimators, while significantly reduces the computational complexity compared with NLS and maximum likelihood (ML estimators.
Partial differential equations with variable exponents variational methods and qualitative analysis
Radulescu, Vicentiu D
2015-01-01
Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis provides researchers and graduate students with a thorough introduction to the theory of nonlinear partial differential equations (PDEs) with a variable exponent, particularly those of elliptic type. The book presents the most important variational methods for elliptic PDEs described by nonhomogeneous differential operators and containing one or more power-type nonlinearities with a variable exponent. The authors give a systematic treatment of the basic mathematical theory and constructive meth
DEFF Research Database (Denmark)
Lund, Søren S.; Petersen, Martin; Frandsen, Merete
2011-01-01
LDL cholesterol (LDL-C) is a modifiable cardiovascular disease risk factor. We used 3 LDL-C methods to study the agreement between fasting and postprandial LDL-C in type 2 diabetes (T2DM) patients.......LDL cholesterol (LDL-C) is a modifiable cardiovascular disease risk factor. We used 3 LDL-C methods to study the agreement between fasting and postprandial LDL-C in type 2 diabetes (T2DM) patients....
International Nuclear Information System (INIS)
Dias, M.S.; Koskinas, M.F.; Berretta, J.R.; Fratin, L.; Botelho, S.
1990-01-01
The thermal, epithermal and fast neutron fluxes have been determined experimentally by the activation foil method at position GI, located near the IEA-R1 reactor core. The reactions used were 197 Au (n,gamma) 198 Au, for thermal and epithermal neutrons and 27 Na (n,alpha) 24 Na, for fast neutrons. The activities were measured by the 4π(PC)β-γ coincidence method. (author)
Quantum mechanical algebraic variational methods for inelastic and reactive molecular collisions
Schwenke, David W.; Haug, Kenneth; Zhao, Meishan; Truhlar, Donald G.; Sun, Yan
1988-01-01
The quantum mechanical problem of reactive or nonreactive scattering of atoms and molecules is formulated in terms of square-integrable basis sets with variational expressions for the reactance matrix. Several formulations involving expansions of the wave function (the Schwinger variational principle) or amplitude density (a generalization of the Newton variational principle), single-channel or multichannel distortion potentials, and primitive or contracted basis functions are presented and tested. The test results, for inelastic and reactive atom-diatom collisions, suggest that the methods may be useful for a variety of collision calculations and may allow the accurate quantal treatment of systems for which other available methods would be prohibitively expensive.
Variational methods for problems from plasticity theory and for generalized Newtonian fluids
Fuchs, Martin
2000-01-01
Variational methods are applied to prove the existence of weak solutions for boundary value problems from the deformation theory of plasticity as well as for the slow, steady state flow of generalized Newtonian fluids including the Bingham and Prandtl-Eyring model. For perfect plasticity the role of the stress tensor is emphasized by studying the dual variational problem in appropriate function spaces. The main results describe the analytic properties of weak solutions, e.g. differentiability of velocity fields and continuity of stresses. The monograph addresses researchers and graduate students interested in applications of variational and PDE methods in the mechanics of solids and fluids.
Analysis of Diffusion Problems using Homotopy Perturbation and Variational Iteration Methods
DEFF Research Database (Denmark)
Barari, Amin; Poor, A. Tahmasebi; Jorjani, A.
2010-01-01
In this paper, variational iteration method and homotopy perturbation method are applied to different forms of diffusion equation. The diffusion equations have found wide applications in heat transfer problems, theory of consolidation and many other problems in engineering. The methods proposed...
Application of He's variational iteration method to the fifth-order boundary value problems
International Nuclear Information System (INIS)
Shen, S
2008-01-01
Variational iteration method is introduced to solve the fifth-order boundary value problems. This method provides an efficient approach to solve this type of problems without discretization and the computation of the Adomian polynomials. Numerical results demonstrate that this method is a promising and powerful tool for solving the fifth-order boundary value problems
The calculation of site-dependent earthquake motions -3. The method of fast fourier transform
International Nuclear Information System (INIS)
Simpson, I.C.
1976-10-01
The method of Fast Fourier transform (FFT) is applied to the problem of the determination of site-dependent earthquake motions, which takes account of local geological effects. A program, VELAY 1, which uses the FFT method has been written and is described in this report. The assumptions of horizontally stratified, homogeneous, isotropic, linearly viscoelastic layers and a normally incident plane seismic wave are made. Several examples are given, using VELAY 1, of modified surface acceleration-time histories obtained using a selected input acceleration-time history and a representative system of soil layers. There is a discussion concerning the soil properties that need to be measured in order to use VELAY 1 (and similar programs described in previous reports) and hence generate site-dependent ground motions suitable for aseismic design of a nuclear power plant at a given site. (author)
International Nuclear Information System (INIS)
Pickett, T.J.; Shirts, R.B.
1991-01-01
Based on work by Martens and Ezra and partially developed independently by Eaker, we apply an improved method of approximating the quantum energy levels of a system of coupled oscillators using the fast-Fourier transform of classical coordinates and momenta to find quantizing trajectories. Application is made to a two-dimensional system modeling the stretching motions of the HDO molecule. The results are in excellent agreement with quantum calculations. This method is useful because: (1) it gives results which are independent of any separability of the Hamiltonian, (2) it is not limited in the number of degrees of freedom that can be handled, and (3) no zero-order approximation to the system is necessary. Results are equally valid inside and outside of resonance zones
A fast online hit verification method for the single ion hit system at GSI
International Nuclear Information System (INIS)
Du, G.; Fischer, B.; Barberet, P.; Heiss, M.
2006-01-01
For a single ion hit facility built to irradiate specific targets inside biological cells, it is necessary to prove that the ions hit the selected targets reliably because the ion hits usually cannot be seen. That ability is traditionally tested either indirectly by aiming at pre-etched tracks in a nuclear track detector or directly by making the ion tracks inside cells visible using a stain coupled to special proteins produced in response to ion hits. However, both methods are time consuming and hits can be verified only after the experiment. This means that targeting errors in the experiment cannot be corrected during the experiment. Therefore, we have developed a fast online hit verification method that measures the targeting accuracy electronically with a spatial resolution of ±1 μm before cell irradiation takes place. (authors)
A method for detecting the rupture of a fuel element in a fast neutron breeder reactor
International Nuclear Information System (INIS)
Cohen, Paul.
1974-01-01
The method according to the invention is characterized by the steps of balancing a cooling sodium sample driven through a nozzle into a molten salt constituted by a baryum-iodide strontium-iodide mixture, so that a substantial portion of radioactive iodine contingently present in the liquid sodium accumulates in the molten salt through isotopic exchange, separating the molten salt from sodium, balancing (if required) the molten salt with nonradioactive sodium and separating the molten salt from the sodium, and controlling the molten salt in order to determine the presence of iodine, such presence being-indicative of the rupture (or burst) of a fuel element sheath. Such a method is suitable in particular for detecting the rupture of a fuel element in a sodium-cooled fast breeder-reactor [fr
Simplified inelastic analysis methods applied to fast breeder reactor core design
International Nuclear Information System (INIS)
Abo-El-Ata, M.M.
1978-01-01
The paper starts with a review of some currently available simplified inelastic analysis methods used in elevated temperature design for evaluating plastic and thermal creep strains. The primary purpose of the paper is to investigate how these simplified methods may be applied to fast breeder reactor core design where neutron irradiation effects are significant. One of the problems discussed is irradiation-induced creep and its effect on shakedown, ratcheting, and plastic cycling. Another problem is the development of swelling-induced stress which is an additional loading mechanism and must be taken into account. In this respect an expression for swelling-induced stress in the presence of irradiation creep is derived and a model for simplifying the stress analysis under these conditions is proposed. As an example, the effects of irradiation creep and swelling induced stress on the analysis of a thin walled tube under constant internal pressure and intermittent heat fluxes, simulating a fuel pin, is presented
Introducing GAMER: A Fast and Accurate Method for Ray-tracing Galaxies Using Procedural Noise
Groeneboom, N. E.; Dahle, H.
2014-03-01
We developed a novel approach for fast and accurate ray-tracing of galaxies using procedural noise fields. Our method allows for efficient and realistic rendering of synthetic galaxy morphologies, where individual components such as the bulge, disk, stars, and dust can be synthesized in different wavelengths. These components follow empirically motivated overall intensity profiles but contain an additional procedural noise component that gives rise to complex natural patterns that mimic interstellar dust and star-forming regions. These patterns produce more realistic-looking galaxy images than using analytical expressions alone. The method is fully parallelized and creates accurate high- and low- resolution images that can be used, for example, in codes simulating strong and weak gravitational lensing. In addition to having a user-friendly graphical user interface, the C++ software package GAMER is easy to implement into an existing code.
Introducing GAMER: A fast and accurate method for ray-tracing galaxies using procedural noise
International Nuclear Information System (INIS)
Groeneboom, N. E.; Dahle, H.
2014-01-01
We developed a novel approach for fast and accurate ray-tracing of galaxies using procedural noise fields. Our method allows for efficient and realistic rendering of synthetic galaxy morphologies, where individual components such as the bulge, disk, stars, and dust can be synthesized in different wavelengths. These components follow empirically motivated overall intensity profiles but contain an additional procedural noise component that gives rise to complex natural patterns that mimic interstellar dust and star-forming regions. These patterns produce more realistic-looking galaxy images than using analytical expressions alone. The method is fully parallelized and creates accurate high- and low- resolution images that can be used, for example, in codes simulating strong and weak gravitational lensing. In addition to having a user-friendly graphical user interface, the C++ software package GAMER is easy to implement into an existing code.
Introducing GAMER: A fast and accurate method for ray-tracing galaxies using procedural noise
Energy Technology Data Exchange (ETDEWEB)
Groeneboom, N. E.; Dahle, H., E-mail: nicolaag@astro.uio.no [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway)
2014-03-10
We developed a novel approach for fast and accurate ray-tracing of galaxies using procedural noise fields. Our method allows for efficient and realistic rendering of synthetic galaxy morphologies, where individual components such as the bulge, disk, stars, and dust can be synthesized in different wavelengths. These components follow empirically motivated overall intensity profiles but contain an additional procedural noise component that gives rise to complex natural patterns that mimic interstellar dust and star-forming regions. These patterns produce more realistic-looking galaxy images than using analytical expressions alone. The method is fully parallelized and creates accurate high- and low- resolution images that can be used, for example, in codes simulating strong and weak gravitational lensing. In addition to having a user-friendly graphical user interface, the C++ software package GAMER is easy to implement into an existing code.
A fast computation method for MUSIC spectrum function based on circular arrays
Du, Zhengdong; Wei, Ping
2015-02-01
The large computation amount of multiple signal classification (MUSIC) spectrum function seriously affects the timeliness of direction finding system using MUSIC algorithm, especially in the two-dimensional directions of arrival (DOA) estimation of azimuth and elevation with a large antenna array. This paper proposes a fast computation method for MUSIC spectrum. It is suitable for any circular array. First, the circular array is transformed into a virtual uniform circular array, in the process of calculating MUSIC spectrum, for the cyclic characteristics of steering vector, the inner product in the calculation of spatial spectrum is realised by cyclic convolution. The computational amount of MUSIC spectrum is obviously less than that of the conventional method. It is a very practical way for MUSIC spectrum computation in circular arrays.
Chung, Ren-Hua; Chiu, Yen-Feng; Hung, Yi-Jen; Lee, Wen-Jane; Wu, Kwan-Dun; Chen, Hui-Ling; Lin, Ming-Wei; Chen, Yii-Der I; Quertermous, Thomas; Hsiung, Chao A
2017-08-08
Fasting glucose and fasting insulin are glycemic traits closely related to diabetes, and understanding the role of genetic factors in these traits can help reveal the etiology of type 2 diabetes. Although single nucleotide polymorphisms (SNPs) in several candidate genes have been found to be associated with fasting glucose and fasting insulin, copy number variations (CNVs), which have been reported to be associated with several complex traits, have not been reported for association with these two traits. We aimed to identify CNVs associated with fasting glucose and fasting insulin. We conducted a genome-wide CNV association analysis for fasting plasma glucose (FPG) and fasting plasma insulin (FPI) using a family-based genome-wide association study sample from a Han Chinese population in Taiwan. A family-based CNV association test was developed in this study to identify common CNVs (i.e., CNVs with frequencies ≥ 5%), and a generalized estimating equation approach was used to test the associations between the traits and counts of global rare CNVs (i.e., CNVs with frequencies <5%). We found a significant genome-wide association for common deletions with a frequency of 5.2% in the Scm-like with four mbt domains 1 (SFMBT1) gene with FPG (association p-value = 2×10 -4 and an adjusted p-value = 0.0478 for multiple testing). No significant association was observed between global rare CNVs and FPG or FPI. The deletions in 20 individuals with DNA samples available were successfully validated using PCR-based amplification. The association of the deletions in SFMBT1 with FPG was further evaluated using an independent population-based replication sample obtained from the Taiwan Biobank. An association p-value of 0.065, which was close to the significance level of 0.05, for FPG was obtained by testing 9 individuals with CNVs in the SFMBT1 gene region and 11,692 individuals with normal copies in the replication cohort. Previous studies have found that SNPs in SFMBT1 are
Directory of Open Access Journals (Sweden)
Haiwen Li
2018-01-01
Full Text Available The estimation speed of positioning parameters determines the effectiveness of the positioning system. The time of arrival (TOA and direction of arrival (DOA parameters can be estimated by the space-time two-dimensional multiple signal classification (2D-MUSIC algorithm for array antenna. However, this algorithm needs much time to complete the two-dimensional pseudo spectral peak search, which makes it difficult to apply in practice. Aiming at solving this problem, a fast estimation method of space-time two-dimensional positioning parameters based on Hadamard product is proposed in orthogonal frequency division multiplexing (OFDM system, and the Cramer-Rao bound (CRB is also presented. Firstly, according to the channel frequency domain response vector of each array, the channel frequency domain estimation vector is constructed using the Hadamard product form containing location information. Then, the autocorrelation matrix of the channel response vector for the extended array element in frequency domain and the noise subspace are calculated successively. Finally, by combining the closed-form solution and parameter pairing, the fast joint estimation for time delay and arrival direction is accomplished. The theoretical analysis and simulation results show that the proposed algorithm can significantly reduce the computational complexity and guarantee that the estimation accuracy is not only better than estimating signal parameters via rotational invariance techniques (ESPRIT algorithm and 2D matrix pencil (MP algorithm but also close to 2D-MUSIC algorithm. Moreover, the proposed algorithm also has certain adaptability to multipath environment and effectively improves the ability of fast acquisition of location parameters.
A two-step method for fast and reliable EUV mask metrology
Helfenstein, Patrick; Mochi, Iacopo; Rajendran, Rajeev; Yoshitake, Shusuke; Ekinci, Yasin
2017-03-01
One of the major obstacles towards the implementation of extreme ultraviolet lithography for upcoming technology nodes in semiconductor industry remains the realization of a fast and reliable detection methods patterned mask defects. We are developing a reflective EUV mask-scanning lensless imaging tool (RESCAN), installed at the Swiss Light Source synchrotron at the Paul Scherrer Institut. Our system is based on a two-step defect inspection method. In the first step, a low-resolution defect map is generated by die to die comparison of the diffraction patterns from areas with programmed defects, to those from areas that are known to be defect-free on our test sample. In a later stage, a die to database comparison will be implemented in which the measured diffraction patterns will be compared to those calculated directly from the mask layout. This Scattering Scanning Contrast Microscopy technique operates purely in the Fourier domain without the need to obtain the aerial image and, given a sufficient signal to noise ratio, defects are found in a fast and reliable way, albeit with a location accuracy limited by the spot size of the incident illumination. Having thus identified rough locations for the defects, a fine scan is carried out in the vicinity of these locations. Since our source delivers coherent illumination, we can use an iterative phase-retrieval method to reconstruct the aerial image of the scanned area with - in principle - diffraction-limited resolution without the need of an objective lens. Here, we will focus on the aerial image reconstruction technique and give a few examples to illustrate the capability of the method.
A fast button surface defects detection method based on convolutional neural network
Liu, Lizhe; Cao, Danhua; Wu, Songlin; Wu, Yubin; Wei, Taoran
2018-01-01
Considering the complexity of the button surface texture and the variety of buttons and defects, we propose a fast visual method for button surface defect detection, based on convolutional neural network (CNN). CNN has the ability to extract the essential features by training, avoiding designing complex feature operators adapted to different kinds of buttons, textures and defects. Firstly, we obtain the normalized button region and then use HOG-SVM method to identify the front and back side of the button. Finally, a convolutional neural network is developed to recognize the defects. Aiming at detecting the subtle defects, we propose a network structure with multiple feature channels input. To deal with the defects of different scales, we take a strategy of multi-scale image block detection. The experimental results show that our method is valid for a variety of buttons and able to recognize all kinds of defects that have occurred, including dent, crack, stain, hole, wrong paint and uneven. The detection rate exceeds 96%, which is much better than traditional methods based on SVM and methods based on template match. Our method can reach the speed of 5 fps on DSP based smart camera with 600 MHz frequency.
Advanced methods comparisons of reaction rates in the Purdue Fast Breeder Blanket Facility
International Nuclear Information System (INIS)
Hill, R.N.; Ott, K.O.
1988-01-01
A review of worldwide results revealed that reaction rates in the blanket region are generally underpredicted with the discrepancy increasing with penetration; however, these results vary widely. Experiments in the large uniform Purdue Fast Breeder Blanket Facility (FBBF) blanket yield an accurate quantification of this discrepancy. Using standard production code methods (diffusion theory with 50 group cross sections), a consistent Calculated/Experimental (C/E) drop-off was observed for various reaction rates. A 50% increase in the calculated results at the outer edge of the blanket is necessary for agreement with experiments. The usefulness of refined group constant generation utilizing specialized weighting spectra and transport theory methods in correcting this discrepancy was analyzed. Refined group constants reduce the discrepancy to half that observed using the standard method. The surprising result was that transport methods had no effect on the blanket deviations; thus, transport theory considerations do not constitute or even contribute to an explanation of the blanket discrepancies. The residual blanket C/E drop-off (about half the standard drop-off) using advanced methods must be caused by some approximations which are applied in all current methods. 27 refs., 3 figs., 1 tab
Batzli, Janet M; Smith, Amber R; Williams, Paul H; McGee, Seth A; Dósa, Katalin; Pfammatter, Jesse
2014-01-01
Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory course focused on the inheritance and expression of a quantitative trait in varying environments. We utilized Brassica rapa Fast Plants as a model organism to study variation in the phenotype anthocyanin pigment intensity. As an initial curriculum assessment, we used free word association to examine students' cognitive structures before and after the unit and explanations in students' final research posters with particular focus on variation (Pv = Gv + Ev). Comparison of pre- and postunit word frequency revealed a shift in words and a pattern of co-occurring concepts indicative of change in cognitive structure, with particular focus on "variation" as a proposed threshold concept and primary goal for students' explanations. Given review of 53 posters, we found ∼50% of students capable of intermediate to high-level explanations combining both Gv and Ev influence on expression of anthocyanin intensity (Pv). While far from "plug and play," this conceptually rich, inquiry-based unit holds promise for effective integration of quantitative and Mendelian genetics. © 2014 J. M. Batzli et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Solution of Nonlinear Partial Differential Equations by New Laplace Variational Iteration Method
Directory of Open Access Journals (Sweden)
Eman M. A. Hilal
2014-01-01
Full Text Available The aim of this study is to give a good strategy for solving some linear and nonlinear partial differential equations in engineering and physics fields, by combining Laplace transform and the modified variational iteration method. This method is based on the variational iteration method, Laplace transforms, and convolution integral, introducing an alternative Laplace correction functional and expressing the integral as a convolution. Some examples in physical engineering are provided to illustrate the simplicity and reliability of this method. The solutions of these examples are contingent only on the initial conditions.
Creep/fatigue damage prediction of fast reactor components using shakedown methods
International Nuclear Information System (INIS)
Buckthorpe, D.E.
1997-01-01
The present status of the shakedown method is reviewed, the application of the shakedown based principles to complex hardening and creep behaviour is described and justified and the prediction of damage against design criteria outlined. Comparisons are made with full inelastic analysis solutions where these are available and against damage assessments using elastic and inelastic design code methods. Current and future developments of the method are described including a summary of the advances made in the development of the post process ADAPT, which has enabled the method to be applied to complex geometry features and loading cases. The paper includes a review of applications of the method to typical Fast Reactor structural example cases within the primary and secondary circuits. For the primary circuit this includes structures such as the large diameter internal shells which are surrounded by hot sodium and subject to slow and rapid thermal transient loadings. One specific case is the damage assessment associated with thermal stratifications within sodium and the effects of moving sodium surfaces arising from reactor trip conditions. Other structures covered are geometric features within components such as the Above Core structure and Intermediate Heat Exchanger. For the secondary circuit the method has been applied to alternative and more complex forms of geometry namely thick section tubeplates of the Steam Generator and a typical secondary circuit piping run. Both of these applications are in an early stage of development but are expected to show significant advantages with respect to creep and fatigue damage estimation compared with existing code methods. The principle application of the method to design has so far been focused on Austenitic Stainless steel components however current work shows some significant benefits may be possible from the application of the method to structures made from Ferritic steels such as Modified 9Cr 1Mo. This aspect is briefly
Fast time- and frequency-domain finite-element methods for electromagnetic analysis
Lee, Woochan
Fast electromagnetic analysis in time and frequency domain is of critical importance to the design of integrated circuits (IC) and other advanced engineering products and systems. Many IC structures constitute a very large scale problem in modeling and simulation, the size of which also continuously grows with the advancement of the processing technology. This results in numerical problems beyond the reach of existing most powerful computational resources. Different from many other engineering problems, the structure of most ICs is special in the sense that its geometry is of Manhattan type and its dielectrics are layered. Hence, it is important to develop structure-aware algorithms that take advantage of the structure specialties to speed up the computation. In addition, among existing time-domain methods, explicit methods can avoid solving a matrix equation. However, their time step is traditionally restricted by the space step for ensuring the stability of a time-domain simulation. Therefore, making explicit time-domain methods unconditionally stable is important to accelerate the computation. In addition to time-domain methods, frequency-domain methods have suffered from an indefinite system that makes an iterative solution difficult to converge fast. The first contribution of this work is a fast time-domain finite-element algorithm for the analysis and design of very large-scale on-chip circuits. The structure specialty of on-chip circuits such as Manhattan geometry and layered permittivity is preserved in the proposed algorithm. As a result, the large-scale matrix solution encountered in the 3-D circuit analysis is turned into a simple scaling of the solution of a small 1-D matrix, which can be obtained in linear (optimal) complexity with negligible cost. Furthermore, the time step size is not sacrificed, and the total number of time steps to be simulated is also significantly reduced, thus achieving a total cost reduction in CPU time. The second contribution
Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Copper
American Society for Testing and Materials. Philadelphia
2011-01-01
1.1 This test method covers procedures for measuring reaction rates by the activation reaction 63Cu(n,α)60Co. The cross section for 60Co produced in this reaction increases rapidly with neutrons having energies greater than about 5 MeV. 60Co decays with a half-life of 1925.27 days (±0.29 days)(1) and emits two gamma rays having energies of 1.1732278 and 1.332492 MeV (1). The isotopic content of natural copper is 69.17 % 63Cu and 30.83 % 65Cu (2). The neutron reaction, 63Cu(n,γ)64Cu, produces a radioactive product that emits gamma rays which might interfere with the counting of the 60Co gamma rays. 1.2 With suitable techniques, fission-neutron fluence rates above 109 cm−2·s−1 can be determined. The 63Cu(n,α)60Co reaction can be used to determine fast-neutron fluences for irradiation times up to about 15 years (for longer irradiations, see Practice E261). 1.3 Detailed procedures for other fast-neutron detectors are referenced in Practice E261. 1.4 This standard does not purport to address all of the...
A fast method to emulate an iterative POCS image reconstruction algorithm.
Zeng, Gengsheng L
2017-10-01
Iterative image reconstruction algorithms are commonly used to optimize an objective function, especially when the objective function is nonquadratic. Generally speaking, the iterative algorithms are computationally inefficient. This paper presents a fast algorithm that has one backprojection and no forward projection. This paper derives a new method to solve an optimization problem. The nonquadratic constraint, for example, an edge-preserving denoising constraint is implemented as a nonlinear filter. The algorithm is derived based on the POCS (projections onto projections onto convex sets) approach. A windowed FBP (filtered backprojection) algorithm enforces the data fidelity. An iterative procedure, divided into segments, enforces edge-enhancement denoising. Each segment performs nonlinear filtering. The derived iterative algorithm is computationally efficient. It contains only one backprojection and no forward projection. Low-dose CT data are used for algorithm feasibility studies. The nonlinearity is implemented as an edge-enhancing noise-smoothing filter. The patient studies results demonstrate its effectiveness in processing low-dose x ray CT data. This fast algorithm can be used to replace many iterative algorithms. © 2017 American Association of Physicists in Medicine.
Method to Reduce Long-lived Fission Products by Nuclear Transmutations with Fast Spectrum Reactors.
Chiba, Satoshi; Wakabayashi, Toshio; Tachi, Yoshiaki; Takaki, Naoyuki; Terashima, Atsunori; Okumura, Shin; Yoshida, Tadashi
2017-10-24
Transmutation of long-lived fission products (LLFPs: 79 Se, 93 Zr, 99 Tc, 107 Pd, 129 I, and 135 Cs) into short-lived or non-radioactive nuclides by fast neutron spectrum reactors without isotope separation has been proposed as a solution to the problem of radioactive wastes disposal. Despite investigation of many methods, such transmutation remains technologically difficult. To establish an effective and efficient transmutation system, we propose a novel neutron moderator material, yttrium deuteride (YD 2 ), to soften the neutron spectrum leaking from the reactor core. Neutron energy spectra and effective half-lives of LLFPs, transmutation rates, and support ratios were evaluated with the continuous-energy Monte Carlo code MVP-II/MVP-BURN and the JENDL-4.0 cross section library. With the YD 2 moderator in the radial blanket and shield regions, effective half-lives drastically decreased from 106 to 102 years and the support ratios reached 1.0 for all six LLFPs. This successful development and implementation of a transmutation system for LLFPs without isotope separation contributes to a the ability of fast spectrum reactors to reduce radioactive waste by consuming their own LLFPs.
IN SEARCH OF A FAST SCREENING METHOD FOR DETECTING THE MALINGERING OF COGNITIVE IMPAIRMENT
Directory of Open Access Journals (Sweden)
Amada Ampudia
2012-07-01
Full Text Available Forensic settings demand expedient and conclusive forensic psychological assessment. The aim of this study was to design a simple and fast, but reliable psychometric instrument for detecting the malingering of cognitive impairment. In a quasi-experimental design, 156 individuals were divided into three groups: a normal group with no cognitive impairment; a Mild Cognitive Impairment (MCI group; and a group of informed malingerers with no MCI who feigned cognitive impairment. Receiver Operating Curve (ROC analysis of the Test of Memory Malingering (TOMM, and of several subtests of the Wechsler Memory Scale (WMS-III revealed that the WMS-III was as reliable and accurate as the TOMM in discriminating malingerers from the honest. The results revealed that the diagnostic accuracy, sensitivity and specificity of the WMS-III Auditory Recognition Delayed of Verbal Paired Associates subtest was similar to the TOMM in discriminating malingering from genuine memory impairment. In conclusion, the WMS-III Recognition of Verbal Paired Associates subtest and the TOMM provide a fast, valid and reliable screening method for detecting the malingering of cognitive impairment.
A Fast Optimization Method for Reliability and Performance of Cloud Services Composition Application
Directory of Open Access Journals (Sweden)
Zhao Wu
2013-01-01
Full Text Available At present the cloud computing is one of the newest trends of distributed computation, which is propelling another important revolution of software industry. The cloud services composition is one of the key techniques in software development. The optimization for reliability and performance of cloud services composition application, which is a typical stochastic optimization problem, is confronted with severe challenges due to its randomness and long transaction, as well as the characteristics of the cloud computing resources such as openness and dynamic. The traditional reliability and performance optimization techniques, for example, Markov model and state space analysis and so forth, have some defects such as being too time consuming and easy to cause state space explosion and unsatisfied the assumptions of component execution independence. To overcome these defects, we propose a fast optimization method for reliability and performance of cloud services composition application based on universal generating function and genetic algorithm in this paper. At first, a reliability and performance model for cloud service composition application based on the multiple state system theory is presented. Then the reliability and performance definition based on universal generating function is proposed. Based on this, a fast reliability and performance optimization algorithm is presented. In the end, the illustrative examples are given.
Feasibility of a Monte Carlo-deterministic hybrid method for fast reactor analysis
Energy Technology Data Exchange (ETDEWEB)
Heo, W.; Kim, W.; Kim, Y. [Korea Advanced Institute of Science and Technology - KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Yun, S. [Korea Atomic Energy Research Institute - KAERI, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)
2013-07-01
A Monte Carlo and deterministic hybrid method is investigated for the analysis of fast reactors in this paper. Effective multi-group cross sections data are generated using a collision estimator in the MCNP5. A high order Legendre scattering cross section data generation module was added into the MCNP5 code. Both cross section data generated from MCNP5 and TRANSX/TWODANT using the homogeneous core model were compared, and were applied to DIF3D code for fast reactor core analysis of a 300 MWe SFR TRU burner core. For this analysis, 9 groups macroscopic-wise data was used. In this paper, a hybrid calculation MCNP5/DIF3D was used to analyze the core model. The cross section data was generated using MCNP5. The k{sub eff} and core power distribution were calculated using the 54 triangle FDM code DIF3D. A whole core calculation of the heterogeneous core model using the MCNP5 was selected as a reference. In terms of the k{sub eff}, 9-group MCNP5/DIF3D has a discrepancy of -154 pcm from the reference solution, 9-group TRANSX/TWODANT/DIF3D analysis gives -1070 pcm discrepancy. (authors)
Variational methods in the kinetic modeling of nuclear reactors: Recent advances
International Nuclear Information System (INIS)
Dulla, S.; Picca, P.; Ravetto, P.
2009-01-01
The variational approach can be very useful in the study of approximate methods, giving a sound mathematical background to numerical algorithms and computational techniques. The variational approach has been applied to nuclear reactor kinetic equations, to obtain a formulation of standard methods such as point kinetics and quasi-statics. more recently, the multipoint method has also been proposed for the efficient simulation of space-energy transients in nuclear reactors and in source-driven subcritical systems. The method is now founded on a variational basis that allows a consistent definition of integral parameters. The mathematical structure of multipoint and modal methods is also investigated, evidencing merits and shortcomings of both techniques. Some numerical results for simple systems are presented and the errors with respect to reference calculations are reported and discussed. (authors)
A variationally coupled FE-BE method for elasticity and fracture mechanics
Lu, Y. Y.; Belytschko, T.; Liu, W. K.
1991-01-01
A new method for coupling finite element and boundary element subdomains in elasticity and fracture mechanics problems is described. The essential feature of this new method is that a single variational statement is obtained for the entire domain, and in this process the terms associated with tractions on the interfaces between the subdomains are eliminated. This provides the additional advantage that the ambiguities associated with the matching of discontinuous tractions are circumvented. The method leads to a direct procedure for obtaining the discrete equations for the coupled problem without any intermediate steps. In order to evaluate this method and compare it with previous methods, a patch test for coupled procedures has been devised. Evaluation of this variationally coupled method and other methods, such as stiffness coupling and constraint traction matching coupling, shows that this method is substantially superior. Solutions for a series of fracture mechanics problems are also reported to illustrate the effectiveness of this method.
An assessment of methods of calculating sodium-voiding reactivity in plutonium-fuelled fast reactors
International Nuclear Information System (INIS)
Butland, A.T.D.; Simmons, W.N.; Stevenson, J.M.
1980-01-01
After a survey of the requirements an assessment of the accuracy of calculations of the sodium-void effect using UK methods and data is made on the basis of the following work: (a) The analysis of small and large sodium voids in the MOZART and Zebra 13 small (300 MW(e)) fast reactor mock-ups and the BIZET large fast reactor mock-ups, all of conventional design. The analysis was carried out using the UK FGL5 fine group nuclear data library, the MURAL cell code, whole reactor diffusion theory calculations of the neutron flux and perturbation theory methods. Exact perturbation theory was used in many cases, otherwise first-order perturbation theory calculations were adjusted to give results equivalent to exact perturbation theory. (b) Theoretical studies of some effects, including the following: (i) The effects of extrapolating to fuel operating temperature; (ii) Fuel-cycle and burnup effects, including the gradual replacement through a fuel cycle of control-rod absorption by fission product absorption, the loss of fissile material and the change in fuel nuclide relative composition; (iii) The heterogeneity effects of large fuelled subassemblies in pin geometry. (c) Theoretical studies of approximations in the calculational methods, including the following: (i) The importance in the whole reactor calculation of the energy group structure and the spatial mesh, including comparisons of calculations in two (RZ) and three-dimensional geometry; (ii) The importance of reactor material boundaries in the calculation of resonance shielding effects; (iii) The use of neutron fluxes calculated using neutron diffusion theory rather than transport theory. (author)
Using spectral element method to solve variational inequalities with applications in finance
International Nuclear Information System (INIS)
Moradipour, M.; Yousefi, S.A.
2015-01-01
Under the Black–Scholes model, the value of an American option solves a time dependent variational inequality problem (VIP). In this paper, first we discretize the variational inequality of American option in temporal direction by applying the Rannacher time stepping and achieve a sequence of elliptic variational inequalities. Second we discretize the spatial domain of variational inequalities by using spectral element methods with high order Lagrangian polynomials introduced on Gauss–Legendre–Lobatto points. Also by computing integrals by the Gauss–Legendre–Lobatto quadrature rule we derive a sequence of the linear complementarity problems (LCPs) having a positive definite sparse coefficient matrix. To find the unique solutions of the LCPs, we use the projected successive over-relaxation (PSOR) algorithm. Furthermore we present some existence and uniqueness theorems for the variational inequalities and LCPs. Finally, theoretical results are verified on the relevant numerical examples.
Fast and simple method for semiquantitative determination of calcium propionate in bread samples
Directory of Open Access Journals (Sweden)
Chutima Matayatsuk Phechkrajang
2017-04-01
Full Text Available Calcium propionate has been widely used as a preservative in bakery and in bread. It is sometimes not carefully used, or a high concentration is added to preserve products. High consumption of calcium propionate can lead to several health problems. This study aims to develop a fast and simple semiquantitative method based on color complex formation for the determination of calcium propionate in a bread sample. A red–brown complex was obtained from the reaction of ferric ammonium sulfate and propionate anion. The product was rapidly formed and easily observed with the concentration of propionate anion >0.4 mg/mL. A high-performance liquid chromatography (HPLC method was also developed and validated for comparison. Twenty-two bread samples from three markets near Bangkok were randomly selected and assayed for calcium propionate using the above two developed methods. The results showed that 19/22 samples contained calcium propionate >2000 mg/kg. The results of the complex formation method agreed with the HPLC method.
Fast and simple method for semiquantitative determination of calcium propionate in bread samples.
Phechkrajang, Chutima Matayatsuk; Yooyong, Surin
2017-04-01
Calcium propionate has been widely used as a preservative in bakery and in bread. It is sometimes not carefully used, or a high concentration is added to preserve products. High consumption of calcium propionate can lead to several health problems. This study aims to develop a fast and simple semiquantitative method based on color complex formation for the determination of calcium propionate in a bread sample. A red-brown complex was obtained from the reaction of ferric ammonium sulfate and propionate anion. The product was rapidly formed and easily observed with the concentration of propionate anion >0.4 mg/mL. A high-performance liquid chromatography (HPLC) method was also developed and validated for comparison. Twenty-two bread samples from three markets near Bangkok were randomly selected and assayed for calcium propionate using the above two developed methods. The results showed that 19/22 samples contained calcium propionate >2000 mg/kg. The results of the complex formation method agreed with the HPLC method. Copyright © 2016. Published by Elsevier B.V.
International Nuclear Information System (INIS)
Reis Filho, P.E.G. dos
1982-01-01
A new synthesis method to substitute for the classical method of finite diferences for XYZ geometry (geometry of critical experiments in fast reactors), is developed. The new method allows a fine energy group division, that is, finer than the 6 groups division used in calculations of power core specification. (E.G.) [pt
Germination test as a fast method to detect glyphosate-resistant sourgrass
Directory of Open Access Journals (Sweden)
Marcos Altomani Neves Dias
2015-01-01
Full Text Available The occurrence of weed species with different levels of resistance to glyphosate has increasingly spread in agricultural areas. In Brazil, sourgrass is among the main species presenting issues in this regard. Thus, fast and reliable methods to detect glyphosate resistance are of special interest for this specie, either for research or rational management purposes. This study was carried out to verify the feasibility of using the germination test to detect glyphosate resistance in sourgrass. The experiment was conducted with two sourgrass biotypes, with different levels of susceptibility to glyphosate. The seeds were previously imbibed in solutions composed of 0, 0.1875%, 0.25%, 0.75%, 1.5%, 3% and 6% of glyphosate during two periods, five and ten minutes, and submitted to germination tests. The results indicate the germination test as a feasible and time-saving approach to evaluate glyphosate-resistant sourgrass, with results available in seven days.
Germination test as a fast method to detect glyphosate-resistant sourgrass
Directory of Open Access Journals (Sweden)
Marcos Altomani Neves Dias
2015-09-01
Full Text Available The occurrence of weed species with different levels of resistance to glyphosate has increasingly spread in agricultural areas. In Brazil, sourgrass is among the main species presenting issues in this regard. Thus, fast and reliable methods to detect glyphosate resistance are of special interest for this specie, either for research or rational management purposes. This study was carried out to verify the feasibility of using the germination test to detect glyphosate resistance in sourgrass. The experiment was conducted with two sourgrass biotypes, with different levels of susceptibility to glyphosate. The seeds were previously imbibed in solutions composed of 0, 0.1875%, 0.25%, 0.75%, 1.5%, 3% and 6% of glyphosate during two periods, five and ten minutes, and submitted to germination tests. The results indicate the germination test as a feasible and time-saving approach to evaluate glyphosate-resistant sourgrass, with results available in seven days.
Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Aluminum
American Society for Testing and Materials. Philadelphia
2011-01-01
1.1 This test method covers procedures measuring reaction rates by the activation reaction 27Al(n,α)24Na. 1.2 This activation reaction is useful for measuring neutrons with energies above approximately 6.5 MeV and for irradiation times up to about 2 days (for longer irradiations, see Practice E261). 1.3 With suitable techniques, fission-neutron fluence rates above 106 cm−2·s−1 can be determined. 1.4 Detailed procedures for other fast neutron detectors are referenced in Practice E261. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
Reduced dynamics in spin-boson models: A method for both slow and fast bath
International Nuclear Information System (INIS)
Golosov, Andrei A.; Friesner, Richard A.; Pechukas, Philip
2000-01-01
We study a model for treating dissipative systems, a one dimensional quantum system coupled to a harmonic bath. The dynamics of such a system can be described by Feynman's path integral expression for the reduced density matrix. In this formulation the interaction of the system with the environment is stored in the influence functional. Recently we showed that fast environmental modes that give rise to correlations in the influence functional which are short range in time can be treated efficiently by a memory equation algorithm, which is a discretized version of a master equation. In this work we extend this approach to treat slow environmental modes as well, thereby efficiently linking adiabatic and nonadiabatic regimes. In this extended method the long range correlations in the influence functional arising from slow bath modes are taken into account through Stock's semiclassical self-consistent-field approach. (c) 2000 American Institute of Physics
Guan, W.; Cheng, X.; Huang, J.; Huber, G.; Li, W.; McCammon, J. A.; Zhang, B.
2018-06-01
RPYFMM is a software package for the efficient evaluation of the potential field governed by the Rotne-Prager-Yamakawa (RPY) tensor interactions in biomolecular hydrodynamics simulations. In our algorithm, the RPY tensor is decomposed as a linear combination of four Laplace interactions, each of which is evaluated using the adaptive fast multipole method (FMM) (Greengard and Rokhlin, 1997) where the exponential expansions are applied to diagonalize the multipole-to-local translation operators. RPYFMM offers a unified execution on both shared and distributed memory computers by leveraging the DASHMM library (DeBuhr et al., 2016, 2018). Preliminary numerical results show that the interactions for a molecular system of 15 million particles (beads) can be computed within one second on a Cray XC30 cluster using 12,288 cores, while achieving approximately 54% strong-scaling efficiency.
Dynamic analysis of fast-acting solenoid valves using finite element method
International Nuclear Information System (INIS)
Kwon, Ki Tae; Han, Hwa Taik
2001-01-01
It is intended to develop an algorithm for dynamic simulation of fast-acting solenoid valves. The coupled equations of the electric, magnetic, and mechanical systems should be solved simultaneously in a transient nonlinear manner. The transient nonlinear electromagnetic field is analyzed by the Finite Element Method (FEM), which is coupled with nonlinear electronic circuitry. The dynamic movement of the solenoid valve is analyzed at every time step from the force balances acting on the plunger, which include the electromagnetic force calculated from the finite element analysis as well as the elastic force by a spring and the hydrodynamic pressure force along the flow passage. Dynamic responses of the solenoid valves predicted by this algorithm agree well the experimental results including bouncing effects
International Nuclear Information System (INIS)
Zhang Wen; Haas, Stephan
2009-01-01
An implementation of the fast multiple method (FMM) is performed for magnetic systems with long-ranged dipolar interactions. Expansion in spherical harmonics of the original FMM is replaced by expansion of polynomials in Cartesian coordinates, which is considerably simpler. Under open boundary conditions, an expression for multipole moments of point dipoles in a cell is derived. These make the program appropriate for nanomagnetic simulations, including magnetic nanoparticles and ferrofluids. The performance is optimized in terms of cell size and parameter set (expansion order and opening angle) and the trade off between computing time and accuracy is quantitatively studied. A rule of thumb is proposed to decide the appropriate average number of dipoles in the smallest cells, and an optimal choice of parameter set is suggested. Finally, the superiority of Cartesian coordinate FMM is demonstrated by comparison to spherical harmonics FMM and FFT.
Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU
Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang
2017-10-01
Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.
A simple and fast method to determine the parameters for fuzzy c-means cluster analysis
DEFF Research Database (Denmark)
Schwämmle, Veit; Jensen, Ole Nørregaard
2010-01-01
MOTIVATION: Fuzzy c-means clustering is widely used to identify cluster structures in high-dimensional datasets, such as those obtained in DNA microarray and quantitative proteomics experiments. One of its main limitations is the lack of a computationally fast method to set optimal values...... of algorithm parameters. Wrong parameter values may either lead to the inclusion of purely random fluctuations in the results or ignore potentially important data. The optimal solution has parameter values for which the clustering does not yield any results for a purely random dataset but which detects cluster...... formation with maximum resolution on the edge of randomness. RESULTS: Estimation of the optimal parameter values is achieved by evaluation of the results of the clustering procedure applied to randomized datasets. In this case, the optimal value of the fuzzifier follows common rules that depend only...
Directory of Open Access Journals (Sweden)
Klin-eam Chakkrid
2009-01-01
Full Text Available Abstract A new approximation method for solving variational inequalities and fixed points of nonexpansive mappings is introduced and studied. We prove strong convergence theorem of the new iterative scheme to a common element of the set of fixed points of nonexpansive mapping and the set of solutions of the variational inequality for the inverse-strongly monotone mapping which solves some variational inequalities. Moreover, we apply our main result to obtain strong convergence to a common fixed point of nonexpansive mapping and strictly pseudocontractive mapping in a Hilbert space.
Fast Drift and Diffusion in a Class of Isochronous Systems with the Windows Method
Energy Technology Data Exchange (ETDEWEB)
Fortunati, Alessandro, E-mail: alessandro.fortunati@bristol.ac.uk [University of Bristol, School of Mathematics (United Kingdom)
2017-06-15
The aim of the paper is to deal with some peculiar difficulties arising from the use of the geometrical tool known as windows method in the context of the well known problem of Arnold’s diffusion for isochronous nearly-integrable Hamiltonian systems. Despite the simple features of the class of systems at hand, it is possible to show how the absence of an anisochrony term leads to several substantial differences in the application of the method, requiring some additional devices, such as non-equally spaced transition chains and variable windows. As a consequence, we show the existence of a set of unstable orbits, whose drifting time matches, up to a constant, the one obtained via variational methods.
MOSS-5: A Fast Method of Approximating Counts of 5-Node Graphlets in Large Graphs
Wang, Pinghui
2017-09-26
Counting 3-, 4-, and 5-node graphlets in graphs is important for graph mining applications such as discovering abnormal/evolution patterns in social and biology networks. In addition, it is recently widely used for computing similarities between graphs and graph classification applications such as protein function prediction and malware detection. However, it is challenging to compute these metrics for a large graph or a large set of graphs due to the combinatorial nature of the problem. Despite recent efforts in counting triangles (a 3-node graphlet) and 4-node graphlets, little attention has been paid to characterizing 5-node graphlets. In this paper, we develop a computationally efficient sampling method to estimate 5-node graphlet counts. We not only provide fast sampling methods and unbiased estimators of graphlet counts, but also derive simple yet exact formulas for the variances of the estimators which is of great value in practice-the variances can be used to bound the estimates\\' errors and determine the smallest necessary sampling budget for a desired accuracy. We conduct experiments on a variety of real-world datasets, and the results show that our method is several orders of magnitude faster than the state-of-the-art methods with the same accuracy.
Flow Modeling in Pelton Turbines by an Accurate Eulerian and a Fast Lagrangian Evaluation Method
Directory of Open Access Journals (Sweden)
A. Panagiotopoulos
2015-01-01
Full Text Available The recent development of CFD has allowed the flow modeling in impulse hydro turbines that includes complex phenomena like free surface flow, multifluid interaction, and unsteady, time dependent flow. Some commercial and open-source CFD codes, which implement Eulerian methods, have been validated against experimental results showing satisfactory accuracy. Nevertheless, further improvement of accuracy is still a challenge, while the computational cost is very high and unaffordable for multiparametric design optimization of the turbine’s runner. In the present work a CFD Eulerian approach is applied at first, in order to simulate the flow in the runner of a Pelton turbine model installed at the laboratory. Then, a particulate method, the Fast Lagrangian Simulation (FLS, is used for the same case, which is much faster and hence potentially suitable for numerical design optimization, providing that it can achieve adequate accuracy. The results of both methods for various turbine operation conditions, as also for modified runner and bucket designs, are presented and discussed in the paper. In all examined cases the FLS method shows very good accuracy in predicting the hydraulic efficiency of the runner, although the computed flow evolution and the torque curve exhibit some systematic differences from the Eulerian results.
Directory of Open Access Journals (Sweden)
Abdin T
2015-06-01
Full Text Available Tamer Abdin,1 Gideon Zamir,2 Alon Pikarsky,2 Ran Katz,1 Ezekiel H Landau,1 Ofer N Gofrit1 1Department of Urology, 2Department of General Surgery, Hadassah Hebrew University Hospital, Jerusalem, Israel Aim: To report on a simple and rapid method of urinary diversion. This method was applied successfully in different clinical scenarios when primary reconstruction of the ureters was not possible. Materials and methods: The disconnected ureter is catheterized by a feeding tube. The tube is secured with sutures and brought out to the lateral abdominal wall as cutaneous tube ureterostomy (CTU. Results: This method was applied in three different clinical scenarios: a 40-year-old man who sustained multiple high-velocity gunshots to the pelvis with combined rectal and bladder trigone injuries and massive bleeding from a comminuted pubic fracture. Damage control included colostomy and bilateral CTUs. A 26-year-old woman had transection of the right lower ureter during abdominal hysterectomy. Diagnosis was delayed for 3 weeks when the patient developed sepsis. The right kidney was diverted with a CTU. A 37-year-old male suffered from bladder perforation and hemorrhagic shock. Emergency cystectomy was done and urinary diversion was accomplished with bilateral CTUs. In all cases, effective drainage of the urinary system was achieved with normalization of kidney function. Conclusion: When local or systemic conditions preclude definitive repair and damage control surgery is needed, CTU provides fast and effective urinary diversion. Keywords: Ureter, trauma, tube cutenuous ureterostomy
Nimalaratne, Chamila; Lopes-Lutz, Daise; Schieber, Andreas; Wu, Jianping
2015-12-01
A fast isocratic liquid chromatography method was developed for the simultaneous quantification of eight xanthophylls (13-Z-lutein, 13'-Z-lutein, 13-Z-zeaxanthin, all-E-lutein, all-E-zeaxanthin, all-E-canthaxanthin, all-E-β-apo-8'-carotenoic acid ethyl ester and all-E-β-apo-8'-carotenal) within 12 min, compared to 90 min by the conventional high-performance liquid chromatography method. The separation was achieved on a YMC C30 reversed-phase column (100 mm x 2.0 mm; 3 μm) operated at 20°C using a methanol/tert-butyl methyl ether/water solvent system at a flow rate of 0.8 mL/min. The method was successfully applied to quantify lutein and zeaxanthin stereoisomers in egg yolk, raw and cooked spinach, and a dietary supplement. The method can be used for the rapid analysis of xanthophyll isomers in different food products and for quality control purposes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Preoteasa, E.A.; Constantinescu, B.; Preoteasa, Elena
2000-01-01
Composite materials replaced silver amalgam in many applications for restorative dentistry. Among biomaterials their production develops at a high rate, due especially to the progress of materials forming their mineral filling. However they bring at the interface with enamel and dentine elements foreign to the organism, of whom not all are specified by manufacturers; also, some of these elements' biological action has not been studied. Due to its ability to analyze the elemental composition at the biomaterial's surface, as well as the concentration changes that may occur in the mouth or in model systems, X-ray fluorescence (XRF) is a method suited to approach such problems. Here we examined the potential of XRF for fast analysis of some dental composite materials. Flat disk-shaped samples have been prepared by polymerization and the measurements have been performed with a spectrometric chain containing a 241 Am source, a Si(Li) detector and a multichannel analyzer. The radioisotope-excited XRF detected the following Z > 20 elements in the studied composite materials: Ba in Charisma (Kulzer) and Pekafill (Bayer); Zr, Ba, Yb [and traces of In] in Tetric Ceram (Vivadent); Zr, Hf in Valux Plus and Sr, Ba and traces of Cu in F2000 compomer (both from 3M Dental). Among older materials, Evicrol (Spofa) and Alphaplast (DGM) showed Ca and Fe, while Concise (3M Dental) contained only undetectable (Z < 20) elements. XRF proved valuable especially for analysis of major and minor inorganic elements in the dental composite materials. The method could be used also in fast expertise of these biomaterials (e.g. in customs and commercial applications). (authors)
The use of Adomian decomposition method for solving problems in calculus of variations
Directory of Open Access Journals (Sweden)
Mehdi Dehghan
2006-01-01
Full Text Available In this paper, a numerical method is presented for finding the solution of some variational problems. The main objective is to find the solution of an ordinary differential equation which arises from the variational problem. This work is done using Adomian decomposition method which is a powerful tool for solving large amount of problems. In this approach, the solution is found in the form of a convergent power series with easily computed components. To show the efficiency of the method, numerical results are presented.
Study of the Cl2 molecule by the variational cellular method
International Nuclear Information System (INIS)
Rosato, A.; Lima, M.A.P.
1984-01-01
A self-consistent calculation based on the Variational Cellular Method is performed on the Cl 2 molecule. The results obtained for the ground state potential curve and the first excited state, the dissociation energy, the molecular orbital energies and other related parameters are compared with other methods of calculations and with available data and the agreement is satisfatory. (Author) [pt
A variation method in the optimization problem of the minority game model
International Nuclear Information System (INIS)
Blazhyijevs'kij, L.; Yanyishevs'kij, V.
2009-01-01
This article contains the results of applying a variation method in the investigation of the optimization problem in the minority game model. That suggested approach is shown to give relevant results about phase transition in the model. Other methods pertinent to the problem have also been assessed.
A study on linear and nonlinear Schrodinger equations by the variational iteration method
International Nuclear Information System (INIS)
Wazwaz, Abdul-Majid
2008-01-01
In this work, we introduce a framework to obtain exact solutions to linear and nonlinear Schrodinger equations. The He's variational iteration method (VIM) is used for analytic treatment of these equations. Numerical examples are tested to show the pertinent features of this method
Modified variational iteration method for an El Niño Southern Oscillation delayed oscillator
International Nuclear Information System (INIS)
Cao Xiao-Qun; Song Jun-Qiang; Zhu Xiao-Qian; Zhang Li-Lun; Zhang Wei-Min; Zhao Jun
2012-01-01
This paper studies a delayed air—sea coupled oscillator describing the physical mechanism of El Niño Southern Oscillation. The approximate expansions of the delayed differential equation's solution are obtained successfully by the modified variational iteration method. The numerical results illustrate the effectiveness and correctness of the method by comparing with the exact solution of the reduced model. (general)
Introduction to the Special Issue on Advancing Methods for Analyzing Dialect Variation.
Clopper, Cynthia G
2017-07-01
Documenting and analyzing dialect variation is traditionally the domain of dialectology and sociolinguistics. However, modern approaches to acoustic analysis of dialect variation have their roots in Peterson and Barney's [(1952). J. Acoust. Soc. Am. 24, 175-184] foundational work on the acoustic analysis of vowels that was published in the Journal of the Acoustical Society of America (JASA) over 6 decades ago. Although Peterson and Barney (1952) were not primarily concerned with dialect variation, their methods laid the groundwork for the acoustic methods that are still used by scholars today to analyze vowel variation within and across languages. In more recent decades, a number of methodological advances in the study of vowel variation have been published in JASA, including work on acoustic vowel overlap and vowel normalization. The goal of this special issue was to honor that tradition by bringing together a set of papers describing the application of emerging acoustic, articulatory, and computational methods to the analysis of dialect variation in vowels and beyond.
A fast combination method in DSmT and its application to recommender system.
Dong, Yilin; Li, Xinde; Liu, Yihai
2018-01-01
In many applications involving epistemic uncertainties usually modeled by belief functions, it is often necessary to approximate general (non-Bayesian) basic belief assignments (BBAs) to subjective probabilities (called Bayesian BBAs). This necessity occurs if one needs to embed the fusion result in a system based on the probabilistic framework and Bayesian inference (e.g. tracking systems), or if one needs to make a decision in the decision making problems. In this paper, we present a new fast combination method, called modified rigid coarsening (MRC), to obtain the final Bayesian BBAs based on hierarchical decomposition (coarsening) of the frame of discernment. Regarding this method, focal elements with probabilities are coarsened efficiently to reduce computational complexity in the process of combination by using disagreement vector and a simple dichotomous approach. In order to prove the practicality of our approach, this new approach is applied to combine users' soft preferences in recommender systems (RSs). Additionally, in order to make a comprehensive performance comparison, the proportional conflict redistribution rule #6 (PCR6) is regarded as a baseline in a range of experiments. According to the results of experiments, MRC is more effective in accuracy of recommendations compared to original Rigid Coarsening (RC) method and comparable in computational time.
Energy Technology Data Exchange (ETDEWEB)
Nishizawa, Shigeru; Yokoyama, Tetsuo; Uemura, Kenichi [Hamamatsu Univ. School of Medicine, Shizuoka (Japan)
1999-04-01
Neuroimaging of vestibular schwannoma was performed with the fat-suppression spoiled gradient recalled acquisition in the steady state (SPGR) method and magnetic resonance (MR) cisternography, which is a fast spin echo method using a long echo train length, for the preoperative evaluation of the lateral extension of the tumor in the internal auditory canal, and the anatomical identification of the posterior semicircular canal and the nerves in the canal distal to the tumor. The SPGR method overestimated the lateral extension in eight cases, probably because of enhancement of the nerves adjacent to the tumor in the canal. The posterior semicircular canal could not be clearly identified, and the cranial nerves in the canal were shown only as a nerve bundle. In contrast, MR cisternography showed clear images of the lateral extension of the tumor and the facial and cochlear nerves adjacent to the tumor in the internal auditory canal. The anatomical location of the posterior semicircular canal was also clearly shown. These preoperative findings are very useful to plan the extent to which the internal auditory canal can be opened, and for intraoperative identification of the nerves in the canal. MR cisternography is less invasive since no contrast material or radiation is required, as with thin-slice high-resolution computed tomography (CT). MR cisternography should replace high-resolution CT for the preoperative neuroradiological evaluation of vestibular schwannoma. (author)
A Fast Measuring Method for the Inner Diameter of Coaxial Holes.
Wang, Lei; Yang, Fangyun; Fu, Luhua; Wang, Zhong; Yang, Tongyu; Liu, Changjie
2017-03-22
A new method for fast diameter measurement of coaxial holes is studied. The paper describes a multi-layer measuring rod that installs a single laser displacement sensor (LDS) on each layer. This method is easy to implement by rotating the measuring rod, and immune from detecting the measuring rod's rotation angles, so all diameters of coaxial holes can be calculated by sensors' values. While revolving, the changing angles of each sensor's laser beams are approximately equal in the rod's radial direction so that the over-determined nonlinear equations of multi-layer holes for fitting circles can be established. The mathematical model of the measuring rod is established, all parameters that affect the accuracy of measurement are analyzed and simulated. In the experiment, the validity of the method is verified, the inner diameter measuring precision of 28 μm is achieved by 20 μm linearity LDS. The measuring rod has advantages of convenient operation and easy manufacture, according to the actual diameters of coaxial holes, and also the varying number of holes, LDS's mounting location can be adjusted for different parts. It is convenient for rapid diameter measurement in industrial use.
A fast combination method in DSmT and its application to recommender system.
Directory of Open Access Journals (Sweden)
Yilin Dong
Full Text Available In many applications involving epistemic uncertainties usually modeled by belief functions, it is often necessary to approximate general (non-Bayesian basic belief assignments (BBAs to subjective probabilities (called Bayesian BBAs. This necessity occurs if one needs to embed the fusion result in a system based on the probabilistic framework and Bayesian inference (e.g. tracking systems, or if one needs to make a decision in the decision making problems. In this paper, we present a new fast combination method, called modified rigid coarsening (MRC, to obtain the final Bayesian BBAs based on hierarchical decomposition (coarsening of the frame of discernment. Regarding this method, focal elements with probabilities are coarsened efficiently to reduce computational complexity in the process of combination by using disagreement vector and a simple dichotomous approach. In order to prove the practicality of our approach, this new approach is applied to combine users' soft preferences in recommender systems (RSs. Additionally, in order to make a comprehensive performance comparison, the proportional conflict redistribution rule #6 (PCR6 is regarded as a baseline in a range of experiments. According to the results of experiments, MRC is more effective in accuracy of recommendations compared to original Rigid Coarsening (RC method and comparable in computational time.
Directory of Open Access Journals (Sweden)
Xin Li
2015-01-01
Full Text Available DNA or gene signal detection is of great significance in many fields including medical examination, intracellular molecular monitoring, and gene disease signal diagnosis, but detection of DNA or gene signals in a low concentration with instant visual results remains a challenge. In this work, a universal fast and visual colorimetric detection method for DNA signals is proposed. Specifically, a DNA signal amplification “circuit” based on DNA strand displacement is firstly designed to amplify the target DNA signals, and then thiol modified hairpin DNA strands and gold nanoparticles are used to make signal detection results visualized in a colorimetric manner. If the target DNA signal exists, the gold nanoparticles aggregate and settle down with color changing from dark red to grey quickly; otherwise, the gold nanoparticles’ colloids remain stable in dark red. The proposed method provides a novel way to detect quickly DNA or gene signals in low concentrations with instant visual results. When applied in real-life, it may provide a universal colorimetric method for gene disease signal diagnosis.
Fast and accurate denoising method applied to very high resolution optical remote sensing images
Masse, Antoine; Lefèvre, Sébastien; Binet, Renaud; Artigues, Stéphanie; Lassalle, Pierre; Blanchet, Gwendoline; Baillarin, Simon
2017-10-01
Restoration of Very High Resolution (VHR) optical Remote Sensing Image (RSI) is critical and leads to the problem of removing instrumental noise while keeping integrity of relevant information. Improving denoising in an image processing chain implies increasing image quality and improving performance of all following tasks operated by experts (photo-interpretation, cartography, etc.) or by algorithms (land cover mapping, change detection, 3D reconstruction, etc.). In a context of large industrial VHR image production, the selected denoising method should optimized accuracy and robustness with relevant information and saliency conservation, and rapidity due to the huge amount of data acquired and/or archived. Very recent research in image processing leads to a fast and accurate algorithm called Non Local Bayes (NLB) that we propose to adapt and optimize for VHR RSIs. This method is well suited for mass production thanks to its best trade-off between accuracy and computational complexity compared to other state-of-the-art methods. NLB is based on a simple principle: similar structures in an image have similar noise distribution and thus can be denoised with the same noise estimation. In this paper, we describe in details algorithm operations and performances, and analyze parameter sensibilities on various typical real areas observed in VHR RSIs.
International Nuclear Information System (INIS)
Bellinger, F.O.; Winslow, G.H.
1980-12-01
Nondestructive assay (NDA) methods, principally passive gamma measurements and active neutron interrogation, have been studied for their safeguards effectiveness and programmatic impact as tools for making inventories of highly enriched uranium fast critical assembly fuel plates. It was concluded that no NDA method is the sole answer to the safeguards problem, that each of those emphasized here has its place in an integrated safeguards system, and that each has minimum facility impact. It was found that the 185-keV area, as determined with a NaI detector, was independent of highly-enriched uranium (HEU) plate irradiation history, though the random neutron driver methods used here did not permit accurate assay of irradiated plates. Containment procedures most effective for accurate assaying were considered, and a particular geometry is recommended for active interrogation by a random driver. A model, pertinent to that geometry, which relates the effects of multiplication and self-absorption, is described. Probabilities of failing to detect that plates are missing are examined
Combining the multilevel fast multipole method with the uniform geometrical theory of diffraction
Directory of Open Access Journals (Sweden)
A. Tzoulis
2005-01-01
Full Text Available The presence of arbitrarily shaped and electrically large objects in the same environment leads to hybridization of the Method of Moments (MoM with the Uniform Geometrical Theory of Diffraction (UTD. The computation and memory complexity of the MoM solution is improved with the Multilevel Fast Multipole Method (MLFMM. By expanding the k-space integrals in spherical harmonics, further considerable amount of memory can be saved without compromising accuracy and numerical speed. However, until now MoM-UTD hybrid methods are restricted to conventional MoM formulations only with Electric Field Integral Equation (EFIE. In this contribution, a MLFMM-UTD hybridization for Combined Field Integral Equation (CFIE is proposed and applied within a hybrid Finite Element - Boundary Integral (FEBI technique. The MLFMM-UTD hybridization is performed at the translation procedure on the various levels of the MLFMM, using a far-field approximation of the corresponding translation operator. The formulation of this new hybrid technique is presented, as well as numerical results.
Fast solution of neutron diffusion problem by reduced basis finite element method
International Nuclear Information System (INIS)
Chunyu, Zhang; Gong, Chen
2018-01-01
Highlights: •An extremely efficient method is proposed to solve the neutron diffusion equation with varying the cross sections. •Three orders of speedup is achieved for IAEA benchmark problems. •The method may open a new possibility of efficient high-fidelity modeling of large scale problems in nuclear engineering. -- Abstract: For the important applications which need carry out many times of neutron diffusion calculations such as the fuel depletion analysis and the neutronics-thermohydraulics coupling analysis, fast and accurate solutions of the neutron diffusion equation are demanding but necessary. In the present work, the certified reduced basis finite element method is proposed and implemented to solve the generalized eigenvalue problems of neutron diffusion with variable cross sections. The order reduced model is built upon high-fidelity finite element approximations during the offline stage. During the online stage, both the k eff and the spatical distribution of neutron flux can be obtained very efficiently for any given set of cross sections. Numerical tests show that a speedup of around 1100 is achieved for the IAEA two-dimensional PWR benchmark problem and a speedup of around 3400 is achieved for the three-dimensional counterpart with the fission cross-sections, the absorption cross-sections and the scattering cross-sections treated as parameters.
A fast all-in-one method for automated post-processing of PIV data.
Garcia, Damien
2011-05-01
Post-processing of PIV (particle image velocimetry) data typically contains three following stages: validation of the raw data, replacement of spurious and missing vectors, and some smoothing. A robust post-processing technique that carries out these steps simultaneously is proposed. The new all-in-one method (DCT-PLS), based on a penalized least squares approach (PLS), combines the use of the discrete cosine transform (DCT) and the generalized cross-validation, thus allowing fast unsupervised smoothing of PIV data. The DCT-PLS was compared with conventional methods, including the normalized median test, for post-processing of simulated and experimental raw PIV velocity fields. The DCT-PLS was shown to be more efficient than the usual methods, especially in the presence of clustered outliers. It was also demonstrated that the DCT-PLS can easily deal with a large amount of missing data. Because the proposed algorithm works in any dimension, the DCT-PLS is also suitable for post-processing of volumetric three-component PIV data.
A fast all-in-one method for automated post-processing of PIV data
Garcia, Damien
2013-01-01
Post-processing of PIV (particle image velocimetry) data typically contains three following stages: validation of the raw data, replacement of spurious and missing vectors, and some smoothing. A robust post-processing technique that carries out these steps simultaneously is proposed. The new all-in-one method (DCT-PLS), based on a penalized least squares approach (PLS), combines the use of the discrete cosine transform (DCT) and the generalized cross-validation, thus allowing fast unsupervised smoothing of PIV data. The DCT-PLS was compared with conventional methods, including the normalized median test, for post-processing of simulated and experimental raw PIV velocity fields. The DCT-PLS was shown to be more efficient than the usual methods, especially in the presence of clustered outliers. It was also demonstrated that the DCT-PLS can easily deal with a large amount of missing data. Because the proposed algorithm works in any dimension, the DCT-PLS is also suitable for post-processing of volumetric three-component PIV data. PMID:24795497
International Nuclear Information System (INIS)
Tullett, J.D.
1990-01-01
P Benoist has developed a method for calculating cross-sections for Fast Reactor control rods and their followers described by a single homogenised region (the Equivalent Parameter Method). When used in a diffusion theory calculation, these equivalent cross-sections should give the same rod worth as one would obtain from a transport theory calculation with a heterogeneous description of the control rod and the follower. In this report, Benoist's theory is described, and a comprehensive set of tests is presented. These tests show that the method gives very good results over a range of geometries and control rod positions for a model fast reactor core. (author)
Own-wage labor supply elasticities: variation across time and estimation methods
Directory of Open Access Journals (Sweden)
Olivier Bargain
2016-10-01
Full Text Available Abstract There is a huge variation in the size of labor supply elasticities in the literature, which hampers policy analysis. While recent studies show that preference heterogeneity across countries explains little of this variation, we focus on two other important features: observation period and estimation method. We start with a thorough survey of existing evidence for both Western Europe and the USA, over a long period and from different empirical approaches. Then, our meta-analysis attempts to disentangle the role of time changes and estimation methods. We highlight the key role of time changes, documenting the incredible fall in labor supply elasticities since the 1980s not only for the USA but also in the EU. In contrast, we find no compelling evidence that the choice of estimation method explains variation in elasticity estimates. From our analysis, we derive important guidelines for policy simulations.
International Nuclear Information System (INIS)
Pathak, R.K.; Chandra, A.K.; Bhattacharyya, K.
1994-01-01
Eigenfunctions of the quantum mechanical particle-in-a-box problem are shown to lead to a new trigonometric expansion scheme with good convergence properties. This hitherto unexplored expansion strategy is found to be quite efficient in variational calculations and as an alternative to the Fourier series. Demonstrative computations involve a few one-dimensional models of confining potentials for bound states and pulses of various shapes in signal analysis. ((orig.))
GOSSIP: a method for fast and accurate global alignment of protein structures.
Kifer, I; Nussinov, R; Wolfson, H J
2011-04-01
The database of known protein structures (PDB) is increasing rapidly. This results in a growing need for methods that can cope with the vast amount of structural data. To analyze the accumulating data, it is important to have a fast tool for identifying similar structures and clustering them by structural resemblance. Several excellent tools have been developed for the comparison of protein structures. These usually address the task of local structure alignment, an important yet computationally intensive problem due to its complexity. It is difficult to use such tools for comparing a large number of structures to each other at a reasonable time. Here we present GOSSIP, a novel method for a global all-against-all alignment of any set of protein structures. The method detects similarities between structures down to a certain cutoff (a parameter of the program), hence allowing it to detect similar structures at a much higher speed than local structure alignment methods. GOSSIP compares many structures in times which are several orders of magnitude faster than well-known available structure alignment servers, and it is also faster than a database scanning method. We evaluate GOSSIP both on a dataset of short structural fragments and on two large sequence-diverse structural benchmarks. Our conclusions are that for a threshold of 0.6 and above, the speed of GOSSIP is obtained with no compromise of the accuracy of the alignments or of the number of detected global similarities. A server, as well as an executable for download, are available at http://bioinfo3d.cs.tau.ac.il/gossip/.
Method-centered digital communities on protocols.io for fast-paced scientific innovation.
Kindler, Lori; Stoliartchouk, Alexei; Teytelman, Leonid; Hurwitz, Bonnie L
2016-01-01
The Internet has enabled online social interaction for scientists beyond physical meetings and conferences. Yet despite these innovations in communication, dissemination of methods is often relegated to just academic publishing. Further, these methods remain static, with subsequent advances published elsewhere and unlinked. For communities undergoing fast-paced innovation, researchers need new capabilities to share, obtain feedback, and publish methods at the forefront of scientific development. For example, a renaissance in virology is now underway given the new metagenomic methods to sequence viral DNA directly from an environment. Metagenomics makes it possible to "see" natural viral communities that could not be previously studied through culturing methods. Yet, the knowledge of specialized techniques for the production and analysis of viral metagenomes remains in a subset of labs. This problem is common to any community using and developing emerging technologies and techniques. We developed new capabilities to create virtual communities in protocols.io, an open access platform, for disseminating protocols and knowledge at the forefront of scientific development. To demonstrate these capabilities, we present a virology community forum called VERVENet. These new features allow virology researchers to share protocols and their annotations and optimizations, connect with the broader virtual community to share knowledge, job postings, conference announcements through a common online forum, and discover the current literature through personalized recommendations to promote discussion of cutting edge research. Virtual communities in protocols.io enhance a researcher's ability to: discuss and share protocols, connect with fellow community members, and learn about new and innovative research in the field. The web-based software for developing virtual communities is free to use on protocols.io. Data are available through public APIs at protocols.io.
A parametric method for assessing diversification-rate variation in phylogenetic trees.
Shah, Premal; Fitzpatrick, Benjamin M; Fordyce, James A
2013-02-01
Phylogenetic hypotheses are frequently used to examine variation in rates of diversification across the history of a group. Patterns of diversification-rate variation can be used to infer underlying ecological and evolutionary processes responsible for patterns of cladogenesis. Most existing methods examine rate variation through time. Methods for examining differences in diversification among groups are more limited. Here, we present a new method, parametric rate comparison (PRC), that explicitly compares diversification rates among lineages in a tree using a variety of standard statistical distributions. PRC can identify subclades of the tree where diversification rates are at variance with the remainder of the tree. A randomization test can be used to evaluate how often such variance would appear by chance alone. The method also allows for comparison of diversification rate among a priori defined groups. Further, the application of the PRC method is not restricted to monophyletic groups. We examined the performance of PRC using simulated data, which showed that PRC has acceptable false-positive rates and statistical power to detect rate variation. We apply the PRC method to the well-studied radiation of North American Plethodon salamanders, and support the inference that the large-bodied Plethodon glutinosus clade has a higher historical rate of diversification compared to other Plethodon salamanders. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
A constrained Hartree-Fock-Bogoliubov equation derived from the double variational method
International Nuclear Information System (INIS)
Onishi, Naoki; Horibata, Takatoshi.
1980-01-01
The double variational method is applied to the intrinsic state of the generalized BCS wave function. A constrained Hartree-Fock-Bogoliubov equation is derived explicitly in the form of an eigenvalue equation. A method of obtaining approximate overlap and energy overlap integrals is proposed. This will help development of numerical calculations of the angular momentum projection method, especially for general intrinsic wave functions without any symmetry restrictions. (author)
Laplace transform homotopy perturbation method for the approximation of variational problems.
Filobello-Nino, U; Vazquez-Leal, H; Rashidi, M M; Sedighi, H M; Perez-Sesma, A; Sandoval-Hernandez, M; Sarmiento-Reyes, A; Contreras-Hernandez, A D; Pereyra-Diaz, D; Hoyos-Reyes, C; Jimenez-Fernandez, V M; Huerta-Chua, J; Castro-Gonzalez, F; Laguna-Camacho, J R
2016-01-01
This article proposes the application of Laplace Transform-Homotopy Perturbation Method and some of its modifications in order to find analytical approximate solutions for the linear and nonlinear differential equations which arise from some variational problems. As case study we will solve four ordinary differential equations, and we will show that the proposed solutions have good accuracy, even we will obtain an exact solution. In the sequel, we will see that the square residual error for the approximate solutions, belongs to the interval [0.001918936920, 0.06334882582], which confirms the accuracy of the proposed methods, taking into account the complexity and difficulty of variational problems.
Fast and "green" method for the analytical monitoring of haloketones in treated water.
Serrano, María; Silva, Manuel; Gallego, Mercedes
2014-09-05
Several groups of organic compounds have emerged as being particularly relevant as environmental pollutants, including disinfection by-products (DBPs). Haloketones (HKs), which belong to the unregulated volatile fraction of DBPs, have become a priority because of their occurrence in drinking water at concentrations below 1μg/L. The absence of a comprehensive method for HKs has led to the development of the first method for determining fourteen of these species. In an effort to miniaturise, this study develops a micro liquid-liquid extraction (MLLE) method adapted from EPA Method 551.1. In this method practically, the whole extract (50μL) was injected into a programmed temperature vaporiser-gas chromatography-mass spectrometer in order to improve sensitivity. The method was validated by comparing it to EPA Method 551.1 and showed relevant advantages such as: lower sample pH (1.5), higher aqueous/organic volume ratio (60), lower solvent consumption (200μL) and fast and cost-saving operation. The MLLE method achieved detection limits ranging from 6 to 60ng/L (except for 1,1,3-tribromo-3-chloroacetone, 120ng/L) with satisfactory precision (RSD, ∼6%) and high recoveries (95-99%). An evaluation was carried out of the influence of various dechlorinating agents as well as of the sample pH on the stability of the fourteen HKs in treated water. To ensure the HKs integrity for at least 1 week during storage at 4°C, the samples were acidified at pH ∼1.5, which coincides with the sample pH required for MLLE. The green method was applied to the speciation of fourteen HKs in tap and swimming pool waters, where one and seven chlorinated species, respectively, were found. The concentration of 1.1-dichloroacetone in swimming pool water increased ∼25 times in relation to tap water. Copyright © 2014 Elsevier B.V. All rights reserved.
Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Titanium
American Society for Testing and Materials. Philadelphia
2008-01-01
1.1 This test method covers procedures for measuring reaction rates by the activation reactions 46Ti(n,p) 46Sc + 47Ti(n, np)46Sc. Note 1—Since the cross section for the (n,np) reaction is relatively small for energies less than 12 MeV and is not easily distinguished from that of the (n,p) reaction, this test method will refer to the (n,p) reaction only. 1.2 The reaction is useful for measuring neutrons with energies above approximately 4.4 MeV and for irradiation times up to about 250 days (for longer irradiations, see Practice E 261). 1.3 With suitable techniques, fission-neutron fluence rates above 109 cm–2·s–1 can be determined. However, in the presence of a high thermal-neutron fluence rate, 46Sc depletion should be investigated. 1.4 Detailed procedures for other fast-neutron detectors are referenced in Practice E 261. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all...
Chemical methods for the use of niobium from pressure vessel cladding as a fast neutron dosimeter
International Nuclear Information System (INIS)
Karnani, Hari
1986-08-01
the steel samples from the cladding of a pressure vessel of an operating nuclear power reactor were obtained by scraping. The cladding material of the pressure vessel contained about 0.5 % niobium. It was desired to use the niobium as a dosimeter for estimating fast fluences at the pressure vessel. The weak radiation from the reaction product 93m Nb cannot be measured in the presence of other elements and interfering activities. A method was developed to separate niobium from other metals present; the concentration and yield of niobium were determined spectrophotometrically. The irradiated niobium was electrodeposited from aqueous solutions on copper discs. The amount of the deposited niobium was determined by a radiochemical method which makes use of its own radioactivity - measured with a liquid scintillation counter - and the known starting mass of niobium. It was possible to determine the deposited niobium masses (5 to 200 microgram) with a desired degree of accuracy. The absolute emission rate of X-rays could then be measured without any self-absorption or interference from other activities. The mass of niobium on each preparate and its X-ray emission rate, later on, were used as basic experimental data for the estimation of last neutron doses at the pressure vessel
Petascale molecular dynamics simulation using the fast multipole method on K computer
Ohno, Yousuke; Yokota, Rio; Koyama, Hiroshi; Morimoto, Gentaro; Hasegawa, Aki; Masumoto, Gen; Okimoto, Noriaki; Hirano, Yoshinori; Ibeid, Huda; Narumi, Tetsu; Taiji, Makoto
2014-01-01
In this paper, we report all-atom simulations of molecular crowding - a result from the full node simulation on the "K computer", which is a 10-PFLOPS supercomputer in Japan. The capability of this machine enables us to perform simulation of crowded cellular environments, which are more realistic compared to conventional MD simulations where proteins are simulated in isolation. Living cells are "crowded" because macromolecules comprise ∼30% of their molecular weight. Recently, the effects of crowded cellular environments on protein stability have been revealed through in-cell NMR spectroscopy. To measure the performance of the "K computer", we performed all-atom classical molecular dynamics simulations of two systems: target proteins in a solvent, and target proteins in an environment of molecular crowders that mimic the conditions of a living cell. Using the full system, we achieved 4.4 PFLOPS during a 520 million-atom simulation with cutoff of 28 Å. Furthermore, we discuss the performance and scaling of fast multipole methods for molecular dynamics simulations on the "K computer", as well as comparisons with Ewald summation methods. © 2014 Elsevier B.V. All rights reserved.
De Nicola, F; Concha Graña, E; Aboal, J R; Carballeira, A; Fernández, J Á; López Mahía, P; Prada Rodríguez, D; Muniategui Lorenzo, S
2016-06-01
Due to the complexity and heterogeneity of plant matrices, new procedure should be standardized for each single biomonitor. Thus, here is described a matrix solid-phase dispersion extraction method, previously used for moss samples, improved and modified for the analyses of PAHs in Quercus robur leaves and Pinus pinaster needles, species widely used in biomonitoring studies across Europe. The improvements compared to the previous procedure are the use of Florisil added with further clean-up sorbents, 10% deactivated silica for pine needles and PSA for oak leaves, being these matrices rich in interfering compounds, as shown by the gas chromatography-mass spectrometry analyses acquired in full scan mode. Good trueness, with values in the range 90-120% for the most of compounds, high precision (intermediate precision between 2% and 12%) and good sensitivity using only 250mg of samples (limits of quantification lower than 3 and 1.5ngg(-1), respectively for pine and oak) were achieved by the selected procedures. These methods proved to be reliable for PAH analyses and, having advantage of fastness, can be used in biomonitoring studies of PAH air contamination. Copyright © 2016 Elsevier B.V. All rights reserved.
A fast and robust method for automated analysis of axonal transport.
Welzel, Oliver; Knörr, Jutta; Stroebel, Armin M; Kornhuber, Johannes; Groemer, Teja W
2011-09-01
Cargo movement along axons and dendrites is indispensable for the survival and maintenance of neuronal networks. Key parameters of this transport such as particle velocities and pausing times are often studied using kymograph construction, which converts the transport along a line of interest from a time-lapse movie into a position versus time image. Here we present a method for the automatic analysis of such kymographs based on the Hough transform, which is a robust and fast technique to extract lines from images. The applicability of the method was tested on simulated kymograph images and real data from axonal transport of synaptophysin and tetanus toxin as well as the velocity analysis of synaptic vesicle sharing between adjacent synapses in hippocampal neurons. Efficiency analysis revealed that the algorithm is able to detect a wide range of velocities and can be used at low signal-to-noise ratios. The present work enables the quantification of axonal transport parameters with high throughput with no a priori assumptions and minimal human intervention.
International Nuclear Information System (INIS)
Okuno, Hiroshi; Fujine, Yukio; Asakura, Toshihide; Murazaki, Minoru; Koyama, Tomozo; Sakakibara, Tetsuro; Shibata, Atsuhiro
1999-03-01
The crystallization method is proposed to apply for recovery of uranium from dissolution liquid, enabling to reduce handling materials in later stages of reprocessing used fast breeder reactor (FBR) fuels. This report studies possible safety problems accompanied by the proposed method. Crystallization process was first defined in the whole reprocessing process, and the quantity and the kind of treated fuel were specified. Possible problems, such as criticality, shielding, fire/explosion, and confinement, were then investigated; and the events that might induce accidental incidents were discussed. Criticality, above all the incidents, was further studied by considering exampled criticality control of the crystallization process. For crystallization equipment, in particular, evaluation models were set up in normal and accidental operation conditions. Related data were selected out from the nuclear criticality safety handbooks. The theoretical densities of plutonium nitrates, which give basic and important information, were estimated in this report based on the crystal structure data. The criticality limit of crystallization equipment was calculated based on the above information. (author)
Petascale molecular dynamics simulation using the fast multipole method on K computer
Ohno, Yousuke
2014-10-01
In this paper, we report all-atom simulations of molecular crowding - a result from the full node simulation on the "K computer", which is a 10-PFLOPS supercomputer in Japan. The capability of this machine enables us to perform simulation of crowded cellular environments, which are more realistic compared to conventional MD simulations where proteins are simulated in isolation. Living cells are "crowded" because macromolecules comprise ∼30% of their molecular weight. Recently, the effects of crowded cellular environments on protein stability have been revealed through in-cell NMR spectroscopy. To measure the performance of the "K computer", we performed all-atom classical molecular dynamics simulations of two systems: target proteins in a solvent, and target proteins in an environment of molecular crowders that mimic the conditions of a living cell. Using the full system, we achieved 4.4 PFLOPS during a 520 million-atom simulation with cutoff of 28 Å. Furthermore, we discuss the performance and scaling of fast multipole methods for molecular dynamics simulations on the "K computer", as well as comparisons with Ewald summation methods. © 2014 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Kobayashi, Shinji; Sakasai, Akira; Koide, Yoshihiko; Sakamoto, Yoshiteru; Kamada, Yutaka; Hatae, Takaki; Oyama, Naoyuki; Miura, Yukitoshi
2003-01-01
Recent developments and results of fast charge exchange recombination spectroscopy (CXRS) using interference filter method are reported. In order to measure the rapid change of the ion temperature and rotation velocity under collapse or transition phenomena with high-time resolution, two types of interference filter systems were applied to the CXRS diagnostics on the JT-60U Tokamak. One can determine the Doppler broadening and Doppler shift of the CXR emission using three interference filters having slightly different center wavelengths. A rapid estimation method of the temperature ad rotation velocity without non-linear least square fitting is presented. The modification of the three-filters system enables us to improve the minimum time resolution up to 0.8 ms, which is better than that of 16.7 ms for the conventional CXRS system using the CCD detector in JT-60U. The other system having seven wavelength channels is newly fabricated to crosscheck the results obtained by the three-filters assembly, that is, to verify that the CXR emission forms a Gaussian profile under collapse phenomena. In a H-mode discharge having giant edge localized modes, the results obtained by the two systems are compared. The applicability of the three-filters system to the measurement of rapid changes in temperature and rotation velocity is demonstrated. (author)
Quéméner, Bernard; Bertrand, Dominique; Marty, Isabelle; Causse, Mathilde; Lahaye, Marc
2007-02-02
The variability in the chemistry of cell wall polysaccharides in pericarp tissue of red-ripe tomato fruit (Solanum lycopersicon Mill.) was characterized by chemical methods and enzymatic degradations coupled to high performance anion exchange chromatography (HPAEC) and mass spectrometry analysis. Large fruited line, Levovil (LEV) carrying introgressed chromosome fragments from a cherry tomato line Cervil (CER) on chromosomes 4 (LC4), 9 (LC9), or on chromosomes 1, 2, 4 and 9 (LCX) and containing quantitative trait loci (QTLs) for texture traits, was studied. In order to differentiate cell wall polysaccharide modifications in the tomato fruit collection by multivariate analysis, chromatograms were corrected for baseline drift and shift of the component elution time using an approach derived from image analysis and mathematical morphology. The baseline was first corrected by using a "moving window" approach while the peak-matching method developed was based upon location of peaks as local maxima within a window of a definite size. The fast chromatographic data preprocessing proposed was a prerequisite for the different chemometric treatments, such as variance and principal component analysis applied herein to the analysis. Applied to the tomato collection, the combined enzymatic degradations and HPAEC analyses revealed that the firm LCX and CER genotypes showed a higher proportion of glucuronoxylans and pectic arabinan side chains while the mealy LC9 genotype demonstrated the highest content of pectic galactan side chains. QTLs on tomato chromosomes 1, 2, 4 and 9 contain important genes controlling glucuronoxylan and pectic neutral side chains biosynthesis and/or metabolism.
Direct infusion-SIM as fast and robust method for absolute protein quantification in complex samples
Directory of Open Access Journals (Sweden)
Christina Looße
2015-06-01
Full Text Available Relative and absolute quantification of proteins in biological and clinical samples are common approaches in proteomics. Until now, targeted protein quantification is mainly performed using a combination of HPLC-based peptide separation and selected reaction monitoring on triple quadrupole mass spectrometers. Here, we show for the first time the potential of absolute quantification using a direct infusion strategy combined with single ion monitoring (SIM on a Q Exactive mass spectrometer. By using complex membrane fractions of Escherichia coli, we absolutely quantified the recombinant expressed heterologous human cytochrome P450 monooxygenase 3A4 (CYP3A4 comparing direct infusion-SIM with conventional HPLC-SIM. Direct-infusion SIM revealed only 14.7% (±4.1 (s.e.m. deviation on average, compared to HPLC-SIM and a decreased processing and analysis time of 4.5 min (that could be further decreased to 30 s for a single sample in contrast to 65 min by the LC–MS method. Summarized, our simplified workflow using direct infusion-SIM provides a fast and robust method for quantification of proteins in complex protein mixtures.