WorldWideScience

Sample records for fast transition detector

  1. Fast Timing for Collider Detectors

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Advancements in fast timing particle detectors have opened up new possibilities to design collider detectors that fully reconstruct and separate event vertices and individual particles in the time domain. The applications of these techniques are considered for the physics at HL-LHC.

  2. The FastGas detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E.; Dalgliesh, R.M. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Duxbury, D.M., E-mail: dom.duxbury@stfc.ac.u [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Holt, S.A.; McPhail, D.J. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Marsh, A.S. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Rhodes, N.J.; Schooneveld, E.M.; Spill, E.J.; Stephenson, R. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX (United Kingdom)

    2010-04-21

    The development and testing of the FastGas neutron detector is described. Based on a Gas Microstrip Chamber the aim of the project was to produce a high counting rate detector capable of replacing the existing {sup 3}He tubes for specular reflectometry, currently in use on the ISIS reflectometer instruments. The detector system is described together with results of neutron beam tests carried out at the ISIS spallation neutron source.

  3. Transition Radiation Detectors

    CERN Document Server

    Andronic, A

    2012-01-01

    We review the basic features of transition radiation and how they are used for the design of modern Transition Radiation Detectors (TRD). The discussion will include the various realizations of radiators as well as a discussion of the detection media and aspects of detector construction. With regard to particle identification we assess the different methods for efficient discrimination of different particles and outline the methods for the quantification of this property. Since a number of comprehensive reviews already exist, we predominantly focus on the detectors currently operated at the LHC. To a lesser extent we also cover some other TRDs, which are planned or are currently being operated in balloon or space-borne astro-particle physics experiments.

  4. ALICE Transition Radiation Detector

    CERN Multimedia

    Pachmayer, Y

    2013-01-01

    The Transition Radiation Detector (TRD) is the main electron detector in ALICE. In conduction with the TPC and the ITS, it provides the necessary electron identification capability to study: - Production of light and heavy vector mesons as well as the continuum in the di-electron channel, - Semi leptonic decays of hadrons with open charm and open beauty via the single-electron channel using the displaced vertex information provided by the ITS, - Correlated DD and BB pairs via coincidences of electrons in the central barrel and muons in the forward muon arm, - Jets with high Pτ tracks in one single TRD stack.

  5. Instrumentation of the fast detector

    CERN Document Server

    Barczyk, A.; Malgeri, L.; Casella, C.; Pohl, M.; Deiters, K.; Dick, P.; Berdugo, J.; Casaus, J.; Mana, C.; Marin, J.; Martinez, G.; Sanchez, E.; Willmott, C.

    2008-01-01

    The Fiber Active Scintillator Target (FAST) is an imaging particle detector intended for high precision muon lifetime measurement. This measurement will lead to a determination of the Fermi coupling constant (GF) with an uncertainty of 1 ppm, one order of magnitude better than the current world average. This contribution presents a description of the detector instrumentation and the first results, which have validated the design of the system.

  6. Ultra-fast silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sadrozinski, H. F.-W., E-mail: hartmut@scipp.ucsc.edu [Santa Cruz Institute for Particle Physics, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Ely, S.; Fadeyev, V.; Galloway, Z.; Ngo, J.; Parker, C.; Petersen, B.; Seiden, A.; Zatserklyaniy, A. [Santa Cruz Institute for Particle Physics, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Cartiglia, N.; Marchetto, F. [INFN Torino, Torino (Italy); Bruzzi, M.; Mori, R.; Scaringella, M.; Vinattieri, A. [University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, Firenze (Italy)

    2013-12-01

    We propose to develop a fast, thin silicon sensor with gain capable to concurrently measure with high precision the space (∼10 μm) and time (∼10 ps) coordinates of a particle. This will open up new application of silicon detector systems in many fields. Our analysis of detector properties indicates that it is possible to improve the timing characteristics of silicon-based tracking sensors, which already have sufficient position resolution, to achieve four-dimensional high-precision measurements. The basic sensor characteristics and the expected performance are listed, the wide field of applications are mentioned and the required R and D topics are discussed. -- Highlights: •We are proposing thin pixel silicon sensors with 10's of picoseconds time resolution. •Fast charge collection is coupled with internal charge multiplication. •The truly 4-D sensors will revolutionize imaging and particle counting in many applications.

  7. Performance of Ultra-Fast Silicon Detectors

    CERN Document Server

    Cartiglia, N; Ely, S; Fadeyev, V; Galloway, Z; Marchetto, F; Mazza, G; Ngo, J; Obertino, M; Parker, C; Rivetti, A; Shumacher, D; Sadrozinski, H F-W; Seiden, A; Zatserklyaniy, A

    2013-01-01

    The development of Low-Gain Avalanche Detectors has opened up the possibility of manufacturing silicon detectors with signal larger than that of traditional sensors. In this paper we explore the timing performance of Low-Gain Avalanche Detectors, and in particular we demonstrate the possibility of obtaining ultra-fast silicon detector with time resolution of less than 20 picosecond.

  8. Fast Detector Simulation Using Lelaps, Detector Descriptions in GODL

    Energy Technology Data Exchange (ETDEWEB)

    Langeveld, Willy; /SLAC

    2005-07-06

    Lelaps is a fast detector simulation program which reads StdHep generator files and produces SIO or LCIO output files. It swims particles through detectors taking into account magnetic fields, multiple scattering and dE/dx energy loss. It simulates parameterized showers in EM and hadronic calorimeters and supports gamma conversions and decays. In addition to three built-in detector configurations, detector descriptions can also be read from files in the new GODL file format.

  9. ALICE Transition Radiation Detector (TRD), test beam.

    CERN Multimedia

    2003-01-01

    Electrons and positrons can be discriminated from other charged particles using the emission of transition radiation - X-rays emitted when the particles cross many layers of thin materials. To develop such a Transition Radiation Detector(TRD) for ALICE many detector prototypes were tested in mixed beams of pions and electrons, as in the example shown here.

  10. Comparison of Fast Neutron Detector Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stange, Sy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mckigney, Edward Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-09

    This report documents the work performed for the Department of Homeland Security Domestic Nuclear Detection O ce as the project Fast Neutron Detection Evaluation under contract HSHQDC-14-X-00022. This study was performed as a follow-on to the project Study of Fast Neutron Signatures and Measurement Techniques for SNM Detection - DNDO CFP11-100 STA-01. That work compared various detector technologies in a portal monitor con guration, focusing on a comparison between a number of fast neutron detection techniques and two standard thermal neutron detection technologies. The conclusions of the earlier work are contained in the report Comparison of Fast Neutron Detector Technologies. This work is designed to address questions raised about assumptions underlying the models built for the earlier project. To that end, liquid scintillators of two di erent sizes{ one a commercial, o -the-shelf (COTS) model of standard dimensions and the other a large, planer module{were characterized at Los Alamos National Laboratory. The results of those measurements were combined with the results of the earlier models to gain a more complete picture of the performance of liquid scintillator as a portal monitor technology.

  11. Ultra-fast silicon detectors (UFSD)

    Science.gov (United States)

    Sadrozinski, H. F.-W.; Anker, A.; Chen, J.; Fadeyev, V.; Freeman, P.; Galloway, Z.; Gruey, B.; Grabas, H.; John, C.; Liang, Z.; Losakul, R.; Mak, S. N.; Ng, C. W.; Seiden, A.; Woods, N.; Zatserklyaniy, A.; Baldassarri, B.; Cartiglia, N.; Cenna, F.; Ferrero, M.; Pellegrini, G.; Hidalgo, S.; Baselga, M.; Carulla, M.; Fernandez-Martinez, P.; Flores, D.; Merlos, A.; Quirion, D.; Mikuž, M.; Kramberger, G.; Cindro, V.; Mandić, I.; Zavrtanik, M.

    2016-09-01

    We report on measurements on Ultra-Fast Silicon Detectors (UFSD) which are based on Low-Gain Avalanche Detectors (LGAD). They are n-on-p sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction, obtained with a highly doped implant. We have performed several beam tests with LGAD of different gain and report the measured timing resolution, comparing it with laser injection and simulations. For the 300 μm thick LGAD, the timing resolution measured at test beams is 120 ps while it is 57 ps for IR laser, in agreement with simulations using Weightfield2. For the development of thin sensors and their readout electronics, we focused on the understanding of the pulse shapes and point out the pivotal role the sensor capacitance plays.

  12. Ultra-fast silicon detectors (UFSD)

    Energy Technology Data Exchange (ETDEWEB)

    Sadrozinski, H.F.-W., E-mail: hartmut@ucsc.edu [SCIPP, Univ. of California Santa Cruz, CA 95064 (United States); Anker, A.; Chen, J.; Fadeyev, V.; Freeman, P.; Galloway, Z.; Gruey, B.; Grabas, H.; John, C.; Liang, Z.; Losakul, R.; Mak, S.N.; Ng, C.W.; Seiden, A.; Woods, N.; Zatserklyaniy, A. [SCIPP, Univ. of California Santa Cruz, CA 95064 (United States); Baldassarri, B.; Cartiglia, N.; Cenna, F.; Ferrero, M. [Univ. of Torino and INFN, Torino (Italy); and others

    2016-09-21

    We report on measurements on Ultra-Fast Silicon Detectors (UFSD) which are based on Low-Gain Avalanche Detectors (LGAD). They are n-on-p sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction, obtained with a highly doped implant. We have performed several beam tests with LGAD of different gain and report the measured timing resolution, comparing it with laser injection and simulations. For the 300 μm thick LGAD, the timing resolution measured at test beams is 120 ps while it is 57 ps for IR laser, in agreement with simulations using Weightfield2. For the development of thin sensors and their readout electronics, we focused on the understanding of the pulse shapes and point out the pivotal role the sensor capacitance plays.

  13. DURIP: Fast Oscilloscope and Detectors for Air Laser Research

    Science.gov (United States)

    2015-01-01

    Approved for public release; distribution is unlimited.       DURIP: Fast Oscilloscope and Detectors for Air Laser Research Office of...1. Type of equipment The equipment purchased under this DURIP provides the capability to detect in real time events on very fast time scales, as...low as 10 picoseconds. Fast real-time oscilloscopes and fast detectors were needed for this purpose. 2. Manufacturer of equipment and model number

  14. The Fast Interaction Trigger Detector of ALICE at the LHC

    Science.gov (United States)

    Lambert, Keenan; Brown, Shanice; Powell, Calvin; Harton, Austin; Garcia-Solis, Edmundo; Alice-Fit Team

    2017-01-01

    CERN (European Center for Nuclear Research) is a global laboratory that studies proton and heavy ion collisions at the Large Hadron Collider (LHC). ALICE (A Large Ion Collider Experiment) is one of four large experiments at the LHC. ALICE is dedicated to the study of the transition of matter to Quark-Gluon Plasma in heavy ion collisions. The experiment is preparing for the LHC upgrade after the second long shutdown (LS2) in 2019-20. To this end, ALICE is undertaking a major initiative to extend its physics capabilities. Among these improvements is a new Fast Interaction Trigger (FIT). The FIT will be replacing the current T0 and V0 trigger detectors. The purpose of the FIT will be to determine multiplicity, centrality, and reaction plane. The FIT will also serve as the primary forward trigger, luminosity, and collision time detector. This presentation will discuss the FIT upgrade and the results from the performance of the FIT detectors in simulations and test beams that support the current design parameters. This material is based upon work supported by the National Science Foundation under grants NSF-PHY-1407051, NSF-PHY-1305280, NSF-PHY-1613118, and NSF-PHY-1625081.

  15. Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors - Particle Detectors and Detector Systems

    CERN Document Server

    Ullaland, O

    2011-01-01

    Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors in 'Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '3.3 Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.3 Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors 3.3.1 Introduction 3.3.2 Time of Flight Measurements 3.3.2.1 Scintillator hodoscopes 3.3.2.2 Parallel plate ToF detectors 3.3.3 Cherenkov Radiation 3.3.3.1 ...

  16. Ultra-Fast Silicon Detectors for 4D tracking

    Science.gov (United States)

    Sola, V.; Arcidiacono, R.; Bellora, A.; Cartiglia, N.; Cenna, F.; Cirio, R.; Durando, S.; Ferrero, M.; Galloway, Z.; Gruey, B.; Freeman, P.; Mashayekhi, M.; Mandurrino, M.; Monaco, V.; Mulargia, R.; Obertino, M. M.; Ravera, F.; Sacchi, R.; Sadrozinski, H. F.-W.; Seiden, A.; Spencer, N.; Staiano, A.; Wilder, M.; Woods, N.; Zatserklyaniy, A.

    2017-02-01

    We review the progress toward the development of a novel type of silicon detectors suited for tracking with a picosecond timing resolution, the so called Ultra-Fast Silicon Detectors. The goal is to create a new family of particle detectors merging excellent position and timing resolution with GHz counting capabilities, very low material budget, radiation resistance, fine granularity, low power, insensitivity to magnetic field, and affordability. We aim to achieve concurrent precisions of ~ 10 ps and ~ 10 μm with a 50 μm thick sensor. Ultra-Fast Silicon Detectors are based on the concept of Low-Gain Avalanche Detectors, which are silicon detectors with an internal multiplication mechanism so that they generate a signal which is factor ~ 10 larger than standard silicon detectors.

  17. Measurements of fast neutrons by bubble detectors

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, F.; Martinez, H. [Laboratorio de Espectroscopia, Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62251, Cuernavaca Morelos (Mexico); Leal, B. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Ciudad Universitaria, Mexico D. F. (Mexico); Rangel, J. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Ciudad Universitaria, Mexico D. F (Mexico); Reyes, P. G. [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Instituto Literario 100, Col. Centro, 50000, Toluca Estado de Mexico (Mexico)

    2013-07-03

    Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / {mu}Sv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ {mu}Sv, 0093 b/{mu}Sv, 0.14 b/{mu}Sv, 0.17 b/{mu}Sv, 0051 b/{mu}Sv). To test the response of the detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90 Degree-Sign this was done for a certain number of shots. In both cases, the standard response is reported (Dose in {mu}Sv) for each of the six detectors representing an energy range, this response is given by the expression R{sub i}= B{sub i} / S{sub i} where B{sub i} is the number of bubbles formed in each and the detector sensitivity (S{sub i}) is given for each detector in (b / {mu}Sv). Also, reported for both cases, the detected neutron flux (n cm{sup -2}), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 {mu}Sv fields mixed neutron and gamma, and pulsed generated fusion

  18. A fast encoding system for microstrip detectors

    CERN Document Server

    Laptev, V D; CERN. Geneva

    1992-01-01

    The data acquisition system that has been proposed for LHC MSGC, is based on the 9-bit VLSI FASTPLEX and is able of performing the following on-line functions: preliminary amplification of the detector signal; analogue-to-digital conversion; and digital delay of the "first in - first out" (FiFo) type.

  19. nGEM fast neutron detectors for beam diagnostics

    Science.gov (United States)

    Croci, G.; Claps, G.; Cavenago, M.; Dalla Palma, M.; Grosso, G.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Pietropaolo, A.; Rebai, M.; Tardocchi, M.; Tollin, M.; Gorini, G.

    2013-08-01

    Fast neutron detectors with a sub-millimetric space resolution are required in order to qualify neutron beams in applications related to magnetically-controlled nuclear fusion plasmas and to spallation sources. A nGEM detector has been developed for the CNESM diagnostic system of the SPIDER NBI prototype for ITER and as beam monitor for fast neutrons lines at spallation sources. The nGEM is a triple GEM gaseous detector equipped with polypropylene and polyethylene layers used to convert fast neutrons into recoil protons through the elastic scattering process. This paper describes the results obtained by testing a nGEM detector at the ISIS spallation source on the VESUVIO beam line. Beam profiles (σx=14.35 mm, σy=15.75 mm), nGEM counting efficiency (around 10-4 for 3 MeVdetector stability (≈4.5%) and the effect of filtering the beam with different type of materials were successfully measured. The x beam profile was compared to the one measured by a single crystal diamond detector. Finally, the efficiency of the detector was simulated exploiting the GEANT4 tool.

  20. FastDIRC: a fast Monte Carlo and reconstruction algorithm for DIRC detectors

    CERN Document Server

    Hardin, John

    2016-01-01

    FastDIRC is a novel fast Monte Carlo and reconstruction algorithm for DIRC detectors. A DIRC employs rectangular fused-silica bars both as Cherenkov radiators and as light guides. Cherenkov-photon imaging and time-of-propagation information are utilized by a DIRC to identify charged particles. GEANT-based DIRC Monte Carlo simulations are extremely CPU intensive. The FastDIRC algorithm permits fully simulating a DIRC detector more than 10000 times faster than using GEANT. This facilitates designing a DIRC-reconstruction algorithm that improves the Cherenkov-angle resolution of a DIRC detector by about 30% compared to existing algorithms. FastDIRC also greatly reduces the time required to study competing DIRC-detector designs.

  1. Digital Acquisition Development for Fast Neutron Detectors

    Science.gov (United States)

    Seagren, T.; Mosby, S.; Mona Collaboration; Lansce P-27 Team

    2015-10-01

    The use of the Modular Neutron Array (MoNA) at FRIB requires a thorough understanding of how neutrons propagate through the array. This leads to the increasing importance of accuracy in detector response simulations, particularly in the case of FRIB's higher beam energies. An upcoming experiment at the LANSCE facility at Los Alamos National Lab will benchmark neutron propagation through the MoNA array and provide a more complete validation of the simulation software. LANSCE also hosts the Chi-Nu experiment, which seeks to measure fission output neutrons using the high-intensity neutron beams there. In both experiments, the instantaneous rate on the detectors involved is expected to be very high, due to the LANSCE/WNR beam structure. Therefore, waveform digitizers with on-board processing are required in order for the experiments to succeed. These digitizers provide on-board timing algorithms using FPGA firmware, and several tests were preformed in order to determine what the optimal timing filter settings were for a variety of detectors, including the plastic and liquid scintillators to be used in MoNA and Chi-Nu respectively. This work will inform the execution of the MoNA and Chi-Nu experiments at LANSCE. The details of the methods used and results will be presented. Supported by funding through Los Alamos National Lab and NSF Grant PHY-1506402.

  2. Design optimization of ultra-fast silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cartiglia, N., E-mail: cartiglia@to.infn.it [INFN Torino (Italy); Arcidiacono, R. [Università del Piemonte Orientale, Novara (Italy); Baselga, M. [Centro Nacional de Microeletronica, IMB-CNM, Barcelona (Spain); Bellan, R. [Università di Torino, Torino (Italy); Boscardin, M. [Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); Cenna, F. [INFN Torino (Italy); Dalla Betta, G.F. [Università di Trento, Via Sommarive 9, 38123 Trento (Italy); Fernndez-Martnez, P. [Centro Nacional de Microeletronica, IMB-CNM, Barcelona (Spain); Ferrero, M. [INFN Torino (Italy); Università di Torino, Torino (Italy); Flores, D. [Centro Nacional de Microeletronica, IMB-CNM, Barcelona (Spain); Galloway, Z. [Santa Cruz Institute for Particle Physics UC Santa Cruz, CA 95064 (United States); Greco, V.; Hidalgo, S. [Centro Nacional de Microeletronica, IMB-CNM, Barcelona (Spain); Marchetto, F. [INFN Torino (Italy); Monaco, V. [Università di Torino, Torino (Italy); Obertino, M. [Università del Piemonte Orientale, Novara (Italy); Pancheri, L. [Università di Trento, Via Sommarive 9, 38123 Trento (Italy); Paternoster, G. [Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); Picerno, A. [Università di Torino, Torino (Italy); Pellegrini, G. [Centro Nacional de Microeletronica, IMB-CNM, Barcelona (Spain); and others

    2015-10-01

    Low-Gain Avalanche Diodes (LGAD) are silicon detectors with output signals that are about a factor of 10 larger than those of traditional sensors. In this paper we analyze how the design of LGAD can be optimized to exploit their increased output signal to reach optimum timing performances. Our simulations show that these sensors, the so-called Ultra-Fast Silicon Detectors (UFSD), will be able to reach a time resolution factor of 10 better than that of traditional silicon sensors.

  3. A transition radiation detector for kaon/pion separation

    Energy Technology Data Exchange (ETDEWEB)

    Baake, M.; Diekmann, B.; Gebert, F.; Heinloth, K.; Holzkamp, S.; Koersgen, G.; Voigtlaender-Tetzner, A. (Bonn Univ. (Germany, F.R.)); Bagdassarian, L.; Kazarian, C.; Oganessian, A. (Erevanskij Gosudarstvennyj Univ. (USSR))

    1989-09-01

    The experiment WA69 at the CERN Omega spectrometer facility has studied fixed target photon and hadron production of inclusive hadronic final states with tagged photon beams of 65-175 GeV in comparison to charged hadron beams ({pi} and K) of 80 and 140 GeV fixed energies. For the identification of final state pions and kaons above 100 GeV/c a transition radiation detector (TRAD) has been developed. This detector was constructed of 12 modules, each consisting of a polypropylene fibre radiator and a proportional chamber with a xenon/methane gas mixture to detect the transition radiation produced by fast moving charged particles. We give a description of the detector setup and working conditions. As a first result obtained with the TRAD the ratio of photoproduced kaons and pions in the extreme forward regime (x{sub F}>0.7 and -t<1 GeV{sup 2}) is measured to be 10.2(+-1.7)% which is in agreement with VDM predictions. (orig.).

  4. Conceptual design of the ITER fast-ion loss detector

    Science.gov (United States)

    Garcia-Munoz, M.; Kocan, M.; Ayllon-Guerola, J.; Bertalot, L.; Bonnet, Y.; Casal, N.; Galdon, J.; Garcia Lopez, J.; Giacomin, T.; Gonzalez-Martin, J.; Gunn, J. P.; Jimenez-Ramos, M. C.; Kiptily, V.; Pinches, S. D.; Rodriguez-Ramos, M.; Reichle, R.; Rivero-Rodriguez, J. F.; Sanchis-Sanchez, L.; Snicker, A.; Vayakis, G.; Veshchev, E.; Vorpahl, Ch.; Walsh, M.; Walton, R.

    2016-11-01

    A conceptual design of a reciprocating fast-ion loss detector for ITER has been developed and is presented here. Fast-ion orbit simulations in a 3D magnetic equilibrium and up-to-date first wall have been carried out to revise the measurement requirements for the lost alpha monitor in ITER. In agreement with recent observations, the simulations presented here suggest that a pitch-angle resolution of ˜5° might be necessary to identify the loss mechanisms. Synthetic measurements including realistic lost alpha-particle as well as neutron and gamma fluxes predict scintillator signal-to-noise levels measurable with standard light acquisition systems with the detector aperture at ˜11 cm outside of the diagnostic first wall. At measurement position, heat load on detector head is comparable to that in present devices.

  5. Spectrometry and dosimetry of fast neutrons using pin diode detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zaki Dizaji, H., E-mail: hz.dizaji@znu.ac.ir [Physics Department, Faculty of Science, Zanjan University, Zanjan (Iran, Islamic Republic of); Kakavand, T. [Physics Department, Faculty of Science, International Imam Khomeini University, Qazvin (Iran, Islamic Republic of); Abbasi Davani, F. [Radiation Application Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2014-03-21

    Elastic scattering of light nuclei, especially hydrogen, is widely used for detection of fast neutrons. Semiconductor devices based on silicon detectors are frequently used for different radiation detections. In this work, a neutron spectrometer consisting of a pin diode coupled with a polyethylene converter and aluminum degrader layers has been developed. Aluminum layers are used as discriminators of different neutron energies for detectors. The response of the converter–degrader–pin diode configuration, the optimum thickness of the converter and the degrader layers have been extracted using MCNP and SRIM simulation codes. The possibility of using this type of detector for fast neutron spectrometry and dosimetry has been investigated. A fairly good agreement was seen between neutron energy spectrum and dose obtained from our configurations and these specifications from an {sup 241}Am–Be neutron source. - Highlights: • Silicon pin diodes are applied to the fast neutron detection. • The technique of converter degrader pin diode is used for spectrometry of fast neutrons. • The method is used for dosimetry of fast neutron.

  6. High performance infrared fast cooled detectors for missile applications

    Science.gov (United States)

    Reibel, Yann; Espuno, Laurent; Taalat, Rachid; Sultan, Ahmad; Cassaigne, Pierre; Matallah, Noura

    2016-05-01

    SOFRADIR was selected in the late 90's for the production of 320×256 MW detectors for major European missile programs. This experience has established our company as a key player in the field of missile programs. SOFRADIR has since developed a vast portfolio of lightweight, compact and high performance JT-based solutions for missiles. ALTAN is a 384x288 Mid Wave infrared detector with 15μm pixel pitch, and is offered in a miniature ultra-fast Joule- Thomson cooled Dewar. Since Sofradir offers both Indium Antimonide (InSb) and Mercury Cadmium Telluride technologies (MCT), we are able to deliver the detectors best suited to customers' needs. In this paper we are discussing different figures of merit for very compact and innovative JT-cooled detectors and are highlighting the challenges for infrared detection technologies.

  7. A Fast, Robust, Automatic Blink Detector

    Directory of Open Access Journals (Sweden)

    Javad Sayahzadeh

    2014-11-01

    Full Text Available Introduction “Blink” is defined as closing and opening of the eyes in a small duration of time. In this study, we aimed to introduce a fast, robust, vision-based approach for blink detection. Materials and Methods This approach consists of two steps. In the first step, the subject’s face is localized every second and with the first blink, the system detects the eye’s location and creates an open-eye template image. In the second step, the eye is tracked, using sum of squared differences (SSD. This system can classify the state of the eyes as open, closed, or lost, using the SSD-based classifier. If the eyes are closed as in usual blinking, the blink will be detected. To classify eyes as closed or open, two adaptive thresholds were proposed; therefore, factors such as the subject’s distance from the camera or environment illumination did not affect the system performance. In addition, in order to improve system performance, a new feature, called "peak-to-neighbors ratio", was proposed. Results The accuracy of this system was 96.03%, based on the evaluation on Zhejiang University (ZJU dataset, and 98.59% in our own dataset. Conclusion The present system was faster than other systems, which use normalized correlation coefficient (NCC for eye tracking, since time complexity of SSD is lower than that of NCC. The achieved processing rate for ZJU dataset was 35 fps.

  8. A fast feedback controlled magnetic drive for the ASDEX Upgrade fast-ion loss detectors

    Science.gov (United States)

    Ayllon-Guerola, J.; Gonzalez-Martin, J.; Garcia-Munoz, M.; Rivero-Rodriguez, J.; Herrmann, A.; Vorbrugg, S.; Leitenstern, P.; Zoletnik, S.; Galdon, J.; Garcia Lopez, J.; Rodriguez-Ramos, M.; Sanchis-Sanchez, L.; Dominguez, A. D.; Kocan, M.; Gunn, J. P.; Garcia-Vallejo, D.; Dominguez, J.

    2016-11-01

    A magnetically driven fast-ion loss detector system for the ASDEX Upgrade tokamak has been designed and will be presented here. The device is feedback controlled to adapt the detector head position to the heat load and physics requirements. Dynamic simulations have been performed taking into account effects such as friction, coil self-induction, and eddy currents. A real time positioning control algorithm to maximize the detector operational window has been developed. This algorithm considers dynamical behavior and mechanical resistance as well as measured and predicted thermal loads. The mechanical design and real time predictive algorithm presented here may be used for other reciprocating systems.

  9. Sources and detectors of fast ions for basic devices

    OpenAIRE

    Furno, Ivo; Fasoli, Ambrogio; Plyushchev, Gennady

    2009-01-01

    The physics of supra thermal test ions in turbulent plasmas can be conveniently studied in basic plasma physics devices, which allow high-resolution measurements of plasma and fast ion parameters and wave fields throughout the whole plasma cross-section. We describe recent advances in the development of an experimental setup consisting of a non-perturbative Li 6+ miniaturized ion source and a detector for the investigation of the interaction between supra thermal ions and drift/interchange–dr...

  10. Fast Heterogeneous Relaxation Near The Glass Transition

    Science.gov (United States)

    Russina, Margarita

    2000-03-01

    More than a decade ago inelastic neutron scattering studies revealed a surprising characteristic feature in the atomic dynamics near the glass transition, which was often called the betta-process, with reference to predictions of the mode coupling theory (MCT). This process appears on the ps time scale, i.e. fast compared to the ordinary flow viscosity governed relaxation and slow compared to usual atomic vibrations, and its nature remained a puzzle over the years. Although inelastic neutron scattering is ideally suited to observe dynamics on microscopic time and length scales, experimental difficulties due to strong multiple scattering effects prevented the exploration of the spatial character of this process. By a new experimental approach to correct for these spurious contributions with a high precision, we were now able to extend the spatial domain of our observations from just about nearest neighbor atomic distances by close to an order of magnitude larger ones, which length scale includes that of the intermediate range order, which can be expected to reveal most sensitively collective, as opposed to the local, behavior. Our results in the fragile glass forming liquid Ca-K-NO3 show, that the betta-process is a first fast step of the structural relaxation, which confirms a most fundamental prediction of MCT. Furthermore, by investigating the Debye-Waller factor associated with this process, we found that its geometrical nature corresponds to quasi-rigid, correlated displacement of mobile groups of atoms, which move much faster than the ordinary flow of the bulk of the supercooled liquid. This is the first direct experimental evidence for the existence of heterogeneous fast flow processes similar to the string-flow motion recently observed in molecular dynamic simulations of model liquids close to the glass transition.

  11. Ionization signals from diamond detectors in fast-neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); CIVIDEC Instrumentation, Wien (Austria); Frais-Koelbl, H. [University of Applied Sciences, Wiener Neustadt (Austria); Griesmayer, E.; Kavrigin, P. [CIVIDEC Instrumentation, Wien (Austria); Vienna University of Technology, Wien (Austria)

    2016-09-15

    In this paper we introduce a novel analysis technique for measurements with single-crystal chemical vapor deposition (sCVD) diamond detectors in fast-neutron fields. This method exploits the unique electronic property of sCVD diamond sensors that the signal shape of the detector current is directly proportional to the initial ionization profile. In fast-neutron fields the diamond sensor acts simultaneously as target and sensor. The interaction of neutrons with the stable isotopes {sup 12}C and {sup 13}C is of interest for fast-neutron diagnostics. The measured signal shapes of detector current pulses are used to identify individual types of interactions in the diamond with the goal to select neutron-induced reactions in the diamond and to suppress neutron-induced background reactions as well as γ-background. The method is verified with experimental data from a measurement in a 14.3 MeV neutron beam at JRC-IRMM, Geel/Belgium, where the {sup 13}C(n, α){sup 10}Be reaction was successfully extracted from the dominating background of recoil protons and γ-rays and the energy resolution of the {sup 12}C(n, α){sup 9}Be reaction was substantially improved. The presented analysis technique is especially relevant for diagnostics in harsh radiation environments, like fission and fusion reactors. It allows to extract the neutron spectrum from the background, and is particularly applicable to neutron flux monitoring and neutron spectroscopy. (orig.)

  12. Ionization signals from diamond detectors in fast-neutron fields

    Science.gov (United States)

    Weiss, C.; Frais-Kölbl, H.; Griesmayer, E.; Kavrigin, P.

    2016-09-01

    In this paper we introduce a novel analysis technique for measurements with single-crystal chemical vapor deposition (sCVD) diamond detectors in fast-neutron fields. This method exploits the unique electronic property of sCVD diamond sensors that the signal shape of the detector current is directly proportional to the initial ionization profile. In fast-neutron fields the diamond sensor acts simultaneously as target and sensor. The interaction of neutrons with the stable isotopes 12 C and 13 C is of interest for fast-neutron diagnostics. The measured signal shapes of detector current pulses are used to identify individual types of interactions in the diamond with the goal to select neutron-induced reactions in the diamond and to suppress neutron-induced background reactions as well as γ-background. The method is verified with experimental data from a measurement in a 14.3 MeV neutron beam at JRC-IRMM, Geel/Belgium, where the 13C(n, α)10Be reaction was successfully extracted from the dominating background of recoil protons and γ-rays and the energy resolution of the 12C(n, α)9Be reaction was substantially improved. The presented analysis technique is especially relevant for diagnostics in harsh radiation environments, like fission and fusion reactors. It allows to extract the neutron spectrum from the background, and is particularly applicable to neutron flux monitoring and neutron spectroscopy.

  13. Fast Radial Flows in Transition Disk Holes

    CERN Document Server

    Rosenfeld, Katherine A; Andrews, Sean M

    2013-01-01

    Protoplanetary "transition" disks have large, mass-depleted central cavities, yet also deliver gas onto their host stars at rates comparable to disks without holes. The paradox of simultaneous transparency and accretion can be explained if gas flows inward at much higher radial speeds inside the cavity than outside the cavity, since surface density (and by extension optical depth) varies inversely with inflow velocity at fixed accretion rate. Radial speeds within the cavity might even have to approach free-fall values to explain the huge surface density contrasts inferred for transition disks. We identify observational diagnostics of fast radial inflow in channel maps made in optically thick spectral lines. Signatures include (1) twisted isophotes in maps made at low systemic velocities and (2) rotation of structures observed between maps made in high-velocity line wings. As a test case, we apply our new diagnostic tools to archival ALMA data on the transition disk HD 142527, and uncover evidence for free-fal...

  14. Characterization of a GEM-based fast neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, B., E-mail: basilio.esposito@enea.it [Associazione Euratom-ENEA sulla Fusione, Via E. Fermi, 45, I-00044 Frascati, Roma (Italy); Marocco, D.; Villari, R. [Associazione Euratom-ENEA sulla Fusione, Via E. Fermi, 45, I-00044 Frascati, Roma (Italy); Murtas, F. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Via E. Fermi, 40, I-00044 Frascati, Roma (Italy); Rodionov, R. [SRC RF TRINITI Troitsk, Moscow (Russian Federation)

    2014-03-21

    The neutron efficiency of a Gas Electron Multiplier (GEM)-based detector designed for fast neutron measurements in fusion devices was determined through the combined use of Monte Carlo (MCNPX) calculations and analysis of deuterium–deuterium and deuterium–tritium neutron irradiation experiments. The detector, characterized by a triple GEM structure flushed with a Ar/CO{sub 2}/CF{sub 4} – 45/15/40 gas mixture, features a digital read-out system and has two sub-units for the detection of 2.5+14 MeV neutrons and 14 MeV neutrons (U{sub DD} and U{sub DT}, respectively). The pulse height spectra (PHS) determined from the curves of experimental efficiency as a function of the detector's high voltage (HV) and the MCNPX-simulated PHS were compared using a fitting routine that finds the best match between the experimental and simulated PHS by assuming a parametric model for the relation between HV (that determines the detector's gain) and the energy deposited in the gas. This led to express the experimental neutron efficiency as a function of the discrimination level set on the deposited energy (energy threshold). The detector sensitivity to γ-rays was also analyzed and the operational range in which the γ-ray contribution to the signal is not negligible was determined. It is found that this detector can reach a maximum neutron efficiency of ∼1×10{sup −3} counts/n at 2.5 MeV (U{sub DD} sub-unit) and of ∼4×10{sup −3} counts/n at 14 MeV (U{sub DT} and U{sub DD} sub-units)

  15. Fast Frontend Electronics for high luminosity particle detectors

    CERN Document Server

    Cardinali, M; Bondy, M I Ferretti; Hoek, M; Lauth, W; Rosner, C; Sfienti, C; Thiel, M

    2015-01-01

    Future experiments of nuclear and particle physics are moving towards the high luminosity regime, in order to access suppressed processes like rare B decays or exotic charmonium resonances. In this scenario, high rate capability is a key requirement for electronics instrumentation, together with excellent timing resolution for precise event reconstruction. The development of dedicated FrontEnd Electronics (FEE) for detectors has become increasingly challenging. A current trend in R&D is towards multipurpose FEE which can be easily adapted to a great variety of detectors, without impairing the required high performance. We report on high-precision timing solutions which utilise high-bandwidth preamplifiers and fast discriminators providing Time-over-Threshold information, which can be used for charge measurements or walk corrections thus improving the obtainable timing resolution. The output signal are LVDS and can be directly fed into a multi-hit TDC readout. The performance of the electronics was investi...

  16. Error correction and fast detectors implemented by ultrafast neuronal plasticity.

    Science.gov (United States)

    Vardi, Roni; Marmari, Hagar; Kanter, Ido

    2014-04-01

    We experimentally show that the neuron functions as a precise time integrator, where the accumulated changes in neuronal response latencies, under complex and random stimulation patterns, are solely a function of a global quantity, the average time lag between stimulations. In contrast, momentary leaps in the neuronal response latency follow trends of consecutive stimulations, indicating ultrafast neuronal plasticity. On a circuit level, this ultrafast neuronal plasticity phenomenon implements error-correction mechanisms and fast detectors for misplaced stimulations. Additionally, at moderate (high) stimulation rates this phenomenon destabilizes (stabilizes) a periodic neuronal activity disrupted by misplaced stimulations.

  17. Fast Muon Simulation in the JUNO Central Detector

    CERN Document Server

    Lin, Tao; Li, Weidong; Cao, Guofu; You, Zhengyun; Li, Xinying

    2016-01-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment designed to measure the neutrino mass hierarchy using a central detector (CD), which contains 20 kton liquid scintillator (LS) surrounded by about 17,000 photomultiplier tubes (PMTs). Due to the large fiducial volume and huge number of PMTs, the simulation of a muon particle passing through the CD with the Geant4 toolkit becomes an extremely computation-intensive task. This paper presents a fast simulation implementation using a so-called voxel method: for scintillation photons generated in a certain LS voxel, the PMT's response is produced beforehand with Geant4 and then introduced into the simulation at runtime. This parameterisation method successfully speeds up the most CPU consuming process, the optical photon's propagation in the LS, by a factor of 50. In the paper, the comparison of physics performance between fast and full simulation is also given.

  18. FastSim: A Fast Simulation for the SuperB Detector

    Science.gov (United States)

    Andreassen, R.; Arnaud, N.; Brown, D. N.; Burmistrov, L.; Carlson, J.; Cheng, C.-h.; Di Simone, A.; Gaponenko, I.; Manoni, E.; Perez, A.; Rama, M.; Roberts, D.; Rotondo, M.; Simi, G.; Sokoloff, M.; Suzuki, A.; Walsh, J.

    2011-12-01

    We have developed a parameterized (fast) simulation for detector optimization and physics reach studies of the proposed SuperB Flavor Factory in Italy. Detector components are modeled as thin sections of planes, cylinders, disks or cones. Particle-material interactions are modeled using simplified cross-sections and formulas. Active detectors are modeled using parameterized response functions. Geometry and response parameters are configured using xml files with a custom-designed schema. Reconstruction algorithms adapted from BaBar are used to build tracks and clusters. Multiple sources of background signals can be merged with primary signals. Pattern recognition errors are modeled statistically by randomly misassigning nearby tracking hits. Standard BaBar analysis tuples are used as an event output. Hadronic B meson pair events can be simulated at roughly 10Hz.

  19. Response of reverse convection to fast IMF transitions

    DEFF Research Database (Denmark)

    Taguchi, S.; Tawara, A.; Hairston, M. R.

    2015-01-01

    The nature of the transition that high-latitude reverse convection makes in response to fast interplanetary magnetic field (IMF) changes is investigated using observations from multiple spacecraft and a ground magnetometer array. We focused on two fast IMF-transition events on 22 April 2006...

  20. Fast-Neutron Survey With Compact Plastic Scintillation Detectors.

    Science.gov (United States)

    Preston, Rhys M; Tickner, James R

    2017-07-01

    With the rise of the Silicon Photomultiplier (SiPM), it is now practical to build compact scintillation detectors well suited to portable use. A prototype survey meter for fast-neutrons and gamma-rays, based around an EJ-299-34 plastic scintillator with SiPM readout, has been developed and tested. A custom digital pulse processor was used to perform pulse shape discrimination on-the-fly. Ambient dose equivalent H*(10) was calculated by means of two energy-dependent 'G-functions'. The sensitivity was calculated to be between 0.10 and 0.22 cps/(µSv/hr) for fast-neutrons with energies above 2.5 MeV. The prototype was used to survey various laboratory radiation fields, with the readings compared with commercial survey meters. The high sensitivity and lightweight nature of this detector makes it promising for rapid survey of the mixed neutron/gamma-ray fields encountered in industry and homeland security. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Fast Micro-Channel Plate Detector for MIPs

    CERN Document Server

    Antropov, A E; Kasatkin, V A; Klempt, W; Kolojvari, A A; Kondratev, V P; Martinov, V; Lazarev, V A; Novikov, I A; Potapov, S V; Stolyarov, O I; Tsimbal, F A; Tulina, T A; Valiev, F F; Vinogradov, L I

    1999-01-01

    Abstract for the 6th International Conference on Advanced Technology and Particle Physics, to be held at Villa Olmo, Como, Italy, 5-9 October 1998. For a couple of the last decades Micro-channel plates (MCPs) are known as a fast (1 ns), fine granularity (5-12µ), high gain (103 -104), excellent time resolution (30-50 ps), high counting rate (1011 1/cm2 was reported) and efficient detector widely used in low energy nuclear physics. Nevertheless, these nice features have not been exploited sufficiently in the high energy experiments so far. The use of MCPs in the HEP experiments demands the developments of technologies different from the low-energy applications: in particular the low mass vacuum thin-wall chambers in the UHV technique. It is the great intrinsic capability of the MCPs for the registration of MIPs, high gain and sharp signals that prompted us to develop a fast multiplicity detector for ALICE at the LHC. The chevron MCP setup (gain up to 10*8) gives a strong signal for the Ultra High Freq...

  2. Fast, High-Precision Readout Circuit for Detector Arrays

    Science.gov (United States)

    Rider, David M.; Hancock, Bruce R.; Key, Richard W.; Cunningham, Thomas J.; Wrigley, Chris J.; Seshadri, Suresh; Sander, Stanley P.; Blavier, Jean-Francois L.

    2013-01-01

    The GEO-CAPE mission described in NASA's Earth Science and Applications Decadal Survey requires high spatial, temporal, and spectral resolution measurements to monitor and characterize the rapidly changing chemistry of the troposphere over North and South Americas. High-frame-rate focal plane arrays (FPAs) with many pixels are needed to enable such measurements. A high-throughput digital detector readout integrated circuit (ROIC) that meets the GEO-CAPE FPA needs has been developed, fabricated, and tested. The ROIC is based on an innovative charge integrating, fast, high-precision analog-to-digital circuit that is built into each pixel. The 128×128-pixel ROIC digitizes all 16,384 pixels simultaneously at frame rates up to 16 kHz to provide a completely digital output on a single integrated circuit at an unprecedented rate of 262 million pixels per second. The approach eliminates the need for off focal plane electronics, greatly reducing volume, mass, and power compared to conventional FPA implementations. A focal plane based on this ROIC will require less than 2 W of power on a 1×1-cm integrated circuit. The ROIC is fabricated of silicon using CMOS technology. It is designed to be indium bump bonded to a variety of detector materials including silicon PIN diodes, indium antimonide (InSb), indium gallium arsenide (In- GaAs), and mercury cadmium telluride (HgCdTe) detector arrays to provide coverage over a broad spectral range in the infrared, visible, and ultraviolet spectral ranges.

  3. Fast sub-electron detectors review for interferometry

    Science.gov (United States)

    Feautrier, Philippe; Gach, Jean-Luc; Bério, Philippe

    2016-08-01

    New disruptive technologies are now emerging for detectors dedicated to interferometry. The detectors needed for this kind of applications need antonymic characteristics: the detector noise must be very low, especially when the signal is dispersed but at the same time must also sample the fast temporal characteristics of the signal. This paper describes the new fast low noise technologies that have been recently developed for interferometry and adaptive optics. The first technology is the Avalanche PhotoDiode (APD) infrared arrays made of HgCdTe. In this paper are presented the two programs that have been developed in that field: the Selex Saphira 320x256 [1] and the 320x255 RAPID detectors developed by Sofradir/CEA LETI in France [2], [3], [4]. Status of these two programs and future developments are presented. Sub-electron noise can now be achieved in the infrared using this technology. The exceptional characteristics of HgCdTe APDs are due to a nearly exclusive impaction ionization of the electrons, and this is why these devices have been called "electrons avalanche photodiodes" or e-APDs. These characteristics have inspired a large effort in developing focal plan arrays using HgCdTe APDs for low photon number applications such as active imaging in gated mode (2D) and/or with direct time of flight detection (3D imaging) and, more recently, passive imaging for infrared wave front correction and fringe tracking in astronomical observations. In addition, a commercial camera solution called C-RED, based on Selex Saphira and commercialized by First Light Imaging [5], is presented here. Some groups are also working with instruments in the visible. In that case, another disruptive technology is showing outstanding performances: the Electron Multiplying CCDs (EMCCD) developed mainly by e2v technologies in UK. The OCAM2 camera, commercialized by First Light Imaging [5], uses the 240x240 EMMCD from e2v and is successfully implemented on the VEGA instrument on the CHARA

  4. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    Science.gov (United States)

    Verma, V.; Barbot, L.; Filliatre, P.; Hellesen, C.; Jammes, C.; Svärd, S. Jacobsson

    2017-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment.

  5. Fast readout of GEM detectors for medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bucciantonio, M., E-mail: martina.bucciantonio@cern.ch [Tera Foundation, Novara (Italy); Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of Bern, Bern (Switzerland); Amaldi, U.; Kieffer, R.; Malakhov, N.; Sauli, F.; Watts, D. [Tera Foundation, Novara (Italy)

    2013-08-01

    We describe the design and implementation of a fast data acquisition (DAQ) system for Gas Electron Multiplier (GEM) trackers applied to imaging and dosimetry in hadrontherapy. Within the AQUA project of the TERA foundation a prototype of Proton Range Radiography of 30×30 cm{sup 2} active area has been designed and built to provide in-beam integrated density images of the patient before treatment. It makes use of a pair of GEMs to record position and direction of protons emerging from the target. A fast data acquisition rate close to 1 MHz will allow obtaining a good resolution in-beam proton radiography in a few seconds. A dedicated fast front-end circuit for GEM detectors (GEMROC by AGH-Crakow University) is read by the FPGA based DAQ card (GR{sub D}AQ), developed by the AQUA group. The same system is under evaluation (within the ENVISION European project) to realize the in-vivo dosimetry, based on detecting secondary light particles during the treatment of the patient.

  6. Fast readout of GEM detectors for medical imaging

    Science.gov (United States)

    Bucciantonio, M.; Amaldi, U.; Kieffer, R.; Malakhov, N.; Sauli, F.; Watts, D.

    2013-08-01

    We describe the design and implementation of a fast data acquisition (DAQ) system for Gas Electron Multiplier (GEM) trackers applied to imaging and dosimetry in hadrontherapy. Within the AQUA project of the TERA foundation a prototype of Proton Range Radiography of 30×30 cm2 active area has been designed and built to provide in-beam integrated density images of the patient before treatment. It makes use of a pair of GEMs to record position and direction of protons emerging from the target. A fast data acquisition rate close to 1 MHz will allow obtaining a good resolution in-beam proton radiography in a few seconds. A dedicated fast front-end circuit for GEM detectors (GEMROC by AGH-Crakow University) is read by the FPGA based DAQ card (GR_DAQ), developed by the AQUA group. The same system is under evaluation (within the ENVISION European project) to realize the in-vivo dosimetry, based on detecting secondary light particles during the treatment of the patient.

  7. R and D on a new type of micropattern gaseous detector the Fast Timing Micropattern detector.

    CERN Document Server

    Vai, Ilaria

    2016-01-01

    Micropattern gaseous detectors (MPGD) underwent significant upgrades in recent years, introducing resistive materials to build compact spark-protected devices. Exploiting this technology further, various features such as space and time resolution, rate capability, sensitive area, operational stability and radiation hardness can be improved. This contribution introduces a new type of MPGD, namely the Fast Timing Micropattern (FTM) detector, utilizing a fully resistive WELL structure. It consists of a stack of several coupled layers where drift and WELL multiplication stages alternate in the structure, yielding a significant improvement in timing properties due to competing ionization processes in the different drift regions. Two FTM prototypes have been developed so far. The first one is uWELL-like, where multiplication takes place in the holes of a kapton foil covered on both sides with resistive material. The second one has a resistive Micromegas-like structure, with multiplication developing in a region del...

  8. Fast flux test facility, transition project plan

    Energy Technology Data Exchange (ETDEWEB)

    Guttenberg, S.

    1994-11-15

    The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  9. A novel fast timing micropattern gaseous detector: FTM

    CERN Document Server

    De Oliveira, Rui; Sharma, Archana

    2015-01-01

    In recent years important progress in micropattern gaseous detectors has been achieved in the use of resistive material to build compact spark-protected devices. The novel idea presented here consists of the polarisation of WELL structures using only resistive coating. This allows a new device to be built with an architecture based on a stack of several coupled layers where drift and WELL multiplication stages alternate in the structure. The signals from each multiplication stage can be read out from any external readout boards through the capacitive couplings. Each layer provides a signal with a gain of 10^4-10^5. The main advantage of this new device is the dramatic improvement of the timing provided by the competition of the ionisation processes in the different drift regions, which can be exploited for fast timing at the high luminosity accelerators (e.g. HL-LHC upgrade) as well as far applications like medical imaging.

  10. A novel fast timing micropattern gaseous detector: FTM

    CERN Document Server

    De Oliveira, Rui; Maggi, Marcello

    2015-01-01

    In recent years important progress in micropattern gaseous detectors has been achieved in the use of resistive material to build compact spark-protected devices. The novel idea presented here consists of the polarisation of WELL structures using only resistive electrodes. This allows a new device to be built with an architecture based on a stack of several coupled layers where drift and WELL multiplication stages alternate in the structure. The signals from each multiplication stage can be read out from any external readout boards through the capacitive couplings. Each layer provides a signal with a gain of 10^4 - 10^5. The main advantage of this new device is the dramatic improvement of the timing provided by the competition of the ionisation processes in the different drift regions, which can be exploited for fast timing at the high luminosity accelerators (e.g. HL-LHC upgrade) as well as applications outside particle physics.

  11. Fast muon simulation in the JUNO central detector

    Science.gov (United States)

    Lin, Tao; Deng, Zi-Yan; Li, Wei-Dong; Cao, Guo-Fu; You, Zheng-Yun; Li, Xin-Ying

    2016-08-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment designed to measure the neutrino mass hierarchy using a central detector (CD), which contains 20 kton liquid scintillator (LS) surrounded by about 17000 photomultiplier tubes (PMTs). Due to the large fiducial volume and huge number of PMTs, the simulation of a muon particle passing through the CD with the Geant4 toolkit becomes an extremely computation-intensive task. This paper presents a fast simulation implementation using a so-called voxel method: for scintillation photons generated in a certain LS voxel, the PMT’s response is produced beforehand with Geant4 and then introduced into the simulation at runtime. This parameterisation method successfully speeds up the most CPU consuming process, the optical photon’s propagation in the LS, by a factor of 50. In the paper, the comparison of physics performance between fast and full simulation is also given. Supported by Strategic Priority Research Program of Chinese Academy of Sciences (XDA10010900) and National Natural Science Foundation of China (11405279, 11575224)

  12. Successful beam tests for ALICE Transition Radiation Detector

    CERN Multimedia

    2002-01-01

    Another round of beam tests of prototypes for the Transition Radiation Detector (TRD) for ALICE has been completed and there are already some good results. Mass production of the components of the detector will start early next year.   Top view of the setup for the Transition Radiation Detector prototype tests at CERN.On the left, can be seen the full-scale TRD prototype together with four smaller versions. These are busy days for the TRD (Transition Radiation Detector) team of ALICE. Twenty people - mainly from Germany, but also from Russia and Japan - were working hard during the beam tests this autumn at CERN to assess the performance of their detector prototypes. Analysis of the data shows that the TRD can achieve the desired physics goal even for the highest conceivable multiplicities in lead-lead collisions at the LHC. In its final configuration in the ALICE experiment, the TRD will greatly help in identifying high-momentum electrons, which are 'needles in a haystack' that consists mostly of...

  13. Design of a transition radiation detector for cosmic rays

    Science.gov (United States)

    Hartmann, G.; Mueller, D.; Prince, T.

    1975-01-01

    Transition radiation detectors consisting of sandwiches of plastic foam radiators and multiwire proportional chambers can be used to identify cosmic ray particles with energies gamma ? E/mc-squared is greater than 10 to the 3rd and to measure their energy in the region gamma is roughly equal to 10 to the 3rd

  14. Understanding fast neutrons utilizing a water Cherenkov detector and a gas-filled detector at the soudan underground laboratory

    Science.gov (United States)

    Ghimire, Chiranjibi

    Many experiments are currently searching for Weakly Interactive Massive Particles (WIMPs), a well-motivated class of hypothetical dark matter candidates. These direct dark matter detection experiments are located in deep underground to shield from cosmic-ray muons and the fast neutrons they produce. Fast neutrons are particularly dangerous to WIMP detectors because they can penetrate a WIMP-search experiment's neutron shielding. Once inside, these fast neutrons can interact with high-Z material near the WIMP detector, producing slower neutrons capable of mimicking the expected WIMP signal. My research uses two detectors located in Soudan Underground Laboratory to understand fast neutron production by muons in an underground environment: a water-Cherenkov detector sensitive to fast neutrons; and a gas-filled detector sensitive to charged particles like muons. The different kinds of selection criterion and their efficiencies are reported in this thesis. This thesis estimate the number of high energy neutron-like candidates associated with a nearby muon by using data from both detector systems.

  15. Integrated High-Rate Transition Radiation Detector and Tracking Chamber for the LHC

    CERN Multimedia

    2002-01-01

    % RD-6 \\\\ \\\\Over the past five years, RD-6 has developed a transition radiation detector and charged particle tracker for high rate operation at LHC. The detector elements are based on C-fibre reinforced kapton straw tubes of 4~mm diameter filled with a Xenon gas mixture. Detailed measurements with and without magnetic field have been performed in test beams, and in particular have demonstrated the possibility of operating straw tubes at very high rate (up to 20~MHz) with accurate drift-time measurement accuracy. A full-scale engineering prototype containing 10~000 straws is presently under assembly and will be accurately measured with a powerful X-ray tube. Integrated front-end electronics with fast readout have been designed and successfully operated in test beam. \\\\ \\\\Finally extensive simulations performed for ATLAS have shown that such a detector will provide powerful pattern recognition, accurate momentum measurements, efficient level-2 triggering and excellent electron identification, even at the highe...

  16. A Fast Shot Transition Detecting Algorithm on MPEG Sequences

    Institute of Scientific and Technical Information of China (English)

    ZhengPeng; XueHai-feng; ZhouDong-ru

    2003-01-01

    In order to process video data efficiently, a video segmenting technique must be required. We propose a fast shot transition detecting algorithm directly on MPEG compressed video sequence. The algorithm can detect not only abrupt transition, but also gradual transition. The computing cost of the algorithm is low, because we directly use the type of rnacroblocks and motion vectors that MPEG compressed video provides. The result of experiment is rather well

  17. The ALICE Transition Radiation Detector: construction, operation, and performance

    CERN Document Server

    Acharya, Shreyasi; The ALICE collaboration; Adamova, Dagmar; Adler, Clemens; Adolfsson, Jonatan; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Nazeer; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Al-turany, Mohammad; Alam, Sk Noor; Antonczyk, Dariusz; Arend, Andreas; Bazo Alba, Jose Luis; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altenkamper, Lucas; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andreou, Dimitra; Andrews, Harry Arthur; Andronic, Anton; Anguelov, Venelin; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Anwar, Rafay; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barioglio, Luca; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartos, D; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, I; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Antonio; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Boca, Gianluigi; Bock, Friederike; Bogdanov, Alexey; Boldizsar, Laszlo; Bombara, Marek; Bonomi, Germano; Bonora, Matthias; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Botta, Elena; Bourjau, Christian; Bratrud, Lars; Braun-munzinger, Peter; Bregant, Marco; Broker, Theo Alexander; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Bucher, Damian; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buhler, Paul; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Capon, Aaron Allan; Caragheorgheopol, G; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Catanescu, V; Ceballos Sanchez, Cesar; Cerello, Piergiorgio; Chandra, Sinjini; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Chernenko, S; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Chowdhury, Tasnuva; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Ciobanu, M; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Concas, Matteo; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Costanza, Susanna; Crkovska, Jana; Crochet, Philippe; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; Daues, Heinz; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; de Cuveland, J; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Franz Degenhardt, Hermann; Deisting, Alexander; Deloff, Andrzej; Deplano, Caterina; Devismes, A; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Di Ruzza, Benedetto; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Van Doremalen, Lennart Vincent; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Duggal, Ashpreet Kaur; Dupieux, Pascal; Duta, V; Ehlers Iii, Raymond James; Elia, Domenico; Emschermann, David; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erhardt, Filip; Espagnon, Bruno; Esumi, Shinichi; Eulisse, Giulio; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Fabbietti, Laura; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Fateev, O; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fleck, M; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Freuen, S; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-solis, Edmundo Javier; Garg, Kunal; Gargiulo, Corrado; Gasik, Piotr Jan; Gatz, Henriette; Gauger, Erin Frances; De Leone Gay, Maria Beatriz; Germain, Marie; Ghosh, Jhuma; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giolu, G; Giubellino, Paolo; Giubilato, Piero; Gladysz-dziadus, Ewa; Glasow, Richard; Glassel, Peter; Gremmler, Svenja; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Sanchez Gonzalez, Andres; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Gottschalk, Dirk; Gottschlag, Holger; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grajcarek, Robert; Greiner, Leo Clifford; Grelli, Alessandro; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grimm, Helge; Grion, Nevio; Gronefeld, Julius Maximilian; Grosa, Fabrizio; Grosse-oetringhaus, Jan Fiete; Grosso, Raffaele; Gruber, Lukas; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Gutfleisch, M; Bautista Guzman, Irais; Haake, Rudiger; Hadjidakis, Cynthia Marie; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Haque, Md Rihan; Harris, John William; Hartig, Matthias; Harton, Austin Vincent; Hassan, Hadi; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hehner, Joerg; Heide, Markus; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Florian; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hills, Christopher; Hippolyte, Boris; Hladky, Jan; Hohlweger, Bernhard; Horak, David; Hornung, Sebastian; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Huber, Sebastian; Hughes, Charles; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Iga Buitron, Sergio Arturo; Ilkaev, Radiy; Inaba, Motoi; Ippolitov, Mikhail; Irfan, Muhammad; Islam, Md Samsul; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovsky, Jan; Jaelani, Syaefudin; Jahnke, Cristiane; Jakubowska, Monika Joanna; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jercic, Marko; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karczmarczyk, Przemyslaw; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Ketzer, Bernhard Franz; Khabanova, Zhanna; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Khatun, Anisa; Khuntia, Arvind; Kielbowicz, Miroslaw Marek; Kileng, Bjarte; Kim, Byungchul; Kim, Daehyeok; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minjung; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kislov, E; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-boesing, Christian; "Klein-Boesing", Melanie; Kliemant, Michael; Klingenmeyer, Hannah; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kohn, Martin; Kollegger, Thorsten; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Konno, Masahiro; Konyushikhin, Maxim; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krawutschke, Tobias; Kreis, Lukas; Krivda, Marian; Krizek, Filip; Krumbhorn, Dirk; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kundu, Sourav; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lai, Yue Shi; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lavicka, Roman; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehmann, T; Lehner, Jorg; Lehner, Sebastian; Lehrbach, Johannes; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Lesser, F; Levai, Peter; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lim, Bong-hwi; Lindal, Svein; Lindenstruth, Volker; Lindsay, Scott William; Lippmann, Christian; Lisa, Michael Annan; Litichevskyi, Vladyslav; Llope, William; Lodato, Davide Francesco; Lohner, Daniel; Lonne, Per-ivar; Loginov, Vitaly; Loizides, Constantinos; Loncar, Petra; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, XianGuo; Ludolphs, W; Luettig, Philipp Johannes; Luhder, Jens Robert; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Magureanu, C; Mahajan, Sanjay; Mahmoud, T; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Malinina, Liudmila; Mal'kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martinengo, Paolo; Lucio Martinez, Jose Antonio; Martinez Hernandez, Mario Ivan; Martinez-garcia, Gines; Martinez Pedreira, Miguel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Masson, Erwann; Mastroserio, Annalisa; Mathis, Andreas Michael; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzilli, Marianna; Mazzoni, Alessandra Maria; Meddi, Franco; Melikyan, Yuri; Menchaca-rocha, Arturo Alejandro; Meninno, Elisa; Mercado-perez, Jorge; Meres, Michal; Mhlanga, Sibaliso; Miake, Yasuo; Mieskolainen, Matti Mikael; Mihaylov, Dimitar Lubomirov; Mikhaylov, Konstantin; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Khan, Mohammed Mohisin; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morino, Yuhei; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Myers, Corey James; Myrcha, Julian Wojciech; Mycke, Jan Felix; Nag, Dipanjan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Narayan, Amrendra; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Negrao De Oliveira, Renato Aparecido; Neher, Michael; Nellen, Lukas; Nesbo, Simon Voigt; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Ohlson, Alice Elisabeth; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pacik, Vojtech; Pagano, Davide; Pagano, Paola; Paic, Guy; Panebratsev, Yu; Palni, Prabhakar; Pan, Jinjin; Pandey, Ashutosh Kumar; Panebianco, Stefano; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Jonghan; Park, WooJin; Parmar, Sonia; Passfeld, Annika; Pathak, Surya Prakash; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Peng, Xinye; Pereira, Luis Gustavo; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petris, M; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Peretti Pezzi, Rafael; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pliquett, Fabian; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Pozdniakov, Valeriy; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Radomski, Sylwester; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Rana, Dhan Bahadur; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Ratza, Viktor; Ravasenga, Ivan; Read, Kenneth Francis; Redlich, Krzysztof; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Reischl, A; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-lucian; Rodriguez Cahuantzi, Mario; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Rokita, Przemyslaw Stefan; Ronchetti, Federico; Dominguez Rosas, Edgar; Rosnet, Philippe; Rossi, Andrea; Rotondi, Alberto; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Vazquez Rueda, Omar; Rui, Rinaldo; Rumyantsev, Boris; Rusanov, Ivan; Rustamov, Anar; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Saha, Sumit Kumar; Sahlmuller, Baldo; Sahoo, Baidyanath; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Sakata, Dousatsu; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandoval, Andres; Sann, H; Sano, Masato; Santo, Rainer; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Sas, Mike Henry Petrus; Scapparone, Eugenio; Scarlassara, Fernando; Schaefer, Brennan; Scharenberg, Rolf Paul; Scheid, Horst Sebastian; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Marten Ole; Schmidt, Martin; Schmidt, Nicolas Vincent; Schmiederer, Stefan; Schneider, R; Schukraft, Jurgen; Schulze, R; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sedykh, S; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sett, Priyanka; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shahoyan, Ruben; Shaikh, Wadut; Shangaraev, Artem; Sharma, Anjali; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shimansky, S; Shou, Qiye; Shtejer Diaz, Katherin; Shukla, P; Sibiryak, Yury; Sicking, Eva; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silaeva, Svetlana; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simon, Reinhard S; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Smykov, L; Snellings, Raimond; Snellman, Tomas Wilhelm; Solveit, Hans Kristian; Sommer, Wolfgang; Song, Jihye; Song, Myunggeun; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spiriti, Eleuterio; Sputowska, Iwona Anna; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stelzer, Herbert; Stenlund, Evert Anders; Stiller, Johannes; Stocco, Diego; Stockmeyer, MR; Storetvedt, Maksim Melnik; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Suzuki, Ken; Swain, Sagarika; Szabo, Alexander; Szarka, Imrich; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thakur, Dhananjaya; Thakur, Sanchari; Thomas, Deepa; Thoresen, Freja; Tieulent, Raphael Noel; Tikhonov, Anatoly; Tilsner, Heinz; Timmins, Anthony Robert; Toia, Alberica; Rojas Torres, Solangel; Tripathy, Sushanta; Trogolo, Stefano; Trombetta, Giuseppe; Tropp, Lukas; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Trzeciak, Barbara Antonina; Tsiledakis, Georgios; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Umaka, Ejiro Naomi; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vargas, H; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Vertesi, Robert; Vickovic, Linda; Vigolo, Sonia; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Virgili, Tiziano; Vislavicius, Vytautas; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Voscek, Dominik; Vranic, Danilo; Vrlakova, Janka; Vulpescu, B; Wagner, Boris; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Watanabe, Kengo; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Wegerle, Dominik; Weiser, Dennis Franz; Wenzel, Sandro Christian; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Alexander; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Willsher, Emily; Windelband, Bernd Stefan; Winn, Michael; Witt, William Edward; Xu, C; Yalcin, Serpil; Yamakawa, Kosei; Yang, Ping; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Yurevich, Vladimir; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correa Zanoli, Henrique Jose; Zanevski, Yuri; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmer, Stefan; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zmeskal, Johann; Zou, Shuguang

    2017-01-01

    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet and for electron selection.

  18. Ultra-fast timing detectors to probe exotic properties of nuclei using RIB facility

    CERN Document Server

    Datta, Ushasi; Rahaman, A

    2016-01-01

    Recently, the facilities of radioactive ion beam (RIB) combined with advanced detector systems provide us unique opportunity to probe the exotic properties of the nuclei with unusual neutron-to-proton ratio. In this article, a study of characterization of different types of ultra-fast timing detectors: a special type of gas detector (multi-strip multi-gap resistive plate chamber, MMRPC) ($\\sigma$ $<$100 ps), scintillators array ( viz., $LaBr_3:Ce$) (timing resolution ($\\sigma<$250 ps) are being presented. A brief discussion on usage of these different types of ultra-fast timing detector systems at radioactive ion beam facilities is also included.

  19. Fast SiPM Readout of the PANDA TOF Detector

    Science.gov (United States)

    Böhm, M.; Lehmann, A.; Motz, S.; Uhlig, F.

    2016-05-01

    For the identification of low momentum charged particles and for event timing purposes a barrel Time-of-Flight (TOF) detector surrounding the interaction point is planned for the PANDA experiment at FAIR . Since the boundary conditions in terms of available radial space and radiation length are quite strict the favored layout is a hodoscope composed of several thousand small scintillating tiles (SciTils) read out by silicon photomultipliers (SiPMs). A time resolution of well below 100 ps is aimed for. With the originally proposed 30 × 30 × 5 mm3 SciTils read out by two single 3 × 3 mm2 SiPMs at the rims of the scintillator the targeted time resolution can be just reached, but with a considerable position dependence across the scintillator surface. In this paper we discuss other design options to further improve the time resolution and its homogeneity. It will be shown that wide scintillating rods (SciRods) with a size of, e.g., 50 × 30 × 5 mm3 or longer and read out at opposite sides by a chain of four serially connected SiPMs a time resolution down to 50 ps can be reached without problems. In addition, the position dependence of the time resolution is negligible. These SciRods were tested in the laboratory with electrons of a 90Sr source and under real experimental conditions in a particle beam at CERN. The measured time resolutions using fast BC418 or BC420 plastic scintillators wrapped in aluminum foil were consistently between 45 and 75 ps dependent on the SciRod design. This is a significant improvement compared to the original SciTil layout.

  20. Optimal Filtering Algorithm-Based Multiuser Detector for Fast Fading CDMA Systems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A multiuser detector was developed for fast fading code-division multiple-access systems by representing the channels as a system with the multiplicative noise (SMN) model and then using the known optimal filtering algorithm for the SMN for multiuser detection (MUD). This multiuser detector allows the channel response to be stochastic in one symbol duration, which can be regarded as an effective method of MUD for fast fading CDMA systems. Performance analyses show that the multiuser detector is theoretically valid for CDMA systems over fast fading channels. Simulations show that the multiuser detector performs better than the Kalman filter-based multiuser detector with a faster convergence rate and lower bit error rate.

  1. Calibration and Simulation of the GRB trigger detector of the Ultra Fast Flash Observatory

    DEFF Research Database (Denmark)

    Huang, M.-H.A.; Ahmad, S.; Barrillon, P.

    2013-01-01

    The UFFO (Ultra-Fast Flash Observatory) is a GRB detector on board the Lomonosov satellite, to be launched in 2013. The GRB trigger is provided by an X-ray detector, called UBAT (UFFO Burst Alarm & Trigger Telescope), which detects X-rays from the GRB and then triggers to determine the direction ...

  2. Avalanche Photodiodes as Fast X-ray Detectors.

    Science.gov (United States)

    Kishimoto, S

    1998-05-01

    An avalanche photodiode (APD) detector provides a sub-nanosecond time resolution and an output rate of more than 10(8) counts s(-1) of synchrotron X-rays. Moreover, the APD has the advantage of low noise. A review of recent developments of detectors using APD devices designed for X-ray experiments is presented in this paper. One of the detectors has an excellent time response of 100 ps resolution and a narrow width on its response function, 1.4 ns at 10(-5) maximum. The other consists of a stack of four diodes and has a transmission structure. The stacked detector improved the efficiency for X-rays, e.g. 55% at 16.53 keV. The output rates reached more than 10(8) counts s(-1) per device.

  3. Fast on-detector integrated signal processing status and perspectives

    CERN Document Server

    Lindenstruth, V

    2004-01-01

    The large and increasing channel count of modern detectors requires the use of microelectronics. The data rate and signal integrity requirements drive complex electronics to be mounted close to or directly on the detectors, possibly even integrating the complete first-level trigger stage. The latest silicon road maps indicate that the integration density of microelectronics will continue to increase during the next decade. However, there are several constraints to be taken into account that cause ramifications with respect to on- detector electronics. For instance, the core voltage will be reduced to below 500 mV, the clock rates will exceed GHz, and the power density will increase further. This article outlines two examples of trigger and readout systems, the ALICE TPC and TRD, which are completely integrated in microchips. The article expands on the expected impact future silicon processes may have on the on-detector integrated signal processing. (9 refs).

  4. Development towards a fast ion loss detector for the reversed field pinch

    Science.gov (United States)

    Bonofiglo, P. J.; Anderson, J. K.; Almagri, A. F.; Kim, J.; Clark, J.; Capecchi, W.; Sears, S. H.; Egedal, J.

    2016-11-01

    A fast ion loss detector has been constructed and implemented on the Madison Symmetric Torus (MST) to investigate energetic ion losses and transport due to energetic particle and MHD instabilities. The detector discriminates particle orbits solely on pitch and consists of two thin-foil, particle collecting plates that are symmetric with respect to the device aperture. One plate collects fast ion signal, while the second aids in the minimization of background and noise effects. Initial measurements are reported along with suggestions for the next design phase of the detector.

  5. Development of a fast multi-line x-ray CT detector for NDT

    Science.gov (United States)

    Hofmann, T.; Nachtrab, F.; Schlechter, T.; Neubauer, H.; Mühlbauer, J.; Schröpfer, S.; Ernst, J.; Firsching, M.; Schweiger, T.; Oberst, M.; Meyer, A.; Uhlmann, N.

    2015-04-01

    Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of

  6. Performance of the AMS-02 Transition Radiation Detector

    CERN Document Server

    Doetinchem, P; Karpinski, W; Kirn, T; Lübelsmeyer, K; Orboeck, J; Schael, S; Schultz von Dratzig, A; Schwering, G; Siedenburg, T; Siedling, R; Wallraff, W; Becker, U; Bürger, J; Henning, R; Kounine, A; Koutsenko, V F; Wyatt, J

    2006-01-01

    For cosmic particle spectroscopy on the International Space Station the AMS experiment will be equipped with a Transition Radiation Detector (TRD) to improve particle identification. The TRD has 20 layers of fleece radiator with Xe/CO2 proportional mode straw tube chambers. They are supported in a conically shaped octagon structure made of CFC-Al-honeycomb. For low power consumption VA analog multiplexers are used as front-end readout. A 20 layer prototype built from final design components has achieved proton rejections from 100 to 2000 at 90% electron efficiency for proton beam energies up to 250 GeV with cluster counting, likelihood and neural net selection algorithms.

  7. High-speed, multi-channel detector readout electronics for fast radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Wolfgang

    2012-06-22

    In this project, we are developing a high speed digital spectrometer that a) captures detector waveforms at rates up to 500 MSPS b) has upgraded event data acquisition with additional data buffers for zero dead time operation c) moves energy calculations to the FPGA to increase spectrometer throughput in fast scintillator applications d) uses a streamlined architecture and high speed data interface for even faster readout to the host PC These features are in addition to the standard functions in our existing spectrometers such as digitization, programmable trigger and energy filters, pileup inspection, data acquisition with energy and time stamps, MCA histograms, and run statistics. In Phase I, we upgraded one of our existing spectrometer designs to demonstrate the key principle of fast waveform capture using a 500 MSPS, 12 bit ADC and a Xilinx Virtex-4 FPGA. This upgraded spectrometer, named P500, performed well in initial tests of energy resolution, pulse shape analysis, and timing measurements, thus achieving item (a) above. In Phase II, we are revising the P500 to build a commercial prototype with the improvements listed in items (b)-(d). As described in the previous report, two devices were built to pursue this goal, named the Pixie-500 and the Pixie-500 Express. The Pixie-500 has only minor improvements from the Phase I prototype and is intended as an early commercial product (its production and part of its development were funded outside the SBIR). It also allows testing of the ADC performance in real applications.The Pixie-500 Express (or Pixie-500e) includes all of the improvements (b)-(d). At the end of Phase II of the project, we have tested and debugged the hardware, firmware and software of the Pixie-500 Express prototype boards delivered 12/3/2010. This proved substantially more complex than anticipated. At the time of writing, all hardware bugs have been fixed, the PCI Express interface is working, the SDRAM has been successfully tested and the SHARC

  8. PYTRANSIT: fast and easy exoplanet transit modelling in PYTHON

    Science.gov (United States)

    Parviainen, Hannu

    2015-07-01

    We present a fast and user friendly exoplanet transit light-curve modelling package PYTRANSIT, implementing optimized versions of the Giménez and Mandel & Agol transit models. The package offers an object-oriented PYTHON interface to access the two models implemented natively in FORTRAN with OpenMP parallelization. A partial OpenCL version of the quadratic Mandel-Agol model is also included for GPU-accelerated computations. The aim of PYTRANSIT is to facilitate the analysis of photometric time series of exoplanet transits consisting of hundreds of thousands of data points, and of multipassband transit light curves from spectrophotometric observations, as a part of a researcher's programming toolkit for building complex, problem-specific analyses.

  9. Fast Neutron Detector for Fusion Reactor KSTAR Using Stilbene Scintillator

    CERN Document Server

    Lee, Seung Kyu; Kim, Gi-Dong; Kim, Yong-Kyun

    2011-01-01

    Various neutron diagnostic tools are used in fusion reactors to evaluate different aspects of plasma performance, such as fusion power, power density, ion temperature, fast ion energy, and their spatial distributions. The stilbene scintillator has been proposed for use as a neutron diagnostic system to measure the characteristics of neutrons from the Korea Superconducting Tokamak Advanced Research (KSTAR) fusion reactor. Specially designed electronics are necessary to measure fast neutron spectra with high radiation from a gamma-ray background. The signals from neutrons and gamma-rays are discriminated by the digital charge pulse shape discrimination (PSD) method, which uses total to partial charge ratio analysis. The signals are digitized by a flash analog-to-digital convertor (FADC). To evaluate the performance of the fabricated stilbene neutron diagnostic system, the efficiency of 10 mm soft-iron magnetic shielding and the detection efficiency of fast neutrons were tested experimentally using a 252Cf neutr...

  10. Fast photon detection for the COMPASS RICH detector

    CERN Document Server

    Abbon, P; Alekseev, M; Angerer, H; Apollonio, M; Birsa, R; Bordalo, P; Bradamante, Franco; Bressan, A; Busso, L; Chiosso, M; Ciliberti, P; Colantoni, M L; Costa, S; Dalla Torre, S; Dafni, T; Delagnes, E; Deschamps, H; Díaz, V; Dibiase, N; Duic, V; Eyrich, W; Faso, D; Ferrero, A; Finger, M; Finger, M Jr; Fischer, H; Gerassimov, S; Giorgi, M; Gobbo, B; Hagemann, R; Von Harrach, D; Heinsius, F H; Joosten, R; Ketzer, B; Königsmann, K C; Kolosov, V N; Konorov, I; Kramer, Daniel; Kunne, Fabienne; Lehmann, A; Levorato, S; Maggiora, A; Magnon, A; Mann, A; Martin, A; Menon, G; Mutter, A; Nahle, O; Nerling, F; Neyret, D; Pagano, P; Panebianco, S; Panzieri, D; Paul, S; Pesaro, G; Polak, J; Rebourgeard, P; Robinet, F; Rocco, E; Schiavon, Paolo; Schroder, W; Silva, L; Slunecka, M; Sozzi, F; Steiger, L; Sulc, M; Svec, M; Tessarotto, F; Teufel, A; Wollny, H

    2007-01-01

    The COMPASS experiment at the SPS accelerator at CERN uses a large scale Ring Imaging CHerenkov detector (RICH) to identify pions, kaons and protons in a wide momentum range. For the data taking in 2006, the COMPASS RICH has been upgraded in the central photon detection area (25% of the surface) with a new technology to detect Cherenkov photons at very high count rates of several 10^6 per second and channel and a new dead-time free read-out system, which allows trigger rates up to 100 kHz. The Cherenkov photons are detected by an array of 576 visible and ultra-violet sensitive multi-anode photomultipliers with 16 channels each. The upgraded detector showed an excellent performance during the 2006 data taking.

  11. Beam diagnostics at DAFNE with fast uncooled IR detectors

    CERN Document Server

    Bocci, A; Drago, A; Grilli, A; Marcelli, A; Piccinini, M; Raco, A; Sorchetti, R; Gambicorti, L; De Sio, A; Pace, E; Piotrowski, J

    2008-01-01

    Bunch-by-bunch longitudinal diagnostics is a key issue of modern accelerators. To face up this challenging demand, tests of mid-IR compact uncooled photoconductive HgCdTe detectors have been recently performed at DAFNE. Different devices were used to monitor the emission of e- bunches. The first experiments allowed recording of 2.7 ns long e- bunches with a FWHM of a single pulse of about 600 ps. These results address the possibility to improve diagnostics at DAFNE and to this purpose an exit port on a bending magnet of the positron ring has been set-up. An HV chamber, hosting a gold-coated plane mirror that collects and deflects the radiation through a ZnSe window, is the front-end of this port. After the window, a simple optical layout in air allows focusing IR radiation on different detectors. The instrumentation will allow comparison in the sub-ns time domain between the two rings and to identify and characterize bunch instabilities. Moreover, to improve performances tests of new photovoltaic detectors wi...

  12. A novel fast response and radiation-resistant scintillator detector for beam loss monitor

    Science.gov (United States)

    Ji, Y.; Tang, Z.; Li, C.; Li, X.; Shao, M.

    2017-07-01

    At high luminosity area, beam loss monitor with fast response and high radiation resistance is crucial for accelerator operation. In this article, we report the design and test results of a fast response and radiation-resistant scintillator detector as the beam loss monitor for high luminosity collider, especially at low energy region such as RFQ. The detector is consisted of a 2 cm× 2 cm× 0.5 cm LYSO crystal readout by a 6 mm × 6 mm Silicon photomultiplier. Test results from various radioactive sources show that the detector has good sensitivity to photons from tens of keV to several MeV with good linearity and energy resolution (23% for 60 keV γ-ray). For field test, two such detectors are installed outside of the vacuum chamber shell of an 800 MeV electron storage ring. The details of the test and results are introduced.

  13. R and D on a New Technology of Micro-pattern Gaseous Detectors Fast Timing Micro-pattern Detector

    CERN Document Server

    Salva Diblen, Sinem

    2016-01-01

    After the upgrades of the Large Hadron Collider (LHC) planned for the second and the third Long Shutdown (LS), the LHC luminosity will approach very high values. Such conditions will affect the performance of the CMS muon system, especially in the very forward region, due to the harsh expected background environment and high pile-up conditions. The CMS collaboration considers upgrading the muon forward region to take advantage of the pixel tracking coverage extension a new detector, ME0 station, possibly behind the new forward calorimeter. New resistive micro-pattern gaseous detectors that are able to handle the very demanding spatial, time resolution and rate capability, are being considered. In this contribution we introduce a new type of MPGD technology the Fast Timing Micro-pattern (FTM) detector, utilizing a fully resistive WELL structure. It consists of a stack of several coupled layers where drift and WELL multiplication stages alternate in the structure, yielding a significant improvement in timing p...

  14. A novel detector assembly for detecting thermal neutrons, fast neutrons and gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Cester, D., E-mail: davide.cester@gmail.com [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Lunardon, M.; Moretto, S. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nebbia, G. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Pino, F. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Sajo-Bohus, L. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratorio de Fisica Nuclear, Universidad Simon Bolivar, Apartado 89000, 1080 A Caracas (Venezuela, Bolivarian Republic of); Stevanato, L.; Bonesso, I.; Turato, F. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2016-09-11

    A new composite detector has been developed by combining two different commercial scintillators. The device has the capability to detect gamma rays as well as thermal and fast neutrons; the signal discrimination between the three types is performed on-line by means of waveform digitizers and PSD algorithms. This work describes the assembled detector and its discrimination performance to be employed in the applied field.

  15. Fast Timing Detector R&D for Forward Proton Detectors at LHC

    Science.gov (United States)

    Snyder, Christina

    2017-01-01

    Quartz Timing Cherenkov (QUARTIC) detectors were tested at Fermilab Test Beam Facility in order to determine the timing resolution of very forward protons from collisions at the Large Hadron Collider (LHC). The active media of the detectors are quartz and sapphire, which are radiation hard and high light-yield materials. These detectors are constructed of 20 L-shaped bars that enable one to differentiate and detect more than one proton from the same LHC bunch crossing. The QUARTIC detectors have a small active area of 4cm2, which is well-matched to the acceptance of the scattered protons. Our experimental results will be presented and further testing of this design is planned.

  16. Fast 4$\\pi$ track reconstruction in nuclear emulsion detectors based on GPU technology

    CERN Document Server

    Ariga, A

    2013-01-01

    Fast 4$\\pi$ solid angle particle track recognition has been a challenge in particle physics for a long time, especially in using nuclear emulsion detectors. The recent advances in computing technology opened the way for its realization. A fast 4$\\pi$ solid angle particle track reconstruction based on GPU technology combined with a multithread programming is reported here with a detailed comparison between GPU-based and CPU-based programming. A 60 times faster processing of 3D emulsion detector data, corresponding to processing of 15 cm$^2$ emulsion surface scanned per hour, has been achieved by GPUs with an excellent tracking performance.

  17. Fast neutron-induced damage in INTEGRAL n-type HPGe detectors

    CERN Document Server

    Borrel, V; Albernhe, F; Frabel, P; Cordier, B; Tauzin, G; Crespin, S; Coszach, R; Denis, J M; Leleux, P

    1999-01-01

    Several INTEGRAL n-type HPGe detectors have been irradiated by fast neutrons and their degradation studied through the analysis of line shapes. The availability of three different fast neutron beams (5, 16 and 6-70 MeV) allowed a quantitative analysis of the importance of the neutron energy on the amount of damage. A comparison is made with the degradation induced by high-energy proton irradiations. Transient effects on the measured resolution are reported after high voltage cut-off on degraded detectors.

  18. High-speed crystal detection and characterization using a fast-readout detector.

    Science.gov (United States)

    Aishima, Jun; Owen, Robin L; Axford, Danny; Shepherd, Emma; Winter, Graeme; Levik, Karl; Gibbons, Paul; Ashton, Alun; Evans, Gwyndaf

    2010-09-01

    A novel raster-scanning method combining continuous sample translation with the fast readout of a Pilatus P6M detector has been developed on microfocus beamline I24 at Diamond Light Source. This fast grid-scan tool allows the rapid evaluation of large sample volumes without the need to increase the beam size at the sample through changes in beamline hardware. A slow version is available for slow-readout detectors. Examples of grid-scan use in centring optically invisible samples and in detecting and characterizing numerous microcrystals on a mesh-like holder illustrate the most common applications of the grid scan now in routine use on I24.

  19. PyTransit: Fast and Easy Exoplanet Transit Modelling in Python

    CERN Document Server

    Parviainen, Hannu

    2015-01-01

    We present a fast and user friendly exoplanet transit light curve modelling package PyTransit, implementing optimised versions of the Gimen\\'ez and the Mandel & Agol transit models. The package offers an object-oriented Python interface to access the two models implemented natively in Fortran with OpenMP parallelisation. A partial OpenCL version of the quadratic Mandel-Agol model is also included for GPU-accelerated computations. The aim of PyTransit is to facilitate the analysis of photometric time series of exoplanet transits consisting of hundreds of thousands of datapoints, and of multi-passband transit light curves from spectrophotometric observations, as a part of a researcher's programming toolkit for building complex, problem-specific, analyses.

  20. Construction and performance of the ALICE Transition Radiation Detector

    Energy Technology Data Exchange (ETDEWEB)

    Emschermann, David

    2010-01-20

    The Transition Radiation Detector (TRD) has been designed to identify electrons in the pion dominated background of heavy-ions collisions. As electrons do not interact strongly, they allow to probe the early phase of the interaction. As trigger on high-p{sub t} e{sup +}e{sup -} pairs within 6.5 {mu}s after collision, the TRD can initiate the readout of the Time Projection Chamber (TPC). The TRD is composed of 18 super modules arranged in a barrel geometry in the central part of the ALICE detector. It offers almost 1.2 million readout channels on a total area of close to 700 m{sup 2}. The particle detection properties of the TRD depend crucially on details in the design of the cathode pad readout plane. The design parameters of the TRD readout pad plane are introduced and analysed regarding their physical properties. The noise patterns observed in the detector can be directly linked to the static pad capacitance distribution and corrected for it. A summary is then given of the TRD services infrastructure at CERN: a 70 kW low voltage system, a 1080 channel 2.5 kV high voltage setup and the Ethernet network serving more than 600 nodes. Two beam tests were conducted at the CERN PS accelerator in 2004 and 2007 using full sized TRD chambers from series production. Details on the setups are presented with particular emphasis on the custom tailored data acquisition systems. Finally the performance of the TRD is studied, focusing on the pion rejection capability and the excellent position resolution. (orig.)

  1. Transitioning nuclear fuel cycles with uncertain fast reactor costs

    Energy Technology Data Exchange (ETDEWEB)

    Phathanapirom, U.B., E-mail: bphathanapirom@utexas.edu; Schneider, E.A.

    2016-06-15

    This paper applies a novel decision making methodology to a case study involving choices leading to the transition from the current once-through light water reactor fuel cycle to one relying on continuous recycle of plutonium and minor actinides in fast reactors in the face of uncertain fast reactor capital costs. Unique to this work is a multi-stage treatment of a range of plausible trajectories for the evolution of fast reactor capital costs over time, characterized by first-of-a-kind penalties as well as time- and unit-based learning. The methodology explicitly incorporates uncertainties in key parameters into the decision-making process by constructing a stochastic model and embedding uncertainties as bifurcations in the decision tree. “Hedging” strategies are found by applying a choice criterion to select courses of action which mitigate “regrets”. These regrets are calculated by evaluating the performance of all possible transition strategies for every feasible outcome of the uncertain parameter. The hedging strategies are those that preserve the most flexibility for adjusting the fuel cycle strategy in response to new information as uncertainties are resolved.

  2. Using the pixel detector for fast triggering in CMS

    CERN Document Server

    De Mattai, M

    2006-01-01

    The Standard Model of fundamental interactions (SM) has been extensively tested in many particle experiments during the last 25 years and it has proven to be extremely successful up to the energy scale typical of the weak force. Nevertheless, there is still no experimental evidence of the Higgs boson, one of the key components of the SM, responsible for the breaking of the electroweak symmetry and for the masses of the fermions and of the weak bosons. The Large Hadron Collider (LHC) is scheduled to provide the first proton on proton collision in 2008 at the center of mass energy of 14 Tev, an energy one order of magnitude higher than the regime explored so far. The CMS experiment is an omni-purpose experiment that will operate at the LHC, it will give insight into Standard Model physics and search for physics beyond the Standard Model. In this work we consider the usage of pixel detector information in the reconstruction of hadronic jets in events collected by the CMS detector under high luminosity running co...

  3. Fast "swarm of detectors" and their application in cosmic rays

    Science.gov (United States)

    Shoziyoev, G. P.; Shoziyoev, Sh. P.

    2017-06-01

    New opportunities in science appeared with the latest technology of the 21st century. This paper points to creating a new architecture for detection systems of different characteristics in astrophysics and geophysics using the latest technologies related to multicopter cluster systems, alternative energy sources, cluster technologies, cloud computing and big data. The idea of a quick-deployable scaleable dynamic system of a controlled drone with a small set of different detectors for detecting various components of extensive air showers in cosmic rays and in geophysics is very attractive. Development of this type of new system also allows to give a multiplier effect for the development of various sciences and research methods to observe natural phenomena.

  4. Development of a fast gaseous detector: 'Micromegas'

    Energy Technology Data Exchange (ETDEWEB)

    Barouch, G. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex (France); Bay, A. [Lausanne University, IPN, BSP, 1015 Dorigny (Switzerland); Bouchigny, S. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex (France); Charpak, G. [CERN/LHC, Geneva (Switzerland); Derre, J. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex (France); Didierjean, F. [EURISYS Mesures, 1 Chemin de la roseraie, Lingolsheim, 67834 Tanneries Cedex (France); Faivre, J.-C. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex (France); Giomataris, Y. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex (France); Kochowski, C. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex (France); Kunne, F. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex (France); Le Goff, J.-M. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex (France); Lehar, F. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex (France); Lemoigne, Y. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex (France); Loucatos, S. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex (France); Lugol, J.-C. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex (France); Magnon, A. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex (France); Mayer, B. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex (France); Perroud, J.-P. [Lausanne University, IPN, BSP, 1015 Dorigny (Switzerland); Platchkov, S. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex (France); Puill, G. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex (France); Rebourgeard, Ph. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex (France); Terrien, Y. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex (France); Thers, D. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex (France); Zaccone, H. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex (France)

    1999-02-21

    Several 15x15 cm{sup 2} gaseous Micromegas chambers (MICROMEsh GAseous Structure) which consist of a conversion gap and an amplification gap separated by a thin grid have been extensively tested in low-intensity 10 GeV/c pion beam and high-intensity (up to 5x10{sup 5} Hz/mm{sup 2}) 100 GeV/c muon beam. The detector behaviour has been studied with respect to many parameters: conversion gaps of 1 and 3 mm, amplification gaps of 50 and 10 {mu}m, an external magnetic field and many different filling gases. So far no effect of the magnetic field up to 1.3 T has been observed. The gas mixture argon + cyclohexane appears to be very suitable with gains above 10{sup 5} and a full-efficiency plateau of 50 V at 340 V. With a conversion gap as small as 1 mm and an electronics with a threshold at 5000 electrons the efficiency reaches 96%. With the addition of CF{sub 4} a time resolution of 5 ns (RMS) has been obtained. A spatial resolution better than 60 {mu}m has been observed with anode strips of 317 {mu}m pitch and was explained by transverse diffusion in the gas. Simulations show that with a pitch of 100 {mu}m and the appropriate gas a resolution of 10 {mu}m is within reach. This development leads to a new generation of cheap position-sensitive detectors which would permit high-precision tracking or vertexing close to the interaction region, in very high-rate environments.

  5. Gastrointestinal transit of undigestible solids measured by metal detector EAS II.

    Science.gov (United States)

    Ewe, K; Press, A G; Dederer, W

    1989-06-01

    A new method was developed to measure gastrointestinal transit: a metal particle is followed on its way through the gastrointestinal tract by means of a portable metal detector. Deviation of measured localization of the metal particle from the exact site was 0.5-1.0 cm depending on its size and distance from the search probe. A metal sphere of 6 mm diameter can be located accurately in the body at a distance of 2-12 cm from the abdominal surface. Emptying of a metal particle from the stomach, its arrival at the caecal area and its passage through the colon into the rectum can be registered and hence, gastric residence time, small intestinal transit and transit through different parts of the colon were determined. Gastric residence time at the interdigestive phase was (mean +/- SD) 67 +/- 52 min in 20 persons with a range of 9-185 min. When gastric emptying was recorded by pH sensitive radiotelemetering capsule in 10 persons, correlation of both methods was r = 0.99. Small intestinal transit averaged 110 +/- 56 min in six healthy volunteers when breakfast was eaten after the marker had left the stomach. It was delayed to 218 +/- 34 min (P less than 0.01) when fasting was continued. Large intestinal transit of the metal marker was compared to whole body transit of radio-opaque ('Hinton') markers. In nine normal persons, 70% of the Hinton markers were excreted together with the metal particle. It is concluded that this new method is suitable for studying a large variety of physiological, pathophysiological and pharmacological questions concerning gastrointestinal transit.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Fast scintillation detectors for high-energy X-ray region

    Science.gov (United States)

    Kishimoto, Shunji; Nishikido, Fumihiko; Haruki, Rie; Shibuya, Kengo; Koshimizu, Masanori

    2012-03-01

    We have developed fast scintillation detectors for nuclear resonant scattering experiments using synchrotron radiation and a nuclear excited level existing in >30 keV. A fast x-ray detector using an organic-inorganic perovskite scintillator of phenethylamine lead bromide (PhE-PbBr4) had a dominant light emission with a fast decay time of 9.9 ns. An x-ray detector equipped with a 0.9-mm-thick PhE-PbBr4 crystal (size: ˜8 × 7 mm2) was used to detect nuclear resonant scattering in 61Ni (the first excited level: 67.41 keV; half-life: 5.3 ns). We could successfully record the decaying gamma rays emitted from 61Ni with a relatively high detection efficiency of 24%. A lead-doped plastic scintillator (NE142, Pb ˜5 wt% doped) had been known to have a faster decay time of 1.7 ns. Following a test of a single NE142 detector, a four-channel NE142 detector was fabricated and successfully applied to the synchrotron-radiation based Mössbauer spectroscopy experiment on 61Ni.

  7. Fast-neutron induced background in LaBr{sub 3}:Ce detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kiener, J., E-mail: Jurgen.Kiener@csnsm.in2p3.fr [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS-IN2P3 et Université Paris-Sud, 91405 Campus Orsay (France); Tatischeff, V.; Deloncle, I. [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS-IN2P3 et Université Paris-Sud, 91405 Campus Orsay (France); Séréville, N. de [Institut de Physique Nucléaire d' Orsay, CNRS-IN2P3 and Université Paris-Sud, 91406 Orsay (France); Laurent, P. [CEA/IRFU Service d' Astrophysique, Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette (France); Laboratoire Astroparticules et Cosmologie (APC), 10, rue A. Domon et L. Duquet, 75205 Paris (France); Blondel, C. [Laboratoire AIM, CEA/IRFU, Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette (France); Chabot, M. [Institut de Physique Nucléaire d' Orsay, CNRS-IN2P3 and Université Paris-Sud, 91406 Orsay (France); Chipaux, R. [CEA/DMS/IRFU/SEDI, CEA Saclay, 91191 Gif sur Yvette (France); Coc, A. [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS-IN2P3 et Université Paris-Sud, 91405 Campus Orsay (France); Dubos, S. [Laboratoire AIM, CEA/IRFU, Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette (France); Gostojic, A. [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS-IN2P3 et Université Paris-Sud, 91405 Campus Orsay (France); and others

    2015-10-21

    The response of a scintillation detector with a cylindrical 1.5-in. LaBr{sub 3}:Ce crystal to incident neutrons has been measured in the energy range E{sub n} = 2–12 MeV. Neutrons were produced by proton irradiation of a Li target at E{sub p} = 5–14.6 MeV with pulsed proton beams. Using the time-of-flight information between target and detector, energy spectra of the LaBr{sub 3}:Ce detector resulting from fast neutron interactions have been obtained at 4 different neutron energies. Neutron-induced γ rays emitted by the LaBr{sub 3}:Ce crystal were also measured in a nearby Ge detector at the lowest proton beam energy. In addition, we obtained data for neutron irradiation of a large-volume high-purity Ge detector and of a NE-213 liquid scintillator detector, both serving as monitor detectors in the experiment. Monte-Carlo type simulations for neutron interactions in the liquid scintillator, the Ge and LaBr{sub 3}:Ce crystals have been performed and compared with measured data. Good agreement being obtained with the data, we present the results of simulations to predict the response of LaBr{sub 3}:Ce detectors for a range of crystal sizes to neutron irradiation in the energy range E{sub n} = 0.5–10 MeV.

  8. NeuLAND MRPC-based detector prototypes tested with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Caesar, Christoph [GSI Darmstadt, Planckstrasse 1, 64291 Darmstadt (Germany)

    2010-07-01

    A detector for momentum measurements of high-energy neutrons in the energy range 0.2-1 GeV is being developed for the R{sup 3}B (Reactions with Relativistic Radioactive Beams) experiment at FAIR. Based on the running LAND detector at GSI, the currently pursued concept for NeuLAND is a layered structure made of iron converters and charged particle detectors. As charged particle detectors Multigap Resistive Plate Chamber (MRPC) detectors will be used. The excellent time resolution of the MRPC units will allow for a very good time-of-flight resolution of NeuLAND. The design goal for the full detector is {sigma}{sub time} <100 ps. The full NeuLAND detector will consist of about 60 layers of the basic structure (converter+MRPC), leading to a detection efficiency of close to 100% for neutrons with energies higher than 200 MeV. Prototypes built at GSI and FZD were tested using MIPs at the ELBE electron beam facility at FZD. Here we present recent results from a first irradiation of the prototypes with fast neutrons. The TSL Uppsala monoenergetic neutron beam of E{sub n}=175 MeV is well-suited for such a study. These data will serve both for the validation of the basic detection scheme and as important input to refine GEANT4 and FLUKA simulations of the final detector.

  9. Fast estimation of false alarm probabilities of STAP detectors - the AMF

    NARCIS (Netherlands)

    Srinivasan, Rajan; Rangaswamy, Muralidhar

    2005-01-01

    This paper describes an attempt to harness the power of adaptive importance sampling techniques for estimating false alarm probabilities of detectors that use space-time adaptive processing. Fast simulation using these techniques have been notably successful in the study of conventional constant fal

  10. Detection of fast neutrons from shielded nuclear materials using a semiconductor alpha detector.

    Science.gov (United States)

    Pöllänen, R; Siiskonen, T

    2014-08-01

    The response of a semiconductor alpha detector to fast (>1 MeV) neutrons was investigated by using measurements and simulations. A polyethylene converter was placed in front of the detector to register recoil protons generated by elastic collisions between neutrons and hydrogen nuclei of the converter. The developed prototype equipment was tested with shielded radiation sources. The low background of the detector and insensitivity to high-energy gamma rays above 1 MeV are advantages when the detection of neutron-emitting nuclear materials is of importance. In the case of a (252)Cf neutron spectrum, the intrinsic efficiency of fast neutron detection was determined to be 2.5×10(-4), whereas three-fold greater efficiency was obtained for a (241)AmBe neutron spectrum.

  11. A fast method for optical simulation of flood maps of light-sharing detector modules

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Han [Tsinghua University, Beijing (China); Lawrence Berkeley National Laboratory, CA (United States); Du, Dong [Tsinghua University, Beijing (China); Xu, JianFeng [Huazhong University of Science and Technology, Wuhan (China); Moses, William W. [Lawrence Berkeley National Laboratory, CA (United States); Peng, Qiyu, E-mail: qiyupeng@gmail.com [Lawrence Berkeley National Laboratory, CA (United States)

    2015-12-01

    Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. We present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We simulated conventional block detector designs with different slotted light guide patterns using the new approach and compared the outcomes with those from GATE simulations. While the two approaches generated comparable flood maps, the new approach was more than 200–600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials.

  12. New Fast Response Thin Film-Based Superconducting Quench Detectors

    CERN Document Server

    Dudarev, A; van de Camp, W; Ravaioli, E; Teixeira, A; ten Kate, H H J

    2014-01-01

    Quench detection on superconducting bus bars and other devices with a low normal zone propagation velocity and low voltage build-up is quite difficult with conventional quench detection techniques. Currently, on ATLAS superconducting bus bar sections, superconducting quench detectors (SQD) are mounted to detect quench events. A first version of the SQD essentially consists of an insulated superconducting wire glued to a superconducting bus line or windings, which in the case of a quench rapidly builds up a relatively high resistance that can be easily and quietly detected. We now introduce a new generation of drastically improved SQDs. The new version makes the detection of quenches simpler, more reliable, and much faster. Instead of a superconducting wire, now a superconducting thin film is used. The layout of the sensor shows a meander like pattern that is etched out of a copper coated 25 mu m thick film of Nb-Ti glued in between layers of Kapton. Since the sensor is now much smaller and thinner, it is easi...

  13. MCNPX Monte Carlo simulations of particle transport in SiC semiconductor detectors of fast neutrons

    Science.gov (United States)

    Sedlačková, K.; Zat'ko, B.; Šagátová, A.; Pavlovič, M.; Nečas, V.; Stacho, M.

    2014-05-01

    The aim of this paper was to investigate particle transport properties of a fast neutron detector based on silicon carbide. MCNPX (Monte Carlo N-Particle eXtended) code was used in our study because it allows seamless particle transport, thus not only interacting neutrons can be inspected but also secondary particles can be banked for subsequent transport. Modelling of the fast-neutron response of a SiC detector was carried out for fast neutrons produced by 239Pu-Be source with the mean energy of about 4.3 MeV. Using the MCNPX code, the following quantities have been calculated: secondary particle flux densities, reaction rates of elastic/inelastic scattering and other nuclear reactions, distribution of residual ions, deposited energy and energy distribution of pulses. The values of reaction rates calculated for different types of reactions and resulting energy deposition values showed that the incident neutrons transfer part of the carried energy predominantly via elastic scattering on silicon and carbon atoms. Other fast-neutron induced reactions include inelastic scattering and nuclear reactions followed by production of α-particles and protons. Silicon and carbon recoil atoms, α-particles and protons are charged particles which contribute to the detector response. It was demonstrated that although the bare SiC material can register fast neutrons directly, its detection efficiency can be enlarged if it is covered by an appropriate conversion layer. Comparison of the simulation results with experimental data was successfully accomplished.

  14. Fast neutron spectroscopy with tensioned metastable fluid detectors

    Science.gov (United States)

    Grimes, T. F.; Taleyarkhan, R. P.

    2016-09-01

    This paper describes research into development of a rapid-turnaround, neutron-spectroscopy capable (gamma-beta blind), high intrinsic efficiency sensor system utilizing the tensioned metastable fluid detector (TMFD) architecture. The inability of prevailing theoretical models (developed successfully for the classical bubble chamber) to adequately predict detection thresholds for tensioned metastable fluid conditions is described. Techniques are presented to overcome these inherent shortcomings, leading thereafter, to allow successful neutron spectroscopy using TMFDs - via the newly developed Single Atom Spectroscopy (SAS) approach. SAS also allows for a unique means for rapidly determining neutron energy thresholds with TMFDs. This is accomplished by simplifying the problem of determining Cavitation Detection Events (CDEs) arising from neutron interactions with one in which several recoiling atom species contribute to CDEs, to one in which only one dominant recoil atom need be considered. The chosen fluid is Heptane (C7H16) for which only recoiling C atoms contribute to CDEs. Using the SAS approach, the threshold curve for Heptane was derived using isotope neutron source data, and then validated against experiments with mono-energetic (2.45/14 MeV) neutrons from D-D and D-T accelerators. Thereafter the threshold curves were used to produce the response matrix for various geometries. The response matrices were in turn combined with experimental data to recover the continuous spectra of fission (Cf-252) and (α,n) Pu-Be isotopic neutron sources via an unfolding algorithm. A generalized algorithm is also presented for performing neutron spectroscopy using any other TMFD fluid that meets the SAS approach assumptions.

  15. Fast neutron spectroscopy with tensioned metastable fluid detectors

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, T.F.; Taleyarkhan, R.P., E-mail: rusi@purdue.edu

    2016-09-11

    This paper describes research into development of a rapid-turnaround, neutron-spectroscopy capable (gamma-beta blind), high intrinsic efficiency sensor system utilizing the tensioned metastable fluid detector (TMFD) architecture. The inability of prevailing theoretical models (developed successfully for the classical bubble chamber) to adequately predict detection thresholds for tensioned metastable fluid conditions is described. Techniques are presented to overcome these inherent shortcomings, leading thereafter, to allow successful neutron spectroscopy using TMFDs – via the newly developed Single Atom Spectroscopy (SAS) approach. SAS also allows for a unique means for rapidly determining neutron energy thresholds with TMFDs. This is accomplished by simplifying the problem of determining Cavitation Detection Events (CDEs) arising from neutron interactions with one in which several recoiling atom species contribute to CDEs, to one in which only one dominant recoil atom need be considered. The chosen fluid is Heptane (C{sub 7}H{sub 16}) for which only recoiling C atoms contribute to CDEs. Using the SAS approach, the threshold curve for Heptane was derived using isotope neutron source data, and then validated against experiments with mono-energetic (2.45/14 MeV) neutrons from D-D and D-T accelerators. Thereafter the threshold curves were used to produce the response matrix for various geometries. The response matrices were in turn combined with experimental data to recover the continuous spectra of fission (Cf-252) and (α,n) Pu–Be isotopic neutron sources via an unfolding algorithm. A generalized algorithm is also presented for performing neutron spectroscopy using any other TMFD fluid that meets the SAS approach assumptions.

  16. Fast-neutron induced background in LaBr3:Ce detectors

    CERN Document Server

    Kiener, J; Deloncle, I; de Séréville, N; Laurent, P; Blondel, C; Chabot, M; Chipaux, R; Coc, A; Dubos, S; Gostojic, A; Goutev, N; Hamadache, C; Hammache, F; Horeau, B; Limousin, O; Ouichaoui, S; Prévot, G; Rodríguez-Gasén, R; Yavahchova, M S

    2015-01-01

    The response of a scintillation detector with a cylindrical 1.5-inch LaBr3:Ce crystal to incident neutrons has been measured in the energy range En = 2-12 MeV. Neutrons were produced by proton irradiation of a Li target at Ep = 5-14.6 MeV with pulsed proton beams. Using the time-of-flight information between target and detector, energy spectra of the LaBr3:Ce detector resulting from fast neutron interactions have been obtained at 4 different neutron energies. Neutron-induced gamma rays emitted by the LaBr3:Ce crystal were also measured in a nearby Ge detector at the lowest proton beam energy. In addition, we obtained data for neutron irradiation of a large-volume high-purity Ge detector and of a NE-213 liquid scintillator detector, both serving as monitor detectors in the experiment. Monte-Carlo type simulations for neutron interactions in the liquid scintillator, the Ge and LaBr3:Ce crystals have been performed and compared with measured data. Good agreement being obtained with the data, we present the resul...

  17. A fast hybrid algorithm for exoplanetary transit searches

    CERN Document Server

    Cameron, A C; Street, R A; Lister, T A; West, R G; Wilson, D M; Pont, F; Christian, D J; Clarkson, W I; Enoch, B; Evans, A; Fitzsimmons, A; Haswell, C A; Hellier, C; Hodgkin, S T; Horne, K; Irwin, J; Kane, S R; Keenan, F P; Norton, A J; Parley, N R; Osborne, J; Ryans, R; Skillen, I; Wheatley, P J

    2006-01-01

    We present a fast and efficient hybrid algorithm for selecting exoplanetary candidates from wide-field transit surveys. Our method is based on the widely-used SysRem and Box Least-Squares (BLS) algorithms. Patterns of systematic error that are common to all stars on the frame are mapped and eliminated using the SysRem algorithm. The remaining systematic errors caused by spatially localised flat-fielding and other errors are quantified using a boxcar-smoothing method. We show that the dimensions of the search-parameter space can be reduced greatly by carrying out an initial BLS search on a coarse grid of reduced dimensions, followed by Newton-Raphson refinement of the transit parameters in the vicinity of the most significant solutions. We illustrate the method's operation by applying it to data from one field of the SuperWASP survey, comprising 2300 observations of 7840 stars brighter than V=13.0. We identify 11 likely transit candidates. We reject stars that exhibit significant ellipsoidal variations indicat...

  18. The photon drag effect: A fast FIR detector

    Energy Technology Data Exchange (ETDEWEB)

    Sigg, H.C. [Paul Scherrer Institut, Zuerich (Switzerland); Son, P.C. van; Wenckebach, W.Th. [Delft Univ. of Technology (Netherlands)

    1995-12-31

    The photon drag (PD) effect in solids is the electrical current generated along the path of the absorbed photons. It is a very direct transducer which is also very fast because the momentum relaxation times of the electrons are involved. We studied the PD effect in the 2D electron gas (2DEG) of a GaAs/AlGaAs multi-quantum well system using the free-electron laser source FELIX. The temporal response on a ps timescale has been observed, and the continuous spectral response through the intersubband resonance (ISR) is investigated. For high excitation intensities we observe saturation of both the PD effect and the ISR absorption. The experiments are performed on an MBE grown GaAs/AlGaAs sample with 30 8-nm-wide quantum wells, each containing 0.8 10{sup 12} electrons/cm{sup 2}. The light is coupled to the 2DEG through a single-pass internal reflection in a Ge prism pressed onto the sample surface, and the electrical signal is capacitively coupled out to a microstrip line. The measured temporal response to the 2-ps-long infrared micropulses is limited by the 34 GHz bandwidth of the sampling oscilloscope. The spectral response (ISR at 120 meV) and the saturation of the PD effect and of the optical absorption are measured real-time on the timescale of the FELIX macropulse (typically 2 {mu}). Two contributions to the PD signal an be distinguished in the spectral response: One is proportional to the absorption and the other is proportional to its derivative with respect to frequency. The relative strength of the contributions is related to the momentum relaxation times of the electrons in the lowest and first excited subbands. At high excitation intensities, the relative strength of the two contributions stays surprisingly constant, despite the strongly increased ISR linewidth and the saturation of the signal. This indicates that the limiting relaxation time relevant for the saturation of the PD effect is longer than the sub-picosecond momentum relaxation times.

  19. HEROICA: an underground facility for the fast screening of germanium detectors

    Science.gov (United States)

    Andreotti, E.; Garfagnini, A.; Maneschg, W.; Barros, N.; Benato, G.; Brugnera, R.; Costa, F.; Falkenstein, R.; Guthikonda, K. K.; Hegai, A.; Hemmer, S.; Hult, M.; Jänner, K.; Kihm, T.; Lehnert, B.; Liao, H.; Lubashevskiy, A.; Lutter, G.; Marissens, G.; Modenese, L.; Pandola, L.; Reissfelder, M.; Sada, C.; Salathe, M.; Schmitt, C.; Schulz, O.; Schwingenheuer, B.; Turcato, M.; Ur, C.; von Sturm, K.; Wagner, V.; Westermann, J.

    2013-06-01

    HEROICA (Hades Experimental Research Of Intrinsic Crystal Appliances) is an infrastructure to characterize germanium detectors and has been designed and constructed at the HADES Underground Research Laboratory, located in Mol (Belgium). Thanks to the 223 m overburden of clay and sand, the muon flux is lowered by four orders of magnitude. This natural shield minimizes the exposure of radio-pure germanium material to cosmic radiation resulting in a significant suppression of cosmogenic activation in the germanium detectors. The project has been strongly motivated by a special production of germanium detectors for the GERDA experiment. GERDA, currently collecting data at the Laboratori Nazionali del Gran Sasso of INFN, is searching for the neutrinoless double beta decay of 76Ge. In the near future, GERDA will increase its mass and sensitivity by adding new Broad Energy Germanium (BEGe) detectors. The production of the BEGe detectors is done at Canberra in Olen (Belgium), located about 30 km from the underground test site. Therefore, HADES is used both for storage of the crystals over night, during diode production, and for the characterization measurements. A full quality control chain has been setup and tested on the first seven prototype detectors delivered by the manufacturer at the beginning of 2012. The screening capabilities demonstrate that the installed setup fulfills a fast and complete set of measurements on the diodes and it can be seen as a general test facility for the fast screening of high purity germanium detectors. The results are of major importance for a future massive production and characterization chain of germanium diodes foreseen for a possible next generation 1-tonne double beta decay experiment with 76Ge.

  20. Developments and first measurements of Ultra-Fast Silicon Detectors produced at FBK

    Science.gov (United States)

    Paternoster, G.; Arcidiacono, R.; Boscardin, M.; Cartiglia, N.; Cenna, F.; Dalla Betta, G. F.; Ferrero, M.; Mulargia, R.; Obertino, M.; Pancheri, L.; Piemonte, C.; Sola, V.

    2017-02-01

    Segmented silicon sensors with internal gain, the so called Ultra-FAST Silicon Detectors (UFSD), have been produced at FBK for the first time. UFSD are based on the concept of Low-Gain Avalanche Detectors (LGAD), which are silicon detectors with an internal, low multiplication mechanism (gain ~ 10). This production houses two main type of devices: one type where the gain layer is on the same side of the read-out electrodes, the other type where the gain layer is on the side opposite to the pixellated electrodes (reverse-LGAD). Several technological splits have been included in the first production run, with the aim to tune the implantation dose of the multiplication layer, which controls the gain value of the detector. An extended testing on the wafers has been performed and the results are in line with simulations: the fabricated detectors show good performances, with breakdown voltages above 1000 Volts, and gain values in the range of 5–60 depending on the technological split. The detectors timing resolution has been measured by means of a laboratory setup based on an IR picosecond laser. The sample with higher gain shows time resolution of 55 ps at high reverse bias voltage, indicating very promising performance for future particle tracking applications.

  1. Investigation of Very Fast Light Detectors: Silicon Photomultiplier and Micro PMT for a Cosmic Ray Array

    Science.gov (United States)

    Cervantes, Omar; Reyes, Liliana; Hooks, Tyler; Perez, Luis; Ritt, Stefan

    2016-03-01

    To construct a cosmic detector array using 4 scintillation detectors, we investigated 2 recent light sensor technologies from Hamamatsu, as possible readout detectors. First, we investigated several homemade versions of the multipixel photon counter (MPPC) light sensors. These detectors were either biased with internal or external high voltage power supplies. We made extensive measurements to confirm for the coincidence of the MPPC devices. Each sensor is coupled to a wavelength shifting fiber (WSF) that is embedded along a plastic scintillator sheet (30cmx60cmx1/4''). Using energetic cosmic rays, we evaluated several of these homemade detector modules placed above one another in a light proof enclosure. Next, we assembled 2 miniaturized micro photomultiplier (micro PMT), a device recently marketed by Hamamatsu. These sensors showed very fast response times. With 3 WSF embedded in scintillator sheets, we performed coincidence experiments. The detector waveforms were captured using the 5GS/sec domino ring sampler, the DRS4 and our workflow using the CERN PAW package and data analysis results would be presented. Title V Grant.

  2. Prototyping a coherent framework for full, fast and parameteric detector simulation for the FCC project

    CERN Document Server

    Hrdinka, Julia; Salzburger, Andreas; Hegner, Benedikt

    2015-01-01

    The outstanding success of the physics program of the Large Hadron Collider (LHC) including the discovery of the Higgs boson shifted the focus of part of the high energy physics community onto the planning phase for future circular collider (FCC) projects. A proton-proton collider is in consideration, as well as an electron-positron ring and an electron-proton option as potential LHC successor projects. Common to all projects is the need for a coherent software framework in order to carry out simulation studies to establish the potential physics reach or to test different technol- ogy approaches. Detector simulation is a particularly necessary tool needed for design studies of different detector concepts and to allow establishing the relevant performance parameters. In ad- dition, it allows to generate data as input for the development of reconstruction algorithms needed to cope with the expected future environments. We present a coherent framework that combines full, fast and parametric detector simulation e...

  3. SLIM5 beam test results for thin striplet detector and fast readout beam telescope

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, Lorenzo, E-mail: lorenzo.vitale@ts.infn.i [Universita degli Studi di Trieste and INFN-Trieste (Italy); Bruschi, M.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Gabrielli, A.; Giorgi, F.; Pellegrini, G.; Sbarra, C.; Semprini, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A. [Universita degli Studi di Bologna and INFN-Bologna (Italy); Avanzini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Calderini, G.; Ceccanti, M. [Universita degli Studi di Pisa and INFN-Pisa (Italy)

    2010-05-21

    In September 2008 the SLIM5 collaboration submitted a low material budget silicon demonstrator to test with 12 GeV/c protons, at the PS-T9 test-beam at CERN. Two different detectors were placed as DUTs inside a high-resolution and fast-readout beam telescope. The first DUT was a high resistivity double sided silicon detector, with short strips ('striplets') and with reduced thickness, at 45{sup 0} angle to the detector's edge, readout by the data-driven FSSR2 chip. The other one was a 4k-Pixel Matrix of Deep N Well MAPS, developed in a 130 nm CMOS Technology, providing digital sparsified readout. In the following, I present the striplets and also the beam telescope characteristics, with some details about the frontend readout (based on the FSSR2 chip) and some preliminary results of the data-analysis.

  4. Test of a prototype neutron spectrometer based on diamond detectors in a fast reactor

    CERN Document Server

    Osipenko, M; Ripani, M; Pillon, M; Ricco, G; Caiffi, B; Cardarelli, R; Verona-Rinati, G; Argiro, S

    2015-01-01

    A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a $^6$Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for applications in low power research reactors, while a low sensitivity to gamma rays and low leakage current of the detector permit to reach good energy resolution. A fast coincidence between two crystals is used to reject background. The detector was read out using two different electronic chains connected to it by a few meters of cable. The first chain was based on conventional charge-sensitive amplifiers, the other used a custom fast charge amplifier developed for this purpose. The prototype has been tested at various neutron sources and showed its practicability. In particular, the detector was calibrated in a TRIGA thermal reactor (LENA laboratory, University of Pavia) with neutron fluxes of $10^8$ n/cm$^2$s and at the 3 MeV D-D monochromatic neutron source na...

  5. Development of Position-sensitive Transition-edge Sensor X-ray Detectors

    Science.gov (United States)

    Smith, S. J.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Eckard, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. s.; Sad (eor. K/ E/); Figueroa-Feliciano, E.

    2008-01-01

    We report on the development of position-sensitive transition-edge sensors (PoST's) for future x-ray astronomy missions such as the International X-ray Observatory (IXO), currently under study by NASA and ESA. PoST's consist of multiple absorbers each with a different thermal coupling to one or more transition-edge sensor (TES). This differential thermal coupling between absorbers and TES's results in different characteristic pulse shapes and allows position discrimination between the different pixels. The development of PoST's is motivated by a desire to achieve maximum focal-plane area with the least number of readout channels and as such. PoST's are ideally suited to provide a focal-plane extension to the Constellation-X microcalorimeter array. We report the first experimental results of our latest one and two channel PoST's, which utilize fast thermalizing electroplated Au/Bi absorbers coupled to low noise Mo/Au TES's - a technology already successfully implemented in our arrays of single pixel TES's. We demonstrate 6 eV energy resolution coupled with spatial sensitivity in the keV energy range. We also report on the development of signal processing algorithms to optimize energy and position sensitivity of our detectors.

  6. Development of time-of-flight neutron detector with fast-decay and low-afterglow scintillator for fast ignition experiment

    Directory of Open Access Journals (Sweden)

    Nagai T.

    2013-11-01

    Full Text Available A fast-decay and low-afterglow liquid scintillator was developed for the fast ignition experiment at the Institute of Laser Engineering (ILE. The liquid scintillator was coupled to a gated photomultiplier (PMT, and the gating performance under high-intensity γ-rays was experimentally checked. In 2010, a detector with a high detection efficiency of 10−4 was developed and installed in this experiment. The neutron yield in the fast heating experiment was successfully measured using this detector.

  7. Fast TracKer: A fast hardware track trigger for the ATLAS detector

    Science.gov (United States)

    Pandini, Carlo

    2016-07-01

    The trigger system at the ATLAS experiment is designed to lower the event rate occurring from the nominal bunch crossing rate of 40 MHz to about 1 kHz for a LHC luminosity of the order of 1034cm-2s-1. To achieve high background rejection while maintaining good efficiency for interesting physics signals, sophisticated algorithms are needed which require an extensive use of tracking information. The Fast TracKer (FTK) trigger system, part of the ATLAS trigger upgrade program, is a highly parallel hardware device designed to perform track-finding at 100 kHz. Modern, powerful Field Programmable Gate Arrays (FPGAs) form an important part of the system architecture, and the combinatorial problem of pattern recognition is solved by 8000 standard-cell ASICs used to implement an Associative Memory architecture. The availability of the tracking and subsequent vertex information within a short latency ensures robust selections and allows improved trigger performance for the most difficult signatures, such as b-jets and τ leptons.

  8. Influence of temperature on the behaviour of INTEGRAL n-type HPGe detectors irradiated with fast neutrons

    CERN Document Server

    Kandel, B; Albernhe, F; Frabel, P; Cordier, B; Tauzin, G; Crespin, S; Coszach, R; Denis, J M; Leleux, P

    1999-01-01

    Several INTEGRAL n-type HPGe detectors have been irradiated by fast neutrons at different temperatures and their performances have been evaluated. Their behaviour during warm-up and cool-down cycles following the irradiations show evidence for irreversible temperature effects above 100 K. The detectors recovery after annealing was also studied.

  9. Gram-scale Plutonium Samples Measured by Experimental Device of Four Detectors Well-type Fast Neutron Coincidence Measurement

    Institute of Scientific and Technical Information of China (English)

    LIU; Guo-rong; LIANG; Qing-lei; LI; Jing-huai; LI; An-li

    2013-01-01

    Experimental device of four detectors well-type fast neutron coincidence measurement(see Fig.1)consists of four?127 mm×50.8 mm BC501A liquid scintillation detectors,DC271A digitizer and other circuits.Application program simultaneously acquires the waveform of each pulse output from each detector,and identifies each pulse from neutron or?particle by offline model,and gets their arrival timing.

  10. A novel fast-neutron detector concept for energy-selective imaging and imaging spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cortesi, M.; Prasser, H.-M. [Nuclear Energy and Safety Research Department, Paul Scherrer Institut, Villigen PSI 5234 (Switzerland); Mechanical Engineering Department, Swiss Federal Institute of Technology, Zurich 8092 (Switzerland); Dangendorf, V. [Ion and Neutron Radiation Department, Physikalisch-Technische Bundesanstalt, Braunschweig 38116 (Germany); Zboray, R. [Mechanical Engineering Department, Swiss Federal Institute of Technology, Zurich 8092 (Switzerland)

    2014-07-15

    We present and discuss the operational principle of a new fast-neutron detector concept suitable for either energy-selective imaging or for imaging spectroscopy. The detector is comprised of a series of energy-selective stacks of converter foils immersed in a noble-gas based mixture, coupled to a position-sensitive charge readout. Each foil in the various stacks is made of two layers of different thicknesses, fastened together: a hydrogen-rich (plastic) layer for neutron-to-proton conversion, and a hydrogen-free coating to selectively stop/absorb the recoil protons below a certain energy cut-off. The neutron-induced recoil protons, that escape the converter foils, release ionization electrons in the gas gaps between consecutive foils. The electrons are then drifted towards and localized by a position-sensitive charge amplification and readout stage. Comparison of the images detected by stacks with different energy cut-offs allows energy-selective imaging. Neutron energy spectrometry is realized by analyzing the responses of a sufficient large number of stacks of different energy response and unfolding techniques. In this paper, we present the results of computer simulation studies and discuss the expected performance of the new detector concept. Potential applications in various fields are also briefly discussed, in particularly, the application of energy-selective fast-neutron imaging for nuclear safeguards application, with the aim of determining the plutonium content in Mixed Oxide (MOX) fuels.

  11. Alanine and TLD coupled detectors for fast neutron dose measurements in neutron capture therapy (NCT).

    Science.gov (United States)

    Cecilia, A; Baccaro, S; Cemmi, A; Colli, V; Gambarini, G; Rosi, G; Scolari, L

    2004-01-01

    A method was investigated to measure gamma and fast neutron doses in phantoms exposed to an epithermal neutron beam designed for neutron capture therapy (NCT). The gamma dose component was measured by TLD-300 [CaF2:Tm] and the fast neutron dose, mainly due to elastic scattering with hydrogen nuclei, was measured by alanine dosemeters [CH3CH(NH2)COOH]. The gamma and fast neutron doses deposited in alanine dosemeters are very near to those released in tissue, because of the alanine tissue equivalence. Couples of TLD-300 and alanine dosemeters were irradiated in phantoms positioned in the epithermal column of the Tapiro reactor (ENEA-Casaccia RC). The dosemeter response depends on the linear energy transfer (LET) of radiation, hence the precision and reliability of the fast neutron dose values obtained with the proposed method have been investigated. Results showed that the combination of alanine and TLD detectors is a promising method to separate gamma dose and fast neutron dose in NCT.

  12. A fast, high-granularity silicon multiplicity detector for the NA50 experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Alessandro, B. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Alexeline, M. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Baglin, C. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Bisi, V. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Bonazzola, G. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Bonello, P. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Bussiere, A. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Capony, V. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Crovato, R. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Dabrowski, W. [Academy of Min. and Metall., Cracow (Poland). Fac. of Phys. and Nucl. Tech.; De Remigis, P. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); De Witt, J. [SCIPP, Santa Cruz (United States); Forlen, M. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Giubellino, P. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Grybos, P. [Academy of Min. and Metall., Cracow (Poland). Fac. of Phys. and Nucl. Tech.; Idzik, M. [Academy of Min. and Metall., Cracow (Poland). Fac. of Phys. and Nucl. Tech.; Kossakowski, R. [Grenoble-1 Univ., 74 -Annecy (France). Lab. de Physique des Particules; Marzari-Chiesa, A. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Masera, M. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Monteno, M. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Prado da Silva, W. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Ramello, L. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Rato Mendes, P. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Riccati, L. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Sartori, M. [Istituto Nazionale di Fisica Nucleare, Turin (Italy)

    1995-06-01

    We have designed a silicon detector to measure the angular distribution and the multiplicity of charged secondaries produced in high-energy Pb-Pb interactions. It will be used to characterize the events in the NA50 experiment. The experiment will have to function at very high rate, and the silicon detectors will have to operate in the high-radiation area close to the target. Therefore, the detector will have to be very fast (dead time below 50 ns), radiation resistant (up to the Mrad level as dose and up to more than 10{sup 13} particles/cm{sup 2} as non-ionizing damage) and of high granularity. The conditions on noise, speed and radiation hardness are comparable to the ones foreseen at the future Large Hadron Collider at CERN. We present here the detector design, discuss some of the solutions which have been investigated and report first results on the components of the system which have been designed and produced up to now. (orig.).

  13. Fast triggering of high-rate charged particles with a triple-GEM detector

    CERN Document Server

    Alfonsi, M; Bonivento, W; Cardini, A; De Simone, P; Murtas, F; Pinci, D; Poli-Lener, M; Raspino, D

    2004-01-01

    A 3 year long R&D activity on triple gas electron multiplier (GEM) detectors is reported. This activity was made in the framework of the LHCb experiment in order to find the technology to instrument the central region of the first muon station (M1R1) where a high particle rate is expected. Detector geometry, gas mixture and electric field configuration have been optimized in order to achieve the performance required by the experiment. The use of a very fast, CF//4 based, gas mixture provides a time resolution of about 4.5 ns (r.m.s.) with a single chamber with gain less than 10**4. In addition, an optimized gain sharing between the three GEMs allows to keep the discharge probability per incident hadron below $10^{-12}$. The average number of firing pads per crossing particle have been found to be lower than 1.2. In a global aging test two detectors were exposed to a dose rate of 16 Gy/h. Each detector integrated about 2 C/cm**2 equivalent to more than 10 years of operation at LHCb. Good aging properties w...

  14. Fast polycrystalline CdTe detectors for bunch-by-bunch luminosity monitoring in the LHC

    CERN Document Server

    Brambilla, A; Jolliot, M; Bravin, E

    2008-01-01

    The luminosity at the four interaction points of the Large Hadron Collider (LHC) must be continuously monitored in order to provide an adequate tool for the control and optimisation of beam parameters. Polycrystalline cadmium telluride (CdTe) detectors have previously been tested, showing their high potential to fulfil the requirements of luminosity measurement in the severe environment of the LHC interaction regions. Further, the large signal yield and the fast response time should allow bunch-by-bunch measurement of the luminosity at 40 MHz with high accuracy. Four luminosity monitors with two rows of five polycrystalline CdTe detectors each have been fabricated and will be installed at both sides of the low-luminosity interaction points ALICE and LHC-b. A detector housing was specially designed to meet the mechanical constraints in the LHC. A series of elementary CdTe detectors were fabricated and tested, of which 40 were selected for the luminosity monitors. A sensitivity of 104 electrons per minimum ioni...

  15. Measurements of timing resolution of ultra-fast silicon detectors with the SAMPIC WTDC

    CERN Document Server

    Breton, Dominique

    2016-01-01

    The SAMpler for PICosecond time (SAMPIC) chip has been designed by a collaboration including CEA/IRFU/SEDI, Saclay and CNRS/LAL/SERDI, Orsay. It benefits from both the quick response of a time to digital converter (TDC) and the versatility of a waveform digitizer to perform accurate timing measurements. Thanks to the sampled signals, smart algorithms making best use of the pulse shape can be used to maximize time resolution. A software framework has been developed to analyse the SAMPIC output data and extract timing information by using either a constant fraction discriminator or a fast cross-correlation algorithm. SAMPIC timing capabilities together with the software framework have been tested using Gaussian signals generated by a signal generator or by silicon detectors pulsed with an infra-red laser. Under these ideal experimental conditions, the SAMPIC chip has proven to be capable of timing resolutions down to 4 (40) ps with synthesized (silicon detector) signals.

  16. Unfolding the fast neutron spectra of a BC501A liquid scintillation detector using GRAVEL method

    CERN Document Server

    Chen, Yonghao; Lei, Jiarong; An, Li; Zhang, Xiaodong; Shao, Jianxiong; Zheng, Pu; Wang, Xinhua

    2013-01-01

    Accurate knowledge of the neutron energy spectra is useful in basic research and applications. The overall procedure of measuring and unfolding the fast neutron energy spectra with BC501A liquid scintillation detector is described. The recoil proton spectrum of Am-Be neutrons was obtained experimentally. With the NRESP7 code, the response matrix of detector was simulated. Combining the recoil proton spectrum and response matrix, the unfolding of neutron spectra was performed by GRAVEL iterative algorithm. A MatLab program based on the GRAVEL method was developed. The continuous neutron spectrum of Am-Be source and monoenergetic neutron spectrum of D-T source have been unfolded successfully and are in good agreement with their standard reference spectra. The unfolded Am-Be spectrum are more accurate than the spectra unfolded by artificial neural networks in recent years.

  17. Unfolding the fast neutron spectra of a BC501A liquid scintillation detector using GRAVEL method

    Science.gov (United States)

    Chen, YongHao; Chen, XiMeng; Lei, JiaRong; An, Li; Zhang, XiaoDong; Shao, JianXiong; Zheng, Pu; Wang, XinHua

    2014-10-01

    Accurate knowledge of the neutron energy spectra is useful in basic research and applications. The overall procedure of measuring and unfolding the fast neutron energy spectra with BC501A liquid scintillation detector is described. The recoil proton spectrum of 241Am-Be neutrons was obtained experimentally. With the NRESP7 code, the response matrix of detector was simulated. Combining the recoil proton spectrum and response matrix, the unfolding of neutron spectra was performed by GRAVEL iterative algorithm. A MatLab program based on the GRAVEL method was developed. The continuous neutron spectrum of 241Am-Be source and monoenergetic neutron spectrum of D-T source have been unfolded successfully and are in good agreement with their standard reference spectra. The unfolded 241Am-Be spectrum are more accurate than the spectra unfolded by artificial neural networks in recent years.

  18. Measurements of timing resolution of ultra-fast silicon detectors with the SAMPIC waveform digitizer

    Science.gov (United States)

    Breton, D.; De Cacqueray, V.; Delagnes, E.; Grabas, H.; Maalmi, J.; Minafra, N.; Royon, C.; Saimpert, M.

    2016-11-01

    The SAMpler for PICosecond time (SAMPIC) chip has been designed by a collaboration including CEA/IRFU/SEDI, Saclay and CNRS/LAL/SERDI, Orsay. It benefits from both the quick response of a time to digital converter and the versatility of a waveform digitizer to perform accurate timing measurements. Thanks to the sampled signals, smart algorithms making best use of the pulse shape can be used to improve time resolution. A software framework has been developed to analyse the SAMPIC output data and extract timing information by using either a constant fraction discriminator or a fast cross-correlation algorithm. SAMPIC timing capabilities together with the software framework have been tested using pulses generated by a signal generator or by a silicon detector illuminated by a pulsed infrared laser. Under these ideal experimental conditions, the SAMPIC chip has proven to be capable of timing resolutions down to 4 ps with synthesized signals and 40 ps with silicon detector signals.

  19. Measuring the Cosmic Ray Muon-Induced Fast Neutron Spectrum by (n,p) Isotope Production Reactions in Underground Detectors

    CERN Document Server

    Galbiati, C; Galbiati, Cristiano; Beacom, John. F.

    2005-01-01

    While cosmic ray muons themselves are relatively easy to veto in underground detectors, their interactions with nuclei create more insidious backgrounds via: (i) the decays of long-lived isotopes produced by muon-induced spallation reactions inside the detector, (ii) spallation reactions initiated by fast muon-induced neutrons entering from outside the detector, and (iii) nuclear recoils initiated by fast muon-induced neutrons entering from outside the detector. These backgrounds, which are difficult to veto or shield against, are very important for solar, reactor, dark matter, and other underground experiments, especially as increased sensitivity is pursued. We used fluka to calculate the production rates and spectra of all prominent secondaries produced by cosmic ray muons, in particular focusing on secondary neutrons, due to their importance. Since the neutron spectrum is steeply falling, the total neutron production rate is sensitive just to the relatively soft neutrons, and not to the fast-neutron compon...

  20. Fast phase transitions induced by picosecond electrical pulses on phase change memory cells

    Science.gov (United States)

    Wang, W. J.; Shi, L. P.; Zhao, R.; Lim, K. G.; Lee, H. K.; Chong, T. C.; Wu, Y. H.

    2008-07-01

    The reversible and fast phase transitions induced by picosecond electrical pulses are observed in the nanostructured GeSbTe materials, which provide opportunities in the application of high speed nonvolatile random access memory devices. The mechanisms for fast phase transition are discussed based on the investigation of the correlation between phase transition speed and material size. With the shrinkage of material dimensions, the size effects play increasingly important roles in enabling the ultrafast phase transition under electrical activation. The understanding of how the size effects contribute to the phase transition speed is of great importance for ultrafast phenomena and applications.

  1. Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors

    CERN Document Server

    Scott, R H H; Perez, F; Streeter, M J V; Davies, J R; Schlenvoigt, H -P; Santos, J J; Hulin, S; Lancaster, K L; Baton, S D; Rose, S J; Norreys, P A

    2013-01-01

    A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically-intense laser-solid interactions is described. The Monte Carlo techniques used to back-out the fast electron spectrum and laser energy absorbed into fast electrons are detailed. A relativistically-intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data was interpreted using the 3-spatial-dimension Monte Carlo code MCNPX (Pelowitz 2008), and the fast electron temperature found to be 125 keV.

  2. Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors.

    Science.gov (United States)

    Scott, R H H; Clark, E L; Pérez, F; Streeter, M J V; Davies, J R; Schlenvoigt, H-P; Santos, J J; Hulin, S; Lancaster, K L; Baton, S D; Rose, S J; Norreys, P A

    2013-08-01

    A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically intense laser-solid interactions is described. The Monte Carlo techniques used to extract the fast electron spectrum and laser energy absorbed into forward-going fast electrons are detailed. A relativistically intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data were interpreted using the 3-spatial-dimension Monte Carlo code MCNPX [D. Pelowitz, MCNPX User's Manual Version 2.6.0, Los Alamos National Laboratory, 2008], and the fast electron temperature found to be 125 keV.

  3. Considerations about Large Area___Low Cost Fast Imaging Photo-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, John; /Argonne; Attenkofer, Klaus; /Argonne; Delagnes, Eric; /DAPNIA, Saclay; Frisch, Henry; /Chicago U., EFI; Genat, Jean-Francois; /Paris U., VI-VII; Grabas, Herve; /Chicago U., EFI; Heintz, Mary K.; /Chicago U., EFI; May, Edward; /Argonne; Meehan, Samuel; /Argonne; Oberla, Eric; /Argonne; Ruckman, Larry L.; /Hawaii U.; Tang, Fukun; /Chicago U., EFI; Varner, Gary; /Hawaii U.; Vavra, Jaroslav; /SLAC; Wetstein, Matthew; /Argonne

    2012-05-07

    The Large Area Picosecond Photodetectors described in this contribution incorporate a photocathode and a borosilicate glass capillary Micro-Channel Plate (MCP) pair functionalised by atomic layer deposition (ALD) of separate resistive and secondary emission materials. Initial testing with matched pairs of small glass capillary test disks has demonstrated gains of the order of 10{sup 5}-10{sup 6}. Compared to other fast imaging devices, these photodetectors are expected to provide timing resolutions in the 10-100 ps range, and two-dimension position in the sub-millimeter range. If daisy chained, large detectors read at both ends with fast digitising integrated electronics providing zero-suppressed calibrated data should be produced at relatively low cost in large quantities.

  4. Detection of fast neutrons from D-T nuclear reaction using a 4H-SiC radiation detector

    Science.gov (United States)

    Zatko, Bohumir; Sagatova, Andrea; Sedlackova, Katarina; Necas, Vladimir; Dubecky, Frantisek; Solar, Michael; Granja, Carlos

    2016-09-01

    The particle detector based on a high purity epitaxial layer of 4H-SiC exhibits promising properties in detection of various types of ionizing radiation. Due to the wide band gap of 4H-SiC semiconductor material, the detector can reliably operate at room and also elevated temperatures. In this work we focused on detection of fast neutrons generated the by D-T (deuterium-tritium) nuclear reaction. The epitaxial layer with a thickness of 105 μm was used as a detection part. A circular Schottky contact of a Au/Ni double layer was evaporated on both sides of the detector material. The detector structure was characterized by current-voltage and capacitance-voltage measurements, at first. The results show very low current density (SiC detector is caused by the elastic and inelastic scattering on the silicon or carbide component of the detector material. Another possibility that increases the detection efficiency is the use of a conversion layer. In our measurements, we glued a HDPE (high density polyethylene) conversion layer on the detector Schottky contact to transform fast neutrons to protons. Hydrogen atoms contained in the conversion layer have a high probability of interaction with neutrons through elastic scattering. Secondary generated protons flying to the detector can be easily detected. The detection properties of detectors with and without the HDPE conversion layer were compared.

  5. Time expansion chambers of the ALICE Transition Radiation Detector (TRD)

    CERN Multimedia

    2003-01-01

    The TRD is segmented into 18 sectors in the azimuthal angle. Each sector consists of 6 layers in the radial direction and is composed of 5 stacks in the longitudinal direction. This amounts to 540 individual detector modules with a total active area of roughly 750 m2 and 1.2 million readout channels. The largest module is 159 cm long and 120 cm wide.

  6. Surface Micromachined Arrays of Transition-Edge Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative surface micromachining technique is described for the fabrication of closely-packed arrays of transition edge sensor (TES) x-ray microcalorimeters....

  7. Beam test results of a 15 ps timing system based on ultra-fast silicon detectors

    CERN Document Server

    Cartiglia, N; Sola, V; Arcidiacono, R; Cirio, R; Cenna, F; Ferrero, M; Monaco, V; Mulargia, R; Obertino, M; Ravera, F; Sacchi, R; Bellora, A; Durando, S; Mandurrino, M; Minafra, N; Fadeyev, V; Freeman, P; Galloway, Z; Gkougkousis, E; Grabas, H; Gruey, B; Labitan, C A; Losakul, R; McKinney-Martinez, F; Sadrozinski, H F -W; Seiden, A; Spencer, E; Wilder, M; Woods, N; Zatserklyaniy, A; Pellegrini, G; Hidalgo, S; Carulla, M; Flores, D; Merlos, A; Quirion, D; Cindro, V; Kramberger, G; Mandic, I; Mikuz, M; Zavrtanik, M

    2016-01-01

    In this paper we report on the timing resolution of the first production of 50 micro-meter thick Ultra-Fast Silicon Detectors (UFSD) as obtained in a beam test with pions of 180 GeV/c momentum. UFSD are based on the Low-Gain Avalanche Detectors (LGAD) design, employing n-on-p silicon sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction. The UFSD used in this test belongs to the first production of thin (50 {\\mu}m) sensors, with an pad area of 1.4 mm2. The gain was measured to vary between 5 and 70 depending on the bias voltage. The experimental setup included three UFSD and a fast trigger consisting of a quartz bar readout by a SiPM. The timing resolution, determined comparing the time of arrival of the particle in one or more UFSD and the trigger counter, for single UFSD was measured to be 35 ps for a bias voltage of 200 V, and 26 ps for a bias voltage of 240 V, and for the combination of 3 UFSD to be 20 ps for a bias voltage of 200 V, ...

  8. Beam test results of a 16 ps timing system based on ultra-fast silicon detectors

    Science.gov (United States)

    Cartiglia, N.; Staiano, A.; Sola, V.; Arcidiacono, R.; Cirio, R.; Cenna, F.; Ferrero, M.; Monaco, V.; Mulargia, R.; Obertino, M.; Ravera, F.; Sacchi, R.; Bellora, A.; Durando, S.; Mandurrino, M.; Minafra, N.; Fadeyev, V.; Freeman, P.; Galloway, Z.; Gkougkousis, E.; Grabas, H.; Gruey, B.; Labitan, C. A.; Losakul, R.; Luce, Z.; McKinney-Martinez, F.; Sadrozinski, H. F.-W.; Seiden, A.; Spencer, E.; Wilder, M.; Woods, N.; Zatserklyaniy, A.; Pellegrini, G.; Hidalgo, S.; Carulla, M.; Flores, D.; Merlos, A.; Quirion, D.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Zavrtanik, M.

    2017-04-01

    In this paper we report on the timing resolution obtained in a beam test with pions of 180 GeV/c momentum at CERN for the first production of 45 μm thick Ultra-Fast Silicon Detectors (UFSD). UFSD are based on the Low-Gain Avalanche Detector (LGAD) design, employing n-on-p silicon sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction. The UFSD used in this test had a pad area of 1.7 mm2. The gain was measured to vary between 5 and 70 depending on the sensor bias voltage. The experimental setup included three UFSD and a fast trigger consisting of a quartz bar readout by a SiPM. The timing resolution was determined by doing Gaussian fits to the time-of-flight of the particles between one or more UFSD and the trigger counter. For a single UFSD the resolution was measured to be 34 ps for a bias voltage of 200 V, and 27 ps for a bias voltage of 230 V. For the combination of 3 UFSD the timing resolution was 20 ps for a bias voltage of 200 V, and 16 ps for a bias voltage of 230 V.

  9. Commissioning of the IDS Neutron Detector and $\\beta$-decay fast-timing studies at IDS

    CERN Document Server

    Piersa, Monika

    2016-01-01

    The following report describes my scientific activities performed during the Summer Student Programme at ISOLDE. The main part of my project was focused on commissioning the neutron detector dedicated to nuclear decay studies at ISOLDE Decay Station (IDS). I have participated in all the steps needed to make it operational for the IS609 experiment. In the testing phase, we obtained expected detector response and calibrations confirmed its successful commissioning. The detector was mounted in the desired geometry at IDS and used in measurements of the beta-delayed neutron emission of $^8$He. After completing aforementioned part of my project, I became familiar with the fast-timing method. This technique was applied at IDS in the IS610 experiment performed in June 2016 to explore the structure of neutron-rich $^{130-134}$Sn nuclei. Since the main part of my PhD studies will be the analysis of data collected in this experiment, the second part of my project was dedicated to acquiring knowledge about technical de...

  10. Fission signal detection using helium-4 gas fast neutron scintillation detectors

    Science.gov (United States)

    Lewis, J. M.; Kelley, R. P.; Murer, D.; Jordan, K. A.

    2014-07-01

    We demonstrate the unambiguous detection of the fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium fusion neutron generator and a high pressure 4He gas fast neutron scintillation detector. The energy deposition by individual neutrons is quantified, and energy discrimination is used to differentiate the induced fission neutrons from the mono-energetic interrogation neutrons. The detector can discriminate between different incident neutron energies using pulse height discrimination of the slow scintillation component of the elastic scattering interaction between a neutron and the 4He atom. Energy histograms resulting from this data show the buildup of a detected fission neutron signal at higher energies. The detector is shown here to detect a unique fission neutron signal from a natural uranium sample during active interrogation with a (d, d) neutron generator. This signal path has a direct application to the detection of shielded nuclear material in cargo and air containers. It allows for continuous interrogation and detection while greatly minimizing the potential for false alarms.

  11. Optimization of the NSCL Digital Data Acquisition System For Use With Fast Scintillator Detectors

    Science.gov (United States)

    Prokop, Christopher; Liddick, Sean; Larson, Nicole; Suchyta, Scott; Tompkins, Jeromy

    2013-10-01

    The Digital Data Acquisition System (DDAS) at the National Superconducting Cyclotron Laboratory is composed of several XIA Pixie-16 modules utilizing 12-bit digitizers sampling at 100 Mega-Samples-Per-Second. DDAS has been applied to fast organic and inorganic scintillator detectors intended for level lifetime and neutron time-of-flight studies, for which the time resolution is critical. Simultaneous high-resolution time and energy determination using online digital CFD and trapezoidal filtering algorithms is non-intuitive due to the short characteristic rise and decay times of the signals with respect to the sampling time of the digitizers. A new technique has been developed to identify the optimum filter parameters to maximize the time and energy resolution of each detector signal in an offline analysis. The parameters were subsequently verified online and have resulted in a 30% improvement in the measured time resolution between two LaBr3 detectors. Additional results and applications of the technique will be presented.

  12. A transition radiation detector for RHIC featuring accurate tracking and dE/dx particle identification

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H. [Brookhaven National Lab., Upton, NY (United States); Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W. [Columbia Univ., New York, NY (United States); Cherniatin, V.; Dolgoshein, B. [Moscow Institute of Physics and Engineering, (Russian Federation); Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K. [Yale Univ., New Haven, CT (United States)

    1991-12-31

    We describe the results of a test ran involving a Transition Radiation Detector that can both distinguish electrons from pions which momenta greater titan 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most, efficient below 2 GeV/c while particle ID utilizing Transition Radiation effective above 1.5 GeV/c. Combined, the electron-pion separation is-better than 5 {times} 10{sup 2}. The single-wire, track-position resolution for the TRD is {approximately}230 {mu}m.

  13. A transition radiation detector which features accurate tracking and dE/dx particle identification

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H. [Brookhaven National Lab., Upton, NY (United States); Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W. [Columbia Univ., New York, NY (United States); Cherniatin, V.; Dolgoshein, B. [Moscow Inst. of Physics and Engineering, Moscow (Russia Federation); Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K. [Yale Univ., New Haven, CT (United States)

    1991-12-31

    We describe the results of a test run involving a Transition Radiation Detector that can both distinguish electrons from pions with momenta greater than 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most efficient below 2 GeV/c while particle ID utilizing Transition Radiation is effective above 1.5 GeV/c. Combined, the electron-pion separation is better than 5 {times} l0{sup 2}. The single-wire, track-position resolution for the TRD is {approximately}230{mu}m.

  14. A transition radiation detector which features accurate tracking and dE/dx particle identification

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H. (Brookhaven National Lab., Upton, NY (United States)); Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W. (Columbia Univ., New York, NY (United States)); Cherniatin, V.; Dolgoshein, B. (Moscow Inst. of Physics and Engineering (Russian Federation)); Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K. (Yale Univ., New Haven, CT (United States))

    1993-04-01

    The authors describe the results of a test run involving a Transition Radiation Detector that can both distinguish electrons from pions with momenta greater than 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most efficient below 2 GeV/c while particle ID utilizing Transition Radiation is effective above 1.5 GeV/c. Combined, the electron-pion separation is better than 5 x 10[sup 2]. The single-wire, track-position resolution for the TRD is [approximately] [mu]m.

  15. High-energy cosmic-ray electrons - A new measurement using transition-radiation detectors

    Science.gov (United States)

    Hartmann, G.; Mueller, D.; Prince, T.

    1977-01-01

    A new detector for cosmic-ray electrons, consisting of a combination of a transition-radiation detector and a shower detector, has been constructed, calibrated at accelerator beams, and exposed in a balloon flight under 5 g/sq cm of atmosphere. The design of this instrument and the methods of data analysis are described. Preliminary results in the energy range 9-300 GeV are presented. The energy spectrum of electrons is found to be significantly steeper than that of protons, consistent with a long escape lifetime of cosmic rays in the galaxy.

  16. Artificial diamonds as radiation-hard detectors for ultra-fast fission-fragment timing

    Energy Technology Data Exchange (ETDEWEB)

    Oberstedt, S., E-mail: stephan.oberstedt@ec.europa.eu [European Commission, DG Joint Research Centre (IRMM), B-2440 Geel (Belgium); Borcea, R.; Bryś, T.; Gamboni, Th.; Geerts, W.; Hambsch, F.-J. [European Commission, DG Joint Research Centre (IRMM), B-2440 Geel (Belgium); Oberstedt, A. [Fundamental Fysik, Chalmers Tekniska Högskola, S-41296 Göteborg (Sweden); Akademin för Naturvetenskap och Technik, Örebro Universitet, S-70182 Örebro (Sweden); Vidali, M. [European Commission, DG Joint Research Centre (IRMM), B-2440 Geel (Belgium)

    2013-06-21

    In the framework of the construction of the double time-of-flight spectrometer VERDI, where we aim at measuring pre- and post-neutron masses directly and simultaneously, ultra-fast time pick-up detectors based on artificial diamond material were investigated for the first time with fission fragments from {sup 252}Cf (0.5MeV/udetector with a size of 1×1 cm{sup 2} was determined to σ{sub int}=(283±41)ps by comparison with Monte-Carlo simulations. Using broadband pre-amplifiers, 4-fold segmented detectors of same total size and with a thickness of 180μm show an intrinsic timing resolution of σ{sub int}=(106±21)ps. This is highly competitive with the best micro-channel plate detectors. Due to the limited and batch-dependent charge collection efficiency of poly-crystalline diamond material, the detection efficiency for fission fragments may be smaller than 100%. -- Highlights: ► First use of chemical vapor deposited diamond for heavy ions with kinetic energies below 2 MeV per nucleon. ► Fission-fragment time-of-flight measurements with a timing resolution better than 150 ps. ► Radiation-hard fission event trigger to be used in an intense neutron field.

  17. A fast integrated readout system for a cathode pad photon detector

    Science.gov (United States)

    French, M.; Lovell, M.; Chesi, E.; Racz, A.; Seguinot, J.; Ypsilantis, T.; Arnold, R.; Guyonnet, J. L.; Egger, J.; Gabathuler, K.

    1994-04-01

    A fast integrated electronic chain is presented to read out the cathode pad array of a multiwire photon detector for a fast RICH counter. Two VLSI circuits have been designed and produced. An analog eight channel, low noise, fast, bipolar, current preamplifier and discriminator chip serves as front-end electronics. It has an rms equivalent noise current of 10 nA (2000 e -), 50 MHz bandwidth with 10 mW of power consumption per channel. Two analogue chips are coupled to a digital 16 channels CMOS readout chip, operating at 20 MHz, that provides a pipelined delay of 1.3 μs and zero suppression with a power consumption of about 6 mW per channel. Readout of a 4000 pad sector requires 3-4 μs depending on the number of hit pads. The full RICH counter is made up of many of such sectors (the prototype has three fully equipped sectors), read out in parallel [1,2]. The minimum time to separate successive hits on the same pad is about 70 ns. The time skew of the full chain is about 15 ns.

  18. Nuclear Thermal Propulsion (NTP): A Proven, Growth Technology for Fast Transit Human Missions to Mars

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2014-01-01

    The "fast conjunction" long surface stay mission option was selected for NASA's recent Mars Design Reference Architecture (DRA) 5.0 study because it provided adequate time at Mars (approx. 540 days) for the crew to explore the planet's geological diversity while also reducing the "1-way" transit times to and from Mars to approx. 6 months. Short transit times are desirable in order to reduce the debilitating physiological effects on the human body that can result from prolonged exposure to the zero-gravity (0-gE) and radiation environments of space. Recent measurements from the RAD detector attached to the Curiosity rover indicate that astronauts would receive a radiation dose of approx. 0.66 Sv (approx. 66 rem)-the limiting value established by NASA-during their 1-year journey in deep space. Proven nuclear thermal rocket (NTR) technology, with its high thrust and high specific impulse (Isp approx. 900 s), can cut 1-way transit times by as much as 50 percent by increasing the propellant capacity of the Mars transfer vehicle (MTV). No large technology scale-ups in engine size are required for these short transit missions either since the smallest engine tested during the Rover program-the 25 klbf "Pewee" engine is sufficient when used in a clustered arrangement of three to four engines. The "Copernicus" crewed MTV developed for DRA 5.0 is a 0-gE design consisting of three basic components: (1) the NTP stage (NTPS); (2) the crewed payload element; and (3) an integrated "saddle truss" and LH2 propellant drop tank assembly that connects the two elements. With a propellant capacity of approx. 190 t, Copernicus can support 1-way transit times ranging from approx. 150 to 220 days over the 15-year synodic cycle. The paper examines the impact on vehicle design of decreasing transit times for the 2033 mission opportunity. With a fourth "upgraded" SLS/HLV launch, an "in-line" LH2 tank element can be added to Copernicus allowing 1-way transit times of 130 days. To achieve 100

  19. Fast Tracking for the Second Level Trigger of the ATLAS Experiment Using Silicon Detectors Data

    CERN Document Server

    Schiavi, C; Parodi, F; Kostantinidis, N; Sutton, M; Baines, J T M; Emeliyanov, D; Drevermann, H; 2004 IEEE Nuclear Science Symposium And Medical Imaging Conference

    2005-01-01

    Online track reconstruction is an important ingredient for event selection at Large Hadron Collider (LHC) experiments. In the ATLAS experiment the first stage where this goal will be achievable is the software-based Second Level Trigger (LVL2). In this contribution we present an algorithm for fast pattern recognition and reconstruction of charged tracks and of the primary vertex in the framework of the High Level Trigger (HLT) of ATLAS. The pattern recognition makes extensive use of Monte Carlo Look Up Tables to quickly identify, in the innermost layers of the ATLAS silicon detectors, triplets of space points reconstructed from hits produced by the same track. The reconstruction strategy is compared, in the ATLAS LVL2 framework, with an alternative tracking algorithm, showing the complementarity of the two approaches. The algorithm’s performance is presented for different event topologies and luminosities, showing good tracking capabilities and uniform results with mean execution times which are compatible ...

  20. Fast RICH Detector with a Caesium Iodide Photocathode at Atmospheric Pressure

    CERN Document Server

    Di Mauro, A; CERN. Geneva; Ljubicic, A; Paic, G; Piuz, François; Posa, F; Ribeiro, R S; Scognetti, T; Williams, T D

    1994-01-01

    CsI photocathodes of 30 30 cm2 size have been operated in a fast RICH detector composed of a NaF radiator and a multiwire proportional chamber with a cathode-pad readout. Results are presented from tests with a 3 GeV / c proton beam. A Cherenkov angular resolution of 8 mrad is obtained by detecting a mean of 8 photoelectrons per ring. Methods are described for counting the Cherenkov photon and evaluating the differential quantum efficiency of the CsI photocathode. The results obtained with photons impinging at a large angle on the CsI layer are presented and discussed in comparison with higher quantum efficiencies observed under different experimental conditions.

  1. Field Decay and Snapback Measurements using a Fast Hall Plate Detector

    CERN Document Server

    Benedico, E; Haverkamp, M; ten Haken, B; ten Kate, H H J; Sanfilippo, S

    2002-01-01

    In superconducting particle accelerators significant changes occur in tune and chromaticity during the injection of particles and their subsequent acceleration. This behavior is caused by the decay of magnetic field components in the superconducting accelerator magnets during injection and their so-called "snapback" to the original hysteresis curve during the first few seconds after the start of the energy ramp. The two effects are closely related to a spatially periodic modulation of all field components along the magnet axis. In order to avoid a loss of particles the sextupole component in the dipoles has to be compensated with a very high accuracy. Standard magnetic measurements using rotating coils do not have the time resolution required to completely resolve the snapback. For this reason we have developed a fast system for sextupole measurements consisting of three Hall plates mounted on a ring. A new calibration procedure for the first time allows quantitative results. The detector is used to measure d...

  2. Probing supernova shock waves and neutrino flavor transitions in next-generation water-Cherenkov detectors

    CERN Document Server

    Fogli, G L; Mirizzi, A; Montanino, D

    2004-01-01

    Several current projects aim at building a large water-Cherenkov detector, with a fiducial volume about 20 times larger than in the current Super-Kamiokande experiment. These projects include the Underground nucleon decay and Neutrino Observatory (UNO) in the Henderson Mine (Colorado), the Hyper-Kamiokande (HK) detector in the Tochibora Mine (Japan), and the MEgaton class PHYSics (MEMPHYS) detector in the Frejus site (Europe). We study the physics potential of a reference next-generation detector (0.4 Mton of fiducial mass) in providing information on supernova neutrino flavor transitions with unprecedented statistics. After discussing the ingredients of our calculations, we compute neutrino event rates from inverse beta decay ($\\bar\

  3. A laser diode based system for calibration of fast time-of-flight detectors

    CERN Document Server

    Bonesini, M; deBari, A; Rossella, M

    2016-01-01

    A system based on commercially available items, such as a laser diode, emitting in the visible range $\\sim 400$ nm,and multimode fiber patches, fused fiber splitters and optical switches may be assembled,for time calibration of multi-channels time-of-flight (TOF) detectors with photomultipliers' (PMTs') readout. As available laser diode sources have unfortunately limited peak power, the main experimental problem is the tight light power budget of such a system. In addition, while the technology for fused fiber splitters is common in the Telecom wavelength range ($\\lambda \\sim 850, 1300-1500$ nm), it is not easily available in the visible one. Therefore, extensive laboratory tests had to be done on purpose, to qualify the used optical components, and a full scale timing calibration prototype was built. Obtained results show that with such a system, a calibration resolution ($\\sigma$) in the range 20-30 ps may be within reach. Therefore, fast multi-channels TOF detectors, with timing resolutions in the range 50...

  4. Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors.

    Science.gov (United States)

    Lombi, E; de Jonge, M D; Donner, E; Ryan, C G; Paterson, D

    2011-06-01

    Environmental samples are extremely diverse but share a tendency for heterogeneity and complexity. This heterogeneity poses methodological challenges when investigating biogeochemical processes. In recent years, the development of analytical tools capable of probing element distribution and speciation at the microscale have allowed this challenge to be addressed. Of these available tools, laterally resolved synchrotron techniques such as X-ray fluorescence mapping are key methods for the in situ investigation of micronutrients and inorganic contaminants in environmental samples. This article demonstrates how recent advances in X-ray fluorescence detector technology are bringing new possibilities to environmental research. Fast detectors are helping to circumvent major issues such as X-ray beam damage of hydrated samples, as dwell times during scanning are reduced. They are also helping to reduce temporal beamtime requirements, making particularly time-consuming techniques such as micro X-ray fluorescence (μXRF) tomography increasingly feasible. This article focuses on μXRF mapping of nutrients and metalloids in environmental samples, and suggests that the current divide between mapping and speciation techniques will be increasingly blurred by the development of combined approaches.

  5. Fast IR Array Detector for Transverse Beam Diagnostics at DA{\\Phi}NE

    CERN Document Server

    Bocci, A; Clozza, A; Drago, A; Grilli, A; Marcelli, A; Raco, A; Sorchetti, R; Gambicorti, L; De Sio, A; Pace, E; Piotrowski, J

    2010-01-01

    At the Laboratori Nazionali di Frascati of the National Institute of Nuclear Physics (INFN) an infrared (IR) array detector with fast response time has been built and assembled in order to collect the IR image of e-/e+ sources of the DA{\\Phi}NE collider. Such detector is made by 32 bilinear pixels with an individual size of 50x50 {\\mu}m2 and a response time of ~1 ns. In the framework of an experiment funded by the INFN Vth Committee dedicated to beam diagnostics, the device with its electronic board has been tested and installed on the DA{\\Phi}NE positron ring. A preliminary characterization of few pixels of the array and of the electronics has been carried out at the IR beamline SINBAD at DA{\\Phi}NE. In particular the detection of the IR source of the e- beam has been observed using four pixels of the array acquiring signals simultaneously with a four channels scope at 1 GHz and at 10 Gsamples/s. The acquisition of four pixels allowed monitoring in real time differences in the bunch signals in the vertical d...

  6. Operation of a fast diamond γ-ray detector at the HIγS facility

    Energy Technology Data Exchange (ETDEWEB)

    Williams, T.; N' Diaye, C.; Breton, D.; Cassou, K.; Dupraz, K.; Favier, P.; Jehanno, D.; Kubytskyi, V.; Liu, X.; Maalmi, J.; Martens, A.; Peinaud, Y.; Stocchi, A.; Zomer, F. [LAL, Univ Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay (France); Griesmayer, E.; Kavrigin, P. [Vienna University of Technology (Austria); Ahmed, M.W. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Physics Department, Duke University, Durham, NC 27708 (United States); Department of Mathematics and Physics, North Carolina Central University, Durham, NC 27707 (United States); Sikora, M.; Weller, H.R. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Physics Department, Duke University, Durham, NC 27708 (United States)

    2016-09-11

    Operations of a diamond sensor placed in a high average-intensity beam of photons with energies of a few MeV are reported. Data was taken at the HIγS facility of TUNL in parasitic mode while nuclear-physics experiments were taking place. The energies of the photons during data taking were 2, 3 and 7 MeV with circular and linear polarisations of the photon beam. The collected charge appears to be constant at these energies, which is consistent with simulations. A dedicated run with bunches of photons separated by 16 ns shows that they are unambiguously distinguished. This is possible thanks to a FWHM of the pulses measured to be about 6 ns. The results indicate that the tested apparatus fulfils the requirements for a fast monitoring detector for the ELI-NP source currently under construction, which motivates this work, and demonstrates for the first time the capabilities of such detectors in high average-intensity photon beams.

  7. A laser diode based system for calibration of fast time-of-flight detectors

    Science.gov (United States)

    Bertoni, R.; Bonesini, M.; de Bari, A.; Rossella, M.

    2016-05-01

    A system based on commercially available items, such as a laser diode, emitting in the visible range ~ 400 nm, and multimode fiber patches, fused fiber splitters and optical switches may be assembled, for time calibration of multi-channels time-of-flight (TOF) detectors with photomultipliers' (PMTs') readout. As available laser diode sources have unfortunately limited peak power, the main experimental problem is the tight light power budget of such a system. In addition, while the technology for fused fiber splitters is common in the Telecom wavelength range (λ ~ 850, 1300-1500 nm), it is not easily available in the visible one. Therefore, extensive laboratory tests had to be done on purpose, to qualify the used optical components, and a full scale timing calibration prototype was built. Obtained results show that with such a system, a calibration resolution (σ) in the range 20-30 ps may be within reach. Therefore, fast multi-channels TOF detectors, with timing resolutions in the range 50-100 ps, may be easily calibrated in time. Results on tested optical components may be of interest also for time calibration of different light detection systems based on PMTs, as the ones used for detection of the vacuum ultraviolet scintillation light emitted by ionizing particles in large LAr TPCs.

  8. LHCb siliicon detectors: the Run 1 to Run 2 transition and first experience of Run 2

    CERN Document Server

    Rinnert, Kurt

    2015-01-01

    LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the Large Hadron Collider (LHC) at CERN. The detector includes a high precision tracking system consisting of a silicon-strip vertex detector (VELO) surrounding the pp interaction region, a large- area silicon-strip detector located upstream of a dipole magnet (TT), and three stations of silicon- strip detectors (IT) and straw drift tubes placed downstream (OT). The operational transition of the silicon detectors VELO, TT and IT from LHC Run 1 to Run 2 and first Run 2 experiences will be presented. During the long shutdown of the LHC the silicon detectors have been maintained in a safe state and operated regularly to validate changes in the control infrastructure, new operational procedures, updates to the alarm systems and monitoring software. In addition, there have been some infrastructure related challenges due to maintenance performed in the vicinity of the silicon detectors that will be discussed. The LHCb silicon dete...

  9. Charge exchange fast neutral measurement with natural diamond detectors in neon plasma on LHD

    Science.gov (United States)

    Saida, T.; Sasao, M.; Isobe, M.; Krasilnikov, A. V.

    2003-03-01

    Charge exchange (CX) fast neutral spectra produced by ion cyclotron resonance frequency hydrogen minority heating in neon and helium majority plasmas sustained by neutral beam injection were measured with perpendicular Natural Diamond Detectors during the fifth campaign in 2002 on large helical devices (LHDs). It was observed that there were differences between fast neutral spectra shapes in neon plasma and those in helium of the same discharge condition with similar plasma parameters. Dominant CX processes in neon and helium plasmas were studied for ionization components from outside of the last closed flux surface. High-energy proton spectra were obtained by taking account of each charge state distribution and responsible charge exchange cross sections. The high-energy proton tail formations in both plasmas were similar for the same heating regime. The relaxation time tendencies of the effective temperatures of a high-energy proton have also shown no differences, indicating that the acceleration and confinement of energetic ions in LHDs are similar in neon and helium plasmas.

  10. Fast neutron tomography with real-time pulse-shape discrimination in organic scintillation detectors

    Science.gov (United States)

    Joyce, Malcolm J.; Agar, Stewart; Aspinall, Michael D.; Beaumont, Jonathan S.; Colley, Edmund; Colling, Miriam; Dykes, Joseph; Kardasopoulos, Phoevos; Mitton, Katie

    2016-10-01

    A fast neutron tomography system based on the use of real-time pulse-shape discrimination in 7 organic liquid scintillation detectors is described. The system has been tested with a californium-252 source of dose rate 163 μSv/h at 1 m and neutron emission rate of 1.5×107 per second into 4π and a maximum acquisition time of 2 h, to characterize two 100×100×100 mm3 concrete samples. The first of these was a solid sample and the second has a vertical, cylindrical void. The experimental data, supported by simulations with both Monte Carlo methods and MATLAB®, indicate that the presence of the internal cylindrical void, corners and inhomogeneities in the samples can be discerned. The potential for fast neutron assay of this type with the capability to probe hydrogenous features in large low-Z samples is discussed. Neutron tomography of bulk porous samples is achieved that combines effective penetration not possible with thermal neutrons in the absence of beam hardening.

  11. Characterization of scintillator materials for fast-ion loss detectors in nuclear fusion reactors

    Science.gov (United States)

    Jiménez-Ramos, M. C.; García López, J.; García-Muñoz, M.; Rodríguez-Ramos, M.; Carmona Gázquez, M.; Zurro, B.

    2014-08-01

    In fusion plasma reactors, fast ion generated by heating systems and fusion born particles must be well confined. The presence of magnetohydrodynamic (MHD) instabilities can lead to a significant loss of these ions, which may reduce drastically the heating efficiency and may cause damage to plasma facing components in the vacuum vessel. In order to understand the physics underlying the fast ion loss mechanism, scintillator based detectors have been installed in several fusion devices. In this work we present the absolute photon yield and its degradation with ion fluence in terms of the number of photons emitted per incident ion of several scintillators thin coatings: SrGa2S4:Eu2+ (TG-Green), Y3Al5O12:Ce3+ (P46) and Y2O3:Eu3+ (P56) when irradiated with light ions of different masses (deuterium ions, protons and α-particles) at energies between approximately 575 keV and 3 MeV. The photon yield will be discussed in terms of the energy deposited by the particles into the scintillator. For that, the actual composition and thickness of the thin layers were determined by Rutherford Backscattering Spectrometry (RBS). A collimator with 1 mm of diameter, which defines the beam size for the experiments, placed at the entrance of the chamber. An electrically isolated sample holder biased to +300 V to collect the secondary electrons, connected to a digital current integrator (model 439 by Ortec) to measure the incident beam current. A home made device has been used to store the real-time evolution of the beam current in a computer file allowing the correction of the IL yields due to the current fluctuations. The target holder is a rectangle of 150 × 112 mm2 and can be tilted. The X and Y movements are controlled through stepping motors, which permits a fine control of the beam spot positioning as well as the study of several samples without venting the chamber. A silica optical fiber of 1 mm diameter fixed to the vacuum chamber, which collects the light from the scintillators

  12. Silicon Drift Detector Readout and ON-LINE Data Reduction using a Fast VLSI Dedicated Fuzzy Proccessor

    CERN Document Server

    Petta, C; CERN. Geneva; Randazzo, N; Russo, M

    1995-01-01

    A Silicon Drift Detector Front-End and a Smart Readout System different from a trivial zero-suppression is proposed. ON-LINE pre-processing, using a Fast VSLI dedicated Fuzzy Processor, reduces significantly acquisition data volume and hardware requirements..

  13. A novel liquid-Xenon detector concept for combined fast-neutrons and gamma imaging and spectroscopy

    Science.gov (United States)

    Breskin, A.; Israelashvili, I.; Cortesi, M.; Arazi, L.; Shchemelinin, S.; Chechik, R.; Dangendorf, V.; Bromberger, B.; Vartsky, D.

    2012-06-01

    A new detector concept is presented for combined imaging and spectroscopy of fast-neutrons and gamma rays. It comprises a liquid-Xenon (LXe) converter and scintillator coupled to a UV-sensitive gaseous imaging photomultiplier (GPM). Radiation imaging is obtained by localization of the scintillation-light from LXe with the position-sensitive GPM. The latter comprises a cascade of Thick Gas Electron Multipliers (THGEM), where the first element is coated with a CsI UV-photocathode. We present the concept and provide first model-simulation results of the processes involved and the expected performances of a detector having a LXe-filled capillaries converter. The new detector concept has potential applications in combined fast-neutron and gamma-ray screening of hidden explosives and fissile materials with pulsed sources.

  14. Fast-gated single-photon detection module with 200 ps transitions running up to 50 MHz with 30 ps resolution

    Science.gov (United States)

    Boso, G.; Dalla Mora, A.; Tosi, A.; Della Frera, A.; Zappa, F.

    2012-01-01

    We present a compact instrument able to quickly time-gate a silicon Single-Photon Avalanche Diode (SPAD) to be used in advanced gated Time-Correlated Single-Photon Counting (TCSPC) setups, like time-resolved optical spectroscopy, optical mammography, optical molecular imaging. The detection module can be used to boost the photon counting dynamic range, thanks to the fast transitions between the OFF and the ON state of the detector. The module embeds into a single box (11 cm x 15 cm x 24 cm) all components needed to operate a SPAD detector in fast time-gated mode and to output a standard NIM timing signal. The module includes: i) an ultra-fast pulse generator, based on MMIC components, to enable and disable the detector in less than 200 ps for very short and well-defined time slots, ranging from less than 1 ns up to 10 ns with 10 ps steps, at a repetition rate up to 50 MHz; ii) the silicon SPAD itself together with optical assembly to focus photons from an optical fiber onto the active area; iii) a passive quenching/active reset electronics, needed for optimal detector operation; iv) a low time-jitter comparator, to detect avalanche ignitions with less than 30 ps (FWHM) jitter and to generate a standard NIM output; v) a service board containing power supply, microcontroller, and USB link, to remotely set and control all instrument parameters.

  15. 手持式快速心电检测仪设计%The Design of Handheld Fast ECG Detector

    Institute of Scientific and Technical Information of China (English)

    石波; 张根选; 曹阳

    2013-01-01

    A new handheld fast ECG detector based on low gain amplifier, the high resolution analog to digital converter, the real-time digital filter, fast P-QRS-T wave detection and ion algorithm was designed. The results showed that the ECG detector can meet the requirements of fast detecting heart rate and ECG P-QRS-T waveforms.%  采用低倍数放大、高分辨率模数转换、实时数字滤波以及快速P-QRS-T波形识别和提取算法等技术,设计了一种手持式快速心电检测仪。结果表明,该心电检测仪能够满足心率和心电图P-QRS-T波形快速检测的要求。

  16. DALI2: A NaI(Tl) detector array for measurements of $\\gamma$ rays from fast nuclei

    CERN Document Server

    Takeuchi, S; Togano, Y; Matsushita, M; Aoi, N; Demichi, K; Hasegawa, H; Murakami, H

    2014-01-01

    A NaI(Tl) detector array called DALI2 (Detector Array for Low Intensity radiation 2) has been constructed for in-beam $\\gamma$-ray spectroscopy experiments with fast radioactive isotope (RI) beams. It consists typically of 186 NaI(Tl) scintillators covering polar angles from $\\sim$15$^{\\circ}$ to $\\sim$160$^{\\circ}$ with an average angular resolution of 6$^{\\circ}$ in full width at half maximum. Its high granularity (good angular resolution) enables Doppler-shift corrections that result in, for example, 10% energy resolution and 20% full-energy photopeak efficiency for 1-MeV $\\gamma$ rays emitted from fast-moving nuclei (velocities of $v/c \\simeq 0.6$). DALI2 has been employed successfully in numerous experiments using fast RI beams with velocities of $v/c = 0.3 - 0.6$ provided by the RIKEN RI Beam Factory.

  17. A mathematical framework for critical transitions: bifurcations, fast-slow systems and stochastic dynamics

    CERN Document Server

    Kuehn, Christian

    2011-01-01

    Bifurcations can cause dynamical systems with slowly varying parameters to transition to far-away attractors. The terms "critical transition" or "tipping point" have been used to describe this situation. Critical transitions have been observed in an astonishingly diverse set of applications from ecosystems and climate change to medicine and finance. The goal of this paper is to bring together a variety of techniques from dynamical systems theory to analyze critical transitions. In particular, we shall focus on identifying indicators for catastrophic shifts in the dynamics. Starting from classical bifurcation theory and incorporating multiple time scale dynamics we are able to give a detailed analysis of local bifurcations that induce critical transitions. We characterize several early warning signs for a transition such as slowing down and bifurcation delay. Then we take into account stochastic effects and proceed to model critical transitions by fast-slow stochastic differential equations. The interplay betw...

  18. A transition radiation detector interleaved with low-density targets for the NOE experiment

    CERN Document Server

    Alexandrov, K V; Bernardini, P; Brigida, M; Campana, D; Candela, A M; Caruso, R; Cassese, F; Ceres, A; D'Aquino, B; De Cataldo, G; De Mitri, I; Di Credico, A; Favuzzi, C; Fusco, P; Gargano, F; Giglietto, N; Giordano, F; Grillo, A; Guarino, F; Gustavino, C; Lamanna, E; Lauro, A; Leone, A; Loparco, F; Mancarella, G; Martello, D; Mazziotta, M N; Mikheyev, S P; Mongelli, M; Osteria, G; Palladino, Vittorio; Passeggio, G; Perchiazzi, M; Pontoniere, G; Rainó, A; Rocco, R; Romanucci, E; Rubizzo, U; Sacchetti, A; Scapparone, E; Spinelli, P; Tikhomirov, V; Vaccina, A; Vanzanella, E; Weber, M

    2001-01-01

    The NOE Collaboration has proposed a transition radiation detector (TRD) interleaved with marble targets to tag the electron decay channel of tau leptons produced by nu /sub tau /, eventually originated by nu /sub mu / oscillations in a long base line experiment. A reduced scale TRD detector prototype has been built and exposed to an electron/pion beam at the CERN PS. Discrimination capabilities between electrons and both charged and neutral pions, representing the main source of background for our measurement, have been determined obtaining rejection factors of the order of the tenth of percent for charged pions, and of a few percent for the neutral pion, matching the experiment requirements. The capabilities of this detector to measure the energy released by particles that start showering inside the targets are shown. A momentum resolution sigma /sub p//P

  19. Measurement of the energy spectrum of underground muons at Gran Sasso with a transition radiation detector

    CERN Document Server

    Ambrosio, M

    1993-01-01

    We have measured directly the residual energy of cosmic ray muons crossing the MACRO detector at the Gran Sasso Laboratory. For this measurement we have used a transition radiation detector consisting of three identical modules, each of about 12 m^2 area, operating in the energy region from 100 GeV to 1 TeV. The results presented here were obtained with the first module collecting data for more than two years. The average single muon energy is found to be 320 +/- 4 (stat.) +/- 11 (syst.) GeV in the rock depth range 3000-6500 hg/cm^2. The results are in agreement with calculations of the energy loss of muons in the rock above the detector.

  20. Performance of the transition radiation detector of the PAMELA space mission

    CERN Document Server

    Ambriola, M

    2002-01-01

    The performance of the transition radiation detector (TRD) of the PAMELA telescope has been studied using beam test data and simulation tools. PAMELA is a satellite-borne magnetic spectrometer designed to measure particles and antiparticles spectra in cosmic rays. The particle identification at high energy will be achieved by combining the measurements by the TRD and a Si-W imaging calorimeter. The TRD is composed of 9 planes of straw tubes, interleaved with carbon fiber radiators. A prototype of the detector has been exposed to particle beams of electrons, pions and muons of various momenta at the CERN-PS and SPS accelerator facilities. In addition a dedicated Monte Carlo code has been developed to simulate the detector. Here we illustrate both simulation results and experimental data analysis procedures and we will discuss the estimated TRD performance. (15 refs).

  1. Mosaic diamond detectors for fast neutrons and large ionizing radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Girolami, Marco; Calvani, Paolo; Trucchi, Daniele M. [Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Rome (Italy); Bellucci, Alessandro [Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Rome (Italy); Dipartimento di Fisica, Universita degli Studi di Roma ' ' La Sapienza' ' , Rome (Italy); Cazzaniga, Carlo; Rebai, Marica; Rigamonti, Davide [Dipartimento di Fisica, Universita degli Studi di Milano-Bicocca, Milano (Italy); Istituto di Fisica dei Plasmi (IFP), Consiglio Nazionale delle Ricerche (CNR), Milano (Italy); Tardocchi, Marco [Istituto di Fisica dei Plasmi (IFP), Consiglio Nazionale delle Ricerche (CNR), Milano (Italy); Pillon, Mario [ENEA, Centro Ricerche di Frascati, Rome (Italy)

    2015-11-15

    First neutron and X-ray beam tests on a novel 12-pixel single-crystal diamond mosaic detector are presented and discussed. Preliminary characterization of single-pixel electronic properties, performed with α particles, results in charge carrier mobilities >2000 cm{sup 2} Vs{sup -1} and saturation velocities of the order of 10{sup 7} cm s{sup -1}. Signal stability over time, measured with a {sup 241}Am source (37 kBq activity), is longer than 5 h. Tests under an intense X-ray beam (1 Gy h{sup -1} dose-rate) show a very good response uniformity (down to about 1% of relative standard deviation from mean value), suggesting a high level of pixel reproducibility at intermediate bias voltages (ranging from 20 to 100 V). Response uniformity reduces at voltages >200 V, due presumably to radiation-assisted detrapping effects. Preliminary results of 12-pixel simultaneous acquisitions of X-ray beam profiles and pulse height spectra under a fast neutron beam (14 MeV) are also presented. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. A fast and precise chemiluminescence ozone detector for eddy flux and airborne application

    Directory of Open Access Journals (Sweden)

    A. Zahn

    2012-02-01

    Full Text Available A commercially available dry chemiluminescence (CI instrument for fast and precise measurement of ozone (O3 is specified. The sensitivity is ~9000 counts s−1 per ppbv of ozone. Its precision is entirely determined by the number of photons reaching the detector (being a photomultiplier, i.e. is quantum-noise limited. The relative precision (ΔO3/O3 in % thus follows Poisson statistics and scales with the square root of the measurement frequency f and with the inverse O3 mixing ratio: ΔO3/O3f0.5 · O3−0.5. At typical O3 mixing ratios between 10 and 100 ppbv (and 1 bar, the precision is 0.3–1.0% at f = 10 Hz. The maximum measurement frequency is 50 Hz. The mechanical and electronic set-up as well as the instrument performance is described. Recommendations on the adequate inlet tube configuration (inlet tube length, sampling flow and on the way of calibration at stationary ground-based platforms and onboard aircraft are given.

  3. Fast separation of triterpenoids by supercritical fluid chromatography/evaporative light scattering detector.

    Science.gov (United States)

    Lesellier, E; Destandau, E; Grigoras, C; Fougère, L; Elfakir, C

    2012-12-14

    The screening of plant material, the chemical composition, the abundance and the biological activity of triterpenoids are of a major economical importance. The classical analytical methods, such as TLC, GC, and HPLC are either little resolutive, or require derivatization steps, or fail in sensitivity. The supercritical fluid chromatography/evaporative light scattering detector (SFC/ELSD) coupling provides high resolution, fast analysis and higher responses for the analysis of triterpenoids. After the initial screening of seven stationary phases to select the well suited one, analytical conditions (modifier percentage, from 10 to 3%; backpressure (from 12 to 18 MPa) and temperature (from 15 to 25 °C) were studied to improve the separation, and ELSD detection of a standard mixture composed of 8 triterpenoids (oleanolic acid, erythrodiol, β-amyrin, ursolic acid, uvaol, betulinic acid, betulin, lupeol). Applied to apple pomace extracts, this method allows the separation of about 15 triterpenoid compounds, in less than 20 min, with isocratic conditions. Moreover, the ELSD response is dramatically higher than the one provided by UV detection, and avoids derivatization steps. An attempt to identify some compounds was done by collecting chromatographic peaks and further analyzing them with mass spectrometry. Complete identification or molecular formula could be proposed for 11 compounds. However, due to the presence of position and orientation isomers the absolute identification remains difficult, despite some retention rules deduced from the standard analysis.

  4. Monte Carlo Comparisons to a Cryogenic Dark Matter Search Detector with low Transition-Edge-Sensor Transition Temperature

    CERN Document Server

    Leman, S W; Brink, P L; Cabrera, B; Cherry, M; Silva, E Do Couto E; Figueroa-Feliciano, E; Kim, P; Mirabolfathi, N; Pyle, M; Resch, R; Sadoulet, B; Serfass, B; Sundqvist, K M; Tomada, A; Young, B A

    2011-01-01

    We present results on phonon quasidiffusion and Transition Edge Sensor (TES) studies in a large, 3 inch diameter, 1 inch thick [100] high purity germanium crystal, cooled to 50 mK in the vacuum of a dilution refrigerator, and exposed with 59.5 keV gamma-rays from an Am-241 calibration source. We compare calibration data with results from a Monte Carlo which includes phonon quasidiffusion and the generation of phonons created by charge carriers as they are drifted across the detector by ionization readout channels. The phonon energy is then parsed into TES based phonon readout channels and input into a TES simulator.

  5. A mathematical framework for critical transitions: Bifurcations, fast-slow systems and stochastic dynamics

    Science.gov (United States)

    Kuehn, Christian

    2011-06-01

    Bifurcations can cause dynamical systems with slowly varying parameters to transition to far-away attractors. The terms “critical transition” or “tipping point” have been used to describe this situation. Critical transitions have been observed in an astonishingly diverse set of applications from ecosystems and climate change to medicine and finance. The main goal of this paper is to give an overview which standard mathematical theories can be applied to critical transitions. We shall focus on early-warning signs that have been suggested to predict critical transitions and point out what mathematical theory can provide in this context. Starting from classical bifurcation theory and incorporating multiple time scale dynamics one can give a detailed analysis of local bifurcations that induce critical transitions. We suggest that the mathematical theory of fast-slow systems provides a natural definition of critical transitions. Since noise often plays a crucial role near critical transitions the next step is to consider stochastic fast-slow systems. The interplay between sample path techniques, partial differential equations and random dynamical systems is highlighted. Each viewpoint provides potential early-warning signs for critical transitions. Since increasing variance has been suggested as an early-warning sign we examine it in the context of normal forms analytically, numerically and geometrically; we also consider autocorrelation numerically. Hence we demonstrate the applicability of early-warning signs for generic models. We end with suggestions for future directions of the theory.

  6. Used fuel storage monitoring using novel 4He scintillation fast neutron detectors and neutron energy discrimination analysis

    Science.gov (United States)

    Kelley, Ryan P.

    With an increasing quantity of spent nuclear fuel being stored at power plants across the United States, the demand exists for a new method of cask monitoring. Certifying these casks for transportation and long-term storage is a unique dilemma: their sealed nature lends added security, but at the cost of requiring non-invasive measurement techniques to verify their contents. This research will design and develop a new method of passively scanning spent fuel casks using 4He scintillation detectors to make this process more accurate. 4He detectors are a relatively new technological development whose full capabilities have not yet been exploited. These detectors take advantage of the high 4He cross section for elastic scattering at fast neutron energies, particularly the resonance around 1 MeV. If one of these elastic scattering interactions occurs within the detector, the 4He nucleus takes energy from the incident neutron, then de-excites by scintillation. Photomultiplier Tubes (PMTs) at either end of the detector tube convert this emitted light into an electrical signal. The goal of this research is to use the neutron spectroscopy features of 4He scintillation detectors to maintain accountability of spent fuel in storage. This project will support spent fuel safeguards and the detection of fissile material, in order to minimize the risk of nuclear proliferation and terrorism.

  7. Note: Measurements of fast electrons in the TORE-SUPRA tokamak by means of modified Cherenkov-type diamond detector

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L.; Sadowski, M. J.; Zebrowski, J.; Rabinski, M.; Jakubowski, M. J.; Malinowski, K.; Mirowski, R. [National Centre for Nuclear Research (NCBJ), 7 Andrzeja Soltana Str., 05-400 Otwock (Poland); Lotte, Ph.; Goniche, M.; Gunn, J.; Colledani, G.; Pascal, J.-Y.; Basiuk, V. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France)

    2013-01-15

    The Note reports on experimental studies of ripple born fast electrons within the TORE-SUPRA facility, which were performed by means of a modified measuring head equipped with diamond detectors designed especially for recording the electron-induced Cherenkov radiation. There are presented signals produced by fast electrons in the TORE-SUPRA machine, which were recorded during two experimental campaigns performed in 2010. Shapes of these electron-induced signals are considerably different from those observed during the first measurements carried out by the prototype Cherenkov probe in 2008. An explanation of the observed differences is given.

  8. Quantum phase transitions in an effective Hamiltonian: fast and slow systems

    Energy Technology Data Exchange (ETDEWEB)

    Sainz, I [School of Information and Communication Technology, Royal Institute of Technology (KTH), Electrum 229, SE-164 40 Kista (Sweden); Klimov, A B [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44420 Guadalajara, Jalisco (Mexico); Roa, L [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)], E-mail: klimov@cencar.udg.mx

    2008-09-05

    An effective Hamiltonian describing interaction between generic fast and slow systems is obtained in the strong interaction limit. The result is applied for studying the effect of quantum phase transition as a bifurcation of the ground state of the slow subsystem. Examples such as atom-field and atom-atom interactions are analyzed in detail.

  9. Test of Ultra Fast Silicon Detectors for picosecond time measurements with a new multipurpose read-out board

    Science.gov (United States)

    Minafra, N.; Al Ghoul, H.; Arcidiacono, R.; Cartiglia, N.; Forthomme, L.; Mulargia, R.; Obertino, M.; Royon, C.

    2017-09-01

    Ultra Fast Silicon Detectors (UFSD) are sensors optimized for timing measurements employing a thin multiplication layer to increase the output signal. A multipurpose read-out board hosting a low-cost, low-power fast amplifier was designed at the University of Kansas and tested at the European Organization for Nuclear Research (CERN) using a 180 GeV pion beam. The amplifier has been designed to read out a wide range of detectors and it was optimized in this test for the UFSD output signal. In this paper we report the results of the experimental tests using 50 μm thick UFSD with a sensitive area of 1 . 4mm2. A timing precision below 30 ps was achieved.

  10. Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications

    CERN Document Server

    Cortesi, M; Adams, R; Dangendorf, V; Prasser, H -M

    2012-01-01

    The conceptual design and operational principle of a novel high-efficiency, fast neutron imaging detector based on THGEM, intended for future fan-beam transmission tomography applications, is described. We report on a feasibility study based on theoretical modeling and computer simulations of a possible detector configuration prototype. In particular we discuss results regarding the optimization of detector geometry, estimation of its general performance, and expected imaging quality: it has been estimated that detection efficiency of around 5-8% can be achieved for 2.5MeV neutrons; spatial resolution is around one millimeter with no substantial degradation due to scattering effects. The foreseen applications of the imaging system are neutron tomography in non-destructive testing for the nuclear energy industry, including examination of spent nuclear fuel bundles, detection of explosives or drugs, as well as investigation of thermal hydraulics phenomena (e.g., two-phase flow, heat transfer, phase change, cool...

  11. Development of a New Fast Shower Maximum Detector Based on Microchannel Plates Photomultipliers (MCP-PMT) as an Active Element

    Energy Technology Data Exchange (ETDEWEB)

    Ronzhin, A. [Fermilab; Los, S. [Fermilab; Ramberg, E. [Fermilab; Spiropulu, M. [Caltech; Apresyan, A. [Caltech; Xie, S. [Caltech; Kim, H. [Chicago U.; Zatserklyaniy, A. [UC, Santa Cruz

    2014-09-21

    One possibility to make a fast and radiation resistant shower maximum (SM) detector is to use a secondary emitter as an active element. We present below test beam results, obtained with different types of photodetectors based on microchannel plates (MCPs) as the secondary emitter. We performed the measurements at the Fermilab Test Beam Facility with 120GeV proton beam and 12GeV and 32GeV secondary beams. The goal of the measurement with 120GeV protons was to determine time resolution for minimum ionizing particles (MIPs). The SM time resolution we obtained for this new type of detector is at the level of 20-30ps. We estimate that a significant contribution to the detector response originates from secondary emission of the MCP. This work can be considered as the first step in building a new type of calorimeter based on this principle.

  12. Development of a New Fast Shower Maximum Detector Based on Microchannel Plates Photomultipliers (MCP-PMT) as an Active Element

    Energy Technology Data Exchange (ETDEWEB)

    Ronzhin, A. [Fermilab; Los, S. [Fermilab; Ramberg, E. [Fermilab; Spiropulu, M. [Caltech; Apresyan, A. [Caltech; Xie, S. [Caltech; Kim, H. [Chicago U.; Zatserklyaniy, A. [UC, Santa Cruz

    2014-09-21

    One possibility to make a fast and radiation resistant shower maximum (SM) detector is to use a secondary emitter as an active element. We present below test beam results, obtained with different types of photodetectors based on microchannel plates (MCPs) as the secondary emitter. We performed the measurements at the Fermilab Test Beam Facility with 120GeV proton beam and 12GeV and 32GeV secondary beams. The goal of the measurement with 120GeV protons was to determine time resolution for minimum ionizing particles (MIPs). The SM time resolution we obtained for this new type of detector is at the level of 20-30ps. We estimate that a significant contribution to the detector response originates from secondary emission of the MCP. This work can be considered as the first step in building a new type of calorimeter based on this principle.

  13. Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications

    Science.gov (United States)

    Cortesi, M.; Zboray, R.; Adams, R.; Dangendorf, V.; Prasser, H.-M.

    2012-02-01

    The conceptual design and operational principle of a novel high-efficiency, fast neutron imaging detector based on THGEM, intended for future fan-beam transmission tomography applications, is described. We report on a feasibility study based on theoretical modeling and computer simulations of a possible detector configuration prototype. In particular we discuss results regarding the optimization of detector geometry, estimation of its general performance, and expected imaging quality: it has been estimated that detection efficiency of around 5-8% can be achieved for 2.5 MeV neutrons; spatial resolution is around one millimeter with no substantial degradation due to scattering effects. The foreseen applications of the imaging system are neutron tomography in non-destructive testing for the nuclear energy industry, including examination of spent nuclear fuel bundles, detection of explosives or drugs, as well as investigation of thermal hydraulics phenomena (e.g., two-phase flow, heat transfer, phase change, coolant dynamics, and liquid metal flow).

  14. Absolute Calibration of Proportional Counter Based Fast Pulsed Neutron Detectors with Resolution Below 105 neutron/pulse

    Science.gov (United States)

    Tarifeño-Saldivia, A.; Mayer, R. E.; Pavez, C.; Soto, L.

    2014-05-01

    A method for absolute calibration of proportional counters for pulsed fast neutrons is presented. The method is based on the use of an isotopic standard source and development of a model for counting detected events from area of a signal compounded by single piled up neutron pulses. Effects of detection counting statistics and electrical background noise are also considered. The method is applied in detectors used for D-D neutron yield measurements in low emission plasma focus devices.

  15. Analysis of the scintillation mechanism in a pressurized 4He fast neutron detector using pulse shape fitting

    OpenAIRE

    R.P. Kelley; Murer, D.; Ray, H.; K.A. Jordan

    2015-01-01

    An empirical investigation of the scintillation mechanism in a pressurized 4He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a 252Cf spontaneous fission source and a (d,d) neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactiv...

  16. Fast analytical methods for the correction of signal random time-shifts and application to segmented HPGe detectors

    CERN Document Server

    Désesquelles, P; Korichi, A; Blanc, F Le; Olariu, A; Petrache, C M; 10.1016/j.nimb.2008.11.042

    2009-01-01

    Detection systems rely more and more on on-line or off-line comparison of detected signals with basis signals in order to determine the characteristics of the impinging particles. Unfortunately, these comparisons are very sensitive to the random time shifts that may alter the signal delivered by the detectors. We present two fast algebraic methods to determine the value of the time shift and to enhance the reliability of the comparison to the basis signals.

  17. ATLAS Transition Radiation Tracker (TRT): Straw Tube Gaseous Detectors at High Rates

    CERN Document Server

    Vogel, A; The ATLAS collaboration

    2013-01-01

    The ATLAS Transition Radiation Tracker (TRT) is the outermost of the three tracking subsystems of the ATLAS Inner Detector. The ATLAS detector is located at LHC/CERN. We report on how these gaseous detectors (“straw tubes”) are performing during the ATLAS 2011 and 2012 runs where the TRT experiences higher rates than previously encountered. The TRT contains ~300000 thin-walled proportional-mode drift tubes providing on average 30 two-dimensional space points with ~130 µm resolution for charged particle tracks with |η| 0.5 GeV. Along with continuous tracking, the TRT provides electron identification capability through the detection of transition radiation X-ray photons. During the ATLAS 2012 proton-proton data runs, the TRT is operating successfully while being subjected to the highest rates of incident particles ever experienced by a large scale gaseous tracking system. In the second half of 2012, the TRT has collected data in an environment with instantaneous proton-proton luminosity of ~0.8 × 10³�...

  18. ATLAS Transition Radiation Tracker (TRT): Straw Tube Gaseous Detectors at High Rates

    CERN Document Server

    Vogel, A; The ATLAS collaboration

    2013-01-01

    The ATLAS Transition Radiation Tracker (TRT) is the outermost of the three tracking subsystems of the ATLAS Inner Detector. The ATLAS detector is located at LHC/CERN. We report on how these gaseous detectors (“straw tubes”) are performing during the ATLAS 2011 and 2012 runs where the TRT experiences higher rates than previously encountered. The TRT contains ~300000 thin-walled proportional-mode drift tubes providing on average 30 two-dimensional space points with ~130 µm resolution for charged particle tracks with |η|  0.5 GeV. Along with continuous tracking, the TRT provides electron identification capability through the detection of transition radiation X-ray photons. During the ATLAS 2012 proton-proton data runs, the TRT is operating successfully while being subjected to the highest rates of incident particles ever experienced by a large scale gaseous tracking system. As of the submission date of this abstract, the TRT has collected data in an environment with instantaneous proton-proton luminosi...

  19. A new transition radiation detector to detect heavy nuclei around the knee

    Science.gov (United States)

    Boyle, Patrick J.; Swordy, Simon P.; Wakely, Scott P.

    2003-02-01

    The overall cosmic ray intensity spectrum falls as a constant power law over at least 11 decades of particle energy. One of the only features in this spectrum is the slight change in power law index near 1015 eV, often called the ‘knee" of the spectrum. Accurate measurements of cosmic ray elemental abundances into this energy region are expected to reveal the origin of this feature, and possibly the nature of cosmic ray sources. The extremely low intensity of particles at these energies (a few per m2 per year) makes the detection challenging. Since only direct measurements have so far proved reliable for the accurate determination of elemental composition, a large-area, light weight, device is needed to achieve long exposures above the atmosphere either on high-altitude balloons or spacecraft. Here we report on a detector which uses the x-ray transition radiation yield from plastic foams to provide a response into the knee region for heavy elements. We use individual xenon-filled gas proportional tubes as detectors, combined with Amplex ASIC chip electronics for readout. The construction of this type of detector, and its implementation in the upcoming NASA CREAM 100 day high-altitude balloon payload is described. Also discussed is the calibration of the detector in an accelerator beam at CERN and a comparison with GEANT4 Monet Carlo simulations.

  20. Recent Developments in Transition-Edge Strip Detectors for Solar X-Rays

    Science.gov (United States)

    Rausch, Adam J.; Deiker, Steven W.; Hilton, Gene; Irwin, Kent D.; Martinez-Galarce, Dennis S.; Shing, Lawrence; Stern, Robert A.; Ullom, Joel N.; Vale, Leila R.

    2008-01-01

    LMSAL and NIST are developing position-sensitive x-ray strip detectors based on Transition Edge Sensor (TES) microcalorimeters optimized for solar physics. By combining high spectral (E/ delta E approximately equals 1600) and temporal (single photon delta t approximately equals 10 micro s) resolutions with imaging capabilities, these devices will be able to study high-temperature (>l0 MK) x-ray lines as never before. Diagnostics from these lines should provide significant new insight into the physics of both microflares and the early stages of flares. Previously, the large size of traditional TESs, along with the heat loads associated with wiring large arrays, presented obstacles to using these cryogenic detectors for solar missions. Implementing strip detector technology at small scales, however, addresses both issues: here, a line of substantially smaller effective pixels requires only two TESs, decreasing both the total array size and the wiring requirements for the same spatial resolution. Early results show energy resolutions of delta E(sub fwhm) approximately equals 30 eV and spatial resolutions of approximately 10-15 micron, suggesting the strip-detector concept is viable.

  1. Energy cross-calibration from the first CREAM flight: transition radiation detector versus calorimeter

    CERN Document Server

    Maestro, P; Allison, P S; Bagliesi, M G; Beatty, J J; Bigongiari, G; Boyle, P J; Brandt, T J; Childers, J T; Conklin, N B; Coutu, S; Duvernois, M A; Ganel, O; Han, J H; Hyun, H J; Jeon, J A; Kim, K C; Lee, J K; Lee, M H; Lutz, L; Marrocchesi, P S; Malinine, A; Minnick, S; Mognet, S I; Nam, S; Nutter, S; Park, H; Park, I H; Park, N H; Seo, E S; Sina, R; Swordy, S; Wakely, S P; Wu, J; Yang, J; Yoon, Y S; Zei, R; Zinn, S Y

    2010-01-01

    The Cosmic Ray Energetics And Mass (CREAM) balloon experiment had two successful flights in 2004/05 and 2005/06. It was designed to perform energy measurements from a few GeV up to 1000 TeV, taking advantage of different detection techniques. The first instrument, CREAM-1, combined a transition radiation detector with a calorimeter to provide independent energy measurements of cosmicraynuclei. Each detector was calibrated with particle beams in a limited range of energies. In order to assess the absolute energy scale of the instrument and to investigate the systematic effects of each technique, a cross-calibration was performed by comparing the two independent energy estimates on selected samples of oxygen and carbon nuclei.

  2. Local Signal Processing of the ALICE Transition Radiation Detector at LHC (CERN)

    CERN Document Server

    Gutfleisch, Marcus

    2006-01-01

    The transition radiation detector of the heavy ion experiment ALICE at LHC (CERN) integrates parts of the data acquisition and trigger system. Therefore, a multi chip module has been developped which incorporates two microchips. Detector signals are preamplified and shaped (Preamplifier and Shaper Chip, PASA). Thereafter they are converted from analog to digital and are processed (Tracklet Processing Chip, TRAP). This thesis describes the digital signal processing of the TRAP chip. The input signals are filtered digitally. Then, they are analyzed by a preprocessor and four CPUs with respect to segments of tracks. The thesis covers the complete development from hardware design of filter and preprocessor, their calibration, programming of the CPUs, up to first application studies on a prototype system.

  3. Faraday-cup-type lost fast ion detector on Heliotron J

    Science.gov (United States)

    Yamamoto, S.; Ogawa, K.; Isobe, M.; Darrow, D. S.; Kobayashi, S.; Nagasaki, K.; Okada, H.; Minami, T.; Kado, S.; Ohshima, S.; Weir, G. M.; Nakamura, Y.; Konoshima, S.; Kemmochi, N.; Ohtani, Y.; Mizuuchi, T.

    2016-11-01

    A Faraday-cup type lost-fast ion probe (FLIP) has been designed and installed in Heliotron J for the purpose of the studies of interaction between fast ions and MHD instabilities. The FLIP can measure the co-going fast ions whose energy is in the range of 1.7-42.5 keV (proton) and pitch angle of 90∘-140∘, especially for fast ions having the injection energy of neutral beam injection (NBI). The FLIP successfully measured the re-entering passing ions and trapped lost-fast ions caused by fast-ion-driven energetic particle modes in NBI heated plasmas.

  4. Faraday-cup-type lost fast ion detector on Heliotron J.

    Science.gov (United States)

    Yamamoto, S; Ogawa, K; Isobe, M; Darrow, D S; Kobayashi, S; Nagasaki, K; Okada, H; Minami, T; Kado, S; Ohshima, S; Weir, G M; Nakamura, Y; Konoshima, S; Kemmochi, N; Ohtani, Y; Mizuuchi, T

    2016-11-01

    A Faraday-cup type lost-fast ion probe (FLIP) has been designed and installed in Heliotron J for the purpose of the studies of interaction between fast ions and MHD instabilities. The FLIP can measure the co-going fast ions whose energy is in the range of 1.7-42.5 keV (proton) and pitch angle of 90(∘)-140(∘), especially for fast ions having the injection energy of neutral beam injection (NBI). The FLIP successfully measured the re-entering passing ions and trapped lost-fast ions caused by fast-ion-driven energetic particle modes in NBI heated plasmas.

  5. Fast-channel LSO detectors and fiber-optic encoding for excellent dual photon transmission measurements in PET

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.F.; Moyers, J.C.; Casey, M.E.; Watson, C.C.; Nutt, R. [CTI PET Systems, Inc., Knoxville, TN (United States)

    1999-08-01

    Improved attenuation correction remains critical to PET. Currently with dual photon rotating rod sources, benefits of windowing are limited by counting losses of detectors nearest the rods, the near detectors. With single photon sources, improved statistics are offset by a greater need for collimation and more complex emission background correction. Now, a dual photon point source array with fast-channel, near detectors improves on these earlier techniques -- here, adding transmission measurement to dual-head rotating PET. Arrays of collimated point sources are aligned axially and orbit the FOV. With each source is a dedicated near detector (LSO crystal). Crystals couple to photomultipliers (PMTs). As the crystals are not ``block`` encoded, pulse-processing time is reduced (to 120 ns). Reduced processing time lowers dead time and permits hotter sources. For improved axial sampling, larger arrays (21 sources/head) may be configured. To reduce costs, crystals couple fiber-optically into unique PMT pairs -- decreasing the total number of near-detector PMTs by 71%.

  6. Particle tracking at 4 K: The Fast Annihilation Cryogenic Tracking (FACT) detector for the AEgIS antimatter gravity experiment

    Energy Technology Data Exchange (ETDEWEB)

    Storey, J., E-mail: james.storey@cern.ch [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of Bern, 3012 Bern (Switzerland); Canali, C. [University of Zurich, Physics Institute, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Aghion, S. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Milano, Via Celoria 16, 20133 Milano (Italy); Ahlén, O. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Amsler, C.; Ariga, A.; Ariga, T. [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of Bern, 3012 Bern (Switzerland); Belov, A.S. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312 (Russian Federation); Bonomi, G. [University of Brescia, Department of Mechanical and Industrial Engineering, Via Branze 38, 25133 Brescia (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Pavia, Via Agostino Bassi 6, 27100 Pavia (Italy); Bräunig, P. [University of Heidelberg, Kirchhoff Institute for Physics, Im Neuenheimer Feld 227, 69120 Heidelberg (Germany); Bremer, J. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Brusa, R.S. [Dipartimento di Fisica, Università di Trento and INFN, Gruppo Collegato di Trento, Via Sommarive 14, 38050 Povo, Trento (Italy); Burghart, G. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Cabaret, L. [Laboratoire Aimé Cotton, CNRS, Université Paris Sud, ENS Cachan, Bâtiment 505, Campus d' Orsay, 91405 Orsay Cedex (France); Carante, M. [Istituto Nazionale di Fisica Nucleare, Sez. di Pavia, Via Agostino Bassi 6, 27100 Pavia (Italy); Caravita, R. [University of Milano, Department of Physics, Via Celoria 16, 20133 Milano (Italy); and others

    2013-12-21

    The AEgIS experiment is an international collaboration with the main goal of performing the first direct measurement of the Earth's gravitational acceleration on antimatter. Critical to the success of AEgIS is the production of cold antihydrogen (H{sup ¯}) atoms. The FACT detector is used to measure the production and temperature of the H{sup ¯} atoms and for establishing the formation of a H{sup ¯} beam. The operating requirements for this detector are very challenging: it must be able to identify each of the thousand or so annihilations in the 1 ms period of pulsed H{sup ¯} production, operate at 4 K inside a 1 T solenoidal field and not produce more than 10 W of heat. The FACT detector consists of two concentric cylindrical layers of 400 scintillator fibres with a 1 mm diameter and a 0.6 mm pitch. The scintillating fibres are coupled to clear fibres which transport the scintillation light to 800 silicon photomultipliers. Each silicon photomultiplier signal is connected to a linear amplifier and a fast discriminator, the outputs of which are sampled continuously by Field Programmable Gate Arrays (FPGAs). In the course of the developments for the FACT detector we have established the performance of scintillating fibres at 4 K by means of a cosmic-ray tracker operating in a liquid helium cryostat. The FACT detector was installed in the AEgIS apparatus in December 2012 and will be used to study the H{sup ¯} formation when the low energy antiproton physics programs resume at CERN in the Summer of 2014. This paper presents the design requirements and construction methods of the FACT detector and provides the first results of the detector commissioning.

  7. Fast Fourier transform spectrometer readout for large arrays of microwave kinetic inductance detectors

    NARCIS (Netherlands)

    Yates, S. J. C.; Baryshev, A. M.; Baselmans, J. J. A.; Klein, B.; Guesten, R.

    2009-01-01

    Microwave kinetic inductance detectors have great potential for large, very sensitive detector arrays for use in, for example, submillimeter imaging. Being intrinsically readout in the frequency domain, they are particularly suited for frequency domain multiplexing allowing similar to 1000 s of devi

  8. HEROICA: an Underground Facility for the Fast Screening of Germanium Detectors

    CERN Document Server

    Andreotti, E; Maneschg, W; Barros, N; Benato, G; Brugnera, R; Costa, F; Falkenstein, R; Guthikonda, K K; Hegai, A; Hemmer, S; Hult, M; Jaenner, K; Kihm, T; Lehnert, B; Liao, H; Lubashevskiy, A; Lutter, G; Marissens, G; Modenese, L; Pandola, L; Reissfelder, M; Sada, C; Salathe, M; Schmitt, C; Schulz, O; Schwingenheuer, B; Turcato, M; Ur, C; von Sturm, K; Wagner, V; Westermann, J

    2013-01-01

    An infrastructure to characterize germanium detectors has been designed and constructed at the HADES Underground Research Laboratory, located in Mol (Belgium). Thanks to the 223m overburden of clay and sand, the muon flux is lowered by four orders of magnitude. This natural shield minimizes the exposure of radio-pure germanium material to cosmic radiation resulting in a significant suppression of cosmogenic activation in the germanium detectors. The project has been strongly motivated by a special production of germanium detectors for the GERDA experiment. GERDA, currently collecting data at the Laboratori Nazionali del Gran Sasso of INFN, is searching for the neutrinoless double beta decay of 76Ge. In the near future, GERDA will increase its mass and sensitivity by adding new Broad Energy Germanium (BEGe) detectors. The production of the BEGe detectors is done at Canberra in Olen (Belgium), located about 30km from the underground test site. Therefore, HADES is used both for storage of the crystals over night...

  9. Fast parallax-free, one-coordinate X-ray detector OD120 with the registration angle up to 360 deg.

    CERN Document Server

    Aulchenko, V M; Drozdetsky, A A; Dubrovin, M S; Sharafutdinov, M R; Titov, V M; Tolochko, B P; Vasilev, A V; Velikzhanin, Yu S

    2001-01-01

    The project of the fast parallax-free, one-coordinate X-ray detector OD120 with the registration angle up to 360 deg. is presented. The operation principles and simulation results are discussed. The calculated angular resolution of the detector is 0.3x10 sup - sup 3 rad for the focal distance of 350 mm.

  10. Development of SiPM-based scintillator tile detectors for a multi-layer fast neutron tracker

    Directory of Open Access Journals (Sweden)

    Jakubek J.

    2012-10-01

    Full Text Available We are developing thin tile scintillator detectors with silicon photomultiplier (SiPM readout for use in a multi-layer fast-neutron tracker. The tracker is based on interleaved Timepix and plastic scintillator layers. The thin 15 × 15 × 2 mm plastic scintillators require suitable optical readout in order to detect and measure the energy lost by energetic protons that have been recoiled by fast neutrons. Our first prototype used dual SiPMs, coupled to opposite edges of the scintillator tile using light-guides. An alternative readout geometry was designed in an effort to increase the fraction of scintillation light detected by the SiPMs. The new prototype uses a larger SiPM array to cover the entire top face of the tile. This paper details the comparative performance of the two prototype designs. A deuterium-tritium (DT fast-neutron source was used to compare the relative light collection efficiency of the two designs. A collimated UV light source was scanned across the detector face to map the uniformity. The new prototype was found to have 9.5 times better light collection efficiency over the original design. Both prototypes exhibit spatial non-uniformity in their response. Methods of correcting this non-uniformity are discussed.

  11. Fast Readout for Large Area Photon-Counting Infrared Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Many NASA space and Earth programs in the infrared range 1060-1550 nm are limited by the detector performance that require long exposure time due to their low...

  12. CHANTI: a Fast and Efficient Charged Particle Veto Detector for the NA62 Experiment at CERN

    CERN Document Server

    INSPIRE-00293636; Capussela, T.; Di Filippo, D.; Massarotti, P.; Mirra, M.; Napolitano, M.; Palladino, V.; Saracino, G.; Roscilli, L.; Vanzanella, A.; Corradi, G.; Tagnani, D.; Paglia, U.

    2016-03-29

    The design, construction and test of a charged particle detector made of scintillation counters read by Silicon Photomultipliers (SiPM) is described. The detector, which operates in vacuum and is used as a veto counter in the NA62 experiment at CERN, has a single channel time resolution of 1.14 ns, a spatial resolution of ~2.5 mm and an efficiency very close to 1 for penetrating charged particles.

  13. The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function

    Energy Technology Data Exchange (ETDEWEB)

    Hep, J.; Konecna, A.; Krysl, V.; Smutny, V. [Calculation Dept., Skoda JS plc, Orlik 266, 31606 Plzen (Czech Republic)

    2011-07-01

    This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV

  14. Fast Watermarking of MPEG-1/2 Streams Using Compressed-Domain Perceptual Embedding and a Generalized Correlator Detector

    Directory of Open Access Journals (Sweden)

    Briassouli Alexia

    2004-01-01

    Full Text Available A novel technique is proposed for watermarking of MPEG-1 and MPEG-2 compressed video streams. The proposed scheme is applied directly in the domain of MPEG-1 system streams and MPEG-2 program streams (multiplexed streams. Perceptual models are used during the embedding process in order to avoid degradation of the video quality. The watermark is detected without the use of the original video sequence. A modified correlation-based detector is introduced that applies nonlinear preprocessing before correlation. Experimental evaluation demonstrates that the proposed scheme is able to withstand several common attacks. The resulting watermarking system is very fast and therefore suitable for copyright protection of compressed video.

  15. Fast transition to chaos in a ring of unidirectionally coupled oscillators

    CERN Document Server

    Yanchuk, S; Wolfrum, M; Stefanski, A; Kapitaniak, T

    2010-01-01

    In this paper we study the destabilization mechanism in a ring of unidirectionally coupled oscillators. We derive an amplitude equation of Ginzburg-Landau type that describes the destabilization of the stationary state for systems with a large number of oscillators. Based on this amplitude equation, we are able to provide an explanation for the fast transition to chaos (or hyperchaos) that can be observed in such systems. We show that the parameter interval, where the transition from a stable periodic state to chaos occurs, scales like the inverse square of the number of oscillators in the ring. In particular, for a sufficiently large number of oscillators a practically immediate transition to chaos can be observed. The results are illustrated by a numerical study of a system of unidirectionally coupled Duffing oscillators.

  16. A fast method to diagnose phase transition from amorphous to microcrystalline silicon

    Institute of Scientific and Technical Information of China (English)

    HOU; GuoFu

    2007-01-01

    A series of hydrogenated silicon thin films were prepared by the radio frequency plasma enhanced chemical vapor deposition method (RF-PECVD) with various silane concentrations. The influence of silane concentration on structural and electrical characteristics of these films was investigated to study the phase transition region from amorphous to microcrystalline phase. At the same time, optical emission spectra (OES) from the plasma during the deposition process were monitored to get information about the plasma properties, Raman spectra were measured to study the structural characteristics of the deposited films. The combinatorial analysis of OES and Raman spectra results demonstrated that the OES can be used as a fast method to diagnose phase transition from amorphous to microcrystalline silicon. At last the physical mechanism, why both OES and Raman can be used to diagnose the phase transition, was analyzed theoretically.……

  17. Study the ethanol SI/HCCI combustion mode transition by using the fast thermal management system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper the ethanol homogeneous charge compression ignition (HCCI) is achieved in a modified single cylinder engine by means of a self-developed fast thermal management system (FTMS), and the ethanol SI/HCCI operation regions are defined. It can be concluded that the thermal efficiency is higher and the NOx emission is lower in the HCCI operation region. In addition, the maximum NOx emission drops by 98%. The ethanol SI/HCCI combustion mode transition is conducted in different conditions near the SI/HCCI operation boundaries. It is likely to realize the transition by the utilization of FTMS. However, it is impossible to complete the transition within one operating cycle under current operation conditions. There are fluctuations in engine speed and brake mean effective pressure during the transition process. In order to reduce the fluctuations during the transition, the initial work concerning the effects of the spark ignition on the transition smoothness is carried out and the investigation indicates that the engine speed and brake mean effective pressure fluctuations cannot be eradicated only through spark ignition. Therefore, the control strategies combined with other factors should be further optimized.

  18. A fast preamplifier concept for SiPM-based time-of-flight PET detectors

    NARCIS (Netherlands)

    Huizenga, J.; Seifert, S.; Schreuder, F.; Dendooven, P.; Löhner, H.; Vinke, R.; Schaart, D. R.; van Dam, H.T.

    2012-01-01

    Silicon photomultipliers (SiPMs) offer high gain and fast response to light, making them interesting for fast timing applications such as time-of-flight (TOF) PET. To fully exploit the potential of these photosensors, dedicated preamplifiers that do not deteriorate the rise time and signal-to-noise

  19. MCNPX simulations of the silicon carbide semiconductor detector response to fast neutrons from D-T nuclear reaction

    Science.gov (United States)

    Sedlačková, Katarína; Šagátová, Andrea; Zat'ko, Bohumír; Nečas, Vladimír; Solar, Michael; Granja, Carlos

    2016-09-01

    Silicon Carbide (SiC) has been long recognized as a suitable semiconductor material for use in nuclear radiation detectors of high-energy charged particles, gamma rays, X-rays and neutrons. The nuclear interactions occurring in the semiconductor are complex and can be quantified using a Monte Carlo-based computer code. In this work, the MCNPX (Monte Carlo N-Particle eXtended) code was employed to support detector design and analysis. MCNPX is widely used to simulate interaction of radiation with matter and supports the transport of 34 particle types including heavy ions in broad energy ranges. The code also supports complex 3D geometries and both nuclear data tables and physics models. In our model, monoenergetic neutrons from D-T nuclear reaction were assumed as a source of fast neutrons. Their energy varied between 16 and 18.2 MeV, according to the accelerating voltage of the deuterons participating in D-T reaction. First, the simulations were used to calculate the optimum thickness of the reactive film composed of High Density PolyEthylene (HDPE), which converts neutral particles to charged particles and thusly enhancing detection efficiency. The dependency of the optimal thickness of the HDPE layer on the energy of the incident neutrons has been shown for the inspected energy range. Further, from the energy deposited by secondary charged particles and recoiled ions, the detector response was modeled and the effect of the conversion layer on detector response was demonstrated. The results from the simulations were compared with experimental data obtained for a detector covered by a 600 and 1300 μm thick conversion layer. Some limitations of the simulations using MCNPX code are also discussed.

  20. Timing and position response of a block detector for fast neutron time-of-flight imaging

    Science.gov (United States)

    Laubach, M. A.; Hayward, J. P.; Zhang, X.; Cates, J. W.

    2014-11-01

    Our research effort seeks to improve the spatial and timing performance of a block detector made of a pixilated plastic scintillator (EJ-200), first demonstrated as part of Oak Ridge National Laboratory's Advanced Portable Neutron Imaging System. Improvement of the position and time response is necessary to achieve better resolution and contrast in the images of shielded special nuclear material. Time-of-flight is used to differentiate between gamma and different sources of neutrons (e.g., transmission and fission neutrons). Factors limiting the timing and position performance of the neutron detector have been revealed through simulations and measurements. Simulations have suggested that the degradation in the ability to resolve pixels in the neutron detector is due to those interactions occurring near the light guide. The energy deposition within the neutron detector is shown to affect position performance and imaging efficiency. This examination details how energy cuts improve the position performance and degrade the imaging efficiency. Measurements have shown the neutron detector to have a timing resolution of σ=238 ps. The majority of this timing uncertainty is from the depth-of-interaction (DOI) of the neutron which is confirmed by simulations and analytical calculations.

  1. SiC detectors for radiation sources characterization and fast plasma diagnostic

    Science.gov (United States)

    Cannavò, A.; Torrisi, L.

    2016-09-01

    Semiconductor detectors based on SiC have been investigated to characterize the radiations (photons and particles) emitted from different sources, such as radioactive sources, electron guns, X-ray tubes and laser-generated plasmas. Detectors show high response velocity, low leakage current, high energy gap and high radiation hardness. Their high detection efficiency permits to use the detectors in spectroscopic mode and in time-of-flight (TOF) approach, generally employed to monitor low and high radiation fluxes, respectively. Using the laser start signal, they permit to study the properties of the generated plasma in vacuum by measuring accurately the particle velocity and energy using pulsed lasers at low and high intensities. Possible applications will be reported and discussed.

  2. Development of a fast plastic scintillation detector with time resolution of less than 10 ps

    CERN Document Server

    Zhao, J W; Tanihata, I; Terashima, S; Zhu, L H; Enomoto, A; Nagae, D; Nishimura, T; Omika, S; Ozawa, A; Takeuchi, Y; Yamaguchi, T

    2016-01-01

    Timing-pick up detectors with excellent timing resolutions are essential in many modern nuclear physics experiments. Aiming to develop a Time-Of-Flight system with precision down to about 10 ps, we have made a systematic study of the timing characteristic of TOF detectors, which consist of several combinations of plastic scintillators and photomultiplier tubes. With the conventional electronics, the best timing resolution of about 5.1 ps ({\\sigma}) has been achieved for detectors with an area size of 3x1 cm2. It is found that for data digitalization a combination of TAC and ADC can achieve a better time resolution than currently available TDC. Simultaneously measurements of both time and pulse height are very valuable for correction of time-walk effect.

  3. Upgrades for the Precision Proton Spectrometer at the LHC: Fast Timing and Tracking Detectors

    CERN Document Server

    Gallinaro, Michele

    2016-01-01

    The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) is an approved project to add tracking and timing information at approximately $\\pm$210~m from the interaction point around the CMS detector. It is designed to operate at high luminosity with up to 50 interactions per 25~ns bunch crossing to perform measurements of e.g. the quartic gauge couplings and search for rare exclusive processes. During 2016, CT-PPS took data in normal high-luminosity proton-proton LHC collisions. In the coming years, high radiation doses and large multiple-vertex interactions will represent difficult challenges that resemble those of the high-luminosity LHC program. A coordinated effort of detector upgrades with the goal of reaching the physics goals while mitigating the degradation effects is under way. Upgrades to the tracking and timing detectors are discussed.

  4. Development of the microstrip silicon detector for imaging of fast processes at a synchrotron radiation beam

    Science.gov (United States)

    Aulchenko, V.; Pruuel, E.; Shekhtman, L.; Ten, K.; Tolochko, B.; Zhulanov, V.

    2017-02-01

    In situ imaging of explosions allows to study material properties under very high pressures and temperatures. Synchrotron radiation (SR) is a powerful tool for such studies because of its unique time structure. Flashes of X-rays from individual bunches in a storage ring are so short that an object under study does not move more than 1-10 μm during exposure. If a detector is able to store images synchronously with bunches of an SR source the time resolution of such method will be determined by the duration of SR flash from individual bunch. New beam line at the VEPP-4M storage ring will allow to get X-Ray flux from each bunch close to 106 photons/channel where channel area is 0.05×0.5 mm2 and average beam energy is about 30 keV. Bunches in the machine can be grouped into trains with 20 ns time gap. In order to meet these requirements a new detector development was started based on Si microstrip technology. The detector with a new dedicated front-end chip will be able to record images with maximum signal equivalent to 106 photons/channel, with signal to noise ratio of ∼103, spatial resolution of 50 μm and maximum frame rate of 50 MHz. The detector has to drive very high peak and average currents without affecting the front-end chip, therefore a specific design of Si sensor should be developed. The front-end chip has to provide signal measurements with the dynamic range of about 104 or more and recording of the signal to an analogue memory with the rate of 50 MHz. The concept of such detector is discussed in the paper. The results of the simulations of the main detector parameters and the results of the first measurements with the prototype sensors are presented.

  5. Ultra-Fast Image Sensor Using Ge on Insulator MIS/Schottky Detectors

    Science.gov (United States)

    2008-05-28

    14 m, respectively. These transitions result from the intraband transition of -doping well Fig. 7. The blueshift of the cutoff wavelength of the...m, respectively. The blueshift of the -QD sample may be due to the many body effect. The intraband transition in -doping quantum wells contributes...tively. The blueshift of the cutoff wavelength of the -SiGe01 sample is probably due to the additional quantum confinement of Si0.9Ge0.1 QW outside

  6. Performance Study of an aSi Flat Panel Detector for Fast Neutron Imaging of Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, M.; Mauerhofer, E. [Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Engels, R.; Kemmerling, G. [Central Institute for Engineering, Electronics and Analytics - Electronic Systems, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Frank, M. [MATHCCES - Department of Mathematics, RWTH Aachen University, 52062 Aachen (Germany); Havenith, A.; Kettler, J.; Klapdor-Kleingrothaus, T. [Institute of Nuclear Engineering and Technology Transfer, RWTH Aachen University, 52062 Aachen (Germany); Schitthelm, O. [Corporate Technology, Siemens AG, 91058 Erlangen (Germany)

    2015-07-01

    Radioactive waste must be characterized to check its conformance for intermediate storage and final disposal according to national regulations. For the determination of radio-toxic and chemo-toxic contents of radioactive waste packages non-destructive analytical techniques are preferentially used. Fast neutron imaging is a promising technique to assay large and dense items providing, in complementarity to photon imaging, additional information on the presence of structures in radioactive waste packages. Therefore the feasibility of a compact Neutron Imaging System for Radioactive waste Analysis (NISRA) using 14 MeV neutrons is studied in a cooperation framework of Forschungszentrum Juelich GmbH, RWTH Aachen University and Siemens AG. However due to the low neutron emission of neutron generators in comparison to research reactors the challenging task resides in the development of an imaging detector with a high efficiency, a low sensitivity to gamma radiation and a resolution sufficient for the purpose. The setup is composed of a commercial D-T neutron generator (Genie16GT, Sodern) with a surrounding shielding made of polyethylene, which acts as a collimator and an amorphous silicon flat panel detector (aSi, 40 x 40 cm{sup 2}, XRD-1642, Perkin Elmer). Neutron detection is achieved using a general propose plastic scintillator (EJ-260, Eljen Technology) linked to the detector. The thermal noise of the photodiodes is reduced by employing an entrance window made of aluminium. Optimal gain and integration time for data acquisition are set by measuring the response of the detector to the radiation of a 500 MBq {sup 241}Am-source. Detector performance was studied by recording neutron radiography images of materials with various, but well known, chemical compositions, densities and dimensions (Al, C, Fe, Pb, W, concrete, polyethylene, 5 x 8 x 10 cm{sup 3}). To simulate gamma-ray emitting waste radiographs in presence of a gamma-ray sources ({sup 60}Co, {sup 137}Cs, {sup 241

  7. Development of a transition radiation detector and reconstruction of photon conversions in the CBM experiment

    Energy Technology Data Exchange (ETDEWEB)

    Klein-Boesing, Melanie

    2009-07-01

    The focus of this thesis is the development of a Transition Radiation Detector (TRD) for the Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. In addition, the usage of the TRD in the measurement of direct photons is investigated. CBM will be a fixed-target heavy-ion experiment, which investigates collisions in the beam energy range of 5-35 AGeV and aims to investigate the regime of high baryon densities where the phase transition is expected to be of first order. It will be a multipurpose experiment with the ability to measure leptons, hadrons, and photons. Therein, a TRD will provide the electron identification and - together with a Silicon Tracking System (STS) - the tracking of charged particles. In conjunction with a ring imaging Cherenkov (RICH) detector and a time-of-flight (TOF) measurement, the TRD is to provide a sufficient electron identification for the measurements of charmonium and low-mass vector mesons. For the TRD, the required pion suppression is a factor of about 100 at 90% electron efficiency, and the position resolution has to be of the order of 300 to 500 um. Moreover, the material budget in terms of radiation length has to be kept at a minimum in order to minimize multiple scattering and conversions which would limit the precise measurement in following TRD stations and other detectors. The largest and up to now unrivaled challenge for the TRD design is that both (PID and tracking) have to be fulfilled in the context of very high particle rates (event rates of up to 10MHz are envisaged) and at the same time large charged-particle multiplicities of up to 600 per event in the CBM detector acceptance. Small prototypes of the TRD based on multiwire proportional chambers (MWPC) with pad readout were developed and tested. The tracking performance and the electron-pion separation were determined for particle rates of up to 200 kHz/cm{sup 2}. The TRD layout and the detector

  8. Position-Sensitive Silicon Detector for X-ray Difractometry of Fast Transient Processes

    Directory of Open Access Journals (Sweden)

    Pugatch, V.M.

    2014-03-01

    Full Text Available The results of the development and application of position sensitive microdetectors to study dynamics of fast transient processes in metals and alloys under heating/cooling by means of high-speed radiography are presented.

  9. In-Use Fleet Evaluation of Fast-Charge Battery Electric Transit Buses

    Energy Technology Data Exchange (ETDEWEB)

    Prohaska, Robert; Kelly, Kenneth; Eudy; Leslie

    2016-06-27

    With support from the U.S. Department of Energy's Vehicle Technologies Office, the National Renewable Energy Laboratory (NREL) conducts real-world performance evaluations of advanced medium- and heavy-duty fleet vehicles. Evaluation results can help vehicle manufacturers fine-tune their designs and assist fleet managers in selecting fuel-efficient, low-emission vehicles that meet their economic and operational goals. In 2015, NREL launched an in-service evaluation of 12 battery electric buses (BEBs) compared to conventional compressed natural gas (CNG) buses operated by Foothill Transit in West Covina, California. The study aims to improve understanding of the overall usage and effectiveness of fast-charge BEBs and associated charging infrastructure in transit operation. To date, NREL researchers have analyzed more than 148,000 km of in-use operational data, including driving and charging events. Foothill Transit purchased the BEBs with grant funding from the Federal Transit Administration's Transit Investments for Greenhouse Gas and Energy Reduction Program.

  10. Cosmic Ray Test of Mini-drift Thick Gas Electron Multiplier Chamber for Transition Radiation Detector

    CERN Document Server

    Yang, S; Buck, B; Li, C; Ljubicic, T; Majka, R; Shao, M; Smirnov, N; Visser, G; Xu, Z; Zhou, Y

    2014-01-01

    A thick gas electron multiplier (THGEM) chamber with an effective readout area of 10$\\times$10 cm$^{2}$ and a 11.3 mm ionization gap has been tested along with two regular gas electron multiplier (GEM) chambers in a cosmic ray test system. The thick ionization gap makes the THGEM chamber a mini-drift chamber. This kind mini-drift THGEM chamber is proposed as part of a transition radiation detector (TRD) for identifying electrons at an Electron Ion Collider (EIC) experiment. Through this cosmic ray test, an efficiency larger than 94$\\%$ and a spatial resolution $\\sim$220 $\\mu$m are achieved for the THGEM chamber at -3.65 kV. Thanks to its outstanding spatial resolution and thick ionization gap, the THGEM chamber shows excellent track reconstruction capability. The gain uniformity and stability of the THGEM chamber are also presented.

  11. Detecting an infrared photon within an hour. Transition-edge detector at ALPS-II

    Energy Technology Data Exchange (ETDEWEB)

    Dreyling-Eschweiler, Jan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Horns, Dieter [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Collaboration: ALPS-II collaboration

    2013-09-15

    An essential design requirement of the ALPS-II experiment is the efficient detection of single photons with a very low instrumental background of 10 {mu}Hz. In 2011 the ALPS collaboration started to set up a TES detector (Transition-Edge Sensor) for ALPS-II, the second phase of the experiment. Since mid of 2013 the setup is ready for characterization in the ALPS laboratory: an ADR cryostat (Adiabatic Demagnetization Refrigerator) as millikelvin environment, a low noise SQUID (Superconducting Quantum Interference Device) with electronics for read-out and a fiber-coupled high-efficient TES for near-infrared photons as sensor. First measurements have shown a good discrimination between noise and 1064 nm signals.

  12. Characterization and simulation of fast neutron detectors based on surface-barrier VPE GaAs structures with polyethylene converter

    Science.gov (United States)

    Chernykh, A. V.; Chernykh, S. V.; Baryshnikov, F. M.; Didenko, S. I.; Burtebayev, N.; Britvich, G. I.; Kostin, M. Yu.; Chubenko, A. P.; Nassurlla, Marzhan; Nassurlla, Maulen; Kerimkulov, Zh.; Zholdybayev, T.; Glybin, Yu. N.; Sadykov, T. Kh.

    2016-12-01

    Fast neutron detectors with an active area of 80 mm2 based on surface-barrier VPE GaAs structures were fabricated and tested. Polyethylene with density of 0.90 g/cm3 was used as a converter layer. The recoil-proton surface-barrier sensor was fabricated on high purity VPE GaAs epilayers with a thickness of 50 μm. The neutron detection efficiency measured with a 241Am-Be source was 1.30 · 10-3 puls./neutr. for the PE converter thickness of 670 μm. The signal-to-gamma-background ratio was at the level of 50. Simulation of the detector characteristics with Geant4 toolkit has showed good correlation with the experimental data and allowed to estimate the maximal theoretical detection efficiency of the detector which is determined by the PE converter and equals to 1.37 · 10-3 puls./neutr. The difference between the measured and simulated values of the detection efficiency is due to the fact that the events with energies below 0.5 MeV were not taken into account during the measurements.

  13. Particle tracking at 4K: The Fast Annihilation Cryogenic Tracking (FACT) detector for the AEgIS antimatter gravity experiment

    CERN Document Server

    Storey, J; Ahlén, O; Amsler, C; Ariga, A; Ariga, T; Belov, A.S; Bonomi, G; Bräunig, P; Bremer, J; Brusa, R.S; Burghart, G; Cabaret, L; Canali, C; Carante, M; Caravita, R; Castelli, F; Cerchiari, G; Cialdi, S; Comparat, D; Consolati, G; Dassa, L; Di Domizio, S; Di Noto, L; Doser, M; Dudarev, A; Ereditato, A; Ferragut, R; Fontana, A; Genova, P; Giammarchi, M; Gligorova, A; Gninenko, S.N; Haider, S; Hogan, S.D; Huse, T; Jordan, E; Jørgensen, L.V; Kaltenbacher, T; Kawada, J; Kellerbauer, A; Kimura, M; Knecht, A; Krasnický, D; Lagomarsino, V; Magnani, A; Mariazzi, S; Matveev, V.A; Merkt, F; Moia, F; Nebbia, G; Nédélec, P; Oberthaler, M.K; Pacifico, N; Petrácek, V; Pistillo, C; Prelz, F; Prevedelli, M; Regenfus, C; Riccardi, C; Røhne, O; Rotondi, A; Sandaker, H; Scampoli, P; Spacek, M; Subieta Vasquez, M.A; Testera, G; Trezzi, D; Vaccarone, R; Zavatarelli, S

    2013-01-01

    The AEgIS experiment is an international collaboration with the main goal of performing the fi rst direct measurement of the Earth ' s gravitational acceleration on antimatter. Critical to the success of AEgIS is the production of cold antihydrogen ( H) atoms. The FACT detector is used to measure the production and temperature of the H atoms and for establishing the formation of a H beam. The operating requirements for this detector are very challenging: it must be able to identify each of the thousand or so annihilations in the 1 ms period of pulsed H production, operate at 4 K inside a 1 T solenoidal fi eld and not produce more than 10 W of heat. The FACT detector consists of two concentric cylindrical layers of 400 scintillator fi bres with a 1 mm diameter and a 0.6 mm pitch. The scintillating fi bres are coupled to clear fi bres which transport the scintillation light to 800 silicon photomultipliers. Each silicon photomultiplier signal is connected to a linear ampli fi er and a fast discriminator, the out...

  14. LHCb: A fast triple-GEM detector for high-rate charged-particle triggering

    CERN Multimedia

    2001-01-01

    - GEM: Principle of Operation - Time Performances - Detector Prototypes and Test Setup - Gas Mixtures - Fields Optimisation - Vgem Optimisation Ar/CO2 (70/30) - Vgem Optimisation Ar/CO2/CF4 (60/20/20) - Time Distributions - Future Tests and Developments

  15. High-Rate Fast-Time GRPC for the high eta CMS muon detectors

    CERN Document Server

    Mirabito, Laurent

    2016-01-01

    CMS detector. In their single-gap version we will show that they can stand rates of few ${\\rm kHz/cm}^2$. We also demonstrate that using multi-gap glass RPC, a time resolution of about 60 ps is achieved.

  16. High-Rate Fast-Time GRPC for the high eta CMS muon detectors

    CERN Document Server

    Mirabito, Laurent

    2016-01-01

    CMS detector. In their single-gap version we will show that they can stand rates of few ${\\rm kHz/cm}^2$. We also demonstrate that using multi-gap glass RPC, a time resolution of about 60 ps is achieved.

  17. RNA sequencing reveals a slow to fast muscle fiber type transition after olanzapine infusion in rats.

    Directory of Open Access Journals (Sweden)

    Christopher J Lynch

    Full Text Available Second generation antipsychotics (SGAs, like olanzapine, exhibit acute metabolic side effects leading to metabolic inflexibility, hyperglycemia, adiposity and diabetes. Understanding how SGAs affect the skeletal muscle transcriptome could elucidate approaches for mitigating these side effects. Male Sprague-Dawley rats were infused intravenously with vehicle or olanzapine for 24h using a dose leading to a mild hyperglycemia. RNA-Seq was performed on gastrocnemius muscle, followed by alignment of the data with the Rat Genome Assembly 5.0. Olanzapine altered expression of 1347 out of 26407 genes. Genes encoding skeletal muscle fiber-type specific sarcomeric, ion channel, glycolytic, O2- and Ca2+-handling, TCA cycle, vascularization and lipid oxidation proteins and pathways, along with NADH shuttles and LDH isoforms were affected. Bioinformatics analyses indicate that olanzapine decreased the expression of slower and more oxidative fiber type genes (e.g., type 1, while up regulating those for the most glycolytic and least metabolically flexible, fast twitch fiber type, IIb. Protein turnover genes, necessary to bring about transition, were also up regulated. Potential upstream regulators were also identified. Olanzapine appears to be rapidly affecting the muscle transcriptome to bring about a change to a fast-glycolytic fiber type. Such fiber types are more susceptible than slow muscle to atrophy, and such transitions are observed in chronic metabolic diseases. Thus these effects could contribute to the altered body composition and metabolic disease olanzapine causes. A potential interventional strategy is implicated because aerobic exercise, in contrast to resistance exercise, can oppose such slow to fast fiber transitions.

  18. A portable fluorescence detector for fast ultra trace detection of explosive vapors

    Science.gov (United States)

    Xin, Yunhong; He, Gang; Wang, Qi; Fang, Yu

    2011-10-01

    This paper developed a portable detector based on a specific material-based fluorescent sensing film for an ultra trace detection of explosives, such as 2,4,6-trinitrotoluene (TNT) or its derivate 2,4-dinitrotoluene (DNT), in ambient air or on objects tainted by explosives. The fluorescent sensing films are based on single-layer chemistry and the signal amplification effect of conjugated polymers, which exhibited higher sensitivity and shorter response time to TNT or DNT at their vapor pressures. Due to application of the light emitting diode and the solid state photomultiplier and the cross-correlation-based circuit design technology, the device has the advantages of low-power, low-cost, small size, and an improved signal to noise ratio. The results of the experiments showed that the detector can real-time detect and identify of explosive vapors at extremely low levels; it is suitable for the identification of suspect luggage, forensic analyses, or battlefields clearing.

  19. Xe-containing fast gas mixtures for gas-filled detectors

    Science.gov (United States)

    Christophorou, L. G.; Maxey, D. V.; McCorkle, D. L.; Carter, J. G.

    1980-05-01

    Electron drift velocities are reported for XeCF 4, XeC 2H 2 and XeCF 4C 2H 2 mixtures. For a number of these mixtures the drift velocities are large (4 to 10 × 10 6 cm s -1) over a range of {E}/{P} values below 3.5 V cm -1 Torr -1. Such mixtures may find application in gas-filled detectors, especially those involving electromagnetic ionizing radiation.

  20. Transition radiation detectors for electron identification beyond 1 GeV/ c

    Science.gov (United States)

    Appuhn, R. D.; Heinloth, K.; Lange, E.; Oedingen, R.; Schlösser, A.

    1988-01-01

    Transition radiation detectors (TRDs) have been tested for the separation of electrons from pions in the momentum range between 1 and 6 GeV/ c. Foams as well as fibres and foils served as radiator materials while two types of chambers, a longitudinal drift chamber (DC) and a multiwire proportional chamber (MWPC), both of 16 mm depth and dominantly filled with xenon, were used for detecting the transition radiation photons with a setup of four chambers. Analyzing the data we compared the methods of mean, truncated mean and of maximum likelihood of the total charge measurements and several methods of cluster analysis. As a result of the total charge measurements performed at test beams at CERN and DESY we obtained about 1% pion contamination at 90% electron efficiency for the polypropylene materials in the configuration of four modules with a total length of 40 cm. An improvement by a factor of about two for the electron/pion discrimination can be obtained in the case of a detailed analysis of the clusters.

  1. High performance diagnostics for Time-Of-Flight and X ray measurements in laser produced plasmas, based on fast diamond detectors

    Science.gov (United States)

    De Angelis, R.; Consoli, F.; Verona, C.; Di Giorgio, G.; Andreoli, P.; Cristofari, G.; Cipriani, M.; Ingenito, F.; Marinelli, M.; Verona-Rinati, G.

    2016-12-01

    The paper reports about the use of single-crystal Chemical Vapour Deposited (CVD) diamonds as radiation detectors in laser-matter interaction experiments on the ABC laser in ENEA - Frascati. The detectors have been designed and realized by University of Tor Vergata - Rome. The interdigital configuration and the new design of the bias-tee voltage supply units guarantee a fast time response. The detectors are sensitive to soft-X photons and to particles. A remarkable immunity to electromagnetic noise, associated with the laser-target interaction, makes them especially useful for the measurements of the time of flight of fast particles. A novel diamond assembly has been tested in plasmas generated by the ABC laser in the nanosecond regime at intensities I=1013÷ 14 W/cm2, where contributions from X rays, fast electrons and ions could be observed.

  2. High rate particle tracking and ultra-fast timing with a thin hybrid silicon pixel detector

    Science.gov (United States)

    Fiorini, M.; Aglieri Rinella, G.; Carassiti, V.; Ceccucci, A.; Cortina Gil, E.; Cotta Ramusino, A.; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Martin, E.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Perktold, L.; Petagna, P.; Petrucci, F.; Poltorak, K.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.

    2013-08-01

    The Gigatracker (GTK) is a hybrid silicon pixel detector designed for the NA62 experiment at CERN. The beam spectrometer, made of three GTK stations, has to sustain high and non-uniform particle rate (∼ 1 GHz in total) and measure momentum and angles of each beam track with a combined time resolution of 150 ps. In order to reduce multiple scattering and hadronic interactions of beam particles, the material budget of a single GTK station has been fixed to 0.5% X0. The expected fluence for 100 days of running is 2 ×1014 1 MeV neq /cm2, comparable to the one foreseen in the inner trackers of LHC detectors during 10 years of operation. To comply with these requirements, an efficient and very low-mass (architectures have been produced as small-scale prototypes: one is based on a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other makes use of a constant-fraction discriminator followed by an on-pixel TDC. The read-out ASICs are produced in 130 nm IBM CMOS technology and will be thinned down to 100 μm or less. An overview of the Gigatracker detector system will be presented. Experimental results from laboratory and beam tests of prototype bump-bonded assemblies will be described as well. These results show a time resolution of about 170 ps for single hits from minimum ionizing particles, using 200 μm thick silicon sensors.

  3. High rate particle tracking and ultra-fast timing with a thin hybrid silicon pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Fiorini, M., E-mail: Massimiliano.Fiorini@cern.ch [CERN, CH-1211 Geneva 23 (Switzerland); Aglieri Rinella, G. [CERN, CH-1211 Geneva 23 (Switzerland); Carassiti, V. [INFN Sezione di Ferrara (Italy); Ceccucci, A. [CERN, CH-1211 Geneva 23 (Switzerland); Cortina Gil, E. [Université Catholique de Louvain, Louvain-la-Neuve (Belgium); Cotta Ramusino, A. [INFN Sezione di Ferrara (Italy); Dellacasa, G.; Garbolino, S.; Jarron, P. [INFN Sezione di Torino (Italy); Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A. [CERN, CH-1211 Geneva 23 (Switzerland); Martin, E. [Université Catholique de Louvain, Louvain-la-Neuve (Belgium); Mazza, G. [INFN Sezione di Torino (Italy); Morel, M.; Noy, M. [CERN, CH-1211 Geneva 23 (Switzerland); Nuessle, G. [Université Catholique de Louvain, Louvain-la-Neuve (Belgium); Perktold, L.; Petagna, P. [CERN, CH-1211 Geneva 23 (Switzerland); and others

    2013-08-01

    The Gigatracker (GTK) is a hybrid silicon pixel detector designed for the NA62 experiment at CERN. The beam spectrometer, made of three GTK stations, has to sustain high and non-uniform particle rate (∼1GHz in total) and measure momentum and angles of each beam track with a combined time resolution of 150 ps. In order to reduce multiple scattering and hadronic interactions of beam particles, the material budget of a single GTK station has been fixed to 0.5% X{sub 0}. The expected fluence for 100 days of running is 2×10{sup 14} 1 MeV n{sub eq}/cm{sup 2}, comparable to the one foreseen in the inner trackers of LHC detectors during 10 years of operation. To comply with these requirements, an efficient and very low-mass (<0.15%X{sub 0}) cooling system is being constructed, using a novel microchannel cooling silicon plate. Two complementary read-out architectures have been produced as small-scale prototypes: one is based on a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other makes use of a constant-fraction discriminator followed by an on-pixel TDC. The read-out ASICs are produced in 130 nm IBM CMOS technology and will be thinned down to 100μm or less. An overview of the Gigatracker detector system will be presented. Experimental results from laboratory and beam tests of prototype bump-bonded assemblies will be described as well. These results show a time resolution of about 170 ps for single hits from minimum ionizing particles, using 200μm thick silicon sensors.

  4. Search for Pauli exclusion principle violating atomic transitions and electron decay with a p-type point contact germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Chu, P. -H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Finnerty, P. S.; Galindo-Uribarri, A.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O’Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C. -H.; Yumatov, V.; Zhitnikov, I.

    2016-11-11

    A search for Pauli-exclusion-principle-violating K electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of s at 90% C.L. It is estimated that the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation.

  5. A fast large dynamic range shaping amplifier for particle detector front-end

    Energy Technology Data Exchange (ETDEWEB)

    Rivetti, Angelo [INFN-Sezione di Turin (Italy)]. E-mail: rivetti@to.infn.it; Delaurenti, Paolo [Dipartimento di Fisica Sperimentale-Universita di Turin (Italy)

    2007-03-01

    The paper describes a fast shaping amplifier with rail-to-rail output swing. The circuit is based on a CMOS operational amplifier with a class AB output stage. A baseline holder, incorporating a closed-loop unity gain buffer with slew rate limitation, performs the AC coupling with the preamplifier and guarantees a baseline shift smaller than 3 mV for unipolar output pulses of 3 V and 10 MHz rate.

  6. ellc: A fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets

    Science.gov (United States)

    Maxted, P. F. L.

    2016-06-01

    Context. Very high quality light curves are now available for thousands of detached eclipsing binary stars and transiting exoplanet systems as a result of surveys for transiting exoplanets and other large-scale photometric surveys. Aims: I have developed a binary star model (ellc) that can be used to analyse the light curves of detached eclipsing binary stars and transiting exoplanet systems that is fast and accurate, and that can include the effects of star spots, Doppler boosting and light-travel time within binaries with eccentric orbits. Methods: The model represents the stars as triaxial ellipsoids. The apparent flux from the binary is calculated using Gauss-Legendre integration over the ellipses that are the projection of these ellipsoids on the sky. The model can also be used to calculate the flux-weighted radial velocity of the stars during an eclipse (Rossiter-McLaghlin effect). The main features of the model have been tested by comparison to observed data and other light curve models. Results: The model is found to be accurate enough to analyse the very high quality photometry that is now available from space-spaced instruments, flexible enough to model a wide range of eclipsing binary stars and extrasolar planetary systems, and fast enough to enable the use of modern Monte Carlo methods for data analysis and model testing. The software package is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A111

  7. Development of fast and high throughput tomography using CMOS image detector at SPring-8

    Science.gov (United States)

    Uesugi, Kentaro; Hoshino, Masato; Takeuchi, Akihisa; Suzuki, Yoshio; Yagi, Naoto

    2012-10-01

    A fast micro-tomography system and a high throughput micro-tomography system using state-of-the-art Complementary Metal Oxide Semiconductor (CMOS) imaging devices have been developed at SPring-8. Those systems adopt simple projection type tomography using synchrotron radiation X-ray. The fast micro-tomography system achieves a scan time around 2 s with 1000 projections, which is 15 times faster than previously developed system at SPring-8. The CMOS camera for fast tomography has 64 Giga Byte on-board memory, therefore, the obtained images must be transferred to a PC at the appropriate timing. A melting process of snow at room temperature was imaged every 30 s as a demonstration of the system. The high throughput tomography system adopts a scientific CMOS (sCMOS) camera with a low noise and high quantum efficiency. The system achieves a scan time around 5 minutes which is three times faster than before. The images quality of the system has been compared to the existing system with Charge-Coupled Device (CCD) camera. The results have shown the advantage of the new sCMOS camera.

  8. Development of Fast High-Resolution Muon Drift-Tube Detectors for High Counting Rates

    CERN Document Server

    INSPIRE-00287945; Dubbert, J.; Horvat, S.; Kortner, O.; Kroha, H.; Legger, F.; Richter, R.; Adomeit, S.; Biebel, O.; Engl, A.; Hertenberger, R.; Rauscher, F.; Zibell, A.

    2011-01-01

    Pressurized drift-tube chambers are e?cient detectors for high-precision tracking over large areas. The Monitored Drift-Tube (MDT) chambers of the muon spectrometer of the ATLAS detector at the Large Hadron Collider (LHC) reach a spatial resolution of 35 micons and almost 100% tracking e?ciency with 6 layers of 30 mm diameter drift tubes operated with Ar:CO2 (93:7) gas mixture at 3 bar and a gas gain of 20000. The ATLAS MDT chambers are designed to cope with background counting rates due to neutrons and gamma-rays of up to about 300 kHz per tube which will be exceeded for LHC luminosities larger than the design value of 10-34 per square cm and second. Decreasing the drift-tube diameter to 15 mm while keeping the other parameters, including the gas gain, unchanged reduces the maximum drift time from about 700 ns to 200 ns and the drift-tube occupancy by a factor of 7. New drift-tube chambers for the endcap regions of the ATLAS muon spectrometer have been designed. A prototype chamber consisting of 12 times 8 l...

  9. Fast front-end electronics for semiconductor tracking detectors: Trends and perspectives

    Science.gov (United States)

    Rivetti, Angelo

    2014-11-01

    In the past few years, extensive research efforts pursued by both the industry and the academia have lead to major improvements in the performance of Analog to Digital Converters (ADCs) and Time to Digital Converters (TDCs). ADCs achieving 8-10 bit resolution, 50-100 MHz conversion frequency and less than 1 mW power consumption are the today's standard, while TDCs have reached sub-picosecond time resolution. These results have been made possible by architectural upgrades combined with the use of ultra deep submicron CMOS technologies with minimum feature size of 130 nm or smaller. Front-end ASICs in which a prompt digitization is followed by signal conditioning in the digital domain can now be envisaged also within the tight power budget typically available in high density tracking systems. Furthermore, tracking detectors embedding high resolution timing capabilities are gaining interest. In the paper, ADC's and TDC's developments which are of particular relevance for the design front-end electronics for semiconductor trackers are discussed along with the benefits and challenges of exploiting such high performance building blocks in implementing the next generation of ASICs for high granularity particle detectors.

  10. Fast front-end electronics for semiconductor tracking detectors: Trends and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Rivetti, Angelo

    2014-11-21

    In the past few years, extensive research efforts pursued by both the industry and the academia have lead to major improvements in the performance of Analog to Digital Converters (ADCs) and Time to Digital Converters (TDCs). ADCs achieving 8–10 bit resolution, 50–100 MHz conversion frequency and less than 1 mW power consumption are the today's standard, while TDCs have reached sub-picosecond time resolution. These results have been made possible by architectural upgrades combined with the use of ultra deep submicron CMOS technologies with minimum feature size of 130 nm or smaller. Front-end ASICs in which a prompt digitization is followed by signal conditioning in the digital domain can now be envisaged also within the tight power budget typically available in high density tracking systems. Furthermore, tracking detectors embedding high resolution timing capabilities are gaining interest. In the paper, ADC's and TDC's developments which are of particular relevance for the design front-end electronics for semiconductor trackers are discussed along with the benefits and challenges of exploiting such high performance building blocks in implementing the next generation of ASICs for high granularity particle detectors.

  11. Development of a bioaerosol single particle detector (BIO IN for the fast ice nucleus chamber FINCH

    Directory of Open Access Journals (Sweden)

    U. Bundke

    2009-10-01

    Full Text Available In this work we present the setup and first tests of our new BIO IN detector. This detector is designed to classify atmospheric ice nuclei (IN for their biological content. Biological material is identified via its auto-fluorescence (intrinsic fluorescence after irradiation with UV radiation. Ice nuclei are key substances for precipitation development via the Bergeron–Findeisen process. The level of scientific knowledge regarding origin and climatology (temporal and spatial distribution of IN is very low. Some biological material is known to be active as IN even at relatively high temperatures of up to –2°C (e.g. pseudomonas syringae bacteria. These biological IN could have a strong influence on the formation of clouds and precipitation. We have designed the new BIO IN sensor to analyze the abundance of IN of biological origin. The instrument will be flown on one of the first missions of the new German research aircraft ''HALO'' (High Altitude and LOng Range.

  12. ELLC - a fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets

    CERN Document Server

    Maxted, P F L

    2016-01-01

    Very high quality light curves are now available for thousands of detached eclipsing binary stars and transiting exoplanet systems as a result of surveys for transiting exoplanets and other large-scale photometric surveys. I have developed a binary star model (ELLC) that can be used to analyse the light curves of detached eclipsing binary stars and transiting exoplanet systems that is fast and accurate, and that can include the effects of star spots, Doppler boosting and light-travel time within binaries with eccentric orbits. The model represents the stars as triaxial ellipsoids. The apparent flux from the binary is calculated using Gauss-Legendre integration over the ellipses that are the projection of these ellipsoids on the sky. The model can also be used to calculate the flux-weighted radial velocity of the stars during an eclipse (Rossiter-McLaughlin effect). The main features of the model have tested by comparison to observed data and other light curve models. The model is found to be accurate enough t...

  13. A fast microchannel plate-scintillator detector for velocity map imaging and imaging mass spectrometry.

    Science.gov (United States)

    Winter, B; King, S J; Brouard, M; Vallance, C

    2014-02-01

    The time resolution achievable using standard position-sensitive ion detectors, consisting of a chevron pair of microchannel plates coupled to a phosphor screen, is primarily limited by the emission lifetime of the phosphor, around 70 ns for the most commonly used P47 phosphor. We demonstrate that poly-para-phenylene laser dyes may be employed extremely effectively as scintillators, exhibiting higher brightness and much shorter decay lifetimes than P47. We provide an extensive characterisation of the properties of such scintillators, with a particular emphasis on applications in velocity-map imaging and microscope-mode imaging mass spectrometry. The most promising of the new scintillators exhibits an electron-to-photon conversion efficiency double that of P47, with an emission lifetime an order of magnitude shorter. The new scintillator screens are vacuum stable and show no signs of signal degradation even over longer periods of operation.

  14. NeuLAND MRPC-based detector prototypes tested with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Caesar, C., E-mail: c.caesar@gsi.de [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Aumann, T. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Bemmerer, D. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Boretzky, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Elekes, Z. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); ATOMKI, Debrecen (Hungary); Gonzalez-Diaz, D.; Hehner, J.; Heil, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Kempe, M. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Maroussov, V. [Universitaet zu Koeln, Koeln (Germany); Nusair, O. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Al-Balqa Applied University, Salt (Jordan); Reifarth, R.; Rossi, D.; Simon, H. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Stach, D.; Wagner, A.; Yakorev, D. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Zilges, A. [ATOMKI, Debrecen (Hungary)

    2012-01-01

    Recent results from a first irradiation of multi-gap resistive plate chambers with fast neutrons are presented. The counters have been built at GSI and FZD. The experiment was performed at the 'The Svedberg Laboratory' (TSL) in Uppsala, Sweden, utilizing a quasi-monoenergetic neutron beam with an energy E{sub n}=175 MeV. For a 2 Multiplication-Sign 4 gap prototype operated at E=100 kV/cm, an efficiency of (0.77 {+-}0.33)% was measured.

  15. Comprehensive two-dimensional gas chromatography coupled with fast sulphur-chemiluminescence detection: implications of detector electronics.

    Science.gov (United States)

    Blomberg, Jan; Riemersma, Toby; van Zuijlen, Manfred; Chaabani, Hassan

    2004-09-24

    Within the petrochemical industry, there has been a growing interest in methods capable of providing detailed information on the distribution of sulphur-containing compounds in various product streams, going down to the level of separating and quantifying individual sulphur species. Since no single capillary gas chromatographic column is able to perform this separation, a refuge to multi-dimensional separation techniques has to be taken. In this respect, comprehensive two-dimensional gas chromatography (GC x GC) coupled with sulphur chemiluminescence detection (SCD) has shown to be highly promising. It has been suggested, however, that the detector volume of an SCD restricts its potential to keep up with the fast second-dimension separations of contemporary GC x GC. In this paper, we will demonstrate that the lack of speed of the SCD does not originate from its physical dimensions, but is largely determined by the speed of the electronics used. Additionally, some typical examples will be presented to illustrate the potential of GC x GC coupled with fast SCD.

  16. A new transition radiation detector to detect heavy nuclei around the knee

    CERN Document Server

    Boyle, P J; Wakely, S P

    2002-01-01

    The overall cosmic ray intensity spectrum falls as a constant power law over at least 11 decades of particle energy. One of the only features in this spectrum is the slight change in power law index near 10**1**5eV, often called the 'knee' of the spectrum. Accurate measurements of cosmic ray elemental abundances into this energy region are expected to reveal the origin of this feature, and possibly the nature of cosmic ray sources. The extremely low intensity of particles at these energies (a few per m**2 per year) makes the detection challenging. Since only direct measurements have so far proved reliable for the accurate determination of elemental composition, a large-area, light weight, device is needed to achieve long exposures above the atmosphere - either on high-altitude balloons or spacecraft. Here we report on a detector which uses the x-ray transition radiation yield from plastic foams to provide a response into the knee region for heavy elements. We use individual xenon-filled gas proportional tubes...

  17. FAST

    DEFF Research Database (Denmark)

    Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.

    2012-01-01

    ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with aqu......ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections...... with aqueous food extracts may be effective but has proven to be accompanied by too many anaphylactic side-effects. FAST aims to develop a safe alternative by replacing food extracts with hypoallergenic recombinant major allergens as the active ingredients of SIT. Both severe fish and peach allergy are caused...... in depth serological and cellular immune analyses will be performed, allowing identification of novel biomarkers for monitoring treatment efficacy. FAST aims at improving the quality of life of food allergic patients by providing a safe and effective treatment that will significantly lower their threshold...

  18. Fast Charge Battery Electric Transit Bus In-Use Fleet Evaluation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Prohaska, Robert; Eudy, Leslie; Kelly, Kenneth

    2016-05-06

    The focus of this interim fleet evaluation is to characterize and evaluate the operating behavior of Foothill Transit's fast charge battery electric buses (BEBs). Future research will compare the BEBs' performance to conventional vehicles. In an effort to better understand the impacts of drive cycle characteristics on advanced vehicle technologies, researchers at the National Renewable Energy Laboratory analyzed over 148,000 km of in-use operational data, including driving and charging events. This analysis provides an unbiased evaluation of advanced vehicle technologies in real-world operation demonstrating the importance of understanding the effects of road grade and heating, ventilating and air conditioning requirements when deploying electric vehicles. The results of this analysis show that the Proterra BE35 demonstrated an operating energy efficiency of 1.34 kWh/km over the data reporting period.

  19. AN ITERATIVE PARTICLE FILTER SIGNAL DETECTOR FOR MIMO FAST FADING CHANNELS

    Institute of Scientific and Technical Information of China (English)

    Yang Tao; Hu Bo

    2008-01-01

    For flat fast fading Multiple-Input Multiple-Output (MIMO) channels, this paper presents a sampling based channel estimation and an iterative Particle Filter (PF) signal detection scheme. The channel estimation is comprised of two parts: the adaptive iterative update on the channel distribution mean and a regular update on the "adaptability" via pilot. In the detection procedure, the PF is employed to produce the optimal decision given the known received signal and the sequence of the channel samples, where an asymptotic optimal importance density is constructed, and in terms of the asymptotic update order, the Parallel Importance Update (PIU) and the Serial Importance Update (SIU) scheme are performed respectively. The simulation results show that for the given fading channel, if an appropriate pilot mode is selected, the proposed scheme is more robust than the conventional Kalman filter based superimposed detection scheme.

  20. A combined analysis technique for the search for fast magnetic monopoles with the MACRO detector

    CERN Document Server

    Ambrosio, M; Auriemma, G; Bakari, D; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Carboni, M; Caruso, R; Cecchini, S; Cei, F; Chiarella, V; Choudhary, B C; Coutu, S; De Cataldo, G; Dekhissi, H; De Marzo, C; De Mitri, I; Derkaoui, J E; De Vincenzi, M; Di Credico, A; Erriquez, O; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Heinz, R; Iarocci, E; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Manzoor, S; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S L; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Popa, V; Reynoldson, J; Ronga, F; Rrhioua, A; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Walter, C W; Webb, R

    2002-01-01

    We describe a search method for fast moving ( beta = v/c > 5 * 10/sup -3/) magnetic monopoles using simultaneously the scintillator, streamer tube and track-etch subdetectors of the MACRO apparatus. The first two subdetectors are used primarily for the identification of candidates while the track-etch one is used as the final tool for their rejection or confirmation. Using this technique, a first sample of more than two years of data has been analyzed without any evidence of a magnetic monopole. We set a 90% CL upper limit to the local monopole flux of 1.5 * 10/sup -15/ cm/sup -2/s/sup -1/sr/sup -1/ in the velocity range 5 * 10/sup -3/

  1. CHANTI: a fast and efficient charged particle veto detector for the NA62 experiment at cern

    CERN Document Server

    Mirra, Marco

    This work has been performed into the frame of the NA62 experiment at CERN that aims at measuring the Branching-Ratio of the ultra-rare kaon decay K+→π+ nu nubar with 10% uncertainty - using an unseparated kaon beam of 75GeV/c - in order to test the Standard Model (SM), to look for physics beyond SM and to measure the |Vtd| element of the Cabibbo-Kobayashi-Maskawa (CKM) flavor mixing matrix. Backgrounds, which are up to 10^10 times higher than the signal, will be suppressed by an accurate measurement of the momentum of the K+ (with a silicon beam tracker named GigaTracker) and the π+ (with a straw tracker) and by a complex system of particle identification and veto detectors. A critical background can be induced by inelastic interactions of the hadron beam with the GigaTracker. Pions produced in these interactions, emitted at low angle, can reach the straw tracker and mimic a kaon decay in the fiducial region, if no other track is detected. In order to suppress this background a CHarged track ANTIcounter ...

  2. Transition from slow Abrikosov to fast moving Josephson vortices in iron pnictide superconductors.

    Science.gov (United States)

    Moll, Philip J W; Balicas, Luis; Geshkenbein, Vadim; Blatter, Gianni; Karpinski, Janusz; Zhigadlo, Nikolai D; Batlogg, Bertram

    2013-02-01

    Iron pnictides are layered high T(c) superconductors with moderate material anisotropy and thus Abrikosov vortices are expected in the mixed state. Yet, we have discovered a distinct change in the nature of the vortices from Abrikosov-like to Josephson-like in the pnictide superconductor SmFeAs(O,F) with T(c)~48-50 K on cooling below a temperature T*~41-42 K, despite its moderate electronic anisotropy γ~4-6. This transition is hallmarked by a sharp drop in the critical current and accordingly a jump in the flux-flow voltage in a magnetic field precisely aligned along the FeAs layers, indicative of highly mobile vortices. T* coincides well with the temperature where the coherence length ξ(c) perpendicular to the layers matches half of the FeAs-layer spacing. For fields slightly out-of-plane (> 0.1°- 0.15°) the vortices are completely immobilized as well-pinned Abrikosov segments are introduced when the vortex crosses the FeAs layers. We interpret these findings as a transition from well-pinned, slow moving Abrikosov vortices at high temperatures to weakly pinned, fast flowing Josephson vortices at low temperatures. This vortex dynamics could become technologically relevant as superconducting applications will always operate deep in the Josephson regime.

  3. Fast ion energy distribution from third harmonic radio frequency heating measured with a single crystal diamond detector at the Joint European Torus

    Energy Technology Data Exchange (ETDEWEB)

    Nocente, M.; Rebai, M.; Gorini, G. [EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano-Bicocca, Milano (Italy); Istituto di Fisica del Plasma “P. Caldirola,” Consiglio Nazionale delle Ricerche, Milano (Italy); Cazzaniga, C. [EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Istituto di Fisica del Plasma “P. Caldirola,” Consiglio Nazionale delle Ricerche, Milano (Italy); Rutherford Appleton Laboratory, ISIS Facility, Didcot (United Kingdom); Tardocchi, M.; Giacomelli, L.; Muraro, A. [EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Istituto di Fisica del Plasma “P. Caldirola,” Consiglio Nazionale delle Ricerche, Milano (Italy); Binda, F.; Eriksson, J. [EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Sharapov, S. [EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Collaboration: (EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)

    2015-10-15

    Neutron spectroscopy measurements with a single crystal diamond detector have been carried out at JET, for the first time in an experiment aimed at accelerating deuterons to MeV energies with radio frequency heating at the third harmonic. Data are interpreted by means of the expected response function of the detector and are used to extract parameters of the highly non-Maxwellian distribution function generated in this scenario. A comparison with observations using a time of flight and liquid scintillator neutron spectrometers is also presented. The results demonstrate the capability of diamond detectors to contribute to fast ion physics studies at JET and are of more general relevance in view of the application of such detectors for spectroscopy measurements in the neutron camera of next step tokamak devices.

  4. Fast ion energy distribution from third harmonic radio frequency heating measured with a single crystal diamond detector at the Joint European Torus.

    Science.gov (United States)

    Nocente, M; Cazzaniga, C; Tardocchi, M; Binda, F; Eriksson, J; Giacomelli, L; Muraro, A; Rebai, M; Sharapov, S; Gorini, G

    2015-10-01

    Neutron spectroscopy measurements with a single crystal diamond detector have been carried out at JET, for the first time in an experiment aimed at accelerating deuterons to MeV energies with radio frequency heating at the third harmonic. Data are interpreted by means of the expected response function of the detector and are used to extract parameters of the highly non-Maxwellian distribution function generated in this scenario. A comparison with observations using a time of flight and liquid scintillator neutron spectrometers is also presented. The results demonstrate the capability of diamond detectors to contribute to fast ion physics studies at JET and are of more general relevance in view of the application of such detectors for spectroscopy measurements in the neutron camera of next step tokamak devices.

  5. The causal impact of magnetic fluctuations in slow and fast L-H transitions at TJ-II

    CERN Document Server

    van Milligen, B Ph; Carreras, B A; Ascasíbar, E; Hidalgo, C; Pastor, I; Fontdecaba, J M; Balbín, R

    2015-01-01

    This work focuses on the relationship between L-H transitions and MHD activity in the low shear TJ-II stellarator. It is shown that the presence of a low order rational in the plasma edge (gradient) region lowers the threshold density for H-mode access. MHD activity is systematically suppressed before or at the confinement transition. We apply a causality detection technique (the Transfer Entropy) to study the relation between magnetic oscillations and locally measured plasma rotation velocity (related to Zonal Flows). For this purpose, we study a large number of discharges in two magnetic configurations, corresponding to fast and slow transitions. With the slow transitions, the developing Zonal Flow prior to the transition leads to the gradual reduction of magnetic oscillations. The transition itself is marked by a strong spike of 'information transfer' from magnetic to velocity oscillations, suggesting the that the magnetic drive is important for setting up the final sheared flow responsible for the H-mode ...

  6. High rate, fast timing Glass RPC for the high η CMS muon detectors

    Science.gov (United States)

    Lagarde, F.; Gouzevitch, M.; Laktineh, I.; Buridon, V.; Chen, X.; Combaret, C.; Eynard, A.; Germani, L.; Grenier, G.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Wang, Y.; Gong, A.; Moreau, N.; de la Taille, C.; Dulucq, F.; Cimmino, A.; Crucy, S.; Fagot, A.; Gul, M.; Rios, A. A. O.; Tytgat, M.; Zaganidis, N.; Aly, S.; Assran, Y.; Radi, A.; Sayed, A.; Singh, G.; Abbrescia, M.; Iaselli, G.; Maggi, M.; Pugliese, G.; Verwilligen, P.; Van Doninck, W.; Colafranceschi, S.; Sharma, A.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.; Bhatnagar, V.; Kumari, R.; Mehta, A.; Singh, J.; Ahmad, A.; Ahmed, W.; Asghar, H. M. I.; Awan, I. M.; Hoorani, R.; Muhammad, S.; Shahzad, H.; Shah, M. A.; Cho, S. W.; Choi, S. Y.; Hong, B.; Kang, M. H.; Lee, K. S.; Lim, J. H.; Park, S. K.; Kim, M. S.; Carpinteyro Bernardino, S.; Pedraza, I.; Uribe Estrada, C.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pant, L. M.; Buontempo, S.; Cavallo, N.; Esposito, M.; Fabozzi, F.; Lanza, G.; Orso, I.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Thyssen, F.; Braghieri, A.; Magnani, A.; Montagna, P.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Ban, Y.; Qian, S. J.; Choi, M.; Choi, Y.; Goh, J.; Kim, D.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Bagaturia, I.; Lomidze, D.; Avila, C.; Cabrera, A.; Sanabria, J. C.; Crotty, I.; Vaitkus, J.

    2016-09-01

    The HL-LHC phase is designed to increase by an order of magnitude the amount of data to be collected by the LHC experiments. To achieve this goal in a reasonable time scale the instantaneous luminosity would also increase by an order of magnitude up to 6 · 1034 cm-2s-1. The region of the forward muon spectrometer (|η| > 1.6) is not equipped with RPC stations. The increase of the expected particles flux up to 2 kHz/cm2 (including a safety factor 3) motivates the installation of RPC chambers to guarantee redundancy with the CSC chambers already present. The current CMS RPC technology cannot sustain the expected background level. The new technology that will be chosen should have a high rate capability and provide a good spatial and timing resolution. A new generation of Glass-RPC (GRPC) using low-resistivity glass is proposed to equip at least the two most far away of the four high η muon stations of CMS. First the design of small size prototypes and studies of their performance in high-rate particles flux are presented. Then the proposed designs for large size chambers and their fast-timing electronic readout are examined and preliminary results are provided.

  7. Fast Imaging Detector Readout Circuits with In-Pixel ADCs for Fourier Transform Imaging Spectrometers

    Science.gov (United States)

    Rider, D.; Blavier, J-F.; Cunningham, T.; Hancock, B.; Key, R.; Pannell, Z.; Sander, S.; Seshadri, S.; Sun, C.; Wrigley, C.

    2011-01-01

    Focal plane arrays (FPAs) with high frame rates and many pixels benefit several upcoming Earth science missions including GEO-CAPE, GACM, and ACE by enabling broader spatial coverage and higher spectral resolution. FPAs for the PanFTS, a high spatial resolution Fourier transform spectrometer and a candidate instrument for the GEO-CAPE mission are the focus of the developments reported here, but this FPA technology has the potential to enable a variety of future measurements and instruments. The ESTO ACT Program funded the developed of a fast readout integrated circuit (ROIC) based on an innovative in-pixel analog-to-digital converter (ADC). The 128 X 128 pixel ROIC features 60 ?m pixels, a 14-bit ADC in each pixel and operates at a continuous frame rate of 14 kHz consuming only 1.1 W of power. The ROIC outputs digitized data completely eliminating the bulky, power consuming signal chains needed by conventional FPAs. The 128 X 128 pixel ROIC has been fabricated in CMOS and tested at the Jet Propulsion Laboratory. The current version is designed to be hybridized with PIN photodiode arrays via indium bump bonding for light detection in the visible and ultraviolet spectral regions. However, the ROIC design incorporates a small photodiode in each cell to permit detailed characterization of the ROICperformance without the need for hybridization. We will describe the essential features of the ROIC design and present results of ROIC performance measurements.

  8. Fast Imaging Detector Readout Circuits with In-Pixel ADCs for Fourier Transform Imaging Spectrometers

    Science.gov (United States)

    Rider, D.; Blavier, J-F.; Cunningham, T.; Hancock, B.; Key, R.; Pannell, Z.; Sander, S.; Seshadri, S.; Sun, C.; Wrigley, C.

    2011-01-01

    Focal plane arrays (FPAs) with high frame rates and many pixels benefit several upcoming Earth science missions including GEO-CAPE, GACM, and ACE by enabling broader spatial coverage and higher spectral resolution. FPAs for the PanFTS, a high spatial resolution Fourier transform spectrometer and a candidate instrument for the GEO-CAPE mission are the focus of the developments reported here, but this FPA technology has the potential to enable a variety of future measurements and instruments. The ESTO ACT Program funded the developed of a fast readout integrated circuit (ROIC) based on an innovative in-pixel analog-to-digital converter (ADC). The 128 X 128 pixel ROIC features 60 ?m pixels, a 14-bit ADC in each pixel and operates at a continuous frame rate of 14 kHz consuming only 1.1 W of power. The ROIC outputs digitized data completely eliminating the bulky, power consuming signal chains needed by conventional FPAs. The 128 X 128 pixel ROIC has been fabricated in CMOS and tested at the Jet Propulsion Laboratory. The current version is designed to be hybridized with PIN photodiode arrays via indium bump bonding for light detection in the visible and ultraviolet spectral regions. However, the ROIC design incorporates a small photodiode in each cell to permit detailed characterization of the ROICperformance without the need for hybridization. We will describe the essential features of the ROIC design and present results of ROIC performance measurements.

  9. Detection of nitro-based and peroxide-based explosives by fast polarity-switchable ion mobility spectrometer with ion focusing in vicinity of Faraday detector.

    Science.gov (United States)

    Zhou, Qinghua; Peng, Liying; Jiang, Dandan; Wang, Xin; Wang, Haiyan; Li, Haiyang

    2015-05-29

    Ion mobility spectrometer (IMS) has been widely deployed for on-site detection of explosives. The common nitro-based explosives are usually detected by negative IMS while the emerging peroxide-based explosives are better detected by positive IMS. In this study, a fast polarity-switchable IMS was constructed to detect these two explosive species in a single measurement. As the large traditional Faraday detector would cause a trailing reactant ion peak (RIP), a Faraday detector with ion focusing in vicinity was developed by reducing the detector radius to 3.3 mm and increasing the voltage difference between aperture grid and its front guard ring to 591 V, which could remove trailing peaks from RIP without loss of signal intensity. This fast polarity-switchable IMS with ion focusing in vicinity of Faraday detector was employed to detect a mixture of 10 ng 2,4,6-trinitrotoluene (TNT) and 50 ng hexamethylene triperoxide diamine (HMTD) by polarity-switching, and the result suggested that [TNT-H](-) and [HMTD+H](+) could be detected in a single measurement. Furthermore, the removal of trailing peaks from RIP by the Faraday detector with ion focusing in vicinity also promised the accurate identification of KClO4, KNO3 and S in common inorganic explosives, whose product ion peaks were fairly adjacent to RIP.

  10. Enabling High Fidelity Measurements of Energy and Pitch Angle for Escaping Energetic Ions with a Fast Ion Loss Detector

    Science.gov (United States)

    Chaban, R.; Pace, D. C.; Marcy, G. R.; Taussig, D.

    2016-10-01

    Energetic ion losses must be minimized in burning plasmas to maintain fusion power, and existing tokamaks provide access to energetic ion parameter regimes that are relevant to burning machines. A new Fast Ion Loss Detector (FILD) probe on the DIII-D tokamak has been optimized to resolve beam ion losses across a range of 30 - 90 keV in energy and 40° to 80° in pitch angle, thereby providing valuable measurements during many different experiments. The FILD is a magnetic spectrometer; once inserted into the tokamak, the magnetic field allows energetic ions to pass through a collimating aperture and strike a scintillator plate that is imaged by a wide view camera and narrow view photomultiplier tubes (PMTs). The design involves calculating scintillator strike patterns while varying probe geometry. Calculated scintillator patterns are then used to design an optical system that allows adjustment of the focus regions for the 1 MS/s resolved PMTs. A synthetic diagnostic will be used to determine the energy and pitch angle resolution that can be attained in DIII-D experiments. Work supported in part by US DOE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.

  11. A High-Performance FPGA-Based Image Feature Detector and Matcher Based on the FAST and BRIEF Algorithms

    Directory of Open Access Journals (Sweden)

    Michał Fularz

    2015-10-01

    Full Text Available Image feature detection and matching is a fundamental operation in image processing. As the detected and matched features are used as input data for high-level computer vision algorithms, the matching accuracy directly influences the quality of the results of the whole computer vision system. Moreover, as the algorithms are frequently used as a part of a real-time processing pipeline, the speed at which the input image data are handled is also a concern. The paper proposes an embedded system architecture for feature detection and matching. The architecture implements the FAST feature detector and the BRIEF feature descriptor and is capable of establishing key point correspondences in the input image data stream coming from either an external sensor or memory at a speed of hundreds of frames per second, so that it can cope with most demanding applications. Moreover, the proposed design is highly flexible and configurable, and facilitates the trade-off between the processing speed and programmable logic resource utilization. All the designed hardware blocks are designed to use standard, widely adopted hardware interfaces based on the AMBA AXI4 interface protocol and are connected using an underlying direct memory access (DMA architecture, enabling bottleneck-free inter-component data transfers.

  12. "Ideal" tearing and the transition to fast reconnection in the weakly collisional MHD and EMHD regimes

    CERN Document Server

    Del Sarto, Daniele; Tenerani, Anna; Velli, Marco

    2015-01-01

    This paper discusses the transition to fast growth of the tearing instability in thin current sheets in the collisionless limit where electron inertia drives the reconnection process. It has been previously suggested that in resistive MHD there is a natural maximum aspect ratio (ratio of sheet length and breadth to thickness) which may be reached for current sheets with a macroscopic length L, the limit being provided by the fact that the tearing mode growth time becomes of the same order as the Alfv\\`en time calculated on the macroscopic scale (Pucci and Velli (2014)). For current sheets with a smaller aspect ratio than critical the normalized growth rate tends to zero with increasing Lundquist number S, while for current sheets with an aspect ratio greater than critical the growth rate diverges with S. Here we carry out a similar analysis but with electron inertia as the term violating magnetic flux conservation: previously found scalings of critical current sheet aspect ratios with the Lundquist number are...

  13. Fast Hydrogen-Air Flames for Turbulence Driven Deflagration to Detonation Transition

    Science.gov (United States)

    Chambers, Jessica; Ahmed, Kareem

    2016-11-01

    Flame acceleration to Detonation produces several combustion modes as the Deflagration-to-Detonation Transition (DDT) is initiated, including fast deflagration, auto-ignition, and quasi-detonation. Shock flame interactions and turbulence levels in the reactant mixture drive rapid flame expansion, formation of a leading shockwave and post-shock conditions. An experimental study to characterize the developing shock and flame front behavior of propagating premixed hydrogen-air flames in a square channel is presented. To produce each flame regime, turbulence levels and flame propagation velocity are controlled using perforated plates in several configurations within the experimental facility. High speed optical diagnostics including Schlieren and Particle Image Velocimetry are used to capture the flow field. In-flow pressure measurements acquired post-shock, detail the dynamic changes that occur in the compressed gas directly ahead of the propagating flame. Emphasis on characterizing the turbulent post-shock environment of the various flame regimes helps identify the optimum conditions to initiate the DDT process. The study aims to further the understanding of complex physical mechanisms that drive transient flame conditions for detonation initiation. American Chemical Society.

  14. Hormonal changes associated with the transition between nursing and natural fasting in northern elephant seals (Mirounga angustirostris)

    Science.gov (United States)

    Ortiz, Rudy M.; Houser, Dorian S.; Wade, Charles E.; Ortiz, C. Leo

    2003-01-01

    To better interpret previously described hormonal changes observed during the natural postweaning fast (2-3 months) endured by pups of the northern elephant seal (Mirounga angustirostris), we compared plasma cortisol, thyroid hormones, and leptin in pups (n=5) measured during nursing and fasting periods. Blood samples were taken at four times; early (9 days postpartum) and late (18-22 days postpartum) nursing, and early (second week postweaning) and late (eighth week postweaning) fasting. Plasma cortisol increased 39% between early and late nursing and almost 4-fold by late fasting. After the early nursing period, cortisol and body mass were negatively correlated (y=28.3-0.19 x; R=0.569; p=0.027). Total thyroxine (tT(4)), free T(4) (fT(4)), total triiodothyronine (tT3) and reverse T(3) (rT(3)) were greatest at early nursing and reduced by late nursing and remained so throughout the fast, with the exception of tT(4), which increased between late nursing (17.7+/-2.1 ng mL(-1)) and late fasting (30.1+/-2.8 ng mL(-1)) periods. Leptin remained unaltered among the four sampling periods and was not correlated with body mass. Pups appear to exhibit a shift in the relationship between cortisol and body mass suggesting a potential role for cortisol in the regulation of body fat. The higher concentrations of tT(3) and tT(4) during early nursing may reflect enhanced growth and development during this period, however the increase late in fasting is likely physiologically insignificant and an artifact of reduced metabolic clearance of these hormones. Transition of the pups from nursing to fasting states is characterized by a striking lack of change in cortisol, thyroid hormones, and leptin suggesting that any metabolic alterations associated with this transition may occur independent of these hormones.

  15. Hormonal changes associated with the transition between nursing and natural fasting in northern elephant seals (Mirounga angustirostris).

    Science.gov (United States)

    Ortiz, Rudy M; Houser, Dorian S; Wade, Charles E; Ortiz, C Leo

    2003-01-01

    To better interpret previously described hormonal changes observed during the natural postweaning fast (2-3 months) endured by pups of the northern elephant seal (Mirounga angustirostris), we compared plasma cortisol, thyroid hormones, and leptin in pups (n=5) measured during nursing and fasting periods. Blood samples were taken at four times; early (9 days postpartum) and late (18-22 days postpartum) nursing, and early (second week postweaning) and late (eighth week postweaning) fasting. Plasma cortisol increased 39% between early and late nursing and almost 4-fold by late fasting. After the early nursing period, cortisol and body mass were negatively correlated (y=28.3-0.19 x; R=0.569; p=0.027). Total thyroxine (tT(4)), free T(4) (fT(4)), total triiodothyronine (tT3) and reverse T(3) (rT(3)) were greatest at early nursing and reduced by late nursing and remained so throughout the fast, with the exception of tT(4), which increased between late nursing (17.7+/-2.1 ng mL(-1)) and late fasting (30.1+/-2.8 ng mL(-1)) periods. Leptin remained unaltered among the four sampling periods and was not correlated with body mass. Pups appear to exhibit a shift in the relationship between cortisol and body mass suggesting a potential role for cortisol in the regulation of body fat. The higher concentrations of tT(3) and tT(4) during early nursing may reflect enhanced growth and development during this period, however the increase late in fasting is likely physiologically insignificant and an artifact of reduced metabolic clearance of these hormones. Transition of the pups from nursing to fasting states is characterized by a striking lack of change in cortisol, thyroid hormones, and leptin suggesting that any metabolic alterations associated with this transition may occur independent of these hormones.

  16. Evaluation of observable phase space by fast ion loss detector by calculating particle orbits in consideration of plasma facing components and three dimensional magnetic field

    Science.gov (United States)

    Shinohara, Kouji; Kim, Junghee; Kim, Jun Young; Rhee, Tongnyeol

    2016-11-01

    The orbits of lost ions can be calculated from the information obtained by a fast ion loss detector (FILD). The orbits suggest a source of the lost fast ions in a phase space. However, it is not obvious whether an observable set of orbits, or phase space, of a FILD appropriately covers the region of interest to be investigated since the observable phase space can be affected by plasma facing components (PFCs) and a magnetic configuration. A tool has been developed to evaluate the observable phase space of FILD diagnostic by calculating particle orbits by taking the PFCs and 3D magnetic field into account.

  17. Measurement of the thermal and fast neutron flux in a research reactor with a Li and Th loaded optical fibre detector

    CERN Document Server

    Yamane, Y; Misawa, T; Karlsson, J K H; Pázsit, I

    1999-01-01

    The spatial dependence of thermal and fast neutron flux was measured axially in the core of a 1 MW research reactor. The measurements were made by a thin optical fibre detector with a neutron sensitive ZnS(Ag) scintillation tip. For thermal neutrons sup 6 Li was used, whereas for fast neutrons sup 2 sup 3 sup 2 Th was used as neutron converter. The spatial dependence was measured by moving the fibre axially with a uniform speed. The measurement takes a few minutes, compared to up to 10 h with the conventional wire activation method. Comparison with traditional measurements shows a good agreement. (author)

  18. Proposal for a GHz count rate near-IR single-photon detector based on a nanoscale superconducting transition edge sensor

    CERN Document Server

    Santavicca, Daniel F; Prober, Daniel E; 10.1117/12.883979

    2012-01-01

    We describe a superconducting transition edge sensor based on a nanoscale niobium detector element. This device is predicted to be capable of energy-resolved near-IR single-photon detection with a GHz count rate. The increased speed and sensitivity of this device compared to traditional transition edge sensors result from the very small electronic heat capacity of the nanoscale detector element. In the present work, we calculate the predicted thermal response time and energy resolution. We also discuss approaches for achieving efficient optical coupling to the sub-wavelength detector element using a resonant near-IR antenna.

  19. Search for Pauli Exclusion Principle Violating Atomic Transitions and Electron Decay with a P-type Point Contact Germanium Detector

    CERN Document Server

    Abgrall, N; Avignone, F T; Barabash, A S; Bertrand, F E; Bradley, A W; Brudanin, V; Busch, M; Buuck, M; Caldwell, A S; Chan, Y-D; Christofferson, C D; Chu, P -H; Cuesta, C; Detwiler, J A; Dunagan, C; Efremenko, Yu; Ejiri, H; Elliott, S R; Finnerty, P S; Galindo-Uribarri, A; Gilliss, T; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guinn, I S; Guiseppe, V E; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Jasinski, B R; Keeter, K J; Kidd, M F; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; MacMullin, J; Martin, R D; Massarczyk, R; Meijer, S J; Mertens, S; Orrell, J L; O'Shaughnessy, C; Poon, A W P; Radford, D C; Rager, J; Rielage, K; Robertson, R G H; Romero-Romero, E; Shanks, B; Shirchenko, M; Suriano, A M; Tedeschi, D; Trimble, J E; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Wiseman, C; Xu, W; Yakushev, E; Yu, C -H; Yumatov, V; Zhitnikov, I

    2016-01-01

    A search for Pauli-exclusion-principle-violating K-alpha electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of 5.8x10^30 seconds at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the x-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of 6.8x10^30 seconds at 90 C.L. It is estimated that the MAJORANA DEMONSTRATOR, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of 76-Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation.

  20. Search for Pauli exclusion principle violating atomic transitions and electron decay with a p-type point contact germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, N.; Bradley, A.W.; Chan, Y.D.; Mertens, S.; Poon, A.W.P. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Arnquist, I.J.; Hoppe, E.W.; Kouzes, R.T.; LaFerriere, B.D.; Orrell, J.L. [Pacific Northwest National Laboratory, Richland, WA (United States); Avignone, F.T. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Barabash, A.S.; Konovalov, S.I.; Yumatov, V. [National Research Center ' ' Kurchatov Institute' ' Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bertrand, F.E.; Galindo-Uribarri, A.; Radford, D.C.; Varner, R.L.; White, B.R.; Yu, C.H. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Brudanin, V.; Shirchenko, M.; Vasilyev, S.; Yakushev, E.; Zhitnikov, I. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Busch, M. [Duke University, Department of Physics, Durham, NC (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); Buuck, M.; Cuesta, C.; Detwiler, J.A.; Gruszko, J.; Guinn, I.S.; Leon, J.; Robertson, R.G.H. [University of Washington, Department of Physics, Center for Experimental Nuclear Physics and Astrophysics, Seattle, WA (United States); Caldwell, A.S.; Christofferson, C.D.; Dunagan, C.; Howard, S.; Suriano, A.M. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Chu, P.H.; Elliott, S.R.; Goett, J.; Massarczyk, R.; Rielage, K. [Los Alamos National Laboratory, Los Alamos, NM (United States); Efremenko, Yu. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Ejiri, H. [Osaka University, Research Center for Nuclear Physics, Ibaraki, Osaka (Japan); Finnerty, P.S.; Gilliss, T.; Giovanetti, G.K.; Henning, R.; Howe, M.A.; MacMullin, J.; Meijer, S.J.; O' Shaughnessy, C.; Rager, J.; Shanks, B.; Trimble, J.E.; Vorren, K.; Xu, W. [Triangle Universities Nuclear Laboratory, Durham, NC (United States); University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States); Green, M.P. [North Carolina State University, Department of Physics, Raleigh, NC (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); Guiseppe, V.E.; Tedeschi, D.; Wiseman, C. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Jasinski, B.R. [University of South Dakota, Department of Physics, Vermillion, SD (United States); Keeter, K.J. [Black Hills State University, Department of Physics, Spearfish, SD (United States); Kidd, M.F. [Tennessee Tech University, Cookeville, TN (United States); Martin, R.D. [Queen' s University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON (Canada); Romero-Romero, E. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Vetter, K. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); University of California, Department of Nuclear Engineering, Berkeley, CA (United States); Wilkerson, J.F. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States)

    2016-11-15

    A search for Pauli-exclusion-principle-violating K{sub α} electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of 5.8 x 10{sup 30} s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of 6.8 x 10{sup 30} s at 90% C.L. It is estimated that the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of {sup 76}Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation. (orig.)

  1. Performance of the transition radiation detector flown on the NMSU/WIZARD TS93 balloon-borne instrument

    Energy Technology Data Exchange (ETDEWEB)

    Aversa, F.; Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy). Dip. di Fisica]|[INFN, Trieste (Italy); Basini, G.; Brancaccio, F.M. [INFN, Laboratori nazionali di Frascati, Frascati, Rome (Italy); Bellotti, R. [Bari Univ. (Italy). Dip. di Fisica]|[INFN, Bari (Italy); Bidoli, V. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Bocciolini, M. [Florence Univ. (Italy). Dip. di Fisica]|[INFN, Florence (Italy); Bronzini, F. [Rome Univ. `La Sapienza` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `La Sapienza` Rome (Italy)

    1995-09-01

    It is built and tested a transition radiation detector (TRD) to discriminate positrons from protons in the balloon flight TS 93 experiment. It is presented the TRD performance using flight data obtaining a proton-positron rejection factor of the order of 10{sup -3}. During the 24 hour flight, the data in the momentum range 4-50 GeV/c are collected. Using the TRD together with the Silicon calorimeter, it is achieved an overall rejection factor of about 10{sup -5} of positron against the proton background over the entire momentum range.

  2. Heat capacity and transition behavior of sucrose by standard, fast scanning and temperature-modulated calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Magoń, A. [Department of Chemistry, University of Technology, 35-959 Rzeszów (Poland); Wurm, A.; Schick, C. [Department of Physics, University of Rostock, 18057 Rostock (Germany); Pangloli, Ph.; Zivanovic, S. [Department of Food Science and Technology, University of Tennessee, Knoxville, TN 37996 (United States); Skotnicki, M. [Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań (Poland); Pyda, M., E-mail: mpyda@utk.edu [Department of Chemistry, University of Technology, 35-959 Rzeszów (Poland)

    2014-08-10

    Highlights: • Experimental, apparent heat capacity of sucrose was investigated by advanced thermal analysis. • Vibrational heat capacity of solid state was linked with a low temperature experimental heat capacity of sucrose. • Equilibrium melting parameters of sucrose were determined. • Decomposition, superheating of crystalline sucrose during melting process were presented. • TGA, DSC, TMDSC, and FSC are useful tools for characterization of sucrose. - Abstract: The heat capacity (C{sub p}) of crystalline and amorphous sucrose was determined using standard and quasi-isothermal temperature modulated differential scanning calorimetry. The results were combined with the published data determined by adiabatic calorimetry, and the C{sub p} values are now reported for the wide 5–600 K range. The experimental C{sub p} of solid sucrose at 5–300 K was used to calculate the vibrational, solid C{sub p} based on the vibrational molecular motions. The calculated solid and liquid C{sub p} together with the transition parameters for equilibrium conditions were used as references for detailed quantitative thermal analysis of crystalline and amorphous sucrose. Melting temperature (T{sub m}) of the crystalline sucrose was identified in a broad 442–465 K range with a heat of fusion of 40–46 J/mol determined at heating rates 0.5–20 K/min, respectively. The equilibrium T{sub m} and heat of fusion of crystalline sucrose were estimated at zero heating rate as T{sup o}{sub m} = 424.4 K and ΔH{sup o}{sub f} = 32 kJ/mol, respectively. The glass transition temperature (T{sub g}) of amorphous sucrose was at 331 K with a change in C{sub p} of 267 J/(mol K) as it was estimated from reversing heat capacity by quasi-isothermal TMDSC on cooling. At heating rates less than 30 K/min, thermal decomposition occurred during melting, while at extreme rate of 1000 K/s, degradation was not observed. Data obtained by fast scanning calorimetry (FSC) at 1000 K/s, showed that T{sub m} was

  3. Optimization of a transition radiation detector for the compressed baryonic matter experiment

    Energy Technology Data Exchange (ETDEWEB)

    Arend, Andreas

    2014-07-01

    The Transition Radiation Detector (TRD) of the compressed baryonic matter (CBM) experiment at FAIR has to provide electron-pion separation as well as charged-particle tracking. Within this work, thin and symmetric Multi-Wire Proportional Chambers (MWPCs) without additional drift region were proposed. the proposed prototypes feature a foil-based entrance window to minimize the material budget and to reduce the absorption probability of the generated TR photon. Based on the conceptual design of thin and symmetric MWPCs without drift region, multiple prototypes were constructed and their performance presented within this thesis. With the constructed prototypes of generations II and III the geometries of the wire and cathode planes were determined to be 4+4 mm and 5+5 mm. Based on the results of a performed test beam campaign in 2011 with this prototypes new prototypes of generation IV were manufactured and tested in a subsequent test beam campaign in 2012. Prototypes of different radiators were developed together with the MWPC prototypes. Along with regular foil radiators, foam-based radiator types made of polyethylene foam were utilized. Also radiators constructed in a sandwich design, which used different fiber materials confined with solid foam sheets, were used. For the prototypes without drift region, simulations of the electrostatic and mechanical properties were performed. The GARFIELD software package was used to simulate the electric field and to determine the resulting drift lines of the generated electrons. The mean gas amplification depending on the utilized gas and the applied anode voltage was simulated and the gas-gain homogeneity was verified. Since the thin foil-based entrance window experiences a deformation due to pressure differences inside and outside the MWPC, the variation on the gas gain depending on the deformation was simulated. The mechanical properties focusing on the stability of the entrance window was determined with a finiteelement

  4. Sol-to-Gel Transition in Fast Evaporating Systems Observed by in Situ Time-Resolved Infrared Spectroscopy.

    Science.gov (United States)

    Innocenzi, Plinio; Malfatti, Luca; Carboni, Davide; Takahashi, Masahide

    2015-06-22

    The in situ observation of a sol-to-gel transition in fast evaporating systems is a challenging task and the lack of a suitable experimental design, which includes the chemistry and the analytical method, has limited the observations. We synthesise an acidic sol, employing only tetraethylorthosilicate, SiCl4 as catalyst and deuterated water; the absence of water added to the sol allows us to follow the absorption from the external environment and the evaporation of deuterated water. The time-resolved data, obtained by attenuated total reflection infrared spectroscopy on an evaporating droplet, enables us to identify four different stages during evaporation. They are linked to specific hydrolysis and condensation rates that affect the uptake of water from external environment. The second stage is characterized by a decrease in hydroxyl content, a fast rise of condensation rate and an almost stationary absorption of water. This stage has been associated with the sol-to-gel transition.

  5. High-voltage safety fuses for the transition-radiation tracking detector in the ATLAS experiment

    NARCIS (Netherlands)

    Voronov, SA; Voronov, YA; Onishchenko, EM; Simakov, AB; Sosnovtsev, VV; Suchkov, SI; Sugrobova, TA

    2004-01-01

    A safety fuse has been designed for the electrical protection of gas-filled detectors in the ATLAS experiment at CERN (Geneva, Switzerland). The fuse is a polished lithium niobate plate with a titanium strip of 91-kOmega resistance deposited by the photolithographic technique. The forced blow-out ti

  6. Cross-calibration of the Transition Radiation Detector of AMS-02 for an Energy Measurement of Cosmic-Ray Ions

    CERN Document Server

    Obermeier, Andreas

    2014-01-01

    Since May 2011 the AMS-02 experiment is installed on the International Space Station and is observing cosmic radiation. It consists of several state-of-the-art sub-detectors, which redundantly measure charge and energy of traversing particles. Due to the long exposure time of AMS-02 of many years the measurement of momentum for protons and ions is limited systematically by the spatial resolution and magnetic field strength of the silicon tracker. The maximum detectable rigidity for protons is about 1.8~TV, for helium about 3.6~TV. We investigate the possibility to extend the range of the energy measurement for heavy nuclei ($Z\\geq2$) with the transition radiation detector (TRD). The response function of the TRD shows a steep increase in signal from the level of ionization at a Lorentz factor $\\gamma$ of about 500 to $\\gamma\\approx20000$, where the transition radiation signal saturates. For heavy ions the signal fluctuations in the TRD are sufficiently small to allow an energy measurement with the TRD beyond t...

  7. OGLE2-TR-L9: An extrasolar planet transiting a fast-rotating F3 star

    CERN Document Server

    Snellen, I A G; van der Burg, R F J; Dreizler, S; Greiner, J; de Hoon, M D J; Husser, T O; Kruhler, T; Saglia, R P; Vuijsje, F N

    2008-01-01

    Context: Photometric observations for the OGLE-II microlens monitoring campaign have been taken in the period 1997-2000. All light curves of this campaign have recently been made public. Our analysis of these data has revealed 13 low-amplitude transiting objects among ~15700 stars in three Carina fields towards the galactic disk. One of these objects, OGLE2-TR-L9 (P~2.5 days), turned out to be an excellent transiting planet candidate. Aims: In this paper we report on our investigation of the true nature of OGLE2-TR-L9, by re-observing the photometric transit with the aim to determine the transit parameters at high precision, and by spectroscopic observations, to estimate the properties of the host star, and to determine the mass of the transiting object through radial velocity measurements. Methods: High precision photometric observations have been obtained in g', r', i', and z' band simultaneously, using the new GROND detector, mounted on the MPI/ESO 2.2m telescope at La Silla. Eight epochs of high-dispersio...

  8. Waveguide-to-planar circuit transition for millimetre-wave detectors

    CERN Document Server

    Yassin, G; King, O G; North, C E

    2008-01-01

    We present a novel design of a waveguide to microstrip or coplanar waveguide transition using a unilateral finline taper. The transition from the unilateral finline mode to the TEM microstrip mode is done directly, avoiding the antipodal finline tapers that have commonly been employed. This results in significant simplification of the design and fabrication, and shortening of the chip length, thereby reducing insertion loss. In this paper we shall present designs at 90 GHz that can be employed in superconducting tunnel junction mixers or Transition Edge Sensor bolometers, and scale-model measurements at 15 GHz.

  9. Charged particle spectra measured during the transit to Mars with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD)

    Science.gov (United States)

    Ehresmann, Bent; Hassler, Donald M.; Zeitlin, Cary; Guo, Jingnan; Köhler, Jan; Wimmer-Schweingruber, Robert F.; Appel, Jan K.; Brinza, David E.; Rafkin, Scot C. R.; Böttcher, Stephan I.; Burmeister, Sönke; Lohf, Henning; Martin, Cesar; Böhm, Eckart; Matthiä, Daniel; Reitz, Günther

    2016-08-01

    The Mars Science Laboratory (MSL) started its 253-day cruise to Mars on November 26, 2011. During cruise the Radiation Assessment Detector (RAD), situated on board the Curiosity rover, conducted measurements of the energetic-particle radiation environment inside the spacecraft. This environment consists mainly of galactic cosmic rays (GCRs), as well as secondary particles created by interactions of these GCRs with the spacecraft. The RAD measurements can serve as a proxy for the radiation environment a human crew would encounter during a transit to Mars, for a given part of the solar cycle, assuming that a crewed vehicle would have comparable shielding. The measurements of radiological quantities made by RAD are important in themselves, and, the same data set allow for detailed analysis of GCR-induced particle spectra inside the spacecraft. This provides important inputs for the evaluation of current transport models used to model the free-space (and spacecraft) radiation environment for different spacecraft shielding and different times in the solar cycle. Changes in these conditions can lead to significantly different radiation fields and, thus, potential health risks, emphasizing the need for validated transport codes. Here, we present the first measurements of charged particle fluxes inside a spacecraft during the transit from Earth to Mars. Using data obtained during the last two month of the cruise to Mars (June 11-July 14, 2012), we have derived detailed energy spectra for low-Z particles stopping in the instrument's detectors, as well as integral fluxes for penetrating particles with higher energies. Furthermore, we analyze the temporal changes in measured proton fluxes during quiet solar periods (i.e., when no solar energetic particle events occurred) over the duration of the transit (December 9, 2011-July 14, 2012) and correlate them with changing heliospheric conditions.

  10. Charged particle spectra measured during the transit to Mars with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD).

    Science.gov (United States)

    Ehresmann, Bent; Hassler, Donald M; Zeitlin, Cary; Guo, Jingnan; Köhler, Jan; Wimmer-Schweingruber, Robert F; Appel, Jan K; Brinza, David E; Rafkin, Scot C R; Böttcher, Stephan I; Burmeister, Sönke; Lohf, Henning; Martin, Cesar; Böhm, Eckart; Matthiä, Daniel; Reitz, Günther

    2016-08-01

    The Mars Science Laboratory (MSL) started its 253-day cruise to Mars on November 26, 2011. During cruise the Radiation Assessment Detector (RAD), situated on board the Curiosity rover, conducted measurements of the energetic-particle radiation environment inside the spacecraft. This environment consists mainly of galactic cosmic rays (GCRs), as well as secondary particles created by interactions of these GCRs with the spacecraft. The RAD measurements can serve as a proxy for the radiation environment a human crew would encounter during a transit to Mars, for a given part of the solar cycle, assuming that a crewed vehicle would have comparable shielding. The measurements of radiological quantities made by RAD are important in themselves, and, the same data set allow for detailed analysis of GCR-induced particle spectra inside the spacecraft. This provides important inputs for the evaluation of current transport models used to model the free-space (and spacecraft) radiation environment for different spacecraft shielding and different times in the solar cycle. Changes in these conditions can lead to significantly different radiation fields and, thus, potential health risks, emphasizing the need for validated transport codes. Here, we present the first measurements of charged particle fluxes inside a spacecraft during the transit from Earth to Mars. Using data obtained during the last two month of the cruise to Mars (June 11-July 14, 2012), we have derived detailed energy spectra for low-Z particles stopping in the instrument's detectors, as well as integral fluxes for penetrating particles with higher energies. Furthermore, we analyze the temporal changes in measured proton fluxes during quiet solar periods (i.e., when no solar energetic particle events occurred) over the duration of the transit (December 9, 2011-July 14, 2012) and correlate them with changing heliospheric conditions.

  11. Gaseous Detectors: recent developments and applications

    CERN Document Server

    Titov, Maxim

    2010-01-01

    Since long time, the compelling scientific goals of future high energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multiwire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volume with low mass budget, have been playing an important role in many fields of physics. Advances in photo-lithography and micro-processing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolut...

  12. Experimental Study on Fast Electrons Transport in Ultra-intense Laser Irradiated Solid Targets by Transition Radiation

    Science.gov (United States)

    Zhijian, Zheng; Guangcan, Wang; Yuqiu, Gu

    2008-11-01

    The experiment was performed with SILEX laser facility(Ti-saphhire) at LFRC in China. The SILEX parameter: wavelength 0.8μm, duration 35fs, output power 280TW, contrast 5*105, The focal spot φ10μm(F/1.7), intensity on target surface 1*10^19W/cm^2(F/3). The main diagnostic equipments are the electron spectrometer, OMA spectrometer, optical streak camera. Some experimental results are given: The spectrum of optical emission from rear surface is rather narrow around some particular frequencies(1φ, 2φ, 3φ), We ascribe and confirm that the spike-like spectral line that is coherent transition radiation; The coherent light is also seen on time-integrated image with ring-patter due to Weibel instability of the fast electron transport; Obtained experimental cure of target thickness vs OTR image intensity is relative to mean free path of fast electron; The measuring optical transition radiation(OTR) duration of 171ps much longer than 1ps duration of fast electron transport target, the possible explanation is that the OTR duration to be determined magnetic diffusion time.

  13. Discovery of XO-6b: A Hot Jupiter Transiting a Fast Rotating F5 Star on an Oblique Orbit

    Science.gov (United States)

    Crouzet, N.; McCullough, P. R.; Long, D.; Montanes Rodriguez, P.; Lecavelier des Etangs, A.; Ribas, I.; Bourrier, V.; Hébrard, G.; Vilardell, F.; Deleuil, M.; Herrero, E.; Garcia-Melendo, E.; Akhenak, L.; Foote, J.; Gary, B.; Benni, P.; Guillot, T.; Conjat, M.; Mékarnia, D.; Garlitz, J.; Burke, C. J.; Courcol, B.; Demangeon, O.

    2017-03-01

    Only a few hot Jupiters are known to orbit around fast rotating stars. These exoplanets are harder to detect and characterize and may be less common than around slow rotators. Here, we report the discovery of the transiting hot Jupiter XO-6b, which orbits a bright, hot, and fast rotating star: V = 10.25, T eff⋆ = 6720 ± 100 K, v sin i ⋆ = 48 ± 3 km s‑1. We detected the planet from its transits using the XO instruments and conducted a follow-up campaign. Because of the fast stellar rotation, radial velocities taken along the orbit do not yield the planet’s mass with a high confidence level, but we secure a 3σ upper limit M p orbit with a sky-projected obliquity {\\boldsymbol{λ }}=-20\\buildrel{\\circ}\\over{.} 7+/- 2\\buildrel{\\circ}\\over{.} 3. The rotation period of the star is shorter than the orbital period of the planet: P rot P orb = 3.77 days. Thus, this system stands in a largely unexplored regime of dynamical interactions between close-in giant planets and their host stars.

  14. High-voltage safety fuses for the transition-radiation tracking detector in the ATLAS experiment

    CERN Document Server

    Voronov, S A; Onishchenko, E M; Simakov, A B; Sosnovtsev, V V; Suchkov, S; Sugrobova, T A

    2004-01-01

    A safety fuse has been designed for the electrical protection of gas- filled detectors in the ATLAS experiment at CERN (Geneva, Switzerland). The fuse is a polished lithium niobate plate with a titanium strip of 91-kOmega resistance deposited by the photolithographic technique. The forced blowout time of the fuse is 10-50 ms; whereupon the leakage current through it is less than 1 nA at a 2-kV voltage. The resistance of the fuse case is greater than or equivalent equal' greater than 10**1**2 Omega. Its overall dimensions are 5.8 multiplied by 3.8 multiplied by 2 mm.

  15. Rapid characterization of complex structural phase transitions using powder diffraction and an area detector

    OpenAIRE

    Pattison, Philip; Knudsen, Kenneth D; Cerny, Radovan; Koller, Edmond

    2000-01-01

    The use of a high-intensity and well collimated X-ray beam from a third-generation synchrotron source, combined with an area detector with online readout capabilities, allows high-quality powder patterns to be obtained with exposure times of only a few seconds. Powder measurements of a rare-earth manganate perovskite (Nd0.43Sr0.57MnO3) were performed in the temperature range 105–200 K, and the data were of sufficient quality to be able to extract, via Rietveld refinement, accurate values for ...

  16. CARIOCA : A Fast Binary Front-End Implemented in 0.25Pm CMOS using a Novel Current-Mode Technique for the LHCb Muon Detector

    CERN Multimedia

    2000-01-01

    The CARIOCA front-end is an amplifier discriminator chip, using 0.25mm CMOS technology, developed with a very fast and low noise preamplifier. This prototype was designed to have input impedance below 10W. Measurements showed a peaking time of 14ns and noise of 450e- at zero input capacitance, with a noise slope of 37.4 e-/pF. The sensitivity of 8mV/fC remains almost unchanged up to a detector capacitance of 120pF.

  17. A Semi-Continuous State-Transition Probability HMM-Based Voice Activity Detector

    Directory of Open Access Journals (Sweden)

    H. Othman

    2007-02-01

    Full Text Available We introduce an efficient hidden Markov model-based voice activity detection (VAD algorithm with time-variant state-transition probabilities in the underlying Markov chain. The transition probabilities vary in an exponential charge/discharge scheme and are softly merged with state conditional likelihood into a final VAD decision. Working in the domain of ITU-T G.729 parameters, with no additional cost for feature extraction, the proposed algorithm significantly outperforms G.729 Annex B VAD while providing a balanced tradeoff between clipping and false detection errors. The performance compares very favorably with the adaptive multirate VAD, option 2 (AMR2.

  18. A Semi-Continuous State-Transition Probability HMM-Based Voice Activity Detector

    Directory of Open Access Journals (Sweden)

    Othman H

    2007-01-01

    Full Text Available We introduce an efficient hidden Markov model-based voice activity detection (VAD algorithm with time-variant state-transition probabilities in the underlying Markov chain. The transition probabilities vary in an exponential charge/discharge scheme and are softly merged with state conditional likelihood into a final VAD decision. Working in the domain of ITU-T G.729 parameters, with no additional cost for feature extraction, the proposed algorithm significantly outperforms G.729 Annex B VAD while providing a balanced tradeoff between clipping and false detection errors. The performance compares very favorably with the adaptive multirate VAD, option 2 (AMR2.

  19. Pantothenate kinase 1 is required to support the metabolic transition from the fed to the fasted state.

    Directory of Open Access Journals (Sweden)

    Roberta Leonardi

    Full Text Available Coenzyme A (CoA biosynthesis is regulated by the pantothenate kinases (PanK, of which there are four active isoforms. The PanK1 isoform is selectively expressed in liver and accounted for 40% of the total PanK activity in this organ. CoA synthesis was limited using a Pank1(-/- knockout mouse model to determine whether the regulation of CoA levels was critical to liver function. The elimination of PanK1 reduced hepatic CoA levels, and fasting triggered a substantial increase in total hepatic CoA in both Pank1(-/- and wild-type mice. The increase in hepatic CoA during fasting was blunted in the Pank1(-/- mouse, and resulted in reduced fatty acid oxidation as evidenced by abnormally high accumulation of long-chain acyl-CoAs, acyl-carnitines, and triglycerides in the form of lipid droplets. The Pank1(-/- mice became hypoglycemic during a fast due to impaired gluconeogenesis, although ketogenesis was normal. These data illustrate the importance of PanK1 and elevated liver CoA levels during fasting to support the metabolic transition from glucose utilization and fatty acid synthesis to gluconeogenesis and fatty acid oxidation. The findings also suggest that PanK1 may be a suitable target for therapeutic intervention in metabolic disorders that feature hyperglycemia and hypertriglyceridemia.

  20. Modeling the response of a fast ion loss detector using orbit tracing techniques in a neutral beam prompt-loss study on the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pace, D. C.; Heidbrink, W. W.; Muscatello, C. M.; Zhu, Y. B. [University of California-Irvine, Irvine, California 92697 (United States); Fisher, R. K.; Van Zeeland, M. A. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Garcia-Munoz, M. [Max-Planck-Institut fuer Plasmaphysik, Garching D-85748 (Germany); Darrow, D. S.; Nazikian, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

    2010-10-15

    A numerical model describing the expected measurements of neutral beam prompt-losses by a newly commissioned fast ion loss detector (FILD) in DIII-D is presented. This model incorporates the well understood neutral beam deposition profiles from all eight DIII-D beamlines to construct a prompt-loss source distribution. The full range of detectable ion orbit phase space available to the FILD is used to calculate ion trajectories that overlap with neutral beam injection footprints. Weight functions are applied to account for the level of overlap between these detectable orbits and the spatial and velocity (pitch) properties of ionized beam neutrals. An experimental comparison is performed by firing each neutral beam individually in the presence of a ramping plasma current. Fast ion losses determined from the model are in agreement with measured losses.

  1. SiC-based neutron detector in quasi-realistic working conditions: efficiency and stability at room and high temperature under fast neutron irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Ferone, Raffaello; Issa, Fatima; Ottaviani, Laurent; Biondo, Stephane; Vervisch, Vanessa [IM2NP, UMR CNRS 7334, Aix-Marseille University, Case 231,13397 Marseille Cedex 20, (France); Szalkai, Dora; Klix, Axel [KIT- Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology Karlsruhe 76344, (Germany); Vermeeren, Ludo [SCK-CEN, Boeretang 200, B-2400 Mol, (Belgium); Saenger, Richard [Schlumberger, Clamart, (France); Lyoussi, Abadallah [CEA, DEN, Departement d' Etudes des Reacteurs, Service de Physique Experimentale, Laboratoire Dosimetrie Capteurs Instrumentation, 13108 Saint-Paul-lez-Durance, (France)

    2015-07-01

    In the framework of the European I SMART project, we have designed and made new SiC-based nuclear radiation detectors able to operate in harsh environments and to detect both fast and thermal neutrons. In this paper, we report experimental results of fast neutron irradiation campaign at high temperature (106 deg. C) in quasi-realistic working conditions. Our device does not suffer from high temperature, and spectra do show strong stability, preserving features. These experiments, as well as others in progress, show the I SMART SiC-based device skills to operate in harsh environments, whereas other materials would strongly suffer from degradation. Work is still demanded to test our device at higher temperatures and to enhance efficiency in order to make our device fully exploitable from an industrial point of view. (authors)

  2. Rapid characterization of complex structural phase transitions using powder diffraction and an area detector.

    Science.gov (United States)

    Pattison, P; Knudsen, K D; Cerny, R; Koller, E

    2000-07-01

    The use of a high-intensity and well collimated X-ray beam from a third-generation synchrotron source, combined with an area detector with online readout capabilities, allows high-quality powder patterns to be obtained with exposure times of only a few seconds. Powder measurements of a rare-earth manganate perovskite (Nd(0.43)Sr(0.57)MnO(3)) were performed in the temperature range 105-200 K, and the data were of sufficient quality to be able to extract, via Rietveld refinement, accurate values for the lattice constants and atomic parameters. The temperature dependence of the Mn-O-Mn bond angles and Mn-O distances obtained in this manner illustrate the well known correlation between the distortion of the MnO(6) octahedra and the onset of orbital ordering. The success of this study, for which only two hours of synchrotron beam time was required, indicates the enormous improvements in efficiency and throughput which area detectors are bringing to powder diffraction experiments.

  3. Sensitive neutron detection method using delayed coincidence transitions in existing iodine-containing detectors

    CERN Document Server

    Yakushev, E; Drokhlyansky, A; Filosofov, D; Kalaninova, Z; Timkin, V; Ponomarev, D

    2016-01-01

    This letter explains a new, highly sensitive method for the detection of neutrons, which uses the T$_{1/2}=845$ ns delay in the decay of $^{128}$I at the 137.8 keV energy level, resulting from the capture of thermal neutrons by iodine nuclei in NaI and CsI scintillation detectors. The use of delayed coincidence techniques with a several $\\mu {\\rm s}$ time frame for delayed events allows for the highly effective discrimination of neutron events from any existing background signals. A comparison of ambient neutron measurements between those identified through the suggested method from a cylindrical, \\o$\\, 63 \\, {\\rm mm}\\times 63\\, {\\rm mm}$ NaI(Tl) scintillator and those from a low-background proportional $^3$He counter experimentally demonstrates the efficacy of this neutron detection method. For an isotropic, $4\\pi$, thermal neutron flux of 1 ${\\rm n}\\, {\\rm cm}^{-2}\\, {\\rm s}^{-1}$, the absolute sensitivity of the NaI detector was found to be $6.5 \\pm 1\\, {\\rm counts}\\, {\\rm s}^{-1}$ with a background of $0....

  4. Sensitive neutron detection method using delayed coincidence transitions in existing iodine-containing detectors

    Science.gov (United States)

    Yakushev, E.; Rozov, S.; Drokhlyansky, A.; Filosofov, D.; Kalaninova, Z.; Timkin, V.; Ponomarev, D.

    2017-03-01

    This work explains a new, highly sensitive method for the detection of neutrons, which uses the T1/2 = 845 ns delay in the decay of 128I at the 137.8 keV energy level, resulting from the capture of thermal neutrons by iodine nuclei in NaI and CsI scintillation detectors. The use of delayed coincidence techniques with a several μs delay time window for delayed events allows for the highly effective discrimination of neutron events from any existing background signals. A comparison of ambient neutron measurements between those identified through the suggested method from a cylindrical, ø 63 mm × 63 mm NaI(Tl) scintillator and those from a low-background proportional 3He counter experimentally demonstrates the efficacy of this neutron detection method. For an isotropic, 4 π , thermal neutron flux of 1 ncm-2s-1 , the absolute sensitivity of the NaI detector was found to be 6.5 ± 1 countss-1 with an accidental coincidence background of 0.8 eventsday-1 for any delay time window of Δt = 1 μs . The proposed method can provide low-background experiments, using NaI or CsI, with measurements of the rate and stability of incoming neutron flux to a greater accuracy than 10-8 ncm-2s-1 .

  5. Particle Discrimination in TeO$_{2}$ Bolometers using Light Detectors read out by Transition Edge Sensors

    CERN Document Server

    Schäffner, K; Bellini, F; Casali, N; Ferroni, F; Hauff, D; Nagorny, N; Pattavina, L; Petricca, F; Pirro, S; Pröbst, F; Reindl, F; Seidel, W; Strauss, R

    2014-01-01

    An active discrimination of the dominant $\\alpha$-background is the prerequisite for future DBD experiments based on TeO$_{2}$ bolometers. We investigate such $\\alpha$-particle rejection in cryogenic TeO$_{2}$ bolometers by the detection of Cherenkov light. For a setup consisting of a large TeO$_{2}$ crystal 285 g and a separate cryogenic light detector, both read out by transition edge sensors at around 10 mK, we obtain an event-by-event identification of e/$\\gamma$- and $\\alpha$-events. In the energy interval ranging from 2400 keV to 2800 keV and covering the Q-value of $^{130}$Te a discrimination power of 3.7 could be demonstrated.

  6. A Comparison of Fundamental Noise in Kinetic Inductance Detectors and Transition Edge Sensors for Millimeter-wave Applications

    CERN Document Server

    Lowitz, A E; Golwala, S R; Timbie, P T

    2014-01-01

    Kinetic inductance detectors (KIDs) show promise as a competitive technology for astronomical observations over a wide range of wavelengths. We are interested in comparing the fundamental limitations to the sensitivity of KIDs with that of transition edge sensors (TESs) at millimeter wavelengths, specifically over the wavelengths required for studies of the Cosmic Microwave Background (CMB). We calculate the total fundamental noise arising from optical and thermal excitations in TESs and KIDs for a variety of bath temperatures and optical loading scenarios for applications at millimeter wavelengths. Special consideration is given to the case of ground-based observations of 100 GHz radiation with a 100 mK bath temperature, conditions consistent with the planned second module of the QUBIC telescope, a CMB instrument. Under these conditions, a titanium nitride KID with optimized critical temperature pays a few percent noise penalty compared to a typical optimized TES.

  7. Fast signal processing of a yttrium-aluminum-perovskite:Ce detector for synchrotron x-ray experiments

    Science.gov (United States)

    Harada, Masaaki; Sakurai, Kenji; Saitoh, Kazuhiro; Kishimoto, Shunji

    2001-11-01

    An amplifier has been developed to form narrow pulses of less than 100 ns for a YAP:Ce scintillator, which appears promising as a detector for high-counting rate x-ray measurements. The performance of the detector system has been evaluated with monochromatic 8, 16.5, and 25 keV synchrotron x-ray photons at the Photon Factory. The whole deadtime obtained was 84 ns, which is around 3.5 times the decay time of the scintillation (25 ns), indicating that the present system is almost optimum. It has been found that the counting loss for 1 M counts/s is only 8%-9%, and that the detector can count extremely strong photons up to 5 M counts/s.

  8. The Oscillator Strength of the Quantum Transitions in Multi-Resonant-Tunneling Structures Tours as Basic Elements of Quantum Cascade Lasers and Detectors in a Transverse Magnetic Field

    Directory of Open Access Journals (Sweden)

    I.V. Boyko

    2014-04-01

    Full Text Available Using the model of a closed resonant tunneling structure developed the theory of the electron energy spectrum and oscillator strengths of the quantum electronic transitions between energy levels of this nanostructure. It is shown that by changing the intensity of the magnetic field can be in a wide range of electromagnetic waves to adjust the operating frequency of the radiation of a quantum cascade laser or detector, working on quantum transitions between the first and the third energy electronic states.

  9. CMS Strip Detector: Operational Experience and Run1 to Run2 Transition

    CERN Document Server

    Butz, Erik Manuel

    2014-01-01

    The CMS silicon strip tracker is the largest silicon detector ever built. It has an active area of 200~m$^2$ of silicon segmented into almost 10 million readout channels. We describe some operational aspects of the system during its first years of operation during the LHC run 1. During the long shutdown 1 of the LHC an extensive work program was carried out on the strip tracker services in order to facilitate operation of the system at sub-zero temperatures in the LHC run~2 and beyond. We will describe these efforts and give a motivation of the choice of run~2 operating temperature. Finally, a brief outlook on the operation of the system in the upcoming run~2 will be given.

  10. Physical and biological controls on DMS,P dynamics in ice shelf-influenced fast ice during a winter-spring and a spring-summer transitions

    NARCIS (Netherlands)

    Carnat, G.; Zhou, J.; Papakyriakou, T.; Delille, B.; Goossens, T.; Haskell, T.; Schoemann, V.; Fripiat, F.; Rintala, J.-M.; Tison, J.-L.

    2014-01-01

    We report the seasonal and vertical variations of dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) in fast ice at Cape Evans, McMurdo Sound (Antarctica) during the spring-summer transition in 2011 and winter-spring transition in 2012. We compare the variations of DMS,P obser

  11. Physical and biological controls on DMS,P dynamics in ice shelf-influenced fast ice during a winter-spring and a spring-summer transitions

    NARCIS (Netherlands)

    Carnat, G.; Zhou, J.; Papakyriakou, T.; Delille, B.; Goossens, T.; Haskell, T.; Schoemann, V.; Fripiat, F.; Rintala, J.-M.; Tison, J.-L.

    2014-01-01

    We report the seasonal and vertical variations of dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) in fast ice at Cape Evans, McMurdo Sound (Antarctica) during the spring-summer transition in 2011 and winter-spring transition in 2012. We compare the variations of DMS,P obser

  12. Detection of special nuclear material by observation of delayed neutrons with a novel fast neutron composite detector

    Science.gov (United States)

    Mayer, Michael; Nattress, Jason; Barhoumi Meddeb, Amira; Foster, Albert; Trivelpiece, Cory; Rose, Paul; Erickson, Anna; Ounaies, Zoubeida; Jovanovic, Igor

    2015-10-01

    Detection of shielded special nuclear material is crucial to countering nuclear terrorism and proliferation, but its detection is challenging. By observing the emission of delayed neutrons, which is a unique signature of nuclear fission, the presence of nuclear material can be inferred. We report on the observation of delayed neutrons from natural uranium by using monoenergetic photons and neutrons to induce fission. An interrogating beam of 4.4 MeV and 15.1 MeV gamma-rays and neutrons was produced using the 11B(d,n-γ)12C reaction and used to probe different targets. Neutron detectors with complementary Cherenkov detectors then discriminate material undergoing fission. A Li-doped glass-polymer composite neutron detector was used, which displays excellent n/ γ discrimination even at low energies, to observe delayed neutrons from uranium fission. Delayed neutrons have relatively low energies (~0.5 MeV) compared to prompt neutrons, which makes them difficult to detect using recoil-based detectors. Neutrons were counted and timed after the beam was turned off to observe the characteristic decaying time profile of delayed neutrons. The expected decay of neutron emission rate is in agreement with the common parametrization into six delayed neutron groups.

  13. A fast, primary-interaction Monte Carlo methodology for determination of total efficiency of cylindrical scintillation gamma-ray detectors

    Directory of Open Access Journals (Sweden)

    Rehman Shakeel U.

    2009-01-01

    Full Text Available A primary-interaction based Monte Carlo algorithm has been developed for determination of the total efficiency of cylindrical scintillation g-ray detectors. This methodology has been implemented in a Matlab based computer program BPIMC. For point isotropic sources at axial locations with respect to the detector axis, excellent agreement has been found between the predictions of the BPIMC code with the corresponding results obtained by using hybrid Monte Carlo as well as by experimental measurements over a wide range of g-ray energy values. For off-axis located point sources, the comparison of the BPIMC predictions with the corresponding results obtained by direct calculations as well as by conventional Monte Carlo schemes shows good agreement validating the proposed algorithm. Using the BPIMC program, the energy dependent detector efficiency has been found to approach an asymptotic profile by increasing either thickness or diameter of scintillator while keeping the other fixed. The variation of energy dependent total efficiency of a 3'x3' NaI(Tl scintillator with axial distance has been studied using the BPIMC code. About two orders of magnitude change in detector efficiency has been observed for zero to 50 cm variation in the axial distance. For small values of axial separation, a similar large variation has also been observed in total efficiency for 137Cs as well as for 60Co sources by increasing the axial-offset from zero to 50 cm.

  14. Fast and high-energy neutron detection with nuclear track detectors: Results of the European joint experiments 1992/93

    Energy Technology Data Exchange (ETDEWEB)

    Schraube, H. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany); Alberts, W.G. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Weeks, A.R. [comps.] [Nuclear Electric plc, Berkeley (United Kingdom). Berkeley Technology Centre

    1997-12-31

    Under the auspices of EURADOS, the European radiation dosimetry group, seventeen recognised laboratories engaged in the field of individual neutron dosimetry with passive track detectors participated in an international comparative experiment. A number of twenty-seven detector systems, predominantly etched track detectors with the material PADC (poly allyl diglycol carbonate), were employed by the participating laboratories. Quasi-monoenergetic neutrons were provided for irradiations free-in-air and on front of a PMMA phantom by the GSF (Forschungszentrum fuer Umwelt und Gesundheit, Neuherberg, Germany) and by the PTB (Physikalisch-Technische Bundesanstalt, Braunschweig, Germany). High energy irradiations were conducted by the PSI (Paul-Scherrer Institut, Villigen, Switzerland). The results of the on-phantom irradiations were used to derive energy and angular responses of the track detectors, those of the free-in-air irradiations to obtain data for the linearity characteristics of the response with dose. The report contains a short description and the original data of the participating laboratories, displays the irradiation and reference conditions, and provides an over-all evaluation. Emphasis is placed on the quantitative evaluation of the background characteristics and of the non-linearity observed with most of the systems employed which limits their useful dose-range of application. (orig.)

  15. Coincidence velocity map imaging using a single detector

    Science.gov (United States)

    Zhao, Arthur; Sándor, Péter; Weinacht, Thomas

    2017-07-01

    We demonstrate a single-detector velocity map imaging setup which is capable of rapidly switching between coincidence and non-coincidence measurements. By rapidly switching the extraction voltages on the electrostatic lenses, both electrons and ions can be collected in coincidence with a single detector. Using a fast camera as the 2D detector avoids the saturation problem associated with traditional delay line detectors and allows for easy transitions between coincidence and non-coincidence data collection modes. This is a major advantage in setting up a low-cost and versatile coincidence apparatus. We present both coincidence and non-coincidence measurements of strong field atomic and molecular ionization.

  16. Applications of solid-state nuclear track detectors (SSNTDs) for fast ion and fusion reaction product measurements in TEXTOR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Szydlowski, A.; Malinowski, K.; Malinowska, A. [Association EURTOM-IPPLM Warsaw, The Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Wassenhove, G. Van [EURATOM-Belgium State Association, LPP, ERM/KMS, Trilateral Euregio Cluster, B-1000 Brussels (Belgium); Schweer, B. [Association EURATOM-FZJ, Institutte of Plasma Physicx, Juelich (Germany)

    2011-07-01

    Full text of publication follows: The paper reports on measurements of fusion reaction protons which were performed on TEXTOR facility in January 2009. The basic experimental scheme was similar to that applied in the previous measurements [1, 2]. The main experimental tool equipment was a small ion pinhole camera which was equipped with a PM-355 detector sample and was attached to a water cooled manipulator. The camera was placed below the plasma ring in the direction of ion drifts, at a distance of 4.4 cm from LCFS. However, in the described experiment it was aligned at an angle to the mayor TEXTOR radius (contrary to previous experiments), so that the input pinhole was oriented first at {gamma} = 45 degrees (shots 108799 - 108818) and then {gamma} = 600 (shots 108832 - 108847). The discharges were executed with one neutral beam of the total power 0.6 - 1.0 MW. In the first series (Nos 108799 - 108818) the plasma was additionally heated by ICRH of frequency 38 MHz. The irradiated detector samples were subjected to the same interrupted etching procedure as the samples used in the CR-39/PM-355 detector calibration measurements [1, 2]. After that, track density distributions and track diameter histograms were measured under an optical microscope. By the use of the calibration curves, it was possible to distinguish craters produced by protons from other craters and to convert the obtained histograms into proton energy spectra. The craters induced by lower energy ions appeared to be concentrated in narrower areas, whereas higher energy ions were registered in a more diffused detector fields. The paper shows again that the CR-39/PM-355 detector is an useful diagnostic tool for tokamak experiments, for measurement of charged ions. References: [1] A. Szydlowski, A. Malinowska, M. Jaskola, A. Korman, M.J. Sadowski, G. Van Wassenhove, B. Schweer and the TEXTOR team, A. Galkowski, 'Application of Solid State Nuclear Track Detectors in TEXTOR Experiment for Measurements

  17. Development of a fast pixel array detector for use in microsecond time-resolved x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Barna, S.L.; Gruner, S.M.; Shepherd, J.A. [Princeton Univ., NJ (United States)] [and others

    1995-08-01

    A large-area pixel x-ray detector is being developed to collect eight successive frames of wide dynamic range two-dimensional images at 200kHz rates. Such a detector, in conjunction with a synchrotron radiation x-ray source, will enable time-resolved x-ray studies of proteins and other materials on time scales which have previously been inaccessible. The detector will consist of an array of fully-depleted 150 micron square diodes connected to a CMOS integrated electronics layer with solder bump-bonding. During each framing period, the current resulting from the x-rays stopped in the diodes is integrated in the electronics layer, and then stored in one of eight storage capacitors underneath the pixel. After the last frame, the capacitors are read out at standard data transmission rates. The detector has been designed for a well-depth of at least 10,000 x-rays (at 20keV), and a noise level of one x-ray. Ultimately, the authors intend to construct a detector with over one million pixels (1024 by 1024). They present the results of their development effort and various features of the design. The electronics design is discussed, with special attention to the performance requirements. The choice and design of the detective diodes, as they relate to x-ray stopping power and charge collection, are presented. An analysis of various methods of bump bonding is also presented. Finally, the authors discuss the possible need for a radiation-blocking layer, to be placed between the electronics and the detective layer, and various methods they have pursued in the construction of such a layer.

  18. Fast-timing study of the l -forbidden 1 /2+→3 /2+ M 1 transition in 129Sn

    Science.gov (United States)

    Licǎ, R.; Mach, H.; Fraile, L. M.; Gargano, A.; Borge, M. J. G.; Mǎrginean, N.; Sotty, C. O.; Vedia, V.; Andreyev, A. N.; Benzoni, G.; Bomans, P.; Borcea, R.; Coraggio, L.; Costache, C.; De Witte, H.; Flavigny, F.; Fynbo, H.; Gaffney, L. P.; Greenlees, P. T.; Harkness-Brennan, L. J.; Huyse, M.; Ibáñez, P.; Judson, D. S.; Konki, J.; Korgul, A.; Kröll, T.; Kurcewicz, J.; Lalkovski, S.; Lazarus, I.; Lund, M. V.; Madurga, M.; Mǎrginean, R.; Marroquín, I.; Mihai, C.; Mihai, R. E.; Morales, A. I.; Nácher, E.; Negret, A.; Page, R. D.; Pakarinen, J.; Pascu, S.; Paziy, V.; Perea, A.; Pérez-Liva, M.; Picado, E.; Pucknell, V.; Rapisarda, E.; Rahkila, P.; Rotaru, F.; Swartz, J. A.; Tengblad, O.; Van Duppen, P.; Vidal, M.; Wadsworth, R.; Walters, W. B.; Warr, N.; IDS Collaboration

    2016-04-01

    The levels in 129Sn populated from the β- decay of 129In isomers were investigated at the ISOLDE facility of CERN using the newly commissioned ISOLDE Decay Station (IDS). The lowest 1 /2+ state and the 3 /2+ ground state in 129Sn are expected to have configurations dominated by the neutron s1 /2 (l =0 ) and d3 /2 (l =2 ) single-particle states, respectively. Consequently, these states should be connected by a somewhat slow l -forbidden M 1 transition. Using fast-timing spectroscopy we have measured the half-life of the 1 /2+ 315.3-keV state, T1 /2= 19(10) ps, which corresponds to a moderately fast M 1 transition. Shell-model calculations using the CD-Bonn effective interaction, with standard effective charges and g factors, predict a 4-ns half-life for this level. We can reconcile the shell-model calculations to the measured T1 /2 value by the renormalization of the M 1 effective operator for neutron holes.

  19. Quantum efficiency measurement of the Transiting Exoplanet Survey Satellite (TESS) CCD detectors

    Science.gov (United States)

    Krishnamurthy, A.; Villasenor, J.; Thayer, C.; Kissel, S.; Ricker, G.; Seager, S.; Lyle, R.; Deline, A.; Morgan, E.; Sauerwein, T.; Vanderspek, R.

    2016-07-01

    Very precise on-ground characterization and calibration of TESS CCD detectors will significantly assist in the analysis of the science data from the mission. An accurate optical test bench with very high photometric stability has been developed to perform precise measurements of the absolute quantum efficiency. The setup consists of a vacuum dewar with a single MIT Lincoln Lab CCID-80 device mounted on a cold plate with the calibrated reference photodiode mounted next to the CCD. A very stable laser-driven light source is integrated with a closed-loop intensity stabilization unit to control variations of the light source down to a few parts-per-million when averaged over 60 s. Light from the stabilization unit enters a 20 inch integrating sphere. The output light from the sphere produces near-uniform illumination on the cold CCD and on the calibrated reference photodiode inside the dewar. The ratio of the CCD and photodiode signals provides the absolute quantum efficiency measurement. The design, key features, error analysis, and results from the test campaign are presented.

  20. Unveiling the cosmological QCD phase transition through the eLISA/NGO detector

    CERN Document Server

    Roque, V R C Mourão

    2013-01-01

    We study the evolution of turbulence in the early universe at the QCD epoch using a state-of-the-art equation of state derived from lattice QCD simulations. Since the transition is a crossover we assume that temperature and velocity fluctuations were generated by some event in the previous history of the Universe and survive until the QCD epoch due to the extremely large Reynolds number of the primordial fluid. The fluid at the QCD epoch is assumed to be non-viscous, based on the fact that the viscosity per entropy density of the quark gluon plasma obtained from heavy-ion collision experiments at the RHIC and the LHC is extremely small. Our hydrodynamic simulations show that the velocity spectrum is very different from the Kolmogorov power law considered in studies of primordial turbulence that focus on first order phase transitions. This is due to the fact that there is no continuous injection of energy in the system and the viscosity of the fluid is negligible. Thus, as kinetic energy cascades from the larg...

  1. Transcriptome profiling of the feeding-to-fasting transition in chicken liver

    Directory of Open Access Journals (Sweden)

    Aubry Marc

    2008-12-01

    Full Text Available Abstract Background Starvation triggers a complex array of adaptative metabolic responses including energy-metabolic responses, a process which must imply tissue specific alterations in gene expression and in which the liver plays a central role. The present study aimed to describe the evolution of global gene expression profiles in liver of 4-week-old male chickens during a 48 h fasting period using a chicken 20 K oligoarray. Results A large number of genes were modulated by fasting (3532 genes with a pvalue corrected by Benjamini-Hochberg HMG-CoA synthase 1 gene, which was up-regulated following 16 and 48 h of fasting while the other genes involved in cholesterol metabolism were down-regulated as reported in mammalian studies. We further focused on genes not represented on the microarray and candidates for the regulation of the target genes belonging to cluster-1 and -2 and involved in lipid metabolism. Data are provided concerning PPARa, SREBP1, SREBP2, NR1H3 transcription factors and two desaturases (FADS1, FADS2. Conclusion This study evidences numerous genes altered by starvation in chickens and suggests a global repression of cellular activity in response to this stressor. The central role of lipid and acetyl-CoA metabolisms and its regulation at transcriptional level are confirmed in chicken liver in response to short-term fasting. Interesting expression modulations were observed for NR1H3, FADS1 and FADS2 genes. Further studies are needed to precise their role in the complex regulatory network controlling lipid metabolism.

  2. The Gigatracker: An ultra-fast and low-mass silicon pixel detector for the NA62 experiment

    Science.gov (United States)

    Fiorini, M.; Carassiti, V.; Ceccucci, A.; Cortina, E.; Cotta Ramusino, A.; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Mapelli, A.; Marchetto, F.; Martin, E.; Martoiu, S.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Petrucci, F.; Riedler, P.; Aglieri Rinella, G.; Rivetti, A.; Tiuraniemi, S.

    2011-02-01

    The Gigatracker is a hybrid silicon pixel detector developed to track the highly intense NA62 hadron beam with a time resolution of 150 ps (rms). The beam spectrometer of the experiment is composed of three Gigatracker stations installed in vacuum in order to precisely measure momentum, time and direction of every traversing particle. Precise tracking demands a very low mass of the detector assembly ( delay-locked loop based TDC placed at the end of each pixel column and a time-over-threshold discriminator with time-walk correction technique. The current status of the R&D program is overviewed and results from the prototype read-out chips test are presented.

  3. Modeling of fast phase transitions dynamics in metal target irradiated by pico- and femtosecond pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Mazhukin, V.I. [Institute of Mathematical Modeling, Russian Academy of Sciences, Miusskaya sq. 4A, 125047 Moscow (Russian Federation); Lobok, M.G. [Institute of Mathematical Modeling, Russian Academy of Sciences, Miusskaya sq. 4A, 125047 Moscow (Russian Federation)], E-mail: immras@orc.ru; Chichkov, B. [Laser Zentrum Hannover e.V. Holleritallee 8, 30419 Hannover (Germany)], E-mail: b.chichkov@lhz.de

    2009-03-01

    We investigate laser pulse influence on aluminum target in irradiance range 10{sup 9} to 10{sup 16} W/cm{sup 2}, pulse duration between 10{sup -8} and 10{sup -15} s, Gaussian time profile with wavelength of 0.8 {mu}m. For all computations energy density was 10 J/cm{sup 2}. Plasma in the evaporated material is generated at the energy density above 10 J/cm{sup 2}as the modeling showed. Long and short laser pulses distinguish by the mechanisms of energy transformation. For short laser pulses there is volumetric energy absorption, together with rapid phase transitions it lead to overheating in solid and liquid states, overheated solid temperature rises up to (6-8)T{sub m}. Under influence of the energy saved in overheated solid, duration of the phase transitions becomes nanosecond, which is several orders of magnitude longer than laser pulse.

  4. Fast online learning of control regime transitions for adaptive robotic mobility

    Science.gov (United States)

    Yamauchi, Brian

    2012-06-01

    We introduce a new framework, Model Transition Control (MTC), that models robot control problems as sets of linear control regimes linked by nonlinear transitions, and a new learning algorithm, Dynamic Threshold Learning (DTL), that learns the boundaries of these control regimes in real-time. We demonstrate that DTL can learn to prevent understeer and oversteer while controlling a simulated high-speed vehicle. We also show that DTL can enable an iRobot PackBot to avoid rollover in rough terrain and to actively shift its center-of-gravity to maintain balance when climbing obstacles. In all cases, DTL is able to learn control regime boundaries in a few minutes, often with single-digit numbers of learning trials.

  5. Noise studies of n-strip on n-bulk silicon microstrip detectors using fast binary readout electronics after irradiation to 3x10 sup 1 sup 4 p cm sup - sup 2

    CERN Document Server

    Robinson, D; Bizzell, J; Buttar, C; Carter, A A; Carter, J R; Goodrick, M; Greenall, A; Hill, J C; Morgan, D; Munday, D J; Ohsugi, T; Phillips, P W; Riedler, P; Smith, N A; Terada, S; Turner, P R; Unno, Y

    1999-01-01

    N-strip on n-bulk silicon microstrip detectors were irradiated at the CERN PS to 3x10 sup 1 sup 4 p cm sup - sup 2 and their post-irradiation performance evaluated using fast binary readout electronics. Strip noise measurements demonstrate that detectors using conventional p-stop strip isolation are vulnerable to microdischarge at high bias voltages after irradiation. However, a novel isolation technique is shown to suppress microdischarge and lead to excellent post-irradiation characteristics.

  6. Development of a silicon microstrip detector with single photon sensitivity for fast dynamic diffraction experiments at a synchrotron radiation beam

    Science.gov (United States)

    Arakcheev, A.; Aulchenko, V.; Kudashkin, D.; Shekhtman, L.; Tolochko, B.; Zhulanov, V.

    2017-06-01

    Time-resolved experiments on the diffraction of synchrotron radiation (SR) from crystalline materials provide information on the evolution of a material structure after a heat, electron beam or plasma interaction with a sample under study. Changes in the material structure happen within a microsecond scale and a detector with corresponding parameters is needed. The SR channel 8 of the VEPP-4M storage ring provides radiation from the 7-pole wiggler that allows to reach several tens photons within one μs from a tungsten crystal for the most intensive diffraction peak. In order to perform experiments that allow to measure the evolution of tungsten crystalline structure under the impact of powerful laser beam, a new detector is developed, that can provide information about the distribution of a scattered SR flux in space and its evolution in time at a microsecond scale. The detector is based on the silicon p-in-n microstrip sensor with DC-coupled metal strips. The sensor contains 1024 30 mm long strips with a 50 μm pitch. 64 strips are bonded to the front-end electronics based on APC128 ASICs. The APC128 ASIC contains 128 channels that consist of a low noise integrator with 32 analogue memory cells each. The integrator equivalent noise charge is about 2000 electrons and thus the signal from individual photons with energy above 40 keV can be observed. The signal can be stored at the analogue memory with 10 MHz rate. The first measurements with the beam scattered from a tungsten crystal with energy near 60 keV demonstrated the capability of this prototype to observe the spatial distribution of the photon flux with the intensity from below one photon per channel up to 0~10 photons per channel with a frame rate from 10 kHz up to 1 MHz.

  7. Total OH reactivity measurements using a new fast Gas Chromatographic Photo-Ionization Detector (GC-PID

    Directory of Open Access Journals (Sweden)

    V. Sinha

    2012-12-01

    Full Text Available The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH. Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date, direct measurements of total OH reactivity have been either performed using a Laser-Induced Fluorescence (LIF system ("pump-and-probe" or "flow reactor" or the Comparative Reactivity Method (CRM with a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS. Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photoionization Detector (GC-PID. Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques.

    Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60–70 s, sensitivity (LOD 3–6 s−1 and overall uncertainty (25% in optimum conditions for total OH reactivity were similar to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests it

  8. A new method for total OH reactivity measurements using a fast Gas Chromatographic Photo-Ionization Detector (GC-PID

    Directory of Open Access Journals (Sweden)

    A. C. Nölscher

    2012-05-01

    Full Text Available The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH. Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date direct measurements of total OH reactivity have been either performed using a Laser Induced Fluorescence (LIF system ("pump-and-probe" or "flow reactor" or the Comparative Reactivity Method (CRM with a Proton Transfer Reaction Mass Spectrometer (PTR-MS. Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photo-Ionization Detector (GC-PID. Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques.

    Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60–70 s, sensitivity (LOD 3–6 s−1 and overall uncertainty (25% in optimum conditions for total OH reactivity were equivalent to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests it

  9. Connection between slow and fast dynamics of molecular liquids around the glass transition

    DEFF Research Database (Denmark)

    Niss, Kristine; Dalle-Ferrier, Cecile; Frick, Bernhard

    2010-01-01

    The mean-square displacement (MSD) was measured by neutron scattering at various temperatures and pressures for a number of molecular glass-forming liquids. The MSD is invariant along the glass-transition line at the pressure studied, thus establishing an “intrinsic” Lindemann criterion for any...... given liquid. A one-to-one connection between the MSD’s temperature dependence and the liquid’s fragility is found when the MSD is evaluated on a time scale of ∼4 ns, but does not hold when the MSD is evaluated at shorter times. The findings are discussed in terms of the elastic model and the role...

  10. High transition temperature superconductor/insulator bilayers for the development of ultra-fast electronics

    Science.gov (United States)

    Sirena, M.; Félix, L. Avilés; Haberkorn, N.

    2013-07-01

    High transition temperature superconductor (HTc)/SrTiO3 (STO) bilayers were fabricated by sputtering deposition on (100) STO substrates. Their transport and morphological properties were characterized using conductive atomic force microscopy. The STO barriers present good insulating properties, with long attenuation lengths (λ ˜ 1 nm) which reduce the junction resistance and increase the operating critical current. The samples present roughness values smaller than 1 nm, with an extremely low density of surface defects (˜5 × 10-5 defects/μm2). The high control of the barrier quality over large defect free surfaces is encouraging for the development of microelectronics devices based in HTc Josephson junctions.

  11. Ultra-fast nano-scale phase transitions in systems driven far from equilibrium

    Science.gov (United States)

    Caro, A.; Lopasso, E. M.; Caro, M.; Turchi, P. E. A.

    2004-03-01

    We study the thermodynamic forces acting on the evolution of the nanoscale regions excited by laser shots into solid targets. We analyze the role of diffusion, thermo-migration, and the liquidus-solidus two-phase field crossing, as the system cools down from the induced melt under different conditions of energy deposition. To determine the relevance of these thermodynamic forces, solute redistribution is evaluated using molecular dynamics simulations of equilibrium Au-Ni solid solutions. Our results show the combined effects of thermo-migration and solute redistribution that, depending on the material, can reinforce or cancel each other. These effects show that the combination of ultra-fast but nano-scale characteristics of these processes can be used to produce nanoscale modifications of composition in alloys

  12. Fast Detector/First Responder: Interactions between the Superior Colliculus-Pulvinar Pathway and Stimuli Relevant to Primates

    Science.gov (United States)

    Soares, Sandra C.; Maior, Rafael S.; Isbell, Lynne A.; Tomaz, Carlos; Nishijo, Hisao

    2017-01-01

    Primates are distinguished from other mammals by their heavy reliance on the visual sense, which occurred as a result of natural selection continually favoring those individuals whose visual systems were more responsive to challenges in the natural world. Here we describe two independent but also interrelated visual systems, one cortical and the other subcortical, both of which have been modified and expanded in primates for different functions. Available evidence suggests that while the cortical visual system mainly functions to give primates the ability to assess and adjust to fluid social and ecological environments, the subcortical visual system appears to function as a rapid detector and first responder when time is of the essence, i.e., when survival requires very quick action. We focus here on the subcortical visual system with a review of behavioral and neurophysiological evidence that demonstrates its sensitivity to particular, often emotionally charged, ecological and social stimuli, i.e., snakes and fearful and aggressive facial expressions in conspecifics. We also review the literature on subcortical involvement during another, less emotional, situation that requires rapid detection and response—visually guided reaching and grasping during locomotion—to further emphasize our argument that the subcortical visual system evolved as a rapid detector/first responder, a function that remains in place today. Finally, we argue that investigating deficits in this subcortical system may provide greater understanding of Parkinson's disease and Autism Spectrum disorders (ASD). PMID:28261046

  13. AM06: the Associative Memory chip for the Fast TracKer in the upgraded ATLAS detector

    Science.gov (United States)

    Annovi, A.; Beretta, M. M.; Calderini, G.; Crescioli, F.; Frontini, L.; Liberali, V.; Shojaii, S. R.; Stabile, A.

    2017-04-01

    This paper describes the AM06 chip, which is a highly parallel processor for pattern recognition in the ATLAS high energy physics experiment. The AM06 contains memory banks that store data organized in 18 bit words; a group of 8 words is called "pattern". Each AM06 chip can store up to 131 072 patterns. The AM06 is a large chip, designed in 65 nm CMOS, and it combines full-custom memory arrays, standard logic cells and serializer/deserializer IP blocks at 2 Gbit/s for input/output communication. The overall silicon area is 168 mm2 and the chip contains about 421 million transistors. The AM06 receives the detector data for each event accepted by Level-1 trigger, up to 100 kHz, and it performs a track reconstruction based on hit information from channels of the ATLAS silicon detectors. Thanks to the design of a new associative memory cell and to the layout optimization, the AM06 consumption is only about 1 fJ/bit per comparison. The AM06 has been fabricated and successfully tested with a dedicated test system.

  14. The Gigatracker: An ultra-fast and low-mass silicon pixel detector for the NA62 experiment

    CERN Document Server

    Fiorini, M; Morel, M; Petrucci, F; Marchetto, F; Garbolino, S; Cortina, E; Tiuraniemi, S; Ceccucci, A; Martin, E; Riedler, P; Martoiu, S; Ramusino, A C; Rinella, G A; Mapelli, A; Mazza, G; Noy, M; Jarron, P; Nuessle, G; Dellacasa, G; Kluge, A; Rivetti, A; Kaplon, J

    2011-01-01

    The Gigatracker is a hybrid silicon pixel detector developed to track the highly intense NA62 hadron beam with a time resolution of 150 ps (rms). The beam spectrometer of the experiment is composed of three Gigatracker stations installed in vacuum in order to precisely measure momentum, time and direction of every traversing particle. Precise tracking demands a very low mass of the detector assembly (<0.5\\% X(O) per station) in order to limit multiple scattering and beam hadronic interactions. The high rate and especially the high timing precision requirements are very demanding: two R\\&D options are ongoing and the corresponding prototype read-out chips have been recently designed and produced in 0.13 mu m CMOS technology. One solution makes use of a constant fraction discriminator and on-pixel analogue-based time-to-digital-converter (TDC); the other comprises a delay-locked loop based TDC placed at the end of each pixel column and a time-over-threshold discriminator with time-walk correction techniq...

  15. The Gigatracker: An ultra-fast and low-mass silicon pixel detector for the NA62 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fiorini, M., E-mail: Massimiliano.Fiorini@cern.c [CERN, CH-1211 Geneva 23 (Switzerland); Carassiti, V. [INFN Sezione di Ferrara, 44122 Ferrara (Italy); Ceccucci, A. [CERN, CH-1211 Geneva 23 (Switzerland); Cortina, E. [Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Cotta Ramusino, A. [INFN Sezione di Ferrara, 44122 Ferrara (Italy); Dellacasa, G.; Garbolino, S. [INFN Sezione di Torino, 10125 Torino (Italy); Jarron, P.; Kaplon, J.; Kluge, A. [CERN, CH-1211 Geneva 23 (Switzerland); Mapelli, A. [EPFL, CH-1015 Lausanne (Switzerland); CERN, CH-1211 Geneva 23 (Switzerland); Marchetto, F. [INFN Sezione di Torino, 10125 Torino (Italy); Martin, E. [Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Martoiu, S.; Mazza, G. [INFN Sezione di Torino, 10125 Torino (Italy); Morel, M.; Noy, M. [CERN, CH-1211 Geneva 23 (Switzerland); Nuessle, G. [Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Petrucci, F. [INFN Sezione di Ferrara, 44122 Ferrara (Italy); Riedler, P. [CERN, CH-1211 Geneva 23 (Switzerland)

    2011-02-01

    The Gigatracker is a hybrid silicon pixel detector developed to track the highly intense NA62 hadron beam with a time resolution of 150 ps (rms). The beam spectrometer of the experiment is composed of three Gigatracker stations installed in vacuum in order to precisely measure momentum, time and direction of every traversing particle. Precise tracking demands a very low mass of the detector assembly (<0.5% X{sub 0} per station) in order to limit multiple scattering and beam hadronic interactions. The high rate and especially the high timing precision requirements are very demanding: two R and D options are ongoing and the corresponding prototype read-out chips have been recently designed and produced in 0.13{mu}m CMOS technology. One solution makes use of a constant fraction discriminator and on-pixel analogue-based time-to-digital-converter (TDC); the other comprises a delay-locked loop based TDC placed at the end of each pixel column and a time-over-threshold discriminator with time-walk correction technique. The current status of the R and D program is overviewed and results from the prototype read-out chips test are presented.

  16. Fast Detector/First Responder: Interactions between the Superior Colliculus-Pulvinar Pathway and Stimuli Relevant to Primates.

    Science.gov (United States)

    Soares, Sandra C; Maior, Rafael S; Isbell, Lynne A; Tomaz, Carlos; Nishijo, Hisao

    2017-01-01

    Primates are distinguished from other mammals by their heavy reliance on the visual sense, which occurred as a result of natural selection continually favoring those individuals whose visual systems were more responsive to challenges in the natural world. Here we describe two independent but also interrelated visual systems, one cortical and the other subcortical, both of which have been modified and expanded in primates for different functions. Available evidence suggests that while the cortical visual system mainly functions to give primates the ability to assess and adjust to fluid social and ecological environments, the subcortical visual system appears to function as a rapid detector and first responder when time is of the essence, i.e., when survival requires very quick action. We focus here on the subcortical visual system with a review of behavioral and neurophysiological evidence that demonstrates its sensitivity to particular, often emotionally charged, ecological and social stimuli, i.e., snakes and fearful and aggressive facial expressions in conspecifics. We also review the literature on subcortical involvement during another, less emotional, situation that requires rapid detection and response-visually guided reaching and grasping during locomotion-to further emphasize our argument that the subcortical visual system evolved as a rapid detector/first responder, a function that remains in place today. Finally, we argue that investigating deficits in this subcortical system may provide greater understanding of Parkinson's disease and Autism Spectrum disorders (ASD).

  17. Separating double-beta decay events from solar neutrino interactions in a kiloton-scale liquid scintillator detector by fast timing

    Science.gov (United States)

    Elagin, Andrey; Frisch, Henry J.; Naranjo, Brian; Ouellet, Jonathan; Winslow, Lindley; Wongjirad, Taritree

    2017-03-01

    We present a technique for separating nuclear double beta decay (ββ -decay) events from background neutrino interactions due to 8B decays in the sun. This background becomes dominant in a kiloton-scale liquid-scintillator detector deep underground and is usually considered as irreducible due to an overlap in deposited energy with the signal. However, electrons from 0 νββ -decay often exceed the Cherenkov threshold in liquid scintillator, producing photons that are prompt and correlated in direction with the initial electron direction. The use of large-area fast photodetectors allows some separation of these prompt photons from delayed isotropic scintillation light and, thus, the possibility of reconstructing the event topology. Using a simulation of a 6.5 m radius liquid scintillator detector with 100 ps resolution photodetectors, we show that a spherical harmonics analysis of early-arrival light can discriminate between 0 νββ -decay signal and 8B solar neutrino background events on a statistical basis. Good separation will require the development of a slow scintillator with a 5 ns risetime.

  18. Investigation of a fast transition from pump mode to generating mode in a model scale reversible pump turbine

    Science.gov (United States)

    Stens, C.; Riedelbauch, S.

    2016-11-01

    Pumped storage power plants are an efficient way to store energy at a large scale. In the last years, the changes between pump and turbine mode have become more and more frequent and the necessity of fast changes has increased. This paper analyses the flow in a model scale pump turbine during a fast transition from pump mode to generating mode by means of CFD. Results will be compared between two different mesh sizes and between simulation and measurement. A linear variation of rotational speed over time is chosen. A time-dependent flow rate through the machine is prescribed at the inlet. Due to the varying conditions, a fully transient analysis is carried out using the open-source code OpenFOAM®. The state of the machine at certain points of time during the transient is compared to the results for steady state simulations with identical boundary conditions. To characterize the phenomena in the guide vane channels, torque on selected guide vanes is evaluated as well as pressure at predefined locations. In the runner, pressure sensors are evaluated near the leading edge on pressure and suction side. In the draft tube, four dynamic pressure sensors in a plane below the runner are analysed. Frequencies and amplitudes are compared to simulation.

  19. Solvable model for a dynamical quantum phase transition from fast to slow scrambling

    CERN Document Server

    Banerjee, Sumilan

    2016-01-01

    We propose an extension of the Sachdev-Ye-Kitaev (SYK) model that exhibits a quantum phase transition from the previously identified non-Fermi liquid fixed point to a Fermi liquid like state, while still allowing an exact solution in a suitable large $N$ limit. The extended model involves coupling the interacting $N$-site SYK model to a new set of $pN$ peripheral sites with only quadratic hopping terms between them. The conformal fixed point of the SYK model remains a stable low energy phase below a critical ratio of peripheral sites $pp_c$ the quadratic sites effectively screen the SYK dynamics, leading to a quadratic fixed point in the low temperature and frequency limit. The interactions have a perturbative effect in this regime leading to scrambling with Lyapunov exponent $\\lambda_L\\propto T^2$.

  20. High transition temperature superconductor/insulator bilayers for the development of ultra-fast electronics

    Energy Technology Data Exchange (ETDEWEB)

    Sirena, M.; Félix, L. Avilés [Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, CNEA, Bustillo 9500, 8400 Bariloche (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo and CNEA, 8400 Bariloche (Argentina); Haberkorn, N. [Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, CNEA, Bustillo 9500, 8400 Bariloche (Argentina)

    2013-07-29

    High transition temperature superconductor (HTc)/SrTiO{sub 3} (STO) bilayers were fabricated by sputtering deposition on (100) STO substrates. Their transport and morphological properties were characterized using conductive atomic force microscopy. The STO barriers present good insulating properties, with long attenuation lengths (λ ∼ 1 nm) which reduce the junction resistance and increase the operating critical current. The samples present roughness values smaller than 1 nm, with an extremely low density of surface defects (∼5 × 10{sup −5} defects/μm{sup 2}). The high control of the barrier quality over large defect free surfaces is encouraging for the development of microelectronics devices based in HTc Josephson junctions.

  1. Non-Linear Optical Phenomena in Detecting Materials as a Possibility for Fast Timing in Detectors of Ionizing Radiation

    CERN Document Server

    Korjik, M. V.; Buganov, O.; Fedorov, A. A.; Emelianchik, I.; Griesmayer, E.; Mechinsky, V.; Nargelas, S.; Sidletskiy, O.; Tamulaitis, G.; Tikhomirov, S. N.; Vaitkevicius, A.

    2016-01-01

    The time resolution of the detectors currently in use is limited by 50-70 ps due to the spontaneous processes involved in the development of the response signal, which forms after the relaxation of carriers generated during the interaction. In this study, we investigate the feasibility of exploiting sub-picosecond phenomena occurring after the interaction of scintillator material with ionizing radiation by probing the material with ultra-short laser pulses. One of the phenomena is the elastic polarization due to the local lattice distortion caused by the displacement of electrons and holes generated by ionization. The key feature of the elastic polarization is its short response time, which makes it prospective for using as an optically detectable time mark. The nonlinear optical absorption of femtosecond light pulses of appropriate wavelength is demonstrated to be a prospective tool to form the mark. This study was aimed at searching for inorganic crystalline media combining scintillation properties and non-...

  2. The Transition to a Giant Vortex Phase in a Fast Rotating Bose-Einstein Condensate

    CERN Document Server

    Correggi, M; Yngvason, J

    2010-01-01

    We study the Gross-Pitaevskii (GP) energy functional for a fast rotating Bose-Einstein condensate on the unit disc in two dimensions. Writing the coupling parameter as $1/\\eps^2$ we consider the asymptotic regime $\\eps\\to 0$ with the angular velocity $\\Omega$ proportional to $(\\eps^2|\\log\\eps|)^{-1}$. We prove that if $\\Omega=\\Omega_0 (\\eps^2|\\log\\eps|)^{-1}$ and $\\Omega_0>(3\\pi)^{-1}$ then a minimizer of the GP energy functional has no zeros in an annulus at the boundary of the disc that contains the bulk of the mass. The vorticity resides in a complementary `hole' around the center where the density is vanishingly small. Moreover, we prove a lower bound to the ground state energy that matches, up to small errors, the upper bound obtained from an optimal giant vortex trial function, and also that the winding number of a GP minimizer around the disc is in accord with the phase of this trial function.

  3. A fast variational Gaussian wavepacket method: size-induced structural transitions in large neon clusters.

    Science.gov (United States)

    Georgescu, Ionuţ; Mandelshtam, Vladimir A

    2011-10-21

    The variational Gaussian wavepacket (VGW) approximation provides an alternative to path integral Monte Carlo for the computation of thermodynamic properties of many-body systems at thermal equilibrium. It provides a direct access to the thermal density matrix and is particularly efficient for Monte Carlo approaches, as for an N-body system it operates in a non-inflated 3N-dimensional configuration space. Here, we greatly accelerate the VGW method by retaining only the relevant short-range correlations in the (otherwise full) 3N × 3N Gaussian width matrix without sacrificing the accuracy of the fully coupled VGW method. This results in the reduction of the original O(N(3)) scaling to O(N(2)). The fast-VGW method is then applied to quantum Lennard-Jones clusters with sizes up to N = 6500 atoms. Following Doye and Calvo [JCP 116, 8307 (2002)] we study the competition between the icosahedral and decahedral structural motifs in Ne(N) clusters as a function of N.

  4. Ultra fast UV-photo detector based on single-walled carbon nanotube/PEDOT-PSS composites.

    Science.gov (United States)

    Najeeb, Choolakadavil Khalid; Lee, Jae-Hyoek; Chang, Jingbo; Kang, Won-Seok; Kim, Jae-Ho

    2009-12-01

    Single-walled carbon nanotube (SWNT)/Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS), composites (SWNT/PEDOT-PSS) have been prepared using SWNTs surface modified with a natural gum, 'gum arabic' by simple mixing process. Thin films of SWNTs, PEDOT-PSS and the composites were prepared by vacuum filtration technique and were exposed to ultraviolet (UV) radiations for photoconductivity measurements. The surface resistivity of pristine SWNTs film increased from initial value of 50 omega to 92 omega and that of the polymer film decreased from 6.7 Komega to 3.1 Komega while the resistivity of the composite film decreased from 267 omega to 232 omega upon UV illumination. When the lamp was switched off, the initial resistivities of PEDOT: PSS and SWNTs films were recovered very slowly. Interestingly, on the other hand the composite films demonstrated a very fast relaxation within a few minutes. An on-off cycle ruled out the possibility of local heating effect and revealed that the switching property was originated from the fast transport of charge and heat in the composite films. This property of composite film might open up optoelectronic applications involving photoconductivity, such as photo sensors, organic light emitting diodes (OLED) and organic solar cells. Here in, we demonstrate the application of the SWNT/PEDOT-PSS composite film based device as a UV sensor.

  5. Solvable model for a dynamical quantum phase transition from fast to slow scrambling

    Science.gov (United States)

    Banerjee, Sumilan; Altman, Ehud

    2017-04-01

    We propose an extension of the Sachdev-Ye-Kitaev (SYK) model that exhibits a quantum phase transition from the previously identified non-Fermi-liquid fixed point to a Fermi-liquid-like state, while still allowing an exact solution in a suitable large-N limit. The extended model involves coupling the interacting N -site SYK model to a new set of p N peripheral sites with only quadratic hopping terms between them. The conformal fixed point of the SYK model remains a stable low-energy phase below a critical ratio of peripheral sites p NFL) phase is characterized by a universal Lyapunov exponent λL→2 π T in the low-temperature limit; however, the temperature scale marking the crossover to the conformal regime vanishes continuously at the critical point pc. The residual entropy at T →0 , nonzero in the NFL, also vanishes continuously at the critical point. For p >pc the quadratic sites effectively screen the SYK dynamics, leading to a quadratic fixed point in the low-temperature and low-frequency limit. The interactions have a perturbative effect in this regime leading to scrambling with Lyapunov exponent λL∝T2 .

  6. Crystallization pathways of liquid-bcc transition for a model iron by fast quenching

    Science.gov (United States)

    Pan, Shao-Peng; Feng, Shi-Dong; Qiao, Jun-Wei; Wang, Wei-Min; Qin, Jing-Yu

    2015-11-01

    We report simulations on the local structural evolution in the liquid-bcc transition of a model iron. Fourteen main Voronoi polyhedra are chosen as the representatives of short-range orders (SROs) and their transformations during crystallization are also investigated. Thus, the crystallization pathways for the main SROs are drawn. Our results also show that the transformations between two SROs in the crystallization pathways can be classified into two categories, first the enlargement of coordination number, second the transformation of local symmetry from five-fold to four-fold. The former reduces the potential energy while the latter increases it. It is found that the potential energy cannot decease monotonously whatever crystallization pathway is chosen to transform the icosahedral SRO to bcc SRO. Therefore, the latter transformation might provide the energy barrier of crystallization. We propose two transformation styles among SROs. All the transformations in the crystallization pathways can be achieved according to the styles. Moreover, the two transformation styles indicates that the bcc structure is more similar to liquid than other crystals. That might be the reason why the first phase nucleated during a rapid cooling process should be bcc crystal.

  7. Crystallization pathways of liquid-bcc transition for a model iron by fast quenching.

    Science.gov (United States)

    Pan, Shao-Peng; Feng, Shi-Dong; Qiao, Jun-Wei; Wang, Wei-Min; Qin, Jing-Yu

    2015-11-19

    We report simulations on the local structural evolution in the liquid-bcc transition of a model iron. Fourteen main Voronoi polyhedra are chosen as the representatives of short-range orders (SROs) and their transformations during crystallization are also investigated. Thus, the crystallization pathways for the main SROs are drawn. Our results also show that the transformations between two SROs in the crystallization pathways can be classified into two categories, first the enlargement of coordination number, second the transformation of local symmetry from five-fold to four-fold. The former reduces the potential energy while the latter increases it. It is found that the potential energy cannot decease monotonously whatever crystallization pathway is chosen to transform the icosahedral SRO to bcc SRO. Therefore, the latter transformation might provide the energy barrier of crystallization. We propose two transformation styles among SROs. All the transformations in the crystallization pathways can be achieved according to the styles. Moreover, the two transformation styles indicates that the bcc structure is more similar to liquid than other crystals. That might be the reason why the first phase nucleated during a rapid cooling process should be bcc crystal.

  8. Response measurement of single-crystal chemical vapor deposition diamond radiation detector for intense X-rays aiming at neutron bang-time and neutron burn-history measurement on an inertial confinement fusion with fast ignition

    Energy Technology Data Exchange (ETDEWEB)

    Shimaoka, T., E-mail: t.shimaoka@eng.hokudai.ac.jp; Kaneko, J. H.; Tsubota, M. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Arikawa, Y.; Nagai, T.; Kojima, S.; Abe, Y.; Sakata, S.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H. [Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871 (Japan); Isobe, M. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Sato, Y. [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Chayahara, A.; Umezawa, H.; Shikata, S. [Diamond Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2015-05-15

    A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10{sup 7} cm/s and 1.0 ± 0.3 × 10{sup 7} cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5–1 keV and neutron yield of more than 10{sup 9} neutrons/shot.

  9. A fast, low-power, 6-bit SAR ADC for readout of strip detectors in the LHCb Upgrade experiment.

    CERN Document Server

    Firlej, M; Idzik, M; Moron, J; Swientek, K

    2014-01-01

    The readout of silicon strip sensors in the upgraded Tracker System of Large Hadron Collider beauty (LHCb) experiment will require a novel complex Application Specific Integrated Circuit (ASIC). The ASIC will extract and digitise analogue signal from the sensor and subsequently will perform digital processing and serial data transmission. One of the key processing blocks, placed in each channel, will be an Analogue to Digital Converter (ADC). A prototype of fast, low-power 6-bit Successive Approximation Register (SAR) ADC was designed, fabricated and tested. The measurements of ADC prototypes confirmed simulation results showing excellent overall performance. In particular, very good resolution with Effective Number Of Bits (ENOB) 5.85 was obtained together with very low power consumption of 0.35 mW at 40 MS/s sampling rate. The results of the performed static and dynamic measurements confirm excellent ADC operation for higher sampling rates up to 80 MS/s.

  10. A fast, low-power, 6-bit SAR ADC for readout of strip detectors in the LHCb Upgrade experiment

    Science.gov (United States)

    Firlej, M.; Fiutowski, T.; Idzik, M.; Moron, J.; Swientek, K.

    2014-07-01

    The readout of silicon strip sensors in the upgraded Tracker System of Large Hadron Collider beauty (LHCb) experiment will require a novel complex Application Specific Integrated Circuit (ASIC). The ASIC will extract and digitise analogue signal from the sensor and subsequently will perform digital processing and serial data transmission. One of the key processing blocks, placed in each channel, will be an Analogue to Digital Converter (ADC). A prototype of fast, low-power 6-bit Successive Approximation Register (SAR) ADC was designed, fabricated and tested. The measurements of ADC prototypes confirmed simulation results showing excellent overall performance. In particular, very good resolution with Effective Number Of Bits (ENOB) 5.85 was obtained together with very low power consumption of 0.35 mW at 40 MS/s sampling rate. The results of the performed static and dynamic measurements confirm excellent ADC operation for higher sampling rates up to 80 MS/s.

  11. Phase transition in (EDO-TTF)2PF6: domain growth in the thermal hysteresis and ultra-fast photoinduced effects

    Science.gov (United States)

    Guérin, L.; Glijer, D.; Moisan, N.; Lorenc, M.; Buron-LeCointe, M.; Collet, E.; Cailleau, H.; Ota, A.; Saito, G.; Shao, X.; Yamochi, H.; Chollet, M.; Onda, K.; Ishikawa, T.; Koshihara, S.

    2005-01-01

    The first order phase transition between the metal (M) and insulating (I) phases of the molecular compound (EDO-TTF)2PF6 is investigated by single crystal x-ray diffraction. The coexistence of the insulating and metallic phases and the growth of the domains in the thermal hysteresis are clearly observed during the phase transition. We also present ultra-fast optical experiments using a nitrogen gas flow cryostat. A change of the reflectivity in the photoinduced phase was observed just after excitation. We will also discuss the influence of the excitation light polarisation on the efficiency of the photo-induced I-M phase transition.

  12. Benchmarking Fast-to-Alfv\\'en Mode Conversion in a Cold MHD Plasma. II. How to get Alfv\\'en waves through the Solar Transition Region

    CERN Document Server

    Hansen, Shelley C

    2012-01-01

    Alfv\\'en waves may be difficult to excite at the photosphere due to low ionization fraction and suffer near-total reflection at the transition region (TR). Yet they are ubiquitous in the corona and heliosphere. To overcome these difficulties, we show that they may instead be generated high in the chromosphere by conversion from reflecting fast magnetohydrodynamic waves, and that Alfv\\'enic transition region reflection is greatly reduced if the fast reflection point is within a few scale heights of the TR. The influence of mode conversion on the phase of the reflected fast wave is also explored. This phase can potentially be misinterpreted as a travel speed perturbation, with implications for the practical seismic probing of active regions.

  13. A fast, low power and low noise charge sensitive amplifier ASIC for a UV imaging single photon detector

    Science.gov (United States)

    Seljak, A.; Cumming, H. S.; Varner, G.; Vallerga, J.; Raffanti, R.; Virta, V.

    2017-04-01

    NASA has funded, through their Strategic Astrophysics Technology (SAT) program, the development of a cross strip (XS) microchannel plate (MCP) detector with the intention to increase its technology readiness level (TRL), enabling prototyping for future NASA missions. One aspect of the development is to convert the large and high powered laboratory Parallel Cross Strip (PXS) readout electronics into application specific integrated circuits (ASICs) to decrease their mass, volume, and power consumption (all limited resources in space) and to make them more robust to the environments of rocket launch and space. The redesign also foresees to increase the overall readout event rate, and decrease the noise contribution of the readout system. This work presents the design and verification of the first stage for the new readout system, the 16 channel charge sensitive amplifier ASIC, called the CSAv3. The single channel amplifier is composed of a charge sensitive amplifier (pre-amplifier), a pole zero cancellation circuit and a shaping amplifier. An additional output stage buffer allows polarity selection of the output analog signal. The operation of the amplifier is programmable via serial bus. It provides an equivalent noise charge (ENC) of around 600 e^- and a baseline gain of 10 mV/fC. The full scale pulse shaped output signal is confined within 100 ns, without long recovery tails, enabling up to 10 MHz periodic event rates without signal pile up. This ASIC was designed and fabricated in 130 nm, TSMC CMOS 1.2 V technology. In addition, we briefly discuss the construction of the readout system and plans for the future work.

  14. Efficient and fast 511-keV γ detection through Cherenkov radiation: the CaLIPSO optical detector

    Science.gov (United States)

    Ramos, E.; Kochebina, O.; Yvon, D.; Verrecchia, P.; Sharyy, V.; Tauzin, G.; Mols, J. P.; Starzinski, P.; Desforges, D.; Flouzat, Ch.; Bulbul, Y.; Jan, S.; Mancardi, X.; Canot, C.; Alokhina, M.

    2016-11-01

    The CaLIPSO project aims to develop a high precision brain-scanning PET device with time-of-flight capability. The proposed device uses an innovative liquid, the TriMethyl Bismuth, as the detection medium. It detects simultaneously the ionization and optical signals from the 511 keV gamma conversion. In this paper we present the design, the Monte Carlo simulation, and the tests results for the CaLIPSO optical prototype. In this prototype we demonstrated the ability to detect efficiently the low number of the optical photons produced by the relativistic electron from the gamma conversion through the Cherenkov effect. The time resolution of the current prototype is limited by the moderate time transition spread of the PMT, but should be improved to the level better than 100 ps (FWHM) by using micro-channel-plate PMT according to the Geant 4 simulation.

  15. Tests of PMT Signal Read-out in a Liquid Argon Dark Matter Detector with a New Fast Waveform Digitizer

    CERN Document Server

    Acciarri, R; Cavanna, F; Cortopassi, A; D'Incecco, M; Mini, G; Pietropaolo, F; Romboli, A; Segreto, E; Szelc, A M

    2012-01-01

    The CAEN V1751 is a new generation of Waveform Digitizer recently introduced by CAEN SpA. Its features, i.e. 8 Channels per board, 10 bit, 1 GS/s Flash ADC Waveform Digitizer (or 4 channel, 10 bit, 2 GS/s Flash ADC Waveform Digitizer - Dual Edge Sampling mode) with threshold and Auto-Trigger capabilities provides a very good (relatively low-cost) solution for data acquisition in Dark Matter searches using PMTs to detect scintillation light in liquid argon. The board was tested by operating it in real experimental conditions and by comparing it with a state of the art digital oscilloscope. We find that the sampling at 1 or 2 GS/s is appropriate for the reconstruction of the fast component of the scintillation light in argon (characteristic time of about 6-7 ns) and the extended dynamic range, after a small customization, allows for the detection of signals in the range of energy needed. The bandwidth is found to be adequate and the intrinsic noise is very low.

  16. Development and evaluation of an ultra-fast ASIC for future PET scanners using TOF-capable MPPC array detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ambe, T., E-mail: hiro-a-be.n@akane.waseda.jp [Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo (Japan); Ikeda, H. [ISAS/JAXA, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara-shi, Kanagawa (Japan); Kataoka, J.; Matsuda, H.; Kato, T. [Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo (Japan)

    2015-01-21

    We developed a front-end ASIC for future PET scanners with Time-Of-Flight (TOF) capability to be coupled with 4×4 Multi-Pixel Photon Counter (MPPC) arrays. The ASIC is designed based on the open-IP project proposed by JAXA and realized in TSMC 0.35 μm CMOS technology. The circuit comprises 16-channel, low impedance current conveyors for effectively acquiring fast MPPC signals. For precise measurement of the coincidence timing of 511-keV gamma rays, the leading-edge method was used to discriminate the signals. We first tested the time response of the ASIC by illuminating each channel of a MPPC array device 3×3 mm{sup 2} in size with a Pico-second Light Pulsar with a light emission peak of 655 nm and pulse duration of 54 ps (FWHM). We obtained 105 ps (FWHM) on average for each channel in time jitter measurements. Moreover, we compensated for the time lag of each channel with inner delay circuits and succeeded in suppressing about a 700-ps lag to only 15 ps. This paper reports TOF measurements using back-to-back 511-keV signals, and suggests that the ASIC can be a promising device for future TOF-PET scanners based on the MPPC array. - Highlights: • We developed a newly designed large-area monolithic MPPC array. • We obtained fine gain uniformity, and good energy and time resolutions when coupled to the LYSO scintillator. • We fabricated gamma-ray camera consisting of the MPPC array and the submillimeter pixelized LYSO and GGAG scintillators. • In the flood images, each crystal of scintillator matrices was clearly resolved. • Good energy resolutions for 662 keV gamma-rays for each LYSO and GGAG scintillator matrices were obtained.

  17. Paired emitter-detector diode detection with dual wavelength monitoring for enhanced sensitivity to transition metals in ion chromatography with post-column reaction.

    Science.gov (United States)

    O' Toole, Martina; Barron, Leon; Shepherd, Roderick; Paull, Brett; Nesterenko, Pavel; Diamond, Dermot

    2009-01-01

    The combination of post-column derivatisation and visible detection are regularly employed in ion chromatography (IC) to detect poorly absorbing species. Although this mode is often highly sensitive, one disadvantage is the increase in repeating baseline artifacts associated with out-of-sync pumping systems. The work presented here will demonstrate the use of a second generation design paired emitter-detector diode (PEDD-II) detection mode offering enhanced sensitivity to transition metals in IC by markedly reducing this problem and also by improving signal noise. First generation designs demonstrated the use of a single integrated PEDD detector cell as a simple, small (15 x 5 mm), highly sensitive, low cost photometric detector for the detection of metals in IC. The basic principle of this detection mode lies in the employment of two linear light emitting diodes (LEDs), one operating in normal mode as a light source and the other in reverse bias serving as a light detector. The second generation PEDD-II design showed increased sensitivity for Mn(II)- and Co(II)-2-(pyridylazo)resorcinol (PAR) complexes as a result of two simultaneously acquiring detection cells--one analytical PEDD cell and one reference PEDD cell. Therefore, the PEDD-II employs two wavelengths whereby one monitors the analyte reaction product and the second monitors a wavelength close to the isosbestic point. The optimum LED wavelength to be used for the analytical cell was investigated to maximise peak response. The fabrication process for both the analytical and reference PEDD cells was validated by determining the reproducibility of detectors within a batch. The reproducibility and sensitivity of the PEDD-II detector was then investigated using signals obtained from both intra- and inter-day chromatograms.

  18. High Frequency Design Considerations for the Large Detector Number and Small Form Factor Dual Electron Spectrometer of the Fast Plasma Investigation on NASA's Magnetospheric Multiscale Mission

    Science.gov (United States)

    Kujawski, Joseph T.; Gliese, Ulrik B.; Cao, N. T.; Zeuch, M. A.; White, D.; Chornay, D. J; Lobell, J. V.; Avanov, L. A.; Barrie, A. C.; Mariano, A. J.; hide

    2015-01-01

    Each half of the Dual Electron Spectrometer (DES) of the Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission utilizes a microchannel plate Chevron stack feeding 16 separate detection channels each with a dedicated anode and amplifier/discriminator chip. The desire to detect events on a single channel with a temporal spacing of 100 ns and a fixed dead-time drove our decision to use an amplifier/discriminator with a very fast (GHz class) front end. Since the inherent frequency response of each pulse in the output of the DES microchannel plate system also has frequency components above a GHz, this produced a number of design constraints not normally expected in electronic systems operating at peak speeds of 10 MHz. Additional constraints are imposed by the geometry of the instrument requiring all 16 channels along with each anode and amplifier/discriminator to be packaged in a relatively small space. We developed an electrical model for board level interactions between the detector channels to allow us to design a board topology which gave us the best detection sensitivity and lowest channel to channel crosstalk. The amplifier/discriminator output was designed to prevent the outputs from one channel from producing triggers on the inputs of other channels. A number of Radio Frequency design techniques were then applied to prevent signals from other subsystems (e.g. the high voltage power supply, command and data handling board, and Ultraviolet stimulation for the MCP) from generating false events. These techniques enabled us to operate the board at its highest sensitivity when operated in isolation and at very high sensitivity when placed into the overall system.

  19. Roles of blocking layer and anode bias in processes of impurity-band transition and transport for GaAs-based blocked-impurity-band detectors

    Science.gov (United States)

    Wang, Xiaodong; Wang, Bingbing; Chen, Xiaoyao; Chen, Yulu; Hou, Liwei; Xie, Wei; Pan, Ming

    2016-11-01

    Recently, GaAs-based BIB detector has attracted a lot of attention in the area of THz photovoltaic detection due to potential application values in security check and drug inspection. However, the physical mechanisms involving in carrier transition and transport are still unclear due to the poor material quality and immature processing technique. In this paper, the dark current and THz response characteristics have thus been numerically studied for GaAs-based blocked-impurity-band (BIB) detectors. The key parameters and physical models are constructed by simultaneously considering carrier freeze-out and impurity-band broadening effects. Roles of blocking layer and anode bias in processes of impurity-band transition and transport are intensively investigated, and the results can be well explained by numerical models. It is demonstrated that the effective electric field for the detector is only located in the absorbing layer, and can determine to a large extent the magnitude of the dark current and THz response. While the blocking layer not only can suppress dark current but also can attenuate responsivity due to its electric-field modulation effect.

  20. Development of the Next Generation of Multi-chroic Antenna-Coupled Transition Edge Sensor Detectors for CMB Polarimetry

    Science.gov (United States)

    Westbrook, B.; Cukierman, A.; Lee, A.; Suzuki, A.; Raum, C.; Holzapfel, W.

    2016-07-01

    We present the development of the next generation of multi-chroic sinuous antenna-coupled transition edge sensor (TES) bolometers optimized for precision measurements of polarization of the cosmic microwave background (CMB) and cosmic foreground. These devices employ a polarization sensitive broadband self-complementary sinuous antenna to feed on-chip band defining filters before delivering the power to load resistors coupled to a TES on a released bolometer island. This technology was originally developed by UC Berkeley and will be deployed by POLARBEAR-2 and SPT-3G in the next year and half. In addition, it is a candidate detector for the LiteBIRD mission which will make all sky CMB and cosmic foreground polarization observations from a satellite platform in the early 2020's. This works focuses on expanding both the bandwidth and band count per pixel of this technology in order to meet the needs of future CMB missions. This work demonstrates that these devices are well suited for observations between 20 and 380 GHz. This proceeding describes the design, fabrication, and the characterization of three new pixel types: a low-frequency triplexing pixel (LFTP) with bands centered on 40, 60, and 90 GHz, a high-frequency triplexing pixel (HFTP) with bands centered on 220, 280, and 350 GHz, and a mid-frequency tetraplexing pixel with bands (MFTP) centered on 90, 150, 220, and 280 GHz. The average fractional bandwidth of these pixels designs was 36.7, 34.5, and 31.4 % respectively. In addition we found that the polarization modulation efficiency of each band was between 1 and 3 % which is consistent with the polarization efficiency of the wire grid used to take the measurement. Finally, we find that the beams have {˜ }1 % ellipticity for each pixel type. The thermal properties of the bolometers where tuned for characterization in our lab so we do not report on G and noise values as they would be unsuitable for modern CMB experiments.

  1. Growth and characterization of rutile TiO2 nanorods on various substrates with fabricated fast-response metal-semiconductor-metal UV detector based on Si substrate

    Science.gov (United States)

    Selman, Abbas M.; Hassan, Z.

    2015-07-01

    Rutile-phase titanium dioxide nanorods (NRs) were synthesized successfully on p-type silicon (Si) (1 1 1), c-plane sapphire (Al2O3), glass coated with fluorine-doped tin oxide (FTO), glass, and quartz substrates via chemical bath deposition method. All substrates were seeded with a TiO2 seed layer synthesized with a radio frequency reactive magnetron sputtering system prior to NRs growth. The effect of substrate type on structural, morphological, and optical properties of rutile TiO2 NRs was studied. X-ray diffraction, Raman spectroscopy, and field-emission scanning electron microscopy analyses showed the tetragonal rutile structure of the synthesized TiO2 NRs. Optical properties were examined with photoluminescence (PL) spectroscopy of the grown rutile NRs on all substrates, with the spectra exhibiting one strong ultraviolet emission peak intensity compared with broad visible peak. The optimal sample of rutile NRs was grown on Si substrate. Thus, a fast-response metal-semiconductor-metal ultraviolet (UV) detector was fabricated. Upon exposure to 365 nm light (2.3 mW/cm2) at 5 V bias, the device displays 2.62 × 10-5 A photocurrent, and the response and recovery times are calculated as 18.5 and 19.1 ms, respectively. These results demonstrate that the fabricated high-quality photodiode is a promising candidate as a low-cost UV photodetector for commercially integrated photoelectronic applications.

  2. Reprint of “Heat capacity and transition behavior of sucrose by standard, fast scanning and temperature-modulated calorimetry”

    Energy Technology Data Exchange (ETDEWEB)

    Magoń, A. [Department of Chemistry, University of Technology, 35-959 Rzeszów (Poland); Wurm, A.; Schick, C. [Department of Physics, University of Rostock, 18057 Rostock (Germany); Pangloli, Ph.; Zivanovic, S. [Department of Food Science and Technology, University of Tennessee, Knoxville, TN 37996 (United States); Skotnicki, M. [Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań (Poland); Pyda, M., E-mail: mpyda@utk.edu [Department of Chemistry, University of Technology, 35-959 Rzeszów (Poland)

    2015-03-10

    Highlights: • Experimental, apparent heat capacity of sucrose was investigated by advanced thermal analysis. • Vibrational heat capacity of solid state was linked with a low temperature experimental heat capacity of sucrose. • Equilibrium melting parameters of sucrose were determined. • Decomposition, superheating of crystalline sucrose during melting process were presented. • TGA, DSC, TMDSC, and FSC are useful tools for characterization of sucrose. - Abstract: The heat capacity (C{sub p}) of crystalline and amorphous sucrose was determined using standard and quasi-isothermal temperature modulated differential scanning calorimetry. The results were combined with the published data determined by adiabatic calorimetry, and the C{sub p} values are now reported for the wide 5–600 K range. The experimental C{sub p} of solid sucrose at 5–300 K was used to calculate the vibrational, solid C{sub p} based on the vibrational molecular motions. The calculated solid and liquid C{sub p} together with the transition parameters for equilibrium conditions were used as references for detailed quantitative thermal analysis of crystalline and amorphous sucrose. Melting temperature (T{sub m}) of the crystalline sucrose was identified in a broad 442–465 K range with a heat of fusion of 40–46 J/mol determined at heating rates 0.5–20 K/min, respectively. The equilibrium T{sub m} and heat of fusion of crystalline sucrose were estimated at zero heating rate as T{sup o}{sub m} = 424.4 K and ΔH{sup o}{sub f} = 32 kJ/mol, respectively. The glass transition temperature (T{sub g}) of amorphous sucrose was at 331 K with a change in C{sub p} of 267 J/(mol K) as it was estimated from reversing heat capacity by quasi-isothermal TMDSC on cooling. At heating rates less than 30 K/min, thermal decomposition occurred during melting, while at extreme rate of 1000 K/s, degradation was not observed. Data obtained by fast scanning calorimetry (FSC) at 1000 K/s, showed that T{sub m} was

  3. Fast electromagnetic field strength probes

    NARCIS (Netherlands)

    Leferink, Frank; Serra, Ramiro

    2013-01-01

    Diode detectors and thermocouple detectors are conventionally used to measure electromagnetic field strength. Both detectors have some disadvantages for applications where a fast response and a high dynamic range is required. The diode detector is limited in dynamic range. The dynamic range is impor

  4. Transition between fast and slow gamma modes in rat hippocampus area CA1 in vitro is modulated by slow CA3 gamma oscillations.

    Science.gov (United States)

    Pietersen, Alexander N J; Ward, Peter D; Hagger-Vaughan, Nicholas; Wiggins, James; Jefferys, John G R; Vreugdenhil, Martin

    2014-02-15

    Hippocampal gamma oscillations have been associated with cognitive functions including navigation and memory encoding/retrieval. Gamma oscillations in area CA1 are thought to depend on the oscillatory drive from CA3 (slow gamma) or the entorhinal cortex (fast gamma). Here we show that the local CA1 network can generate its own fast gamma that can be suppressed by slow gamma-paced inputs from CA3. Moderate acetylcholine receptor activation induces fast (45 ± 1 Hz) gamma in rat CA1 minislices and slow (33 ± 1 Hz) gamma in CA3 minislices in vitro. Using pharmacological tools, current-source density analysis and intracellular recordings from pyramidal cells and fast-spiking stratum pyramidale interneurons, we demonstrate that fast gamma in CA1 is of the pyramidal-interneuron network gamma (PING) type, with the firing of principal cells paced by recurrent perisomal IPSCs. The oscillation frequency was only weakly dependent on IPSC amplitude, and decreased to that of CA3 slow gamma by reducing IPSC decay rate or reducing interneuron activation through tonic inhibition of interneurons. Fast gamma in CA1 was replaced by slow CA3-driven gamma in unlesioned slices, which could be mimicked in CA1 minislices by sub-threshold 35 Hz Schaffer collateral stimulation that activated fast-spiking interneurons but hyperpolarised pyramidal cells, suggesting that slow gamma frequency CA3 outputs can suppress the CA1 fast gamma-generating network by feed-forward inhibition and replaces it with a slower gamma oscillation driven by feed-forward inhibition. The transition between the two gamma oscillation modes in CA1 might allow it to alternate between effective communication with the medial entorhinal cortex and CA3, which have different roles in encoding and recall of memory.

  5. Development of the control system of the ALICE transition radiation detector and of a test environment for quality-assurance of its front-end electronics

    Energy Technology Data Exchange (ETDEWEB)

    Mercado Perez, Jorge

    2008-11-10

    Within this thesis, the detector control system (DCS) for the Transition Radiation Detector (TRD) of the ALICE experiment at the Large Hadron Collider has been developed. The TRD DCS is fully implemented as a detector oriented hierarchy of objects behaving as finite state machines. It controls and monitors over 65 thousand front-end electronics (FEE) units, a few hundred low voltage and one thousand high voltage channels, and other sub-systems such as cooling and gas. Commissioning of the TRD DCS took place during several runs with ALICE using cosmic events. Another part of this thesis describes the development of a test environment for large-scale production quality-assurance of over 4 thousand FEE read-out boards containing in total about 1.2 million read-out channels. The hardware and software components are described in detail. Additionally, a series of performance studies were carried out earlier including radiation tolerance tests of the TRAP chip which is the core component of the TRD FEE. (orig.)

  6. Separation of transition metals on a poly-iminodiacetic acid grafted polymeric resin column with post-column reaction detection utilising a paired emitter-detector diode system.

    Science.gov (United States)

    Barron, Leon; O'Toole, Martina; Diamond, Dermot; Nesterenko, Pavel N; Paull, Brett

    2008-12-05

    The selectivity, retention and separation of transition metals on a short (2 mm x 50 mm) column packed with a poly-iminodiacetic acid functionalised polymer 10 microm resin (Dionex ProPac IMAC-10) are presented. This stationary phase, typically used for the separation of proteins, is composed of long chain poly-iminodiacetic acid groups grafted to a hydrophilic layer surrounding a 10 microm polymeric bead. Through the use of a combination of a multi-step pH and picolinic acid gradient, the separation of magnesium, iron, cobalt, cadmium, zinc, lead and copper was possible, followed by post-column reaction with 4-(2-pyridylazo) resorcinol (PAR) and absorbance detection at 510 nm using a novel and inexpensive optical detector, comprised of two light emitting diodes with one acting as a light source and the other as a detector. Column efficiency for selective transition metals was in excess of N=10,000, with the baseline separation of seven metal cations in <3 min possible under optimised conditions. Detection limits of between 5 and 81 microg/L were possible based upon a 50 microL injection volume.

  7. Hard X-ray polarimetry with position sensitve germanium detectors. Studies of the recombination transitions into highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Tashenov, Stanislav

    2005-07-01

    In this work a first study of the photon polarization for the process of radiative recombination has been performed. This was done at the ESR storage ring at GSI for uranium ions colliding with N2 at various collision energies. For this measurement a high purity Ge Pixel Detector with a 4 x 4 segmentation matrix was applied. The investigation was performed at the Gas-jet target of the ESR. The detector was placed at 60 and 90 observation angles. The sensitivity of the Compton scattering effect to the linear polarization of the X-Ray radiation was employed for the polarization measurement. Detailed investigations of the scattering and geometrical effects inside the detector were performed in order to develop a method to interpret the experimental data and extract the degree of the linear polarization in the hard X-Ray regime with a high precision. A special emphasis was given to the geometry of the detector and it's influence on the measured pixel-to-pixel Compton scattering intensities. The developed method enabled to achieve a precision of the order of 10% with the Pixel Detector which is dominated by the statistical uncertainties. The obtained results show a good agreement with the theoretical values derived from the exact relativistic calculations. For the case of the linear polarization of the K-REC photons, the measured data con rm the theoretical prediction that strong depolarization effects occur for high projectile charges in the forward hemisphere. The latter is in disagreement with the nonrelativistic theory which predicts a 100 % polarization regardless of the emission angle. (orig.)

  8. CMOS锁相环中快速鉴相鉴频器的设计%Design of Fast Phase/Frequency Detector for the CMOS Phase-Locked Loops

    Institute of Scientific and Technical Information of China (English)

    任正权; 李龙镇

    2011-01-01

    摘要:为了实现高速锁相环电路,通过分析经典CMOS锁相环的鉴相鉴频器,针对其延迟时间过长的问题,设计了可用于CMOS锁相环中的快速鉴相鉴频器.整个电路采用了0.13μmCMOS工艺,通过HSpice仿真软件测试表明,该快速鉴相鉴频器与经典鉴相鉴频器相比,延迟时间可以缩短一半.%To implement high speed phase-locked loops circuit, on the basis of analyzing the conventional phase/frequency detector of CMOS phase-locked loops, a fast phase/frequency detector is designed for the CMOS phase-locked loops to reduce the delay time. The circuit is designed by using the 0. 13 μm CMOS process and HSpice simulating results show that the designed fast phase/frequency detector can reduce half de- lay time.

  9. Reduced γ–γ time walk to below 50 ps using the multiplexed-start and multiplexed-stop fast-timing technique with LaBr{sub 3}(Ce) detectors

    Energy Technology Data Exchange (ETDEWEB)

    Régis, J.-M., E-mail: regis@ikp.uni-koeln.de [Institut für Kernphysik der Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany); Saed-Samii, N., E-mail: nima@ikp.uni-koeln.de [Institut für Kernphysik der Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany); Rudigier, M. [Institut für Kernphysik der Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany); Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Ansari, S.; Dannhoff, M.; Esmaylzadeh, A.; Fransen, C.; Gerst, R.-B.; Jolie, J.; Karayonchev, V.; Müller-Gatermann, C.; Stegemann, S. [Institut für Kernphysik der Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany)

    2016-07-01

    The electronic γ–γ fast-timing technique using arrays consisting of many LaBr{sub 3}(Ce) detectors is a powerful method to determine lifetimes of nuclear excited states with a lower limit of about 5 ps. This method requires the determination of the energy-dependent time walk of the zero time which is represented by the centroid of a prompt γ–γ time distribution. The full-energy peak versus full-energy peak prompt response difference which represents the linearly combined mean γ–γ time walk of a fast-timing array consisting of 8 LaBr{sub 3}(Ce) detectors was measured using a standard {sup 152}Eu γ-ray source for the energy region of 40–1408 keV. The data were acquired using a “multiplexed-start and multiplexed-stop” analogue electronics circuitry and analysed by employing the generalized centroid difference method. Concerning the cylindrical 1.5 in.×1.5 in. LaBr{sub 3}(Ce) crystals which are coupled to the Hamamatsu R9779 photomultiplier tubes, the best fast-timing array time resolution of 202(3) ps is obtained for the two prompt γ lines of {sup 60}Co by using the leading-edge timing principle. When using the zero-crossover timing principle the time resolution is degraded by up to 30%, dependent on the energy and the shaping delay time of the constant fraction discriminator model Ortec 935. The smallest γ–γ time walk to below 50 ps is obtained by using a shaping delay time of about 17 ns and an optimum “time-walk adjustment” needed for detector output pulses with amplitudes smaller than 400 mV.

  10. Mixture formation of direct gasoline injection engine. In cylinder gas sampling using fast response ionization detector; Tonai funsha gasoline engine no kongoki keisei. Kosoku FID ni yoru tonai gas sampling

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, H.; Marubara, M.; Ota, N.; Kudo, H.; Yamamoto, H. [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Local mixture concentration near the spark plug of a direct gasoline injection engine was observed by a fast flame ionization detector. To ensure combustion stability and good fuel economy in DISC operation, the swirl ratio and the piston configuration were optimized. Swirl is needed to retain well-vaporized and stable mixture near the spark plug especially in light load. And adequate volume in piston cavity is required for trapping curved fuel spray in it. With these specifications, the fuel economy improvement of 13 to 30 % was realized. 2 refs., 13 figs., 1 tab.

  11. Calibration of the ALICE transition radiation detector and a study of Z{sup 0} and heavy quark production in pp colissions at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bailhache, Raphaelle

    2009-01-28

    The ALICE Experiment is one of the four experiments installed at the Large Hadron Collider (LHC). One of its detector-systems, the Transition Radiation Detector (TRD), is a gas detector designed for electron identification and charged particle tracking. The charged particle ionizes the gas along its path and electrons drift in an uniform field of 700 V/cm over 3 cm before being amplified. We implemented procedures to calibrate the drift velocity of the electrons, the time-offset of the signal, the amplification factor and the width of the Pad Response Function (PDF) characterizing the sharing of the deposited charge over adjacent pads. Physics events (pp and PbPb collisions) will be used. The performances of the algorithms were tested on simulated pp collisions at {radical}(s)=14 TeV and on first real data taken with cosmic-rays in the ALICE setup. The calibration software was installed on the Data Acquisition System at CERN and executed continuously during the cosmic-ray data taking in 2008, providing a first determination of the calibration constants. This thesis presents also a study on the capability of the ALICE central barrel to detect the Z{sup 0} boson through the decay Z{sup 0}{yields}e{sup +}e{sup -} in pp collisions at 14 TeV. We demonstrated that the Z{sup 0}{yields}e{sup +}e{sup -} is characterized by a very clean signal in the dielectron reconstructed invariant mass spectrum. At such high transverse momentum (about 45 GeV/c), the electrons from Z{sup 0} are identified with the Transition Radiation Detector. The remaining background from misidentified pions and electrons from heavy-flavored decays are rejected by the requirement of two isolated reconstructed tracks. The main challenge comes from the very small production rate. Therefore we estimated the efficiency of a trigger based on a low p{sub T} cut and electron identification with the TRD and showed that about 100 Z{sup 0}{yields}e{sup +}e{sup -} can be reconstructed per year employing such a

  12. Upgrade of the Level-1 muon trigger of the ATLAS detector in the barrel-endcap transition region with RPC chambers

    CERN Document Server

    Massa, L; The ATLAS collaboration

    2014-01-01

    This report presents a project for the upgrade of the Level-1 muon trigger in the barrel-endcap transition region (1.01) caused by charged particles originating from secondary interactions downstream of the interaction point. After the LHC phase-1 upgrade, forseen for 2018, the Level-1 muon trigger rate would saturate the allocated bandwidth unless new measures are adopted to improve the rejection of fake triggers. ATLAS is going to improve the trigger selectivity in the region |$\\eta$|>1.3 with the addition of the New Small Wheel detector as an inner trigger plane. To obtain a similar trigger selectivity in the barrel-endcap transition region 1.0<|$\\eta$|<1.3, it is proposed to add new RPC chambers at the edge of the inner layer of the barrel muon spectrometer. These chambers will be based on a three layer structure with thinner gas gaps and electrodes with respect to the ATLAS standard and a new low-profile light-weight mechanical structure that will allow the installation in the limited available spa...

  13. Interplay of fast and slow dynamics in rare transition pathways: The disk-to-slab transition in the 2d Ising model

    Science.gov (United States)

    Moritz, Clemens; Tröster, Andreas; Dellago, Christoph

    2017-10-01

    Rare transitions between long-lived stable states are often analyzed in terms of free energy landscapes computed as functions of a few collective variables. Here, using transitions between geometric phases as example, we demonstrate that the effective dynamics of a system along these variables are an essential ingredient in the description of rare events and that the static perspective provided by the free energy alone may be misleading. In particular, we investigate the disk-to-slab transition in the two-dimensional Ising model starting with a calculation of a two-dimensional free energy landscape and the distribution of committor probabilities. While at first sight it appears that the committor is incompatible with the free energy, they can be reconciled with each other using a two-dimensional Smoluchowski equation that combines the free energy landscape with state dependent diffusion coefficients. These results illustrate that dynamical information is not only required to calculate rate constants but that neglecting dynamics may also lead to an inaccurate understanding of the mechanism of a given process.

  14. The discrimination between cosmic positrons and protons with the Transition Radiation Detector of the AMS experiment on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Millinger, Mark

    2012-10-08

    The aim of this thesis is the development and validation of a particle identification method with the Transition Radiation Detector (TRD) of the Alpha Magnetic Spectrometer AMS-02 to allow for the determination of the positron fraction in the cosmic lepton flux. Independent measurements indicate that a significant amount of about 23% of the energy density in the universe consists of an unknown mass contribution, the so-called Dark Matter. The Neutralino, as the most popular Dark Matter particle candidate, may produce an additional signal in the spectrum of cosmic rays. The fraction of positrons in the cosmic lepton flux possibly contains such a Dark Matter signal at high particle momenta. The currently most precise measurements in the region of this excess are provided by the satellite-borne PAMELA and Fermi detectors. Momentumdependent systematic uncertainties, especially the mis-identification of protons as positrons, could imitate the signal. However, if this positron excess is produced by Dark Matter the fraction should decrease above a theoretical energy threshold to the expectations, based on particle propagation. The energy region measured up to now does not show such a progress. Due to its significantly increased event statistics and its capability to measure up to higher particle energies, this signature could be observed with AMS-02. The number of events, which can be recorded by a detector, is limited by the combination of aperture and observable solid angle, quantified by the geometrical acceptance, and the observation time. As the cosmic particle flux follows a power-law in particle momentum with exponent {gamma} {approx} -3, the observable momentum interval is thus constrained by statistics. Due to its large geometrical acceptance of about 0.5 m{sup 2}sr, its long observation time of at least 9 years and its high proton suppression factor of >or similar 10{sup 6} AMS-02 will record large and clean lepton samples and thus provide a precise measurement

  15. Thermal, intermediate and fast neutron flux measurements using activation detectors; Mesure des flux de neutrons thermiques, intermediaires et rapides au moyen de detecteurs par activation

    Energy Technology Data Exchange (ETDEWEB)

    Brisbois, J.; Lott, M.; Manent, G. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    The problem of neutron flux measurements using activation detectors is studied in the particular case of protection research. It is shown how it possible, it is possible, using a known thermal flux, to organise a coherent calibration system for all the detectors. The rapid neutron detectors are calibrated with respect to a reference detector (phosphorus) in a natural uranium converter; the intermediate neutron detectors with respect to gold in the axial channel of ZOE. This method makes it possible to minimise the errors due to the activation cross-sections. A brief description is given of the counting room of the Pile Safety Study Service, as well of the practical utilisation characteristics of the counters employed. (authors) [French] Le probleme de la mesure des flux de neutrons au moyen de detecteurs par activation est etudie dans le cas particulier des etudes de protections. On montre comment, a partir d'un flux thermique connu, on peut organiser un systeme coherent d'etalonnage de tous les detecteurs. Les detecteurs de neutrons rapides sont etalonnes par rapport a un detecteur de reference (phosphore) dans un convertisseur en uranium naturel; les detecteurs de neutrons intermediaires, par rapport a l'or dans le canal axial de ZOE, Cette methode permet de minimiser les erreurs dues aux sections efficaces d'activation. On decrit sommairement la salle de comptage du Service d'Etudes de Protections de Piles et on indique les caracteristiques d'emploi pratique des detecteurs utilises. (auteurs)

  16. Prospects of detecting the QCD phase transition in the Galactic supernova neutrino burst with 20-kton scale liquid scintillation detectors

    Science.gov (United States)

    Petkov, V. B.

    2016-06-01

    The supernova explosion in the Galaxy is a rare event; that is why the comprehensive study of the next one has absolute priority for the low-energy neutrino astronomy. Because the detailed explosion mechanism has not been unambiguously identified yet and the surrounding matter envelope is opaque for photons, the neutrinos only can give information about physical conditions, dynamics of the collapse, and the SN mechanism. Furthermore, neutrinos could potentially reveal new physics (e.g. QCD phase transition) operating deep in the stellar core.

  17. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time.

    Science.gov (United States)

    Zhang, Qingteng; Dufresne, Eric M; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Narayanan, Suresh; Deptuch, Grzegorz W; Szczygiel, Robert; Sandy, Alec

    2016-05-01

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. The potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  18. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Narayanan, Suresh; Deptuch, Grzegorz W.; Szczygiel, Robert; Sandy, Alec

    2016-04-19

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. The potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  19. Measurement of the $\\phi \\to \\pi^0 e^+e^-$ transition form factor with the KLOE detector

    CERN Document Server

    :,; Babusci, D; Bencivenni, G; Berlowski, M; Bloise, C; Bossi, F; Branchini, P; Budano, A; Balkeståhl, L Caldeira; Cao, B; Ceradini, F; Ciambrone, P; Curciarello, F; Czerwiński, E; D'Agostini, G; Danè, E; De Leo, V; De Lucia, E; De Santis, A; De Simone, P; Di Cicco, A; Di Domenico, A; Di Salvo, R; Domenici, D; D'Uffizi, A; Fantini, A; Felici, G; Fiore, S; Gajos, A; Gauzzi, P; Giardina, G; Giovannella, S; Graziani, E; Happacher, F; Heijkenskjöld, L; Andersson, W Ikegami; Johansson, T; Kamińska, D; Krzemien, W; Kupsc, A; Loffredo, S; Mandaglio, G; Martini, M; Mascolo, M; Messi, R; Miscetti, S; Morello, G; Moricciani, D; Moskal, P; Papenbrock, M; Passeri, A; Patera, V; del Rio, E Perez; Ranieri, A; Santangelo, P Salabura P; Sarra, I; Schioppa, M; Silarski, M; Sirghi, F; Tortora, L; Venanzoni, G; Wiślicki, W; Wolke, M

    2016-01-01

    A measurement of the vector to pseudoscalar conversion decay $\\phi \\to \\pi^0 e^+e^-$ with the KLOE experiment is presented. A sample of $\\sim 9500$ signal events was selected from a data set of 1.7 fb$^{-1}$ of $e^+e^-$ collisions at $\\sqrt{s} \\sim m_{\\phi}$ collected at the DA$\\Phi$NE $e^+e^-$ collider. These events were used to obtain the first measurement of the transition form factor $| F_{\\phi \\pi^0}(q^2) |$ and a new measurement of the branching ratio of the decay: $\\rm{BR}\\,(\\phi \\to \\pi^0 e^+e^-) = (\\,1.35 \\pm 0.05^{\\,\\,+0.05}_{\\,\\,-0.10}\\,) \\times 10 ^{-5}$. The result improves significantly on previous measurements and is in agreement with theoretical predictions.

  20. Development, simulation and test of transition radiation detector prototypes for the compressed baryonic matter experiment at the facility for antiproton and ion research

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Cyrano S.H.

    2014-07-01

    The focus of this thesis is the development of a Transition Radiation Detector (TRD) for the Compressed Baryonic Matter (CBM) experiment at FAIR. The TRD sub-detector will contribute to the global particle identification and track reconstruction of charged particles. The technical design goal for the TRD is to identify 90% electrons with a maximum pion contamination of 1%. The TRD and Ring Image CHerenkov (RICH) detector should reach a common pion rejection of 10{sup 4}, in order to measure charmonium and low-mass vector mesons. The position resolution should be between 200 and 300 μm in the anode wire direction. The most demanding aspect of the CBM TRD design is the high interaction rate of up to 10{sup 7} Hz resulting in a charged particle rate of up to 100 kHz/cm{sup 2} in the central part of the detector planes at SIS300 conditions. It is crucial to find the optimal radiator detector combination with a minimum material budget to limit scattering and background due to conversions and at the same time reach a sufficient pion rejection and position resolution. In this thesis it is confirmed that a Multi-Wire Proportional Counter (MWPC) with a Xe/CO{sub 2} gas thickness of 12mm provides sufficient absorption probability for TR-photons in combination with self-supporting low density PE foam or micro-structured foil radiators. A continuous investigation aiming at an optimal wire and pad-plane geometry, as well as a minimization of the material budget between active gas and radiator has been presented in hard- and software. A minimum photon absorption cross-section of the entrance window was realized with a thermally stretched aluminized Kapton foil, glued to a G11 support grid support frame. This structure limits the mechanical deformation of the entire window to 1mm/mbar. All MWPC prototypes include two wire planes. A symmetric amplification region of 2 x (3, 3.5 or 4)mm is followed by a short drift region of 6, 5 or 4 mm. The drift region reduces the gain

  1. Fast Transition between High-soft and Low-soft States in GRS 1915+105 Evidence for a Critically Viscous Accretion Flow

    CERN Document Server

    Naik, S; Chakrabarti, S K; Chakrabarti, Sandip K.

    2002-01-01

    We present the results of a detailed analysis of RXTE observations of class $\\omega$ which show an unusual state transition between high-soft and low-soft states in the microquasar GRS 1915+105. Out of about 600 pointed RXTE observations, the source was found to exhibit such state transition only on 16 occasions. An examination of the RXTE/ASM data in conjunction with the pointed observations reveals that these events appeared as a series of quasi-regular dips in two stretches of long duration (about 20 days during each occasions) when hard X-ray and radio flux were very low. The X-ray light curve and color-color diagram of the source during these observations are found to be different from any reported so far. The duration of these dips is found to be of the order of a few tens of seconds with a repetition time of a few hundred seconds. The transition between these dips and non-dips which differ in intensity by a factor of ~ 3.5, is observed to be very fast (~ a few seconds). It is observed that the low-freq...

  2. Slow and Fast Transitions in the Rising Phase of Outbursts from NS-LMXB transients, AqlX-1 and 4U1608-52

    CERN Document Server

    Asai, Kazumi; Mihara, Tatehiro; Sugizaki, Mutsumi; Serino, Motoko; Nakahira, Satoshi; Negoro, Hitoshi; Ueda, Yoshihiro; Yamaoka, Kazutaka

    2012-01-01

    We analyzed the initial rising behaviors of X-ray outbursts from two transient low-mass X-ray binaries (LMXBs) containing a neutron-star (NS), Aql X-1 and 4U 1608-52, which are continuously being monitored by MAXI/GSC in 2--20 keV, RXTE/ASM in 2--10 keV, and Swift/BAT in 15--50 keV. We found that the observed ten outbursts are classified into two types by the patterns of the relative intensity evolutions in the two energy bands below/above 15 keV. One type behaves as the 15--50 keV intensity achieves the maximum during the initial hard-state period and drops greatly at the hard-to-soft state transition. On the other hand, the other type does as both the 2--15 keV and the 15--50 keV intensities achieve the maximums after the transition. The former have the longer initial hard-state ($\\gtrsim$ 9 d) than the latter's ($\\ltsim$5 d). Therefore, we named them as slow-type (S-type) and fast-type (F-type), respectively. These two types also show the differences in the luminosity at the hard-to-soft state transition a...

  3. Separating Double-Beta Decay Events from Solar Neutrino Interactions in a Kiloton-Scale Liquid Scintillator Detector By Fast Timing

    CERN Document Server

    Elagin, Andrey; Naranjo, Brian; Ouellet, Jonathan; Winslow, Lindley; Wongjirad, Taritree

    2016-01-01

    We present a technique for separating nuclear double beta decay ($\\beta\\beta$-decay) events from background neutrino interactions due to $^{8}$B decays in the sun. This background becomes dominant in a kiloton-scale liquid-scintillator detector deep underground and is usually considered as irreducible due to an overlap in deposited energy with the signal. However, electrons from 0$\

  4. Multi-phonon dynamics of the ultra-fast photoinduced transition of (EDO-TTF)2SbF6

    Science.gov (United States)

    Lorenc, Maciej; Moisan, Nicolas; Servol, Marina; Cailleau, Hervé; Koshihara, Shin-ya; Maesato, Mitsuhiko; Shao, Xiangfeng; Nakano, Yoshiaki; Yamochi, Hideki; Saito, Gunzi; Collet, Eric

    2009-02-01

    We report here the first observation of the photoinduced insulating-to-metal phase transition in the (EDO-TTF)2SbF6 salt, which occurs on the picosecond time-scale. The time-resolved optical experiments performed with 80 fs time-resolution demonstrate that the dynamical process involves several low-frequency phonons, as the crystalline structure is destabilized upon laser excitation.

  5. Fast wettability transition from hydrophilic to superhydrophobic laser-textured stainless steel surfaces under low-temperature annealing

    Science.gov (United States)

    Ngo, Chi-Vinh; Chun, Doo-Man

    2017-07-01

    Recently, the fabrication of superhydrophobic metallic surfaces by means of pulsed laser texturing has been developed. After laser texturing, samples are typically chemically coated or aged in ambient air for a relatively long time of several weeks to achieve superhydrophobicity. To accelerate the wettability transition from hydrophilicity to superhydrophobicity without the use of additional chemical treatment, a simple annealing post process has been developed. In the present work, grid patterns were first fabricated on stainless steel by a nanosecond pulsed laser, then an additional low-temperature annealing post process at 100 °C was applied. The effect of 100-500 μm step size of the textured grid upon the wettability transition time was also investigated. The proposed post process reduced the transition time from a couple of months to within several hours. All samples showed superhydrophobicity with contact angles greater than 160° and sliding angles smaller than 10° except samples with 500 μm step size, and could be applied in several potential applications such as self-cleaning and control of water adhesion.

  6. The DØ detector

    Science.gov (United States)

    Abachi, S.; Abolins, M.; Acharya, B. S.; Adam, I.; Ahn, S.; Aihara, H.; Alvarez, G.; Alves, G. A.; Amos, N.; Anderson, W.; Antipov, Yu.; Aronson, S. H.; Astur, R.; Avery, R. E.; Baden, A.; Balderston, J.; Baldin, B.; Bantly, J.; Barasch, E.; Bartlett, J. F.; Bazizi, K.; Behnke, T.; Bezzubov, V.; Bhat, P. C.; Blazey, G.; Blessing, S.; Boehnlein, A.; Borcherding, F.; Borders, J.; Bozko, N.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoy, V.; Butler, J. M.; Callot, O.; Chakraborty, D.; Chekulaev, S.; Chen, J.; Chen, L.-P.; Chen, W.; Choudhary, B. C.; Christenson, J. H.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M.; Cutts, D.; Dahl, O. I.; Daniels, B.; De, K.; Demarteau, M.; Denisenko, K.; Denisenko, N.; Denisov, D.; Denisov, S.; Dharmaratna, W.; Diehl, H. T.; Diesburg, M.; Dixon, R.; Draper, P.; Ducros, Y.; Durston-Johnson, S.; Eartly, D.; Eberhard, P. H.; Edmunds, D.; Efimov, A.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eroshin, O.; Evdokimov, V.; Fahey, S.; Fanourakis, G.; Fatyga, M.; Featherly, J.; Feher, S.; Fein, D.; Ferbel, T.; Finley, D.; Finocchiaro, G.; Fisk, H. E.; Flattum, E.; Forden, G. E.; Fortner, M.; Franzini, P.; Fuess, S.; Gallas, E.; Gao, C. S.; Geld, T. L.; Genser, K.; Gerber, C. E.; Gibbard, B.; Glebov, V.; Glicenstein, J. F.; Gobbi, B.; Goforth, M.; Good, M. L.; Goozen, F.; Gordon, H.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J.; Greenlee, H.; Grossman, N.; Grudberg, P.; Guida, J. A.; Guida, J. M.; Guryn, W.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hall, R. E.; Hansen, S.; Hauptman, J.; Hedin, D.; Heinson, A. P.; Heintz, U.; Heuring, T.; Hirosky, R.; Hodel, K.; Hoftun, J. S.; Hubbard, J. R.; Huehn, T.; Huson, R.; Igarashi, S.; Ito, A. S.; James, E.; Jiang, J.; Johns, K.; Johnson, C. R.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jung, C. K.; Kahn, S.; Kanekal, S.; Kernan, A.; Kerth, L.; Kirunin, A.; Klatchko, A.; Klima, B.; Klochkov, B.; Klopfenstein, C.; Klyukhin, V.; Kochetkov, V.; Kohli, J. M.; Kononenko, W.; Kotcher, J.; Kotov, I.; Kourlas, J.; Kozelov, A.; Kozlovsky, E.; Krafczyk, G.; Krempetz, K.; Krishnaswamy, M. R.; Kroon, P.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Landsberg, G.; Lanou, R. E.; Laurens, P.; Lee-Franzini, J.; Li, J.; Li, R.; Li-Demarteau, Q. Z.; Lima, J. G. R.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y.-C.; Lloyd-Owen, D.; Lobkowicz, F.; Loken, S. C.; Lokos, S.; Lueking, L.; Maciel, A. K. A.; Madaras, R. J.; Madden, R.; Malamud, E.; Mangeot, Ph.; Manning, I.; Mansoulié, B.; Manzella, V.; Mao, H.-S.; Marcin, M.; Markosky, L.; Marshall, T.; Martin, H. J.; Martin, M. I.; Martin, P. S.; Marx, M.; May, B.; Mayorov, A.; McCarthy, R.; McKinley, J.; Mendoza, D.; Meng, X.-C.; Merritt, K. W.; Milder, A.; Mincer, A.; Mondal, N. K.; Montag, M.; Mooney, P.; Mudan, M.; Mulholland, G. T.; Murphy, C.; Murphy, C. T.; Nang, F.; Narain, M.; Narasimham, V. S.; Neal, H. A.; Nemethy, P.; Nešić, D.; Ng, K. K.; Norman, D.; Oesch, L.; Oguri, V.; Oltman, E.; Oshima, N.; Owen, D.; Pang, M.; Para, A.; Park, C. H.; Partridge, R.; Paterno, M.; Peryshkin, A.; Peters, M.; Pi, B.; Piekarz, H.; Pischalnikov, Yu.; Pizzuto, D.; Pluquet, A.; Podstavkov, V.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Que, Y.-K.; Quintas, P. Z.; Rahal-Callot, G.; Raja, R.; Rajagopalan, S.; Rao, M. V. S.; Rasmussen, L.; Read, A. L.; Regan, T.; Repond, S.; Riadovikov, V.; Rijssenbeek, M.; Roe, N. A.; Rubinov, P.; Rutherfoord, J.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Sculli, J.; Selove, W.; Shea, M.; Shkurenkov, A.; Shupe, M.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, A.; Smith, D.; Smith, R. P.; Snow, G. R.; Snyder, S.; Sosebee, M.; Souza, M.; Spadafora, A. L.; Stampke, S.; Stephens, R.; Stevenson, M. L.; Stewart, D.; Stocker, F.; Stoyanova, D.; Stredde, H.; Streets, K.; Strovink, M.; Suhanov, A.; Taketani, A.; Tartaglia, M.; Taylor, J. D.; Teiger, J.; Theodosiou, G.; Thompson, J.; Tisserant, S.; Trippe, T. G.; Tuts, P. M.; Van Berg, R.; Vaz, M.; Vishwanath, P. R.; Volkov, A.; Vorobiev, A.; Wahl, H. D.; Wang, D.-C.; Wang, L.-Z.; Weerts, H.; Wenzel, W. A.; White, A.; White, J. T.; Wightman, J.; Willis, S.; Wimpenny, S. J.; Wolf, Z.; Womersley, J.; Wood, D. R.; Xia, Y.; Xiao, D.; Xie, P.; Xu, H.; Yamada, R.; Yamin, P.; Yanagisawa, C.; Yang, J.; Yang, M.-J.; Yoshikawa, C.; Youssef, S.; Yu, J.; Zeller, R.; Zhang, S.; Zhou, Y. H.; Zhu, Q.; Zhu, Y.-S.; Zieminska, D.; Zieminski, A.; Zinchenko, A.; Zylberstejn, A.; DØ Collaboration

    1994-01-01

    The DØ detector is a large general purpose detector for the study of short-distance phenomena in high energy antiproton-proton collisions, now in operation at the Fermilab Tevatron collider. The detector focusses upon the detection of electrons, muons, jets and missing transverse momentum. We describe the design and performance of the major elements of the detector, including the tracking chambers, transition radiation detector, liquid argon calorimetry and muon detection. The associated electronics, triggering systems and data acquisition systems are presented. The global mechanical, high voltage, and experiment monitoring and control systems which support the detector are described. We also discuss the design and implementation of software and software support systems that are specific to DØ.

  7. Fast neutron imaging device and method

    Science.gov (United States)

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  8. Development, simulation and test of transition radiation detector prototypes for the compressed baryonic matter experiment at the facility for antiproton and ion research

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Cyrano S.H.

    2014-07-01

    The focus of this thesis is the development of a Transition Radiation Detector (TRD) for the Compressed Baryonic Matter (CBM) experiment at FAIR. The TRD sub-detector will contribute to the global particle identification and track reconstruction of charged particles. The technical design goal for the TRD is to identify 90% electrons with a maximum pion contamination of 1%. The TRD and Ring Image CHerenkov (RICH) detector should reach a common pion rejection of 10{sup 4}, in order to measure charmonium and low-mass vector mesons. The position resolution should be between 200 and 300 μm in the anode wire direction. The most demanding aspect of the CBM TRD design is the high interaction rate of up to 10{sup 7} Hz resulting in a charged particle rate of up to 100 kHz/cm{sup 2} in the central part of the detector planes at SIS300 conditions. It is crucial to find the optimal radiator detector combination with a minimum material budget to limit scattering and background due to conversions and at the same time reach a sufficient pion rejection and position resolution. In this thesis it is confirmed that a Multi-Wire Proportional Counter (MWPC) with a Xe/CO{sub 2} gas thickness of 12mm provides sufficient absorption probability for TR-photons in combination with self-supporting low density PE foam or micro-structured foil radiators. A continuous investigation aiming at an optimal wire and pad-plane geometry, as well as a minimization of the material budget between active gas and radiator has been presented in hard- and software. A minimum photon absorption cross-section of the entrance window was realized with a thermally stretched aluminized Kapton foil, glued to a G11 support grid support frame. This structure limits the mechanical deformation of the entire window to 1mm/mbar. All MWPC prototypes include two wire planes. A symmetric amplification region of 2 x (3, 3.5 or 4)mm is followed by a short drift region of 6, 5 or 4 mm. The drift region reduces the gain

  9. Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis

    Science.gov (United States)

    Labiche, Jean-Claude; Mathon, Olivier; Pascarelli, Sakura; Newton, Mark A.; Ferre, Gemma Guilera; Curfs, Caroline; Vaughan, Gavin; Homs, Alejandro; Carreiras, David Fernandez

    2007-09-01

    Originally conceived and developed at the European Synchrotron Radiation Facility (ESRF) as an "area" detector for rapid x-ray imaging studies, the fast readout low noise (FReLoN) detector of the ESRF [J.-C. Labiche, ESRF Newsletter 25, 41 (1996)] has been demonstrated to be a highly versatile and unique detector. Charge coupled device (CCD) cameras at present available on the public market offer either a high dynamic range or a high readout speed. A compromise between signal dynamic range and readout speed is always sought. The parameters of the commercial cameras can sometimes be tuned, in order to better fulfill the needs of specific experiments, but in general these cameras have a poor duty cycle (i.e., the signal integration time is much smaller than the readout time). In order to address scientific problems such as time resolved experiments at the ESRF, a FReLoN camera has been developed by the Instrument Support Group at ESRF. This camera is a low noise CCD camera that combines high dynamic range, high readout speed, accuracy, and improved duty cycle in a single image. In this paper, we show its application in a quasi-one-dimensional sense to dynamic problems in materials science, catalysis, and chemistry that require data acquisition on a time scale of milliseconds or a few tens of milliseconds. It is demonstrated that in this mode the FReLoN can be applied equally to the investigation of rapid changes in long range order (via diffraction) and local order (via energy dispersive extended x-ray absorption fine structure) and in situations of x-ray hardness and flux beyond the capacity of other detectors.

  10. Fast scintillation timing detector using proportional-mode avalanche photodiode for nuclear resonant scattering experiments in high-energy synchrotron X-ray region

    Science.gov (United States)

    Inoue, Keisuke; Kishimoto, Shunji

    2016-01-01

    To obtain both a high count rate of >107 s-1 and a detection efficiency sufficient for high-energy X-rays of >30 keV, we propose a scintillation timing detector using a proportional-mode silicon avalanche photodiode (Si-APD) for synchrotron radiation nuclear resonant scattering. We here present results obtained with a prototype detector using a lead-loaded plastic scintillator (EJ-256) mounted on a proportional-mode Si-APD (active area size: 3 mm in diameter). The detector was operated at ‒35 °C for a better signal-to-noise ratio. Using synchrotron X-rays of 67.41 keV, which is the same energy as the first excited level of 61Ni, we successfully measured pulse-height and time spectra of the scintillation light. A good time resolution of 0.50±0.06 ns (full width at half-maximum) was obtained for 67.41 keV X-rays with a scintillator 3 mm in diameter and 2 mm thick.

  11. Sensitivity of the CUORE detector to $14.4$ keV solar axions emitted by the M1 nuclear transition of$~^{57}$Fe

    CERN Document Server

    Li, Dawei; Avignone, Frank T; Wang, Yuanxu

    2015-01-01

    In this paper we present a calculation of the sensitivity of the CUORE detector to the monoenergetic $14.4$ keV solar axions emitted by the M1 nuclear transition of$~^{57}$Fe in the Sun and detected by inverse coherent Bragg-Primakoff conversion in single-crystal $TeO_2$ bolometers. The expected counting rate is calculated using density functional theory for the electron charge density of $TeO_2$ and realistic background and energy resolution of CUORE. Monte Carlo simulations for $5$ y $\\times$ $741$ kg=$3705-$kg$\\cdot$y of exposure are analyzed using time correlation of individual events with the theoretical time-dependent counting rate. We find an expected model-independent limit on the product of the axion-photon coupling and the axion-nucleon coupling $g_{a\\gamma\\gamma}\\{|-1.19g^0_{aN}+g^3_{aN}|\\}<1.105\\times 10^{-16}$ /GeV for axion masses less than 500 eV with $95\\%$ confidence level.

  12. Experimentally constrained CA1 fast-firing parvalbumin-positive interneuron network models exhibit sharp transitions into coherent high frequency rhythms

    Directory of Open Access Journals (Sweden)

    Katie A Ferguson

    2013-10-01

    Full Text Available The coupling of high frequency oscillations (HFOs; >100 Hz and theta oscillations (3-12 Hz in the CA1 region of rats increases during REM sleep, indicating that it may play a role in memory processing. However, it is unclear whether the CA1 region itself is capable of providing major contributions to the generation of HFOs, or if they are strictly driven through input projections. Parvalbumin-positive (PV+ interneurons may play an essential role in these oscillations due to their extensive connections with neighbouring pyramidal cells, and their characteristic fast-spiking. Thus, we created mathematical network models to investigate the conditions under which networks of CA1 fast-spiking PV+ interneurons are capable of producing high frequency population rhythms.We used whole-cell patch clamp recordings of fast-spiking, PV+ cells in the CA1 region of an intact hippocampal preparation in vitro to derive cellular properties, from which we constrained an Izhikevich-type model. Novel, biologically constrained network models were constructed with these individual cell models, and we investigated networks across a range of experimentally determined excitatory inputs and inhibitory synaptic strengths. For each network, we determined network frequency and coherence.Network simulations produce coherent firing at high frequencies (> 90 Hz for parameter ranges in which PV-PV inhibitory synaptic conductances are necessarily small and external excitatory inputs are relatively large. Interestingly, our networks produce sharp transitions between random and coherent firing, and this sharpness is lost when connectivity is increased beyond biological estimates. Our work suggests that CA1 networks may be designed with mechanisms for quickly gating in and out of high frequency coherent population rhythms, which may be essential in the generation of nested theta/high frequency rhythms.

  13. Reversible Fano resonance by transition from fast light to slow light in a coupled-resonator-induced transparency structure.

    Science.gov (United States)

    Zhang, Yundong; Zhang, Xuenan; Wang, Ying; Zhu, Ruidong; Gai, Yulong; Liu, Xiaoqi; Yuan, Ping

    2013-04-08

    We theoretically propose and experimentally perform a novel dispersion tuning scheme to realize a tunable Fano resonance in a coupled-resonator-induced transparency (CRIT) structure coupled Mach-Zehnder interferometer. We reveal that the profile of the Fano resonance in the resonator coupled Mach-Zehnder interferometers (RCMZI) is determined not only by the phase shift difference between the two arms of the RCMZI but also by the dispersion (group delay) of the CRIT structure. Furthermore, it is theoretically predicted and experimentally demonstrated that the slope and the asymmetry parameter (q) describing the Fano resonance spectral line shape of the RCMZI experience a sign reversal when the dispersion of the CRIT structure is tuned from abnormal dispersion (fast light) to normal dispersion (slow light). These theoretical and experimental results indicate that the reversible Fano resonance which holds significant implications for some attractive device applications such as highly sensitive biochemical sensors, ultrafast optical switches and routers can be realized by the dispersion tuning scheme in the RCMZI.

  14. Ultracold neutron detection with {sup 6}Li-doped glass scintillators. NANOSC: A fast ultracold neutron detector for the nEDM experiment at the Paul Scherrer Institute

    Energy Technology Data Exchange (ETDEWEB)

    Ban, G.; Lefort, T.; Lemiere, Y.; Naviliat-Cuncic, O.; Pierre, E.; Quemener, G.; Rogel, G. [Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, Caen (France); Bison, G.; Chowdhuri, Z.; Henneck, R.; Lauss, B.; Mtchedlishvili, A.; Schmidt-Wellenburg, P.; Zsigmond, G. [Paul Scherrer Institute, Villigen-PSI (Switzerland); Bodek, K.; Zejma, J. [Jagiellonian University, Marian Smoluchowski Institute of Physics, Cracow (Poland); Geltenbort, P. [Institut Laue-Langevin, Grenoble (France); Griffith, W.C.; Musgrave, M. [University of Sussex, Falmer, Department of Physics and Astronomy, Brighton (United Kingdom); Helaine, V. [Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, Caen (France); Paul Scherrer Institute, Villigen-PSI (Switzerland); Kasprzak, M.; Koss, P.A.; Severijns, N.; Wursten, E. [Katholieke Universiteit Leuven, Instituut voor Kernen Stralingsfysica, Leuven (Belgium); Kermaidic, Y.; Pignol, G.; Rebreyend, D. [LPSC, Universite Grenoble Alpes, CNRS/IN2P3, Grenoble (France); Kirch, K.; Komposch, S.; Krempel, J.; Ries, D. [Paul Scherrer Institute, Villigen-PSI (Switzerland); Institute for Particle Physics, ETH Zuerich, Zuerich (Switzerland); Kozela, A. [Henryk Niedwodniczanski Institute for Nuclear Physics, Cracow (Poland); Piegsa, F.M.; Rawlik, M. [Institute for Particle Physics, ETH Zuerich, Zuerich (Switzerland); Roccia, S. [CSNSM, Universite Paris Sud, CNRS/IN2P3, Orsay (France)

    2016-10-15

    This paper summarizes the results from measurements aiming to characterize ultracold neutron detection with {sup 6}Li-doped glass scintillators. Single GS10 or GS20 scintillators, with a thickness of 100-200μm, fulfill the ultracold neutron detection requirements with an acceptable neutron-gamma discrimination. This discrimination is clearly improved with a stack of two scintillators: a {sup 6}Li-depleted glass bonded to a {sup 6}Li-enriched glass. The technique of optical contact bonding is used between the two glasses in order to eliminate the need for optical glue or grease between them. Relative to a {sup 3}He Strelkov gas detector, the scintillator's detection efficiency is lower for UCN energies close to the scintillator's Fermi potential (85-100 neV), but becomes larger at higher UCN energies. Coupled to a digital data acquisition system, counting rates up to a few 10{sup 5} counts/s can be handled. A detector based on such a scintillator stack arrangement was built and has been used in the neutron electric dipole moment experiment at the Paul Scherrer Institute since 2010. Its response for routine runs of the neutron electric dipole moment experiment is presented. (orig.)

  15. Development of a Large Area Advanced Fast RICH Detector for Particle Identification at the Large Hadron Collider Operated with Heavy Ions

    CERN Multimedia

    Piuz, F; Braem, A; Van beelen, J B; Lion, G; Gandi, A

    2002-01-01

    %RD26 %title\\\\ \\\\During the past two years, RD26 groups have focused their activities on the production of CsI-RICH prototypes of large area, up to a square meter, to demonstrate their application in High Energy experiments. Many large CsI-photocathodes (up to 40) were produced following the processing techniques furthermore developped in the collaboration. Taking the Quantum Efficiency (QE) measured at 180 nm as a comparative figure of merit of a CsI-PC. Figure 1 shows the increase of the performance while improvements were successively implemented in the PC processing sequence. Most efficient were the use of substrates made of nickel, the heat treatment and handling of the PCs under inert gas. Actually, three large systems based on CsI-RICH have got approval in the following HEP experiments: HADES at GSI, COMPASS/NA58 at CERN and HMPID/ALICE at LHC implying up to 14 square metres of CsI-PC. In addition, several CsI-RICH detectors have been successfully operated in the Threshold Imaging Detector at NA44 and ...

  16. Ultracold neutron detection with 6Li-doped glass scintillators, NANOSC: a fast ultracold neutron detector for the nEDM experiment at the Paul Scherrer Institute

    CERN Document Server

    Ban, G; Bodek, K; Chowdhuri, Z; Geltenbort, P; Griffith, W C; Hélaine, V; Henneck, R; Kasprzak, M; Kermaidic, Y; Kirch, K; Komposch, S; Koss, P A; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemière, Y; Mtchedlishvili, A; Musgrave, M; Naviliat-Cuncic, O; Piegsa, F M; Pierre, E; Pignol, G; Quéméner, G; Rawlik, M; Ries, D; Rebreyend, D; Roccia, S; Rogel, G; Schmidt-Wellenburg, P; Severijns, N; Wursten, E; Zejma, J; Zsigmond, G

    2016-01-01

    This paper summarizes the results from measurements aiming to characterize ultracold neutron detection with 6Li-doped glass scintillators. Single GS10 or GS20 scintillators, with a thickness of 100-200 micrometer, fulfill the ultracold neutron detection requirements with an acceptable neutron-gamma discrimination. This discrimination is clearly improved with a stack of two scintillators: a 6Li-depleted glass bonded to a 6Li-enriched glass. The optical contact bonding is used between the scintillators in order to obtain a perfect optical contact. The scintillator's detection efficiency is similar to that of a 3He Strelkov gas detector. Coupled to a digital data acquisition system, counting rates up to a few 10^5 counts/s can be handled. A detector based on such a scintillator stack arrangement was built and has been used in the neutron electric dipole moment experiment at the Paul Scherrer Institute since 2010. Its response for the regular runs of the neutron electric dipole moment experiment is presented.

  17. Ultracold neutron detection with 6Li-doped glass scintillators. NANOSC: A fast ultracold neutron detector for the nEDM experiment at the Paul Scherrer Institute

    Science.gov (United States)

    Ban, G.; Bison, G.; Bodek, K.; Chowdhuri, Z.; Geltenbort, P.; Griffith, W. C.; Hélaine, V.; Henneck, R.; Kasprzak, M.; Kermaidic, Y.; Kirch, K.; Komposch, S.; Koss, P. A.; Kozela, A.; Krempel, J.; Lauss, B.; Lefort, T.; Lemière, Y.; Mtchedlishvili, A.; Musgrave, M.; Naviliat-Cuncic, O.; Piegsa, F. M.; Pierre, E.; Pignol, G.; Quéméner, G.; Rawlik, M.; Ries, D.; Rebreyend, D.; Roccia, S.; Rogel, G.; Schmidt-Wellenburg, P.; Severijns, N.; Wursten, E.; Zejma, J.; Zsigmond, G.

    2016-10-01

    This paper summarizes the results from measurements aiming to characterize ultracold neutron detection with 6Li-doped glass scintillators. Single GS10 or GS20 scintillators, with a thickness of 100-200μm, fulfill the ultracold neutron detection requirements with an acceptable neutron-gamma discrimination. This discrimination is clearly improved with a stack of two scintillators: a 6Li-depleted glass bonded to a 6Li-enriched glass. The technique of optical contact bonding is used between the two glasses in order to eliminate the need for optical glue or grease between them. Relative to a 3He Strelkov gas detector, the scintillator's detection efficiency is lower for UCN energies close to the scintillator's Fermi potential (85-100 neV), but becomes larger at higher UCN energies. Coupled to a digital data acquisition system, counting rates up to a few 105 counts/s can be handled. A detector based on such a scintillator stack arrangement was built and has been used in the neutron electric dipole moment experiment at the Paul Scherrer Institute since 2010. Its response for routine runs of the neutron electric dipole moment experiment is presented.

  18. The PERDaix detector

    Energy Technology Data Exchange (ETDEWEB)

    Bachlechner, Andreas; Beischer, Bastian; Greim, Roman [I. Physikalisches Institut B, RWTH Aachen University, Aachen 52056 (Germany); Kirn, Thomas, E-mail: kirn@physik.rwth-aachen.de [I. Physikalisches Institut B, RWTH Aachen University, Aachen 52056 (Germany); Mai, Carsten; Yearwood, Gregorio Roper; Schael, Stefan; Schug, David; Tholen, Heiner; Wienkenhoever, Jens [I. Physikalisches Institut B, RWTH Aachen University, Aachen 52056 (Germany)

    2012-12-11

    The PERDaix (Proton Electron Radiation Detector Aix-la-Chapelle) detector is designed to measure charged particles in cosmic rays. It can distinguish particle species up to 5 GV rigidity. PERDaix was flown on the BEXUS-11 balloon on 23rd November 2010. The detector has the dimensions of 246 Multiplication-Sign 400 Multiplication-Sign 859 mm{sup 3}, a geometrical acceptance of 32 cm{sup 2}sr, a low weight of 40 kg and a low power consumption of 60 W. The spectrometer consists of a time-of-flight system, a scintillating fiber tracking detector, a permanent magnet and a transition radiation detector. Silicon photomultipliers are used as photodetectors in the time-of-flight and the tracker system.

  19. The PERDaix detector

    Science.gov (United States)

    Bachlechner, Andreas; Beischer, Bastian; Greim, Roman; Kirn, Thomas; Mai, Carsten; Yearwood, Gregorio Roper; Schael, Stefan; Schug, David; Tholen, Heiner; Wienkenhöver, Jens

    2012-12-01

    The PERDaix (Proton Electron Radiation Detector Aix-la-Chapelle) detector is designed to measure charged particles in cosmic rays. It can distinguish particle species up to 5 GV rigidity. PERDaix was flown on the BEXUS-11 balloon on 23rd November 2010. The detector has the dimensions of 246×400×859 mm3, a geometrical acceptance of 32 cm2sr, a low weight of 40 kg and a low power consumption of 60 W. The spectrometer consists of a time-of-flight system, a scintillating fiber tracking detector, a permanent magnet and a transition radiation detector. Silicon photomultipliers are used as photodetectors in the time-of-flight and the tracker system.

  20. A new method for direct total OH reactivity measurements using a fast Gas Chromatographic Photo-Ionization Detector (GC-PID)

    Science.gov (United States)

    Nölscher, A. C.; Sinha, V.; Bockisch, S.; Klüpfel, T.; Williams, J.

    2012-04-01

    The primary and most important oxidant in the troposphere is the hydroxyl radical (OH). Currently the atmospheric sinks of OH are poorly constrained. One way to characterize the overall sink term of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. The first direct measurements of total OH reactivity were performed using laser induced fluorescence (LIF) [1], [2]. Recently a new method for determining OH reactivity was developed called the comparative reactivity method (CRM) [3]. The measurement principle is based on a competitive reaction between a reactive molecule not normally present in air with OH, and atmospheric OH reactive molecules with OH. The reactive molecule (X), is passed through a Teflon coated glass reactor and its concentration is monitored with a suitable detector. OH radicals are then introduced into the reactor at a constant rate to react with X, first in the presence of zero air and then in the presence of ambient air containing OH reactive species. Comparing the amount of X exiting the reactor with and without the competing ambient air molecules directly provides the atmospheric total OH reactivity. In the first version of this set up, molecule X is pyrrole (C5H4N) and the detector used is a proton transfer reaction mass spectrometer (PTR-MS). In comparison to the original LIF based system, the PTR-MS has the advantage of being smaller, less expensive, and commercially available. However, using the PTR-MS for total OH reactivity measurements prevents it from probing the broad variety of volatile organic compounds in ambient air. Moreover, even smaller, less expensive and more portable detectors are available. This work examines the potential for a GC-PID in order to make the total OH reactivity measurement accessible to more practitioners. This study presents measurements of total OH reactivity with a custom built GC-PID (VOC-Analyzer from IUT-Berlin, now ENIT (Environics-IUT GmbH))[4]. The GC-PID is small (260

  1. The STAR Vertex Position Detector

    CERN Document Server

    Llope, W J; Nussbaum, T; Hoffmann, G W; Asselta, K; Brandenburg, J D; Butterworth, J; Camarda, T; Christie, W; Crawford, H J; Dong, X; Engelage, J; Eppley, G; Geurts, F; Hammond, J; Judd, E; McDonald, D L; Perkins, C; Ruan, L; Scheblein, J; Schambach, J J; Soja, R; Xin, K; Yang, C

    2014-01-01

    The 2x3 channel pseudo Vertex Position Detector (pVPD) in the STAR experiment at RHIC has been upgraded to a 2x19 channel detector in the same acceptance, called the Vertex Position Detector (VPD). This detector is fully integrated into the STAR trigger system and provides the primary input to the minimum-bias trigger in Au+Au collisions. The information from the detector is used both in the STAR Level-0 trigger and offline to measure the location of the primary collision vertex along the beam pipe and the event "start time" needed by other fast-timing detectors in STAR. The offline timing resolution of single detector channels in full-energy Au+Au collisions is ~100 ps, resulting in a start time resolution of a few tens of picoseconds and a resolution on the primary vertex location of ~1 cm.

  2. Fast Data Acquisition for X-ray CCD 165 SX Detector%X -ray CCD165-SX 探测器快速数据采集

    Institute of Scientific and Technical Information of China (English)

    柳义; 周平

    2014-01-01

    对X光探测器X-ray CCD165-SX在帧移模式下进行数据采集。选择合适开口高度的掩膜,使得CCD的曝光面仅是整个探测面的一小部份。利用TTL信号发生器产生的脉冲信号触发子潜像帧移,将各个不同时间内产生的子潜像储存在CCD的芯片上不同位置上,当芯片填满子潜像时,一次性读出。这种方式大大加快了实验数据的采集速度。实验中对快速升温的情况下对PE样品进行测试,成功地采集到了随时间快速变化的散射信号。%By installation of the mask with adjustable opening size and TTL generator ,X-ray Scattering data is collected by X-ray CCD 165 SX under Frameshift mode .In the process ,exposure area is onlysmall part of the detecting area of the CCD and sub -images produced at difference times are frame shifted by TTL trigger to difference parts on CCD chip subsequently .All the sub-images are read out at once until the chip reaches full-ness of sub -images.This approach greatly increases the data collection speed .Finally,we use PE as the sam-ple in fast temperature rising environment for the fast data acquisition measurement and successful ly collected the scattering data which changed with times .

  3. Fast Transition between High-soft and Low-soft States in GRS 1915 + 105: Evidence for a Critically Viscous Accretion Flow

    Indian Academy of Sciences (India)

    S. Naik; A. R. Rao; Sandip K. Chakrabarti

    2002-09-01

    We present the results of a detailed analysis of RXTE observations of class (Klein-Wolt et al. 2002) which show an unusual state transition between high-soft and low-soft states in the Galactic microquasar GRS 1915+105. Out of about 600 pointed RXTE observations, the source was found to exhibit such state transition only on 16 occasions. An examination of the RXTE/ASM data in conjunction with the pointed observations reveals that these events appeared as a series of quasi-regular dips in two stretches of long duration (about 20 days during each occasion) when hard X-ray and radio flux were very low. The X-ray light curve and colour-colour diagram of the source during these observations are found to be different from any reported so far. The duration of these dips is found to be of the order of a few tens of seconds with a repetition time of a few hundred seconds. The transition between these dips and non-dips which differ in intensity by a factor of ∼ 3.5, is observed to be very fast (∼ a few seconds). It is observed that the low-frequency narrow QPOs are absent in the power density spectrum (PDS) of the dip and non-dip regions of class and the PDS is a power law in the 0.1 – 10 Hz frequency range. There is a remarkable similarity in the spectral and timing properties of the source during the dip and non-dip regions in this set of observations. These properties of the source are distinctly different from those seen in the observations of other classes. This indicates that the basic accretion disk structure during both dip and non-dip regions of class is similar, but differ only in intensity. To explain these observations, we invoke a model in which the viscosity is very close to critical viscosity and the shock wave is weak or absent.

  4. Measurements of Ultra-Fast single photon counting chip with energy window and 75 μm pixel pitch with Si and CdTe detectors

    Science.gov (United States)

    Maj, P.; Grybos, P.; Kasinski, K.; Koziol, A.; Krzyzanowska, A.; Kmon, P.; Szczygiel, R.; Zoladz, M.

    2017-03-01

    Single photon counting pixel detectors become increasingly popular in various 2-D X-ray imaging techniques and scientific experiments mainly in solid state physics, material science and medicine. This paper presents architecture and measurement results of the UFXC32k chip designed in a CMOS 130 nm process. The chip consists of about 50 million transistors and has an area of 9.64 mm × 20.15 mm. The core of the IC is a matrix of 128 × 256 pixels of 75 μm pitch. Each pixel contains a CSA, a shaper with tunable gain, two discriminators with correction circuits and two 14-bit ripple counters operating in a normal mode (with energy window), a long counter mode (one 28-bit counter) and a zero-dead time mode. Gain and noise performance were verified with X-ray radiation and with the chip connected to Si (320 μm thick) and CdTe (750 μ m thick) sensors.

  5. Autonomous Rubidium Clock Weak Frequency Jump Detector for Onboard Navigation Satellite System.

    Science.gov (United States)

    Khare, Akshay; Arora, Rajat; Banik, Alak; Mehta, Sanjay D

    2016-02-01

    Frequency jumps are common in rubidium frequency sources. They affect the estimation of user position in navigational satellite systems. These jumps must be detected and corrected immediately as they have direct impact on the navigation system integrity. A novel weak frequency jump detector is proposed based on a Kalman filter with a multi-interval approach. This detector can be applied for both "sudden" and "slow" frequency transitions. In this detection method, noises of clock data are reduced by Kalman filtering, for accurate estimation of jump size with less latency. Analysis on in-orbit rubidium atomic frequency standard (RAFS) phase telemetry data shows that the detector can be used for fast detection and correction of weak frequency jumps. Furthermore, performance comparison of different existing frequency jump detection techniques with the proposed detector is discussed. A multialgorithm-based strategy is proposed depending on the jump size and latency for onboard navigation satellites having RAFS as the primary frequency source.

  6. Silicon Pixel Detectors for Synchrotron Applications

    CERN Document Server

    Stewart, Graeme Douglas

    Recent advances in particle accelerators have increased the demands being placed on detectors. Novel detector designs are being implemented in many different areas including, for example, high luminosity experiments at the LHC or at next generation synchrotrons. The purpose of this thesis was to characterise some of these novel detectors. The first of the new detector types is called a 3D detector. This design was first proposed by Parker, Kenney and Segal (1997). In this design, doped electrodes are created that extend through the silicon substrate. When compared to a traditional photodiode with electrodes on the opposing surfaces, the 3D design can combine a reasonable detector thickness with a small electrode spacing resulting in fast charge collection and limited charge sharing. The small electrode spacing leads to the detectors having lower depletion voltages. This, combined with the fast collection time, makes 3D detectors a candidate for radiation hard applications. These applications include the upgra...

  7. Nonequilibrium superconducting detectors

    Science.gov (United States)

    Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.

    2006-03-01

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  8. Nonequilibrium superconducting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cristiano, R [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Ejrnaes, M [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); INFN Sezione di Napoli, 80126 Naples (Italy); Esposito, E [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Lisitskyi, M P [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Nappi, C [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Pagano, S [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Dipartimento di Fisica, Universita di Salerno, 84081 Baronissi (Saudi Arabia) (Italy); Perez de Lara, D [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy)

    2006-03-15

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  9. Fast and simultaneous determination of eleven synthetic color additives in flour and meat products by liquid chromatography coupled with diode-array detector and tandem mass spectrometry.

    Science.gov (United States)

    Qi, Ping; Lin, Zi-hao; Chen, Gui-yun; Xiao, Jian; Liang, Zhi-an; Luo, Li-ni; Zhou, Jun; Zhang, Xue-wu

    2015-08-15

    In this study, an efficient, fast and sensitive method for the simultaneous determination of eleven synthetic color additives (Allura red, Amaranth, Azo rubine, Brilliant blue, Erythrosine, Indigotine, Ponceau 4R, New red, Sunset yellow, Quinoline yellow and Tartrazine) in flour and meat foodstuffs is developed and validated using HPLC coupled with DAD and MS/MS. The color additives were extracted with ammonia-methanol and was further purified with SPE procedure using Strata-AW column in order to reduce matrix interference. This HPLC-DAD method is intended for a comprehensive survey of color additives in foods. HPLC-MS/MS method was used as the further confirmation and identification. Validation data showed the good recoveries in the range of 75.2-113.8%, with relative standard deviations less than 15%. These methods are suitable for the routine monitoring analysis of eleven synthetic color additives due to its sensitivity, reasonable time and cost. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  11. Detectors for Tomorrow's Instruments

    Science.gov (United States)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  12. Infrared detectors

    CERN Document Server

    Rogalski, Antonio

    2010-01-01

    This second edition is fully revised and reorganized, with new chapters concerning third generation and quantum dot detectors, THz detectors, cantilever and antenna coupled detectors, and information on radiometry and IR optics materials. Part IV concerning focal plane arrays is significantly expanded. This book, resembling an encyclopedia of IR detectors, is well illustrated and contains many original references … a really comprehensive book.-F. Sizov, Institute of Semiconductor Physics, National Academy of Sciences, Kiev, Ukraine

  13. The Fast Simulation Chain for ATLAS

    CERN Document Server

    Basalaev, Artem; The ATLAS collaboration

    2017-01-01

    In order to generate the huge number of Monte Carlo events that will be required by the ATLAS experiment over the next several runs, a very fast simulation is critical. Fast detector simulation alone, however, is insufficient: with very high numbers of simultaneous proton-proton collisions expected in Run 3 and beyond, the digitization (detector response emulation) and event reconstruction time quickly become comparable to the time required for detector simulation. The ATLAS Fast Chain simulation has been developed to solve this problem. Modules are implemented for fast simulation, fast digitization, and fast track reconstruction. The application is sufficiently fast - several orders of magnitude faster than the standard simulation - that the simultaneous proton-proton collisions can be generated during the simulation job, so Pythia8 also runs concurrently with the rest of the algorithms. The Fast Chain has been built to be extremely modular and flexible, so that each sample can be custom-tailored to match th...

  14. The Fast Simulation Chain for ATLAS

    CERN Document Server

    Basalaev, Artem; The ATLAS collaboration

    2016-01-01

    In order to generate the huge number of Monte Carlo events that will be required by the ATLAS experiment over the next several runs, a very fast simulation is critical. Fast detector simulation alone, however, is insufficient: with very high numbers of simultaneous proton-proton collisions expected in Run 3 and beyond, the digitization (detector response emulation) and event reconstruction time quickly become comparable to the time required for detector simulation. The ATLAS Fast Chain simulation has been developed to solve this problem. Modules are implemented for fast simulation, fast digitization, and fast track reconstruction. The application is sufficiently fast -- several orders of magnitude faster than the standard simulation -- that the simultaneous proton-proton collisions can be generated during the simulation job, so Pythia8 also runs concurrently with the rest of the algorithms. The Fast Chain has been built to be extremely modular and flexible, so that each sample can be custom-tailored to match ...

  15. Fast ultrasound-assisted extraction followed by capillary gas chromatography combined with nitrogen-phosphorous selective detector for the trace determination of tebuconazole in garlic, soil and water samples.

    Science.gov (United States)

    Singh, Sunil Kumar; Padmaja, P; Pandey, S Y

    2014-06-01

    A fast and an efficient ultrasound-assisted extraction technique using a lower density extraction solvent than water was developed for the trace-level determination of tebuconazole in garlic, soil and water samples followed by capillary gas chromatography combined with nitrogen-phosphorous selective detector (GC-NPD). In this approach, ultrasound radiation was applied to accelerate the emulsification of the ethyl acetate in aqueous samples to enhance the extraction efficiency of tebuconazole without requiring extra partitioning or cleaning, and the use of capillary GC-NPD was a more sensitive detection technique for organonitrogen pesticides. The experimental results indicate an excellent linear relationship between peak area and concentration obtained in the range 1-50 μg/kg or μg/L. The limit of detection (S/N, 3 ± 0.5) and limit of quantification (S/N, 7.5 ± 2.5) were obtained in the range 0.2-3 and 1-10 μg/kg or μg/L. Good spiked recoveries were achieved from ranges 95.55-101.26%, 96.28-99.33% and 95.04-105.15% in garlic, Nanivaliyal soil and Par River water, respectively, at levels 5 and 20 μg/kg or μg/L, and the method precision (% RSD) was ≤5%. Our results demonstrate that the proposed technique is a viable alternative for the determination of tebuconazole in complex samples.

  16. Rapid Identification and Simultaneous Quantification of Multiple Constituents in Nao-Shuan-Tong Capsule by Ultra-Fast Liquid Chromatography/Diode-Array Detector/Quadrupole Time-of-Flight Tandem Mass Spectrometry.

    Science.gov (United States)

    Li, Panlin; Su, Weiwei; Xie, Chengshi; Zeng, Xuan; Peng, Wei; Liu, Menghua

    2015-07-01

    A rapid and high-sensitive ultra-fast liquid chromatography coupled with a diode-array detector and a quadrupole/time-of-flight mass spectrometry (MS) method was established and validated for the chemical profiling of Nao-shuan-tong capsule (NSTC) and simultaneous quantification of five major constituents. A total of 59 components including monoterpene glycosides, flavonoids, sesquiterpenoids, ketosteroids, thiophenes, organic acids and alkaloids were identified or tentatively characterized in NSTC based on the accurate mass and tandem MS behavior. Five major bioactive constituents were chosen as the chemical indexes of holistic quality evaluation and quantified simultaneously. All calibration curves showed good linear regression (r(2) > 0.9991) in the range 25.2-510, 145-2,900, 1.84-36.8, 2.61-52.2 and 3.25-26.2 μg/mL for gastrodin, paeoniflorin, typhaneoside, β-ecdysterone and isorhamnetin-3-O-neohesperidoside, respectively. It also showed good precision, stability and accuracy for quantification of these five compounds. The limit of detections and limit of quantitations for the analytes ranged from 0.14 to 1.09 μg/mL and from 0.47 to 3.63 μg/mL, respectively. The validated quantification method was applied to analyze 10 batches of commercial NSTC. These results will provide a basis for quality control of the production process and the further pharmacological study in vivo of NSTC.

  17. Gaseous Detectors: Charged Particle Detectors - Particle Detectors and Detector Systems

    CERN Document Server

    Hilke, H J

    2011-01-01

    Gaseous Detectors in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.2 Gaseous Detectors' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.2 Gaseous Detectors 3.1.2.1 Introduction 3.1.2.2 Basic Processes 3.1.2.2.1 Gas ionization by charged particles 3.1.2.2.1.1 Primary clusters 3.1.2.2.1.2 Cluster size distribution 3.1.2.2.1.3 Total number of ion pairs 3.1.2.2.1.4 Dependence of energy deposit on particle velocity 3.1.2.2.2 Transport of...

  18. Fast-timing lifetime measurement of 152Gd

    Science.gov (United States)

    Wiederhold, J.; Kern, R.; Lizarazo, C.; Pietralla, N.; Werner, V.; Jolos, R. V.; Bucurescu, D.; Florea, N.; Ghita, D.; Glodariu, T.; Lica, R.; Marginean, N.; Marginean, R.; Mihai, C.; Mihai, R.; Mitu, I. O.; Negret, A.; Nita, C.; Olacel, A.; Pascu, S.; Stroe, L.; Toma, S.; Turturica, A.

    2016-10-01

    The lifetime τ (02+) of 152Gd has been measured using fast electronic scintillation timing (FEST) with an array of high-purity germanium (HPGe) and cerium-doped lanthanum bromide (LaBr3) detectors. 152Gd was produced via an (α ,n ) reaction on a gold backed 149Sm target. The measured lifetime of τ (02+) =96 (6 ) ps corresponds to a reduced transition strength of B (E 2 ;02+→21+) =111 (7 ) W.u. and an E 0 transition strength of ρ2(E 0 ) =39 (3 ) ×10-3 to the ground state. This result provides experimental support for the validity of a correlation that would be a novel indicator for a quantum phase transition (QPT).

  19. Particlc detectors. Foundations and applications; Teilchendetektoren. Grundlagen und Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Kolanoski, Hermann; Wermes, Norbert

    2016-08-01

    The following topics are dealt with: Interaction of particles with matter, motion of charge carriers in electric and magnetic fields, signal generation by moving charges, non-electronic detectors, gas-filled detectors, semiconductor detectors, track reconstruction and momentum measurement, photodetectors, Cherenkov detectors, transition-radiation detectors, scintillation detectors, particle identification, calorimeters, detection of cosmic particles, signal processing and noise, trigger and data acquisition systems. (HSI)

  20. Acquisition System and Detector Interface for Power Pulsed Detectors

    Science.gov (United States)

    Cornat, Rémi; CALICE Colaboration

    A common DAQ system is being developed within the CALICE collaboration. It provides a flexible and scalable architecture based on giga-ethernet and 8b/10b serial links in order to transmit either slow control data, fast signals or read out data. A detector interface (DIF) is used to connect detectors to the DAQ system based on a single firmware shared among the collaboration but targeted on various physical implementations. The DIF allows to build, store and queue packets of data as well as to control the detectors providing USB and serial link connectivity. The overall architecture is foreseen to manage several hundreds of thousands channels.

  1. Acquisition System and Detector Interface for Power Pulsed Detectors

    CERN Document Server

    Cornat, R

    2012-01-01

    A common DAQ system is being developed within the CALICE collaboration. It provides a flexible and scalable architecture based on giga-ethernet and 8b/10b serial links in order to transmit either slow control data, fast signals or read out data. A detector interface (DIF) is used to connect detectors to the DAQ system based on a single firmware shared among the collaboration but targeted on various physical implementations. The DIF allows to build, store and queue packets of data as well as to control the detectors providing USB and serial link connectivity. The overall architecture is foreseen to manage several hundreds of thousands channels.

  2. Pixel Detectors

    OpenAIRE

    Wermes, Norbert

    2005-01-01

    Pixel detectors for precise particle tracking in high energy physics have been developed to a level of maturity during the past decade. Three of the LHC detectors will use vertex detectors close to the interaction point based on the hybrid pixel technology which can be considered the state of the art in this field of instrumentation. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as the very harsh...

  3. Metal Detectors.

    Science.gov (United States)

    Harrington-Lueker, Donna

    1992-01-01

    Schools that count on metal detectors to stem the flow of weapons into the schools create a false sense of security. Recommendations include investing in personnel rather than hardware, cultivating the confidence of law-abiding students, and enforcing discipline. Metal detectors can be quite effective at afterschool events. (MLF)

  4. Optical Detectors

    Science.gov (United States)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  5. PHENIX Fast TOF

    Energy Technology Data Exchange (ETDEWEB)

    Soha, Aria [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Chiu, Mickey [Brookhaven National Lab. (BNL), Upton, NY (United States); Mannel, Eric [Brookhaven National Lab. (BNL), Upton, NY (United States); Stoll, Sean [Brookhaven National Lab. (BNL), Upton, NY (United States); Lynch, Don [Brookhaven National Lab. (BNL), Upton, NY (United States); Boose, Steve [Brookhaven National Lab. (BNL), Upton, NY (United States); Northacker, Dave [Brookhaven National Lab. (BNL), Upton, NY (United States); Alfred, Marcus [Howard Univ., Washington, DC (United States); Lindesay, James [Howard Univ., Washington, DC (United States); Chujo, Tatsuya [Univ. of Tsukuba (Japan); Inaba, Motoi [Univ. of Tsukuba (Japan); Nonaka, Toshihiro [Univ. of Tsukuba (Japan); Sato, Wataru [Univ. of Tsukuba (Japan); Sakatani, Ikumi [Univ. of Tsukuba (Japan); Hirano, Masahiro [Univ. of Tsukuba (Japan); Choi, Ihnjea [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2014-01-15

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of PHENIX Fast TOF group who have committed to participate in beam tests to be carried out during the FY2014 Fermilab Test Beam Facility program. The goals for this test beam experiment are to verify the timing performance of the two types of time-of-flight detector prototypes.

  6. Position-sensitive superconductor detectors

    Science.gov (United States)

    Kurakado, M.; Taniguchi, K.

    2016-12-01

    Superconducting tunnel junction (STJ) detectors and superconducting transition- edge sensors (TESs) are representative superconductor detectors having energy resolutions much higher than those of semiconductor detectors. STJ detectors are thin, thereby making it suitable for detecting low-energy X rays. The signals of STJ detectors are more than 100 times faster than those of TESs. By contrast, TESs are microcalorimeters that measure the radiation energy from the change in the temperature. Therefore, signals are slow and their time constants are typically several hundreds of μs. However, TESs possess excellent energy resolutions. For example, TESs have a resolution of 1.6 eV for 5.9-keV X rays. An array of STJs or TESs can be used as a pixel detector. Superconducting series-junction detectors (SSJDs) comprise multiple STJs and a single-crystal substrate that acts as a radiation absorber. SSJDs are also position sensitive, and their energy resolutions are higher than those of semiconductor detectors. In this paper, we give an overview of position-sensitive superconductor detectors.

  7. DUMAND detector

    CERN Multimedia

    This object is one of the 256 other detectors of the DUMAND (Deep Underwater Muon And Neutrino Detection) experiment. The goal of the experiment was the construction of the first deep ocean high energy neutrino detector, to be placed at 4800 m depth in the Pacific Ocean off Keahole Point on the Big Island of Hawaii. A few years ago, a European conference with Cosmic experiments was organized at CERN as they were projects like DUMAND in Hawaii. Along with the conference, a temporary exhibition was organised as well. It was a collaboration of institutions from Germany, Japan, Switzerland and the U.S.A. CERN had borrowed equipment and objects from different institutes around the world, including this detector of the DUMAND experiment. Most of the equipment were sent back to the institutes, however this detector sphere was offered to a CERN member of the personnel.

  8. Absorption by XeCl* excimer molecules of their own emission of the B-X transition (λ = 308 nm) in a dense Ar-Xe-CCl4 medium upon pumping by fast electrons and uranium-235 fission fragments

    Science.gov (United States)

    Mis'kevich, A. I.; Dyuzhov, Yu. A.; Suvorov, A. A.

    2016-08-01

    Luminescence of dense Ar-Xe-CCl4 gas mixtures with a low CCl4 content upon pumping by fast electrons and uranium-235 fission fragments is studied by spectroscopic methods. It is found that, in a cell with a resonator tuned to the B-X transition of the XeCl* molecule (λ = 308 nm), the D-state population of the XeCl* excimer molecule (the D-X transition, λ = 235 nm) depends on the B-state population and increases by many times with increasing B-state population of the XeCl* molecule. The stimulated absorption coefficient k = 1.2 × 10-16 of B-X transition emission of the XeCl* molecule (λmax = 308 nm), which leads to population of the D-state of this molecule, and the coefficient of amplification μ = 2.5 × 10-4 cm-1 of B-X transition emission of the Xe Cl* molecule (λ = 308 nm) are measured upon pumping by uranium- 235 fission fragments with the specific energy input into the gas medium of ~60 mJ/cm3 and a specific power of energy input of about 240 W/cm3.

  9. A Vacuum Ultraviolet Absorption Array Spectrometer as a Selective Detector for Comprehensive Two-Dimensional Gas Chromatography: Concept and First Results.

    Science.gov (United States)

    Gröger, Thomas; Gruber, Beate; Harrison, Dale; Saraji-Bozorgzad, Mohammad; Mthembu, Makhosazana; Sutherland, Aimée; Zimmermann, Ralf

    2016-03-15

    Fast and selective detectors are very interesting for comprehensive two-dimensional gas chromatography (GC × GC). This is particularly true if the detector system can provide additional spectroscopic information on the compound structure and/or functionality. Other than mass spectrometry (MS), only optical spectroscopic detectors are able to provide selective spectral information. However, until present the application of optical spectroscopy technologies as universal detectors for GC × GC has been restricted mainly due to physical limitations such as insufficient acquisition speed or high detection limits. A recently developed simultaneous-detection spectrometer working in the vacuum ultraviolet (VUV) region of 125-240 nm overcomes these limitations and meets all the criteria of a universal detector for GC × GC. Peak shape and chromatographic resolution is preserved and unique spectral information, complementary to mass spectrometry data, is gained. The power of this detector is quickly recognized as it has the ability to discriminate between isomeric compounds or difficult to separate structurally related isobaric species; thus, it provides additional selectivity. A further promising feature of this detector is the data analysis concept of spectral filtering, which is accomplished by targeting special electronic transitions that allows for a fast screening of GC × GC chromatograms for designated compound classes.

  10. A Fast Neutron Spectrometer for Underground Science

    Science.gov (United States)

    Langford, Thomas; Beise, Elizabeth; Breuer, Herbert; Erwin, Dylan; Bass, Christopher; Heimbach, Craig; Nico, Jeff

    2010-02-01

    The characterization of the fast neutron fluence has become a critical issue for experiments that require extreme low-background environments, such as neutrino-less double-beta decay, dark matter searches, and solar neutrino experiments. In such experiments, fast neutrons may be the dominant and a potentially irreducible background, thus necessitating precise information about the fast neutron fluence and energy spectrum. The most reasonable approach to addressing the problem is through the complete characterization of the neutrons through both site-specific measurement and benchmarking of simulation codes. We will discuss the progress toward the development of a large-volume, segmented detector consisting of plastic scintillator and ^3He proportional counters. The detector will be placed in an underground environment to measure the fast neutron flux and energy spectrum. A prototype detector has been constructed and testing is in progress. We will discuss the status of the project and present data from the prototype detector. )

  11. Fast Calorimeter Simulation in ATLAS

    CERN Document Server

    Schaarschmidt, Jana; The ATLAS collaboration

    2017-01-01

    Producing the very large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing CPU requirements when detailed detector simulations are not needed. During the LHC Run-1, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and it can be tuned to data more easily than GEANT4. It is 500 times faster than full simulation in the calorimeter system. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim makes use of mach...

  12. Upgrading ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Heath, Matthew Peter; The ATLAS collaboration

    2017-01-01

    Producing the very large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing CPU requirements when detailed detector simulations are not needed. During the LHC Run-1, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and it can be tuned to data more easily than Geant4. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim aims to overcome some limitations of the first version by improving the description of s...

  13. Scintillating fiber detector

    CERN Document Server

    Vozak, Matous

    2016-01-01

    NA61 is one of the physics experiments at CERN dedicated to study hadron states coming from interactions of SPS beams with various targets. To determine the position of a secondary beam, three proportional chambers are placed along the beamline. However, these chambers tend to have slow response. In order to obtain more precise time information, use of another detector is being considered. Fast response and compact size is making scintillation fiber (SciFi) with silicon photomultiplier (Si-PM) read out a good candidate. This report is focused on analysing data from SciFi collected in a test beam at the beginning of July 2016.

  14. The ATLAS Detector Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.J. [University of Edinburgh, School of Physics and Astronomy, James Clerk Maxwell Building, The Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ (United Kingdom)

    2011-06-15

    We present the simulation software for the ATLAS experiment [G. Aad et al., The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008), S08003] at the Large Hadron Collider [L. Evans and P. Bryant, LHC Machine, JINST 3 (2008), S08001]. The overall infrastructure and some selected features are discussed. In particular, the detector description, the interface to Geant4, event generator support, magnetic field integration improvements, pile-up and digitisation of overlapping events and fast simulation. Also described are performance studies, large scale production and the validation of the simulated output against recent data.

  15. Flexible composite radiation detector

    Science.gov (United States)

    Cooke, D. Wayne; Bennett, Bryan L.; Muenchausen, Ross E.; Wrobleski, Debra A.; Orler, Edward B.

    2006-12-05

    A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.

  16. Hybrid superconducting neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, V.; Lucci, M.; Ottaviani, I. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); Salvato, M.; Cirillo, M. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); CNR SPIN Salerno, Università di Salerno, Via Giovanni Paolo II, n.132, 84084 Fisciano (Italy); Scherillo, A. [Science and Technology Facility Council, ISIS Facility Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Celentano, G. [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Pietropaolo, A., E-mail: antonino.pietropaolo@enea.it [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Mediterranean Institute of Fundamental Physics, Via Appia Nuova 31, 00040 Marino, Roma (Italy)

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  17. Calorimeter detectors

    CERN Document Server

    de Barbaro, P; The ATLAS collaboration

    2013-01-01

    Although the instantaneous and integrated luminosity in HL-LHC will be far higher than the LHC detectors were originally designed for, the Barrel calorimeters of the four experiments are expected to continue to perform well  throughout the Phase II program. The conditions for the End-Cap calorimeters are far more challenging and whilst some detectors will require relatively modest changes, others require far more substantial upgrades. We present the results of longevity and performance studies for the calorimeter systems of the four main LHC experiments and outline the upgrade options under consideration. We include a discussion of the R&D required to make the final technology choices for the upgraded detectors.

  18. Pixel detectors

    CERN Document Server

    Passmore, M S

    2001-01-01

    positions on the detector. The loss of secondary electrons follows the profile of the detector and increases with higher energy ions. studies of the spatial resolution predict a value of 5.3 lp/mm. The image noise in photon counting systems is investigated theoretically and experimentally and is shown to be given by Poisson statistics. The rate capability of the LAD1 was measured to be 250 kHz per pixel. Theoretical and experimental studies of the difference in contrast for ideal charge integrating and photon counting imaging systems were carried out. It is shown that the contrast differs and that for the conventional definition (contrast = (background - signal)/background) the photon counting device will, in some cases, always give a better contrast than the integrating system. Simulations in MEDICI are combined with analytical calculations to investigate charge collection efficiencies (CCE) in semiconductor detectors. Different pixel sizes and biasing conditions are considered. The results show charge shari...

  19. Molecular imaging with fast beams

    Energy Technology Data Exchange (ETDEWEB)

    Heber, O. [Weizmann Inst. of Science, Rehovoth (Israel). Dept. of Particle Physics; Zajfman, D. [Weizmann Inst. of Science, Rehovoth (Israel). Dept. of Particle Physics; Kella, D. [Weizmann Inst. of Science, Rehovoth (Israel). Dept. of Particle Physics; Vager, Z. [Weizmann Inst. of Science, Rehovoth (Israel). Dept. of Particle Physics; Watson, R.L. [Cyclotron Institute, Texas A and M University, College Station, Texas 77843 (United States); Horvat, V. [Cyclotron Institute, Texas A and M University, College Station, Texas 77843 (United States)

    1995-05-01

    Three dimensional imaging of the molecular dissociation process in fast collisions is presented with two different setups. One setup is for a fast molecular beam from an accelerator colliding with a gas target. The second setup is for a molecular target system and the collision process is with highly ionized fast beam. The advantages of each system are discussed. The three dimensional imaging of the molecular fragments is done with special detectors that combine the CCD image with time of flight data. An example of the molecular beam measurement is given for an 11 MeV B{sub 2} beam. (orig.).

  20. Combining two major ATLAS inner detector components

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The semiconductor tracker is inserted into the transition radiation tracker for the ATLAS experiment at the LHC. These make up two of the three major components of the inner detector. They will work together to measure the trajectories produced in the proton-proton collisions at the centre of the detector when the LHC is switched on in 2008.

  1. A new determination of the eta transition form factor in the Dalitz decay eta -> e^+ e^- gamma with the Crystal Ball/TAPS detectors at the Mainz Microtron

    CERN Document Server

    Aguar-Bartolomé, P; Arends, H J; Bantawa, K; Beck, R; Bekrenev, V; Berghäuser, H; Braghieri, A; Briscoe, W J; Brudvik, J; Cherepnya, S; Codling, R F B; Collicott, C; Denig, A; Downie, E J; Drexler, P; Fil'kov, L V; Fix, A; Glazier, D I; Gregor, R; Hamilton, D J; Heid, E; Hornidge, D; Isaksson, L; Jaegle, I; Jahn, O; Jude, T C; Kashevarov, V L; Keshelashvili, I; Kondratiev, R; Korolija, M; Kotulla, M; Koulbardis, A; Kruglov, S; Krusche, B; Lisin, V; Livingston, K; MacGregor, I J D; Maghrbi, Y; Manley, D M; McGeorge, J C; McNicoll, E F; Mekterovic, D; Metag, V; Mushkarenkov, A; Nefkens, B M K; Nikolaev, A; Novotny, R; Ortega, H; Ostrick, M; Ott, P; Otte, P B; Oussena, B; Pedroni, P; Pheron, F; Polonski, A; Prakhov, S; Robinson, J; Rosner, G; Rostomyan, T; Schumann, S; Sikora, M H; Sober, D I; Starostin, A; Strakovsky, I I; Suarez, I M; Supek, I; Tarbert, C M; Thiel, M; Thomas, A; Unverzagt, M; Watts, D P; Werthmüller, D; Zehr., F

    2013-01-01

    The Dalitz decay eta -> e^+ e^- gamma has been measured in the gamma p -> eta p reaction with the Crystal Ball and TAPS multiphoton spectrometers together with the photon tagging facility at the Mainz Microtron MAMI. The experimental statistic used in this work is one order of magnitude greater than in any previous measurement of eta -> e^+ e^- gamma. The value obtained for the slope parameter 1/Lambda^2 of the eta transition form factor, 1/Lambda^2 = (1.95 +/- 0.15_stat +/- 0.10_syst) [1/GeV^2], is in good agreement with recent measurements conducted in eta -> e^+ e^- gamma and eta -> mu^+ mu^- gamma decays as well as with recent form-factor calculations. The uncertainty obtained in the value of 1/Lambda^2 is lower compared to results from previous measurements of the eta -> e^+ e^- gamma decay.

  2. XMASS detector

    CERN Document Server

    Abe, K; Hiraide, K; Hirano, S; Kishimoto, Y; Kobayashi, K; Moriyama, S; Nakagawa, K; Nakahata, M; Nishiie, H; Ogawa, H; Oka, N; Sekiya, H; Shinozaki, A; Suzuki, Y; Takeda, A; Takachio, O; Ueshima, K; Umemoto, D; Yamashita, M; Yang, B S; Tasaka, S; Liu, J; Martens, K; Hosokawa, K; Miuchi, K; Murata, A; Onishi, Y; Otsuka, Y; Takeuchi, Y; Kim, Y H; Lee, K B; Lee, M K; Lee, J S; Fukuda, Y; Itow, Y; Nishitani, Y; Masuda, K; Takiya, H; Uchida, H; Kim, N Y; Kim, Y D; Kusaba, F; Motoki, D; Nishijima, K; Fujii, K; Murayama, I; Nakamura, S

    2013-01-01

    The XMASS project aims to detect dark matter, pp and $^{7}$Be solar neutrinos, and neutrinoless double beta decay using ultra pure liquid xenon. The first phase of the XMASS experiment searches for dark matter. In this paper, we describe the XMASS detector in detail, including its configuration, data acquisition equipment and calibration system.

  3. XMASS detector

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Hieda, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Hiraide, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Hirano, S. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kishimoto, Y.; Kobayashi, K.; Moriyama, S. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nakagawa, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Nakahata, M. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nishiie, H. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Ogawa, H. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); and others

    2013-07-11

    The XMASS project aims to detect dark matter, pp and {sup 7}Be solar neutrinos, and neutrinoless double beta decay using ultra pure liquid xenon. The first phase of the XMASS experiment searches for dark matter. In this paper, we describe the XMASS detector in detail, including its configuration, data acquisition equipment and calibration system.

  4. Semiconductor Detectors; Detectores de Semiconductores

    Energy Technology Data Exchange (ETDEWEB)

    Cortina, E.

    2007-07-01

    Particle detectors based on semiconductor materials are among the few devices used for particle detection that are available to the public at large. In fact we are surrounded by them in our daily lives: they are used in photoelectric cells for opening doors, in digital photographic and video camera, and in bar code readers at supermarket cash registers. (Author)

  5. Upgrading the ATLAS fast calorimeter simulation

    Science.gov (United States)

    Hubacek, Z.; ATLAS Collaboration

    2016-10-01

    Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full Geant4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time. In ATLAS, a fast simulation of the calorimeter systems was developed, called Fast Calorimeter Simulation (FastCaloSim). It provides a parametrized simulation of the particle energy response at the calorimeter read-out cell level. It is interfaced to the standard ATLAS digitization and reconstruction software and can be tuned to data more easily than Geant4. An improved parametrization is being developed, to eventually address shortcomings of the original version. It makes use of statistical techniques such as principal component analysis and a neural network parametrization to optimise the amount of information to store in the ATLAS simulation infrastructure.

  6. Upgrading the ATLAS fast calorimeter simulation

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00032940; The ATLAS collaboration

    2016-01-01

    Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full GEANT4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time. In ATLAS, a fast simulation of the calorimeter systems was developed, called Fast Calorimeter Simulation (FastCaloSim). It provides a parametrized simulation of the particle energy response at the calorimeter read-out cell level. It is interfaced to the standard ATLAS digitization and reconstruction software, and can be tuned to data more easily than with GEANT4. An improved parametrization is being developed, to eventually address shortcomings of the original version. It makes use of statistical techniques such as principal component analysis, and a neural network parametrization to optimise the amount of information to store in the ATL...

  7. Microcalorimeter Detector

    Data.gov (United States)

    Federal Laboratory Consortium — The NIST transition edge sensor microcalorimeter is energy dispersive x-ray spectrometer capable of ~5 eV resolution over a range of energies from hundreds to eV to...

  8. Phase transition time delays in irradiated superheated superconducting granules

    CERN Document Server

    Abplanalp, M; Czapek, G; Diggelmann, U; Furlan, M; Gabutti, A; Janos, S; Moser, U; Pozzi, R; Pretzl, Klaus P; Schmiemann, K; Perret-Gallix, D; Van den Brandt, B; Konter, J A; Mango, S

    1994-01-01

    The time difference between a particle interaction in a Superheated Superconducting Granule (SSG) and the resulting phase transition signal has been explored. Detectors containing Zn and Sn SSG were irradiated with neutrons and protons to study the heating mechanism taking place in nuclear recoil and ionizing events. Scattered neutrons have been detected by a scintillator hodoscope behind the SSG with a recoil energy measurement resolution of 10\\% and an interaction time resolution of 1ns. The fast transition of the metastable granules allowed to determine the elapsed time between an energy deposition and the phase transition signal. In the case of Sn granules, the results show that the time distributions are narrow and independent of the deposited energy in nuclear recoil and ionizing events. In Zn, however, the time distributions are much broader and depend on the energy deposition in the granule.

  9. Forward Instrumentation for ILC Detectors

    CERN Document Server

    Abramowicz, Halina; Afanaciev, Konstantin; Aguilar, Jonathan; Ambalathankandy, Prasoon; Bambade, Philip; Bergholz, Matthias; Bozovic-Jelisavcic, Ivanka; Castro, Elena; Chelkov, Georgy; Coca, Cornelia; Daniluk, Witold; Dragone, Angelo; Dumitru, Laurentiu; Elsener, Konrad; Emeliantchik, Igor; Fiutowski, Tomasz; Gostkin, Mikhail; Grah, Christian; Grzelak, Grzegorz; Haller, Gunter; Henschel, Hans; Ignatenko, Alexandr; Idzik, Marek; Ito, Kazutoshi; Jovin, Tatjana; Kielar, Eryk; Kotula, Jerzy; Krumstein, Zinovi; Kulis, Szymon; Lange, Wolfgang; Lohmann, Wolfgang; Levy, Aharon; Moszczynski, Arkadiusz; Nauenberg, Uriel; Novgorodova, Olga; Ohlerich, Marin; Orlandea, Marius; Oleinik, Gleb; Oliwa, Krzysztof; Olshevski, Alexander; Pandurovic, Mila; Pawlik, Bogdan; Przyborowski, Dominik; Sato, Yutaro; Sadeh, Iftach; Sailer, Andre; Schmidt, Ringo; Schumm, Bruce; Schuwalow, Sergey; Smiljanic, Ivan; Swientek, Krzysztof; Takubo, Yosuke; Teodorescu, Eliza; Wierba, Wojciech; Yamamoto, Hitoshi; Zawiejski, Leszek; Zhang, Jinlong

    2010-01-01

    Two special calorimeters are foreseen for the instrumentation of the very forward region of the ILC detector, a luminometer designed to measure the rate of low angle Bhabha scattering events with a precision better than 10-3 and a low polar angle calorimeter, adjacent to the beam-pipe. The latter will be hit by a large amount of beamstrahlung remnants. The amount and shape of these depositions will allow a fast luminosity estimate and the determination of beam parameters. The sensors of this calorimeter must be radiation hard. Both devices will improve the hermeticity of the detector in the search for new particles. Finely segmented and very compact calorimeters will match the requirements. Due to the high occupancy fast front-end electronics is needed. The design of the calorimeters developed and optimised with Monte Carlo simulations is presented. Sensors and readout electronics ASICs have been designed and prototypes are available. Results on the performance of these major components are summarised.

  10. Forward instrumentation for ILC detectors

    Science.gov (United States)

    Abramowicz, H.; Abusleme, A.; Afanaciev, K.; Aguilar, J.; Ambalathankandy, P.; Bambade, P.; Bergholz, M.; Bozovic-Jelisavcic, I.; Castro, E.; Chelkov, G.; Coca, C.; Daniluk, W.; Dragone, A.; Dumitru, L.; Elsener, K.; Emeliantchik, I.; Fiutowski, T.; Gostkin, M.; Grah, C.; Grzelak, G.; Haller, G.; Henschel, H.; Ignatenko, A.; Idzik, M.; Ito, K.; Jovin, T.; Kielar, E.; Kotula, J.; Krumstein, Z.; Kulis, S.; Lange, W.; Lohmann, W.; Levy, A.; Moszczynski, A.; Nauenberg, U.; Novgorodova, O.; Ohlerich, M.; Orlandea, M.; Oleinik, G.; Oliwa, K.; Olshevski, A.; Pandurovic, M.; Pawlik, B.; Przyborowski, D.; Sato, Y.; Sadeh, I.; Sailer, A.; Schmidt, R.; Schumm, B.; Schuwalow, S.; Smiljanic, I.; Swientek, K.; Takubo, Y.; Teodorescu, E.; Wierba, W.; Yamamoto, H.; Zawiejski, L.; Zhang, J.

    2010-12-01

    Two special calorimeters are foreseen for the instrumentation of the very forward region of the ILC detector, a luminometer designed to measure the rate of low angle Bhabha scattering events with a precision better than 10-3 and a low polar angle calorimeter, adjacent to the beam-pipe. The latter will be hit by a large amount of beamstrahlung remnants. The amount and shape of these depositions will allow a fast luminosity estimate and the determination of beam parameters. The sensors of this calorimeter must be radiation hard. Both devices will improve the hermeticity of the detector in the search for new particles. Finely segmented and very compact calorimeters will match the requirements. Due to the high occupancy fast front-end electronics is needed. The design of the calorimeters developed and optimised with Monte Carlo simulations is presented. Sensors and readout electronics ASICs have been designed and prototypes are available. Results on the performance of these major components are summarised.

  11. Forward instrumentation for ILC detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H [Tel Aviv University, Tel Aviv (Israel); Abusleme, A [Stanford University, Stanford (United States); Afanaciev, K; Emeliantchik, I [NCPHEP, Minsk (Belarus); Aguilar, J; Ambalathankandy, P; Fiutowski, T [AGH University of Science and Technology, Cracow (Poland); Bambade, P [Laboratoire de l Accelerateur Lineaire, Orsay (France); Bergholz, M; Castro, E; Grah, C [DESY, Zeuthen (Germany); Bozovic-Jelisavcic, I [Vinca Institute of Nuclear Sciences, University of Belgrade (Serbia); Chelkov, G; Gostkin, M [JINR, Dubna (Russian Federation); Coca, C; Dumitru, L [IFIN-HH, Bucharest (Romania); Daniluk, W; Grzelak, G [INP PAN, Cracow (Poland); Dragone, A [SLAC, Menlo Park (United States); Elsener, K, E-mail: Wolfgang.Lohmann@desy.d [CERN, Geneva (Switzerland)

    2010-12-15

    Two special calorimeters are foreseen for the instrumentation of the very forward region of the ILC detector, a luminometer designed to measure the rate of low angle Bhabha scattering events with a precision better than 10{sup -3} and a low polar angle calorimeter, adjacent to the beam-pipe. The latter will be hit by a large amount of beamstrahlung remnants. The amount and shape of these depositions will allow a fast luminosity estimate and the determination of beam parameters. The sensors of this calorimeter must be radiation hard. Both devices will improve the hermeticity of the detector in the search for new particles. Finely segmented and very compact calorimeters will match the requirements. Due to the high occupancy fast front-end electronics is needed. The design of the calorimeters developed and optimised with Monte Carlo simulations is presented. Sensors and readout electronics ASICs have been designed and prototypes are available. Results on the performance of these major components are summarised.

  12. Bottom Fixed Platform Dynamics Models Assessing Surface Ice Interactions for Transitional Depth Structures in the Great Lakes: FAST8 – IceDyn

    Energy Technology Data Exchange (ETDEWEB)

    Karr, Dale G. [Univ. of Michigan, Ann Arbor, MI (United States); Yu, Bingbin [Principle Power, Inc., Emeryville, CA (United States); Sirnivas, Senu [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-04-01

    To create long-term solutions for offshore wind turbines in a variety of environmental conditions, CAE tools are needed to model the design-driving loads that interact with an offshore wind turbine system during operation. This report describes our efforts in augmenting existing CAE tools used for offshore wind turbine analysis with a new module that can provide simulation capabilities for ice loading on the system. This augmentation was accomplished by creating an ice-loading module coupled to FAST8, the CAE tool maintained by the NREL for simulating land-based and offshore wind turbine dynamics. The new module includes both static and dynamic ice loading that can be applied during a dynamic simulation of the response of an offshore wind turbine. The ice forces can be prescribed, or influenced by the structure’s compliant response, or by the dynamics of both the structure and the ice floe. The new module covers ice failure modes of spalling, buckling, crushing, splitting, and bending. The supporting structure of wind turbines can be modeled as a vertical or sloping form at the waterline. The Inward Battered Guide Structure (IBGS) foundation designed by Keystone Engineering for the Great Lakes was used to study the ice models coupled to FAST8. The IBGS foundation ice loading simulations in FAST8 were compared to the baseline simulation case without ice loading. The ice conditions reflecting those from Lake Huron at Port Huron and Lake Michigan at North Manitou were studied under near rated wind speed of 12 m/s for the NREL 5-MW reference turbine. Simulations were performed on ice loading models 1 through 4 and ice model 6 with their respective sub-models. The purpose of ice model 5 is to investigate ice loading on sloping structures such as ice-cones on a monopile and is not suitable for multi-membered jacketed structures like the IBGS foundation. The key response parameters from the simulations, shear forces and moments from the tower base and IBGS foundation

  13. Design and Construction of the First Prototype of Liquid Scintillator Detector for Fast Beam Loss Monitor(FBLM) System%快响应束流损失监控(FBLM)系统液闪探测器初样的研制

    Institute of Scientific and Technical Information of China (English)

    韩晨霞; 陈昌; 田建民; 赵中亮; 徐美杭; 李公平; 陈元柏; 徐韬光; 赵海泉

    2011-01-01

    给出快响应束流损失监控(Fast Beam Lost Monitor,FBLM)系统的液体闪烁体探测器初样的研制.在高频四极加速器(Radio Frequency Quadrupole,RFQ)实验装置上的测试表明,液闪探测器能给出宽度为500 μs 束流宏脉冲结构,能逐个显示出宏脉冲内490 ns的束流切束脉冲.液闪输出信号脉冲较490 ns束流切束脉冲延迟约70 ns.液闪型FBLM输出的信号幅度大于塑闪型.液闪探测器初样的成功研制,为其性能进一步改进提高,打下了良好的基础.%Design and constmction of the first prototype of liquid scintillator detector for fast beam loss monitor ( FBLM ) system are given. A beam chopping device can remove a 490 ns section of beam at approximately 1 MHz repetition rate within a 500 μs macro beam pulse - width. The liquid scintillator displays the measured beam - pulse structure after the beam chopper. Through RFQ special beam structure, the response time of FBLM is measured. The response time of FBLM is about nano second. The signal amplitude from liquid scintillator is larger than plastic scintillator. All of these give us good experiences for the futher improvement of liquid seintillator detector design and construction. According to the measurement data. liquid seintillator is suggested as the detector of FBLM system.

  14. Diamond Detectors as Beam Monitors

    CERN Document Server

    Dehning, B; Dobos, D; Pernegger, H; Griesmayer, E

    2010-01-01

    CVD diamond particle detectors are already in use in the CERN experiments ATLAS, CMS, LHCb and ALICE and at various particle accelerator laboratories in USA and Japan. This is a proven technology with high radiation tolerance and very fast signal read-out. It can be used for measuring single-particles as well as for high-intensity particle cascades, for timing measurements on the nanosecond scale and for beam protection systems. The radiation tolerance is specified with 10 MGy.

  15. Moderating strain without sacrificing reactivity: design of fast and tunable noncatalyzed alkyne-azide cycloadditions via stereoelectronically controlled transition state stabilization.

    Science.gov (United States)

    Gold, Brian; Dudley, Gregory B; Alabugin, Igor V

    2013-01-30

    Recently, we have identified two strategies for selective transition state (TS) stabilization in catalyst-free azide/alkyne cycloadditions. In particular, the transition states for the formation of both 1,4- and 1,5-isomers can be stabilized via hyperconjugative assistance for the C···N bond formation, whereas the 1,5-TS can be stabilized via C-H···X H-bonding interactions. When the hyperconjugative assistance is maximized by the antiperiplanar arrangement of propargylic σ-acceptors relative to the forming bonds, the combination of these TS-stabilizing effects was predicted to lead to ~1 million fold acceleration of the cycloaddition with methyl azide. The present work investigated whether hyperconjugative assistance and H-bonding can be combined with strain activation for the design of even more reactive alkynes and whether reactivity can be turned "on demand." When stereoelectronic amplification is achieved by optimal positioning of σ-acceptors at the endocyclic bonds antiperiplanar to the breaking alkyne π-bonds, the stabilization of the bent alkyne geometry leads to a significant decrease in strain in cyclic alkynes without compromising their reactivity in alkyne-azide cycloadditions. The approach can be used in a modular fashion where the TS stabilizing effects are introduced sequentially until the desired level of reactivity is achieved. A significant increase in reactivity upon the protonation of an endocyclic NH-group suggests a new strategy for the design of click reactions triggered by a pH-change or introduction of an external Lewis acid.

  16. Development of Fast, Background-Limited Transition-Edge Sensors for the Background-Limited Infrared/Sub-mm Spectrograph (BLISS) for SPICA

    Science.gov (United States)

    Beyer, Andrew D.; Runyan, M. C.; Kenyon, M.; Echternach, P. M .; Chui, T.; Bumble, B.; Bradford, C. M.; Holmes, W. A.; Bock, J. J.

    2012-01-01

    We report experimental progress toward demonstrating background-limited arrays of membrane-isolated transition-edge sensors (TESs) for the Background Limited Infrared/Sub-mm Spectrograph (BLISS). BLISS is a space-borne instrument with grating spectrometers for wavelengths lambda=35-435 micron and with R=lambda/delta lambda approximately equals 500. The goals for BLISS TESs are: noise equivalent power (NEP) = 5x10 (sup -20) W/Hz(exp 1/2) and response time tau = 135mK) and Mo/Cu proximitized bilayers, where T(sub c) is the thermistor transition temperature. We measured the Ir TES arrays in our 50mK adiabatic demagnetization refrigerator test system, which can measure up to eight 1x32 arrays simultaneously using a time-division multiplexer, as well as our single-pixel test system which can measure down to 15mK. In our previous Ir array measurements our best reported performance was NEP=2.5x10(exp -19) W/Hz(sub 1/2) and Tau approximately equals 5ms for straight-beam TESs. In fact, we expected NEP approximately equals 1.5x10(exp -19)?W/Hz(sup 1/2) for meander beam TESs, but did not achieve this previously due to 1/f noise. Here, we detail improvements toward measuring the expected NEP and demonstrate NEP=(1.3+0.2)x10 (sup -19)W/Hz(exp 1/2) in our single-pixel test system and NEP=(1.6+/-0.3)x10(sup -19)W/Hz(sup 1/2) in our array test system.

  17. Development of Fast, Background-Limited Transition-Edge Sensors for the Background-Limited Infrared/Sub-Millimetre Spectrograph (BLISS) for SPICA

    Science.gov (United States)

    Beyer, Andrew D.; Runyan, M. C.; Kenyon, M.; Echternach, P. M.; Chui, T.; Bumble, B.; Bradford, C. M.; Holmes, W. A.; Bock, J. J.

    2012-01-01

    We report experimental progress toward demonstrating background-limited arrays of membrane-isolated transition-edge sensors (TESs) for the Background Limited Infrared/Sub-mm Spectrograph (BLISS). BLISS is a space-borne instrument with grating spectrometers for wavelengths lambda = 35-435 microns and with R = lambda/(delta)lambda approx. 500. The goals for BLISS TESs are: noise equivalent power (NEP) = 5x10(exp -20) W/Hz(1/2) and response time t or = 135mK) and Mo/Cu proximitized bilayers, where T(sub c) is the thermistor transition temperature. We measured the Ir TES arrays in our 50mK adiabatic demagnetization refrigerator test system, which can measure up to eight 1x32 arrays simultaneously using a time-division multiplexer, as well as our single-pixel test system which can measure down to 15mK. In our previous Ir array measurements our best reported performance was NEP=2.5x10(exp -19) W/Hz(1/2) and tapprox.5ms for straight-beam TESs. In fact, we expected NEPapprox.1.5x10(exp -19)W/Hz(1/2) for meander beam TESs, but did not achieve this previously due to 1/f noise. Here, we detail improvements toward measuring the expected NEP and demonstrate NEP=(1.3+0.2)x10(exp -19)W/Hz(1/2) in our single-pixel test system and NEP=(1.6+0.3)x10(exp -19)W/Hz(1/2) in our array test system.

  18. 3D Detectors for Synchrotron Applications

    CERN Document Server

    Pennicard, D

    2009-01-01

    3D detectors are a novel variety of photodiode radiation detector, invented by Parker, Kenney and Segal (1997). Instead of having n- and p-type contacts on the front and back surfaces of a silicon substrate, like a standard photodiode, they have columns of doped material passing through the thickness of the silicon. This structure means that the detector can combine a reasonable substrate thickness with a very small electrode spacing, resulting in a low depletion voltage, fast charge collection and low charge sharing. These detectors have a couple of promising applications. Their fast charge collection and low depletion voltage should make them very radiation-tolerant. So, they could be used for future particle physics experiments at the Super Large Hadron Collider (SLHC), where high levels of radiation damage are expected. Also, their low charge sharing means they could potentially improve X-ray diffraction measurements at synchrotrons such as Diamond Light Source. This would allow these experiments, for exa...

  19. The solid state detector technology for picosecond laser ranging

    Science.gov (United States)

    Prochazka, Ivan

    1993-01-01

    We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.

  20. ATLAS Transitional Radiation Tracker

    CERN Multimedia

    ATLAS Outreach

    2006-01-01

    This colorful 3D animation is an excerpt from the film "ATLAS-Episode II, The Particles Strike Back." Shot with a bug's eye view of the inside of the detector. The viewer is taken on a tour of the inner workings of the transitional radiation tracker within the ATLAS detector. Subjects covered include what the tracker is used to measure, its structure, what happens when particles pass through the tracker, how it distinguishes between different types of particles within it.

  1. Metal-insulator transition in Si{sub 0.7}Ge{sub 0.3} disordered by fast neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhidkov, A.V. [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Yadernykh Issledovanij

    1996-10-01

    Both n- and p-type heavily doped and irradiated Si{sub 0.7}Ge{sub 0.3} (N{sub D}, N{sub A}{approx}2.10{sup 26} cm{sup -3}) alloys behaviour was experimentally studied. After irradiation in vertical channels of Kiev WWR-M research reactor with neutron fluence of 10{sup 25} neutron/m{sup 2} (E>1 MeV), the material was determined to be an insulator because of observed Anderson-type metal-insulator transition. There were temperature dependency of specific resistance and Hall effect measurements, which allowed distinct detection of both the {epsilon}{sub 1}-conductivity provided by the thermal activation of carriers from Fermi level to percolation threshold and {epsilon}{sub 3}, where the hopping mechanism dominates. The unusual parameters of hopping process were observed at T<200 K, where this process dominates. The Fermi level value was estimated to be 55 meV relative to the mobility edge; estimated electron state localization radius value is <10 A. (orig.).

  2. Liquid-Xe detector for contraband detection

    Energy Technology Data Exchange (ETDEWEB)

    Vartsky, D., E-mail: david.vartsky@weizmann.ac.il [Weizmann Institute of Science, Rehovot 76100 (Israel); Israelashvili, I. [Weizmann Institute of Science, Rehovot 76100 (Israel); Nuclear Research Center of Negev (NRCN), Beer-Sheva 9001 (Israel); Cortesi, M. [National Superconducting Cyclotron Laboratory, East Lansing 48823, MI (United States); Arazi, L.; Coimbra, A.E.; Moleri, L.; Erdal, E.; Bar, D.; Rappaport, M.; Shchemelinin, S. [Weizmann Institute of Science, Rehovot 76100 (Israel); Caspi, E.N. [Nuclear Research Center of Negev (NRCN), Beer-Sheva 9001 (Israel); Aviv, O. [Soreq NRC, Yavne 81800 (Israel); Breskin, A. [Weizmann Institute of Science, Rehovot 76100 (Israel)

    2016-07-11

    We describe progress made with a liquid-Xe (LXe) detector coupled to a gaseous photomultiplier (GPM), for combined imaging and spectroscopy of fast neutrons and gamma-rays in the MeV range. The purpose of this detector is to enable the detection of hidden explosives and fissile materials in cargo and containers. The expected position resolution is about 2 m and 3.5 mm for fast neutrons and gamma-rays, respectively. Experimental results obtained using an {sup 241}Am source yielded energy and time resolutions of 11% and 1.2 ns RMS, respectively. Initial results obtained with the position-sensitive GPM are presented.

  3. Development of a plasma panel muon detector

    Science.gov (United States)

    Levin, D. S.; Ball, R.; Beene, J. R.; Benhammou, Y.; Chapman, J. W.; Dai, T.; Etzion, E.; Friedman, P. S.; Ben Moshe, M.; Silver, Y.; Varner, R. L.; Weaverdyck, C.; White, S.; Zhou, B.

    2011-10-01

    A radiation detector technology based on plasma display panels (PDPs), the underlying engine of panel plasma television displays, is being investigated. Emerging from this well-established television technology is the Plasma Panel Sensor (PPS), a novel variant of the micro-pattern radiation detector. The PPS is fundamentally a fast, high-resolution detector comprised of an array of plasma discharge cells, operating in a hermetically sealed gas mixture. We report on the PPS development effort, including proof-of-principle results of laboratory signal observations.

  4. MUON DETECTORS: RPC

    CERN Multimedia

    G. Iaselli

    During the last 3 months the RPC group has made impressive improvements in the refinement of the operation tools and understanding of the detector. The full barrel and part of the plus end cap participated systematically to global runs producing millions of trigger on cosmics. The main monitoring tools were robust and efficient in controlling the detector and in diagnosis of problems. After the refinement of the synchronization procedure, detailed studies of the chamber performances, as a function of high voltage and front-end threshold, were pursued. In parallel, new tools for the prompt analysis were developed which have enabled a fast check of the data at the CMS Centre. This effort has been very valuable since it has helped in discovering many minor bugs in the reconstruction software and database which are now being fixed. Unfortunately, a large part of the RE2 station has developed increasing operational current. Some preliminary investigation leads to the conclusion that the serial gas circulation e...

  5. Vertex-Detector R&D for CLIC

    CERN Document Server

    Dannheim, D

    2014-01-01

    A detector concept based on hybrid planar pixel-detector technology is under development for the CLIC vertex detector. It comprises fast, low-power and small-pitch readout ASICs implemented in 65 nm CMOS technology (CLICpix) coupled to ultra-thin sensors via low-mass interconnects. The power dissipation of the readout chips is reduced by means of power pulsing, allowing for a cooling system based on forced gas flow. In this paper the CLIC vertex-detector requirements are reviewed and the current status of R&D on sensors, readout and detector integration is presented.

  6. Radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, Rusi P.

    2017-06-27

    Alpha particle detecting devices are disclosed that have a chamber that can hold a fluid in a tensioned metastable state. The chamber is tuned with a suitable fluid and tension such that alpha emitting materials such as radon and one or more of its decay products can be detected. The devices can be portable and can be placed in areas, such as rooms in dwellings or laboratories and used to measure radon in these areas, in situ and in real time. The disclosed detectors can detect radon at and below 4 pCi/L in air; also, at and below 4,000 pCi/L or 300 pCi/L in water.

  7. Event reconstruction in the RICH detector of the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Adamczewski, J. [GSI Darmstadt (Germany); Becker, K.-H. [University Wuppertal (Germany); Belogurov, S. [ITEP Moscow (Russian Federation); Boldyreva, N. [PNPI Gatchina (Russian Federation); Chernogorov, A. [ITEP Moscow (Russian Federation); Deveaux, C. [University Gießen (Germany); Dobyrn, V. [PNPI Gatchina (Russian Federation); Dürr, M. [University Gießen (Germany); Eom, J. [Pusan National University (Korea, Republic of); Eschke, J. [GSI Darmstadt (Germany); Höhne, C. [University Gießen (Germany); Kampert, K.-H. [University Wuppertal (Germany); Kleipa, V. [GSI Darmstadt (Germany); Kochenda, L. [PNPI Gatchina (Russian Federation); Kolb, B. [GSI Darmstadt (Germany); Kopfer, J. [University Wuppertal (Germany); Kravtsov, P. [PNPI Gatchina (Russian Federation); Lebedev, S., E-mail: s.lebedev@gsi.de [University Gießen (Germany); Lebedeva, E. [University Gießen (Germany); Leonova, E. [PNPI Gatchina (Russian Federation); and others

    2014-12-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility will investigate the QCD phase diagram at high net-baryon densities and moderate temperatures. One of the key signatures will be di-leptons emitted from the hot and dense phase in heavy-ion collisions. Measuring di-electrons, a high purity of identified electrons is required in order to suppress the background. Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detectors (TRD). In order to access the foreseen rare probes, the detector and the data acquisition have to handle interaction rates up to 10 MHz. Therefore, the development of fast and efficient event reconstruction algorithms is an important and challenging task in CBM. In this contribution event reconstruction and electron identification algorithms in the RICH detector are presented. So far they have been developed on simulated data but could already be tested on real data from a RICH prototype testbeam experiment at the CERN-PS. Efficient and fast ring recognition algorithms in the CBM-RICH are based on the Hough Transform method. Due to optical distortions of the rings, an ellipse fitting algorithm was elaborated to improve the ring radius resolution. An efficient algorithm based on the Artificial Neural Network was implemented for electron identification in RICH. All algorithms were significantly optimized to achieve maximum speed and minimum memory consumption. - Highlights: • Ring Imaging Cherenkov detector will serve for electron identification in CBM. • We present efficient ring recognition algorithm based on the Hough Transform method. • Developed algorithms were significantly optimized to achieve maximum speed up. • Electron identification algorithm in RICH based on the Artificial Neural Network. • Developed algorithms were successfully tested on real data from the RICH prototype.

  8. Rapid transitions

    Energy Technology Data Exchange (ETDEWEB)

    Hamrin, J.G.

    1980-01-01

    Solar energy programs are entering a critical transitional period as we move from the initial marketing of solar technologies into a phase of widespread commercialization. We face the dual challenge of trying to get enough solar systems in place fast enough to prove solar is a viable alternative, while trying to ensure the systems are designed and installed properly, proving the energy savings as promised. This is a period of both great opportunity and high risk as the field becomes crowded with new solar cheerleaders and supporters but seldom enough competent players. The status of existing and proposed programs for the accelerated commercialization of solar energy in California is described.

  9. Transition in hypersonic boundary layers

    Science.gov (United States)

    Zhang, Chuanhong; Zhu, Yiding; Chen, Xi; Yuan, Huijing; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed

    2015-10-01

    Transition and turbulence production in a hypersonic boundary layer is investigated in a Mach 6 wind tunnel using Rayleigh-scattering visualization, fast-response pressure measurements, and particle image velocimetry. It is found that the second-mode instability is a key modulator of the transition process. Although the second-mode is primarily an acoustic wave, it causes the formation of high-frequency vortical waves, which triggers a fast transition to turbulence.

  10. Transition in hypersonic boundary layers

    Directory of Open Access Journals (Sweden)

    Chuanhong Zhang

    2015-10-01

    Full Text Available Transition and turbulence production in a hypersonic boundary layer is investigated in a Mach 6 wind tunnel using Rayleigh-scattering visualization, fast-response pressure measurements, and particle image velocimetry. It is found that the second-mode instability is a key modulator of the transition process. Although the second-mode is primarily an acoustic wave, it causes the formation of high-frequency vortical waves, which triggers a fast transition to turbulence.

  11. CLIC Detector Power Requirements

    CERN Document Server

    Gaddi, A

    2013-01-01

    An estimate for the CLIC detector power requirements is outlined starting from the available data on power consumptions of the four LHC experiments and considering the differences between a typical LHC Detector (CMS) and the CLIC baseline detector concept. In particular the impact of the power pulsing scheme for the CLIC Detector electronics on the overall detector consumption is considered. The document will be updated with the requirements of the sub-detector electronics once they are more defined.

  12. Pixel Vertex Detectors

    OpenAIRE

    Wermes, Norbert

    2006-01-01

    Pixel vertex detectors are THE instrument of choice for the tracking of charged particles close to the interaction point at the LHC. Hybrid pixel detectors, in which sensor and read-out IC are separate entities, constitute the present state of the art in detector technology. Three of the LHC detectors use vertex detectors based on this technology. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as ...

  13. Alpine Pixel Detector Layout

    CERN Document Server

    Delebecque, P; The ATLAS collaboration; Geffroy, N; Massol, N; Rambure, T; Todorov, T

    2013-01-01

    A description of an optimized layout of pixel sensors based on a stave that combines both barrel and endcap module orientations. The mechanical stiffness of the structure is provided by carbon fiber shells spaced by carbon foam. The cooling of the modules is provided by two-phase $CO_{2}$ flowing in a thin titanium pipe glued inside the carbon fiber foam. The electrical services of all modules are provided by a single stave flex. This layout eliminates the need for separate barrel and endcap detector structures, and therefore the barrel services material in front of the endcap. The transition from barrel to endcap module orientation is optimized separately for each layer in order to minimize the active pixel area and the traversed material. The sparse module spacing in the endcap part of the stave allows for multiple fixation points, and for a stiff overall structure composed only of staves interconnected by stiff disks.

  14. The CPLEAR detector at CERN

    CERN Document Server

    Adler, R; Alhalel, T; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Aslanides, Elie; Backenstoss, Gerhard; Bal, F; Bard, J P; Barraca, D; Bee, C P; Behnke, O; Benelli, A; Bennet, J; Bertin, V; Blanc, F; Bloch, P; Bonnet, M; Bula, C; Calzas, A; Carlson, P J; Carroll, M; Carvalho, J; Cawley, E; Charalambous, S; Chardalas, M; Chardin, G; Charra, P; Chertok, M B; Cody, A; Da Silva, J; Damianoglou, D; Daniel, R; Danielsson, M; Dechelette, Paul; Dedieu, M; Dedoussis, S; Dejardin, M; Derré, J; Dijksman, A; Dinkespiler, B; Dodgson, M; Dröge, M; Duclos, J; Dudragne, J; Durand, D; Ealet, A; Eckart, B; Eleftheriadis, C; Engster, Claude; Evangelou, I; Faravel, L; Fassnacht, P; Faure, J L; Felder, C; Ferreira-Marques, R; Fetscher, W; Fidecaro, Maria; Filipcic, A; Francis, D; Fry, J; Fuglesang, C; Gabathuler, Erwin; Gally, Y; Gamet, R; Garreta, D; Geiss, D; Geralis, R; Gerber, H J; Go, A; Gumplinger, P; Guyon, D; Guyot, C; Harrison, P; Harrison, P F; Haselden, A; Hayman, P J; Hazen, E S; Henry-Coüannier, F; Heyes, W G; Hollander, R W; Hubert, E; Jacobs, C; Jansson, K; Johner, H U; Jon-And, K; Karkour, N; Kérek, A; Kesseler, G; Kettle, P R; King, D; Klados, T; Kochowski, Claude; Kokkas, P; Kontek, K; Kreuger, R; Lawry, T; Lecouturier, T; Le Gac, R; Leimgruber, F; Linget, D; Liolios, A; Löfstedt, B; Louis, F; Machado, E; Maley, P; Mall, U; Mandic, I; Manthos, N; Marel, Gérard; Marin, C P; Martin, H; Michau, J C; Mikuz, M; Miller, J; Montanet, François; Nakada, Tatsuya; Nanni, F; Onofre, A; Pagels, B; Papadopoulos, I M; Pavlopoulos, P; Pelucchi, F; Petit, P; Philippoussis, K; Pinto da Cunha, J; Policarpo, Armando; Polivka, G; Postma, H; Rheme, C; Rickenbach, R; Roberts, B L; Rozaki, E; Ruf, T; Sacks, L; Sakelliou, L; Sanders, P; Santoni, C; Sarigiannis, K; Schäfer, M; Schaller, L A; Schietinger, T; Schopper, A; Schune, P; Soares, A; Steinacher, M; Tatsis, S; Tauscher, Ludwig; Thibault, C; Touchard, F; Touramanis, C; Triantis, F A; Tröster, D A; Tsamouranis, I; Tschopp, H; Tsilimigras, Panayiotis; Van Beveren, E; van Eijk, C W E; Van Koningsfeld, V; Vanuxem, J P; Varner, G S; Verweij, H; Vlachos, S; Warner, D; Watson, E; Weber, P; Wendler, H; Wigger, O; Witzig, C; Wolter, M; Yéche, C; Zavrtanik, D; Zimmerman, D

    1996-01-01

    The CPLEAR collaboration has constructed a detector at CERN for an extensive programme of CP-, T- and CPT-symmetry studies using ${\\rm K}^0$ and $\\bar{\\rm K}^0$ produced by the annihilation of $\\bar{\\rm p}$'s in a hydrogen gas target. The ${\\rm K}^0$ and $\\bar{\\rm K}^0$ are identified by their companion products of the annihilation ${\\rm K}^{\\pm} \\pi^{\\mp}$ which are tracked with multiwire proportional chambers, drift chambers and streamer tubes. Particle identification is carried out with a liquid Cherenkov detector for fast separation of pions and kaons and with scintillators which allow the measurement of time of flight and energy loss. Photons are measured with a lead/gas sampling electromagnetic calorimeter. The required antiproton annihilation modes are selected by fast online processors using the tracking chamber and particle identification information. All the detectors are mounted in a 0.44 T uniform field of an axial solenoid of diameter 2 m and length 3.6 m to form a magnetic spectrometer capable o...

  15. Linearity of photoconductive GaAs detectors to pulsed electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, L.H.

    1995-12-31

    The response of neutron damaged GaAs photoconductor detectors to intense, fast (50 psec fwhm) pulses of 16 MeV electrons has been measured. Detectors made from neutron damaged GaAs are known to have reduced gain, but significantly improved bandwidth. An empirical relationship between the observed signal and the incident electron fluence has been determined.

  16. Design and Fabrication of Silicon Carbide Semiconductor Detectors

    Institute of Scientific and Technical Information of China (English)

    MENG; Xin; LIU; Yang; HE; Gao-kui

    2015-01-01

    The potential of silicon carbide(SiC)for use in semiconductor nuclear radiation detectors has been recognized for years.SiC detectors have now been demonstrated for high-resolution alpha particle and X-ray energy spectrometry,beta ray,gamma-ray,thermal-and fast-neutron

  17. Progress in the Development of Plasma Panel Radiation Detectors

    CERN Document Server

    Ball, Robert; Benhammou, Yan; Moshe, Meny Ben; Chapman, J Wehrley; Dai, Tiesheng; Etzion, Erez; Friedman, Peter S; Levin, Daniel S; Silver, Yiftah; Sherman, Guy; Varner, Robert L; Weaverdyck, Curtis; White, Steve; Yu, J; Zhou, Bing

    2011-01-01

    Plasma Display Panels (PDP), the underlying engine of panel plasma television displays, are being investigated for their utility as radiation detectors called Plasma Panel Sensors (PPS). The PPS a novel variant of a micropattern radiation detector, is intended to be a fast, high resolution detector comprised of an array of plasma discharge cells operating in a hermetically sealed gas mixture. We report on the PPS development effort, including recent laboratory measurements.

  18. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    DT As announced in the previous Bulletin MU DT completed the installation of the vertical chambers of barrel wheels 0, +1 and +2. 242 DT and RPC stations are now installed in the negative barrel wheels. The missing 8 (4 in YB-1 and 4 in YB-2) chambers can be installed only after the lowering of the two wheels into the UX cavern, which is planned for the last quarter of the year. Cabling on the surface of the negative wheels was finished in May after some difficulties with RPC cables. The next step was to begin the final commissioning of the wheels with the final trigger and readout electronics. Priority was giv¬en to YB0 in order to check everything before the chambers were covered by cables and services of the inner detectors. Commissioning is not easy since it requires both activity on the central and positive wheels underground, as well as on the negative wheels still on the surface. The DT community is requested to commission the negative wheels on surface to cope with a possible lack of time a...

  19. Neutron beam imaging with GEM detectors

    Science.gov (United States)

    Albani, G.; Croci, G.; Cazzaniga, C.; Cavenago, M.; Claps, G.; Muraro, A.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Rebai, M.; Tardocchi, M.; Gorini, G.

    2015-04-01

    Neutron GEM-based detectors represent a new frontier of devices in neutron physics applications where a very high neutron flux must be measured such as future fusion experiments (e.g. ITER Neutral beam Injector) and spallation sources (e.g. the European Spallation source). This kind of detectors can be properly adapted to be used both as beam monitors but also as neutron diffraction detectors that could represent a valid alternative for the 3He detectors replacement. Fast neutron GEM detectors (nGEM) feature a cathode composed by one layer of polyethylene and one of aluminium (neutron scattering on hydrogen generates protons that are detected in the gas) while thermal neutron GEM detectors (bGEM) are equipped with a borated aluminium cathode (charged particles are generated through the 10B(n,α)7Li reaction). GEM detectors can be realized in large area (1 m2) and their readout can be pixelated. Three different prototypes of nGEM and one prototype of bGEM detectors of different areas and equipped with different types of readout have been built and tested. All the detectors have been used to measure the fast and thermal neutron 2D beam image at the ISIS-VESUVIO beamline. The different kinds of readout patterns (different areas of the pixels) have been compared in similar conditions. All the detectors measured a width of the beam profile consitent with the expected one. The imaging property of each detector was then tested by inserting samples of different material and shape in the beam. All the samples were correctly reconstructed and the definition of the reconstruction depends on the type of readout anode. The fast neutron beam profile reconstruction was then compared to the one obtained by diamond detectors positioned on the same beamline while the thermal neutron one was compared to the imaged obtained by cadmium-coupled x-rays films. Also efficiency and the gamma background rejection have been determined. These prototypes represent the first step towards the

  20. Importance sampling for characterizing STAP detectors

    NARCIS (Netherlands)

    Srinivasan, R.; Rangaswamy, M.

    2007-01-01

    This paper describes the development of adaptive importance sampling techniques for estimating false alarm probabilities of detectors that use space-time adaptive processing (STAP) algorithms. Fast simulation using importance sampling methods has been notably successful in the study of conventional

  1. Characterization of CdTe and CdZnTe detectors for gamma-ray imaging applications

    Science.gov (United States)

    Verger, L.; Boitel, M.; Gentet, M. C.; Hamelin, R.; Mestais, C.; Mongellaz, F.; Rustique, J.; Sanchez, G.

    2001-02-01

    CEA-LETI in association with Bicron and Crismatec has been developing solid-state gamma camera technology based on CZT. The project included gamma camera head systems development including front-end electronics with an integrated circuit (ASIC), material growth, and detector fabrication and characterization. One feature of the work is the use of linear correlation between the amplitude and the fast rise time of the signal - which corresponds to the electron transit time in the detector, a development that was reported previously and which allows more than 80% of the 122 keV γ-photons incident on HPBM material to be recovered in a ±6.5% 2D window. In the current work, we summarize other methods to improve CZT detector performance and compare them with the Bi-Parametric Spectrum (BPS) method. The BPS method can also be applied as a diagnositic. BPS curve shapes are shown to vary with electric field, and with electron transport properties, and the correction algorithims are seen to be robust over a range of values. In addition, the technique is found to improve detectors from a variety of sources including some with special electrode geometries. In all cases, the BPS method improves efficiency (>75%) without degrading energy resolution (± 6.5% 2D window) even for a monolithic detector. The method does not overcome bulk inhomogeneity nor noise which comes from low resistivity.

  2. Design of a trigger layout and the corresponding implementation of a 200 GB/s readout network for the ALICE transition radiation detector; Entwicklung des Triggerkonzepts und die entsprechende Implementierung eines 200-GB/s-Auslesenetzwerks fuer den ALICE-Uebergangsstrahlungsdetektor

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Rolf

    2008-05-19

    Through the use of modern information technology, intelligent trigger systems are gaining more and more importance in high-energy physics. Particularly in heavy ion experiments, the large number of generated particles results in an enormous amount of data. By filtering the data at an early stage and discarding irrelevant events, the efficiency of the entire system can be raised significantly. The ALICE experiment at CERN breaks new ground in this respect. With the Transition Radiation Detector, the acquired signals are processed parallel right on the detector using more than 65 000 multi-chip modules. Via a readout network, the preprocessed data arrives at a global track reconstruction unit, which contributes to the decision whether an event is discarded or further processed. In this thesis, a trigger concept for the Transition Radiation Detector is developed and the readout network is implemented. A special challenge is to achieve an efficient interaction of the above processing stages. By means of simulations and analyses, the entire system is optimized in this regard. It turns out that the read-out process plays a decisive role. In this context, a design flow for the used ASIC is developed. The analyses show that through optimizations the extremely high demands made on this complex system can be met. During a beam time, first prototypes have successfully been tested. The entire system is currently being assembled and will be brought on line in 2008. (orig.)

  3. Fast GC for Space Applications Based on PIES Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a novel analytical instrument which combines the advantages of fast GC and a detector capable of identifying species is proposed. Experiments in the...

  4. Fast GC for Space Applications Based on PIES Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II project is aimed at the development of an analytical instrument which combines the advantages of fast gas chromatography (GC) and a detector that...

  5. eta ' transition form factors

    NARCIS (Netherlands)

    Amo Sanchez, del P.; Raven, H.G.; Snoek, H.; BaBar, Collaboration

    2011-01-01

    eta((')) transition form factors in the momentum-transfer range from 4 to 40 GeV(2). The analysis is based on 469 fb(-1) of integrated luminosity collected at PEP-II with the BABAR detector at e(+)e(-) center-of-mass energies near 10.6 GeV.

  6. A 90GHz Bolometer Camera Detector System for the Green

    Science.gov (United States)

    Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.

    2004-01-01

    We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3 mm) for the 100m Green Bank Telescope (GBT). This system will provide high sensitivity (less than 1mJy in 1s) rapid imaging (15'x15' to 150 micron Jy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close-packed, Nyquist-sampled array of superconducting transition edge sensor (TES) bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approximately 2 x 10(exp -17) W/square root of Hz, the TES bolometers will provide fast, linear, sensitive response for high performance imaging. The detectors are read out by an 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.

  7. Incorporating single detector failure into the ROP detector layout optimization for CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kastanya, Doddy, E-mail: Doddy.Kastanya@snclavalin.com

    2015-12-15

    Highlights: • ROP TSP value needs to be adjusted when any detector in the system fails. • Single detector failure criterion has been incorporated into the detector layout optimization as a constraint. • Results show that the optimized detector layout is more robust with respect to its vulnerability to a single detector failure. • An early rejection scheme has been introduced to speed-up the optimization process. - Abstract: In CANDU{sup ®} reactors, the regional overpower protection (ROP) systems are designed to protect the reactor against overpower in the fuel which could reduce the safety margin-to-dryout. In the CANDU{sup ®} 600 MW (CANDU 6) design, there are two ROP systems in the core, each of which is connected to a fast-acting shutdown system. Each ROP system consists of a number of fast-responding, self-powered flux detectors suitably distributed throughout the core within vertical and horizontal flux detector assemblies. The placement of these ROP detectors is a challenging discrete optimization problem. In the past few years, two algorithms, DETPLASA and ADORE, have been developed to optimize the detector layout for the ROP systems in CANDU reactors. These algorithms utilize the simulated annealing (SA) technique to optimize the placement of the detectors in the core. The objective of the optimization process is typically either to maximize the TSP value for a given number of detectors in the system or to minimize the number of detectors in the system to obtain a target TSP value. One measure to determine the robustness of the optimized detector layout is to evaluate the maximum decrease (penalty) in TSP value when any single detector in the system fails. The smaller the penalty, the more robust the design is. Therefore, in order to ensure that the optimized detector layout is robust, the single detector failure (SDF) criterion has been incorporated as an additional constraint into the ADORE algorithm. Results from this study indicate that there

  8. Design of Current Mode Wide-band Semicondutor Detector for Reactor Fast Neutron Fluence Rate Measurement%测量反应堆快中子注量率的电流型宽禁带半导体探测器设计

    Institute of Scientific and Technical Information of China (English)

    苏春磊; 欧阳晓平; 李达; 刘洋; 宋晓靓; 余小任; 欧阳潇

    2014-01-01

    为解决强流混合场快中子注量率实时测量的难题,本文基于反冲质子法,以耐辐照性能强、噪声低的半绝缘型(SI)GaN半导体材料为基础,采用带石墨平衡体及聚乙烯转换靶的并联结构,设计补偿式电流型探测器的方案,有效地降低了γ射线灵敏度。利用该探测器测量了西安脉冲堆1#径向孔道内混合场的快中子注量率,其结果与已有测量结果符合较好,验证了该方案的可行性。%In order to solve the problem of fast neutron fluence rate real‐time measure‐ment in intense neutron‐gamma mixed field ,a new neutron fluence rate measurement scheme based on recoil proton method and semi‐insulating (SI) GaN detector was pro‐posed .The compensation current parallel structure with graphite balancer and polyethy‐ene converting target for fast neutron fluence rate detection ,w hich effectively reduced the interference of γ ray and improved detection sensitivity of neutron radiation ,was used in this scheme .This fast neutron fluence rate measurement scheme was implemen‐ted in the mixed field of Xi’an Pulsed Reactor 1# radial channel ,and the results show consistency with previous measurement results and the validity of the scheme .

  9. Superconducting High Resolution Fast-Neutron Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hau, Ionel Dragos [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  10. The ATLAS Fast Monte Carlo Production Chain Project

    CERN Document Server

    Jansky, Roland Wolfgang; The ATLAS collaboration

    2015-01-01

    During the last years ATLAS has successfully deployed a new integrated simulation framework (ISF) which allows a flexible mixture of full and fast detector simulation techniques within the processing of one event. The thereby achieved possible speed-up in detector simulation of up to a factor 100 makes subsequent digitization and reconstruction the dominant contributions to the Monte Carlo (MC) production CPU cost. The slowest components of both digitization and reconstruction are inside the Inner Detector due to the complex signal modeling needed in the emulation of the detector readout and in reconstruction due to the combinatorial nature of the problem to solve, respectively. Alternative fast approaches have been developed for these components: for the silicon based detectors a simpler geometrical clustering approach has been deployed replacing the charge drift emulation in the standard digitization modules, which achieves a very high accuracy in describing the standard output. For the Inner Detector track...

  11. The New ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Heath, Matthew Peter; The ATLAS collaboration

    2017-01-01

    Producing the large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing the CPU requirements when detailed detector simulations are not needed. During Run-1 of the LHC, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitisation and reconstruction software, and it can be tuned to data more easily than Geant4. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim aims to overcome some limitations of the first version by improving the description of...

  12. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Hasib, Ahmed; The ATLAS collaboration

    2017-01-01

    Producing the very large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing CPU requirements when detailed detector simulations are not needed. During the LHC Run-1, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and it can be tuned to data more easily than GEANT4. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim makes use of statistical techniques such as principal component analysis, and a neural n...

  13. Hybrid Superconducting Neutron Detectors

    CERN Document Server

    Merlo, V; Cirillo, M; Lucci, M; Ottaviani, I; Scherillo, A; Celentano, G; Pietropaolo, A

    2014-01-01

    A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $\\rightarrow$ $\\alpha$+ 7Li , with $\\alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the supercond...

  14. In-beam fast-timing measurements in 103,105,107Cd

    CERN Document Server

    Kisyov, S; Marginean, N; Bucurescu, D; Atanasova, L; Balabanski, D L; Cata-Danil, Gh; Cata-Danil, I; Daugas, J -M; Deleanu, D; Detistov, P; Filipescu, D; Georgiev, G; Ghita, D; Glodariu, T; Jolie, J; Judson, D S; Lozeva, R; Marginean, R; Mihai, C; Negret, A; Pascu, S; Radulov, D; Regis, J -M; Rudigier, M; Sava, T; Stroe, L; Suliman, G; Zamfir, N V; Zell, K O; Zhekova, M

    2011-01-01

    Fast-timing measurements were performed recently in the region of the medium-mass 103,105,107Cd isotopes, produced in fusion evaporation reactions. Emitted gamma-rays were detected by eight HPGe and five LaBr3:Ce detectors working in coincidence. Results on new and re-evaluated half-lives are discussed within a systematic of transition rates. The $7/2_1^+$ states in 103,105,107Cd are interpreted as arising from a single-particle excitation. The half-life analysis of the $11/2_1^-$ states in 103,105,107Cd shows no change in the single-particle transition strength as a function of the neutron number.

  15. On recall rate of interest point detectors

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Lindbjerg Dahl, Anders; Pedersen, Kim Steenstrup

    2010-01-01

    In this paper we provide a method for evaluating interest point detectors independently of image descriptors. This is possible because we have compiled a unique data set enabling us to determine if common interest points are found. The data contains 60 scenes of a wide range of object types......, and for each scene we have 119 precisely located camera positions obtained from a camera mounted on an industrial robot arm. The scene surfaces have been scanned using structured light, providing precise 3D ground truth. We have investigated a number of the most popular interest point detectors where we...... systematically have varied camera position, light and model parameters. The overall conclusion is that the Harris and Hessian corner detectors perform well followed by MSER, whereas the FAST corner detector, IBR and EBR performs poorly. Furthermore, only the number of interest points change with changing...

  16. A mower detector to judge soil sorting

    Energy Technology Data Exchange (ETDEWEB)

    Bramlitt, E.T.; Johnson, N.R. [Thermo Nuclear Services, Inc., Albuquerque, NM (United States)

    1995-12-31

    Thermo Nuclear Services (TNS) has developed a mower detector as an inexpensive and fast means for deciding potential value of soil sorting for cleanup. It is a shielded detector box on wheels pushed over the ground (as a person mows grass) at 30 ft/min with gamma-ray counts recorded every 0.25 sec. It mirror images detection by the TNS transportable sorter system which conveys soil at 30 ft/min and toggles a gate to send soil on separate paths based on counts. The mower detector shows if contamination is variable and suitable for sorting, and by unique calibration sources, it indicates detection sensitivity. The mower detector has been used to characterize some soil at Department of Energy sites in New Jersey and South Carolina.

  17. Semiconductor High-Energy Radiation Scintillation Detector

    CERN Document Server

    Kastalsky, A; Spivak, B

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation produces electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. The most important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombi...

  18. The CPLEAR particle identification detector

    Energy Technology Data Exchange (ETDEWEB)

    Angelopoulos, A.; Apostolakis, A.; Rozaki, E.; Sakeliou, L. (Univ. Athens (Greece)); Backenstoss, G.; Kuzminski, J.; Rickenbach, R.; Wildi, M. (Univ. Basel (Switzerland)); Carlson, P.; Francis, D.; Jansson, K.; Jon-And, K.; Kerek, A.; Szilagyi, S. (Manne Siegbahn Inst. Stockholm (Sweden)); Carvalho, J.; Cobbaert, H.; Ferreira-Marques, R.; Machado, E.; Onofre, A.; Pinto da Cunha, J.; Policarpo, A. (Univ. Coimbra, LIP (Portugal) Technical Univ., Delft (Netherlands)); Charalambous, S.; Chardalas, M.; Dedoussis, S.; Touramanis, C. (Univ. Thessaloniki (Greece)); Fassnacht, P.; Pelucchi, F. (CPPM, Marseille (France) CSNSM, Orsay (France) P. Scherrer Inst., Villingen (Switzerland) DPhPe, CEN-Saclay, 91 - Gif-sur-Yvette (France)); Fetcher, W.; Gerber, H.J. (Inst. fuer Mittelenergiephysik, ETH Villingen (Switzerland)); Fuglesang, C.; Kesseler, G.; Montanet, F. (CERN, Geneva (Switzerland)); Go, A.; Lawry, T.; Miller, J.; Roberts, B.L.; Varner, G.; Warner, D.; Zimmerman, D. (Univ. Boston,; CPLEAR Collaboration

    1992-01-01

    The CPLEAR experiment will measure CP violation parameters in the neutral kaon system, using a low energy antiproton beam from the Low Energy Antiproton Ring (LEAR) at CERN. One of its subdetectors, the Particle Identification Detector (PID), makes a fast separation of pions and kaons, which is essential for the experiment. This article describes the design of the PID and its performance during beam tests and during initial runs at LEAR. A pion rejection efficiency of 99.7% for the first level trigger (after 60 ns) is found in the relevant momentum region. (orig.).

  19. A less sensitive detector does not necessarily result in a less sensitive method: fast quantification of 13 antiretroviral analytes in plasma with liquid chromatography coupled with tandem mass spectrometry.

    Science.gov (United States)

    Ter Heine, Rob; Rosing, Hilde; Beijnen, Jos H; Huitema, Alwin D R

    2010-08-01

    We previously developed a method for the simultaneous determination of the human immunodeficiency protease inhibitors: amprenavir, atazanavir, darunavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir and tipranavir, the active nelfinavir metabolite M8 the non-nucleoside reverse transcriptase inhibitors efavirenz, nevirapine and etravirine and the internal standards dibenzepine, (13)C(6)-efavirenz, D5-saquinavir and D6-indinavir in plasma using liquid chromatography coupled with tandem mass spectrometry with a Sciex API3000 triple quadrupole mass spectrometer and an analytical run time of only 10 min. We report the transfer of this method from the API3000 to a supposedly less sensitive Sciex API365 mass spectrometer. We describe the steps that were undertaken to optimize the sensitivity and validation of the method that we transferred. We showed that transfer of a method to a putative less sensitive detector did not necessarily result in a less sensitive assay, and this method can be applied in laboratories where older mass spectrometers are available. Ultimately, the performance of the method was validated. Accuracy and precision was within 87%-110% and <13%, respectively. No notable loss in selectivity was observed.

  20. The Discovery of Extrasolar Planets via Transits

    Science.gov (United States)

    Dunham, Edward W.; Borucki, W. J.; Jenkins, J. M.; Batalha, N. M.; Caldwell, D. A.; Mandushev, G.

    2014-01-01

    The goal of detecting extrasolar planets has been part of human thought for many centuries and several plausible approaches for detecting them have been discussed for many decades. At this point in history the two most successful approaches have been the reflex radial velocity and transit approaches. These each have the additional merit of corroborating a discovery by the other approach, at least in some cases, thereby producing very convincing detections of objects that can't be seen. In the transit detection realm the key enabling technical factors were development of: - high quality large area electronic detectors - practical fast optics with wide fields of view - automated telescope systems - analysis algorithms to correct for inadequacies in the instrumentation - computing capability sufficient to cope with all of this This part of the equation is relatively straightforward. The more important part is subliminal, namely what went on in the minds of the proponents and detractors of the transit approach as events unfolded. Three major paradigm shifts had to happen. First, we had to come to understand that not all solar systems look like ours. The motivating effect of the hot Jupiter class of planet was profound. Second, the fact that CCD detectors can be much more stable than anybody imagined had to be understood. Finally, the ability of analysis methods to correct the data sufficiently well for the differential photometry task at hand had to be understood by proponents and detractors alike. The problem of capturing this changing mind-set in a collection of artifacts is a difficult one but is essential for a proper presentation of this bit of history.

  1. GRIFFIN's Fast-Timing Array

    Science.gov (United States)

    Olaizola, Bruno; Griffin Collaboration

    2016-09-01

    The Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei (GRIFFIN) is the new β-decay spectrometer facility at TRIUMF-ISAC. Consists of an array of 16 large-volume HPGe clover detectors with an unparalleled efficiency of 19% at 1.33 MeV. Its strongest advantage is the versatility of the ancillary detectors that can be coupled to the main array to tag on β particles, neutrons or precisely measure conversion electron spectra. An ancillary array of 8 LaBr3(Ce) detectors for γ-rays and a fast plastic scintillator for β-particles has been optimized for fast-timing experiments with GRIFFIN. The 51 mm x 51 mm cylindrical LaBr3(Ce) crystals are coupled to Hamamatsu R2083 photomultipliers. Timing resolutions as good as FWHM 200 ps and time-walks below +/- 30 ps have been obtained for individual crystals using analog electronics. There is also an ongoing project to develop an active BGO shield for the LaBr3(Ce) crystals. The LaBr3(Ce) array commissioning experiment to measure the 145,146Cs decay to 145,146Ba will test its capabilities over a wide range of lifetimes. Preliminary results on the lifetimes of some of the low-laying states will be presented.

  2. RADIOXENON MEASUREMENTS WITH THE PHOSWATCH DETECTOR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Wolfgang; Warburton, William K.; Fallu-Labruyere, A.; Sabourov, K.; Cooper, Matthew W.; McIntyre, Justin I.; Gleyzer, A.; Bean, Marc; Korpach, E.; Ungar, R. Kurt; Zhang, W.; Mekarski, P.; Ward, Rebecca; Biegalski, S.; Haas, Derek A.

    2009-09-22

    Many of the radioxenon detector systems used in the International Monitoring System and in other applications employ beta/gamma coincidence detection to achieve high sensitivity. In these systems, the coincidence detection is implemented by requiring simultaneous signals from separate beta and gamma detectors. While very sensitive to small amounts of radioxenon, this approach requires careful calibration and gain matching of several detectors and photomultiplier tubes. An alternative approach is the use of a phoswich detector in which beta-gamma coincidences are detected by pulse shape analysis. The phoswich requires only a single photomultiplier tube and thus is easier to set up and calibrate, and can be assembled into a more compact and robust system. In the past, we have developed a COTS detector system, named PhosWatch, which consists of a CsI(Tl)/BC-404 phoswich detector, digital readout electronics, and on-board software to perform the pulse shape analysis. Several units of this system have been manufactured and are now evaluated at several radioxenon research laboratories. In this paper, we will report results from production tests and some of the evaluations, including a side-by-side comparison of a SAUNA detector and a PhosWatch system using atmospheric radioxenon samples. In addition, we will show initial results obtained with a higher speed version of the readout electronics, digitizing at 500 MHz and thus able to better resolve the fast pulses from the BC-404.

  3. Weizmann Fast Astronomical Survey Telescope (WFAST)

    Science.gov (United States)

    Nir, Guy; Ofek, Eran Oded; Ben-Ami, Sagi; Manulis, Ilan; Gal-Yam, Avishay; Diner, Oz; Rappaport, Michael

    2017-01-01

    The Weizmann Fast Astronomical Survey Telescope (W-FAST) is an experiment designed to explore variability on sub-second time scales. When completed it will consist of two robotic 55-cm f/2 Schmidt telescopes. The optics is capable of providing $\\sim0.5$" image quality over 23 deg$^2$. The focal plane will be equipped with fast readout, low read-noise sCMOS detectors. The first generation focal plane is expected to have 6.2 deg$^2$ field of view. WFAST is designed to study occultations by solar system objects (KBOs and Oort cloud objects), short time scale stellar variability, and high resolution imaging via proper coaddition.

  4. Spin transition in [Fe

    Science.gov (United States)

    Garcia, Y.; Ksenofontov, V.; Campbell, S. J.; Lord, J. S.; Boland, Y.; Gütlich, P.

    2004-12-01

    The reversible thermal spin transition which occurs in [Fe(phen)2(NCS)2] around T1/2 177 K has been investigated by muon spin relaxation (μSR) (10-280 K). The depolarisation curves are well described by two Lorentzian lines represent fast and slow components in the decay curves, with the initial asymmetry parameter of the fast component found to track the spin transition in [Fe(phen)2(NCS)2]. Comparison of zero-field and transverse field (20 Oe) μSR measurements shows that diamagnetic muonic species occur over the entire temperature range.

  5. Spatial response characterization of He-4 scintillation detectors

    Science.gov (United States)

    Kelley, Ryan P.; Steinberg, Noah; Murer, David; Ray, Heather; Jordan, Kelly A.

    2015-09-01

    The spatial response of pressurized helium-4 fast neutron scintillation detectors is characterized using collimated neutron source measurements and MCNPX-PoliMi simulations. A method for localizing the position of each detected event is also demonstrated using the two-sided photomultiplier readout. Results show that the position of particle interaction along the axis of the active volume has a measurable effect on the scintillation light response of the detector. An algorithm is presented that uses the probability distribution of relative interaction positions to perform source localization, further demonstrating the applicability of these detectors as tools for the detector of hidden shielded nuclear material.

  6. Vertex-Detector R&D for CLIC

    CERN Document Server

    Dannheim, D

    2014-01-01

    A detector concept based on hybrid pixel-detector technology is under development for the CLIC vertex detector. It comprises fast, low-power and small-pitch readout ASICs implemented in 65 nm CMOS technology (CLICpix) coupled to ultra-thin sensors (planar or active HV-CMOS) via low-mass interconnects. The power dissipation of the readout chips is reduced by means of power pulsing, allowing for a cooling system based on forced air flow. In this contribution the CLIC vertex-detector requirements are reviewed and the current status of R&D on readout and sensors is presented.

  7. Ultra-fast timing with plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Hoischen, Robert [Department of Physics, Lund University, S-22100 Lund (Sweden); Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Pietri, Stephane; Prokopowicz, Wawrzyniec; Schaffner, Henning; Gerl, Juergen; Wollersheim, Hans Juergen; Kurz, Nikolaus [Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Rudolph, Dirk [Department of Physics, Lund University, S-22100 Lund (Sweden)

    2009-07-01

    Fast timing detectors for time-of-flight measurements are essential identification tools for isotopes studied at fragment separators at major heavy-ion research facilities. While today's standard technique of utilizing a plastic scintillator read out by few photomultiplier tubes proofs to be efficient, it does not provide the required time resolution for future key experiments at, for example, the Super-FRS at FAIR. A common present-day approach is to use diamond detectors instead. While they do provide a better time resolution compared to scintillators, they are more difficult to use and far more expensive. Results from tests using a new design approach with standard materials will be presented. This leads to a much improved performance, but remains both cost-efficient, compact, and reliable. The design goals and how to accomplish them will be exemplified by the LYCCA (Lund-York-Cologne CAlorimeter) detector aiming for fast-beam experiments at HISPEC within NUSTAR.

  8. The MINOS Detectors

    CERN Document Server

    Grashorn, A H E W

    2005-01-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment's primary goal is the precision measurement of the neutrino oscillation parameters in the atmospheric neutrino sector. This long-baseline experiment uses Fermilab's NuMI beam, measured with a Near Detector at Fermilab, and again 735 km later using a Far Detector in the Soudan Mine Underground Lab in northern Minnesota. The detectors are magnetized iron/scintillator calorimeters. The Far Detector has been operational for cosmic ray and atmospheric neutrino data from July of 2003, the Near Detector from September 2004, and the NuMI beam started in early 2005. This poster presents details of the two detectors.

  9. GADRAS Detector Response Function.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  10. The TALE Tower Detector

    Science.gov (United States)

    Bergman, D. R.

    The TA Low Energy Extension will include a Tower FluorescenceDetector. Extensive air showers at the lowest usful energies for fluorescence detectors will in general be close to the detector. This requires viewing all elevation angles to be able to reconstruct showers. The TALE Tower Detector, operating in conjunction with other TALE detectors will view elevation angles up to above 70 degrees, with an azimuthal coverage of about 90 degrees. Results from a prototype mirror operated in conjunction with the HiRes detector will also be presented.

  11. Detector performance of the ALICE silicon pixel detector

    CERN Document Server

    Cavicchioli, C

    2011-01-01

    The ALICE Silicon Pixel Detector (SPD) forms the two innermost layers of the ALICE Inner Tracking System (ITS). It consists of two barrel layers of hybrid silicon pixel detectors at radii of 39 and 76 mm. The physics targets of the ALICE experiment require that the material budget of the SPD is kept within approximate to 1\\%X(0) per layer. This has set some stringent constraints on the design and construction of the SPD. A unique feature of the ALICE SPD is that it is capable of providing a prompt trigger signal, called Fast-OR, which contributes to the L0 trigger decision. The pixel trigger system allows to apply a set of algorithms for the trigger selection, and its output is sent to the Central Trigger Processor (CTP). The detector has been installed in the experiment in summer 2007. During the first injection tests in June 2008 the SPD was able to record the very first sign of life of the LHC by registering secondary particles from the beam dumped upstream the ALICE experiment. In the following months the...

  12. Upgrading the ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Hubacek, Zdenek; The ATLAS collaboration

    2016-01-01

    Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full GEANT4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time by a few orders of magnitude. In ATLAS, a fast simulation of the calorimeter systems was developed, called Fast Calorimeter Simulation (FastCaloSim). It provides a parametrized simulation of the particle energy response at the calorimeter read-out cell level. It is interfaced to the standard ATLAS digitization and reconstruction software, and can be tuned to data more easily than with GEANT4. The original version of FastCaloSim has been very important in the LHC Run-1, with several billion events simulated. An improved parametrisation is being developed, to eventually address shortcomings of the original version. It incorporates developme...

  13. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Dias, Flavia; The ATLAS collaboration

    2016-01-01

    A very large number of simulated events is required for physics and performance studies with the ATLAS detector at the Large Hadron Collider. Producing these with the full GEANT4 detector simulation is highly CPU intensive. As a very detailed detector simulation is not always required, fast simulation tools have been developed to reduce the calorimeter simulation time by a few orders of magnitude. The fast simulation of ATLAS for the calorimeter systems used in Run 1, called Fast Calorimeter Simulation (FastCaloSim), provides a parameterized simulation of the particle energy response at the calorimeter read-out cell level. It is then interfaced to the ATLAS digitization and reconstruction software. In Run 1, about 13 billion events were simulated in ATLAS, out of which 50% were produced using fast simulation. For Run 2, a new parameterisation is being developed to improve the original version: It incorporates developments in geometry and physics lists of the last five years and benefits from knowledge acquire...

  14. ... ALICE forges ahead with further detectors

    CERN Multimedia

    2006-01-01

    Following the installation of the HMPID, the project has progressed swiftly with further detectors being lowered into the ALICE cavern. The first supermodule of the ALICE transition radiation detector was successfully installed on 10 October. The TRD collaborators from Germany standing next to the supermodule mounted in a rotating frame (bottom left corner) in the ALICE cavern. In the final configuration, 18 supermodules that make up the transition radiation detector will cylindrically surround the large time projection chamber in the central barrel of the ALICE experiment. Each supermodule is about 7 metre long and consists of 30 drift chambers in six layers. The construction of the modules is a collaboration between five institutes in Germany (Universities of Frankfurt and Heidelberg and Gesellschaft fuer Schwerionenforschung mbH in Darmstadt), Romania (NIPNE Bucharest) and Russia (JINR Dubna) with radiators (See 'Did you know?' section) produced at the University of Muenster, Germany. During the summer, ...

  15. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I.; Martinez laso, L.

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  16. Forward instrumentation for ILC detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, Halina [Tel Aviv Univ. (Israel); Abusleme, Angel [Stanford Univ., CA (United States); Afanaciev, Konstantin [NCPHEP, Minsk (BY)] (and others)

    2010-09-15

    Two special calorimeters are foreseen for the instrumentation of the very forward region of the ILC detector, a luminometer designed to measure the rate of low angle Bhabha scattering events with a precision better than 10{sup -3} and a low polar angle calorimeter, adjacent to the beam-pipe. The latter will be hit by a large amount of beamstrahlung remnants. The amount and shape of these depositions will allow a fast luminosity estimate and the determination of beam parameters. The sensors of this calorimeter must be radiation hard. Both devices will improve the hermeticity of the detector in the search for new particles. Finely segmented and very compact calorimeters will match the requirements. Due to the high occupancy fast front-end electronics is needed. The design of the calorimeters developed and optimised with Monte Carlo simulations is presented. Sensors and readout electronics ASICs have been designed and prototypes are available. Results on the performance of these major components are summarised. (orig.)

  17. Diagnostic of fusion neutrons on JET tokamak using diamond detector

    Science.gov (United States)

    Nemtsev, G.; Amosov, V.; Marchenko, N.; Meshchaninov, S.; Rodionov, R.; Popovichev, S.; JET EFDA contributors

    2014-08-01

    In 2011-2012, an experimental campaign with a significant yield of fusion neutrons was carried out on the JET tokamak. During this campaign the facility was equipped with two diamond detectors based on natural and artificial CVD diamond. These detectors were designed and manufactured in State Research Center of Russian Federation TRINITI. The detectors measure the flux of fast neutrons with energies above 0.2 MeV. They have been installed in the torus hall and the distance from the center of plasma was about 3 m. For some of the JET pulses in this experiment, the neutron flux density corresponded to the operational conditions in collimator channels of ITER Vertical Neutron Camera. The main objective of diamond monitors was the measurement of total fast neutron flux at the detector location and the estimation of the JET total neutron yield. The detectors operate as threshold counters. Additionally a spectrometric measurement channel has been configured that allowed us to distinguish various energy components of the neutron spectrum. In this paper we describe the neutron signal measuring and calibration procedure of the diamond detector. Fluxes of DD and DT neutrons at the detector location were measured. It is shown that the signals of total neutron yield measured by the diamond detector correlate with signals measured by the main JET neutron diagnostic based on fission chambers with high accuracy. This experiment can be considered as a successful test of diamond detectors in ITER-like conditions.

  18. A Detector for Cosmic Microwave Background Polarimetry

    Science.gov (United States)

    Wollack, E.; Cao, N.; Chuss, D.; Hsieh, W.-T.; Moseley, S. Harvey; Stevenson, T.; U-yen, K.

    2008-01-01

    We present preliminary design and development work on polarized detectors intended to enable Cosmic Microwave Background polarization measurements that will probe the first moments of the universe. The ultimate measurement will be challenging, requiring background-limited detectors and good control of systematic errors. Toward this end, we are integrating the beam control of HE-11 feedhorns with the sensitivity of transition-edge sensors. The coupling between these two devices is achieved via waveguide probe antennas and superconducting microstrip lines. This implementation allows band-pass filters to be incorporated on the detector chip. We believe that a large collection of single-mode polarized detectors will eventually be required for the reliable detection of the weak polarized signature that is expected to result from gravitational waves produced by cosmic inflation. This focal plane prototype is an important step along the path to this detection, resulting in a capability that will enable various future high performance instrument concepts.

  19. A Detector for Cosmic Microwave Background Polarimetry

    Science.gov (United States)

    Wollack, E.; Cao, N.; Chuss, D.; Hsieh, W.-T.; Moseley, S. Harvey; Stevenson, T.; U-yen, K.

    2008-01-01

    We present preliminary design and development work on polarized detectors intended to enable Cosmic Microwave Background polarization measurements that will probe the first moments of the universe. The ultimate measurement will be challenging, requiring background-limited detectors and good control of systematic errors. Toward this end, we are integrating the beam control of HE-11 feedhorns with the sensitivity of transition-edge sensors. The coupling between these two devices is achieved via waveguide probe antennas and superconducting microstrip lines. This implementation allows band-pass filters to be incorporated on the detector chip. We believe that a large collection of single-mode polarized detectors will eventually be required for the reliable detection of the weak polarized signature that is expected to result from gravitational waves produced by cosmic inflation. This focal plane prototype is an important step along the path to this detection, resulting in a capability that will enable various future high performance instrument concepts.

  20. Thermal kinetic inductance detector

    Energy Technology Data Exchange (ETDEWEB)

    Cecil, Thomas; Gades, Lisa; Miceli, Antonio; Quaranta, Orlando

    2016-12-20

    A microcalorimeter for radiation detection that uses superconducting kinetic inductance resonators as the thermometers. The detector is frequency-multiplexed which enables detector systems with a large number of pixels.