WorldWideScience

Sample records for fast spike activation

  1. Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons.

    Directory of Open Access Journals (Sweden)

    Richard Andersson

    Full Text Available BACKGROUND: Gamma oscillations are electric activity patterns of the mammalian brain hypothesized to serve attention, sensory perception, working memory and memory encoding. They are disrupted or altered in schizophrenic patients with associated cognitive deficits, which persist in spite of treatment with antipsychotics. Because cognitive symptoms are a core feature of schizophrenia it is relevant to explore signaling pathways that potentially regulate gamma oscillations. Dopamine has been reported to decrease gamma oscillation power via D1-like receptors. Based on the expression pattern of D4 receptors (D4R in hippocampus, and pharmacological effects of D4R ligands in animals, we hypothesize that they are in a position to regulate gamma oscillations as well. METHODOLOGY/PRINCIPAL FINDINGS: To address this hypothesis we use rat hippocampal slices and kainate-induced gamma oscillations. Local field potential recordings as well as intracellular recordings of pyramidal cells, fast-spiking and non-fast-spiking interneurons were carried out. We show that D4R activation with the selective ligand PD168077 increases gamma oscillation power, which can be blocked by the D4R-specific antagonist L745,870 as well as by the antipsychotic drug Clozapine. Pyramidal cells did not exhibit changes in excitatory or inhibitory synaptic current amplitudes, but inhibitory currents became more coherent with the oscillations after application of PD168077. Fast-spiking, but not non-fast spiking, interneurons, increase their action potential phase-coupling and coherence with regard to ongoing gamma oscillations in response to D4R activation. Among several possible mechanisms we found that the NMDA receptor antagonist AP5 also blocks the D4R mediated increase in gamma oscillation power. CONCLUSIONS/SIGNIFICANCE: We conclude that D4R activation affects fast-spiking interneuron synchronization and thereby increases gamma power by an NMDA receptor-dependent mechanism. This

  2. The sodium channel activator Lu AE98134 normalizes the altered firing properties of fast spiking interneurons in Dlx5/6+/- mice

    DEFF Research Database (Denmark)

    von Schoubye, Nadia Lybøl; Frederiksen, Kristen; Kristiansen, Uffe

    2018-01-01

    Mental disorders such as schizophrenia are associated with impaired firing properties of fast spiking inhibitory interneurons (FSINs) causing reduced task-evoked gamma-oscillation in prefrontal cortex. The voltage-gated sodium channel NaV1.1 is highly expressed in PV-positive interneurons, but only...... facilitated the sodium current mediated by NaV1.1 expressed in HEK cells by shifting its activation to more negative values, decreasing its inactivation kinetics and promoting a persistent inward current. In a slice preparation from the brain of adult mice, Lu AE98134 promoted the excitability of fast spiking...... interneurons by decreasing the threshold for action potentials. We then tested if Lu AE98134 could normalize the altered firing properties of FSINs in Dlx5/6+/- mutant mice. FSINs of this model for schizophrenia are characterized by broader action potentials and higher spike threshold. We found...

  3. Differential Activation of Fast-Spiking and Regular-Firing Neuron Populations During Movement and Reward in the Dorsal Medial Frontal Cortex

    Science.gov (United States)

    Insel, Nathan; Barnes, Carol A.

    2015-01-01

    The medial prefrontal cortex is thought to be important for guiding behavior according to an animal's expectations. Efforts to decode the region have focused not only on the question of what information it computes, but also how distinct circuit components become engaged during behavior. We find that the activity of regular-firing, putative projection neurons contains rich information about behavioral context and firing fields cluster around reward sites, while activity among putative inhibitory and fast-spiking neurons is most associated with movement and accompanying sensory stimulation. These dissociations were observed even between adjacent neurons with apparently reciprocal, inhibitory–excitatory connections. A smaller population of projection neurons with burst-firing patterns did not show clustered firing fields around rewards; these neurons, although heterogeneous, were generally less selective for behavioral context than regular-firing cells. The data suggest a network that tracks an animal's behavioral situation while, at the same time, regulating excitation levels to emphasize high valued positions. In this scenario, the function of fast-spiking inhibitory neurons is to constrain network output relative to incoming sensory flow. This scheme could serve as a bridge between abstract sensorimotor information and single-dimensional codes for value, providing a neural framework to generate expectations from behavioral state. PMID:24700585

  4. A Model of Fast Hebbian Spike Latency Normalization

    Directory of Open Access Journals (Sweden)

    Hafsteinn Einarsson

    2017-05-01

    Full Text Available Hebbian changes of excitatory synapses are driven by and enhance correlations between pre- and postsynaptic neuronal activations, forming a positive feedback loop that can lead to instability in simulated neural networks. Because Hebbian learning may occur on time scales of seconds to minutes, it is conjectured that some form of fast stabilization of neural firing is necessary to avoid runaway of excitation, but both the theoretical underpinning and the biological implementation for such homeostatic mechanism are to be fully investigated. Supported by analytical and computational arguments, we show that a Hebbian spike-timing-dependent metaplasticity rule, accounts for inherently-stable, quick tuning of the total input weight of a single neuron in the general scenario of asynchronous neural firing characterized by UP and DOWN states of activity.

  5. Delayed Maturation of Fast-Spiking Interneurons Is Rectified by Activation of the TrkB Receptor in the Mouse Model of Fragile X Syndrome.

    Science.gov (United States)

    Nomura, Toshihiro; Musial, Timothy F; Marshall, John J; Zhu, Yiwen; Remmers, Christine L; Xu, Jian; Nicholson, Daniel A; Contractor, Anis

    2017-11-22

    Fragile X syndrome (FXS) is a neurodevelopmental disorder that is a leading cause of inherited intellectual disability, and the most common known cause of autism spectrum disorder. FXS is broadly characterized by sensory hypersensitivity and several developmental alterations in synaptic and circuit function have been uncovered in the sensory cortex of the mouse model of FXS ( Fmr1 KO). GABA-mediated neurotransmission and fast-spiking (FS) GABAergic interneurons are central to cortical circuit development in the neonate. Here we demonstrate that there is a delay in the maturation of the intrinsic properties of FS interneurons in the sensory cortex, and a deficit in the formation of excitatory synaptic inputs on to these neurons in neonatal Fmr1 KO mice. Both these delays in neuronal and synaptic maturation were rectified by chronic administration of a TrkB receptor agonist. These results demonstrate that the maturation of the GABAergic circuit in the sensory cortex is altered during a critical developmental period due in part to a perturbation in BDNF-TrkB signaling, and could contribute to the alterations in cortical development underlying the sensory pathophysiology of FXS. SIGNIFICANCE STATEMENT Fragile X (FXS) individuals have a range of sensory related phenotypes, and there is growing evidence of alterations in neuronal circuits in the sensory cortex of the mouse model of FXS ( Fmr1 KO). GABAergic interneurons are central to the correct formation of circuits during cortical critical periods. Here we demonstrate a delay in the maturation of the properties and synaptic connectivity of interneurons in Fmr1 KO mice during a critical period of cortical development. The delays both in cellular and synaptic maturation were rectified by administration of a TrkB receptor agonist, suggesting reduced BDNF-TrkB signaling as a contributing factor. These results provide evidence that the function of fast-spiking interneurons is disrupted due to a deficiency in neurotrophin

  6. Fast convergence of spike sequences to periodic patterns in recurrent networks

    International Nuclear Information System (INIS)

    Jin, Dezhe Z.

    2002-01-01

    The dynamical attractors are thought to underlie many biological functions of recurrent neural networks. Here we show that stable periodic spike sequences with precise timings are the attractors of the spiking dynamics of recurrent neural networks with global inhibition. Almost all spike sequences converge within a finite number of transient spikes to these attractors. The convergence is fast, especially when the global inhibition is strong. These results support the possibility that precise spatiotemporal sequences of spikes are useful for information encoding and processing in biological neural networks

  7. Striatal fast-spiking interneurons selectively modulate circuit output and are required for habitual behavior.

    Science.gov (United States)

    O'Hare, Justin K; Li, Haofang; Kim, Namsoo; Gaidis, Erin; Ade, Kristen; Beck, Jeff; Yin, Henry; Calakos, Nicole

    2017-09-05

    Habit formation is a behavioral adaptation that automates routine actions. Habitual behavior correlates with broad reconfigurations of dorsolateral striatal (DLS) circuit properties that increase gain and shift pathway timing. The mechanism(s) for these circuit adaptations are unknown and could be responsible for habitual behavior. Here we find that a single class of interneuron, fast-spiking interneurons (FSIs), modulates all of these habit-predictive properties. Consistent with a role in habits, FSIs are more excitable in habitual mice compared to goal-directed and acute chemogenetic inhibition of FSIs in DLS prevents the expression of habitual lever pressing. In vivo recordings further reveal a previously unappreciated selective modulation of SPNs based on their firing patterns; FSIs inhibit most SPNs but paradoxically promote the activity of a subset displaying high fractions of gamma-frequency spiking. These results establish a microcircuit mechanism for habits and provide a new example of how interneurons mediate experience-dependent behavior.

  8. Relationship of Sphincter of Oddi Spike Bursts to Gastrointestinal Myoelectric Activity in Conscious Opossums

    Science.gov (United States)

    Honda, Ryuichi; Toouli, James; Dodds, Wylie J.; Sarna, Sushil; Hogan, Walter J.; Itoh, Zen

    1982-01-01

    The oppossum sphincter of Oddi (SO) exhibits peristaltic spike bursts with accompanying contraction waves that originate proximally in the sphincter of Oddi and propagate toward the duodenum. In this study we recorded myoelectrical activity of the opossum SO and upper gastrointestinal tract in six conscious animals using chronically implanted electrodes. Biopolar electrodes were implanted in the gastric antrum, duodenum, SO segment, jejunum, and ileum. During fasting the frequency of SO spike bursts, scored as number per minute, showed a cyclic pattern consisting of four phases (A to D). Phase A had a low spike burst frequency of ∼2/min that lasted ∼20 min. In phase B, the spike burst frequency increased progressively during a 40-45 min interval culminating in a short interval of phase C activity characterized by a maximal spike burst frequency of ∼5/min. During phase D, the spike bursts decreased over 15 min to merge with the low frequency of phase A and the cycle repeated. Cycle length of the interdigestive SO cycle, 87±11 SD min, was virtually identical with that of the interdigestive migrating myoelectric complex (MMC) of the upper gastrointestinal tract. The onset of phase C activity in the SO began 1-2 min before phase III of the MMC activity in the duodenum. Feeding abolished the cyclic pattern of spike burst activity in the SO as well as in the upper gastrointestinal tract. After feeding the SO spike bursts occurred at a frequency of 5-6/min for at least 3 h. We conclude that: (a) During fasting, the oppossum SO exhibits cyclic changes in its spike burst frequency; (b) Maximal spike burst frequency of the SO occurs virtually concurrent with passage of phase III MMC activity through the duodenum and; (c) Feeding abolishes the interdigestive cyclic spike burst pattern of the SO as well as that of the gastrointestinal tract. PMID:7076847

  9. Fast computation with spikes in a recurrent neural network

    International Nuclear Information System (INIS)

    Jin, Dezhe Z.; Seung, H. Sebastian

    2002-01-01

    Neural networks with recurrent connections are sometimes regarded as too slow at computation to serve as models of the brain. Here we analytically study a counterexample, a network consisting of N integrate-and-fire neurons with self excitation, all-to-all inhibition, instantaneous synaptic coupling, and constant external driving inputs. When the inhibition and/or excitation are large enough, the network performs a winner-take-all computation for all possible external inputs and initial states of the network. The computation is done very quickly: As soon as the winner spikes once, the computation is completed since no other neurons will spike. For some initial states, the winner is the first neuron to spike, and the computation is done at the first spike of the network. In general, there are M potential winners, corresponding to the top M external inputs. When the external inputs are close in magnitude, M tends to be larger. If M>1, the selection of the actual winner is strongly influenced by the initial states. If a special relation between the excitation and inhibition is satisfied, the network always selects the neuron with the maximum external input as the winner

  10. Characteristics of fast-spiking neurons in the striatum of behaving monkeys.

    Science.gov (United States)

    Yamada, Hiroshi; Inokawa, Hitoshi; Hori, Yukiko; Pan, Xiaochuan; Matsuzaki, Ryuichi; Nakamura, Kae; Samejima, Kazuyuki; Shidara, Munetaka; Kimura, Minoru; Sakagami, Masamichi; Minamimoto, Takafumi

    2016-04-01

    Inhibitory interneurons are the fundamental constituents of neural circuits that organize network outputs. The striatum as part of the basal ganglia is involved in reward-directed behaviors. However, the role of the inhibitory interneurons in this process remains unclear, especially in behaving monkeys. We recorded the striatal single neuron activity while monkeys performed reward-directed hand or eye movements. Presumed parvalbumin-containing GABAergic interneurons (fast-spiking neurons, FSNs) were identified based on narrow spike shapes in three independent experiments, though they were a small population (4.2%, 42/997). We found that FSNs are characterized by high-frequency and less-bursty discharges, which are distinct from the basic firing properties of the presumed projection neurons (phasically active neurons, PANs). Besides, the encoded information regarding actions and outcomes was similar between FSNs and PANs in terms of proportion of neurons, but the discharge selectivity was higher in PANs than that of FSNs. The coding of actions and outcomes in FSNs and PANs was consistently observed under various behavioral contexts in distinct parts of the striatum (caudate nucleus, putamen, and anterior striatum). Our results suggest that FSNs may enhance the discharge selectivity of postsynaptic output neurons (PANs) in encoding crucial variables for a reward-directed behavior. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Computational modeling of distinct neocortical oscillations driven by cell-type selective optogenetic drive: Separable resonant circuits controlled by low-threshold spiking and fast-spiking interneurons

    Directory of Open Access Journals (Sweden)

    Dorea Vierling-Claassen

    2010-11-01

    Full Text Available Selective optogenetic drive of fast spiking interneurons (FS leads to enhanced local field potential (LFP power across the traditional gamma frequency band (20-80Hz; Cardin et al., 2009. In contrast, drive to regular-spiking pyramidal cells (RS enhances power at lower frequencies, with a peak at 8 Hz. The first result is consistent with previous computational studies emphasizing the role of FS and the time constant of GABAA synaptic inhibition in gamma rhythmicity. However, the same theoretical models do not typically predict low-frequency LFP enhancement with RS drive. To develop hypotheses as to how the same network can support these contrasting behaviors, we constructed a biophysically principled network model of primary somatosensory neocortex containing FS, RS and low-threshold-spiking (LTS interneurons. Cells were modeled with detailed cell anatomy and physiology, multiple dendritic compartments, and included active somatic and dendritic ionic currents. Consistent with prior studies, the model demonstrated gamma resonance during FS drive, dependent on the time-constant of GABAA inhibition induced by synchronous FS activity. Lower frequency enhancement during RS drive was replicated only on inclusion of an inhibitory LTS population, whose activation was critically dependent on RS synchrony and evoked longer-lasting inhibition. Our results predict that differential recruitment of FS and LTS inhibitory populations is essential to the observed cortical dynamics and may provide a means for amplifying the natural expression of distinct oscillations in normal cortical processing.

  12. Advantages and limitations of the use of optogenetic approach in studying fast-scale spike encoding.

    Directory of Open Access Journals (Sweden)

    Aleksey Malyshev

    Full Text Available Understanding single-neuron computations and encoding performed by spike-generation mechanisms of cortical neurons is one of the central challenges for cell electrophysiology and computational neuroscience. An established paradigm to study spike encoding in controlled conditions in vitro uses intracellular injection of a mixture of signals with fluctuating currents that mimic in vivo-like background activity. However this technique has two serious limitations: it uses current injection, while synaptic activation leads to changes of conductance, and current injection is technically most feasible in the soma, while the vast majority of synaptic inputs are located on the dendrites. Recent progress in optogenetics provides an opportunity to circumvent these limitations. Transgenic expression of light-activated ionic channels, such as Channelrhodopsin2 (ChR2, allows induction of controlled conductance changes even in thin distant dendrites. Here we show that photostimulation provides a useful extension of the tools to study neuronal encoding, but it has its own limitations. Optically induced fluctuating currents have a low cutoff (~70 Hz, thus limiting the dynamic range of frequency response of cortical neurons. This leads to severe underestimation of the ability of neurons to phase-lock their firing to high frequency components of the input. This limitation could be worked around by using short (2 ms light stimuli which produce membrane potential responses resembling EPSPs by their fast onset and prolonged decay kinetics. We show that combining application of short light stimuli to different parts of dendritic tree for mimicking distant EPSCs with somatic injection of fluctuating current that mimics fluctuations of membrane potential in vivo, allowed us to study fast encoding of artificial EPSPs photoinduced at different distances from the soma. We conclude that dendritic photostimulation of ChR2 with short light pulses provides a powerful tool to

  13. Striatal fast-spiking interneurons: from firing patterns to postsynaptic impact

    Directory of Open Access Journals (Sweden)

    Andreas eKlaus

    2011-07-01

    Full Text Available In the striatal microcircuit, fast-spiking (FS interneurons have an important role in mediating inhibition onto neighboring medium spiny (MS projection neurons. In this study, we combined computational modeling with in vitro and in vivo electrophysiological measurements to investigate FS cells in terms of their discharge properties and their synaptic efficacies onto MS neurons. In vivo firing of striatal FS interneurons is characterized by a high firing variability. It is not known, however, if this variability results from the input that FS cells receive, or if it is promoted by the stuttering spike behavior of these neurons. Both our model and measurements in vitro show that FS neurons that exhibit random stuttering discharge in response to steady depolarization, do not show the typical stuttering behavior when they receive fluctuating input. Importantly, our model predicts that electrically coupled FS cells show substantial spike synchronization only when they are in the stuttering regime. Therefore, together with the lack of synchronized firing of striatal FS interneurons that has been reported in vivo, these results suggest that neighboring FS neurons are not in the stuttering regime simultaneously and that in vivo FS firing variability is more likely determined by the input fluctuations. Furthermore, the variability in FS firing is translated to variability in the postsynaptic amplitudes in MS neurons due to the strong synaptic depression of the FS-to-MS synapse. Our results support the idea that these synapses operate over a wide range from strongly depressed to almost fully recovered. The strong inhibitory effects that FS cells can impose on their postsynaptic targets, and the fact that the FS-to-MS synapse model showed substantial depression over extended periods of time might indicate the importance of cooperative effects of multiple presynaptic FS interneurons and the precise orchestration of their activity.

  14. Serotonin enhances excitability and gamma frequency temporal integration in mouse prefrontal fast-spiking interneurons.

    Science.gov (United States)

    Athilingam, Jegath C; Ben-Shalom, Roy; Keeshen, Caroline M; Sohal, Vikaas S; Bender, Kevin J

    2017-12-05

    The medial prefrontal cortex plays a key role in higher order cognitive functions like decision making and social cognition. These complex behaviors emerge from the coordinated firing of prefrontal neurons. Fast-spiking interneurons (FSIs) control the timing of excitatory neuron firing via somatic inhibition and generate gamma (30-100 Hz) oscillations. Therefore, factors that regulate how FSIs respond to gamma-frequency input could affect both prefrontal circuit activity and behavior. Here, we show that serotonin (5HT), which is known to regulate gamma power, acts via 5HT2A receptors to suppress an inward-rectifying potassium conductance in FSIs. This leads to depolarization, increased input resistance, enhanced spiking, and slowed decay of excitatory post-synaptic potentials (EPSPs). Notably, we found that slowed EPSP decay preferentially enhanced temporal summation and firing elicited by gamma frequency inputs. These findings show how changes in passive membrane properties can affect not only neuronal excitability but also the temporal filtering of synaptic inputs.

  15. EPILEPTIC ENCEPHALOPATHY WITH CONTINUOUS SPIKES-WAVES ACTIVITY DURING SLEEP

    OpenAIRE

    E. D. Belousova

    2012-01-01

    The author represents the review and discussion of current scientific literature devoted to epileptic encephalopathy with continuous spikes-waves activity during sleep — the special form of partly reversible age-dependent epileptic encephalopathy, characterized by triad of symptoms: continuous prolonged epileptiform (spike-wave) activity on EEG in sleep, epileptic seizures and cognitive disorders. The author describes the aspects of classification, pathogenesis and etiology, prevalence, clini...

  16. Ion channel density regulates switches between regular and fast spiking in soma but not in axons.

    Directory of Open Access Journals (Sweden)

    Hugo Zeberg

    2010-04-01

    Full Text Available The threshold firing frequency of a neuron is a characterizing feature of its dynamical behaviour, in turn determining its role in the oscillatory activity of the brain. Two main types of dynamics have been identified in brain neurons. Type 1 dynamics (regular spiking shows a continuous relationship between frequency and stimulation current (f-I(stim and, thus, an arbitrarily low frequency at threshold current; Type 2 (fast spiking shows a discontinuous f-I(stim relationship and a minimum threshold frequency. In a previous study of a hippocampal neuron model, we demonstrated that its dynamics could be of both Type 1 and Type 2, depending on ion channel density. In the present study we analyse the effect of varying channel density on threshold firing frequency on two well-studied axon membranes, namely the frog myelinated axon and the squid giant axon. Moreover, we analyse the hippocampal neuron model in more detail. The models are all based on voltage-clamp studies, thus comprising experimentally measurable parameters. The choice of analysing effects of channel density modifications is due to their physiological and pharmacological relevance. We show, using bifurcation analysis, that both axon models display exclusively Type 2 dynamics, independently of ion channel density. Nevertheless, both models have a region in the channel-density plane characterized by an N-shaped steady-state current-voltage relationship (a prerequisite for Type 1 dynamics and associated with this type of dynamics in the hippocampal model. In summary, our results suggest that the hippocampal soma and the two axon membranes represent two distinct kinds of membranes; membranes with a channel-density dependent switching between Type 1 and 2 dynamics, and membranes with a channel-density independent dynamics. The difference between the two membrane types suggests functional differences, compatible with a more flexible role of the soma membrane than that of the axon membrane.

  17. Layer Specific Development of Neocortical Pyramidal to Fast Spiking Cells Synapses.

    Directory of Open Access Journals (Sweden)

    Olga eVoinova

    2016-01-01

    Full Text Available All cortical neurons are engaged in inhibitory feedback loops which ensure excitation-inhibition balance and are key elements for the development of coherent network activity. The resulting network patterns are strongly dependent on the strength and dynamic properties of these excitatory-inhibitory loops which show pronounced regional and developmental diversity. We therefore compared the properties and postnatal maturation of two different synapses between rat neocortical pyramidal cells (layer 2/3 and layer 5, respectively and fast spiking (FS interneurons in the corresponding layer. At P14, both synapses showed synaptic depression upon repetitive activation. Synaptic release properties between layer 2/3 pyramidal cells and FS cells were stable from P14 to P28. In contrast, layer 5 pyramidal to FS cell connections showed a significant increase in paired pulse ratio by P28. Presynaptic calcium dynamics did also change at these synapses, including the sensitivity to exogenously loaded calcium buffers and expression of presynaptic calcium channels subtypes. These results underline the large variety of properties at different, yet similar, synapses in the neocortex. They also suggest that postnatal maturation of the brain goes along with increasing differences between synaptically driven network activity in layer 5 and layer 2/3.

  18. Comparing spiking and slow wave activity from invasive electroencephalography in patients with and without seizures.

    Science.gov (United States)

    Lundstrom, Brian Nils; Meisel, Christian; Van Gompel, Jamie; Stead, Matt; Worrell, Greg

    2018-02-27

    To develop quantitative measures for estimating seizure probability, we examine intracranial EEG data from patient groups with three qualitative seizure probabilities: patients with drug resistant focal epilepsy (high), these patients during cortical stimulation (intermediate), and patients who have no history of seizures (low). Patients with focal epilepsy were implanted with subdural electrodes during presurgical evaluation. Patients without seizures were implanted during treatment with motor cortex stimulation for atypical facial pain. The rate and amplitude of spikes correlate with qualitative seizure probability across patient groups and with proximity to the seizure onset zone in focal epilepsy patients. Spikes occur earlier during the negative oscillation of underlying slow activity (0.5-2 Hz) when seizure probability is increased. Similarly, coupling between slow and fast activity is increased. There is likely a continuum of sharply contoured activity between non-epileptiform and epileptiform. Characteristics of spiking and how spikes relate to slow activity can be combined to predict seizure onset zones. Intracranial EEG data from patients without seizures represent a unique comparison group and highlight changes seen in spiking and slow wave activity with increased seizure probability. Slow wave activity and related physiology are an important potential biomarker for estimating seizure probability. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  19. A defined network of fast-spiking interneurons in orbitofrontal cortex: responses to behavioral contingencies and ketamine administration

    Directory of Open Access Journals (Sweden)

    Michael C Quirk

    2009-11-01

    Full Text Available Orbitofrontal cortex (OFC is a region of prefrontal cortex implicated in the motivational control of behavior and in related abnormalities seen in psychosis and depression. It has been hypothesized that a critical mechanism in these disorders is the dysfunction of GABAergic interneurons that normally regulate prefrontal information processing. Here, we studied a subclass of interneurons isolated in rat OFC using extracellular waveform and spike train analysis. During performance of a goal-directed behavioral task, the firing of this class of putative fast-spiking (FS interneurons showed robust temporal correlations indicative of a functionally coherent network. FS cell activity also co-varied with behavioral response latency, a key indicator of motivational state. Systemic administration of ketamine, a drug that can mimic psychosis, preferentially inhibited this cell class. Together, these results support the idea that OFC-FS interneurons form a critical link in the regulation of motivation by prefrontal circuits during normal and abnormal brain and behavioral states.

  20. Adenosine A2A Receptors Control Glutamatergic Synaptic Plasticity in Fast Spiking Interneurons of the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Amber Kerkhofs

    2018-03-01

    Full Text Available Adenosine A2A receptors (A2AR are activated upon increased synaptic activity to assist in the implementation of long-term plastic changes at synapses. While it is reported that A2AR are involved in the control of prefrontal cortex (PFC-dependent behavior such as working memory, reversal learning and effort-based decision making, it is not known whether A2AR control glutamatergic synapse plasticity within the medial PFC (mPFC. To elucidate that, we tested whether A2AR blockade affects long-term plasticity (LTP of excitatory post-synaptic potentials in pyramidal neurons and fast spiking (FS interneurons in layer 5 of the mPFC and of population spikes. Our results show that A2AR are enriched at mPFC synapses, where their blockade reversed the direction of plasticity at excitatory synapses onto layer 5 FS interneurons from LTP to long-term depression, while their blockade had no effect on the induction of LTP at excitatory synapses onto layer 5 pyramidal neurons. At the network level, extracellularly induced LTP of population spikes was reduced by A2AR blockade. The interneuron-specificity of A2AR in controlling glutamatergic synapse LTP may ensure that during periods of high synaptic activity, a proper excitation/inhibition balance is maintained within the mPFC.

  1. The Fast Spiking Subpopulation of Striatal Neurons Coding for Temporal Cognition of Movements

    Directory of Open Access Journals (Sweden)

    Bo Shen

    2017-12-01

    Full Text Available Background: Timing dysfunctions occur in a number of neurological and psychiatric disorders such as Parkinson’s disease, obsessive-compulsive disorder, autism and attention-deficit-hyperactivity disorder. Several lines of evidence show that disrupted timing processing is involved in specific fronto-striatal abnormalities. The striatum encodes reinforcement learning and procedural motion, and consequently is required to represent temporal information precisely, which then guides actions in proper sequence. Previous studies highlighted the temporal scaling property of timing-relevant striatal neurons; however, it is still unknown how this is accomplished over short temporal latencies, such as the sub-seconds to seconds range.Methods: We designed a task with a series of timing behaviors that required rats to reproduce a fixed duration with robust action. Using chronic multichannel electrode arrays, we recorded neural activity from dorso-medial striatum in 4 rats performing the task and identified modulation response of each neuron to different events. Cell type classification was performed according to a multi-criteria clustering analysis.Results: Dorso-medial striatal neurons (n = 557 were recorded, of which 113 single units were considered as timing-relevant neurons, especially the fast-spiking subpopulation that had trial–to–trial ramping up or ramping down firing modulation during the time estimation period. Furthermore, these timing-relevant striatal neurons had to calibrate the spread of their firing pattern by rewarded experience to express the timing behavior accurately.Conclusion: Our data suggests that the dynamic activities of timing-relevant units encode information about the current duration and recent outcomes, which is needed to predict and drive the following action. These results reveal the potential mechanism of time calibration in a short temporal resolution, which may help to explain the neural basis of motor coordination

  2. Spiking Activity of a LIF Neuron in Distributed Delay Framework

    Directory of Open Access Journals (Sweden)

    Saket Kumar Choudhary

    2016-06-01

    Full Text Available Evolution of membrane potential and spiking activity for a single leaky integrate-and-fire (LIF neuron in distributed delay framework (DDF is investigated. DDF provides a mechanism to incorporate memory element in terms of delay (kernel function into a single neuron models. This investigation includes LIF neuron model with two different kinds of delay kernel functions, namely, gamma distributed delay kernel function and hypo-exponential distributed delay kernel function. Evolution of membrane potential for considered models is studied in terms of stationary state probability distribution (SPD. Stationary state probability distribution of membrane potential (SPDV for considered neuron models are found asymptotically similar which is Gaussian distributed. In order to investigate the effect of membrane potential delay, rate code scheme for neuronal information processing is applied. Firing rate and Fano-factor for considered neuron models are calculated and standard LIF model is used for comparative study. It is noticed that distributed delay increases the spiking activity of a neuron. Increase in spiking activity of neuron in DDF is larger for hypo-exponential distributed delay function than gamma distributed delay function. Moreover, in case of hypo-exponential delay function, a LIF neuron generates spikes with Fano-factor less than 1.

  3. Linking structure and activity in nonlinear spiking networks.

    Directory of Open Access Journals (Sweden)

    Gabriel Koch Ocker

    2017-06-01

    Full Text Available Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks' spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities-including those of different cell types-combine with connectivity to shape population activity and function.

  4. Neonatal NMDA receptor blockade disrupts spike timing and glutamatergic synapses in fast spiking interneurons in a NMDA receptor hypofunction model of schizophrenia.

    Directory of Open Access Journals (Sweden)

    Kevin S Jones

    Full Text Available The dysfunction of parvalbumin-positive, fast-spiking interneurons (FSI is considered a primary contributor to the pathophysiology of schizophrenia (SZ, but deficits in FSI physiology have not been explicitly characterized. We show for the first time, that a widely-employed model of schizophrenia minimizes first spike latency and increases GluN2B-mediated current in neocortical FSIs. The reduction in FSI first-spike latency coincides with reduced expression of the Kv1.1 potassium channel subunit which provides a biophysical explanation for the abnormal spiking behavior. Similarly, the increase in NMDA current coincides with enhanced expression of the GluN2B NMDA receptor subunit, specifically in FSIs. In this study mice were treated with the NMDA receptor antagonist, MK-801, during the first week of life. During adolescence, we detected reduced spike latency and increased GluN2B-mediated NMDA current in FSIs, which suggests transient disruption of NMDA signaling during neonatal development exerts lasting changes in the cellular and synaptic physiology of neocortical FSIs. Overall, we propose these physiological disturbances represent a general impairment to the physiological maturation of FSIs which may contribute to schizophrenia-like behaviors produced by this model.

  5. EPILEPTIC ENCEPHALOPATHY WITH CONTINUOUS SPIKES-WAVES ACTIVITY DURING SLEEP

    Directory of Open Access Journals (Sweden)

    E. D. Belousova

    2012-01-01

    Full Text Available The author represents the review and discussion of current scientific literature devoted to epileptic encephalopathy with continuous spikes-waves activity during sleep — the special form of partly reversible age-dependent epileptic encephalopathy, characterized by triad of symptoms: continuous prolonged epileptiform (spike-wave activity on EEG in sleep, epileptic seizures and cognitive disorders. The author describes the aspects of classification, pathogenesis and etiology, prevalence, clinical picture and diagnostics of this disorder, including the peculiar anomalies on EEG. The especial attention is given to approaches to the treatment of epileptic encephalopathy with continuous spikeswaves activity during sleep. Efficacy of valproates, corticosteroid hormones and antiepileptic drugs of other groups is considered. The author represents own experience of treatment this disorder with corticosteroids, scheme of therapy and assessment of efficacy.

  6. Spiking and LFP activity in PRR during symbolically instructed reaches.

    Science.gov (United States)

    Hwang, Eun Jung; Andersen, Richard A

    2012-02-01

    The spiking activity in the parietal reach region (PRR) represents the spatial goal of an impending reach when the reach is directed toward or away from a visual object. The local field potentials (LFPs) in this region also represent the reach goal when the reach is directed to a visual object. Thus PRR is a candidate area for reading out a patient's intended reach goals for neural prosthetic applications. For natural behaviors, reach goals are not always based on the location of a visual object, e.g., playing the piano following sheet music or moving following verbal directions. So far it has not been directly tested whether and how PRR represents reach goals in such cognitive, nonlocational conditions, and knowing the encoding properties in various task conditions would help in designing a reach goal decoder for prosthetic applications. To address this issue, we examined the macaque PRR under two reach conditions: reach goal determined by the stimulus location (direct) or shape (symbolic). For the same goal, the spiking activity near reach onset was indistinguishable between the two tasks, and thus a reach goal decoder trained with spiking activity in one task performed perfectly in the other. In contrast, the LFP activity at 20-40 Hz showed small but significantly enhanced reach goal tuning in the symbolic task, but its spatial preference remained the same. Consequently, a decoder trained with LFP activity performed worse in the other task than in the same task. These results suggest that LFP decoders in PRR should take into account the task context (e.g., locational vs. nonlocational) to be accurate, while spike decoders can robustly provide reach goal information regardless of the task context in various prosthetic applications.

  7. Energy consumption in Hodgkin–Huxley type fast spiking neuron model exposed to an external electric field

    Directory of Open Access Journals (Sweden)

    K. Usha

    2016-09-01

    Full Text Available This paper evaluates the change in metabolic energy required to maintain the signalling activity of neurons in the presence of an external electric field. We have analysed the Hodgkin–Huxley type conductance based fast spiking neuron model as electrical circuit by changing the frequency and amplitude of the applied electric field. The study has shown that, the presence of electric field increases the membrane potential, electrical energy supply and metabolic energy consumption. As the amplitude of applied electric field increases by keeping a constant frequency, the membrane potential increases and consequently the electrical energy supply and metabolic energy consumption increases. On increasing the frequency of the applied field, the peak value of membrane potential after depolarization gradually decreases as a result electrical energy supply decreases which results in a lower rate of hydrolysis of ATP molecules.

  8. Reduction of the fast electrons preheating by changing the spike launch time in shock ignition approach

    Science.gov (United States)

    Jafar Jafari, Mohammad; Farahbod, Amir Hossein; Rezaei, Somayeh

    2016-01-01

    Target characteristic parameters in shock ignition approach before launching the spike pulse are studied using a 1-D hydrodynamic simulation code. By delaying the spike launch time, the shell areal density, ρR, is increased. The enhanced shell areal density prevents the hot electrons preheating of main fuel which in turn is generated from the intense laser plasma interaction with corona. To consider the effect of the spike launch time on the target performance, the target gain for a wide range of spike powers and launch times are computed. It is noticed that for HiPER reference target, few tenth nanoseconds displacement of spike launch time increases the areal density, ρR, value up to 30-70 percent. Furthermore, by choosing an appropriate spike energy and peak power, the optimum target gain is achieved in which the total driver energy is reduced.

  9. Fast programming metal-gate Si quantum dot nonvolatile memory using green nanosecond laser spike annealing

    Science.gov (United States)

    Lien, Yu-Chung; Shieh, Jia-Min; Huang, Wen-Hsien; Tu, Cheng-Hui; Wang, Chieh; Shen, Chang-Hong; Dai, Bau-Tong; Pan, Ci-Ling; Hu, Chenming; Yang, Fu-Liang

    2012-04-01

    The ultrafast metal-gate silicon quantum-dot (Si-QD) nonvolatile memory (NVM) with program/erase speed of 1 μs under low operating voltages of ± 7 V is achieved by thin tunneling oxide, in situ Si-QD-embedded dielectrics, and metal gate. Selective source/drain activation by green nanosecond laser spike annealing, due to metal-gate as light-blocking layer, responds to low thermal damage on gate structures and, therefore, suppresses re-crystallization/deformation/diffusion of embedded Si-QDs. Accordingly, it greatly sustains efficient charge trapping/de-trapping in numerous deep charge-trapping sites in discrete Si-QDs. Such a gate nanostructure also ensures excellent endurance and retention in the microsecond-operation Si-QD NVM.

  10. A novel role of dendritic gap junction and mechanisms underlying its interaction with thalamocortical conductance in fast spiking inhibitory neurons

    Directory of Open Access Journals (Sweden)

    Sun Qian-Quan

    2009-10-01

    Full Text Available Abstract Background Little is known about the roles of dendritic gap junctions (GJs of inhibitory interneurons in modulating temporal properties of sensory induced responses in sensory cortices. Electrophysiological dual patch-clamp recording and computational simulation methods were used in combination to examine a novel role of GJs in sensory mediated feed-forward inhibitory responses in barrel cortex layer IV and its underlying mechanisms. Results Under physiological conditions, excitatory post-junctional potentials (EPJPs interact with thalamocortical (TC inputs within an unprecedented few milliseconds (i.e. over 200 Hz to enhance the firing probability and synchrony of coupled fast-spiking (FS cells. Dendritic GJ coupling allows fourfold increase in synchrony and a significant enhancement in spike transmission efficacy in excitatory spiny stellate cells. The model revealed the following novel mechanisms: 1 rapid capacitive current (Icap underlies the activation of voltage-gated sodium channels; 2 there was less than 2 milliseconds in which the Icap underlying TC input and EPJP was coupled effectively; 3 cells with dendritic GJs had larger input conductance and smaller membrane response to weaker inputs; 4 synchrony in inhibitory networks by GJ coupling leads to reduced sporadic lateral inhibition and increased TC transmission efficacy. Conclusion Dendritic GJs of neocortical inhibitory networks can have very powerful effects in modulating the strength and the temporal properties of sensory induced feed-forward inhibitory and excitatory responses at a very high frequency band (>200 Hz. Rapid capacitive currents are identified as main mechanisms underlying interaction between two transient synaptic conductances.

  11. Effects of Hypocretin/Orexin and Major Transmitters of Arousal on Fast Spiking Neurons in Mouse Cortical Layer 6B.

    Science.gov (United States)

    Wenger Combremont, Anne-Laure; Bayer, Laurence; Dupré, Anouk; Mühlethaler, Michel; Serafin, Mauro

    2016-08-01

    Fast spiking (FS) GABAergic neurons are thought to be involved in the generation of high-frequency cortical rhythms during the waking state. We previously showed that cortical layer 6b (L6b) was a specific target for the wake-promoting transmitter, hypocretin/orexin (hcrt/orx). Here, we have investigated whether L6b FS cells were sensitive to hcrt/orx and other transmitters associated with cortical activation. Recordings were thus made from L6b FS cells in either wild-type mice or in transgenic mice in which GFP-positive GABAergic cells are parvalbumin positive. Whereas in a control condition hcrt/orx induced a strong increase in the frequency, but not amplitude, of spontaneous synaptic currents, in the presence of TTX, it had no effect at all on miniature synaptic currents. Hcrt/orx effect was thus presynaptic although not by an action on glutamatergic terminals but rather on neighboring cells. In contrast, noradrenaline and acetylcholine depolarized and excited these cells through a direct postsynaptic action. Neurotensin, which is colocalized in hcrt/orx neurons, also depolarized and excited these cells but the effect was indirect. Morphologically, these cells exhibited basket-like features. These results suggest that hcrt/orx, noradrenaline, acetylcholine, and neurotensin could contribute to high-frequency cortical activity through an action on L6b GABAergic FS cells. © The Author 2016. Published by Oxford University Press.

  12. Parvalbumin fast-spiking interneurons are selectively altered by paediatric traumatic brain injury.

    Science.gov (United States)

    Nichols, Joshua; Bjorklund, George Reed; Newbern, Jason; Anderson, Trent

    2018-04-01

    Traumatic brain injury (TBI) in children remains a leading cause of death and disability and it remains poorly understood why children have worse outcomes and longer recover times. TBI has shown to alter cortical excitability and inhibitory drive onto excitatory neurons, yet few studies have directly examined changes to cortical interneurons. This is addressed in the present study using a clinically relevant model of severe TBI (controlled cortical impact) in interneuron cell type specific Cre-dependent mice. Mice subjected to controlled cortical impact exhibit specific loss of parvalbumin (PV) but not somatostatin immunoreactivity and cell density in the peri-injury zone. PV interneurons are primarily of a fast-spiking (FS) phenotype that persisted in the peri-injury zone but received less frequent inhibitory and stronger excitatory post-synaptic currents. The targeted loss of PV-FS interneurons appears to be distinct from previous reports in adult mice suggesting that TBI-induced pathophysiology is dependent on the age at time of impact. Paediatric traumatic brain injury (TBI) is a leading cause of death and disability in children. Traditionally, ongoing neurodevelopment and neuroplasticity have been considered to confer children with an advantage following TBI. However, recent findings indicate that the paediatric brain may be more sensitive to brain injury. Inhibitory interneurons are essential for proper cortical function and are implicated in the pathophysiology of TBI, yet few studies have directly investigated TBI-induced changes to interneurons themselves. Accordingly, in the present study, we examine how inhibitory neurons are altered following controlled cortical impact (CCI) in juvenile mice with targeted Cre-dependent fluorescence labelling of interneurons (Vgat:Cre/Ai9 and PV:Cre/Ai6). Although CCI failed to alter the number of excitatory neurons or somatostatin-expressing interneurons in the peri-injury zone, it significantly decreased the density of

  13. Remifentanil-induced spike activity as a diagnostic tool in epilepsy surgery

    DEFF Research Database (Denmark)

    Grønlykke, L; Knudsen, M L; Høgenhaven, H

    2008-01-01

    To assess the value of remifentanil in intraoperative evaluation of spike activity in patients undergoing surgery for mesial temporal lobe epilepsy (MTLE).......To assess the value of remifentanil in intraoperative evaluation of spike activity in patients undergoing surgery for mesial temporal lobe epilepsy (MTLE)....

  14. Cortical light scattering during interictal epileptic spikes in frontal lobe epilepsy in children: A fast optical signal and electroencephalographic study.

    Science.gov (United States)

    Manoochehri, Mana; Mahmoudzadeh, Mahdi; Bourel-Ponchel, Emilie; Wallois, Fabrice

    2017-12-01

    Interictal epileptic spikes (IES) represent a signature of the transient synchronous and excessive discharge of a large ensemble of cortical heterogeneous neurons. Epilepsy cannot be reduced to a hypersynchronous activation of neurons whose functioning is impaired, resulting on electroencephalogram (EEG) in epileptic seizures or IES. The complex pathophysiological mechanisms require a global approach to the interactions between neural synaptic and nonsynaptic, vascular, and metabolic systems. In the present study, we focused on the interaction between synaptic and nonsynaptic mechanisms through the simultaneous noninvasive multimodal multiscale recording of high-density EEG (HD-EEG; synaptic) and fast optical signal (FOS; nonsynaptic), which evaluate rapid changes in light scattering related to changes in membrane configuration occurring during neuronal activation of IES. To evaluate changes in light scattering occurring around IES, three children with frontal IES were simultaneously recorded with HD-EEG and FOS. To evaluate change in synchronization, time-frequency representation analysis of the HD-EEG was performed simultaneously around the IES. To independently evaluate our multimodal method, a control experiment with somatosensory stimuli was designed and applied to five healthy volunteers. Alternating increase-decrease-increase in optical signals occurred 200 ms before to 180 ms after the IES peak. These changes started before any changes in EEG signal. In addition, time-frequency domain EEG analysis revealed alternating decrease-increase-decrease in the EEG spectral power concomitantly with changes in the optical signal during IES. These results suggest a relationship between (de)synchronization and neuronal volume changes in frontal lobe epilepsy during IES. These changes in the neuronal environment around IES in frontal lobe epilepsy observed in children, as they have been in rats, raise new questions about the synaptic/nonsynaptic mechanisms that propel

  15. Low blood glucose precipitates spike-and-wave activity in genetically predisposed animals.

    Science.gov (United States)

    Reid, Christopher A; Kim, Tae Hwan; Berkovic, Samuel F; Petrou, Steven

    2011-01-01

    Absence epilepsies are common, with a major genetic contribution to etiology. Certain environmental factors can influence absence occurrence but a complete understanding of absence precipitation is lacking. Herein we investigate if lowering blood glucose increases spike-wave activity in mouse models with varying seizure susceptibility. Three mouse models were used: an absence seizure model based on the knockin of a human GABA(A) γ2(R43Q) mutation (DBA(R43Q)), the spike-wave discharge (SWD)-prone DBA/2J strain, and the seizure resistant C57Bl/6 strain. Electrocorticography (ECoG) studies were recorded to determine SWDs during hypoglycemia induced by insulin or overnight fasting. An insulin-mediated reduction in blood glucose levels to 4 mm (c.a. 40% reduction) was sufficient to double SWD occurrence in the DBA(R43Q) model and in the SWD-prone DBA/2J mouse strain. Larger reductions in blood glucose further increased SWDs in both these models. However, even with large reductions in blood glucose, no discharges were observed in the seizure-resistant C57Bl/6 mouse strain. Injection of glucose reversed the impact of insulin on SWDs in the DBA(R43Q) model, supporting a reduction in blood glucose as the modulating influence. Overnight fasting reduced blood glucose levels to 4.5 mm (c.a. 35% reduction) and, like insulin, caused a doubling in occurrence of SWDs. Low blood glucose can precipitate SWDs in genetically predisposed animal models and should be considered as a potential environmental risk factor in patients with absence epilepsy. Wiley Periodicals, Inc. © 2010 International League Against Epilepsy.

  16. Concordance of Epileptic Networks Associated with Epileptic Spikes Measured by High-Density EEG and Fast fMRI.

    Directory of Open Access Journals (Sweden)

    Vera Jäger

    Full Text Available The present study aims to investigate whether a newly developed fast fMRI called MREG (magnetic resonance encephalography measures metabolic changes related to interictal epileptic discharges (IED. For this purpose BOLD changes are correlated with the IED distribution and variability.Patients with focal epilepsy underwent EEG-MREG using a 64 channel cap. IED voltage maps were generated using 32 and 64 channels and compared regarding their correspondence to the BOLD response. The extents of IEDs (defined as number of channels with >50% of maximum IED negativity were correlated with the extents of positive and negative BOLD responses. Differences in inter-spike variability were investigated between interictal epileptic discharges (IED sets with and without concordant positive or negative BOLD responses.17 patients showed 32 separate IED types. In 50% of IED types the BOLD changes could be confirmed by another independent imaging method. The IED extent significantly correlated with the positive BOLD extent (p = 0.04. In 6 patients the 64-channel EEG voltage maps better reflected the positive or negative BOLD response than the 32-channel EEG; in all others no difference was seen. Inter-spike variability was significantly lower in IED sets with than without concordant positive or negative BOLD responses (with p = 0.04.Higher density EEG and fast fMRI seem to improve the value of EEG-fMRI in epilepsy. The correlation of positive BOLD and IED extent could suggest that widespread BOLD responses reflect the IED network. Inter-spike variability influences the likelihood to find IED concordant positive or negative BOLD responses, which is why single IED analysis may be promising.

  17. First-spike latency in the presence of spontaneous activity

    Czech Academy of Sciences Publication Activity Database

    Pawlas, Z.; Klebanov, L. B.; Beneš, V.; Prokešová, M.; Popelář, Jiří; Lánský, Petr

    2010-01-01

    Roč. 22, č. 7 (2010), s. 1675-1693 ISSN 0899-7667 R&D Projects: GA ČR(CZ) GA309/07/1336; GA MŠk(CZ) LC554 Grant - others:GA AVCR(CZ) IAA101120604; GA ČR(CZ) GP201/08/P100 Program:IA Institutional research plan: CEZ:AV0Z50390703; CEZ:AV0Z50110509 Keywords : spike trans * inferior colliculus * response latency Subject RIV: FH - Neurology Impact factor: 2.290, year: 2010

  18. Spiking irregularity and frequency modulate the behavioral report of single-neuron stimulation.

    Science.gov (United States)

    Doron, Guy; von Heimendahl, Moritz; Schlattmann, Peter; Houweling, Arthur R; Brecht, Michael

    2014-02-05

    The action potential activity of single cortical neurons can evoke measurable sensory effects, but it is not known how spiking parameters and neuronal subtypes affect the evoked sensations. Here, we examined the effects of spike train irregularity, spike frequency, and spike number on the detectability of single-neuron stimulation in rat somatosensory cortex. For regular-spiking, putative excitatory neurons, detectability increased with spike train irregularity and decreasing spike frequencies but was not affected by spike number. Stimulation of single, fast-spiking, putative inhibitory neurons led to a larger sensory effect compared to regular-spiking neurons, and the effect size depended only on spike irregularity. An ideal-observer analysis suggests that, under our experimental conditions, rats were using integration windows of a few hundred milliseconds or more. Our data imply that the behaving animal is sensitive to single neurons' spikes and even to their temporal patterning. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Modulation of the spike activity of neocortex neurons during a conditioned reflex.

    Science.gov (United States)

    Storozhuk, V M; Sanzharovskii, A V; Sachenko, V V; Busel, B I

    2000-01-01

    Experiments were conducted on cats to study the effects of iontophoretic application of glutamate and a number of modulators on the spike activity of neurons in the sensorimotor cortex during a conditioned reflex. These studies showed that glutamate, as well as exerting a direct influence on neuron spike activity, also had a delayed facilitatory action lasting 10-20 min after iontophoresis was finished. Adrenomimetics were found to have a double modulatory effect on intracortical glutamate connections: inhibitory and facilitatory effects were mediated by beta1 and beta2 adrenoceptors respectively. Although dopamine, like glutamate, facilitated neuron spike activity during the period of application, the simultaneous facilitatory actions of glutamate and L-DOPA were accompanied by occlusion of spike activity, and simultaneous application of glutamate and haloperidol suppressed spike activity associated with the conditioned reflex response. Facilitation thus appears to show a significant level of dependence on metabotropic glutamate receptors which, like dopamine receptors, are linked to the intracellular medium via Gi proteins.

  20. Superficial dorsal horn neurons with double spike activity in the rat.

    Science.gov (United States)

    Rojas-Piloni, Gerardo; Dickenson, Anthony H; Condés-Lara, Miguel

    2007-05-29

    Superficial dorsal horn neurons promote the transfer of nociceptive information from the periphery to supraspinal structures. The membrane and discharge properties of spinal cord neurons can alter the reliability of peripheral signals. In this paper, we analyze the location and response properties of a particular class of dorsal horn neurons that exhibits double spike discharge with a very short interspike interval (2.01+/-0.11 ms). These neurons receive nociceptive C-fiber input and are located in laminae I-II. Double spikes are generated spontaneously or by depolarizing current injection (interval of 2.37+/-0.22). Cells presenting double spike (interval 2.28+/-0.11) increased the firing rate by electrical noxious stimulation, as well as, in the first minutes after carrageenan injection into their receptive field. Carrageenan is a polysaccharide soluble in water and it is used for producing an experimental model of semi-chronic pain. In the present study carrageenan also produces an increase in the interval between double spikes and then, reduced their occurrence after 5-10 min. The results suggest that double spikes are due to intrinsic membrane properties and that their frequency is related to C-fiber nociceptive activity. The present work shows evidence that double spikes in superficial spinal cord neurones are related to the nociceptive stimulation, and they are possibly part of an acute pain-control mechanism.

  1. Gap junctions are essential for generating the correlated spike activity of neighboring retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Béla Völgyi

    Full Text Available Neurons throughout the brain show spike activity that is temporally correlated to that expressed by their neighbors, yet the generating mechanism(s remains unclear. In the retina, ganglion cells (GCs show robust, concerted spiking that shapes the information transmitted to central targets. Here we report the synaptic circuits responsible for generating the different types of concerted spiking of GC neighbors in the mouse retina. The most precise concerted spiking was generated by reciprocal electrical coupling of GC neighbors via gap junctions, whereas indirect electrical coupling to a common cohort of amacrine cells generated the correlated activity with medium precision. In contrast, the correlated spiking with the lowest temporal precision was produced by shared synaptic inputs carrying photoreceptor noise. Overall, our results demonstrate that different synaptic circuits generate the discrete types of GC correlated activity. Moreover, our findings expand our understanding of the roles of gap junctions in the retina, showing that they are essential for generating all forms of concerted GC activity transmitted to central brain targets.

  2. ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms.

    Science.gov (United States)

    Hagen, Espen; Ness, Torbjørn V; Khosrowshahi, Amir; Sørensen, Christina; Fyhn, Marianne; Hafting, Torkel; Franke, Felix; Einevoll, Gaute T

    2015-04-30

    New, silicon-based multielectrodes comprising hundreds or more electrode contacts offer the possibility to record spike trains from thousands of neurons simultaneously. This potential cannot be realized unless accurate, reliable automated methods for spike sorting are developed, in turn requiring benchmarking data sets with known ground-truth spike times. We here present a general simulation tool for computing benchmarking data for evaluation of spike-sorting algorithms entitled ViSAPy (Virtual Spiking Activity in Python). The tool is based on a well-established biophysical forward-modeling scheme and is implemented as a Python package built on top of the neuronal simulator NEURON and the Python tool LFPy. ViSAPy allows for arbitrary combinations of multicompartmental neuron models and geometries of recording multielectrodes. Three example benchmarking data sets are generated, i.e., tetrode and polytrode data mimicking in vivo cortical recordings and microelectrode array (MEA) recordings of in vitro activity in salamander retinas. The synthesized example benchmarking data mimics salient features of typical experimental recordings, for example, spike waveforms depending on interspike interval. ViSAPy goes beyond existing methods as it includes biologically realistic model noise, synaptic activation by recurrent spiking networks, finite-sized electrode contacts, and allows for inhomogeneous electrical conductivities. ViSAPy is optimized to allow for generation of long time series of benchmarking data, spanning minutes of biological time, by parallel execution on multi-core computers. ViSAPy is an open-ended tool as it can be generalized to produce benchmarking data or arbitrary recording-electrode geometries and with various levels of complexity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Review of fast reactor activities in India

    International Nuclear Information System (INIS)

    Paranjpe, S.R.

    1982-01-01

    A review of fast reactor activities in India is introduced. One stage of construction of the Fast Breeder Test Reactor (FBTR) and design studies for 500MWe Prototype Fast Breeder Reactor (PFBR) are briefly summarized. The emphasis is on fast reactor physics, materials studies, radiochemistry, and the safety and fuel reprocessing programme

  4. Cortico-striatal spike-timing dependent plasticity after activation of subcortical pathways

    Directory of Open Access Journals (Sweden)

    Jan M Schulz

    2010-07-01

    Full Text Available Cortico-striatal spike-timing dependent plasticity (STDP is modulated by dopamine in vitro. The present study investigated STDP in vivo using alternative procedures for modulating dopaminergic inputs. Postsynaptic potentials (PSP were evoked in intracellularly recorded spiny neurons by electrical stimulation of the contralateral motor cortex. PSPs often consisted of up to three distinct components, likely representing distinct cortico-striatal pathways. After baseline recording, bicuculline (BIC was ejected into the superior colliculus (SC to disinhibit visual pathways to the dopamine cells and striatum. Repetitive cortical stimulation (~60; 0.2 Hz was then paired with postsynaptic spike discharge induced by an intracellular current pulse, with each pairing followed 250 ms later by a light flash to the contralateral eye (n=13. Changes in PSPs, measured as the maximal slope normalised to 5 min pre, ranged from potentiation (~120% to depression (~80%. The determining factor was the relative timing between PSP components and spike: PSP components coinciding or closely following the spike tended towards potentiation, whereas PSP components preceding the spike were depressed. Importantly, STDP was only seen in experiments with successful BIC-mediated disinhibition (n=10. Cortico-striatal high-frequency stimulation (50 pulses at 100 Hz followed 100 ms later by a light flash did not induce more robust synaptic plasticity (n=9. However, an elevated post-light spike rate correlated with depression across plasticity protocols (R2=0.55, p=0.009, n=11 active neurons. These results confirm that the direction of cortico-striatal plasticity is determined by the timing of pre- and postsynaptic activity and that synaptic modification is dependent on the activation of additional subcortical inputs.

  5. Application of magnetoencephalography in epilepsy patients with widespread spike or slow-wave activity.

    Science.gov (United States)

    Shiraishi, Hideaki; Ahlfors, Seppo P; Stufflebeam, Steven M; Takano, Kyoko; Okajima, Maki; Knake, Susanne; Hatanaka, Keisaku; Kohsaka, Shinobu; Saitoh, Shinji; Dale, Anders M; Halgren, Eric

    2005-08-01

    To examine whether magnetoencephalography (MEG) can be used to determine patterns of brain activity underlying widespread paroxysms of epilepsy patients, thereby extending the applicability of MEG to a larger population of epilepsy patients. We studied two children with symptomatic localization-related epilepsy. Case 1 had widespread spikes in EEG with an operation scar from a resection of a brain tumor; Case 2 had hemispheric slow-wave activity in EEG with sensory auras. MEG was collected with a 204-channel helmet-shaped sensor array. Dynamic statistical parametric maps (dSPMs) were constructed to estimate the cortical distribution of interictal discharges for these patients. Equivalent current dipoles (ECDs) also were calculated for comparison with the results of dSPM. In case 1 with widespread spikes, dSPM presented the major activity at the vicinity of the operation scar in the left frontal lobe at the peak of the spikes, and some activities were detected in the left temporal lobe just before the peak in some spikes. In case 2 with hemispheric slow waves, the most active area was located in the left parietal lobe, and additional activity was seen at the ipsilateral temporal and frontal lobes in dSPM. The source estimates correlated well with the ictal manifestation and interictal single-photon emission computed tomography (SPECT) findings for this patient. In comparison with the results of ECDs, ECDs could not express a prior activity at the left temporal lobe in case 1 and did not model well the MEG data in case 2. We suggest that by means of dSPM, MEG is useful for presurgical evaluation of patients, not only with localized epileptiform activity, but also with widespread spikes or slow waves, because it requires no selections of channels and no time-point selection.

  6. Remifentanil-induced spike activity as a diagnostic tool in epilepsy surgery

    DEFF Research Database (Denmark)

    Gronlykke, L.; Knudsen, M.L.; Hogenhaven, H.

    2008-01-01

    OBJECTIVES: To assess the value of remifentanil in intraoperative evaluation of spike activity in patients undergoing surgery for mesial temporal lobe epilepsy (MTLE). MATERIALS AND METHODS: Twenty-five patients undergoing temporal lobectomy for medically intractable MTLE were enrolled in the stu...

  7. Representation of the body in the lateral striatum of the freely moving rat: Fast Spiking Interneurons respond to stimulation of individual body parts.

    Science.gov (United States)

    Kulik, Julianna M; Pawlak, Anthony P; Kalkat, Manraj; Coffey, Kevin R; West, Mark O

    2017-02-15

    Numerous studies have shown that certain types of striatal interneurons play a crucial role in selection and regulation of striatal output. Striatal Fast-Spiking Interneurons (FSIs) are parvalbumin positive, GABAergic interneurons that constitute less than 1% of the total striatal population. It is becoming increasingly evident that these sparsely distributed neurons exert a strong inhibitory effect on Medium Spiny projection Neurons (MSNs). MSNs in lateral striatum receive direct synaptic input from regions of cortex representing discrete body parts, and show phasic increases in activity during touch or movement of specific body parts. In the present study, we sought to determine whether lateral striatal FSIs identified by their electrophysiological properties, i.e., short-duration spike and fast firing rate (FR), display body part sensitivity similar to that exhibited by MSNs. During video recorded somatosensorimotor exams, each individual body part was stimulated and responses of single neurons were observed and quantified. Individual FSIs displayed patterns of activity related selectively to stimulation of a discrete body part. Most patterns of activity were similar to those exhibited by typical MSNs, but some phasic decreases were observed. These results serve as evidence that some striatal FSIs process information related to discrete body parts and participate in sensorimotor processing by striatal networks that contribute to motor output. Parvalbumin positive, striatal FSIs are hypothesized to play an important role in behavior by inhibiting MSNs. We asked a fundamental question regarding information processed during behavior by FSIs: whether FSIs, which preferentially occupy the sensorimotor portion of the striatum, process activity of discrete body parts. Our finding that they do, in a selective manner similar to MSNs, begins to reveal the types of phasic signals that FSI feed forward to projection neurons during striatal processing of cortical input

  8. Activity-dependent plasticity of spike pauses in cerebellar Purkinje cells

    Science.gov (United States)

    Grasselli, Giorgio; He, Qionger; Wan, Vivian; Adelman, John P.; Ohtsuki, Gen; Hansel, Christian

    2016-01-01

    Summary Plasticity of intrinsic excitability has been described in several types of neurons, but the significance of non-synaptic mechanisms in brain plasticity and learning remains elusive. Cerebellar Purkinje cells are inhibitory neurons that spontaneously fire action potentials at high frequencies and regulate activity in their target cells in the cerebellar nuclei by generating a characteristic spike burst–pause sequence upon synaptic activation. Using patch-clamp recordings from mouse Purkinje cells, we find that depolarization-triggered intrinsic plasticity enhances spike firing and shortens the duration of spike pauses. Pause plasticity is absent from mice lacking SK2-type potassium channels (SK2−/− mice) and in occlusion experiments using the SK channel blocker apamin, while apamin wash-in mimics pause reduction. Our findings demonstrate that spike pauses can be regulated through an activity-dependent, exclusively non-synaptic, SK2 channel-dependent mechanism and suggest that pause plasticity—by altering the Purkinje cell output—may be crucial to cerebellar information storage and learning. PMID:26972012

  9. Activity-Dependent Plasticity of Spike Pauses in Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Giorgio Grasselli

    2016-03-01

    Full Text Available The plasticity of intrinsic excitability has been described in several types of neurons, but the significance of non-synaptic mechanisms in brain plasticity and learning remains elusive. Cerebellar Purkinje cells are inhibitory neurons that spontaneously fire action potentials at high frequencies and regulate activity in their target cells in the cerebellar nuclei by generating a characteristic spike burst-pause sequence upon synaptic activation. Using patch-clamp recordings from mouse Purkinje cells, we find that depolarization-triggered intrinsic plasticity enhances spike firing and shortens the duration of spike pauses. Pause plasticity is absent from mice lacking SK2-type potassium channels (SK2−/− mice and in occlusion experiments using the SK channel blocker apamin, while apamin wash-in mimics pause reduction. Our findings demonstrate that spike pauses can be regulated through an activity-dependent, exclusively non-synaptic, SK2 channel-dependent mechanism and suggest that pause plasticity—by altering the Purkinje cell output—may be crucial to cerebellar information storage and learning.

  10. Fast calcium sensor proteins for monitoring neural activity.

    Science.gov (United States)

    Badura, Aleksandra; Sun, Xiaonan Richard; Giovannucci, Andrea; Lynch, Laura A; Wang, Samuel S-H

    2014-10-01

    A major goal of the BRAIN Initiative is the development of technologies to monitor neuronal network activity during active information processing. Toward this goal, genetically encoded calcium indicator proteins have become widely used for reporting activity in preparations ranging from invertebrates to awake mammals. However, slow response times, the narrow sensitivity range of Ca 2+ and in some cases, poor signal-to-noise ratio still limit their usefulness. Here, we review recent improvements in the field of neural activity-sensitive probe design with a focus on the GCaMP family of calcium indicator proteins. In this context, we present our newly developed Fast-GCaMPs, which have up to 4-fold accelerated off-responses compared with the next-fastest GCaMP, GCaMP6f. Fast-GCaMPs were designed by destabilizing the association of the hydrophobic pocket of calcium-bound calmodulin with the RS20 binding domain, an intramolecular interaction that protects the green fluorescent protein chromophore. Fast-GCaMP6f-RS06 and Fast-GCaMP6f-RS09 have rapid off-responses in stopped-flow fluorimetry, in neocortical brain slices, and in the intact cerebellum in vivo . Fast-GCaMP6f variants should be useful for tracking action potentials closely spaced in time, and for following neural activity in fast-changing compartments, such as axons and dendrites. Finally, we discuss strategies that may allow tracking of a wider range of neuronal firing rates and improve spike detection.

  11. Generation of Stimulus Triggering from Intracortical Spike Activity for Brain-Machine-Body Interfaces (BMBIs).

    Science.gov (United States)

    Shahdoost, Shahab; Nudo, Randolph; Mohseni, Pedram

    2016-10-05

    Brain-machine-body interfaces (BMBIs) aim to create an artificial connection in the nervous system by converting neural activity recorded from one cortical region to electrical stimuli delivered to another cortical region, spinal cord, or muscles in real-time. In particular, conditioning-mode BMBIs utilize such activity-dependent stimulation strategies to induce functional re-organization in the nervous system and promote functional recovery after injury by exploiting mechanisms underlying neuroplasticity. This paper reports on reconfigurable, field-programmable gate array (FPGA)-based implementation of a translation algorithm to extract multichannel stimulus trigger signals from intracortical neural spike activity. The approach features digital spike discrimination based on user-set thresholding and time-amplitude windowing, decision making to support different triggering patterns for various stimulation scenarios, as well as trigger-pattern-dependent blanking schemes for robust operation in the presence of stimulus artifacts. Readily lending itself to low-power, low-area implementation for future integration, the algorithm has been synthesized on a Cyclone II FPGA using Altera's Quartus II design software and validated experimentally with prerecorded intracortical neural spike activity from an anesthetized laboratory rat.

  12. Predictive features of persistent activity emergence in regular spiking and intrinsic bursting model neurons.

    Directory of Open Access Journals (Sweden)

    Kyriaki Sidiropoulou

    Full Text Available Proper functioning of working memory involves the expression of stimulus-selective persistent activity in pyramidal neurons of the prefrontal cortex (PFC, which refers to neural activity that persists for seconds beyond the end of the stimulus. The mechanisms which PFC pyramidal neurons use to discriminate between preferred vs. neutral inputs at the cellular level are largely unknown. Moreover, the presence of pyramidal cell subtypes with different firing patterns, such as regular spiking and intrinsic bursting, raises the question as to what their distinct role might be in persistent firing in the PFC. Here, we use a compartmental modeling approach to search for discriminatory features in the properties of incoming stimuli to a PFC pyramidal neuron and/or its response that signal which of these stimuli will result in persistent activity emergence. Furthermore, we use our modeling approach to study cell-type specific differences in persistent activity properties, via implementing a regular spiking (RS and an intrinsic bursting (IB model neuron. We identify synaptic location within the basal dendrites as a feature of stimulus selectivity. Specifically, persistent activity-inducing stimuli consist of activated synapses that are located more distally from the soma compared to non-inducing stimuli, in both model cells. In addition, the action potential (AP latency and the first few inter-spike-intervals of the neuronal response can be used to reliably detect inducing vs. non-inducing inputs, suggesting a potential mechanism by which downstream neurons can rapidly decode the upcoming emergence of persistent activity. While the two model neurons did not differ in the coding features of persistent activity emergence, the properties of persistent activity, such as the firing pattern and the duration of temporally-restricted persistent activity were distinct. Collectively, our results pinpoint to specific features of the neuronal response to a given

  13. Deep Spiking Networks

    NARCIS (Netherlands)

    O'Connor, P.; Welling, M.

    2016-01-01

    We introduce an algorithm to do backpropagation on a spiking network. Our network is "spiking" in the sense that our neurons accumulate their activation into a potential over time, and only send out a signal (a "spike") when this potential crosses a threshold and the neuron is reset. Neurons only

  14. Cellular Origin of Spontaneous Ganglion Cell Spike Activity in Animal Models of Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    David J. Margolis

    2011-01-01

    Full Text Available Here we review evidence that loss of photoreceptors due to degenerative retinal disease causes an increase in the rate of spontaneous ganglion spike discharge. Information about persistent spike activity is important since it is expected to add noise to the communication between the eye and the brain and thus impact the design and effective use of retinal prosthetics for restoring visual function in patients blinded by disease. Patch-clamp recordings from identified types of ON and OFF retinal ganglion cells in the adult (36–210 d old rd1 mouse show that the ongoing oscillatory spike activity in both cell types is driven by strong rhythmic synaptic input from presynaptic neurons that is blocked by CNQX. The recurrent synaptic activity may arise in a negative feedback loop between a bipolar cell and an amacrine cell that exhibits resonant behavior and oscillations in membrane potential when the normal balance between excitation and inhibition is disrupted by the absence of photoreceptor input.

  15. Intermittent Theta-Burst Transcranial Magnetic Stimulation Alters Electrical Properties of Fast-Spiking Neocortical Interneurons in an Age-Dependent Fashion

    Directory of Open Access Journals (Sweden)

    Kathrin eHoppenrath

    2016-03-01

    Full Text Available Modulation of human cortical excitability by repetitive transcranial magnetic stimulation (rTMS appears to be in part related to changed activity of inhibitory systems. Our own studies showed that intermittent theta-burst stimulation (iTBS applied via rTMS to rat cortex primarily affects the parvalbumin-expressing (PV fast-spiking interneurons (FSIs, evident via a strongly reduced PV expression. We further found the iTBS effect on PV to be age-dependent since no reduction in PV could be induced before the perineuronal nets (PNNs of FSIs start to grow around postnatal day 30. To elucidate possible iTBS-induced changes in the electrical properties of FSIs and cortical network activity during cortical critical period, we performed ex vivo – in vitro whole-cell patch clamp recordings from pre-labelled FSIs in the current study. FSIs of verum iTBS-treated rats displayed a higher excitability than sham-treated controls at PD29-38, evident as higher rates of induced action potential firing at low current injections (100-200 pA and a more depolarized resting membrane potential. This effect was absent in younger (PD26-28 and older animals (PD40-62. Slices of verum iTBS-treated rats further showed higher rates of spontaneous EPSCs. Based on these and previous findings we conclude that FSIs are particularly sensitive to theta-burst stimulation during early cortical development, when FSIs show an activity-driven step of maturation which is paralleled by intense growth of the PNNs and subsequent closure of the cortical critical period. Although to be proven further, rTMS may be a possible early intervention to compensate for hypo-activity related mal-development of cortical neuronal circuits.

  16. Intermittent Theta-Burst Transcranial Magnetic Stimulation Alters Electrical Properties of Fast-Spiking Neocortical Interneurons in an Age-Dependent Fashion.

    Science.gov (United States)

    Hoppenrath, Kathrin; Härtig, Wolfgang; Funke, Klaus

    2016-01-01

    Modulation of human cortical excitability by repetitive transcranial magnetic stimulation (rTMS) appears to be in part related to changed activity of inhibitory systems. Our own studies showed that intermittent theta-burst stimulation (iTBS) applied via rTMS to rat cortex primarily affects the parvalbumin-expressing (PV) fast-spiking interneurons (FSIs), evident via a strongly reduced PV expression. We further found the iTBS effect on PV to be age-dependent since no reduction in PV could be induced before the perineuronal nets (PNNs) of FSIs start to grow around postnatal day (PD) 30. To elucidate possible iTBS-induced changes in the electrical properties of FSIs and cortical network activity during cortical critical period, we performed ex vivo-in vitro whole-cell patch clamp recordings from pre-labeled FSIs in the current study. FSIs of verum iTBS-treated rats displayed a higher excitability than sham-treated controls at PD29-38, evident as higher rates of induced action potential firing at low current injections (100-200 pA) and a more depolarized resting membrane potential. This effect was absent in younger (PD26-28) and older animals (PD40-62). Slices of verum iTBS-treated rats further showed higher rates of spontaneous excitatory postsynaptic currents (sEPSCs). Based on these and previous findings we conclude that FSIs are particularly sensitive to TBS during early cortical development, when FSIs show an activity-driven step of maturation which is paralleled by intense growth of the PNNs and subsequent closure of the cortical critical period. Although to be proven further, rTMS may be a possible early intervention to compensate for hypo-activity related mal-development of cortical neuronal circuits.

  17. Contribution of spiking activity in the primary auditory cortex to detection in noise.

    Science.gov (United States)

    Christison-Lagay, Kate L; Bennur, Sharath; Cohen, Yale E

    2017-12-01

    A fundamental problem in hearing is detecting a "target" stimulus (e.g., a friend's voice) that is presented with a noisy background (e.g., the din of a crowded restaurant). Despite its importance to hearing, a relationship between spiking activity and behavioral performance during such a "detection-in-noise" task has yet to be fully elucidated. In this study, we recorded spiking activity in primary auditory cortex (A1) while rhesus monkeys detected a target stimulus that was presented with a noise background. Although some neurons were modulated, the response of the typical A1 neuron was not modulated by the stimulus- and task-related parameters of our task. In contrast, we found more robust representations of these parameters in population-level activity: small populations of neurons matched the monkeys' behavioral sensitivity. Overall, these findings are consistent with the hypothesis that the sensory evidence, which is needed to solve such detection-in-noise tasks, is represented in population-level A1 activity and may be available to be read out by downstream neurons that are involved in mediating this task. NEW & NOTEWORTHY This study examines the contribution of A1 to detecting a sound that is presented with a noisy background. We found that population-level A1 activity, but not single neurons, could provide the evidence needed to make this perceptual decision. Copyright © 2017 the American Physiological Society.

  18. A computationally efficient method for nonparametric modeling of neural spiking activity with point processes.

    Science.gov (United States)

    Coleman, Todd P; Sarma, Sridevi S

    2010-08-01

    Point-process models have been shown to be useful in characterizing neural spiking activity as a function of extrinsic and intrinsic factors. Most point-process models of neural activity are parametric, as they are often efficiently computable. However, if the actual point process does not lie in the assumed parametric class of functions, misleading inferences can arise. Nonparametric methods are attractive due to fewer assumptions, but computation in general grows with the size of the data. We propose a computationally efficient method for nonparametric maximum likelihood estimation when the conditional intensity function, which characterizes the point process in its entirety, is assumed to be a Lipschitz continuous function but otherwise arbitrary. We show that by exploiting much structure, the problem becomes efficiently solvable. We next demonstrate a model selection procedure to estimate the Lipshitz parameter from data, akin to the minimum description length principle and demonstrate consistency of our estimator under appropriate assumptions. Finally, we illustrate the effectiveness of our method with simulated neural spiking data, goldfish retinal ganglion neural data, and activity recorded in CA1 hippocampal neurons from an awake behaving rat. For the simulated data set, our method uncovers a more compact representation of the conditional intensity function when it exists. For the goldfish and rat neural data sets, we show that our nonparametric method gives a superior absolute goodness-of-fit measure used for point processes than the most common parametric and splines-based approaches.

  19. ViSAPy: A Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms

    OpenAIRE

    Hagen, Espen; Ness, Torbjørn V.; Khosrowshahi, Amir; Sørensen, Christina; Fyhn, Marianne; Hafting, Torkel; Franke, Felix; Einevoll, Gaute T.

    2015-01-01

    Background: New, silicon-based multielectrodes comprising hundreds or more electrode contacts offer the possibility to record spike trains from thousands of neurons simultaneously. This potential cannot be realized unless accurate, reliable automated methods for spike sorting are developed, in turn requiring benchmarking data sets with known ground-truth spike times.New method: We here present a general simulation tool for computing benchmarking data for evaluation of spike-sorting algorithms...

  20. Effects of intestinal secretagogues and distension on small bowel myoelectric activity in fasted and fed conscious dogs

    Science.gov (United States)

    da Cunha Melo, J.; Summers, R. W.; Thompson, H. H.; Wingate, D. L.; Yanda, R.

    1981-01-01

    1. Defined jejunal segments were perfused with solutions of bile salts and of ricinoleic acid during fasting and after feeding in two groups of conscious dogs, one with the segment in continuity, and the other with a Thirty-Vella loop. Myoelectric activity was recorded from chronically implanted electrodes on the jejunal segment and also from the proximal and distal in situ bowel. 2. The results in both groups were identical. During fasting, migrating complexes were present in the segment, but were replaced by intermittent spike activity during chenodeoxycholate without and with ricinoleic acid perfusion. After food, when migrating complexes were replaced by intermittent spike activity, none of the solutions produced any consistent effect. 3. In fasted animals, low levels of distension (15 mmHg) interrupted the migrating complexes in the segment and induced intermittent spike activity which was similar to that seen with the secretagogues. The migrating complexes in the main bowel continued during distension. In fed animals, spike activity increased in the segment during distension at 25 mmHg and decreased in the main bowel. In both groups, distension of the segment to pressures between 37.5 and 50 mmHg abolished spike activity both in the distended segment and the main bowel in fasted and fed states, and, in fasted dogs, migrating complexes were also abolished. 4. These results demonstrate that the inhibitory intestino-intestinal reflex is mediated through extrinsic nerves and does not require an intact myenteric plexus, whereas the altered myoelectric activity induced by secretagogues is a local effect and does not spread to adjacent bowel through either intrinsic or extrinsic neural pathways. It seems likely that the local motor effect of secretagogues is a result of net secretion, producing distension to pressures below the threshold required to activate the intestino-intestinal reflex. PMID:7338821

  1. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    International Nuclear Information System (INIS)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S.; Santhakumar, Vijayalakshmi

    2013-01-01

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (E GABA ). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (g GABA-extra ) and experimentally identified, seizure-induced changes in g GABA-extra and E GABA influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40–100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30–40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing g GABA-extra reduced the frequency and coherence of FS-BC firing when E GABA was shunting (−74 mV), but failed to alter average FS-BC frequency when E GABA

  2. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    Energy Technology Data Exchange (ETDEWEB)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S. [Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States); Santhakumar, Vijayalakshmi, E-mail: santhavi@njms.rutgers.edu [Department of Neurology and Neurosciences, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States); Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, Newark, New Jersey 07103 (United States)

    2013-12-15

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (E{sub GABA}). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (g{sub GABA-extra}) and experimentally identified, seizure-induced changes in g{sub GABA-extra} and E{sub GABA} influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40–100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30–40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing g{sub GABA-extra} reduced the frequency and coherence of FS-BC firing when E{sub GABA} was shunting (−74 mV), but failed to alter average

  3. Fast Newton active appearance models

    NARCIS (Netherlands)

    Kossaifi, Jean; Tzimiropoulos, Georgios; Pantic, Maja

    2014-01-01

    Active Appearance Models (AAMs) are statistical models of shape and appearance widely used in computer vision to detect landmarks on objects like faces. Fitting an AAM to a new image can be formulated as a non-linear least-squares problem which is typically solved using iterative methods. Owing to

  4. Spike Sorting of Muscle Spindle Afferent Nerve Activity Recorded with Thin-Film Intrafascicular Electrodes

    Directory of Open Access Journals (Sweden)

    Milan Djilas

    2010-01-01

    Full Text Available Afferent muscle spindle activity in response to passive muscle stretch was recorded in vivo using thin-film longitudinal intrafascicular electrodes. A neural spike detection and classification scheme was developed for the purpose of separating activity of primary and secondary muscle spindle afferents. The algorithm is based on the multiscale continuous wavelet transform using complex wavelets. The detection scheme outperforms the commonly used threshold detection, especially with recordings having low signal-to-noise ratio. Results of classification of units indicate that the developed classifier is able to isolate activity having linear relationship with muscle length, which is a step towards online model-based estimation of muscle length that can be used in a closed-loop functional electrical stimulation system with natural sensory feedback.

  5. Spike sorting of muscle spindle afferent nerve activity recorded with thin-film intrafascicular electrodes.

    Science.gov (United States)

    Djilas, Milan; Azevedo-Coste, Christine; Guiraud, David; Yoshida, Ken

    2010-01-01

    Afferent muscle spindle activity in response to passive muscle stretch was recorded in vivo using thin-film longitudinal intrafascicular electrodes. A neural spike detection and classification scheme was developed for the purpose of separating activity of primary and secondary muscle spindle afferents. The algorithm is based on the multiscale continuous wavelet transform using complex wavelets. The detection scheme outperforms the commonly used threshold detection, especially with recordings having low signal-to-noise ratio. Results of classification of units indicate that the developed classifier is able to isolate activity having linear relationship with muscle length, which is a step towards online model-based estimation of muscle length that can be used in a closed-loop functional electrical stimulation system with natural sensory feedback.

  6. Identification of time-varying neural dynamics from spiking activities using Chebyshev polynomials.

    Science.gov (United States)

    Song Xu; Yang Li; Xudong Wang; Chan, Rosa H M

    2016-08-01

    Neural plasticity, elicited by processes such as development and learning, is an important biological attribute which can be viewed as a time-varying property of the nervous system. In this paper, we investigated the novel use of Chebyshev polynomials to estimate the changes in model parameters efficiently for time-varying dynamical systems with binary inputs and outputs. A forward orthogonal least square (FOLS) algorithm selected the significant model terms. Extensive simulations showed that the proposed algorithm identified the system changes more accurately in comparison with adaptive filter. This approach can be applied to identify not only gradual but also abrupt temporal evolutions of neural dynamics underlying nervous system activity with high sensitivity and accuracy by observing input and output spike trains only.

  7. Status of fast reactor activities in Russia

    International Nuclear Information System (INIS)

    Poplavski, V.M.; Ashurko, Yu.M.; Zverev, K.V.

    1998-01-01

    This paper outlines state-of-the-art of the Russian nuclear power as of 1997 and its prospects for the nearest future. Results of the BR-10, BOR-60 and BN-600 reactors operation are described, as well as activity of the Russian institutions on scientific and technological support of the BN-350 reactor. Analysis of current status of the BN-800 reactor South-Urals NPP and Beloyarskaya NPP designs is given in brief, as well as prospects of their construction and possible ways of fast reactor technology improvement. Studies on fast reactors now under way in Russia are described. (author)

  8. Operant conditioning of synaptic and spiking activity patterns in single hippocampal neurons.

    Science.gov (United States)

    Ishikawa, Daisuke; Matsumoto, Nobuyoshi; Sakaguchi, Tetsuya; Matsuki, Norio; Ikegaya, Yuji

    2014-04-02

    Learning is a process of plastic adaptation through which a neural circuit generates a more preferable outcome; however, at a microscopic level, little is known about how synaptic activity is patterned into a desired configuration. Here, we report that animals can generate a specific form of synaptic activity in a given neuron in the hippocampus. In awake, head-restricted mice, we applied electrical stimulation to the lateral hypothalamus, a reward-associated brain region, when whole-cell patch-clamped CA1 neurons exhibited spontaneous synaptic activity that met preset criteria. Within 15 min, the mice learned to generate frequently the excitatory synaptic input pattern that satisfied the criteria. This reinforcement learning of synaptic activity was not observed for inhibitory input patterns. When a burst unit activity pattern was conditioned in paired and nonpaired paradigms, the frequency of burst-spiking events increased and decreased, respectively. The burst reinforcement occurred in the conditioned neuron but not in other adjacent neurons; however, ripple field oscillations were concomitantly reinforced. Neural conditioning depended on activation of NMDA receptors and dopamine D1 receptors. Acutely stressed mice and depression model mice that were subjected to forced swimming failed to exhibit the neural conditioning. This learning deficit was rescued by repetitive treatment with fluoxetine, an antidepressant. Therefore, internally motivated animals are capable of routing an ongoing action potential series into a specific neural pathway of the hippocampal network.

  9. Population activity statistics dissect subthreshold and spiking variability in V1.

    Science.gov (United States)

    Bányai, Mihály; Koman, Zsombor; Orbán, Gergő

    2017-07-01

    variability. Our work shows that stimulus-dependent changes in pairwise but not in single-cell statistics can differentiate between two widely used models of neuronal variability. Contrasting model predictions with neuronal data provides hints on the noise sources in spiking and provides constraints on statistical models of population activity. Copyright © 2017 the American Physiological Society.

  10. Spiking neural network for recognizing spatiotemporal sequences of spikes

    International Nuclear Information System (INIS)

    Jin, Dezhe Z.

    2004-01-01

    Sensory neurons in many brain areas spike with precise timing to stimuli with temporal structures, and encode temporally complex stimuli into spatiotemporal spikes. How the downstream neurons read out such neural code is an important unsolved problem. In this paper, we describe a decoding scheme using a spiking recurrent neural network. The network consists of excitatory neurons that form a synfire chain, and two globally inhibitory interneurons of different types that provide delayed feedforward and fast feedback inhibition, respectively. The network signals recognition of a specific spatiotemporal sequence when the last excitatory neuron down the synfire chain spikes, which happens if and only if that sequence was present in the input spike stream. The recognition scheme is invariant to variations in the intervals between input spikes within some range. The computation of the network can be mapped into that of a finite state machine. Our network provides a simple way to decode spatiotemporal spikes with diverse types of neurons

  11. Characterizing neural activities evoked by manual acupuncture through spiking irregularity measures

    International Nuclear Information System (INIS)

    Xue Ming; Wang Jiang; Deng Bin; Wei Xi-Le; Yu Hai-Tao; Chen Ying-Yuan

    2013-01-01

    The neural system characterizes information in external stimulations by different spiking patterns. In order to examine how neural spiking patterns are related to acupuncture manipulations, experiments are designed in such a way that different types of manual acupuncture (MA) manipulations are taken at the ‘Zusanli’ point of experimental rats, and the induced electrical signals in the spinal dorsal root ganglion are detected and recorded. The interspike interval (ISI) statistical histogram is fitted by the gamma distribution, which has two parameters: one is the time-dependent firing rate and the other is a shape parameter characterizing the spiking irregularities. The shape parameter is the measure of spiking irregularities and can be used to identify the type of MA manipulations. The coefficient of variation is mostly used to measure the spike time irregularity, but it overestimates the irregularity in the case of pronounced firing rate changes. However, experiments show that each acupuncture manipulation will lead to changes in the firing rate. So we combine four relatively rate-independent measures to study the irregularity of spike trains evoked by different types of MA manipulations. Results suggest that the MA manipulations possess unique spiking statistics and characteristics and can be distinguished according to the spiking irregularity measures. These studies have offered new insights into the coding processes and information transfer of acupuncture. (interdisciplinary physics and related areas of science and technology)

  12. Spiking and bursting patterns of fractional-order Izhikevich model

    Science.gov (United States)

    Teka, Wondimu W.; Upadhyay, Ranjit Kumar; Mondal, Argha

    2018-03-01

    Bursting and spiking oscillations play major roles in processing and transmitting information in the brain through cortical neurons that respond differently to the same signal. These oscillations display complex dynamics that might be produced by using neuronal models and varying many model parameters. Recent studies have shown that models with fractional order can produce several types of history-dependent neuronal activities without the adjustment of several parameters. We studied the fractional-order Izhikevich model and analyzed different kinds of oscillations that emerge from the fractional dynamics. The model produces a wide range of neuronal spike responses, including regular spiking, fast spiking, intrinsic bursting, mixed mode oscillations, regular bursting and chattering, by adjusting only the fractional order. Both the active and silent phase of the burst increase when the fractional-order model further deviates from the classical model. For smaller fractional order, the model produces memory dependent spiking activity after the pulse signal turned off. This special spiking activity and other properties of the fractional-order model are caused by the memory trace that emerges from the fractional-order dynamics and integrates all the past activities of the neuron. On the network level, the response of the neuronal network shifts from random to scale-free spiking. Our results suggest that the complex dynamics of spiking and bursting can be the result of the long-term dependence and interaction of intracellular and extracellular ionic currents.

  13. Effects of the action of microwave-frequency electromagnetic radiation on the spike activity of neurons in the supraoptic nucleus of the hypothalamus in rats.

    Science.gov (United States)

    Minasyan, S M; Grigoryan, G Yu; Saakyan, S G; Akhumyan, A A; Kalantaryan, V P

    2007-02-01

    Acute experiments on white rats anesthetized with Nembutal (40 mg/kg, i.p.) were performed with extracellular recording and analysis of background spike activity from neurons in the supraoptic nucleus of the hypothalamus after exposure to electromagnetic radiation in the millimeter range. The distribution of neurons was determined in terms of the degree of regularity, the nature of the dynamics of neural streams, and the modalities of histograms of interspike intervals; the mean neuron spike frequency was calculated, along with the coefficient of variation of interspike intervals. These studies demonstrated changes in the background spike activity, predominantly affecting the internal structure of the spike streams recorded. The major changes were in the duration of interspike intervals and the degree of regularity of spike activity. Statistically significant changes in the mean spike frequencies of neuron populations in individual frequency ranges were also seen.

  14. Status of fast reactor activities in Brazil

    International Nuclear Information System (INIS)

    Menezes, Artur

    1996-01-01

    This text describes the present status of fast reactor activities in Brazil, emphasizing the strategies being used to preserve this reactor concept as a viable alternative for future electricity generation in the country. The program is mostly research-oriented and has the objective of establishing a consistent knowledge basis which can serve as a support for the transition to the activities more directly related to design, construction and operation of an experimental fast reactor. Due to the present economic difficulties, the program is still modest but it is gradually growing. A report which has been finalized in December, 1995 and submitted to the authorities indicates the existence of the grounds for enlarging and consolidating the program. (author)

  15. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia

    Science.gov (United States)

    Kim, Sung-Phil; Simeral, John D.; Hochberg, Leigh R.; Donoghue, John P.; Black, Michael J.

    2008-12-01

    Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor's velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding. Disclosure. JPD is the Chief Scientific Officer and a director of Cyberkinetics Neurotechnology Systems (CYKN); he holds stock and receives compensation. JDS has been a consultant for CYKN. LRH receives clinical trial support from CYKN.

  16. Auto-deleting brain machine interface: Error detection using spiking neural activity in the motor cortex.

    Science.gov (United States)

    Even-Chen, Nir; Stavisky, Sergey D; Kao, Jonathan C; Ryu, Stephen I; Shenoy, Krishna V

    2015-01-01

    Brain machine interfaces (BMIs) aim to assist people with paralysis by increasing their independence and ability to communicate, e.g., by using a cursor-based virtual keyboard. Current BMI clinical trials are hampered by modest performance that causes selection of wrong characters (errors) and thus reduces achieved typing rate. If it were possible to detect these errors without explicit knowledge of the task goal, this could be used to automatically "undo" wrong selections or even prevent upcoming wrong selections. We decoded imminent or recent errors during closed-loop BMI control from intracortical spiking neural activity. In our experiment, a non-human primate controlled a neurally-driven BMI cursor to acquire targets on a grid, which simulates a virtual keyboard. In offline analyses of this closed-loop BMI control data, we identified motor cortical neural signals indicative of task error occurrence. We were able to detect task outcomes (97% accuracy) and even predict upcoming task outcomes (86% accuracy) using neural activity alone. This novel strategy may help increase the performance and clinical viability of BMIs.

  17. Persistence and storage of activity patterns in spiking recurrent cortical networks:Modulation of sigmoid signals by after-hyperpolarization currents and acetylcholine

    Directory of Open Access Journals (Sweden)

    Jesse ePalma

    2012-06-01

    Full Text Available Many cortical networks contain recurrent architectures that transform input patterns before storing them in short-term memory (STM. Theorems in the 1970’s showed how feedback signal functions in rate-based recurrent on-center off-surround networks control this process. A sigmoid signal function induces a quenching threshold below which inputs are suppressed as noise and above which they are contrast-enhanced before pattern storage. This article describes how changes in feedback signaling, neuromodulation, and recurrent connectivity may alter pattern processing in recurrent on-center off-surround networks of spiking neurons. In spiking neurons, fast, medium, and slow after-hyperpolarization (AHP currents control sigmoid signal threshold and slope. Modulation of AHP currents by acetylcholine (ACh can change sigmoid shape and, with it, network dynamics. For example, decreasing signal function threshold and increasing slope can lengthen the persistence of a partially contrast-enhanced pattern, increase the number of active cells stored in STM, or, if connectivity is distance-dependent, cause cell activities to cluster. These results clarify how cholinergic modulation by the basal forebrain may alter the vigilance of category learning circuits, and thus their sensitivity to predictive mismatches, thereby controlling whether learned categories code concrete or abstract features, as predicted by Adaptive Resonance Theory. The analysis includes global, distance-dependent, and interneuron-mediated circuits. With an appropriate degree of recurrent excitation and inhibition, spiking networks maintain a partially contrast-enhanced pattern for 800 milliseconds or longer after stimuli offset, then resolve to no stored pattern, or to winner-take-all stored patterns with one or multiple winners. Strengthening inhibition prolongs a partially contrast-enhanced pattern by slowing the transition to stability, while strengthening excitation causes more winners

  18. Modeling activity-dependent plasticity in BCM spiking neural networks with application to human behavior recognition.

    Science.gov (United States)

    Meng, Yan; Jin, Yaochu; Yin, Jun

    2011-12-01

    Spiking neural networks (SNNs) are considered to be computationally more powerful than conventional NNs. However, the capability of SNNs in solving complex real-world problems remains to be demonstrated. In this paper, we propose a substantial extension of the Bienenstock, Cooper, and Munro (BCM) SNN model, in which the plasticity parameters are regulated by a gene regulatory network (GRN). Meanwhile, the dynamics of the GRN is dependent on the activation levels of the BCM neurons. We term the whole model "GRN-BCM." To demonstrate its computational power, we first compare the GRN-BCM with a standard BCM, a hidden Markov model, and a reservoir computing model on a complex time series classification problem. Simulation results indicate that the GRN-BCM significantly outperforms the compared models. The GRN-BCM is then applied to two widely used datasets for human behavior recognition. Comparative results on the two datasets suggest that the GRN-BCM is very promising for human behavior recognition, although the current experiments are still limited to the scenarios in which only one object is moving in the considered video sequences.

  19. A customizable stochastic state point process filter (SSPPF) for neural spiking activity.

    Science.gov (United States)

    Xin, Yao; Li, Will X Y; Min, Biao; Han, Yan; Cheung, Ray C C

    2013-01-01

    Stochastic State Point Process Filter (SSPPF) is effective for adaptive signal processing. In particular, it has been successfully applied to neural signal coding/decoding in recent years. Recent work has proven its efficiency in non-parametric coefficients tracking in modeling of mammal nervous system. However, existing SSPPF has only been realized in commercial software platforms which limit their computational capability. In this paper, the first hardware architecture of SSPPF has been designed and successfully implemented on field-programmable gate array (FPGA), proving a more efficient means for coefficient tracking in a well-established generalized Laguerre-Volterra model for mammalian hippocampal spiking activity research. By exploring the intrinsic parallelism of the FPGA, the proposed architecture is able to process matrices or vectors with random size, and is efficiently scalable. Experimental result shows its superior performance comparing to the software implementation, while maintaining the numerical precision. This architecture can also be potentially utilized in the future hippocampal cognitive neural prosthesis design.

  20. Recording Spikes Activity in Cultured Hippocampal Neurons Using Flexible or Transparent Graphene Transistors

    Directory of Open Access Journals (Sweden)

    Farida Veliev

    2017-08-01

    Full Text Available The emergence of nanoelectronics applied to neural interfaces has started few decades ago, and aims to provide new tools for replacing or restoring disabled functions of the nervous systems as well as further understanding the evolution of such complex organization. As the same time, graphene and other 2D materials have offered new possibilities for integrating micro and nano-devices on flexible, transparent, and biocompatible substrates, promising for bio and neuro-electronics. In addition to many bio-suitable features of graphene interface, such as, chemical inertness and anti-corrosive properties, its optical transparency enables multimodal approach of neuronal based systems, the electrical layer being compatible with additional microfluidics and optical manipulation ports. The convergence of these fields will provide a next generation of neural interfaces for the reliable detection of single spike and record with high fidelity activity patterns of neural networks. Here, we report on the fabrication of graphene field effect transistors (G-FETs on various substrates (silicon, sapphire, glass coverslips, and polyimide deposited onto Si/SiO2 substrates, exhibiting high sensitivity (4 mS/V, close to the Dirac point at VLG < VD and low noise level (10−22 A2/Hz, at VLG = 0 V. We demonstrate the in vitro detection of the spontaneous activity of hippocampal neurons in-situ-grown on top of the graphene sensors during several weeks in a millimeter size PDMS fluidics chamber (8 mm wide. These results provide an advance toward the realization of biocompatible devices for reliable and high spatio-temporal sensing of neuronal activity for both in vitro and in vivo applications.

  1. Gradient vector flow fast geometric active contours.

    Science.gov (United States)

    Paragios, Nikos; Mellina-Gottardo, Olivier; Ramesh, Visvanathan

    2004-03-01

    In this paper, we propose an edge-driven bidirectional geometric flow for boundary extraction. To this end, we combine the geodesic active contour flow and the gradient vector flow external force for snakes. The resulting motion equation is considered within a level set formulation, can deal with topological changes and important shape deformations. An efficient numerical schema is used for the flow implementation that exhibits robust behavior and has fast convergence rate. Promising results on real and synthetic images demonstrate the potentials of the flow.

  2. Effects of electrical stimulation at different locations in the central nucleus of amygdala on gastric motility and spike activity.

    Science.gov (United States)

    He, Feng; Ai, Hong-Bin

    2016-11-08

    The aim of the study was to determine the effects of electrical stimulation of different locations in the central nucleus of amygdala (CNA) on gastric motility and spike activity in dorsal vagal complex. Gastric motility index (GMI) and firing rate (FR) of dorsal vagal complex neurons were measured in adult Wistar rats respectively. Neuronal spikes in dorsal vagal complex (DVC) were recorded extracellularly with single-barrel glass microelectrodes. Each type of responses elicited by electrical stimulation in medial (CEM) and lateral (CEL) subdivisions of CNA were recorded, respectively. GMI was significantly increased after stimulation of CEM (pmNST) decreased by 31.6 % (pmNST increased (p<0.01) and that in DMNV decreased in response to CEL stimulation (p<0.05). In conclusions, our findings indicated that different loci of CNA may mediate differential effects on gastric activity via changes in the firing of brainstem neurons controlling gut activity.

  3. Dichotomous Effects of Mu Opioid Receptor Activation on Striatal Low-Threshold Spike Interneurons

    Directory of Open Access Journals (Sweden)

    Rasha Elghaba

    2017-12-01

    Full Text Available Striatal low-threshold spike interneurons (LTSIs are tonically active neurons that express GABA and nitric oxide synthase and are involved in information processing as well as neurovascular coupling. While mu opioid receptors (MORs and their ligand encephalin are prominent in the striatum, their action on LTSIs has not been investigated. We addressed this issue carrying out whole-cell recordings in transgenic mice in which the NPY-expressing neurons are marked with green fluorescent protein (GFP. The MOR agonist (D-Ala(2, N-MePhe(4, Gly-ol-enkephalin (DAMGO produced dual effects on subpopulations of LTSIs. DAMGO caused inhibitory effects, accompanied by decreases of spontaneous firing, in 62% of LTSIs, while depolarizing effects (accompanied by an increase in spontaneous firing were observed in 23% of LTSIs tested. The dual effects of DAMGO persisted in the presence of tetrodotoxin (TTX, a sodium channel blocker or in the presence of the nicotinic acetylcholine receptor antagonist mecamylamine. However, in the presence of either the GABAA receptor antagonist picrotoxin or the muscarinic cholinergic receptor antagonist atropine, DAMGO only elicited inhibitory effects on LTSIs. Furthermore, we found that DAMGO decreased the amplitude and frequency of spontaneous GABAergic events. Unexpectedly, these effects of DAMGO on spontaneous GABAergic events disappeared after blocking of the muscarinic and nicotinic cholinergic blockers, showing that GABA inputs to LTSIs are not directly modulated by presynaptic MORs. These finding suggest that activation of MORs affect LTSIs both directly and indirectly, through modulation of GABAergic and cholinergic tones. The complex balance between direct and indirect effects determines the net effect of DAMGO on LTSIs.

  4. Low and high gamma oscillations in rat ventral striatum have distinct relationships to behavior, reward, and spiking activity on a learned spatial decision task

    Directory of Open Access Journals (Sweden)

    Matthijs A A Van Der Meer

    2009-06-01

    Full Text Available Local field potential (LFP oscillations in the brain reflect organization thought to be important for perception, attention, movement, and memory. In the basal ganglia, including dorsal striatum, dysfunctional LFP states are associated with Parkinson’s disease, while in healthy subjects, dorsal striatal LFPs have been linked to decision-making processes. However, LFPs in ventral striatum have been less studied. We report that in rats running a spatial decision task, prominent gamma-50 (45-55 Hz and gamma-80 (70-85 Hz oscillations in ventral striatum had distinct relationships to behavior, task events, and spiking activity. Gamma-50 power increased sharply following reward delivery and before movement initiation, while in contrast, gamma-80 power ramped up gradually to reward locations. Gamma-50 power was low and contained little structure during early learning, but rapidly developed a stable pattern, while gamma-80 power was initially high before returning to a stable level within a similar timeframe. Putative fast-spiking interneurons (FSIs showed phase, firing rate, and coherence relationships with gamma-50 and gamma-80, indicating that the observed LFP patterns are locally relevant. Furthermore, in a number of FSIs such relationships were specific to gamma-50 or gamma-80, suggesting that partially distinct FSI populations mediate the effects of gamma-50 and gamma-80.

  5. SPIKY: a graphical user interface for monitoring spike train synchrony

    Science.gov (United States)

    Mulansky, Mario; Bozanic, Nebojsa

    2015-01-01

    Techniques for recording large-scale neuronal spiking activity are developing very fast. This leads to an increasing demand for algorithms capable of analyzing large amounts of experimental spike train data. One of the most crucial and demanding tasks is the identification of similarity patterns with a very high temporal resolution and across different spatial scales. To address this task, in recent years three time-resolved measures of spike train synchrony have been proposed, the ISI-distance, the SPIKE-distance, and event synchronization. The Matlab source codes for calculating and visualizing these measures have been made publicly available. However, due to the many different possible representations of the results the use of these codes is rather complicated and their application requires some basic knowledge of Matlab. Thus it became desirable to provide a more user-friendly and interactive interface. Here we address this need and present SPIKY, a graphical user interface that facilitates the application of time-resolved measures of spike train synchrony to both simulated and real data. SPIKY includes implementations of the ISI-distance, the SPIKE-distance, and the SPIKE-synchronization (an improved and simplified extension of event synchronization) that have been optimized with respect to computation speed and memory demand. It also comprises a spike train generator and an event detector that makes it capable of analyzing continuous data. Finally, the SPIKY package includes additional complementary programs aimed at the analysis of large numbers of datasets and the estimation of significance levels. PMID:25744888

  6. Hypocretin (orexin) regulates glutamate input to fast-spiking interneurons in layer V of the Fr2 region of the murine prefrontal cortex.

    Science.gov (United States)

    Aracri, Patrizia; Banfi, Daniele; Pasini, Maria Enrica; Amadeo, Alida; Becchetti, Andrea

    2015-05-01

    We studied the effect of hypocretin 1 (orexin A) in the frontal area 2 (Fr2) of the murine neocortex, implicated in the motivation-dependent goal-directed tasks. In layer V, hypocretin stimulated the spontaneous excitatory postsynaptic currents (EPSCs) on fast-spiking (FS) interneurons. The effect was accompanied by increased frequency of miniature EPSCs, indicating that hypocretin can target the glutamatergic terminals. Moreover, hypocretin stimulated the spontaneous inhibitory postsynaptic currents (IPSCs) on pyramidal neurons, with no effect on miniature IPSCs. This action was prevented by blocking 1) the ionotropic glutamatergic receptors; 2) the hypocretin receptor type 1 (HCRTR-1), with SB-334867. Finally, hypocretin increased the firing frequency in FS cells, and the effect was blocked when the ionotropic glutamate transmission was inhibited. Immunolocalization confirmed that HCRTR-1 is highly expressed in Fr2, particularly in layer V-VI. Conspicuous labeling was observed in pyramidal neuron somata and in VGLUT1+ glutamatergic terminals, but not in VGLUT2+ fibers (mainly thalamocortical afferents). The expression of HCRTR-1 in GABAergic structures was scarce. We conclude that 1) hypocretin regulates glutamate release in Fr2; 2) the effect presents a presynaptic component; 3) the peptide control of FS cells is indirect, and probably mediated by the regulation of glutamatergic input onto these cells. © The Author 2013. Published by Oxford University Press.

  7. Ablation of fast-spiking interneurons in the dorsal striatum, recapitulating abnormalities seen post-mortem in Tourette syndrome, produces anxiety and elevated grooming.

    Science.gov (United States)

    Xu, M; Li, L; Pittenger, C

    2016-06-02

    Tic disorders, including Tourette syndrome (TS), are thought to involve pathology of cortico-basal ganglia loops, but their pathology is not well understood. Post-mortem studies have shown a reduced number of several populations of striatal interneurons, including the parvalbumin-expressing fast-spiking interneurons (FSIs), in individuals with severe, refractory TS. We tested the causal role of this interneuronal deficit by recapitulating it in an otherwise normal adult mouse using a combination transgenic-viral cell ablation approach. FSIs were reduced bilaterally by ∼40%, paralleling the deficit found post-mortem. This did not produce spontaneous stereotypies or tic-like movements, but there was increased stereotypic grooming after acute stress in two validated paradigms. Stereotypy after amphetamine, in contrast, was not elevated. FSI ablation also led to increased anxiety-like behavior in the elevated plus maze, but not to alterations in motor learning on the rotorod or to alterations in prepulse inhibition, a measure of sensorimotor gating. These findings indicate that a striatal FSI deficit can produce stress-triggered repetitive movements and anxiety. These repetitive movements may recapitulate aspects of the pathophysiology of tic disorders. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections

    NARCIS (Netherlands)

    Xiong, Xiaoli; Tortorici, M Alejandra; Snijder, Joost|info:eu-repo/dai/nl/338018328; Yoshioka, Craig; Walls, Alexandra C; Li, Wentao|info:eu-repo/dai/nl/411296272; McGuire, Andrew T; Rey, Félix A; Bosch, Berend-Jan|info:eu-repo/dai/nl/273306049; Veesler, David

    2017-01-01

    Coronaviruses recently emerged as major human pathogens causing outbreaks of severe acute respiratory syndrome and Middle-East respiratory syndrome. They utilize the spike (S) glycoprotein anchored in the viral envelope to mediate host attachment and fusion of the viral and cellular membranes to

  9. The SARS coronavirus spike glycoprotein is selectively recognized by lung surfactant protein D and activates macrophages

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Zhong, Fei; Chow, Vincent T K

    2007-01-01

    The severe acute respiratory syndrome coronavirus (SARS-CoV) infects host cells with its surface glycosylated spike-protein (S-protein). Here we expressed the SARS-CoV S-protein to investigate its interactions with innate immune mechanisms in the lung. The purified S-protein was detected as a 210 k...

  10. The spatial structure of stimuli shapes the timescale of correlations in population spiking activity.

    Directory of Open Access Journals (Sweden)

    Ashok Litwin-Kumar

    Full Text Available Throughout the central nervous system, the timescale over which pairs of neural spike trains are correlated is shaped by stimulus structure and behavioral context. Such shaping is thought to underlie important changes in the neural code, but the neural circuitry responsible is largely unknown. In this study, we investigate a stimulus-induced shaping of pairwise spike train correlations in the electrosensory system of weakly electric fish. Simultaneous single unit recordings of principal electrosensory cells show that an increase in the spatial extent of stimuli increases correlations at short (≈ 10 ms timescales while simultaneously reducing correlations at long (≈ 100 ms timescales. A spiking network model of the first two stages of electrosensory processing replicates this correlation shaping, under the assumptions that spatially broad stimuli both saturate feedforward afferent input and recruit an open-loop inhibitory feedback pathway. Our model predictions are experimentally verified using both the natural heterogeneity of the electrosensory system and pharmacological blockade of descending feedback projections. For weak stimuli, linear response analysis of the spiking network shows that the reduction of long timescale correlation for spatially broad stimuli is similar to correlation cancellation mechanisms previously suggested to be operative in mammalian cortex. The mechanism for correlation shaping supports population-level filtering of irrelevant distractor stimuli, thereby enhancing the population response to relevant prey and conspecific communication inputs.

  11. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution.

    Directory of Open Access Journals (Sweden)

    Xue Han

    Full Text Available The quest to determine how precise neural activity patterns mediate computation, behavior, and pathology would be greatly aided by a set of tools for reliably activating and inactivating genetically targeted neurons, in a temporally precise and rapidly reversible fashion. Having earlier adapted a light-activated cation channel, channelrhodopsin-2 (ChR2, for allowing neurons to be stimulated by blue light, we searched for a complementary tool that would enable optical neuronal inhibition, driven by light of a second color. Here we report that targeting the codon-optimized form of the light-driven chloride pump halorhodopsin from the archaebacterium Natronomas pharaonis (hereafter abbreviated Halo to genetically-specified neurons enables them to be silenced reliably, and reversibly, by millisecond-timescale pulses of yellow light. We show that trains of yellow and blue light pulses can drive high-fidelity sequences of hyperpolarizations and depolarizations in neurons simultaneously expressing yellow light-driven Halo and blue light-driven ChR2, allowing for the first time manipulations of neural synchrony without perturbation of other parameters such as spiking rates. The Halo/ChR2 system thus constitutes a powerful toolbox for multichannel photoinhibition and photostimulation of virally or transgenically targeted neural circuits without need for exogenous chemicals, enabling systematic analysis and engineering of the brain, and quantitative bioengineering of excitable cells.

  12. Effects of potassium concentration on firing patterns of low-calcium epileptiform activity in anesthetized rat hippocampus: inducing of persistent spike activity.

    Science.gov (United States)

    Feng, Zhouyan; Durand, Dominique M

    2006-04-01

    It has been shown that a low-calcium high-potassium solution can generate ictal-like epileptiform activity in vitro and in vivo. Moreover, during status epileptiform activity, the concentration of [K+]o increases, and the concentration of [Ca2+]o decreases in brain tissue. Therefore we tested the hypothesis that long-lasting persistent spike activity, similar to one of the patterns of status epilepticus, could be generated by a high-potassium, low-calcium solution in the hippocampus in vivo. Artificial cerebrospinal fluid was perfused over the surface of the exposed left dorsal hippocampus of anesthetized rats. A stimulating electrode and a recording probe were placed in the CA1 region. By elevating K+ concentration from 6 to 12 mM in the perfusate solution, the typical firing pattern of low-calcium ictal bursts was transformed into persistent spike activity in the CA1 region with synaptic transmission being suppressed by calcium chelator EGTA. The activity was characterized by double spikes repeated at a frequency approximately 4 Hz that could last for >1 h. The analysis of multiple unit activity showed that both elevating [K+]o and lowering [Ca2+]o decreased the inhibition period after the response of paired-pulse stimulation, indicating a suppression of the after-hyperpolarization (AHP) activity. These results suggest that persistent status epilepticus-like spike activity can be induced by nonsynaptic mechanisms when synaptic transmission is blocked. The unique double-spike pattern of this activity is presumably caused by higher K+ concentration augmenting the frequency of typical low-calcium nonsynaptic burst activity.

  13. Cortico-Striatal Spike-Timing Dependent Plasticity After Activation of Subcortical Pathways

    OpenAIRE

    Schulz, Jan M.; Redgrave, Peter; Reynolds, John N. J.

    2010-01-01

    Cortico-striatal spike-timing dependent plasticity (STDP) is modulated by dopamine in vitro. The present study investigated STDP in vivo using alternative procedures for modulating dopaminergic inputs. Postsynaptic potentials (PSP) were evoked in intracellularly recorded spiny neurons by electrical stimulation of the contralateral motor cortex. PSPs often consisted of up to three distinct components, likely representing distinct cortico-striatal pathways. After baseline recording, bicucullin...

  14. The activity requirements for spike timing-dependent plasticity in the hippocampus

    Directory of Open Access Journals (Sweden)

    Katherine Buchanan

    2010-06-01

    Full Text Available Synaptic plasticity has historically been investigated most intensely in the hippocampus and therefore it is somewhat surprising that the majority of studies on spike timing-dependent plasticity (STDP have focused not in the hippocampus but on synapses in the cortex. One of the major reasons for this bias is the relative ease in obtaining paired electrophysiological recordings from synaptically coupled neurons in cortical slices, in comparison to hippocampal slices. Another less obvious reason has been the difficulty in achieving reliable STDP in the hippocampal slice preparation and confusion surrounding the conditions required. The original descriptions of STDP in the hippocampus was performed on paired recordings from neurons in dissociated or slice cultures utilising single pairs of presynaptic and postsynaptic spikes and were subsequently replicated in acute hippocampal slices. Further work in several laboratories using conditions that more closely replicate the situation in vivo revealed a requirement for multiple postsynaptic spikes that necessarily complicate the absolute timing rules for STDP. Here we review the hippocampal STDP literature focusing on data from acute hippocampal slice preparations and highlighting apparently contradictory results and the variations in experimental conditions that might account for the discrepancies. We conclude by relating the majority of the available experimental data to a model for STDP induction in the hippocampus based on a critical role for postsynaptic Ca2+ dynamics.

  15. Review of Fast Reactor Activities, March 1980

    International Nuclear Information System (INIS)

    Balz, W.

    1980-01-01

    As in previous years, a short outline of the major achievements made since the last IWGFR meeting is given in the following. On 18 February 1980 the Council of Ministers has approved a resolution in which they recognise the strategic importance of fast breeder reactors and the need to continue the efforts towards maintaining an effective fast breeder option in the Member States

  16. Collisional activation by the fast particle

    International Nuclear Information System (INIS)

    Hiraoka, Kenzo

    1996-01-01

    Collisional activation of the matter induced by the bombardment of the fast particle is summarized. The particle with the velocity higher than the Bohr velocity (transit time through 5A shorter than 2.5x10 -16 s) experiences the electronic stopping power when it passes through the matter and induces dense electronic excitations and ionizations which results in the heavy sputtering of the matter. This kind of activation is usefully applied in the PDMS. When the particle velocity becomes lower than the Bohr velocity, the energy is mainly deposited to the matter by the nuclear stopping power, i.e., energy loss is governed by the screened Coulombic collisions of the atoms giving rise to the momentum transfer to the target nuclei. When the transit time of the particle through 5A is between 2.5x10 -16 -10 -14 s, the electronic excitation and ionization take place by the collision. These phenomena are fully utilized in the FAB/SIMS and CID techniques. With the transit time in the range of 10 -14 -2.5x10 -13 s, the velocity is not high enough for the electronic excitation and the particle loses its energy mainly by the vibrational and phonon excitation of the target. This range of the velocity corresponds to that of the massive cluster impact ionization. With the velocity equal to or lower than 2.5x10 -13 s, the energy of the incident particle is consumed mainly by the phonon excitation and the collision results in the modest heating of the colliding interface between the projectile and the target. This range of the velocity is successfully used in the ionized cluster beam technique developed by Takagi of the Kyoto University. (author). 59 refs

  17. FAST

    DEFF Research Database (Denmark)

    Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.

    2012-01-01

    ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections...... with aqueous food extracts may be effective but has proven to be accompanied by too many anaphylactic side-effects. FAST aims to develop a safe alternative by replacing food extracts with hypoallergenic recombinant major allergens as the active ingredients of SIT. Both severe fish and peach allergy are caused...... in depth serological and cellular immune analyses will be performed, allowing identification of novel biomarkers for monitoring treatment efficacy. FAST aims at improving the quality of life of food allergic patients by providing a safe and effective treatment that will significantly lower their threshold...

  18. Decoding Lower Limb Muscle Activity and Kinematics from Cortical Neural Spike Trains during Monkey Performing Stand and Squat Movements

    Science.gov (United States)

    Ma, Xuan; Ma, Chaolin; Huang, Jian; Zhang, Peng; Xu, Jiang; He, Jiping

    2017-01-01

    Extensive literatures have shown approaches for decoding upper limb kinematics or muscle activity using multichannel cortical spike recordings toward brain machine interface (BMI) applications. However, similar topics regarding lower limb remain relatively scarce. We previously reported a system for training monkeys to perform visually guided stand and squat tasks. The current study, as a follow-up extension, investigates whether lower limb kinematics and muscle activity characterized by electromyography (EMG) signals during monkey performing stand/squat movements can be accurately decoded from neural spike trains in primary motor cortex (M1). Two monkeys were used in this study. Subdermal intramuscular EMG electrodes were implanted to 8 right leg/thigh muscles. With ample data collected from neurons from a large brain area, we performed a spike triggered average (SpTA) analysis and got a series of density contours which revealed the spatial distributions of different muscle-innervating neurons corresponding to each given muscle. Based on the guidance of these results, we identified the locations optimal for chronic electrode implantation and subsequently carried on chronic neural data recordings. A recursive Bayesian estimation framework was proposed for decoding EMG signals together with kinematics from M1 spike trains. Two specific algorithms were implemented: a standard Kalman filter and an unscented Kalman filter. For the latter one, an artificial neural network was incorporated to deal with the nonlinearity in neural tuning. High correlation coefficient and signal to noise ratio between the predicted and the actual data were achieved for both EMG signals and kinematics on both monkeys. Higher decoding accuracy and faster convergence rate could be achieved with the unscented Kalman filter. These results demonstrate that lower limb EMG signals and kinematics during monkey stand/squat can be accurately decoded from a group of M1 neurons with the proposed

  19. Interactions between procedural learning and cocaine exposure alter spontaneous and cortically-evoked spike activity in the dorsal striatum

    Directory of Open Access Journals (Sweden)

    Janie eOndracek

    2010-12-01

    Full Text Available We have previously shown that cocaine enhances gene regulation in the sensorimotor striatum associated with procedural learning in a running-wheel paradigm. Here we assessed whether cocaine produces enduring modifications of learning-related changes in striatal neuron activity, using single-unit recordings in anesthetized rats 1 day after the wheel training. Spontaneous and cortically-evoked spike activity was compared between groups treated with cocaine or vehicle immediately prior to the running-wheel training or placement in a locked wheel (control conditions. We found that wheel training in vehicle-treated rats increased the average firing rate of spontaneously active neurons without changing the relative proportion of active to quiescent cells. In contrast, in rats trained under the influence of cocaine, the proportion of spontaneously firing to quiescent cells was significantly greater than in vehicle-treated, trained rats. However, this effect was associated with a lower average firing rate in these spontaneously active cells, suggesting that training under the influence of cocaine recruited additional low-firing cells. Measures of cortically-evoked activity revealed a second interaction between cocaine treatment and wheel training, namely, a cocaine-induced decrease in spike onset latency in control rats (locked wheel. This facilitatory effect of cocaine was abolished when rats trained in the running wheel during cocaine action. These findings highlight important interactions between cocaine and procedural learning, which act to modify population firing activity and the responsiveness of striatal neurons to excitatory inputs. Moreover, these effects were found 24 hours after the training and last drug exposure indicating that cocaine exposure during the learning phase triggers long-lasting changes in synaptic plasticity in the dorsal striatum. Such changes may contribute to the transition from recreational to habitual or compulsive drug

  20. Design of node record for fast active reflector

    International Nuclear Information System (INIS)

    Wu Wenqing; Luo Mingcheng; Tang Pengyi; Liu Jiajing; Wang Jian

    2014-01-01

    Active Reflector is the one of the innovations of Five hundred meter Aperture Spherical Telescope (FAST) whose performance touches on that of the overall telescope. Therefore a real time control system is needed by the Active Reflector System. In this paper, a new record type-node record is designed for EPICS-based active reflector control system of FAST, according to more than 2000 controlled node, which will be convenient for node management of IOC and prove the reusage of IOC codes. The record type is used in design of active reflector control system of FAST Miyun model. (authors)

  1. Comparative hygienic assessment of active ingredients content in the air environment after treatment of cereal spiked crops by combined fungicides.

    Science.gov (United States)

    Kondratiuk, Mykola; Blagaia, Anna; Pelo, Ihor

    2018-01-01

    Introduction: The quality of the air environment significantly affects the health of the population. Chemical plant protection products in the spring and summer time may be the main pollutants of the air environment in rural areas. Chemical plant protection products are dangerous substances of anthropogenic origin. If applying pesticides in high concentrations, the risk of poisoning by active ingredients of pesticide preparations in workers directly contacting with it increases. The aim: Comparative hygienic assessment of active ingredients content in the air environment after treatment of cereal spiked crops by combined fungicides was the aim of the work. Materials and methods: Active ingredients of the studied combined fungicides, samples of air, and swabs from workers' skin and stripes from overalls were materials of the research. Methods of full-scale in-field hygienic experiment, gas-liquid chromatography, high-performance liquid chromatography, as well as statistical and bibliographic methods were used in the research. Results and conclusions: Active ingredients of the studied combined fungicides were not detected in the working zone air and atmospheric air at the levels exceeding the limits of its detection by appropriate chromatography methods. Findings confirmed the air environment safety for agricultural workers and rural population if studied combined fungicides are applied following the hygienically approved suggested application rates and in accordance of good agricultural practice rules. However the possible complex risk for workers after certain studied fungicides application may be higher than acceptable due to the elevated values for dermal effects. The complex risk was higher than acceptable in еру case of aerial spraying of both studied fungicides, meanwhile only one combination of active ingredients revealed possible risk for workers applying fungicides by rod method of cereal spiked crops treatment.

  2. A reanalysis of “Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons” [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Rainer Engelken

    2016-08-01

    Full Text Available Neuronal activity in the central nervous system varies strongly in time and across neuronal populations. It is a longstanding proposal that such fluctuations generically arise from chaotic network dynamics. Various theoretical studies predict that the rich dynamics of rate models operating in the chaotic regime can subserve circuit computation and learning. Neurons in the brain, however, communicate via spikes and it is a theoretical challenge to obtain similar rate fluctuations in networks of spiking neuron models. A recent study investigated spiking balanced networks of leaky integrate and fire (LIF neurons and compared their dynamics to a matched rate network with identical topology, where single unit input-output functions were chosen from isolated LIF neurons receiving Gaussian white noise input. A mathematical analogy between the chaotic instability in networks of rate units and the spiking network dynamics was proposed. Here we revisit the behavior of the spiking LIF networks and these matched rate networks. We find expected hallmarks of a chaotic instability in the rate network: For supercritical coupling strength near the transition point, the autocorrelation time diverges. For subcritical coupling strengths, we observe critical slowing down in response to small external perturbations. In the spiking network, we found in contrast that the timescale of the autocorrelations is insensitive to the coupling strength and that rate deviations resulting from small input perturbations rapidly decay. The decay speed even accelerates for increasing coupling strength. In conclusion, our reanalysis demonstrates fundamental differences between the behavior of pulse-coupled spiking LIF networks and rate networks with matched topology and input-output function. In particular there is no indication of a corresponding chaotic instability in the spiking network.

  3. FAST

    Science.gov (United States)

    Nathavitharana, R R; Daru, P; Barrera, A E; Mostofa Kamal, S M; Islam, S; Ul-Alam, M; Sultana, R; Rahman, M; Hossain, Md S; Lederer, P; Hurwitz, S; Chakraborty, K; Kak, N; Tierney, D B; Nardell, E

    2017-09-01

    National Institute of Diseases of the Chest and Hospital, Dhaka; Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Dhaka; and Chittagong Chest Disease Hospital, Chittagong, Bangladesh. To present operational data and discuss the challenges of implementing FAST (Find cases Actively, Separate safely and Treat effectively) as a tuberculosis (TB) transmission control strategy. FAST was implemented sequentially at three hospitals. Using Xpert® MTB/RIF, 733/6028 (12.2%, 95%CI 11.4-13.0) patients were diagnosed with unsuspected TB. Patients with a history of TB who were admitted with other lung diseases had more than twice the odds of being diagnosed with unsuspected TB as those with no history of TB (OR 2.6, 95%CI 2.2-3.0, P stakeholder engagement and laboratory capacity are important for sustainability and scalability.

  4. Tritium uptake in rainbow trout (Oncorhynchus mykiss): HTO and OBT-spiked feed exposures simultaneously

    International Nuclear Information System (INIS)

    Kim, S.B.; Shultz, C.; Stuart, M.; Festarini, A.

    2015-01-01

    There is currently considerable interest in organically bound tritium (OBT) formation in edible fish. The major questions revolve around whether or not tritium can accumulate in fish after being released into aquatic environments. Since OBT formation rates in large, edible fish are poorly understood, rainbow trout (Oncorhynchus mykiss) studies, where fish were simultaneously exposed to tritiated water (HTO) and OBT-spiked feed over 130 days, were conducted to evaluate tritium uptake. The measured HTO activity concentrations in fish tissue confirmed that HTO in fish tissue equilibrates quickly with HTO in tank water. The data obtained also confirmed that OBT uptake is faster when fish are ingesting OBT-spiked feed compared to when fish are living in tritiated water (and consuming non-OBT-spiked feed). The difference between the two exposure types is such that the groups exposed to tritiated water and OBT-spiked feed simultaneously were showing the same uptake rates as OBT-spiked feed only exposures. Contrary to what was expected, the rate of OBT uptake (from OBT-spiked feed) seemed to be higher in slow growing fish compared to fast growing fish. Another observation from these studies was that OBT activity concentrations in all organs (viscera) had a tendency to be higher than OBT activity concentrations measured in fish flesh. - Highlights: • Edible size of rainbow trout (Oncorhynchus mykiss) were simultaneously exposed to tritiated water (HTO) and OBT-spiked feed over 130 days. • OBT uptake is faster when fish are ingesting OBT-spiked feed compared to when fish are living in tritiated water (and consuming non-OBT-spiked feed). • The rate of OBT uptake (from OBT-spiked feed) seemed to be higher in slow growing fish compared to fast growing fish

  5. Research activities on fast reactors in Switzerland

    International Nuclear Information System (INIS)

    Brogli, R.; Dones, R.; Hudina, M.; Pelloni, S.

    1996-01-01

    The current domestic Swiss electricity supply is primarily based on hydro power (approximately 61%) and nuclear power (about 37%). The contribution of fossil systems is, consequently, minimal (the remaining 2%). In addition, long-term (but limited in time) contracts exist, securing imports of electricity of nuclear origin from France. During the last two years, the electricity consumption has been almost stagnant, although the 80s recorded an average annual increase rate of 2.7%. The future development of the electricity demand is a complex function of several factors with possibly competing effects, like increased efficiency of applications, changes in the industrial structure of the country, increase of population, further automation of industrial processes and services. Due to decommissioning of the currently operating nuclear power plants and expiration of long-term electricity import contracts there will eventually open a gap between the postulated electricity demand and the base supply. The assumed projected demand cases, high and low, as well as the secured yearly electric energy supply are shown. The physics aspects of plutonium burning fast reactor configurations are described including first results of the CIRANO experimental program. Swiss research related to residual heat removal in fast breeder reactors is presented. It consists of experimental ana analytic investigations on the mixing between two horizontal fluid layers of different velocities and temperatures. Development of suitable computer codes for mixing layer calculation are aimed to accurately predict the flow and temperature distribution in the pools. A satisfactory codes validation based on experimental data should be done

  6. FastStats: Exercise or Physical Activity

    Science.gov (United States)

    ... this? Submit What's this? Submit Button NCHS Home Exercise or Physical Activity Recommend on Facebook Tweet Share ... 2012 Trends in Adults Receiving a Recommendation for Exercise or Other Physical Activity From a Physician or ...

  7. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research.

    Science.gov (United States)

    Simmons, Graham; Zmora, Pawel; Gierer, Stefanie; Heurich, Adeline; Pöhlmann, Stefan

    2013-12-01

    The severe acute respiratory syndrome (SARS) pandemic revealed that zoonotic transmission of animal coronaviruses (CoV) to humans poses a significant threat to public health and warrants surveillance and the development of countermeasures. The activity of host cell proteases, which cleave and activate the SARS-CoV spike (S) protein, is essential for viral infectivity and constitutes a target for intervention. However, the identities of the proteases involved have been unclear. Pioneer studies identified cathepsins and type II transmembrane serine proteases as cellular activators of SARS-CoV and demonstrated that several emerging viruses might exploit these enzymes to promote their spread. Here, we will review the proteolytic systems hijacked by SARS-CoV for S protein activation, we will discuss their contribution to viral spread in the host and we will outline antiviral strategies targeting these enzymes. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses.'' Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering

    Directory of Open Access Journals (Sweden)

    Oliynyk Andriy

    2012-08-01

    Full Text Available Abstract Background Understanding how neurons contribute to perception, motor functions and cognition requires the reliable detection of spiking activity of individual neurons during a number of different experimental conditions. An important problem in computational neuroscience is thus to develop algorithms to automatically detect and sort the spiking activity of individual neurons from extracellular recordings. While many algorithms for spike sorting exist, the problem of accurate and fast online sorting still remains a challenging issue. Results Here we present a novel software tool, called FSPS (Fuzzy SPike Sorting, which is designed to optimize: (i fast and accurate detection, (ii offline sorting and (iii online classification of neuronal spikes with very limited or null human intervention. The method is based on a combination of Singular Value Decomposition for fast and highly accurate pre-processing of spike shapes, unsupervised Fuzzy C-mean, high-resolution alignment of extracted spike waveforms, optimal selection of the number of features to retain, automatic identification the number of clusters, and quantitative quality assessment of resulting clusters independent on their size. After being trained on a short testing data stream, the method can reliably perform supervised online classification and monitoring of single neuron activity. The generalized procedure has been implemented in our FSPS spike sorting software (available free for non-commercial academic applications at the address: http://www.spikesorting.com using LabVIEW (National Instruments, USA. We evaluated the performance of our algorithm both on benchmark simulated datasets with different levels of background noise and on real extracellular recordings from premotor cortex of Macaque monkeys. The results of these tests showed an excellent accuracy in discriminating low-amplitude and overlapping spikes under strong background noise. The performance of our method is

  9. Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering.

    Science.gov (United States)

    Oliynyk, Andriy; Bonifazzi, Claudio; Montani, Fernando; Fadiga, Luciano

    2012-08-08

    Understanding how neurons contribute to perception, motor functions and cognition requires the reliable detection of spiking activity of individual neurons during a number of different experimental conditions. An important problem in computational neuroscience is thus to develop algorithms to automatically detect and sort the spiking activity of individual neurons from extracellular recordings. While many algorithms for spike sorting exist, the problem of accurate and fast online sorting still remains a challenging issue. Here we present a novel software tool, called FSPS (Fuzzy SPike Sorting), which is designed to optimize: (i) fast and accurate detection, (ii) offline sorting and (iii) online classification of neuronal spikes with very limited or null human intervention. The method is based on a combination of Singular Value Decomposition for fast and highly accurate pre-processing of spike shapes, unsupervised Fuzzy C-mean, high-resolution alignment of extracted spike waveforms, optimal selection of the number of features to retain, automatic identification the number of clusters, and quantitative quality assessment of resulting clusters independent on their size. After being trained on a short testing data stream, the method can reliably perform supervised online classification and monitoring of single neuron activity. The generalized procedure has been implemented in our FSPS spike sorting software (available free for non-commercial academic applications at the address: http://www.spikesorting.com) using LabVIEW (National Instruments, USA). We evaluated the performance of our algorithm both on benchmark simulated datasets with different levels of background noise and on real extracellular recordings from premotor cortex of Macaque monkeys. The results of these tests showed an excellent accuracy in discriminating low-amplitude and overlapping spikes under strong background noise. The performance of our method is competitive with respect to other robust spike

  10. Activation of fast-twitch fibers assessed with twitch potentiation.

    Science.gov (United States)

    Sasaki, Kazushige; Tomioka, Yukie; Ishii, Naokata

    2012-08-01

    The augmentation of twitch response following brief muscle activation, called twitch potentiation, has been shown to be much more pronounced in fast-twitch than in slow-twitch fibers. We thus explored the possibility of twitch potentiation as a noninvasive measure of fast-twitch fiber activation, by studying its dependence on the intensity of preceding contraction. Twitch contraction of plantar flexor muscles was evoked with supramaximal stimulation of the posterior tibial nerve, before and immediately after 6-s voluntary contractions at intensities of 10-100% of maximal voluntary contraction (MVC). Except for low-intensity contractions (twitch potentiation, the magnitude of which increased with increasing contraction intensity (P twitch potentiation reflects the activation of fast-twitch fibers during a brief contraction. Copyright © 2012 Wiley Periodicals, Inc.

  11. Activation measurements for fast neutrons. Part E. Evaluation of fast neutron 63Ni transmission factors

    International Nuclear Information System (INIS)

    Egbert, Stephen D.

    2005-01-01

    The 63 Ni measurements for fast neutrons in copper samples are compared to the calculated free-in-air 63 Ni neutron activation given in Chapter 3 by use of transmission factors. Transmission factors were calculated to account for the modification of the fluence and activation at each sample's in situ location. For the purposes of this discussion, the transmission factor (TF) is defined as the ratio of the in situ sample activation divided by the untilted free-in-air (FIA) activation at a height of 1 m above ground at the same ground range. Examples of the application of TF's will be provided in this section. (author)

  12. fMRI activation during spike and wave discharges evoked by photic stimulation

    DEFF Research Database (Denmark)

    Moeller, Friederike; Siebner, Hartwig R; Ahlgrimm, Nils

    2009-01-01

    Photoparoxysmal response (PPR) is an electroencephalographic (EEG) trait characterized by the occurrence of epileptiform discharges in response to visual stimulation. Studying this trait helps to learn about mechanisms of epileptogenicity. While simultaneous recordings of EEG and functional MRI...... intermittent photic stimulation (IPS) in a 3 T MR scanner. PPR was elicited in 6 subjects, four diagnosed with idiopathic generalised epilepsy and two with tension-type headache. Because PPR is preceded by synchronization of cortical gamma oscillations, blood oxygenation level-dependent (BOLD) signal changes...... were analysed at the onset of the PPR (standard regressor) and 3 s before the onset of PPR (early regressor) in one model. In all subjects, IPS led to a significant activation of the visual cortex. Based on the early regressor, PPR associated activation was found in the parietal cortex adjacent...

  13. The dynamic relationship between cerebellar Purkinje cell simple spikes and the spikelet number of complex spikes.

    Science.gov (United States)

    Burroughs, Amelia; Wise, Andrew K; Xiao, Jianqiang; Houghton, Conor; Tang, Tianyu; Suh, Colleen Y; Lang, Eric J; Apps, Richard; Cerminara, Nadia L

    2017-01-01

    Purkinje cells are the sole output of the cerebellar cortex and fire two distinct types of action potential: simple spikes and complex spikes. Previous studies have mainly considered complex spikes as unitary events, even though the waveform is composed of varying numbers of spikelets. The extent to which differences in spikelet number affect simple spike activity (and vice versa) remains unclear. We found that complex spikes with greater numbers of spikelets are preceded by higher simple spike firing rates but, following the complex spike, simple spikes are reduced in a manner that is graded with spikelet number. This dynamic interaction has important implications for cerebellar information processing, and suggests that complex spike spikelet number may maintain Purkinje cells within their operational range. Purkinje cells are central to cerebellar function because they form the sole output of the cerebellar cortex. They exhibit two distinct types of action potential: simple spikes and complex spikes. It is widely accepted that interaction between these two types of impulse is central to cerebellar cortical information processing. Previous investigations of the interactions between simple spikes and complex spikes have mainly considered complex spikes as unitary events. However, complex spikes are composed of an initial large spike followed by a number of secondary components, termed spikelets. The number of spikelets within individual complex spikes is highly variable and the extent to which differences in complex spike spikelet number affects simple spike activity (and vice versa) remains poorly understood. In anaesthetized adult rats, we have found that Purkinje cells recorded from the posterior lobe vermis and hemisphere have high simple spike firing frequencies that precede complex spikes with greater numbers of spikelets. This finding was also evident in a small sample of Purkinje cells recorded from the posterior lobe hemisphere in awake cats. In addition

  14. Self-organization of firing activities in monkey's motor cortex: trajectory computation from spike signals.

    Science.gov (United States)

    Lin, S; Si, J; Schwartz, A B

    1997-04-01

    The population vector method has been developed to combine the simultaneous direction-related activities of a population of motor cortical neurons to predict the trajectory of the arm movement. In this article, we consider a self-organizing model of a neural representation of the arm trajectory based on neuronal discharge rates. As self-organizing feature map (SOFM) is used to select the optimal set of weights in the model to determine the contribution of an individual neuron to an overall movement representation. The correspondence between movement directions and discharge patterns of the motor cortical neurons is established in the output map. The topology-preserving property of the SOFM is used to analyze the recorded data of a behaving monkey. The data used in this analysis were taken while the monkey was tracing spirals and doing center-->out movements. The arm trajectory could be well predicted using such a statistical model based on the motor cortex neuronal firing information. The SOFM method is compared with the population vector method, which extracts information related to trajectory by assuming that each cell has a fixed preferred direction during the task. This implies that these cells are acting along lines labeled only for direction. However, extradirectional information is carried in these cell responses. The SOFM has the capability of extracting not only direction-related information but also other parameters that are consistently represented in the activity of the recorded population of cells.

  15. Parallel optical control of spatiotemporal neuronal spike activity using high-frequency digital light processingtechnology

    Directory of Open Access Journals (Sweden)

    Jason eJerome

    2011-08-01

    Full Text Available Neurons in the mammalian neocortex receive inputs from and communicate back to thousands of other neurons, creating complex spatiotemporal activity patterns. The experimental investigation of these parallel dynamic interactions has been limited due to the technical challenges of monitoring or manipulating neuronal activity at that level of complexity. Here we describe a new massively parallel photostimulation system that can be used to control action potential firing in in vitro brain slices with high spatial and temporal resolution while performing extracellular or intracellular electrophysiological measurements. The system uses Digital-Light-Processing (DLP technology to generate 2-dimensional (2D stimulus patterns with >780,000 independently controlled photostimulation sites that operate at high spatial (5.4 µm and temporal (>13kHz resolution. Light is projected through the quartz-glass bottom of the perfusion chamber providing access to a large area (2.76 x 2.07 mm2 of the slice preparation. This system has the unique capability to induce temporally precise action potential firing in large groups of neurons distributed over a wide area covering several cortical columns. Parallel photostimulation opens up new opportunities for the in vitro experimental investigation of spatiotemporal neuronal interactions at a broad range of anatomical scales.

  16. Metabolic adaptation to intermittent fasting is independent of peroxisome proliferator-activated receptor alpha

    Directory of Open Access Journals (Sweden)

    Guolin Li

    2018-01-01

    Conclusions: These findings indicate that PPARA activation prior to acute fasting cannot ameliorate fasting-induced hepatic steatosis, whereas EODF induced metabolic adaptations to protect against fasting-induced steatosis without altering PPARA signaling. Therefore, PPARA activation does not mediate the metabolic adaptation to fasting, at least in preventing acute fasting-induced steatosis.

  17. Elemental analysis of fertilizer by fast neutron activation

    International Nuclear Information System (INIS)

    Bodart, F.; Deconninck, G.

    1977-01-01

    A simple and accurate technique has been developed to analyse commercial fertilizers for phosphorus, potassium, chlorine, magnesium and silicon. The method is based on fast-neutron activation using a neutron flux of 2x10 11 neutrons/second. The optimum analytical conditions are tabulated. After irradiation, the sample is measured on a conventional counting system including a Ge(Li) detector (10% efficiency and 2 keV resolution for 60 Co) and a multichannel analyser. Monitor foils radioactivity are measured separately at the same time with a 2''x2''NaI detector coupled with a single channel analyser and a scaler. Fast neutron activation has proved to be a fast, simple, reliable and low cost analytical technique for the determination of phosphorus, silicon, potassium, magnesium and chlorine in fertilizers. Not less than five phosphorus determinations are possible in one hour, while two potassium, magnesium and chlorine determinations are made at the same time. (T.G.)

  18. Glycemic allostasis during mental activities on fasting in non alcohol ...

    African Journals Online (AJOL)

    Glycemic allostasis is the process by which blood glucose stabilization is achieved through the balancing of glucose consumption rate and release into the blood stream under a variety of stressors.This paper reviews findings on the dynamics of glycemic levels during mental activities on fasting in non‑alcohol users and ...

  19. Temporally coordinated spiking activity of human induced pluripotent stem cell-derived neurons co-cultured with astrocytes.

    Science.gov (United States)

    Kayama, Tasuku; Suzuki, Ikuro; Odawara, Aoi; Sasaki, Takuya; Ikegaya, Yuji

    2018-01-01

    In culture conditions, human induced-pluripotent stem cells (hiPSC)-derived neurons form synaptic connections with other cells and establish neuronal networks, which are expected to be an in vitro model system for drug discovery screening and toxicity testing. While early studies demonstrated effects of co-culture of hiPSC-derived neurons with astroglial cells on survival and maturation of hiPSC-derived neurons, the population spiking patterns of such hiPSC-derived neurons have not been fully characterized. In this study, we analyzed temporal spiking patterns of hiPSC-derived neurons recorded by a multi-electrode array system. We discovered that specific sets of hiPSC-derived neurons co-cultured with astrocytes showed more frequent and highly coherent non-random synchronized spike trains and more dynamic changes in overall spike patterns over time. These temporally coordinated spiking patterns are physiological signs of organized circuits of hiPSC-derived neurons and suggest benefits of co-culture of hiPSC-derived neurons with astrocytes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Improved SpikeProp for Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Falah Y. H. Ahmed

    2013-01-01

    Full Text Available A spiking neurons network encodes information in the timing of individual spike times. A novel supervised learning rule for SpikeProp is derived to overcome the discontinuities introduced by the spiking thresholding. This algorithm is based on an error-backpropagation learning rule suited for supervised learning of spiking neurons that use exact spike time coding. The SpikeProp is able to demonstrate the spiking neurons that can perform complex nonlinear classification in fast temporal coding. This study proposes enhancements of SpikeProp learning algorithm for supervised training of spiking networks which can deal with complex patterns. The proposed methods include the SpikeProp particle swarm optimization (PSO and angle driven dependency learning rate. These methods are presented to SpikeProp network for multilayer learning enhancement and weights optimization. Input and output patterns are encoded as spike trains of precisely timed spikes, and the network learns to transform the input trains into target output trains. With these enhancements, our proposed methods outperformed other conventional neural network architectures.

  1. Activity and population dynamics of heterotrophic and ammonia-oxidizing microorganisms in soil surrounding sludge bands spiked with linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Brandt, K. K.; Sørensen, J.; Krogh, P. H.

    2003-01-01

    in a sandy soil surrounding well-defined sludge bands spiked with high but realistic LAS levels (7.1 or 31.3 g/kg). Surprisingly, LAS had no effect on heterotrophic respiration in the sludge compartment per se but stimulated activity and metabolic quotient (microbial activity per unit of biomass......Recent research has documented soil microorganisms to be rather sensitive to linear alkylbenzene sulfonates (LAS), which may enter the soil environment in considerable quantities following sewage sludge disposal. We here report field effects of LAS on selected microbial populations present......) in the surrounding soil. By contrast, autotrophic ammonia oxidation was initially inhibited in the LAS-spiked sludge. This led to dramatic transient increases of NH+4 availability in the sludge and surrounding soil, subsequently stimulating soil ammonia oxidizers. As judged from a Nitrosomonas europaea...

  2. A Scalable Weight-Free Learning Algorithm for Regulatory Control of Cell Activity in Spiking Neuronal Networks.

    Science.gov (United States)

    Zhang, Xu; Foderaro, Greg; Henriquez, Craig; Ferrari, Silvia

    2018-03-01

    Recent developments in neural stimulation and recording technologies are providing scientists with the ability of recording and controlling the activity of individual neurons in vitro or in vivo, with very high spatial and temporal resolution. Tools such as optogenetics, for example, are having a significant impact in the neuroscience field by delivering optical firing control with the precision and spatiotemporal resolution required for investigating information processing and plasticity in biological brains. While a number of training algorithms have been developed to date for spiking neural network (SNN) models of biological neuronal circuits, exiting methods rely on learning rules that adjust the synaptic strengths (or weights) directly, in order to obtain the desired network-level (or functional-level) performance. As such, they are not applicable to modifying plasticity in biological neuronal circuits, in which synaptic strengths only change as a result of pre- and post-synaptic neuron firings or biological mechanisms beyond our control. This paper presents a weight-free training algorithm that relies solely on adjusting the spatiotemporal delivery of neuron firings in order to optimize the network performance. The proposed weight-free algorithm does not require any knowledge of the SNN model or its plasticity mechanisms. As a result, this training approach is potentially realizable in vitro or in vivo via neural stimulation and recording technologies, such as optogenetics and multielectrode arrays, and could be utilized to control plasticity at multiple scales of biological neuronal circuits. The approach is demonstrated by training SNNs with hundreds of units to control a virtual insect navigating in an unknown environment.

  3. Point-process analysis of neural spiking activity of muscle spindles recorded from thin-film longitudinal intrafascicular electrodes.

    Science.gov (United States)

    Citi, Luca; Djilas, Milan; Azevedo-Coste, Christine; Yoshida, Ken; Brown, Emery N; Barbieri, Riccardo

    2011-01-01

    Recordings from thin-film Longitudinal Intra-Fascicular Electrodes (tfLIFE) together with a wavelet-based de-noising and a correlation-based spike sorting algorithm, give access to firing patterns of muscle spindle afferents. In this study we use a point process probability structure to assess mechanical stimulus-response characteristics of muscle spindle spike trains. We assume that the stimulus intensity is primarily a linear combination of the spontaneous firing rate, the muscle extension, and the stretch velocity. By using the ability of the point process framework to provide an objective goodness of fit analysis, we were able to distinguish two classes of spike clusters with different statistical structure. We found that spike clusters with higher SNR have a temporal structure that can be fitted by an inverse Gaussian distribution while lower SNR clusters follow a Poisson-like distribution. The point process algorithm is further able to provide the instantaneous intensity function associated with the stimulus-response model with the best goodness of fit. This important result is a first step towards a point process decoding algorithm to estimate the muscle length and possibly provide closed loop Functional Electrical Stimulation (FES) systems with natural sensory feedback information.

  4. Transportable, Low-Dose Active Fast-Neutron Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mihalczo, John T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wright, Michael C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McConchie, Seth M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Archer, Daniel E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Palles, Blake A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    This document contains a description of the method of transportable, low-dose active fast-neutron imaging as developed by ORNL. The discussion begins with the technique and instrumentation and continues with the image reconstruction and analysis. The analysis discussion includes an example of how a gap smaller than the neutron production spot size and detector size can be detected and characterized depending upon the measurement time.

  5. Quantitative Comparative Analysis of the Bio-Active and Toxic Constituents of Leaves and Spikes of Schizonepeta tenuifolia at Different Harvesting Times

    Directory of Open Access Journals (Sweden)

    Anwei Ding

    2011-10-01

    Full Text Available A GC-MS-Selected Ion Monitoring (SIM detection method was developed for simultaneous determination of four monoterpenes: (--menthone, (+-pulegone, (--limonene and (+-menthofuran as the main bio-active and toxic constituents, and four other main compounds in the volatile oils of Schizonepeta tenuifolia (ST leaves and spikes at different harvesting times. The results showed that the method was simple, sensitive and reproducible, and that harvesting time was a possible key factor in influencing the quality of ST leaves, but not its spikes. The research might be helpful for determining the harvesting time of ST samples and establishing a validated method for the quality control of ST volatile oil and other relative products.

  6. How adaptation shapes spike rate oscillations in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Moritz eAugustin

    2013-02-01

    Full Text Available Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 Hz to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks.

  7. Review of fast reactor activities in India (1984)

    International Nuclear Information System (INIS)

    Paranjpe, S.R.

    1986-01-01

    During the year a number of reviews and construction activities have been practically completed as required for the 1st criticality of FBTR. The reactor is expected to become critical by the middle of 1985. The design studies for 500 MWe prototype fast breeder reactor (PFBR) have been continued. Due to preoccupation with the completion of construction of FBTR, the limited effort has been focussed on the design of key components like the sodium pumps, drivers for sodium pumps, control rod drive mechanism and steam generators. The main programs, which are a continuing activity in RRC, are discussed in this report. They are: reactor physics, radio-chemistry, metallurgy, reprocessing and safety research

  8. The effects of Ramadan fasting on activity and energy expenditure.

    Science.gov (United States)

    Lessan, Nader; Saadane, Ilham; Alkaf, Budour; Hambly, Catherine; Buckley, Adam J; Finer, Nick; Speakman, John R; Barakat, Maha T

    2018-01-01

    Fasting during the month of Ramadan entails abstinence from eating and drinking between dawn and sunset and a major shift in meal times and patterns with associated changes in several hormones and circadian rhythms; whether there are accompanying changes in energy metabolism is unclear. We have investigated the impact of Ramadan fasting on resting metabolic rate (RMR), activity, and total energy expenditure (TEE). Healthy nonobese volunteers (n = 29; 16 women) fasting during Ramadan were recruited. RMR was measured with the use of indirect calorimetry. In subgroups of participants, activity (n = 11; 5 women) and TEE (n = 10; 5 women) in free-living conditions were measured with the use of accelerometers and the doubly labeled water technique, respectively. Body composition was measured with the use of bioelectrical impedance. Measurements were repeated after a wash-out period of between 1 and 2 mo after Ramadan. Nonparametric tests were used for comparative statistics. Ramadan fasting did not result in any change in RMR (mean ± SD: 1365.7 ± 230.2 compared with 1362.9 ± 273.6 kcal/d for Ramadan and post-Ramadan respectively, P = 0.713, n = 29). However, controlling for the effects of age, sex, and body weight, RMR was higher in the first week of Ramadan than in subsequent weeks. During Ramadan, the total number of steps walked were significantly lower (n = 11, P = 0.001), while overall sleeping time was reduced and different sleeping patterns were seen. TEE did not differ significantly between Ramadan and post-Ramadan (mean ± SD: 2224.1 ± 433.7 compared with 2121.0 ± 718.5 kcal/d for Ramadan and post-Ramadan, P = 0.7695, n = 10). Ramadan fasting is associated with reduced activity and sleeping time, but no significant change in RMR or TEE. Reported weight changes with Ramadan in other studies are more likely to be due to differences in food intake. This trial is registered at clinicaltrials.gov as NCT02696421.

  9. A review of fast reactor activities in Switzerland - April 1985

    International Nuclear Information System (INIS)

    Wydler, P.

    1986-01-01

    In the nuclear fission field, there are activities related to many different reactor concepts, including the Light Water Reactor, the Light Water High Converter Reactor, the High Temperature Reactor, the Liquid Metal Fast Breeder Reactor and the recently proposed new concept of a small heating reactor. In 1984 the total expenditure for fast reactor activities remained the same as that in the previous year, but the budget for 1985 has declined. The 6.0 million Swiss Francs expended in 1984 have been allocated to an LMFBR safety progamme (46%) and a fuel development programme (54%). All activities reported below are carried out at the Federal Institute for Reactor Research (EIR). In the natural convection studies described in Section 5, the Nuclear Engineering Laboratory (LKT) of the Federal Institute of Technology at Zuerich is actively participating. In the past twelve months collaboration with foreign research organizations in the Federal Republic of Germany, France, Italy (JRC Ispra) and the U.K. for the LMFBR safety programme, and the Federal Republic of Germany and the U.S.A. for the fuel development programme has proved to be very fruitful. In this context an attachment agreement with CEA-DERS at Cadarache is worth mentioning, since it enabled an EIR staff member to participate in the prediction and analysis of the SCARABEE-APL in-pile tests

  10. Fast neutron activation analysis at Texas A and M University

    International Nuclear Information System (INIS)

    James, W.D.

    1997-01-01

    Fast neutron generators are used at Texas A and M University to provide a supply of high energy neutrons for nuclear analytical measurements. A series of neutron activation analysis procedures have been developed for determining various major, minor and trace constituents in a variety of materials. These procedures are primarily developed to compliment our reactor based NAA program, thereby expanding the list of determinable elements to include those difficult or impossible to measure using thermal neutrons. A few typical methods are discussed. The unique implementation of the methodologies at Texas A and M are explained. (author)

  11. OECD Nuclear Energy Agency Activities Related to Fast Reactor Development

    International Nuclear Information System (INIS)

    Dujardin, Thierry; Gulliford, Jim

    2013-01-01

    • Despite impact of Fukushima, there remains a high level of interest in continued development of advanced nuclear systems and fuel cycles: – better use of natural resources; – minimisation of waste and reduction of constraints on deep geological repositories. • Ambitious R&D programmes on-going at national level in many countries, also through international projects: – expected to lead to development of advanced reactors and fuel cycle facilities. • OECD/NEA will continue to support member countries in field of fast reactor development and related advanced fuel cycles: – forum for exchange of information; – collaborative activities

  12. Serial Spike Time Correlations Affect Probability Distribution of Joint Spike Events.

    Science.gov (United States)

    Shahi, Mina; van Vreeswijk, Carl; Pipa, Gordon

    2016-01-01

    Detecting the existence of temporally coordinated spiking activity, and its role in information processing in the cortex, has remained a major challenge for neuroscience research. Different methods and approaches have been suggested to test whether the observed synchronized events are significantly different from those expected by chance. To analyze the simultaneous spike trains for precise spike correlation, these methods typically model the spike trains as a Poisson process implying that the generation of each spike is independent of all the other spikes. However, studies have shown that neural spike trains exhibit dependence among spike sequences, such as the absolute and relative refractory periods which govern the spike probability of the oncoming action potential based on the time of the last spike, or the bursting behavior, which is characterized by short epochs of rapid action potentials, followed by longer episodes of silence. Here we investigate non-renewal processes with the inter-spike interval distribution model that incorporates spike-history dependence of individual neurons. For that, we use the Monte Carlo method to estimate the full shape of the coincidence count distribution and to generate false positives for coincidence detection. The results show that compared to the distributions based on homogeneous Poisson processes, and also non-Poisson processes, the width of the distribution of joint spike events changes. Non-renewal processes can lead to both heavy tailed or narrow coincidence distribution. We conclude that small differences in the exact autostructure of the point process can cause large differences in the width of a coincidence distribution. Therefore, manipulations of the autostructure for the estimation of significance of joint spike events seem to be inadequate.

  13. QKD system with fast active optical path length compensation

    Science.gov (United States)

    Park, Byung Kwon; Lee, Min Soo; Woo, Min Ki; Kim, Yong-Su; Han, Sang-Wook; Moon, Sung

    2017-06-01

    We develop a quantum key distribution (QKD) system with fast active optical path length compensation. A rapid and reliable active optical path length compensation scheme is proposed and applied to a plug-and-play QKD system. The system monitors changes in key rates and controls it is own operation automatically. The system achieves its optimal performance within three seconds of operation, which includes a sifted key rate of 5.5 kbps and a quantum bit error rate of less than 2% after an abrupt temperature variation along the 25 km quantum channel. The system also operates well over a 24 h period while completing more than 60 active optical path length compensations.

  14. Intermittent fasting attenuates inflammasome activity in ischemic stroke.

    Science.gov (United States)

    Fann, David Yang-Wei; Santro, Tomislav; Manzanero, Silvia; Widiapradja, Alexander; Cheng, Yi-Lin; Lee, Seung-Yoon; Chunduri, Prasad; Jo, Dong-Gyu; Stranahan, Alexis M; Mattson, Mark P; Arumugam, Thiruma V

    2014-07-01

    Recent findings have revealed a novel inflammatory mechanism that contributes to tissue injury in cerebral ischemia mediated by multi-protein complexes termed inflammasomes. Intermittent fasting (IF) can decrease the levels of pro-inflammatory cytokines in the periphery and brain. Here we investigated the impact of IF (16h of food deprivation daily) for 4months on NLRP1 and NLRP3 inflammasome activities following cerebral ischemia. Ischemic stroke was induced in C57BL/6J mice by middle cerebral artery occlusion, followed by reperfusion (I/R). IF decreased the activation of NF-κB and MAPK signaling pathways, the expression of NLRP1 and NLRP3 inflammasome proteins, and both IL-1β and IL-18 in the ischemic brain tissue. These findings demonstrate that IF can attenuate the inflammatory response and tissue damage following ischemic stroke by a mechanism involving suppression of NLRP1 and NLRP3 inflammasome activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Some Applications of Fast Neutron Activation Analysis of Oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Owrang, Farshid

    2003-07-01

    In this thesis we focus on applications of neutron activation of oxygen for several purposes: A) measuring the water level in a laboratory tank, B) measuring the water flow in a pipe system set-up, C) analysing the oxygen in combustion products formed in a modern gasoline SI engine, and D) measuring on-line the amount of oxygen in bulk liquids. A) Water level measurements. The purpose of this work was to perform radiation based water level measurements, aimed at nuclear reactor vessels, on a laboratory scale. A laboratory water tank was irradiated by fast neutrons from a neutron generator. The water was activated at different water levels and the water level was decreased. The produced gamma radiation was measured using two detectors at different heights. The results showed that the method is suitable for measurement of water level and that a relatively small experimental set-up can be used for developing methods for water level measurements in real boiling water reactors based on activated oxygen in the water. B) Water flows in pipe. The goal in this work was to investigate the asymmetric distribution of activity in flow measurements with pulsed neutron activation (PNA) in a laboratory piping system. Earlier investigations had shown a discrepancy between the measured velocity of the activated water by PNA and the true mean velocity in the pipe. This discrepancy decreased with larger distances from the activation point. It was speculated that the induced activity in the pipe did not distribute homogeneously. With inhomogeneous radial distribution of activity in combination with a velocity profile in the pipe, the activated water may not have the same velocity as the mean velocity of water in the pipe. To study this phenomenon, a water-soluble colour was injected into a transparent pipe for simulation of the transport of the activated water. The radial concentration of the colour, at different distances from the activation point, was determined. The result

  16. Some Applications of Fast Neutron Activation Analysis of Oxygen

    International Nuclear Information System (INIS)

    Owrang, Farshid

    2003-01-01

    In this thesis we focus on applications of neutron activation of oxygen for several purposes: A) measuring the water level in a laboratory tank, B) measuring the water flow in a pipe system set-up, C) analysing the oxygen in combustion products formed in a modern gasoline SI engine, and D) measuring on-line the amount of oxygen in bulk liquids. A) Water level measurements. The purpose of this work was to perform radiation based water level measurements, aimed at nuclear reactor vessels, on a laboratory scale. A laboratory water tank was irradiated by fast neutrons from a neutron generator. The water was activated at different water levels and the water level was decreased. The produced gamma radiation was measured using two detectors at different heights. The results showed that the method is suitable for measurement of water level and that a relatively small experimental set-up can be used for developing methods for water level measurements in real boiling water reactors based on activated oxygen in the water. B) Water flows in pipe. The goal in this work was to investigate the asymmetric distribution of activity in flow measurements with pulsed neutron activation (PNA) in a laboratory piping system. Earlier investigations had shown a discrepancy between the measured velocity of the activated water by PNA and the true mean velocity in the pipe. This discrepancy decreased with larger distances from the activation point. It was speculated that the induced activity in the pipe did not distribute homogeneously. With inhomogeneous radial distribution of activity in combination with a velocity profile in the pipe, the activated water may not have the same velocity as the mean velocity of water in the pipe. To study this phenomenon, a water-soluble colour was injected into a transparent pipe for simulation of the transport of the activated water. The radial concentration of the colour, at different distances from the activation point, was determined. The result

  17. Critical slowing down governs the transition to neuron spiking.

    Directory of Open Access Journals (Sweden)

    Christian Meisel

    2015-02-01

    Full Text Available Many complex systems have been found to exhibit critical transitions, or so-called tipping points, which are sudden changes to a qualitatively different system state. These changes can profoundly impact the functioning of a system ranging from controlled state switching to a catastrophic break-down; signals that predict critical transitions are therefore highly desirable. To this end, research efforts have focused on utilizing qualitative changes in markers related to a system's tendency to recover more slowly from a perturbation the closer it gets to the transition--a phenomenon called critical slowing down. The recently studied scaling of critical slowing down offers a refined path to understand critical transitions: to identify the transition mechanism and improve transition prediction using scaling laws. Here, we outline and apply this strategy for the first time in a real-world system by studying the transition to spiking in neurons of the mammalian cortex. The dynamical system approach has identified two robust mechanisms for the transition from subthreshold activity to spiking, saddle-node and Hopf bifurcation. Although theory provides precise predictions on signatures of critical slowing down near the bifurcation to spiking, quantitative experimental evidence has been lacking. Using whole-cell patch-clamp recordings from pyramidal neurons and fast-spiking interneurons, we show that 1 the transition to spiking dynamically corresponds to a critical transition exhibiting slowing down, 2 the scaling laws suggest a saddle-node bifurcation governing slowing down, and 3 these precise scaling laws can be used to predict the bifurcation point from a limited window of observation. To our knowledge this is the first report of scaling laws of critical slowing down in an experiment. They present a missing link for a broad class of neuroscience modeling and suggest improved estimation of tipping points by incorporating scaling laws of critical slowing

  18. Fast-neutron activation analysis of manganese nodules

    International Nuclear Information System (INIS)

    Michaelis, W.; Fanger, H.U.; Mueller, A.; Pepelnik, R.

    1976-01-01

    The present paper describes the development of a new nuclear method that allows rapid determinations of the most relevant metals Ni and Cu without sample treatment, thus being particularly suited for quasi-continuous elemental analyses in mining and processing. The measurement is based on fast-neutron activation using Cockcroft-Walton generators, sealed neutron tubes or, possibly, (α,n)-type natural sources. Fast-neutron activation of manganese nodules is dominated by the (n,p)-reactions on Si, Al, Fe; the (n,α)-reaction on Mn and the (n,2n)-reaction on Cu. By choosing appropriate irradiation and cooling periods gamma-ray activities with comparatively simple spectral distributions are induced. From these spectra the Mn/Fe ratio in the nodules can be determined without the elaborate procedures usually required in absolute methods for eliminating systematic errors from fluctuations in sample and/or irradiation parameters. It is connected with the absolute Ni and Cu contents via well-known geochemical correlations which according to a lot of statistical data apply to quite different deposits and nodule types in the Pacific. Using these correlations the determination of the most important metals reduces to the evaluation of a peak area ratio. Measurements of the neutron flux distribution and the apparent sample density are unnecessary. The simple structure of the spectra allows the application of detectors with modest energy resolution, e.g. scintillation counters which can be manufactured as ruggedized crystal assemblies with great resistance to thermal and mechanical shock. The method is described in detail and possible interference, in particular from thermal and epithermal neutrons, are discussed. (orig.) [de

  19. Short-Range Temporal Interactions in Sleep; Hippocampal Spike Avalanches Support a Large Milieu of Sequential Activity Including Replay.

    Directory of Open Access Journals (Sweden)

    J Matthew Mahoney

    Full Text Available Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation.

  20. A prolongation of the postspike afterhyperpolarization following spike trains can partly explain the lower firing rates at derecruitment than those at recruitment

    DEFF Research Database (Denmark)

    Wienecke, Jacob; Zhang, Mengliang; Hultborn, Hans

    2009-01-01

    for the lower frequencies at derecruitment. This was independent of whether the current injection had activated persistent inward current (PIC; plateau potentials, secondary range firing). It was found that a preceding spike train could prolong the AHP duration following a subsequent spike. The lower rate...... from AHP duration in fast motoneurons and higher than expected in slow motoneurons. It is suggested that these deviations are explained by the presence of synaptic noise as well as recruitment of PICs below firing threshold. Thus synaptic noise may allow spike discharge even after the end of the AHP...... in "fast" motor neurons, whereas synaptic noise and PICs below spike threshold tend to give higher minimum firing frequencies in "slow" motor neurons than predicted from AHP duration....

  1. A review of fast reactor activities in Switzerland - March 1984

    International Nuclear Information System (INIS)

    Wydler, P.

    1984-01-01

    As a result of the noncentralized government in Switzerland there is no clear national policy for the future application of nuclear energy. This is reflected in the lack of a generally agreed nuclear energy research policy in the country. Consequently, activities related to several advanced reactor concepts are funded simultaneously at similar, but relatively low levels. The total expenditure of 5.9 million Swiss Francs (approx. 1 SFr per capita) for fast reactor activities in 1983 must be judged in the light of this situation. The funds have been allocated to an LMFBR safety programme (52%) and a fuel development programme (48%). In the field of LMFBR safety analytical work is performed on hypothetical core disruptive accidents (HCDAs) and on the integrity of components under HCDA loadings with emphasis on the dynamic behaviour of the reactor cover. A considerable effort has recently been devoted to the preparations for the SONACO natural convection experiment. Another relatively new experimental activity, involving small-scale vapour explosions with freon and water, has produced evidence of interesting physical effects which are not in accord with the assumptions of current molten fuel-coolant interaction (MFCI) models. The fuel development programme has continued with the manufacture of spherepac mixed carbide fuel pins for an irradiation experiment in FFTF. However, the time scale of the experiment has suffered a set-back due to an accident in a glove box of the production line

  2. Advanced active quenching circuit for ultra-fast quantum cryptography

    Science.gov (United States)

    Stipčević, Mario; Christensen, Bradley G.; Kwiat, Paul G.; Gauthier, Daniel J.

    2017-09-01

    Commercial photon-counting modules based on actively quenched solid-state avalanche photodiode sensors are used in a wide variety of applications. Manufacturers characterize their detectors by specifying a small set of parameters, such as detection efficiency, dead time, dark counts rate, afterpulsing probability and single-photon arrival-time resolution (jitter). However, they usually do not specify the range of conditions over which these parameters are constant or present a sufficient description of the characterization process. In this work, we perform a few novel tests on two commercial detectors and identify an additional set of imperfections that must be specified to sufficiently characterize their behavior. These include rate-dependence of the dead time and jitter, detection delay shift, and "twilighting." We find that these additional non-ideal behaviors can lead to unexpected effects or strong deterioration of the performance of a system using these devices. We explain their origin by an in-depth analysis of the active quenching process. To mitigate the effects of these imperfections, a custom-built detection system is designed using a novel active quenching circuit. Its performance is compared against two commercial detectors in a fast quantum key distribution system with hyper-entangled photons and a random number generator.

  3. IAEA Activities in the Area of Fast Reactors and Related Fuels and Fuel Cycles

    International Nuclear Information System (INIS)

    Monti, S.; Basak, U.; Dyck, G.; Inozemtsev, V.; Toti, A.; Zeman, A.

    2013-01-01

    Summary: • The IAEA role to support fast reactors and associated fuel cycle development programmes; • Main IAEA activities on fast reactors and related fuel and fuel cycle technology; • Main IAEA deliverables on fast reactors and related fuel and fuel cycle technology

  4. Effects of Onion (Allium cepa L. Extract Administration on Intestinal α-Glucosidases Activities and Spikes in Postprandial Blood Glucose Levels in SD Rats Model

    Directory of Open Access Journals (Sweden)

    Sun-Ho Kim

    2011-06-01

    Full Text Available Diets high in calories and sweetened foods with disaccharides frequently lead to exaggerated postprandial spikes in blood glucose. This state induces immediate oxidant stress and free radicals which trigger oxidative stress-linked diabetic complications. One of the therapeutic approaches for decreasing postprandial hyperglycemia is to retard absorption of glucose by the inhibition of carbohydrate hydrolyzing enzymes,α-amylase and α-glucosidases, in the digestive organs. Therefore, the inhibitory activity of Korean onion (Allium cepa L. extract against rat intestinal α-glucosidases, such as sucrase, maltase, and porcine pancreatic α-amylase were investigated in vitro and in vivo. The content of quercetin in ethyl alcohol extract of onion skin (EOS was 6.04 g/100 g dried weight of onion skin. The in vitro half-maximal inhibitory concentrations (IC50 of EOS and quercetin, a major phenolic in onion, on rat intestinal sucrase were 0.40 and 0.11 mg/mL, respectively. The postprandial blood glucose lowering effects of EOS and quercetin were compared to a known type 2 diabetes drug (Acarbose, a strong α-glucosidase inhibitor in the Sprague-Dawley (SD rat model. In rats fed on sucrose, EOS significantly reduced the blood glucose spike after sucrose loading. The area under the blood glucose-time curve (AUClast in EOS-treated SD rats (0.5 g-EOS/kg was significantly lower than in untreated SD rats (259.6 ± 5.1 vs. 283.1 ± 19.2 h·mg/dL. The AUClast in quercetin-treated SD rats (0.5 g-quercetin/kg was similar to in EOS-treated group (256.1 ± 3.2 vs. 259.6 ± 5.1 h·mg/dL. Results from this study indicates that although quercetin does have blood glucose lowering potential via α-glucosidase inhibition, there are other bioactive compounds present in onion skin. Furthermore, the effects of two weeks administration of EOS in a high carbohydrate-dietary mixture (Pico 5053 on sucrase and maltase activities in intestine were evaluated in SD rat model

  5. Effects of Onion (Allium cepa L.) Extract Administration on Intestinal α-Glucosidases Activities and Spikes in Postprandial Blood Glucose Levels in SD Rats Model

    Science.gov (United States)

    Kim, Sun-Ho; Jo, Sung-Hoon; Kwon, Young-In; Hwang, Jae-Kwan

    2011-01-01

    Diets high in calories and sweetened foods with disaccharides frequently lead to exaggerated postprandial spikes in blood glucose. This state induces immediate oxidant stress and free radicals which trigger oxidative stress-linked diabetic complications. One of the therapeutic approaches for decreasing postprandial hyperglycemia is to retard absorption of glucose by the inhibition of carbohydrate hydrolyzing enzymes, α-amylase and α-glucosidases, in the digestive organs. Therefore, the inhibitory activity of Korean onion (Allium cepa L.) extract against rat intestinal α-glucosidases, such as sucrase, maltase, and porcine pancreatic α-amylase were investigated in vitro and in vivo. The content of quercetin in ethyl alcohol extract of onion skin (EOS) was 6.04 g/100 g dried weight of onion skin. The in vitro half-maximal inhibitory concentrations (IC50) of EOS and quercetin, a major phenolic in onion, on rat intestinal sucrase were 0.40 and 0.11 mg/mL, respectively. The postprandial blood glucose lowering effects of EOS and quercetin were compared to a known type 2 diabetes drug (Acarbose), a strong α-glucosidase inhibitor in the Sprague-Dawley (SD) rat model. In rats fed on sucrose, EOS significantly reduced the blood glucose spike after sucrose loading. The area under the blood glucose-time curve (AUClast) in EOS-treated SD rats (0.5 g-EOS/kg) was significantly lower than in untreated SD rats (259.6 ± 5.1 vs. 283.1 ± 19.2 h·mg/dL). The AUClast in quercetin-treated SD rats (0.5 g-quercetin/kg) was similar to in EOS-treated group (256.1 ± 3.2 vs. 259.6 ± 5.1 h·mg/dL). Results from this study indicates that although quercetin does have blood glucose lowering potential via α-glucosidase inhibition, there are other bioactive compounds present in onion skin. Furthermore, the effects of two weeks administration of EOS in a high carbohydrate-dietary mixture (Pico 5053) on sucrase and maltase activities in intestine were evaluated in SD rat model. Compared to

  6. Metabolic adaptation to intermittent fasting is independent of peroxisome proliferator-activated receptor alpha

    OpenAIRE

    Li, Guolin; Brocker, Chad N.; Yan, Tingting; Xie, Cen; Krausz, Kristopher W.; Xiang, Rong; Gonzalez, Frank J.

    2017-01-01

    Background: Peroxisome proliferator-activated receptor alpha (PPARA) is a major regulator of fatty acid oxidation and severe hepatic steatosis occurs during acute fasting in Ppara-null mice. Thus, PPARA is considered an important mediator of the fasting response; however, its role in other fasting regiments such as every-other-day fasting (EODF) has not been investigated. Methods: Mice were pre-conditioned using either a diet containing the potent PPARA agonist Wy-14643 or an EODF regimen ...

  7. Spike Timing Rigidity Is Maintained in Bursting Neurons under Pentobarbital-Induced Anesthetic Conditions.

    Science.gov (United States)

    Kato, Risako; Yamanaka, Masanori; Yokota, Eiko; Koshikawa, Noriaki; Kobayashi, Masayuki

    2016-01-01

    Pentobarbital potentiates γ-aminobutyric acid (GABA)-mediated inhibitory synaptic transmission by prolonging the open time of GABA A receptors. However, it is unknown how pentobarbital regulates cortical neuronal activities via local circuits in vivo . To examine this question, we performed extracellular unit recording in rat insular cortex under awake and anesthetic conditions. Not a few studies apply time-rescaling theorem to detect the features of repetitive spike firing. Similar to these methods, we define an average spike interval locally in time using random matrix theory (RMT), which enables us to compare different activity states on a universal scale. Neurons with high spontaneous firing frequency (>5 Hz) and bursting were classified as HFB neurons ( n = 10), and those with low spontaneous firing frequency (Pentobarbital injection (30 mg/kg) reduced firing frequency in all HFB neurons and in 78% of non-HFB neurons. RMT analysis demonstrated that pentobarbital increased in the number of neurons with repulsion in both HFB and non-HFB neurons, suggesting that there is a correlation between spikes within a short interspike interval (ISI). Under awake conditions, in 50% of HFB and 40% of non-HFB neurons, the decay phase of normalized histograms of spontaneous firing were fitted to an exponential function, which indicated that the first spike had no correlation with subsequent spikes. In contrast, under pentobarbital-induced anesthesia conditions, the number of non-HFB neurons that were fitted to an exponential function increased to 80%, but almost no change in HFB neurons was observed. These results suggest that under both awake and pentobarbital-induced anesthetized conditions, spike firing in HFB neurons is more robustly regulated by preceding spikes than by non-HFB neurons, which may reflect the GABA A receptor-mediated regulation of cortical activities. Whole-cell patch-clamp recording in the IC slice preparation was performed to compare the regularity of

  8. Spike timing rigidity is maintained in bursting neurons under pentobarbital-induced anesthetic conditions

    Directory of Open Access Journals (Sweden)

    Risako Kato

    2016-11-01

    Full Text Available Pentobarbital potentiates γ-aminobutyric acid (GABA-mediated inhibitory synaptic transmission by prolonging the open time of GABAA receptors. However, it is unknown how pentobarbital regulates cortical neuronal activities via local circuits in vivo. To examine this question, we performed extracellular unit recording in rat insular cortex under awake and anesthetic conditions. Not a few studies apply time-rescaling theorem to detect the features of repetitive spike firing. Similar to these methods, we define an average spike interval locally in time using random matrix theory (RMT, which enables us to compare different activity states on a universal scale. Neurons with high spontaneous firing frequency (> 5 Hz and bursting were classified as HFB neurons (n = 10, and those with low spontaneous firing frequency (< 10 Hz and without bursting were classified as non-HFB neurons (n = 48. Pentobarbital injection (30 mg/kg reduced firing frequency in all HFB neurons and in 78% of non-HFB neurons. RMT analysis demonstrated that pentobarbital increased in the number of neurons with repulsion in both HFB and non-HFB neurons, suggesting that there is a correlation between spikes within a short interspike interval. Under awake conditions, in 50% of HFB and 40% of non-HFB neurons, the decay phase of normalized histograms of spontaneous firing were fitted to an exponential function, which indicated that the first spike had no correlation with subsequent spikes. In contrast, under pentobarbital-induced anesthesia conditions, the number of non-HFB neurons that were fitted to an exponential function increased to 80%, but almost no change in HFB neurons was observed. These results suggest that under both awake and pentobarbital-induced anesthetized conditions, spike firing in HFB neurons is more robustly regulated by preceding spikes than by non-HFB neurons, which may reflect the GABAA receptor-mediated regulation of cortical activities. Whole-cell patch

  9. Metabolic adaptation to intermittent fasting is independent of peroxisome proliferator-activated receptor alpha.

    Science.gov (United States)

    Li, Guolin; Brocker, Chad N; Yan, Tingting; Xie, Cen; Krausz, Kristopher W; Xiang, Rong; Gonzalez, Frank J

    2018-01-01

    Peroxisome proliferator-activated receptor alpha (PPARA) is a major regulator of fatty acid oxidation and severe hepatic steatosis occurs during acute fasting in Ppara-null mice. Thus, PPARA is considered an important mediator of the fasting response; however, its role in other fasting regiments such as every-other-day fasting (EODF) has not been investigated. Mice were pre-conditioned using either a diet containing the potent PPARA agonist Wy-14643 or an EODF regimen prior to acute fasting. Ppara-null mice were used to assess the contribution of PPARA activation during the metabolic response to EODF. Livers were collected for histological, biochemical, qRT-PCR, and Western blot analysis. Acute fasting activated PPARA and led to steatosis, whereas EODF protected against fasting-induced hepatic steatosis without affecting PPARA signaling. In contrast, pretreatment with Wy-14,643 did activate PPARA signaling but did not ameliorate acute fasting-induced steatosis and unexpectedly promoted liver injury. Ppara ablation exacerbated acute fasting-induced hypoglycemia, hepatic steatosis, and liver injury in mice, whereas these detrimental effects were absent in response to EODF, which promoted PPARA-independent fatty acid metabolism and normalized serum lipids. These findings indicate that PPARA activation prior to acute fasting cannot ameliorate fasting-induced hepatic steatosis, whereas EODF induced metabolic adaptations to protect against fasting-induced steatosis without altering PPARA signaling. Therefore, PPARA activation does not mediate the metabolic adaptation to fasting, at least in preventing acute fasting-induced steatosis. Published by Elsevier GmbH.

  10. Resting-state fMRI revealed different brain activities responding to valproic acid and levetiracetam in benign epilepsy with central-temporal spikes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qirui; Zhang, Zhiqiang; Xu, Qiang; Wu, Han; Li, Zhipeng; Lu, Guangming [Nanjing University School of Medicine, Department of Medical Imaging, Jinling Hospital, Nanjing (China); Yang, Fang; Li, Qian [Nanjing University School of Medicine, Department of Neurology, Jinling Hospital, Nanjing (China); Hu, Zheng [Nanjing Children' s Hospital, Department of Neurology, Nanjing (China); Dante, Mantini [Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven (Belgium); Li, Kai [Suzhou University, Laboratory of Molecular Medicine, Suzhou (China)

    2017-05-15

    Our aim was to investigate regional difference in brain activities in response to antiepileptic drug (AED) medications in benign epilepsy with central-temporal spikes (BECTS) using resting-state functional magnetic resonance imaging (fMRI). Fifty-seven patients with BECTS underwent resting-state fMRI scans after receiving either valproic acid (VPA) (n = 15), levetiracetam (LEV) (n = 21), or no medication (n = 21). fMRI regional homogeneity (ReHo) parameter among the three groups of patients were compared and were correlated with total doses of AED in the two medicated groups. Compared with patients on no-medication, patients receiving either VPA or LEV showed decreased ReHo in the central-temporal region, frontal cortex, and thalamus. In particular, the VPA group showed greater ReHo decrease in the thalamus and milder in cortices and caudate heads compared with the LEV group. In addition, the VPA group demonstrated a negative correlation between ReHo values in the central-temporal region and medication dose. Both VPA and LEV inhibit resting-state neural activity in the central-temporal region, which is the main epileptogenic focus of BECTS. VPA reduced brain activity in the cortical epileptogenic regions and thalamus evenly, whereas LEV reduced brain activity predominantly in the cortices. Interestingly, VPA showed a cumulative effect on inhibiting brain activity in the epileptogenic regions in BECTS. (orig.)

  11. U.S. activities related to fast reactors and ADS

    International Nuclear Information System (INIS)

    Finck, Phillip J.

    2001-01-01

    , lower cost, and improved safety and proliferation resistance; Innovative nuclear plant design, manufacturing, construction, operation, maintenance and decommissioning technologies; Advanced nuclear fuels; and Relevant areas of fundamental science. In 2000, the US Fast Reactor and ADS programs include the EBR-II Electrometallurgical Treatment program, FFTF activities in view of a decision whether to restart or deactivate the facility, several NERI awards, and the Advanced Accelerators Applications program. A 10 year R and D plan concentrated on defining the key technologies to be used for transmutation of nuclear waste (plutonium, minor actinides and long lived fission products). This activity includes fuels development and performance testing, development and testing of dedicated separation technologies, design of transmutation systems, and materials and physics research. It is expected that after 10 years, suitable technologies will have been demonstrated for practical waste transmutation demonstration. The Accelerator Driven Test Facility (ADTF) will be built over 10 years. It will consist of a large proton linear accelerator (600MeV, 13mA), coupled to two testing stations; the Target and Multiplier Test Station will consist of a large (8MW) spallation target surrounded by test loops for materials and small amounts of fuels; the Sub Critical Multiplier (SCM) will consist of a 100MW subcritical fast reactor driven by a 4MW spallation target and will be used to demonstrate the safe and efficient operations of accelerator driven systems, and will serve to irradiate experimental fuels. The ADTF will serve as the principal test station for a Proof of Performance series of tests, to demonstrate the safety and operations of Accelerator Driven Systems, and to demonstrate efficient transmutation and recycling of minor actinides and long lived fission products

  12. Macroscopic Description for Networks of Spiking Neurons

    Science.gov (United States)

    Montbrió, Ernest; Pazó, Diego; Roxin, Alex

    2015-04-01

    A major goal of neuroscience, statistical physics, and nonlinear dynamics is to understand how brain function arises from the collective dynamics of networks of spiking neurons. This challenge has been chiefly addressed through large-scale numerical simulations. Alternatively, researchers have formulated mean-field theories to gain insight into macroscopic states of large neuronal networks in terms of the collective firing activity of the neurons, or the firing rate. However, these theories have not succeeded in establishing an exact correspondence between the firing rate of the network and the underlying microscopic state of the spiking neurons. This has largely constrained the range of applicability of such macroscopic descriptions, particularly when trying to describe neuronal synchronization. Here, we provide the derivation of a set of exact macroscopic equations for a network of spiking neurons. Our results reveal that the spike generation mechanism of individual neurons introduces an effective coupling between two biophysically relevant macroscopic quantities, the firing rate and the mean membrane potential, which together govern the evolution of the neuronal network. The resulting equations exactly describe all possible macroscopic dynamical states of the network, including states of synchronous spiking activity. Finally, we show that the firing-rate description is related, via a conformal map, to a low-dimensional description in terms of the Kuramoto order parameter, called Ott-Antonsen theory. We anticipate that our results will be an important tool in investigating how large networks of spiking neurons self-organize in time to process and encode information in the brain.

  13. Fast neutron activation analysis by means of low voltage neutron generator

    Directory of Open Access Journals (Sweden)

    M.E. Medhat

    Full Text Available A description of D-T neutron generator (NG is presented. This machine can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. Procedure of neutron flux determination and efficiency calculation is described. Examples of testing some Egyptian natural cosmetics are given. Keywords: Neutron generator, Fast neutron activation analysis, Elemental analysis

  14. The variational spiked oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Ullah, N.

    1992-08-01

    A variational analysis of the spiked harmonic oscillator Hamiltonian -d 2 / d x 2 + x 2 + δ/ x 5/2 , δ > 0, is reported in this work. A trial function satisfying Dirichlet boundary conditions is suggested. The results are excellent for a large range of values of the coupling parameter. (author)

  15. Training and Spontaneous Reinforcement of Neuronal Assemblies by Spike Timing Plasticity.

    Science.gov (United States)

    Ocker, Gabriel Koch; Doiron, Brent

    2018-02-03

    The synaptic connectivity of cortex is plastic, with experience shaping the ongoing interactions between neurons. Theoretical studies of spike timing-dependent plasticity (STDP) have focused on either just pairs of neurons or large-scale simulations. A simple analytic account for how fast spike time correlations affect both microscopic and macroscopic network structure is lacking. We develop a low-dimensional mean field theory for STDP in recurrent networks and show the emergence of assemblies of strongly coupled neurons with shared stimulus preferences. After training, this connectivity is actively reinforced by spike train correlations during the spontaneous dynamics. Furthermore, the stimulus coding by cell assemblies is actively maintained by these internally generated spiking correlations, suggesting a new role for noise correlations in neural coding. Assembly formation has often been associated with firing rate-based plasticity schemes; our theory provides an alternative and complementary framework, where fine temporal correlations and STDP form and actively maintain learned structure in cortical networks. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Response Features Determining Spike Times

    Directory of Open Access Journals (Sweden)

    Barry J. Richmond

    1999-01-01

    redundant with that carried by the coarse structure. Thus, the existence of precisely timed spike patterns carrying stimulus-related information does not imply control of spike timing at precise time scales.

  17. The effects of ramadan fasting and physical activity on blood hematological-biochemical parameters.

    Science.gov (United States)

    Attarzadeh Hosseini, Seyyed Reza; Hejazi, Keyvan

    2013-07-01

    Objective(s) : Fasting during the month of Ramadan is a religious obligation and belief for healthy adult Muslims. The aim of the present study was to determine the effects of Ramadan Fasting and physical activity on 'Blood Hematological-Biochemical Parameters'. In this study, twenty-six healthy males in two experimental groups were compared in two different instances before and after the training period. The groups which were selected by convenience sampling method were divided into two non-active fasting (n=13) and active fasting (n=13) groups. For comparison purposes between groups, paired and independent sample t-test was performed, respectively, after ensuring their normality within a significance level of P≤0.05. HDL-C increased significantly in both active and non-active fasting groups, Moreover, amount of hematocrit (Hct), red blood cell count (RBC), TC, LDL, VLDL, LDL/HDL and TC/ HDL decreased significantly. Amount of hemoglobin (Hgb) and glucose reduced significantly in the active-fasting group. The variation of the means between the groups in the Hgb index and LDL/HDL were statistically significant. Fasting during the month of Ramadan by regular physical activity caused positive alterations in Hematological-Biochemical Index. These changes may be due to the alterations in diet, biology response of the body to the starving and physical activity during this month.

  18. Activities of the OECD-NEA in the field of fast reactors

    International Nuclear Information System (INIS)

    Royen, J.

    1977-01-01

    The OECD-NEA is performing the following activities in the field of fast reactors: Held ad hoc meetings of senior experts on safety, development and economics of LMFBR type reactors; publishing a Nuclear Safety Research Index (the index is now expanded to cover fast reactors) and distribution; collect test computer programmes, as well as neutron data

  19. Spike Frequency Adaptation in Neurons of the Central Nervous System.

    Science.gov (United States)

    Ha, Go Eun; Cheong, Eunji

    2017-08-01

    Neuronal firing patterns and frequencies determine the nature of encoded information of the neurons. Here we discuss the molecular identity and cellular mechanisms of spike-frequency adaptation in central nervous system (CNS) neurons. Calcium-activated potassium (K Ca ) channels such as BK Ca and SK Ca channels have long been known to be important mediators of spike adaptation via generation of a large afterhyperpolarization when neurons are hyper-activated. However, it has been shown that a strong hyperpolarization via these K Ca channels would cease action potential generation rather than reducing the frequency of spike generation. In some types of neurons, the strong hyperpolarization is followed by oscillatory activity in these neurons. Recently, spike-frequency adaptation in thalamocortical (TC) and CA1 hippocampal neurons is shown to be mediated by the Ca 2+ -activated Cl- channel (CACC), anoctamin-2 (ANO2). Knockdown of ANO2 in these neurons results in significantly reduced spike-frequency adaptation accompanied by increased number of spikes without shifting the firing mode, which suggests that ANO2 mediates a genuine form of spike adaptation, finely tuning the frequency of spikes in these neurons. Based on the finding of a broad expression of this new class of CACC in the brain, it can be proposed that the ANO2-mediated spike-frequency adaptation may be a general mechanism to control information transmission in the CNS neurons.

  20. Fast skeletal muscle troponin activation increases force of mouse fast skeletal muscle and ameliorates weakness due to nebulin-deficiency.

    Directory of Open Access Journals (Sweden)

    Eun-Jeong Lee

    Full Text Available The effect of the fast skeletal muscle troponin activator, CK-2066260, on calcium-induced force development was studied in skinned fast skeletal muscle fibers from wildtype (WT and nebulin deficient (NEB KO mice. Nebulin is a sarcomeric protein that when absent (NEB KO mouse or present at low levels (nemaline myopathy (NM patients with NEB mutations causes muscle weakness. We studied the effect of fast skeletal troponin activation on WT muscle and tested whether it might be a therapeutic mechanism to increase muscle strength in nebulin deficient muscle. We measured tension-pCa relations with and without added CK-2066260. Maximal active tension in NEB KO tibialis cranialis fibers in the absence of CK-2066260 was ∼60% less than in WT fibers, consistent with earlier work. CK-2066260 shifted the tension-calcium relationship leftwards, with the largest relative increase (up to 8-fold at low to intermediate calcium levels. This was a general effect that was present in both WT and NEB KO fiber bundles. At pCa levels above ∼6.0 (i.e., calcium concentrations <1 µM, CK-2066260 increased tension of NEB KO fibers to beyond that of WT fibers. Crossbridge cycling kinetics were studied by measuring k(tr (rate constant of force redevelopment following a rapid shortening/restretch. CK-2066260 greatly increased k(tr at submaximal activation levels in both WT and NEB KO fiber bundles. We also studied the sarcomere length (SL dependence of the CK-2066260 effect (SL 2.1 µm and 2.6 µm and found that in the NEB KO fibers, CK-2066260 had a larger effect on calcium sensitivity at the long SL. We conclude that fast skeletal muscle troponin activation increases force at submaximal activation in both wildtype and NEB KO fiber bundles and, importantly, that this troponin activation is a potential therapeutic mechanism for increasing force in NM and other skeletal muscle diseases with loss of muscle strength.

  1. Fasting inhibits hepatic stellate cells activation and potentiates anti-cancer activity of Sorafenib in hepatocellular cancer cells.

    Science.gov (United States)

    Lo Re, Oriana; Panebianco, Concetta; Porto, Stefania; Cervi, Carlo; Rappa, Francesca; Di Biase, Stefano; Caraglia, Michele; Pazienza, Valerio; Vinciguerra, Manlio

    2018-02-01

    Hepatocellular carcinoma (HCC) has a poor outcome. Most HCCs develop in the context of liver fibrosis and cirrhosis caused by chronic inflammation. Short-term fasting approaches enhance the activity of chemotherapy in preclinical cancer models, other than HCC. Multi-tyrosine kinase inhibitor Sorafenib is the mainstay of treatment in HCC. However, its benefit is frequently short-lived. Whether fasting can alleviate liver fibrosis and whether combining fasting with Sorafenib is beneficial remains unknown. A 24 hr fasting (2% serum, 0.1% glucose)-induced changes on human hepatic stellate cells (HSC) LX-2 proliferation/viability/cell cycle were assessed by MTT and flow cytometry. Expression of lypolysaccharide (LPS)-induced activation markers (vimentin, αSMA) was evaluated by qPCR and immunoblotting. Liver fibrosis and inflammation were evaluated in a mouse model of steatohepatitis exposed to cycles of fasting, by histological and biochemical analyses. A 24 hr fasting-induced changes were also analyzed on the proliferation/viability/glucose uptake of human HCC cells exposed to Sorafenib. An expression panel of genes involved in survival, inflammation, and metabolism was examined by qPCR in HCC cells exposed to fasting and/or Sorafenib. Fasting decreased the proliferation and the activation of HSC. Repeated cycles of short term starvation were safe in mice but did not improve fibrosis. Fasting synergized with Sorafenib in hampering HCC cell growth and glucose uptake. Finally, fasting normalized the expression levels of genes which are commonly altered by Sorafenib in HCC cells. Fasting or fasting-mimicking diet diets should be evaluated in preclinical studies as a mean to potentiate the activity of Sorafenib in clinical use. © 2017 Wiley Periodicals, Inc.

  2. Spike sorting for polytrodes: a divide and conquer approach

    OpenAIRE

    Swindale, Nicholas V.; Spacek, Martin A.

    2014-01-01

    In order to determine patterns of neural activity, spike signals recorded by extracellular electrodes have to be clustered (sorted) with the aim of ensuring that each cluster represents all the spikes generated by an individual neuron. Many methods for spike sorting have been proposed but few are easily applicable to recordings from polytrodes which may have 16 or more recording sites. As with tetrodes, these are spaced sufficiently closely that signals from single neurons will usually be rec...

  3. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.

    Directory of Open Access Journals (Sweden)

    Gabriel Koch Ocker

    2015-08-01

    Full Text Available The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure.

  4. Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting

    Science.gov (United States)

    Wing, S. S.; Goldberg, A. L.; Goldberger, A. L. (Principal Investigator)

    1993-01-01

    Glucocorticoids are essential for the increase in protein breakdown in skeletal muscle normally seen during fasting. To determine which proteolytic pathway(s) are activated upon fasting, leg muscles from fed and fasted normal rats were incubated under conditions that block or activate different proteolytic systems. After food deprivation (1 day), the nonlysosomal ATP-dependent process increased by 250%, as shown in experiments involving depletion of muscle ATP. Also, the maximal capacity of the lysosomal process increased 60-100%, but no changes occurred in the Ca(2+)-dependent or the residual energy-independent proteolytic processes. In muscles from fasted normal and adrenalectomized (ADX) rats, the protein breakdown sensitive to inhibitors of the lysosomal or Ca(2+)-dependent pathways did not differ. However, the ATP-dependent process was 30% slower in muscles from fasted ADX rats. Administering dexamethasone to these animals or incubating their muscles with dexamethasone reversed this defect. During fasting, when the ATP-dependent process rises, muscles show a two- to threefold increase in levels of ubiquitin (Ub) mRNA. However, muscles of ADX animals failed to show this response. Injecting dexamethasone into the fasted ADX animals increased muscle Ub mRNA within 6 h. Thus glucocorticoids activate the ATP-Ub-dependent proteolytic pathway in fasting apparently by enhancing the expression of components of this system such as Ub.

  5. Review of fast reactor activities in India (1983-84)

    International Nuclear Information System (INIS)

    Paranjpe, S.R.

    1984-01-01

    The last year was very significant for the Indian Nuclear Energy Programme as the first indigeneously built heavy water moderated natural uranium reactor called Madras Atomic Power Plant Unit-I was made operational and connected to the grid. The power level has been gradually increased and the reactor has been operating at a power level of 200 MWe (temporarily limited by Plutonium build up during approach to equilibrium core loading). The 'plutonium peak' will be crossed shortly clearing the way for raising the reactor to the full power of 235 MWe gross. The second unit of MAPP, is well advanced and barring unforeseen difficulties, is expected to become operational during this financial year. This has been a big morale booster for the programme in general and the Fast Reactor Programme in particular as plutonium produced in these reactors is expected to be the inventory for Prototype Fast Breeder Reactors. It may be recalled that in the last report to this group, a reference was made to initiation of some preliminary design studies for such a reactor

  6. An Overview of Bayesian Methods for Neural Spike Train Analysis

    Directory of Open Access Journals (Sweden)

    Zhe Chen

    2013-01-01

    Full Text Available Neural spike train analysis is an important task in computational neuroscience which aims to understand neural mechanisms and gain insights into neural circuits. With the advancement of multielectrode recording and imaging technologies, it has become increasingly demanding to develop statistical tools for analyzing large neuronal ensemble spike activity. Here we present a tutorial overview of Bayesian methods and their representative applications in neural spike train analysis, at both single neuron and population levels. On the theoretical side, we focus on various approximate Bayesian inference techniques as applied to latent state and parameter estimation. On the application side, the topics include spike sorting, tuning curve estimation, neural encoding and decoding, deconvolution of spike trains from calcium imaging signals, and inference of neuronal functional connectivity and synchrony. Some research challenges and opportunities for neural spike train analysis are discussed.

  7. Overview of European Community (Activity 3) work on materials properties of fast reactor structural materials

    International Nuclear Information System (INIS)

    Wood, D.S.

    The Fast Reactor Coordinating Committee set up in 1974 the Working Group Codes and Standards, and organized its work into four main activities: Manufacturing standards, Structural analysis, Materials and Classification of components. The main purpose of materials activity is to compare and contrast existing national specifications and associated properties relevant to structural materials in fast reactors. Funds are available on a yearly basis for tasks to be carried out through Study Contracts. At present about four Study Contract Reports are prepared each year

  8. Commission of the European Communities - Activities in the field of fast reactors

    International Nuclear Information System (INIS)

    Balz, W.

    1977-01-01

    The Commission of the European Communities is performing activities in the field of fast reactor on two lines: a) activities aiming to prepare the commercialization of fast reactors by coordination and collaboration between national programmes. b) the execution of an own programme in the Joint Research Centre at Ispra (Italy) and Karlsruhe (Federal Republic of Germany) in the field of FBR safety and research on Pu-bearing fuel

  9. Impact of spike train autostructure on probability distribution of joint spike events.

    Science.gov (United States)

    Pipa, Gordon; Grün, Sonja; van Vreeswijk, Carl

    2013-05-01

    The discussion whether temporally coordinated spiking activity really exists and whether it is relevant has been heated over the past few years. To investigate this issue, several approaches have been taken to determine whether synchronized events occur significantly above chance, that is, whether they occur more often than expected if the neurons fire independently. Most investigations ignore or destroy the autostructure of the spiking activity of individual cells or assume Poissonian spiking as a model. Such methods that ignore the autostructure can significantly bias the coincidence statistics. Here, we study the influence of the autostructure on the probability distribution of coincident spiking events between tuples of mutually independent non-Poisson renewal processes. In particular, we consider two types of renewal processes that were suggested as appropriate models of experimental spike trains: a gamma and a log-normal process. For a gamma process, we characterize the shape of the distribution analytically with the Fano factor (FFc). In addition, we perform Monte Carlo estimations to derive the full shape of the distribution and the probability for false positives if a different process type is assumed as was actually present. We also determine how manipulations of such spike trains, here dithering, used for the generation of surrogate data change the distribution of coincident events and influence the significance estimation. We find, first, that the width of the coincidence count distribution and its FFc depend critically and in a nontrivial way on the detailed properties of the structure of the spike trains as characterized by the coefficient of variation CV. Second, the dependence of the FFc on the CV is complex and mostly nonmonotonic. Third, spike dithering, even if as small as a fraction of the interspike interval, can falsify the inference on coordinated firing.

  10. Fasting and refeeding differentially regulate NLRP3 inflammasome activation in human subjects.

    Science.gov (United States)

    Traba, Javier; Kwarteng-Siaw, Miriam; Okoli, Tracy C; Li, Jessica; Huffstutler, Rebecca D; Bray, Amanda; Waclawiw, Myron A; Han, Kim; Pelletier, Martin; Sauve, Anthony A; Siegel, Richard M; Sack, Michael N

    2015-11-03

    Activation of the NLRP3 inflammasome is associated with metabolic dysfunction, and intermittent fasting has been shown to improve clinical presentation of NLRP3 inflammasome-linked diseases. As mitochondrial perturbations, which function as a damage-associated molecular pattern, exacerbate NLRP3 inflammasome activation, we investigated whether fasting blunts inflammasome activation via sirtuin-mediated augmentation of mitochondrial integrity. We performed a clinical study of 19 healthy volunteers. Each subject underwent a 24-hour fast and then was fed a fixed-calorie meal. Blood was drawn during the fasted and fed states and analyzed for NRLP3 inflammasome activation. We enrolled an additional group of 8 healthy volunteers to assess the effects of the sirtuin activator, nicotinamide riboside, on NLRP3 inflammasome activation. In the fasting/refeeding study, individuals showed less NLRP3 inflammasome activation in the fasted state compared with that in refed conditions. In a human macrophage line, depletion of the mitochondrial-enriched sirtuin deacetylase SIRT3 increased NLRP3 inflammasome activation in association with excessive mitochondrial ROS production. Furthermore, genetic and pharmacologic SIRT3 activation blunted NLRP3 activity in parallel with enhanced mitochondrial function in cultured cells and in leukocytes extracted from healthy volunteers and from refed individuals but not in those collected during fasting. Together, our data indicate that nutrient levels regulate the NLRP3 inflammasome, in part through SIRT3-mediated mitochondrial homeostatic control. Moreover, these results suggest that deacetylase-dependent inflammasome attenuation may be amenable to targeting in human disease. ClinicalTrials.gov NCT02122575 and NCT00442195. Division of Intramural Research, NHLBI of the NIH.

  11. Epileptiform spike detection via convolutional neural networks

    DEFF Research Database (Denmark)

    Johansen, Alexander Rosenberg; Jin, Jing; Maszczyk, Tomasz

    2016-01-01

    The EEG of epileptic patients often contains sharp waveforms called "spikes", occurring between seizures. Detecting such spikes is crucial for diagnosing epilepsy. In this paper, we develop a convolutional neural network (CNN) for detecting spikes in EEG of epileptic patients in an automated...... fashion. The CNN has a convolutional architecture with filters of various sizes applied to the input layer, leaky ReLUs as activation functions, and a sigmoid output layer. Balanced mini-batches were applied to handle the imbalance in the data set. Leave-one-patient-out cross-validation was carried out...... to test the CNN and benchmark models on EEG data of five epilepsy patients. We achieved 0.947 AUC for the CNN, while the best performing benchmark model, Support Vector Machines with Gaussian kernel, achieved an AUC of 0.912....

  12. Spike-timing dependent plasticity in the striatum

    Directory of Open Access Journals (Sweden)

    Elodie Fino

    2010-06-01

    Full Text Available The striatum is the major input nucleus of basal ganglia, an ensemble of interconnected sub-cortical nuclei associated with fundamental processes of action-selection and procedural learning and memory. The striatum receives afferents from the cerebral cortex and the thalamus. In turn, it relays the integrated information towards the basal ganglia output nuclei through which it operates a selected activation of behavioral effectors. The striatal output neurons, the GABAergic medium-sized spiny neurons (MSNs, are in charge of the detection and integration of behaviorally relevant information. This property confers to the striatum the ability to extract relevant information from the background noise and select cognitive-motor sequences adapted to environmental stimuli. As long-term synaptic efficacy changes are believed to underlie learning and memory, the corticostriatal long-term plasticity provides a fundamental mechanism for the function of the basal ganglia in procedural learning. Here, we reviewed the different forms of spike-timing dependent plasticity (STDP occurring at corticostriatal synapses. Most of the studies have focused on MSNs and their ability to develop long-term plasticity. Nevertheless, the striatal interneurons (the fast-spiking GABAergic, the NO synthase and cholinergic interneurons also receive monosynaptic afferents from the cortex and tightly regulated corticostriatal information processing. Therefore, it is important to take into account the variety of striatal neurons to fully understand the ability of striatum to develop long-term plasticity. Corticostriatal STDP with various spike-timing dependence have been observed depending on the neuronal sub-populations and experimental conditions. This complexity highlights the extraordinary potentiality in term of plasticity of the corticostriatal pathway.

  13. Spiking Neurons for Analysis of Patterns

    Science.gov (United States)

    Huntsberger, Terrance

    2008-01-01

    Artificial neural networks comprising spiking neurons of a novel type have been conceived as improved pattern-analysis and pattern-recognition computational systems. These neurons are represented by a mathematical model denoted the state-variable model (SVM), which among other things, exploits a computational parallelism inherent in spiking-neuron geometry. Networks of SVM neurons offer advantages of speed and computational efficiency, relative to traditional artificial neural networks. The SVM also overcomes some of the limitations of prior spiking-neuron models. There are numerous potential pattern-recognition, tracking, and data-reduction (data preprocessing) applications for these SVM neural networks on Earth and in exploration of remote planets. Spiking neurons imitate biological neurons more closely than do the neurons of traditional artificial neural networks. A spiking neuron includes a central cell body (soma) surrounded by a tree-like interconnection network (dendrites). Spiking neurons are so named because they generate trains of output pulses (spikes) in response to inputs received from sensors or from other neurons. They gain their speed advantage over traditional neural networks by using the timing of individual spikes for computation, whereas traditional artificial neurons use averages of activity levels over time. Moreover, spiking neurons use the delays inherent in dendritic processing in order to efficiently encode the information content of incoming signals. Because traditional artificial neurons fail to capture this encoding, they have less processing capability, and so it is necessary to use more gates when implementing traditional artificial neurons in electronic circuitry. Such higher-order functions as dynamic tasking are effected by use of pools (collections) of spiking neurons interconnected by spike-transmitting fibers. The SVM includes adaptive thresholds and submodels of transport of ions (in imitation of such transport in biological

  14. Active and passive immune responses to transmissible gastroenteritis virus (TGEV) in swine inoculated with recombinant baculovirus-expressed TGEV spike glycoprotein vaccines.

    Science.gov (United States)

    Shoup, D I; Jackwood, D J; Saif, L J

    1997-03-01

    Baculovirus-expressed transmissible gastroenteritis virus (TGEV) spike (S) glycoprotein vaccines were inoculated parenterally in swine to determine whether such vaccines could induce serum and whey virus-neutralizing (VN) antibodies and protective lactogenic immunity for TGEV-challenge-exposed pigs. ANIMALS AND PROCEDURES: 3 recombinant baculoviruses that expressed full or partial length TGEV Miller strain S glycoproteins were inoculated SC in 17 conventionally raised 11-day-old TGEV-seronegative pigs to determine whether the recombinant S glycoproteins would elicit serum VN antibodies. Eleven TGEV-seronegative pregnant sows were inoculated SC or intramammarily with subunit vaccines (R2-2 or R3-5) or control proteins. Pigs born to 9 of the 11 sows were challenge exposed at 4 to 5 days of age with the virulent Miller strain, and passive immunity was assessed. Serum and whey antibody responses to TGEV were analyzed by VN and ELISA testing. Recombinant S glycoproteins (R2-2 or R3-5) containing the 4 major antigenic sites induced similar VN antibody titers to TGEV in serum and colostrum, but low (some sows) or no VN antibody titer was detected in milk. Subcutaneous inoculation of sows with R2-2 or R3-5 elicited IgG, but not IgA antibodies to TGEV in colostrum. Morbidity was 100%, and mortality ranged from 20 to 80% in TGEV challenge-exposed pigs nursing sows inoculated SC or intramammarily with TGEV S glycoprotein vaccines. Parenterally administered TGEV S glycoprotein vaccines elicit VN antibodies to TGEV in serum and colostrum that do not fully provide active or passive immunity in swine.

  15. Interictal spike EEG source analysis in hypothalamic hamartoma epilepsy.

    Science.gov (United States)

    Leal, Alberto J R; Passão, Vitorina; Calado, Eulália; Vieira, José P; Silva Cunha, João P

    2002-12-01

    The epilepsy associated with the hypothalamic hamartomas constitutes a syndrome with peculiar seizures, usually refractory to medical therapy, mild cognitive delay, behavioural problems and multifocal spike activity in the scalp electroencephalogram (EEG). The cortical origin of spikes has been widely assumed but not specifically demonstrated. We present results of a source analysis of interictal spikes from 4 patients (age 2-25 years) with epilepsy and hypothalamic hamartoma, using EEG scalp recordings (32 electrodes) and realistic boundary element models constructed from volumetric magnetic resonance imaging (MRIs). Multifocal spike activity was the most common finding, distributed mainly over the frontal and temporal lobes. A spike classification based on scalp topography was done and averaging within each class performed to improve the signal to noise ratio. Single moving dipole models were used, as well as the Rap-MUSIC algorithm. All spikes with good signal to noise ratio were best explained by initial deep sources in the neighbourhood of the hamartoma, with late sources located in the cortex. Not a single patient could have his spike activity explained by a combination of cortical sources. Overall, the results demonstrate a consistent origin of spike activity in the subcortical region in the neighbourhood of the hamartoma, with late spread to cortical areas.

  16. Synchronous spikes are necessary but not sufficient for a synchrony code in populations of spiking neurons.

    Science.gov (United States)

    Grewe, Jan; Kruscha, Alexandra; Lindner, Benjamin; Benda, Jan

    2017-03-07

    Synchronous activity in populations of neurons potentially encodes special stimulus features. Selective readout of either synchronous or asynchronous activity allows formation of two streams of information processing. Theoretical work predicts that such a synchrony code is a fundamental feature of populations of spiking neurons if they operate in specific noise and stimulus regimes. Here we experimentally test the theoretical predictions by quantifying and comparing neuronal response properties in tuberous and ampullary electroreceptor afferents of the weakly electric fish Apteronotus leptorhynchus These related systems show similar levels of synchronous activity, but only in the more irregularly firing tuberous afferents a synchrony code is established, whereas in the more regularly firing ampullary afferents it is not. The mere existence of synchronous activity is thus not sufficient for a synchrony code. Single-cell features such as the irregularity of spiking and the frequency dependence of the neuron's transfer function determine whether synchronous spikes possess a distinct meaning for the encoding of time-dependent signals.

  17. PE2 cleavage mutants of Sindbis virus : Correlation between viral infectivity and pH-dependent membrane fusion activation of the spike heterodimer

    NARCIS (Netherlands)

    Smit, JM; Klimstra, WB; Ryman, KD; Bittman, R; Johnston, RE; Wilschut, J

    2001-01-01

    The spike glycoprotein E2 of Sindbis virus (SIN) is synthesized in the infected cell as a PE2 precursor protein, which matures through cleavage by a cellular furin-like protease. Previous work has shown that SIN mutants impaired in PE2 cleavage are noninfectious on BHK-21 cells, the block in

  18. Prolonged fasting activates Nrf2 in post-weaned elephant seals.

    Science.gov (United States)

    Vázquez-Medina, José Pablo; Soñanez-Organis, José G; Rodriguez, Ruben; Viscarra, Jose A; Nishiyama, Akira; Crocker, Daniel E; Ortiz, Rudy M

    2013-08-01

    Elephant seals naturally experience prolonged periods of absolute food and water deprivation (fasting). In humans, rats and mice, prolonged food deprivation activates the renin-angiotensin system (RAS) and increases oxidative damage. In elephant seals, prolonged fasting activates RAS without increasing oxidative damage likely due to an increase in antioxidant defenses. The mechanism leading to the upregulation of antioxidant defenses during prolonged fasting remains elusive. Therefore, we investigated whether prolonged fasting activates the redox-sensitive transcription factor Nrf2, which controls the expression of antioxidant genes, and if such activation is potentially mediated by systemic increases in RAS. Blood and skeletal muscle samples were collected from seals fasting for 1, 3, 5 and 7 weeks. Nrf2 activity and nuclear content increased by 76% and 167% at week 7. Plasma angiotensin II (Ang II) and transforming growth factor β (TGF-β) were 5000% and 250% higher at week 7 than at week 1. Phosphorylation of Smad2, an effector of Ang II and TGF signaling, increased by 120% at week 7 and by 84% in response to intravenously infused Ang II. NADPH oxidase 4 (Nox4) mRNA expression, which is controlled by smad proteins, increased 430% at week 7, while Nox4 protein expression, which can activate Nrf2, was 170% higher at week 7 than at week 1. These results demonstrate that prolonged fasting activates Nrf2 in elephant seals and that RAS stimulation can potentially result in increased Nox4 through Smad phosphorylation. The results also suggest that Nox4 is essential to sustain the hormetic adaptive response to oxidative stress in fasting seals.

  19. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange

    DEFF Research Database (Denmark)

    Liu, Yi; Dentin, Renaud; Chen, Danica

    2008-01-01

    During early fasting, increases in skeletal muscle proteolysis liberate free amino acids for hepatic gluconeogenesis in response to pancreatic glucagon. Hepatic glucose output diminishes during the late protein-sparing phase of fasting, when ketone body production by the liver supplies compensatory...... expression through the dephosphorylation and nuclear shuttling of forkhead box O1 (FOXO1). Here we show that a fasting-inducible switch, consisting of the histone acetyltransferase p300 and the nutrient-sensing deacetylase sirtuin 1 (SIRT1), maintains energy balance in mice through the sequential induction...... of CRTC2 and FOXO1. After glucagon induction, CRTC2 stimulated gluconeogenic gene expression by an association with p300, which we show here is also activated by dephosphorylation at Ser 89 during fasting. In turn, p300 increased hepatic CRTC2 activity by acetylating it at Lys 628, a site that also...

  20. Fast and direct detection of neuronal activation with diffusion MRI

    International Nuclear Information System (INIS)

    Le Bihan, D.; Urayama, S.; Aso, T.; Hanakawa, T.; Fukuyama, H.

    2006-01-01

    Over the last 30 years functional neuroimaging has emerged as a revolutionary path to study the brain and the mind. This has been possible because of significant advances mainly in two imaging modalities, namely Positron Emission Tomograph y (PET) and Magnetic Resonance Imaging (MRI). Amazingly, although those two modalities are based on radically different physical approaches (detection of 1 3 radioactivity for the first one and nuclear magnetization for the second), both allo w brain activation images to be obtained through measurements involving water molecules. So far, PET and MRI functional imaging have relied on the same principle that neuronal activation and blood flow are coupled through metabolism: Blood flow increases locally in activated brain regions. In the case of PET one uses H 2 O radioactive water which is produced by using a cyclotron and injected to the subject vasculature. In activated brain regions the increase in blood flow leads to a local increase in the tissue radioactive water content detected and localized by the PE T camera. With MRI the hydrogen nuclei of brain endogenous water molecules are magnetized by a strong external magnetic field. In activated regions the increase in blood flow results in an increase of blood oxygenation which induces a slight perturbation of the magnetization relaxation properties of the water molecules around blood vessels detected by the MRI scanner (so called 'BOLD' effect). I n both approaches water is, thus, merely an indirect means to look at changes in cerebral blood flow which accompany brain activation, and although PET and BOLD f MRI have been extremely successful for the functional neuroimaging community, present well known limitations. While the coupling between neuronal activation, metabolism and blood flow has been verified in most instances including BOLD f MRI, the degree and the mechanism of coupling remains largely debated (Magistratt, Pellerin, Mangia) and may fail in some pathological

  1. SIK2 regulates fasting-induced PPARα activity and ketogenesis through p300

    OpenAIRE

    Zhen-Ning Zhang; Lulu Gong; Sihan Lv; Jian Li; Xiaolu Tai; Wenqi Cao; Bing Peng; Shen Qu; Weida Li; Chao Zhang; Bing Luan

    2016-01-01

    Fatty acid oxidation and subsequent ketogenesis is one of the major mechanisms to maintain hepatic lipid homeostasis under fasting conditions. Fasting hormone glucagon has been shown to stimulate ketone body production through activation of PPAR?; however, the signal pathway linking glucagon to PPAR? is largely undiscovered. Here we report that a SIK2-p300-PPAR? cascade mediates glucagon?s effect on ketogenesis. p300 interacts with PPAR? through a conserved LXXLL motif and enhances its transc...

  2. Effect of physical activities and obesity on Ramadan fasting among hypertensive patients

    Directory of Open Access Journals (Sweden)

    Nazeer Khan

    2016-12-01

    Full Text Available Objective: To find out the effect of physical activities and obesity among Ramadan fasting hypertensive patients of Karachi. Methods: 117 hypertensive patients were selected conveniently from the staff and faculty members of Dow University and other locations of Karachi. The inclusion criterion was the hypertensive patients with at least 20 days of fasting. The investigators visited three times (last ten days of Shaban, Ramadan and Shawwal for collection of data. A questionnaire was completed before clinical examination. Blood pressures were   measured 3 times in sitting position. 103 patients fasted at least 20 days. Results: The mean age of the 103 patients was 53.7±11.0 years. 11% participants could be considered as active using MET value of 600 and above. Mean sleeping hours decreased from 6.9 hours in Shaban to 6.3 hours in Ramadan. Mean systolic and diastolic blood pressures decreased from Shaban to Ramadan and bounced back in Shawwal for both ‘active’ and ‘inactive’ patients. However, it was statistically significant for ‘inactive’ patients only. Only mean SBP decreased significantly from Shaban to Ramadan for normal and overweight patients. Combined effect of physical activity, obesity, sleeping pattern and number of fasting days with repeated measure ANOVA showed that only number of fasting days was statistically significant. Conclusions: The study concludes that fasting does not harm anyway to the hypertensive patients. Nevertheless, it significantly reduces the systolic and diastolic blood pressures. Changes in physical activities, sleeping patterns, and weight reduction, except number days of fasting, do not affect on the fasting hypertensive patients.

  3. The mechanism of abrupt transition between theta and hyper-excitable spiking activity in medial entorhinal cortex layer II stellate cells.

    Directory of Open Access Journals (Sweden)

    Tilman Kispersky

    2010-11-01

    Full Text Available Recent studies have shown that stellate cells (SCs of the medial entorhinal cortex become hyper-excitable in animal models of temporal lobe epilepsy. These studies have also demonstrated the existence of recurrent connections among SCs, reduced levels of recurrent inhibition in epileptic networks as compared to control ones, and comparable levels of recurrent excitation among SCs in both network types. In this work, we investigate the biophysical and dynamic mechanism of generation of the fast time scale corresponding to hyper-excitable firing and the transition between theta and fast firing frequency activity in SCs. We show that recurrently connected minimal networks of SCs exhibit abrupt, threshold-like transition between theta and hyper-excitable firing frequencies as the result of small changes in the maximal synaptic (AMPAergic conductance. The threshold required for this transition is modulated by synaptic inhibition. Similar abrupt transition between firing frequency regimes can be observed in single, self-coupled SCs, which represent a network of recurrently coupled neurons synchronized in phase, but not in synaptically isolated SCs as the result of changes in the levels of the tonic drive. Using dynamical systems tools (phase-space analysis, we explain the dynamic mechanism underlying the genesis of the fast time scale and the abrupt transition between firing frequency regimes, their dependence on the intrinsic SC's currents and synaptic excitation. This abrupt transition is mechanistically different from others observed in similar networks with different cell types. Most notably, there is no bistability involved. 'In vitro' experiments using single SCs self-coupled with dynamic clamp show the abrupt transition between firing frequency regimes, and demonstrate that our theoretical predictions are not an artifact of the model. In addition, these experiments show that high-frequency firing is burst-like with a duration modulated by an M-current.

  4. Active school transport and fast food intake: Are there racial and ethnic differences?

    Science.gov (United States)

    Sanchez-Vaznaugh, E V; Bécares, L; Sallis, J F; Sánchez, B N

    2016-10-01

    To investigate whether active school transport was associated with fast food consumption, and to examine differences across racial/ethnic groups. Adolescent data (n=3194) from the 2009 California Health Interview Survey were analyzed with logistic regression models to examine the association between active school transport (AST) and fast food intake across racial/ethnic groups. In the overall sample, AST during 1-2days in the past week was associated with greater likelihood of fast food intake (OR: 1.58; 95% CI: 1.03-2.43), compared with zero days of AST, controlling for demographic and other factors. The association between AST and fast food intake differed significantly by race/ethnicity (pfast food intake (1-2days OR, 2.37, 95%CI: 1.05-5.35; 3-4days OR, 2.78, 95% CI: 1.04-7.43; 5days OR, 2.20, 95%CI: 1.23-3.93). Among White and Asian adolescents, there was a curvilinear pattern: relative to adolescents who reported zero days of AST, those who did AST 1-2days/week had greater likelihood of fast food intake, but AST of 3-4days and 5days/week was associated respectively, with higher and lower likelihood of fast food intake among both groups. AST appears to be a risk factor for fast food intake, and may expose some ethnic groups more than others to increased opportunity to purchase and consume fast food. Programs and policies to promote AST among adolescents should incorporate efforts to encourage healthy eating and discourage concentration of fast food outlets near schools. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition

    Science.gov (United States)

    Caffa, Irene; D'Agostino, Vito; Damonte, Patrizia; Soncini, Debora; Cea, Michele; Monacelli, Fiammetta; Odetti, Patrizio; Ballestrero, Alberto; Provenzani, Alessandro; Longo, Valter D.; Nencioni, Alessio

    2015-01-01

    Tyrosine kinase inhibitors (TKIs) are now the mainstay of treatment in many types of cancer. However, their benefit is frequently short-lived, mandating the search for safe potentiation strategies. Cycles of fasting enhance the activity of chemo-radiotherapy in preclinical cancer models and dietary approaches based on fasting are currently explored in clinical trials. Whether combining fasting with TKIs is going to be potentially beneficial remains unknown. Here we report that starvation conditions increase the ability of commonly administered TKIs, including erlotinib, gefitinib, lapatinib, crizotinib and regorafenib, to block cancer cell growth, to inhibit the mitogen-activated protein kinase (MAPK) signaling pathway and to strengthen E2F-dependent transcription inhibition. In cancer xenografts models, both TKIs and cycles of fasting slowed tumor growth, but, when combined, these interventions were significantly more effective than either type of treatment alone. In conclusion, cycles of fasting or of specifically designed fasting-mimicking diets should be evaluated in clinical studies as a means to potentiate the activity of TKIs in clinical use. PMID:25909220

  6. Task-dependent activation of distinct fast and slow(er) motor pathways during motor imagery.

    Science.gov (United States)

    Keller, Martin; Taube, Wolfgang; Lauber, Benedikt

    2018-02-22

    Motor imagery and actual movements share overlapping activation of brain areas but little is known about task-specific activation of distinct motor pathways during mental simulation of movements. For real contractions, it was demonstrated that the slow(er) motor pathways are activated differently in ballistic compared to tonic contractions but it is unknown if this also holds true for imagined contractions. The aim of the present study was to assess the activity of fast and slow(er) motor pathways during mentally simulated movements of ballistic and tonic contractions. H-reflexes were conditioned with transcranial magnetic stimulation at different interstimulus intervals to assess the excitability of fast and slow(er) motor pathways during a) the execution of tonic and ballistic contractions, b) motor imagery of these contraction types, and c) at rest. In contrast to the fast motor pathways, the slow(er) pathways displayed a task-specific activation: for imagined ballistic as well as real ballistic contractions, the activation was reduced compared to rest whereas enhanced activation was found for imagined tonic and real tonic contractions. This study provides evidence that the excitability of fast and slow(er) motor pathways during motor imagery resembles the activation pattern observed during real contractions. The findings indicate that motor imagery results in task- and pathway-specific subliminal activation of distinct subsets of neurons in the primary motor cortex. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Review of fast reactor activities in Switzerland - March 1986

    International Nuclear Information System (INIS)

    Wydler, P.

    1986-01-01

    During 1985 the different research activities at EIR were funded at similar levels to the previous year. Of the total Government funded R and D budget of 48 million Swiss Francs, 4.4 million (or 9%) have been expended for LMFBR related activities. These comprise an LMFBR safety programme and an advanced fuel development programme with respective expenditures of 1.9 and 2.5 million Francs. In the budget for 1986, 2.8 million Francs are allocated to the safety and 3.5 million Francs to the fuel development programme

  8. Adenosine deaminase activities and fasting blood glucose in obesity ...

    African Journals Online (AJOL)

    Background: A complex relationship seems to exist between adenosine deaminase (ADA) and insulin in obesity. Through its effect on adenosine, the enzyme can modulate the action of insulin and affect blood glucose while the administration of insulin is said to decrease the activities of the enzyme. Aim: To investigate the ...

  9. Sibutramine promotes amygdala activity under fasting conditions in obese women.

    Science.gov (United States)

    Oltmanns, Kerstin M; Heldmann, Marcus; Daul, Susanne; Klose, Silke; Rotte, Michael; Schäfer, Michael; Heinze, Hans-Jochen; Münte, Thomas F; Lehnert, Hendrik

    2012-06-01

    Sibutramine, a centrally-acting selective monoamine reuptake inhibitor, has been used as an appetite suppressant drug in obesity. To gain insight into the central nervous actions of sibutramine, brain responses to pictures of food items after sibutramine vs placebo application were assessed by functional magnetic resonance imaging (fMRI) in obese women. In a randomized double-blind crossover design, 10 healthy obese women (BMI 31.8-39.9 kg/m(2)) received 15 mg/d of sibutramine vs placebo for 14 d. Obese participants, and a group of 10 age-matched normal weight controls, viewed pictures of food items and control objects in hungry and satiated states while lying in the MR scanner. The paradigm followed a block design. In obese participants, fMRI measurements were conducted prior and after two weeks of daily sibutramine or placebo administration, whereas control participants were scanned only at one point in time. Upon food item presentation, obese participants showed increased brain activity in areas related to emotional and reward processing, perceptual processing, and cognitive control as compared to normal weight controls. Sibutramine exerted a divergent satiety-dependent effect on amygdala activity in obese participants, increasing activity in the hungry state while decreasing it under conditions of satiation. Our results demonstrate a modulatory influence of sibutramine on amygdala activity in obese women which may underlie the appetite suppressant effects of the drug.

  10. Fast and direct detection of neuronal activation with diffusion MRI

    Energy Technology Data Exchange (ETDEWEB)

    Le Bihan, D. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), Lab. Anatomical and Functional Neuroimaging, 91 - Orsay (France); Urayama, S.; Aso, T.; Hanakawa, T.; Fukuyama, H. [Kyoto Univ. Graduate School of Medicine, Human Brain Research Center, Kyoto (Japan)

    2006-07-01

    Over the last 30 years functional neuroimaging has emerged as a revolutionary path to study the brain and the mind. This has been possible because of significant advances mainly in two imaging modalities, namely Positron Emission Tomograph y (PET) and Magnetic Resonance Imaging (MRI). Amazingly, although those two modalities are based on radically different physical approaches (detection of 1 3 radioactivity for the first one and nuclear magnetization for the second), both allo w brain activation images to be obtained through measurements involving water molecules. So far, PET and MRI functional imaging have relied on the same principle that neuronal activation and blood flow are coupled through metabolism: Blood flow increases locally in activated brain regions. In the case of PET one uses H{sub 2}O radioactive water which is produced by using a cyclotron and injected to the subject vasculature. In activated brain regions the increase in blood flow leads to a local increase in the tissue radioactive water content detected and localized by the PE T camera. With MRI the hydrogen nuclei of brain endogenous water molecules are magnetized by a strong external magnetic field. In activated regions the increase in blood flow results in an increase of blood oxygenation which induces a slight perturbation of the magnetization relaxation properties of the water molecules around blood vessels detected by the MRI scanner (so called 'BOLD' effect). I n both approaches water is, thus, merely an indirect means to look at changes in cerebral blood flow which accompany brain activation, and although PET and BOLD f MRI have been extremely successful for the functional neuroimaging community, present well known limitations. While the coupling between neuronal activation, metabolism and blood flow has been verified in most instances including BOLD f MRI, the degree and the mechanism of coupling remains largely debated (Magistratt, Pellerin, Mangia) and may fail in some

  11. Implementing Signature Neural Networks with Spiking Neurons.

    Science.gov (United States)

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence

  12. Genetic activation of Nrf2 protects against fasting-induced oxidative stress in livers of mice.

    Directory of Open Access Journals (Sweden)

    Yu-Kun Jennifer Zhang

    Full Text Available Acute fasting causes elevated oxidative stress. The current study investigated the effects of the nuclear factor erythoid 2-related factor 2 (Nrf2, the sensor of oxidative stress in cells, on energy homeostasis and liver pathophysiology during fasting. Feed was removed from mice possessing none (Nrf2-null, normal (wild-type, WT, enhanced (Keap1-knockdown, K1-KD, and maximum (hepatocyte-specific Keap1-knockout, K1-HKO Nrf2 activity in liver for 24 h. Body weight, blood glucose, and blood lipid profiles were similar among mice with graded Nrf2 activity under either fed or fasted conditions. Fasting reduced liver size in mice expressing Nrf2, but not in Nrf2-null mice. Nrf2-null mice accumulated more non-esterified free fatty acids and triglycerides in liver after fasting than the other genotypes of mice. Fatty acids are mainly catabolized in mitochondria, and Nrf2-null mice had lower mitochondrial content in liver under control feeding conditions, which was further reduced by fasting. In contrast, mitochondrial contents in mice with enhanced Nrf2 activity were not affected by fasting. Oxidative stress, determined by staining of free radicals and quantification of malondialdehyde equivalents, was highest in Nrf2-null and lowest in K1-HKO mice after fasting. The exacerbated oxidative stress in livers of Nrf2-null mice is predicted to lead to damages to mitochondria, and therefore diminished oxidation and increased accumulation of lipids in livers of Nrf2-null mice. In summary, the Nrf2-regulated signaling pathway is critical in protecting mitochondria from oxidative stress during feed deprivation, which ensures efficient utilization of fatty acids in livers of mice.

  13. Coronavirus spike-receptor interactions

    NARCIS (Netherlands)

    Mou, H.

    2015-01-01

    Coronaviruses cause important diseases in humans and animals. Coronavirus infection starts with the virus binding with its spike proteins to molecules present on the surface of host cells that act as receptors. This spike-receptor interaction is highly specific and determines the virus’ cell, tissue

  14. Robust and fast schemes in broadband active noise and vibration control

    NARCIS (Netherlands)

    Fraanje, P.R.

    2004-01-01

    This thesis presents robust and fast active control algorithms for the suppression of broadband noise and vibration disturbances. Noise disturbances, e.g., generated by engines in airplanes and cars or by air ow, can be reduced by means of passive or active methods.

  15. A Fasting Inducible Switch Modulates Gluconeogenesis Via Activator-Coactivator Exchange

    Science.gov (United States)

    Liu, Yi; Dentin, Renaud; Chen, Danica; Hedrick, Susan; Ravnskjaer, Kim; Schenk, Simon; Milne, Jill; Meyers, David J.; Cole, Phil; Yates, John; Olefsky, Jerrold; Guarente, Leonard; Montminy, Marc

    2008-01-01

    During early fasting, increases in skeletal muscle proteolysis liberate free amino acids for hepatic gluconeogenesis in response to pancreatic glucagon. Hepatic glucose output diminishes during the late protein-sparing phase of fasting, when ketone body production by the liver supplies compensatory fuel for glucose-dependent tissues 1–4. Glucagon stimulates the gluconeogenic program by triggering the dephosphorylation and nuclear translocation of the CREB regulated transcription coactivator 2 (CRTC2; also known as TORC2), while parallel decreases in insulin signaling augment gluconeogenic gene expression through the de-phosphorylation and nuclear shuttling of Forkhead Box O1 (FOXO1) 5–7. Here we show that a fasting-inducible switch, consisting of the histone acetyl-transferase (HAT) P300 and the nutrient-sensing deacetylase Sirtuin 1 (SIRT1), maintains energy balance through the sequential induction of CRTC2 and FOXO1. Following glucagon induction, CRTC2 stimulated gluconeogenic gene expression through an association with P300, which we show here is also activated by de-phosphorylation at Ser89 during fasting. In turn, P300 increased hepatic CRTC2 activity by acetylating it at Lys628, a site that also targets CRTC2 for degradation following its ubiquitination by the E3 ligase Constitutive Photomorphogenic Protein (COP1) 8. Glucagon effects were attenuated during late fasting, when CRTC2 was down-regulated due to SIRT1-mediated deacetylation and when FOXO1 supported expression of the gluconeogenic program. Disrupting SIRT1 activity, by liver-specific knockout of the SIRT1 gene or by administration of SIRT1 antagonist, increased CRTC2 activity and glucose output, while exposure to SIRT1 agonists reduced them. In view of the reciprocal activation of FOXO1 and its coactivator peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC-1α) by SIRT1 activators 9–12, our results illustrate how the exchange of two gluconeogenic regulators during

  16. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange.

    Science.gov (United States)

    Liu, Yi; Dentin, Renaud; Chen, Danica; Hedrick, Susan; Ravnskjaer, Kim; Schenk, Simon; Milne, Jill; Meyers, David J; Cole, Phil; Yates, John; Olefsky, Jerrold; Guarente, Leonard; Montminy, Marc

    2008-11-13

    During early fasting, increases in skeletal muscle proteolysis liberate free amino acids for hepatic gluconeogenesis in response to pancreatic glucagon. Hepatic glucose output diminishes during the late protein-sparing phase of fasting, when ketone body production by the liver supplies compensatory fuel for glucose-dependent tissues. Glucagon stimulates the gluconeogenic program by triggering the dephosphorylation and nuclear translocation of the CREB regulated transcription coactivator 2 (CRTC2; also known as TORC2), while parallel decreases in insulin signalling augment gluconeogenic gene expression through the dephosphorylation and nuclear shuttling of forkhead box O1 (FOXO1). Here we show that a fasting-inducible switch, consisting of the histone acetyltransferase p300 and the nutrient-sensing deacetylase sirtuin 1 (SIRT1), maintains energy balance in mice through the sequential induction of CRTC2 and FOXO1. After glucagon induction, CRTC2 stimulated gluconeogenic gene expression by an association with p300, which we show here is also activated by dephosphorylation at Ser 89 during fasting. In turn, p300 increased hepatic CRTC2 activity by acetylating it at Lys 628, a site that also targets CRTC2 for degradation after its ubiquitination by the E3 ligase constitutive photomorphogenic protein (COP1). Glucagon effects were attenuated during late fasting, when CRTC2 was downregulated owing to SIRT1-mediated deacetylation and when FOXO1 supported expression of the gluconeogenic program. Disrupting SIRT1 activity, by liver-specific knockout of the Sirt1 gene or by administration of a SIRT1 antagonist, increased CRTC2 activity and glucose output, whereas exposure to SIRT1 agonists reduced them. In view of the reciprocal activation of FOXO1 and its coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha, encoded by Ppargc1a) by SIRT1 activators, our results illustrate how the exchange of two gluconeogenic regulators during fasting

  17. A robust and biologically plausible spike pattern recognition network.

    Science.gov (United States)

    Larson, Eric; Perrone, Ben P; Sen, Kamal; Billimoria, Cyrus P

    2010-11-17

    The neural mechanisms that enable recognition of spiking patterns in the brain are currently unknown. This is especially relevant in sensory systems, in which the brain has to detect such patterns and recognize relevant stimuli by processing peripheral inputs; in particular, it is unclear how sensory systems can recognize time-varying stimuli by processing spiking activity. Because auditory stimuli are represented by time-varying fluctuations in frequency content, it is useful to consider how such stimuli can be recognized by neural processing. Previous models for sound recognition have used preprocessed or low-level auditory signals as input, but complex natural sounds such as speech are thought to be processed in auditory cortex, and brain regions involved in object recognition in general must deal with the natural variability present in spike trains. Thus, we used neural recordings to investigate how a spike pattern recognition system could deal with the intrinsic variability and diverse response properties of cortical spike trains. We propose a biologically plausible computational spike pattern recognition model that uses an excitatory chain of neurons to spatially preserve the temporal representation of the spike pattern. Using a single neural recording as input, the model can be trained using a spike-timing-dependent plasticity-based learning rule to recognize neural responses to 20 different bird songs with >98% accuracy and can be stimulated to evoke reverse spike pattern playback. Although we test spike train recognition performance in an auditory task, this model can be applied to recognize sufficiently reliable spike patterns from any neuronal system.

  18. Spike sorting for polytrodes: a divide and conquer approach

    Directory of Open Access Journals (Sweden)

    Nicholas V. Swindale

    2014-02-01

    Full Text Available In order to determine patterns of neural activity, spike signals recorded by extracellular electrodes have to be clustered (sorted with the aim of ensuring that each cluster represents all the spikes generated by an individual neuron. Many methods for spike sorting have been proposed but few are easily applicable to recordings from polytrodes which may have 16 or more recording sites. As with tetrodes, these are spaced sufficiently closely that signals from single neurons will usually be recorded on several adjacent sites. Although this offers a better chance of distinguishing neurons with similarly shaped spikes, sorting is difficult in such cases because of the high dimensionality of the space in which the signals must be classified. This report details a method for spike sorting based on a divide and conquer approach. Clusters are initially formed by assigning each event to the channel on which it is largest. Each channel-based cluster is then sub-divided into as many distinct clusters as possible. These are then recombined on the basis of pairwise tests into a final set of clusters. Pairwise tests are also performed to establish how distinct each cluster is from the others. A modified gradient ascent clustering (GAC algorithm is used to do the clustering. The method can sort spikes with minimal user input in times comparable to real time for recordings lasting up to 45 minutes. Our results illustrate some of the difficulties inherent in spike sorting, including changes in spike shape over time. We show that some physiologically distinct units may have very similar spike shapes. We show that RMS measures of spike shape similarity are not sensitive enough to discriminate clusters that can otherwise be separated by principal components analysis. Hence spike sorting based on least-squares matching to templates may be unreliable. Our methods should be applicable to tetrodes and scaleable to larger multi-electrode arrays (MEAs.

  19. Spike sorting for polytrodes: a divide and conquer approach.

    Science.gov (United States)

    Swindale, Nicholas V; Spacek, Martin A

    2014-01-01

    In order to determine patterns of neural activity, spike signals recorded by extracellular electrodes have to be clustered (sorted) with the aim of ensuring that each cluster represents all the spikes generated by an individual neuron. Many methods for spike sorting have been proposed but few are easily applicable to recordings from polytrodes which may have 16 or more recording sites. As with tetrodes, these are spaced sufficiently closely that signals from single neurons will usually be recorded on several adjacent sites. Although this offers a better chance of distinguishing neurons with similarly shaped spikes, sorting is difficult in such cases because of the high dimensionality of the space in which the signals must be classified. This report details a method for spike sorting based on a divide and conquer approach. Clusters are initially formed by assigning each event to the channel on which it is largest. Each channel-based cluster is then sub-divided into as many distinct clusters as possible. These are then recombined on the basis of pairwise tests into a final set of clusters. Pairwise tests are also performed to establish how distinct each cluster is from the others. A modified gradient ascent clustering (GAC) algorithm is used to do the clustering. The method can sort spikes with minimal user input in times comparable to real time for recordings lasting up to 45 min. Our results illustrate some of the difficulties inherent in spike sorting, including changes in spike shape over time. We show that some physiologically distinct units may have very similar spike shapes. We show that RMS measures of spike shape similarity are not sensitive enough to discriminate clusters that can otherwise be separated by principal components analysis (PCA). Hence spike sorting based on least-squares matching to templates may be unreliable. Our methods should be applicable to tetrodes and scalable to larger multi-electrode arrays (MEAs).

  20. Fast automated online xylanase activity assay using HPAEC-PAD.

    Science.gov (United States)

    Cürten, Christin; Anders, Nico; Juchem, Niels; Ihling, Nina; Volkenborn, Kristina; Knapp, Andreas; Jaeger, Karl-Erich; Büchs, Jochen; Spiess, Antje C

    2018-01-01

    In contrast to biochemical reactions, which are often carried out under automatic control and maintained overnight, the automation of chemical analysis is usually neglected. Samples are either analyzed in a rudimentary fashion using in situ techniques, or aliquots are withdrawn and stored to facilitate more precise offline measurements, which can result in sampling and storage errors. Therefore, in this study, we implemented automated reaction control, sampling, and analysis. As an example, the activities of xylanases on xylotetraose and soluble xylan were examined using high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The reaction was performed in HPLC vials inside a temperature-controlled Dionex™ AS-AP autosampler. It was started automatically when the autosampler pipetted substrate and enzyme solution into the reaction vial. Afterwards, samples from the reaction vial were injected repeatedly for 60 min onto a CarboPac™ PA100 column for analysis. Due to the rapidity of the reaction, the analytical method and the gradient elution of 200 mM sodium hydroxide solution and 100 mM sodium hydroxide with 500 mM sodium acetate were adapted to allow for an overall separation time of 13 min and a detection limit of 0.35-1.83 mg/L (depending on the xylooligomer). This analytical method was applied to measure the soluble short-chain products (xylose, xylobiose, xylotriose, xylotetraose, xylopentaose, and longer xylooligomers) that arise during enzymatic hydrolysis. Based on that, the activities of three endoxylanases (EX) were determined as 294 U/mg for EX from Aspergillus niger, 1.69 U/mg for EX from Bacillus stearothermophilus, and 0.36 U/mg for EX from Bacillus subtilis. Graphical abstract Xylanase activity assay automation.

  1. Time-driven Activity-based Cost of Fast-Track Total Hip and Knee Arthroplasty

    DEFF Research Database (Denmark)

    Andreasen, Signe E; Holm, Henriette B; Jørgensen, Mira

    2017-01-01

    BACKGROUND: Fast-track total hip and knee arthroplasty (THA and TKA) has been shown to reduce the perioperative convalescence resulting in less postoperative morbidity, earlier fulfillment of functional milestones, and shorter hospital stay. As organizational optimization is also part of the fast......-track methodology, the result could be a more cost-effective pathway altogether. As THA and TKA are potentially costly procedures and the numbers are increasing in an economical limited environment, the aim of this study is to present baseline detailed economical calculations of fast-track THA and TKA and compare...... this between 2 departments with different logistical set-ups. METHODS: Prospective data collection was analyzed using the time-driven activity-based costing method (TDABC) on time consumed by different staff members involved in patient treatment in the perioperative period of fast-track THA and TKA in 2 Danish...

  2. Review of Fast Reactor Activities at OECD (NEA)

    International Nuclear Information System (INIS)

    Royen, J.

    1980-01-01

    The Committee on the Safety of Nuclear Installations (CSNI) has recently increased its activity in LMFBR safety, under the guidance of its Group of Senior Experts on LMFBR Safety R & D. This Group, formed in 1978, consists of CSNI delegates (or alternates) from Member countries sponsoring major research in the field, and the Commission of the European Communities. The Group now oversees the preparation of international status reports on relatively well-developed areas of LMFBR safety technology, and the convening of specialist meetings, expert groups and task forces to aid in investigating and resolving problems in less-evolved safety subjects

  3. The denitration of simulated fast reactor highly active liquor waste

    International Nuclear Information System (INIS)

    Saum, C.J.; Ford, L.H.; Platts, N.

    1981-11-01

    Vitrification of the highly active arisings from PFR fuel reprocessing is proposed as the optimum long-term solution to the disposal problem. During vitrification ruthenium volatilises as the tetroxide. Evidence is presented which indicates that a substantial reduction in volatility can be effected by denitration of the liquid feed by treatment with formic acid. The kinetics and stoichiometry of the reactions involved in denitration are examined and empirical rate equations developed. The predictions of the empirical rate equation have been confirmed using a one-tenth scale continuous denitrator, thus giving confidence for the design of full-scale units. (author)

  4. Fast neutron spectra determination by threshold activation detectors using neural networks

    International Nuclear Information System (INIS)

    Kardan, M.R.; Koohi-Fayegh, R.; Setayeshi, S.; Ghiassi-Nejad, M.

    2004-01-01

    Neural network method was used for fast neutron spectra unfolding in spectrometry by threshold activation detectors. The input layer of the neural networks consisted of 11 neurons for the specific activities of neutron-induced nuclear reaction products, while the output layers were fast neutron spectra which had been subdivided into 6, 8, 10, 12, 15 and 20 energy bins. Neural network training was performed by 437 fast neutron spectra and corresponding threshold activation detector readings. The trained neural network have been applied for unfolding 50 spectra, which were not in training sets and the results were compared with real spectra and unfolded spectra by SANDII. The best results belong to 10 energy bin spectra. The neural network was also trained by detector readings with 5% uncertainty and the response of the trained neural network to detector readings with 5%, 10%, 15%, 20%, 25% and 50% uncertainty was compared with real spectra. Neural network algorithm, in comparison with other unfolding methods, is very fast and needless to detector response matrix and any prior information about spectra and also the outputs have low sensitivity to uncertainty in the activity measurements. The results show that the neural network algorithm is useful when a fast response is required with reasonable accuracy

  5. Fast inhibition of glutamate-activated currents by caffeine.

    Directory of Open Access Journals (Sweden)

    Nicholas P Vyleta

    Full Text Available BACKGROUND: Caffeine stimulates calcium-induced calcium release (CICR in many cell types. In neurons, caffeine stimulates CICR presynaptically and thus modulates neurotransmitter release. METHODOLOGY/PRINCIPAL FINDINGS: Using the whole-cell patch-clamp technique we found that caffeine (20 mM reversibly increased the frequency and decreased the amplitude of miniature excitatory postsynaptic currents (mEPSCs in neocortical neurons. The increase in mEPSC frequency is consistent with a presynaptic mechanism. Caffeine also reduced exogenously applied glutamate-activated currents, confirming a separate postsynaptic action. This inhibition developed in tens of milliseconds, consistent with block of channel currents. Caffeine (20 mM did not reduce currents activated by exogenous NMDA, indicating that caffeine block is specific to non-NMDA type glutamate receptors. CONCLUSIONS/SIGNIFICANCE: Caffeine-induced inhibition of mEPSC amplitude occurs through postsynaptic block of non-NMDA type ionotropic glutamate receptors. Caffeine thus has both pre and postsynaptic sites of action at excitatory synapses.

  6. Nicotine-Mediated ADP to Spike Transition: Double Spiking in Septal Neurons.

    Science.gov (United States)

    Kodirov, Sodikdjon A; Wehrmeister, Michael; Colom, Luis

    2016-04-01

    The majority of neurons in lateral septum (LS) are electrically silent at resting membrane potential. Nicotine transiently excites a subset of neurons and occasionally leads to long lasting bursting activity upon longer applications. We have observed simultaneous changes in frequencies and amplitudes of spontaneous action potentials (AP) in the presence of nicotine. During the prolonged exposure, nicotine increased numbers of spikes within a burst. One of the hallmarks of nicotine effects was the occurrences of double spikes (known also as bursting). Alignment of 51 spontaneous spikes, triggered upon continuous application of nicotine, revealed that the slope of after-depolarizing potential gradually increased (1.4 vs. 3 mV/ms) and neuron fired the second AP, termed as double spiking. A transition from a single AP to double spikes increased the amplitude of after-hyperpolarizing potential. The amplitude of the second (premature) AP was smaller compared to the first one, and this correlation persisted in regard to their duration (half-width). A similar bursting activity in the presence of nicotine, to our knowledge, has not been reported previously in the septal structure in general and in LS in particular.

  7. Fractal dimension analysis for spike detection in low SNR extracellular signals.

    Science.gov (United States)

    Salmasi, Mehrdad; Büttner, Ulrich; Glasauer, Stefan

    2016-06-01

    Many algorithms have been suggested for detection and sorting of spikes in extracellular recording. Nevertheless, it is still challenging to detect spikes in low signal-to-noise ratios (SNR). We propose a spike detection algorithm that is based on the fractal properties of extracellular signals and can detect spikes in low SNR regimes. Semi-intact spikes are low-amplitude spikes whose shapes are almost preserved. The detection of these spikes can significantly enhance the performance of multi-electrode recording systems. Semi-intact spikes are simulated by adding three noise components to a spike train: thermal noise, inter-spike noise, and spike-level noise. We show that simulated signals have fractal properties which make them proper candidates for fractal analysis. Then we use fractal dimension as the main core of our spike detection algorithm and call it fractal detector. The performance of the fractal detector is compared with three frequently used spike detectors. We demonstrate that in low SNR, the fractal detector has the best performance and results in the highest detection probability. It is shown that, in contrast to the other three detectors, the performance of the fractal detector is independent of inter-spike noise power and that variations in spike shape do not alter its performance. Finally, we use the fractal detector for spike detection in experimental data and similar to simulations, it is shown that the fractal detector has the best performance in low SNR regimes. The detection of low-amplitude spikes provides more information about the neural activity in the vicinity of the recording electrodes. Our results suggest using the fractal detector as a reliable and robust method for detecting semi-intact spikes in low SNR extracellular signals.

  8. A review of fast reactor activities in Italy

    International Nuclear Information System (INIS)

    Pierantoni, F.; Tavoni, R.

    1992-01-01

    In the framework of energy requirements in Italy, in August 1991, a new reform law of ENEA was issued containing some changes in its attribution. It is now the Italian national Agency for New Technology, Energy and the Environment. Its principal areas of activity are: the development and promotion of renewable energy sources and other alternatives to hydrocarbon fuels; energy conservation; research into innovative nuclear fission reactors and into the development of nuclear fusion; assessment, monitoring and protection of the environment and human health; development, diffusion and transfer of innovative technologies into productive systems, in Italy and abroad; licensing and control of peaceful uses of nuclear energy. Modular systems studies under way involve: oxide core studies; PRISM component development; passive monitoring device. Seismic isolation studies were considered as important. They were devoted to: tests on rubber specimen, tests on bearings, isolated structure mock-ups or buildings, numerical studies

  9. SIK2 regulates fasting-induced PPARα activity and ketogenesis through p300.

    Science.gov (United States)

    Zhang, Zhen-Ning; Gong, Lulu; Lv, Sihan; Li, Jian; Tai, Xiaolu; Cao, Wenqi; Peng, Bing; Qu, Shen; Li, Weida; Zhang, Chao; Luan, Bing

    2016-03-17

    Fatty acid oxidation and subsequent ketogenesis is one of the major mechanisms to maintain hepatic lipid homeostasis under fasting conditions. Fasting hormone glucagon has been shown to stimulate ketone body production through activation of PPARα; however, the signal pathway linking glucagon to PPARα is largely undiscovered. Here we report that a SIK2-p300-PPARα cascade mediates glucagon's effect on ketogenesis. p300 interacts with PPARα through a conserved LXXLL motif and enhances its transcriptional activity. SIK2 disrupts p300-PPARα interaction by direct phosphorylation of p300 at Ser89, which in turn decreases PPARα-mediated ketogenic gene expression. Moreover, SIK2 phosphorylation defective p300 (p300 S89A) shows increased interaction with PPARα and abolishes suppression of SIK2 on PPARα-mediated ketogenic gene expression in liver. Taken together, our results unveil the signal pathway that mediates fasting induced ketogenesis to maintain hepatic lipid homeostasis.

  10. Mouse neuroblastoma cell based model and the effect of epileptic events on calcium oscillations and neural spikes

    Science.gov (United States)

    Kim, Suhwan; Baek, Juyeong; Jung, Unsang; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon

    2013-05-01

    Recently, Mouse neuroblastoma cells are considered as an attractive model for the study of human neurological and prion diseases, and intensively used as a model system in different areas. Among those areas, differentiation of neuro2a (N2A) cells, receptor mediated ion current, and glutamate induced physiological response are actively investigated. The reason for the interest to mouse neuroblastoma N2A cells is that they have a fast growing rate than other cells in neural origin with a few another advantages. This study evaluated the calcium oscillations and neural spikes recording of mouse neuroblastoma N2A cells in an epileptic condition. Based on our observation of neural spikes in mouse N2A cell with our proposed imaging modality, we report that mouse neuroblastoma N2A cells can be an important model related to epileptic activity studies. It is concluded that the mouse neuroblastoma N2A cells produce the epileptic spikes in vitro in the same way as produced by the neurons or the astrocytes. This evidence advocates the increased and strong level of neurotransmitters release by enhancement in free calcium using the 4-aminopyridine which causes the mouse neuroblastoma N2A cells to produce the epileptic spikes and calcium oscillation.

  11. Pharmaceutically active ionic liquids with solids handling, enhanced thermal stability, and fast release

    DEFF Research Database (Denmark)

    Bica, Katharina; Rodríguez, Héctor; Gurau, Gabriela

    2012-01-01

    Pharmaceutically active compounds in ionic liquid form immobilized onto mesoporous silica are stable, easily handled solids, with fast and complete release from the carrier material when placed into an aqueous environment. Depending on specific ion-surface interactions, they may also exhibit...

  12. Atrial activation during atrioventricular nodal reentrant tachycardia: studies on retrograde fast pathway conduction

    NARCIS (Netherlands)

    Katritsis, Demosthenes G.; Ellenbogen, Kenneth A.; Becker, Anton E.

    2006-01-01

    Detailed right and left septal mapping of retrograde atrial activation during typical atrioventricular nodal reentrant tachycardia (AVNRT) has not been undertaken and may provide insight into the complex physiology of AVNRT, especially the anatomic localization of the fast and slow pathways. The

  13. Heterogeneity of Purkinje cell simple spike-complex spike interactions: zebrin- and non-zebrin-related variations.

    Science.gov (United States)

    Tang, Tianyu; Xiao, Jianqiang; Suh, Colleen Y; Burroughs, Amelia; Cerminara, Nadia L; Jia, Linjia; Marshall, Sarah P; Wise, Andrew K; Apps, Richard; Sugihara, Izumi; Lang, Eric J

    2017-08-01

    Cerebellar Purkinje cells (PCs) generate two types of action potentials, simple and complex spikes. Although they are generated by distinct mechanisms, interactions between the two spike types exist. Zebrin staining produces alternating positive and negative stripes of PCs across most of the cerebellar cortex. Thus, here we compared simple spike-complex spike interactions both within and across zebrin populations. Simple spike activity undergoes a complex modulation preceding and following a complex spike. The amplitudes of the pre- and post-complex spike modulation phases were correlated across PCs. On average, the modulation was larger for PCs in zebrin positive regions. Correlations between aspects of the complex spike waveform and simple spike activity were found, some of which varied between zebrin positive and negative PCs. The implications of the results are discussed with regard to hypotheses that complex spikes are triggered by rises in simple spike activity for either motor learning or homeostatic functions. Purkinje cells (PCs) generate two types of action potentials, called simple and complex spikes (SSs and CSs). We first investigated the CS-associated modulation of SS activity and its relationship to the zebrin status of the PC. The modulation pattern consisted of a pre-CS rise in SS activity, and then, following the CS, a pause, a rebound, and finally a late inhibition of SS activity for both zebrin positive (Z+) and negative (Z-) cells, though the amplitudes of the phases were larger in Z+ cells. Moreover, the amplitudes of the pre-CS rise with the late inhibitory phase of the modulation were correlated across PCs. In contrast, correlations between modulation phases across CSs of individual PCs were generally weak. Next, the relationship between CS spikelets and SS activity was investigated. The number of spikelets/CS correlated with the average SS firing rate only for Z+ cells. In contrast, correlations across CSs between spikelet numbers and the

  14. Wavelet analysis of epileptic spikes

    CERN Document Server

    Latka, M; Kozik, A; West, B J; Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.

    2003-01-01

    Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous, pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.

  15. A Simple Deep Learning Method for Neuronal Spike Sorting

    Science.gov (United States)

    Yang, Kai; Wu, Haifeng; Zeng, Yu

    2017-10-01

    Spike sorting is one of key technique to understand brain activity. With the development of modern electrophysiology technology, some recent multi-electrode technologies have been able to record the activity of thousands of neuronal spikes simultaneously. The spike sorting in this case will increase the computational complexity of conventional sorting algorithms. In this paper, we will focus spike sorting on how to reduce the complexity, and introduce a deep learning algorithm, principal component analysis network (PCANet) to spike sorting. The introduced method starts from a conventional model and establish a Toeplitz matrix. Through the column vectors in the matrix, we trains a PCANet, where some eigenvalue vectors of spikes could be extracted. Finally, support vector machine (SVM) is used to sort spikes. In experiments, we choose two groups of simulated data from public databases availably and compare this introduced method with conventional methods. The results indicate that the introduced method indeed has lower complexity with the same sorting errors as the conventional methods.

  16. Analysis of some Egyptian cosmetic samples by fast neutron activation analysis

    International Nuclear Information System (INIS)

    Medhat, M.E.; Ali, M.A.; Hassan, M.F.

    2001-01-01

    A description of D-T neutron generator (NG) is presented. This generator can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. The concentrations of the elements Na, Mg, Al, Si, K, Cl, Ca and Fe were determined in two domestic brands of face powder by using 14 MeV neutron activation analysis

  17. Analysis of Some Egyptian Cosmetic Samples by Fast Neutron Activation Analysis

    CERN Document Server

    Medhat, M E; Fayez-Hassan, M

    2001-01-01

    A description of D-T neutron generator (NG) is presented. This generator can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. In our work, the concentration of the elements Na, Mg, Al, Si, K, Cl, Ca and Fe, were determined in two domestic brands of face powder by using 14 MeV neutron activation analysis.

  18. Effect of 48 h Fasting on Autonomic Function, Brain Activity, Cognition, and Mood in Amateur Weight Lifters

    Science.gov (United States)

    Skurvydas, Albertas

    2016-01-01

    Objectives. The acute fasting-induced cardiovascular autonomic response and its effect on cognition and mood remain debatable. Thus, the main purpose of this study was to estimate the effect of a 48 h, zero-calorie diet on autonomic function, brain activity, cognition, and mood in amateur weight lifters. Methods. Nine participants completed a 48 h, zero-calorie diet program. Cardiovascular autonomic function, resting frontal brain activity, cognitive performance, and mood were evaluated before and after fasting. Results. Fasting decreased (p Fasting decreased (p Fasting also increased (p fasting resulted in higher parasympathetic activity and decreased resting frontal brain activity, increased anger, and improved prefrontal-cortex-related cognitive functions, such as mental flexibility and set shifting, in amateur weight lifters. In contrast, hippocampus-related cognitive functions were not affected by it. PMID:28025637

  19. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage

    Science.gov (United States)

    Kim, Kyoung-Han; Kim, Yun Hye; Son, Joe Eun; Lee, Ju Hee; Kim, Sarah; Choe, Min Seon; Moon, Joon Ho; Zhong, Jian; Fu, Kiya; Lenglin, Florine; Yoo, Jeong-Ah; Bilan, Philip J; Klip, Amira; Nagy, Andras; Kim, Jae-Ryong; Park, Jin Gyoon; Hussein, Samer MI; Doh, Kyung-Oh; Hui, Chi-chung; Sung, Hoon-Ki

    2017-01-01

    Intermittent fasting (IF), a periodic energy restriction, has been shown to provide health benefits equivalent to prolonged fasting or caloric restriction. However, our understanding of the underlying mechanisms of IF-mediated metabolic benefits is limited. Here we show that isocaloric IF improves metabolic homeostasis against diet-induced obesity and metabolic dysfunction primarily through adipose thermogenesis in mice. IF-induced metabolic benefits require fasting-mediated increases of vascular endothelial growth factor (VEGF) expression in white adipose tissue (WAT). Furthermore, periodic adipose-VEGF overexpression could recapitulate the metabolic improvement of IF in non-fasted animals. Importantly, fasting and adipose-VEGF induce alternative activation of adipose macrophage, which is critical for thermogenesis. Human adipose gene analysis further revealed a positive correlation of adipose VEGF-M2 macrophage-WAT browning axis. The present study uncovers the molecular mechanism of IF-mediated metabolic benefit and suggests that isocaloric IF can be a preventive and therapeutic approach against obesity and metabolic disorders. PMID:29039412

  20. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage.

    Science.gov (United States)

    Kim, Kyoung-Han; Kim, Yun Hye; Son, Joe Eun; Lee, Ju Hee; Kim, Sarah; Choe, Min Seon; Moon, Joon Ho; Zhong, Jian; Fu, Kiya; Lenglin, Florine; Yoo, Jeong-Ah; Bilan, Philip J; Klip, Amira; Nagy, Andras; Kim, Jae-Ryong; Park, Jin Gyoon; Hussein, Samer Mi; Doh, Kyung-Oh; Hui, Chi-Chung; Sung, Hoon-Ki

    2017-11-01

    Intermittent fasting (IF), a periodic energy restriction, has been shown to provide health benefits equivalent to prolonged fasting or caloric restriction. However, our understanding of the underlying mechanisms of IF-mediated metabolic benefits is limited. Here we show that isocaloric IF improves metabolic homeostasis against diet-induced obesity and metabolic dysfunction primarily through adipose thermogenesis in mice. IF-induced metabolic benefits require fasting-mediated increases of vascular endothelial growth factor (VEGF) expression in white adipose tissue (WAT). Furthermore, periodic adipose-VEGF overexpression could recapitulate the metabolic improvement of IF in non-fasted animals. Importantly, fasting and adipose-VEGF induce alternative activation of adipose macrophage, which is critical for thermogenesis. Human adipose gene analysis further revealed a positive correlation of adipose VEGF-M2 macrophage-WAT browning axis. The present study uncovers the molecular mechanism of IF-mediated metabolic benefit and suggests that isocaloric IF can be a preventive and therapeutic approach against obesity and metabolic disorders.

  1. Routes to Chaos Induced by a Discontinuous Resetting Process in a Hybrid Spiking Neuron Model.

    Science.gov (United States)

    Nobukawa, Sou; Nishimura, Haruhiko; Yamanishi, Teruya

    2018-01-10

    Several hybrid spiking neuron models combining continuous spike generation mechanisms and discontinuous resetting processes following spiking have been proposed. The Izhikevich neuron model, for example, can reproduce many spiking patterns. This model clearly possesses various types of bifurcations and routes to chaos under the effect of a state-dependent jump in the resetting process. In this study, we focus further on the relation between chaotic behaviour and the state-dependent jump, approaching the subject by comparing spiking neuron model versions with and without the resetting process. We first adopt a continuous two-dimensional spiking neuron model in which the orbit in the spiking state does not exhibit divergent behaviour. We then insert the resetting process into the model. An evaluation using the Lyapunov exponent with a saltation matrix and a characteristic multiplier of the Poincar'e map reveals that two types of chaotic behaviour (i.e. bursting chaotic spikes and near-period-two chaotic spikes) are induced by the resetting process. In addition, we confirm that this chaotic bursting state is generated from the periodic spiking state because of the slow- and fast-scale dynamics that arise when jumping to the hyperpolarization and depolarization regions, respectively.

  2. A method for decoding the neurophysiological spike-response transform.

    Science.gov (United States)

    Stern, Estee; García-Crescioni, Keyla; Miller, Mark W; Peskin, Charles S; Brezina, Vladimir

    2009-11-15

    Many physiological responses elicited by neuronal spikes-intracellular calcium transients, synaptic potentials, muscle contractions-are built up of discrete, elementary responses to each spike. However, the spikes occur in trains of arbitrary temporal complexity, and each elementary response not only sums with previous ones, but can itself be modified by the previous history of the activity. A basic goal in system identification is to characterize the spike-response transform in terms of a small number of functions-the elementary response kernel and additional kernels or functions that describe the dependence on previous history-that will predict the response to any arbitrary spike train. Here we do this by developing further and generalizing the "synaptic decoding" approach of Sen et al. (1996). Given the spike times in a train and the observed overall response, we use least-squares minimization to construct the best estimated response and at the same time best estimates of the elementary response kernel and the other functions that characterize the spike-response transform. We avoid the need for any specific initial assumptions about these functions by using techniques of mathematical analysis and linear algebra that allow us to solve simultaneously for all of the numerical function values treated as independent parameters. The functions are such that they may be interpreted mechanistically. We examine the performance of the method as applied to synthetic data. We then use the method to decode real synaptic and muscle contraction transforms.

  3. Stochastic optimal control of single neuron spike trains

    DEFF Research Database (Denmark)

    Iolov, Alexandre; Ditlevsen, Susanne; Longtin, Andrë

    2014-01-01

    stimulation of a neuron to achieve a target spike train under the physiological constraint to not damage tissue. Approach. We pose a stochastic optimal control problem to precisely specify the spike times in a leaky integrate-and-fire (LIF) model of a neuron with noise assumed to be of intrinsic or synaptic...... to the spike times (open-loop control). Main results. We have developed a stochastic optimal control algorithm to obtain precise spike times. It is applicable in both the supra-threshold and sub-threshold regimes, under open-loop and closed-loop conditions and with an arbitrary noise intensity; the accuracy...... into account physiological constraints on the control. A precise and robust targeting of neural activity based on stochastic optimal control has great potential for regulating neural activity in e.g. prosthetic applications and to improve our understanding of the basic mechanisms by which neuronal firing...

  4. Recombinant motor domain constructs of Chara corallina myosin display fast motility and high ATPase activity.

    Science.gov (United States)

    Ito, Kohji; Kashiyama, Taku; Shimada, Kiyo; Yamaguchi, Akira; Awata, Jun ya; Hachikubo, You; Manstein, Dietmar J; Yamamoto, Keiichi

    2003-12-26

    The mechanism and structural features that are responsible for the fast motility of Chara corallina myosin (CCM) have not been elucidated, so far. The low yields of native CCM that can be purified to homogeneity were the major reason for this. Here, we describe the expression of recombinant CCM motor domains, which support the fast movement of actin filaments in an in vitro motility assay. A CCM motor domain without light chain binding site moved actin filaments at a velocity of 8.8 microm/s at 30 degrees C and a CCM motor domain with an artificial lever arm consisting of two alpha-actinin repeats moved actin filaments at 16.2 microm/s. Both constructs displayed high actin-activated ATPase activities ( approximately 500 Pi/s/head), which is indicative of a very fast hydrolysis step. Our results provide an excellent system to dissect the specific structural and functional features that distinguish the myosin responsible for fast cytoplasmic streaming.

  5. A simple and fast method for the determination of active ingredient in antiperspirant cosmetics by neutron activation analysis

    International Nuclear Information System (INIS)

    Kanias, G.D.

    1984-01-01

    Antiperspirant cosmetics are tested for their active ingredient (aluminium chlorohydroxide) by conventional analytical techniques. Aluminium has been determined by instrumental neutron activation analysis in all antiperspirant products and package forms available in the Greek market in order to develop a simple and fast method for quantization. The results show that neutron activation analysis could be established as an official method for the determination of active ingredient in antiperspirant cosmetics. The proposed method is compared with the existing official methods and an alternative sampling method for aerosol package is presented. (author)

  6. Multiplexed Spike Coding and Adaptation in the Thalamus

    Directory of Open Access Journals (Sweden)

    Rebecca A. Mease

    2017-05-01

    Full Text Available High-frequency “burst” clusters of spikes are a generic output pattern of many neurons. While bursting is a ubiquitous computational feature of different nervous systems across animal species, the encoding of synaptic inputs by bursts is not well understood. We find that bursting neurons in the rodent thalamus employ “multiplexing” to differentially encode low- and high-frequency stimulus features associated with either T-type calcium “low-threshold” or fast sodium spiking events, respectively, and these events adapt differently. Thus, thalamic bursts encode disparate information in three channels: (1 burst size, (2 burst onset time, and (3 precise spike timing within bursts. Strikingly, this latter “intraburst” encoding channel shows millisecond-level feature selectivity and adapts across statistical contexts to maintain stable information encoded per spike. Consequently, calcium events both encode low-frequency stimuli and, in parallel, gate a transient window for high-frequency, adaptive stimulus encoding by sodium spike timing, allowing bursts to efficiently convey fine-scale temporal information.

  7. The effects of Ramadan fasting and physical activity on body composition and hematological biochemical parameters

    Directory of Open Access Journals (Sweden)

    Seyyed Reza Attarzadeh Hosseini

    2014-09-01

    Full Text Available Introduction: Hunger and reduction in regular energy intake can lead to a number of problems based on their intensity. For instance, low energy level can cause blood cell production to decline or it may pose a higher risk of anemia. It can also weaken the immune system and platelet aggregation or negatively affect clot formation. This study aimed to have a closer look at fasting and regular physical activity and their impacts on body composition and blood hematological-biochemical parameters among professional wrestlers. Method: In this semi-experimental study, 9 subjects were selected by convenience sampling. The selected training program included participation in this exerciseprogram, 90 min per session, 6 times per week for a period of one month. Blood samples were obtained four times: before the start of Ramadan, 2 weeks after the start, during the last week and 2 weeks after the end of Ramadan. To make intra-group comparison, repeated measure analysis of variance was used. For all statistical comparisons, the level of significance was considered at PResults: Body weight and red blood cell count (RBC dropped significantly at the end of Ramadan (Respectively P= 0.001 and P=0.034. However, the number of white blood cells (WBC and circulating platelets (PLT significantly increased during fasting (Respectively P= 0.048 and P=0.042. As a matter of fact, PLT and WBC were the only factors which dramatically increased during fasting. Intra-group variations of tetracycline (TC, low-density lipoprotein (LDL, LDL: high-density lipoprotein (HDL, triglyceride (TG: HDL and TC: HDL reduced at the end of Ramadan. However, HDL levels ​​drastically increased during fasting (P≤0.05. Conclusion: Based on the results of the research, despite being a regular activity and fasting has beneficial effects on lipid profile in athletes, however, they can with tangible changes in hematological factors may lead to weaken the immune system of athletes.

  8. Sensory information in local field potentials and spikes from visual and auditory cortices: time scales and frequency bands.

    Science.gov (United States)

    Belitski, Andrei; Panzeri, Stefano; Magri, Cesare; Logothetis, Nikos K; Kayser, Christoph

    2010-12-01

    Studies analyzing sensory cortical processing or trying to decode brain activity often rely on a combination of different electrophysiological signals, such as local field potentials (LFPs) and spiking activity. Understanding the relation between these signals and sensory stimuli and between different components of these signals is hence of great interest. We here provide an analysis of LFPs and spiking activity recorded from visual and auditory cortex during stimulation with natural stimuli. In particular, we focus on the time scales on which different components of these signals are informative about the stimulus, and on the dependencies between different components of these signals. Addressing the first question, we find that stimulus information in low frequency bands (50 Hz), in contrast, is scale dependent, and is larger when the energy is averaged over several hundreds of milliseconds. Indeed, combined analysis of signal reliability and information revealed that the energy of slow LFP fluctuations is well related to the stimulus even when considering individual or few cycles, while the energy of fast LFP oscillations carries information only when averaged over many cycles. Addressing the second question, we find that stimulus information in different LFP bands, and in different LFP bands and spiking activity, is largely independent regardless of time scale or sensory system. Taken together, these findings suggest that different LFP bands represent dynamic natural stimuli on distinct time scales and together provide a potentially rich source of information for sensory processing or decoding brain activity.

  9. Stress-Induced Impairment of a Working Memory Task: Role of Spiking Rate and Spiking History Predicted Discharge

    Science.gov (United States)

    Devilbiss, David M.; Jenison, Rick L.; Berridge, Craig W.

    2012-01-01

    Stress, pervasive in society, contributes to over half of all work place accidents a year and over time can contribute to a variety of psychiatric disorders including depression, schizophrenia, and post-traumatic stress disorder. Stress impairs higher cognitive processes, dependent on the prefrontal cortex (PFC) and that involve maintenance and integration of information over extended periods, including working memory and attention. Substantial evidence has demonstrated a relationship between patterns of PFC neuron spiking activity (action-potential discharge) and components of delayed-response tasks used to probe PFC-dependent cognitive function in rats and monkeys. During delay periods of these tasks, persistent spiking activity is posited to be essential for the maintenance of information for working memory and attention. However, the degree to which stress-induced impairment in PFC-dependent cognition involves changes in task-related spiking rates or the ability for PFC neurons to retain information over time remains unknown. In the current study, spiking activity was recorded from the medial PFC of rats performing a delayed-response task of working memory during acute noise stress (93 db). Spike history-predicted discharge (SHPD) for PFC neurons was quantified as a measure of the degree to which ongoing neuronal discharge can be predicted by past spiking activity and reflects the degree to which past information is retained by these neurons over time. We found that PFC neuron discharge is predicted by their past spiking patterns for nearly one second. Acute stress impaired SHPD, selectively during delay intervals of the task, and simultaneously impaired task performance. Despite the reduction in delay-related SHPD, stress increased delay-related spiking rates. These findings suggest that neural codes utilizing SHPD within PFC networks likely reflects an additional important neurophysiological mechanism for maintenance of past information over time. Stress

  10. Multiphoton minimal inertia scanning for fast acquisition of neural activity signals

    Science.gov (United States)

    Schuck, Renaud; Go, Mary Ann; Garasto, Stefania; Reynolds, Stephanie; Dragotti, Pier Luigi; Schultz, Simon R.

    2018-04-01

    simultaneously with electrophysiology traces to calculate the lower bound estimate of the spike timing occurrence. Significance. The results show that TSS and SSA achieve comparable accuracy in spike time estimates compared to raster scanning, despite lower SNR. SSA is an easily implementable way for standard multi-photon laser scanning systems to gain temporal precision in the detection of action potentials while scanning hundreds of active cells.

  11. Validation of computational methods for treatment planning of fast-neutron therapy using activation foil techniques

    International Nuclear Information System (INIS)

    Nigg, D.W.; Wemple, C.A.; Hartwell, J.K.; Harker, Y.D.; Venhuizen, J.R.; Risler, R.

    1997-12-01

    A closed-form direct method for unfolding neutron spectra from foil activation data is presented. The method is applied to measurements of the free-field neutron spectrum produced by the proton-cyclotron-based fast-neutron radiotherapy facility at the University of Washington (UW) School of Medicine. The results compare favorably with theoretical expectations based on an a-priori calculational model of the target and neutron beamline configuration of the UW facility

  12. Magnetic Activity in the Galactic Centre Region - Fast Downflows along Rising Magnetic Loops

    Science.gov (United States)

    Kakiuchi, Kensuke; Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Enokiya, Rei; Machida, Mami; Matsumoto, Ryoji

    2018-03-01

    We studied roles of the magnetic field on the gas dynamics in the Galactic bulge by a three-dimensional global magnetohydrodynamical simulation data, particularly focusing on vertical flows that are ubiquitously excited by magnetic activity. In local regions where the magnetic field is stronger, it is frequently seen that fast downflows slide along inclined magnetic field lines that are associated with buoyantly rising magnetic loops. The vertical velocity of these downflows reaches ˜100 km s-1 near the footpoint of the loops by the gravitational acceleration toward the Galactic plane. The two footpoints of rising magnetic loops are generally located at different radial locations and the field lines are deformed by the differential rotation. The angular momentum is transported along the field lines, and the radial force balance breaks down. As a result, a fast downflow is often observed only at the one footpoint located at the inner radial position. The fast downflow compresses the gas to form a dense region near the footpoint, which will be important in star formation afterward. Furthermore, the horizontal components of the velocity are also fast near the footpoint because the downflow is accelerated along the magnetic sliding slope. As a result, the high-velocity flow creates various characteristic features in a simulated position-velocity diagram, depending on the viewing angle.

  13. Application of Fast Neutron Activity for Analysing Element Content on the Air Particulate

    International Nuclear Information System (INIS)

    Elin Nuraini; Ngasifudin; Sunardi; Elisabeth

    2003-01-01

    The research on application of fast neutron activation analysis for analysing element content on the air particulate has been done. The research about analysis of the particulate matters contained in non industrial traffic territory of Surakarta and full industrial traffic territory of Karanganyar, had been done using Fast Neutron Activation Analysis Method. Fast Neutron Activation Analysis method is one of the element analysis method which it's basic principle causes radioactivity appearance from the samples after being irradiated by neutron. The qualitative analysis method is based on the measuring of specific energy which was radiated by radioactive's nucleus and quantitative analysis method is based on the measuring of the intensity of each peak gamma energy. The qualitative analysis results showed, some element were identified i.e : 51 V ; 200 Pb, 27 Al and 52 Cr. The result showed that Pb level is 2.21 ± 0.09x10 -1 mg/m 3 in non industrial traffic territory of Surakarta and 2.78 ± 0.11x10 -1 mg/m 3 full industrial traffic territory of Karanganyar, this value greater than threshold value according 6.0x10 -2 mg/m 3 . (author)

  14. Higher Order Spike Synchrony in Prefrontal Cortex during visual memory

    Directory of Open Access Journals (Sweden)

    Gordon ePipa

    2011-06-01

    Full Text Available Precise temporal synchrony of spike firing has been postulated as an important neuronal mechanism for signal integration and the induction of plasticity in neocortex. As prefrontal cortex plays an important role in organizing memory and executive functions, the convergence of multiple visual pathways onto PFC predicts that neurons should preferentially synchronize their spiking when stimulus information is processed. Furthermore, synchronous spike firing should intensify if memory processes require the induction of neuronal plasticity, even if this is only for short-term. Here we show with multiple simultaneously recorded units in ventral prefrontal cortex that neurons participate in 3 ms precise synchronous discharges distributed across multiple sites separated by at least 500 µm. The frequency of synchronous firing is modulated by behavioral performance and is specific for the memorized visual stimuli. In particular, during the memory period in which activity is not stimulus driven, larger groups of up to 7 sites exhibit performance dependent modulation of their spike synchronization.

  15. Spike propagation through the dorsal root ganglia in an unmyelinated sensory neuron: a modeling study.

    Science.gov (United States)

    Sundt, Danielle; Gamper, Nikita; Jaffe, David B

    2015-12-01

    Unmyelinated C-fibers are a major type of sensory neurons conveying pain information. Action potential conduction is regulated by the bifurcation (T-junction) of sensory neuron axons within the dorsal root ganglia (DRG). Understanding how C-fiber signaling is influenced by the morphology of the T-junction and the local expression of ion channels is important for understanding pain signaling. In this study we used biophysical computer modeling to investigate the influence of axon morphology within the DRG and various membrane conductances on the reliability of spike propagation. As expected, calculated input impedance and the amplitude of propagating action potentials were both lowest at the T-junction. Propagation reliability for single spikes was highly sensitive to the diameter of the stem axon and the density of voltage-gated Na(+) channels. A model containing only fast voltage-gated Na(+) and delayed-rectifier K(+) channels conducted trains of spikes up to frequencies of 110 Hz. The addition of slowly activating KCNQ channels (i.e., KV7 or M-channels) to the model reduced the following frequency to 30 Hz. Hyperpolarization produced by addition of a much slower conductance, such as a Ca(2+)-dependent K(+) current, was needed to reduce the following frequency to 6 Hz. Attenuation of driving force due to ion accumulation or hyperpolarization produced by a Na(+)-K(+) pump had no effect on following frequency but could influence the reliability of spike propagation mutually with the voltage shift generated by a Ca(2+)-dependent K(+) current. These simulations suggest how specific ion channels within the DRG may contribute toward therapeutic treatments for chronic pain. Copyright © 2015 the American Physiological Society.

  16. STDP allows close-to-optimal spatiotemporal spike pattern detection by single coincidence detector neurons.

    Science.gov (United States)

    Masquelier, Timothée

    2017-06-29

    Repeating spatiotemporal spike patterns exist and carry information. How this information is extracted by downstream neurons is unclear. Here we theoretically investigate to what extent a single cell could detect a given spike pattern and what the optimal parameters to do so are, in particular the membrane time constant τ. Using a leaky integrate-and-fire (LIF) neuron with homogeneous Poisson input, we computed this optimum analytically. We found that a relatively small τ (at most a few tens of ms) is usually optimal, even when the pattern is much longer. This is somewhat counter-intuitive as the resulting detector ignores most of the pattern, due to its fast memory decay. Next, we wondered if spike-timing-dependent plasticity (STDP) could enable a neuron to reach the theoretical optimum. We simulated a LIF equipped with additive STDP, and repeatedly exposed it to a given input spike pattern. As in previous studies, the LIF progressively became selective to the repeating pattern with no supervision, even when the pattern was embedded in Poisson activity. Here we show that, using certain STDP parameters, the resulting pattern detector is optimal. These mechanisms may explain how humans learn repeating sensory sequences. Long sequences could be recognized thanks to coincidence detectors working at a much shorter timescale. This is consistent with the fact that recognition is still possible if a sound sequence is compressed, played backward, or scrambled using 10-ms bins. Coincidence detection is a simple yet powerful mechanism, which could be the main function of neurons in the brain. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Detection of fast light-activated H+ release and M intermediate formation from proteorhodopsin.

    Directory of Open Access Journals (Sweden)

    DeVita Anne

    2002-04-01

    Full Text Available Abstract Background Proteorhodopsin (pR is a light-activated proton pump homologous to bacteriorhodopsin and recently discovered in oceanic γ-proteobacteria. One perplexing difference between these two proteins is the absence in pR of homologues of bR residues Glu-194 and Glu-204. These two residues, along with Arg-82, have been implicated in light-activated fast H+ release to the extracellular medium in bR. It is therefore uncertain that pR carries out its physiological activity using a mechanism that is completely homologous to that of bR. Results A pR purification procedure is described that utilizes Phenylsepharose™ and hydroxylapatite columns and yields 85% (w/w purity. Through SDS-PAGE of the pure protein, the molecular weight of E.-coli-produced pR was determined to be 36,000, approximately 9,000 more than the 27,000 predicted by the DNA sequence. Post-translational modification of one or more of the cysteine residues accounts for 5 kDa of the weight difference as measured on a cys-less pR mutant. At pH 9.5 and in the presence of octylglucoside and diheptanoylphosphotidylcholine, flash photolysis results in fast H+ release and a 400-nm absorbing (M-like photoproduct. Both of these occur with a similar rise time (4–10 μs as reported for monomeric bR in detergent. Conclusions The presence of fast H+ release in pR indicates that either different groups are responsible for fast H+ release in pR and bR (i.e. that the H+ release group is not highly conserved; or, that the H+ release group is conserved and is therefore likely Arg-94 itself in pR (and Arg-82 in bR, correspondingly.

  18. Influence of a prolonged fasting and mild activity on routine laboratory tests.

    Science.gov (United States)

    Šupak-Smolčić, Vesna; Antončić, Dragana; Ožanić, Doris; Vladilo, Ivana; Bilić-Zulle, Lidija

    2015-01-01

    Despite the standardization of the phlebotomy procedure, blood analysis is occasionally requested after recommended hours with the excuse that the patient is still fasting. We aimed to examine the influence of prolonged fasting and mild physical activity on routine laboratory tests. The study was conducted on 30 volunteers (27 female) median age 40y (20-59). Blood samples were taken in the morning (7:00-8:00a.m.) and early afternoon (1:00-2:00p.m.) after prolonged fasting and usual daily activities. Serum glucose (GLU), urea, creatinine, triglyceride, uric acid (UA), iron and electrolytes were analyzed on Roche cobas 6000 c501 and complete blood count on Siemens ADVIA 2120i. Statistical significance between the two measurements was tested using paired t-test or Wilcoxon test according to data distribution. Clinical significance was judged against calculated reference change values (RCV). A statistically significant decrease was found for red blood cell count, hemoglobin, hematocrit, mean corpuscular volume (MCV), GLU, urea, creatinine, triglycerides and electrolytes, whereas white blood cell count and iron were significantly increased. Judging against desirable bias derived from biological variation, a significant change was found for all the analytes except MCV, platelet count, UA and triglycerides. A clinically significant change was not found for any of the tested analytes when compared to RCV. Prolonged fasting and mild activity will not influence the medical decision for healthy subjects with normal results. Despite the present statistically significant change, the clinically significant change was not shown. However, the study did not include pathological results which have to be interpreted more carefully. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  19. Status of the R and D activities on fast reactors and ADS in Brazil

    International Nuclear Information System (INIS)

    Maiorino, Jose Rubens

    2001-01-01

    Research and Development in Nuclear Science and Technology is conducted by Research Institutes of the Brazilian Nuclear Energy Commission. In Fast Reactor, R and D activities started in the sixties, and in 1972 a small Na loop (100 kW) was constructed. At the same time, during the seventies at IPEN, research in cooperation with GA for Gas Cooled Fast Breeder Reactor was conducted. The motivation of such research was Thorium Fuel Cycle. As a result of this research a Helium Loop was constructed and a Split Table Critical Assembly (ZPR) was designed. During the eighties, an agreement with ANSALDO-NIRA resulted in an acquisition of a Sodium Loop for Thermohydraulics studies, however it never had been assembled. At the same time, a concept of a Binary Breeder Reactor using two cycles, Th and U, was developed. During the nineties, a National Program to conduct R and D (pyroprocess; U-Zr Metallic Fuel; HT-9; Electromagnetic Pump; and a conceptual design of a Experimental Reactor (60/20 MWth/MWe)) was proposed, however it was closed at the end of the decade. Now, only academic research is being conducted, and it is summarized in this report. Basically, they are: an integral lead fast reactor concept for developing countries, and an alternative concept for a fast energy amplifier accelerator driven system. The first is an combination of best characteristics of the American Integral Fast Reactor and the Russian Lead Cooled Reactor. The second is a conceptual design of ADS helium cooled imbedded in a solid lead subcritical array of fuel, using more than one point of spallation trying to reduce the requirement for energy and current of the accelerator

  20. Contributions of adaptation currents to dynamic spike threshold on slow timescales: Biophysical insights from conductance-based models

    Science.gov (United States)

    Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin; Li, Huiyan; Che, Yanqiu

    2017-06-01

    Spike-frequency adaptation (SFA) mediated by various adaptation currents, such as voltage-gated K+ current (IM), Ca2+-gated K+ current (IAHP), or Na+-activated K+ current (IKNa), exists in many types of neurons, which has been shown to effectively shape their information transmission properties on slow timescales. Here we use conductance-based models to investigate how the activation of three adaptation currents regulates the threshold voltage for action potential (AP) initiation during the course of SFA. It is observed that the spike threshold gets depolarized and the rate of membrane depolarization (dV/dt) preceding AP is reduced as adaptation currents reduce firing rate. It is indicated that the presence of inhibitory adaptation currents enables the neuron to generate a dynamic threshold inversely correlated with preceding dV/dt on slower timescales than fast dynamics of AP generation. By analyzing the interactions of ionic currents at subthreshold potentials, we find that the activation of adaptation currents increase the outward level of net membrane current prior to AP initiation, which antagonizes inward Na+ to result in a depolarized threshold and lower dV/dt from one AP to the next. Our simulations demonstrate that the threshold dynamics on slow timescales is a secondary effect caused by the activation of adaptation currents. These findings have provided a biophysical interpretation of the relationship between adaptation currents and spike threshold.

  1. Training spiking neural networks to associate spatio-temporal input-output spike patterns

    OpenAIRE

    Mohemmed, A; Schliebs, S; Matsuda, S; Kasabov, N

    2013-01-01

    In a previous work (Mohemmed et al., Method for training a spiking neuron to associate input–output spike trains) [1] we have proposed a supervised learning algorithm based on temporal coding to train a spiking neuron to associate input spatiotemporal spike patterns to desired output spike patterns. The algorithm is based on the conversion of spike trains into analogue signals and the application of the Widrow–Hoff learning rule. In this paper we present a mathematical formulation of the prop...

  2. Using Spread Spectrum Transform for Fast and Robust Simultaneous Measurement in Active Sensors with Multiple Emitters

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour; Stoustrup, Jakob

    2002-01-01

    We present a signal processing algorithm for making robust and simultaneous measurements in an active sensor, which has one or more emitters and a receiver, and which employs some sort of signal processing hardware. Robustness means low sensitivity to time and frequency localized disturbances......, and to white noise. This is achieved partly by using a orthogonal spread spectrum transform for modulating the signals transmitted from the emitters to the receiver, and partly by using a number of transmission channels. The method is fast since the signals are short, and since the method does not rely......-cost active sensors....

  3. Potential effect of physical activity calorie equivalent labeling on parent fast food decisions.

    Science.gov (United States)

    Viera, Anthony J; Antonelli, Ray

    2015-02-01

    Menu labels displaying food energy in physical activity calorie equivalents (PACE) is a possible strategy to encourage ordering meals with fewer calories and promoting physical activity. Potential effects of such labeling for children have never been examined. We conducted a national survey of 1000 parents randomized to 1 of 4 fast food menus: no labels, calories only, calories plus minutes, or calories plus miles needed to walk to burn the calories. Respondents were asked to imagine they were in a fast food restaurant and place an order for their child. At the survey's conclusion, all respondents were shown a calorie-only label and both PACE labels and asked to rate the likelihood each label would influence them to encourage their child to exercise. We excluded respondents whose meals totaled 0 calories or >4000 calories, leaving 823 parents in the analysis. The mean age of the child for whom the meal was "ordered" was 9.5 years. Parents whose menus displayed no label ordered an average of 1294 calories, whereas those shown calories only, calories plus minutes, or calories plus miles ordered 1066, 1060, and 1099 calories, respectively (P = .0001). Only 20% of parents reported that calories-only labeling would be "very likely" to prompt them to encourage their children to exercise versus 38% for calories plus minutes (P fast food items to order for their children and encourage them to get their children to exercise. Copyright © 2015 by the American Academy of Pediatrics.

  4. Determination of phosphorus in kiwicha using analysis for activation with fast neutrons

    International Nuclear Information System (INIS)

    Bejarano P, R.

    1990-01-01

    In this study it has been used the technique of activation analysis with fast neutrons for nondestructive of Phosphorus in Kiwicha (amaranthus caudatus l.), as an alternative to the conventionally used technique of spectrophotometry. The samples are irradiated during five minutes in the IPEN's neutron generator under a fast flow of around 10 9 n/cm 2 .s after 30 seconds of the irradiation end, and are counted for 10 minutes in a NaI(Tl) detector type well jointed to a multichannel analyzer. The testing of method exactness was carried out analyzing the IAEA's H5 and H8 reference materials, obtaining a good correspondence with the certified values. The reproducibility of the method was carried out analyzing by repetition a pure standard sample of phosphorus. In the analysis of 8 samples of kiwicha it was found that the phosphorus content is in the rank of 0.3% to 0.5%. (author). 31 refs., 12 tabs., 19 figs

  5. Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks

    Directory of Open Access Journals (Sweden)

    Daniel ede Santos-Sierra

    2015-11-01

    Full Text Available Synchronization is one of the central phenomena involved in information processing in living systems. It is known that the nervous system requires the coordinated activity of both local and distant neural populations. Such an interplay allows to merge different information modalities in a whole processing supporting high-level mental skills as understanding, memory, abstraction, etc. Though the biological processes underlying synchronization in the brain are not fully understood there have been reported a variety of mechanisms supporting different types of synchronization both at theoretical and experimental level. One of the more intriguing of these phenomena is the anticipating synchronization, which has been recently reported in a pair of unidirectionally coupled artificial neurons under simple conditions cite{Pyragas}, where the slave neuron is able to anticipate in time the behaviour of the master one. In this paper we explore the effect of spike anticipation over the information processing performed by a neural network at functional and structural level. We show that the introduction of intermediary neurons in the network enhances spike anticipation and analyse how these variations in spike anticipation can significantly change the firing regime of the neural network according to its functional and structural properties. In addition we show that the interspike interval (ISI, one of the main features of the neural response associated to the information coding, can be closely related to spike anticipation by each spike, and how synaptic plasticity can be modulated through that relationship. This study has been performed through numerical simulation of a coupled system of Hindmarsh-Rose neurons.

  6. Progress reports for Gen IV sodium fast reactor activities FY 2007

    International Nuclear Information System (INIS)

    Cahalan, J. E.; Tentner, A. M.

    2007-01-01

    An important goal of the US DOE Sodium Fast Reactor (SFR) program is to develop the technology necessary to increase safety margins in future fast reactor systems. Although no decision has been made yet about who will build the next demonstration fast reactor, it seems likely that the construction team will include a combination of international companies, and the safety design philosophy for the reactor will reflect a consensus of the participating countries. A significant amount of experience in the design and safety analysis of Sodium Fast Reactors (SFR) using oxide fuel has been developed in both Japan and France during last few decades. In the US, the traditional approach to reactor safety is based on the principle of defense-in-depth, which is usually expressed in physical terms as multiple barriers to release of radioactive material (e.g. cladding, reactor vessel, containment building), but it is understood that the 'barriers' may consist of active systems or even procedures. As implemented in a reactor design, defense-in-depth is classed in levels of safety. Level 1 includes measures to specify and build a reliable design with significant safety margins that will perform according to the intentions of the designers. Level 2 consists of additional design measures, usually active systems, to protect against unlikely accidental events that may occur during the life of the plant. Level 3 design measures are intended to protect the public in the event of an extremely unlikely accident not foreseen to occur during the plant's life. All of the design measures that make up the first three levels of safety are within the design basis of the plant. Beyond Level 3, and beyond the normal design basis, there are accidents that are not expected to occur in a whole generation of plants, and it is in this class that severe accidents, i.e. accidents involving core melting, are included. Beyond design basis measures to address severe accidents are usually identified as being

  7. Principal cell spiking, postsynaptic excitation, and oxygen consumption in the rat cerebellar cortex

    DEFF Research Database (Denmark)

    Thomsen, Kirsten; Piilgaard, Henning; Gjedde, Albert

    2009-01-01

    . In contrast, PC spiking was largely responsible for the increase in CMRO2 when ongoing neuronal activity was increased by gamma-aminobutyric acid type A receptor blockade. In this case, CMRO2 increased equally during PC spiking with excitatory synaptic activity as during PC pacemaker spiking without......One contention within the field of neuroimaging concerns the character of the depicted activity: Does it represent neuronal action potential generation (i.e., spiking) or postsynaptic excitation? This question is related to the metabolic costs of different aspects of neurosignaling. The cerebellar...... cortex is well suited for addressing this problem because synaptic input to and spiking of the principal cell, the Purkinje cell (PC), are spatially segregated. Also, PCs are pacemakers, able to generate spikes endogenously. We examined the contributions to cerebellar cortical oxygen consumption (CMRO2...

  8. Self-organization of spiking neurons using action potential timing.

    Science.gov (United States)

    Ruf, B; Schmitt, M

    1998-01-01

    We propose a mechanism for unsupervised learning in networks of spiking neurons which is based on the timing of single firing events. Our results show that a topology preserving behavior quite similar to that of Kohonen's self-organizing map can be achieved using temporal coding. In contrast to previous approaches, which use rate coding, the winner among competing neurons can be determined fast and locally. Our model is a further step toward a more realistic description of unsupervised learning in biological neural systems. Furthermore, it may provide a basis for fast implementations in pulsed VLSI (very large scale integration).

  9. Activity, Sleep and Cognition After Fast-Track Hip or Knee Arthroplasty

    DEFF Research Database (Denmark)

    Krenk, Lene; Jennum, Poul; Kehlet, Henrik

    2013-01-01

    postoperatively with actigraphs for sleep and activity assessment. Pain scores were recorded daily. Cognition was evaluated by 2 cognitive tests. Results showed a mean age was 70.5years and mean LOS was 2.6days. Actigraphs showed increased daytime sleep and decreased motor activity postoperatively. Early......Optimized perioperative care after total hip and knee arthroplasty (THA/TKA) has decreased length of stay (LOS) but data on activity, sleep and cognition after discharge are limited. We included 20 patients ≥60years undergoing THA/TKA, monitoring them for 3days preoperatively and 9days...... postoperatively cognitive decline and increased pain returned to preoperative levels by postoperative day (POD) 5-9. Despite the small sample size the study illustrated that post-discharge activity is decreased and daytime sleep is increased after fast-track THA/TKA, while cognition and pain return...

  10. Increased Mesohippocampal Dopaminergic Activity and Improved Depression-Like Behaviors in Maternally Separated Rats Following Repeated Fasting/Refeeding Cycles

    Directory of Open Access Journals (Sweden)

    Jeong Won Jahng

    2012-01-01

    Full Text Available We have previously reported that rats that experienced 3 h of daily maternal separation during the first 2 weeks of birth (MS showed binge-like eating behaviors with increased activity of the hypothalamic-pituitary-adrenal axis when they were subjected to fasting/refeeding cycles repeatedly. In this study, we have examined the psychoemotional behaviors of MS rats on the fasting/refeeding cycles, together with their brain dopamine levels. Fasting/refeeding cycles normalized the ambulatory activity of MS rats, which was decreased by MS experience. Depression-like behaviors, but not anxiety, by MS experience were improved after fasting/refeeding cycles. Fasting/refeeding cycles did not significantly affect the behavioral scores of nonhandled (NH control rats. Fasting/refeeding cycles increased dopamine levels not only in the hippocampus but also in the midbrain dopaminergic neurons in MS rats, but not in NH controls. Results demonstrate that fasting/refeeding cycles increase the mesohippocampal dopaminergic activity and improve depression-like behaviors in rats that experienced MS. Together with our previous paper, it is suggested that increased dopamine neurotransmission in the hippocampus may be implicated in the underlying mechanisms by which the fasting/refeeding cycles induce binge-like eating and improve depression-like behaviors in MS rats.

  11. Spike propagation in driven chain networks with dominant global inhibition

    International Nuclear Information System (INIS)

    Chang Wonil; Jin, Dezhe Z.

    2009-01-01

    Spike propagation in chain networks is usually studied in the synfire regime, in which successive groups of neurons are synaptically activated sequentially through the unidirectional excitatory connections. Here we study the dynamics of chain networks with dominant global feedback inhibition that prevents the synfire activity. Neural activity is driven by suprathreshold external inputs. We analytically and numerically demonstrate that spike propagation along the chain is a unique dynamical attractor in a wide parameter regime. The strong inhibition permits a robust winner-take-all propagation in the case of multiple chains competing via the inhibition.

  12. A stimulus-dependent spike threshold is an optimal neural coder

    Directory of Open Access Journals (Sweden)

    Douglas L Jones

    2015-06-01

    Full Text Available A neural code based on sequences of spikes can consume a significant portion of the brain’s energy budget. Thus, energy considerations would dictate that spiking activity be kept as low as possible. However, a high spike-rate improves the coding and representation of signals in spike trains, particularly in sensory systems. These are competing demands, and selective pressure has presumably worked to optimize coding by apportioning a minimum number of spikes so as to maximize coding fidelity. The mechanisms by which a neuron generates spikes while maintaining a fidelity criterion are not known. Here, we show that a signal-dependent neural threshold, similar to a dynamic or adapting threshold, optimizes the trade-off between spike generation (encoding and fidelity (decoding. The threshold mimics a post-synaptic membrane (a low-pass filter and serves as an internal decoder. Further, it sets the average firing rate (the energy constraint. The decoding process provides an internal copy of the coding error to the spike-generator which emits a spike when the error equals or exceeds a spike threshold. When optimized, the trade-off leads to a deterministic spike firing-rule that generates optimally timed spikes so as to maximize fidelity. The optimal coder is derived in closed-form in the limit of high spike-rates, when the signal can be approximated as a piece-wise constant signal. The predicted spike-times are close to those obtained experimentally in the primary electrosensory afferent neurons of weakly electric fish (Apteronotus leptorhynchus and pyramidal neurons from the somatosensory cortex of the rat. We suggest that KCNQ/Kv7 channels (underlying the M-current are good candidates for the decoder. They are widely coupled to metabolic processes and do not inactivate. We conclude that the neural threshold is optimized to generate an energy-efficient and high-fidelity neural code.

  13. GABA(B) receptors inhibit backpropagating dendritic spikes in hippocampal CA1 pyramidal cells in vivo.

    Science.gov (United States)

    Leung, L Stan; Peloquin, Pascal

    2006-01-01

    Spike backpropagation has been proposed to enhance dendritic depolarization and synaptic plasticity. However, relatively little is known about the inhibitory control of spike backpropagation in vivo. In this study, the backpropagation of the antidromic spike into the dendrites of CA1 pyramidal cells was studied by extracellular recording in urethane-anesthetized rats. The population antidromic spike (pAS) in CA1 following stimulation of the alveus was recorded simultaneously with a 16-channel silicon probe and analyzed as current source density (CSD). The pAS current sink was shown to sequentially invade the soma and then the apical and basal dendrites. When the pAS was preceded sinks were reduced and delayed. Dendritic spike suppression was large after a high-intensity CA3 conditioning stimulus that evoked a population spike, small after a low-intensity CA3 conditioning stimulus, and weak after conditioning by another pAS. The late (150-400 ms latency) inhibition of the backpropagating pAS at the apical and basal dendrites was partially relieved by a GABA(B) receptor antagonist, CGP35348 or CGP56999A, given intracerebroventricularly (icv). CGP35348 icv also decreased the latency of the antidromic spike sinks at all depths. A compartment cable model of a CA1 pyramidal cell with excitable dendrites, combined with a model of extracellular potential generation, confirms that GABA(B) receptor activation delays a backpropagating spike and blocks distal dendritic spikes. GABA(B) receptor-mediated conductance increase and hyperpolarization, amplified by removing dendritic I(A) inactivation, contribute to conditioned dendritic spike suppression. In addition, the model shows that slow Na(+) channel inactivation also participates in conditioned spike suppression, which may partly explain the small dendritic spike suppression after conditioning with a weak orthodromic stimulus or another antidromic spike. Thus, both theory and experiment confirm an important role of the GABA

  14. Combining Fast-Walking Training and a Step Activity Monitoring Program to Improve Daily Walking Activity After Stroke: A Preliminary Study.

    Science.gov (United States)

    Danks, Kelly A; Pohlig, Ryan; Reisman, Darcy S

    2016-09-01

    To determine preliminary efficacy and to identify baseline characteristics predicting who would benefit most from fast walking training plus a step activity monitoring program (FAST+SAM) compared with fast walking training (FAST) alone in persons with chronic stroke. Randomized controlled trial with blinded assessors. Outpatient clinical research laboratory. Individuals (N=37) >6 months poststroke. Subjects were assigned to either FAST, which was walking training at their fastest possible speed on the treadmill (30min) and overground 3 times per week for 12 weeks, or FAST+SAM. The step activity monitoring program consisted of daily step monitoring with an activity monitor, goal setting, and identification of barriers to activity and strategies to overcome barriers. Daily step activity metrics (steps/day [SPD], time walking per day), walking speed, and 6-minute walk test (6MWT) distance. There was a significant effect of time for both groups, with all outcomes improving from pre- to posttraining (all P values program to a fast walking training intervention may be most effective in persons with chronic stroke who have initial low levels of walking endurance and activity. Regardless of baseline performance, the FAST+SAM intervention was more effective for improving walking endurance. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. FAST ROTATION AND TRAILING FRAGMENTS OF THE ACTIVE ASTEROID P/2012 F5 (GIBBS)

    Energy Technology Data Exchange (ETDEWEB)

    Drahus, Michał; Waniak, Wacław [Astronomical Observatory, Jagiellonian University, Kraków (Poland); Tendulkar, Shriharsh [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA (United States); Agarwal, Jessica [Max Planck Institute for Solar System Research, Göttingen (Germany); Jewitt, David [Department of Earth, Planetary and Space Sciences and Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA (United States); Sheppard, Scott S., E-mail: drahus@oa.uj.edu.pl [Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC (United States)

    2015-03-20

    While having a comet-like appearance, P/2012 F5 (Gibbs) has an orbit native to the Main Asteroid Belt, and physically is a km-sized asteroid which recently (mid 2011) experienced an impulsive mass ejection event. Here we report new observations of this object obtained with the Keck II telescope on UT 2014 August 26. The data show previously undetected 200 m scale fragments of the main nucleus, and reveal a rapid nucleus spin with a rotation period of 3.24 ± 0.01 hr. The existence of large fragments and the fast nucleus spin are both consistent with rotational instability and partial disruption of the object. To date, many fast rotators have been identified among the minor bodies, which, however, do not eject detectable fragments at the present-day epoch, and also fragmentation events have been observed, but with no rotation period measured. P/2012 F5 is unique in that for the first time we detected fragments and quantified the rotation rate of one and the same object. The rapid spin rate of P/2012 F5 is very close to the spin rates of two other active asteroids in the Main Belt, 133P/Elst-Pizarro and (62412), confirming the existence of a population of fast rotators among these objects. But while P/2012 F5 shows impulsive ejection of dust and fragments, the mass loss from 133P is prolonged and recurrent. We believe that these two types of activity observed in the rapidly rotating active asteroids have a common origin in the rotational instability of the nucleus.

  16. Study of the elemental composition of Chenopodium Quinoa Willd by fast neutron activation analysis and X ray fluorescence analysis

    International Nuclear Information System (INIS)

    Soto Moran, R.L.; Szegedi, S.; Llopiz, J.L.

    1996-01-01

    By means of x-ray fluorescence and fast neutron activation analysis the nitrogen content has been determined in samples of roots, stems, leaf, flowers and grains from Quinua (Chenopodium Quinoa Willd), which was previously treated with fertilizer

  17. Effect of 48 h Fasting on Autonomic Function, Brain Activity, Cognition, and Mood in Amateur Weight Lifters.

    Science.gov (United States)

    Solianik, Rima; Sujeta, Artūras; Terentjevienė, Asta; Skurvydas, Albertas

    2016-01-01

    Objectives. The acute fasting-induced cardiovascular autonomic response and its effect on cognition and mood remain debatable. Thus, the main purpose of this study was to estimate the effect of a 48 h, zero-calorie diet on autonomic function, brain activity, cognition, and mood in amateur weight lifters. Methods. Nine participants completed a 48 h, zero-calorie diet program. Cardiovascular autonomic function, resting frontal brain activity, cognitive performance, and mood were evaluated before and after fasting. Results. Fasting decreased ( p anger, whereas other mood states were not affected by it. Conclusions. 48 h fasting resulted in higher parasympathetic activity and decreased resting frontal brain activity, increased anger, and improved prefrontal-cortex-related cognitive functions, such as mental flexibility and set shifting, in amateur weight lifters. In contrast, hippocampus-related cognitive functions were not affected by it.

  18. Fast neutron activation analysis and radioisotope X-ray fluorescence study on KALEWA and NAMMA coal

    International Nuclear Information System (INIS)

    Naing-Win

    1981-07-01

    Kalewa coal was studied with Fast Neutron Activation Analysis (FNAA) technique, employing KAMAN A-710 neutron generator and HP(Ge) detector coupled to ''Canberra'' series 30 MCA. Sequential irradiation and dual aluminium foil monitoring method was employed. Simultaneous multielement analysis was carried out. Namma Coal was studied with radioisotope X-ray Fluorescence (XRF) technique, employing Co-57 exciter source and HP(Ge) detector coupled to ''Canberra'' series 40 MCA. In both FNAA and XRF study, the results obtained were compared to that obtained with Atomic Absorption Spectrophotometry (AAS) technique. Finally, the results were reviewed together with those obtained from similar work on coal with FNAA and XRF techniques. (author)

  19. Study of 3D visualization of fast active reflector based on openGL and EPICS

    International Nuclear Information System (INIS)

    Luo Mingcheng; Wu Wenqing; Liu Jiajing; Tang Pengyi; Wang Jian

    2014-01-01

    Active Reflector is the one of the innovations of Five hundred meter Aperture Spherical Telescope (FAST). Its performance will influence the performance of whole telescope and for display all status of ARS in real time, the EPICS (Experimental Physics and Industrial Control System) is used to develop the control system of ARS and virtual 3D technology-OpenGL is used to visualize the status. For the real-time performance of EPICS, the status visualization is also display in real time for users to improve the efficiency of telescope observing. (authors)

  20. Investigation of Lecturer's Chalk by x-ray Florescence and Fast Neutron Activation Techniques

    International Nuclear Information System (INIS)

    Hassan, M.F.

    2011-01-01

    Different samples of lecturer's chalk were studied, using X-ray florescence (XRF) and Fast Neutron Activation Analysis (FNAA) techniques to ensure the safety of its use. The K (X-rays) and the gamma-rays were measured, using Si(Li) and high-purity germanium (HPGe) spectrometers to detect and determine qualitatively and quantitatively the constituents of the studied samples. The concentrations of the elements (Ca and small traces of Al, Fe, Mg and Si) were measured and their presence was confirmed by gamma-ray, lifetime and/or XRF measurements.

  1. Elemental investigation of talcum baby powder by X-Ray florescence and fast neutron activation Techniques

    International Nuclear Information System (INIS)

    Hassan, M. F.; Abd El Wahab, M.; Nada, A.

    2008-01-01

    Different samples of Egyptian and Hungarian talcum powders were studied, using X-ray florescence (XRF) and Fast Neutron Activation Analysis (FNAA) techniques to ensure the safety of its use. The K (X-rays) and the gamma-rays were measured, using Si(Li) and high-purity germanium (HPGe) spectrometers to detect and determine qualitatively and quantitatively the constituents of the studied samples. The concentrations of the elements (Mg, Si, Al, Fe, Zn, and Ba) were measured and their presence was confirmed by X-ray, lifetime and/or XRF measurements. One of these samples was also studied, using the Environmental Scanning Electron Microscope (ESEM)

  2. Early Activity in Broca's Area During Reading Reflects Fast Access to Articulatory Codes From Print.

    Science.gov (United States)

    Klein, Michael; Grainger, Jonathan; Wheat, Katherine L; Millman, Rebecca E; Simpson, Michael I G; Hansen, Peter C; Cornelissen, Piers L

    2015-07-01

    Prior evidence for early activity in Broca's area during reading may reflect fast access to articulatory codes in left inferior frontal gyrus pars opercularis (LIFGpo). We put this hypothesis to test using a benchmark for articulatory involvement in reading known as the masked onset priming effect (MOPE). In masked onset priming, briefly presented pronounceable strings of letters that share an initial phoneme with subsequently presented target words (e.g., gilp-GAME) facilitate word naming responses compared with unrelated primes (dilp-GAME). Crucially, these priming effects only occur when the task requires articulation (naming), and not when it requires lexical decisions. A standard explanation of masked onset priming is that it reflects fast computation of articulatory output codes from letter representations. We therefore predicted 1) that activity in left IFG pars opercularis would be modulated by masked onset priming, 2) that priming-related modulation in LIFGpo would immediately follow activity in occipital cortex, and 3) that this modulation would be greater for naming than for lexical decision. These predictions were confirmed in a magnetoencephalography (MEG) priming study. MOPEs emerged in left IFG at ∼100 ms posttarget onset, and the priming effects were more sustained when the task involved articulation. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Characterization of fasted human gastric fluid for relevant rheological parameters and gastric lipase activities

    DEFF Research Database (Denmark)

    Pedersen, Pernille Barbre; Vilmann, Peter; Bar-Shalom, Daniel

    2013-01-01

    characterization of the aspirates was conducted on a TA AR-G2 rheometer, using cone and plate geometry. Lipase activity was measured by continuous titration of released free fatty acid from tributyrate. Further, pH, osmolality, buffer capacity, and surface tension were measured and the total protein content.......8 and 5.4, respectively. pH, surface tension, buffer capacity, bile salt concentration, and osmolality were measured and compared with literature data. CONCLUSION: The rheological behavior and the mean apparent viscosity of HGA are significantly different from that of water and should therefore...... be considered important during development of gastric simulated media. Further, the activity of the HGL is active even under fasted gastric conditions and might contribute to the digestion and emulsification of lipid-based drug delivery systems in the entire gastrointestinal tract. HGL should therefore...

  4. Acute fasting inhibits central caspase-1 activity reducing anxiety-like behavior and increasing novel object and object location recognition.

    Science.gov (United States)

    Towers, Albert E; Oelschlager, Maci L; Patel, Jay; Gainey, Stephen J; McCusker, Robert H; Freund, Gregory G

    2017-06-01

    Inflammation within the central nervous system (CNS) is frequently comorbid with anxiety. Importantly, the pro-inflammatory cytokine most commonly associated with anxiety is IL-1β. The bioavailability and activity of IL-1β are regulated by caspase-1-dependent proteolysis vis-a-vis the inflammasome. Thus, interventions regulating the activation or activity of caspase-1 should reduce anxiety especially in states that foster IL-1β maturation. Male C57BL/6j, C57BL/6j mice treated with the capase-1 inhibitor biotin-YVAD-cmk, caspase-1 knockout (KO) mice and IL-1R1 KO mice were fasted for 24h or allowed ad libitum access to food. Immediately after fasting, caspase-1 activity was measured in brain region homogenates while activated caspase-1 was localized in the brain by immunohistochemistry. Mouse anxiety-like behavior and cognition were tested using the elevated zero maze and novel object/object location tasks, respectively. A 24h fast in mice reduced the activity of caspase-1 in whole brain and in the prefrontal cortex, amygdala, hippocampus, and hypothalamus by 35%, 25%, 40%, 40%, and 40% respectively. A 24h fast also reduced anxiety-like behavior by 40% and increased novel object and object location recognition by 21% and 31%, respectively. IL-1β protein, however, was not reduced in the brain by fasting. ICV administration of YVAD decreased caspase-1 activity in the prefrontal cortex and amygdala by 55%, respectively leading to a 64% reduction in anxiety like behavior. Importantly, when caspase-1 KO or IL1-R1 KO mice are fasted, no fasting-dependent reduction in anxiety-like behavior was observed. Results indicate that fasting decrease anxiety-like behavior and improves memory by a mechanism tied to reducing caspase-1 activity throughout the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Neuronal coding and spiking randomness

    Czech Academy of Sciences Publication Activity Database

    Košťál, Lubomír; Lánský, Petr; Rospars, J. P.

    2007-01-01

    Roč. 26, č. 10 (2007), s. 2693-2988 ISSN 0953-816X R&D Projects: GA MŠk(CZ) LC554; GA AV ČR(CZ) 1ET400110401; GA AV ČR(CZ) KJB100110701 Grant - others:ECO-NET(FR) 112644PF Institutional research plan: CEZ:AV0Z50110509 Keywords : spike train * variability * neurovědy Subject RIV: FH - Neurology Impact factor: 3.673, year: 2007

  6. Prospective Coding by Spiking Neurons.

    Directory of Open Access Journals (Sweden)

    Johanni Brea

    2016-06-01

    Full Text Available Animals learn to make predictions, such as associating the sound of a bell with upcoming feeding or predicting a movement that a motor command is eliciting. How predictions are realized on the neuronal level and what plasticity rule underlies their learning is not well understood. Here we propose a biologically plausible synaptic plasticity rule to learn predictions on a single neuron level on a timescale of seconds. The learning rule allows a spiking two-compartment neuron to match its current firing rate to its own expected future discounted firing rate. For instance, if an originally neutral event is repeatedly followed by an event that elevates the firing rate of a neuron, the originally neutral event will eventually also elevate the neuron's firing rate. The plasticity rule is a form of spike timing dependent plasticity in which a presynaptic spike followed by a postsynaptic spike leads to potentiation. Even if the plasticity window has a width of 20 milliseconds, associations on the time scale of seconds can be learned. We illustrate prospective coding with three examples: learning to predict a time varying input, learning to predict the next stimulus in a delayed paired-associate task and learning with a recurrent network to reproduce a temporally compressed version of a sequence. We discuss the potential role of the learning mechanism in classical trace conditioning. In the special case that the signal to be predicted encodes reward, the neuron learns to predict the discounted future reward and learning is closely related to the temporal difference learning algorithm TD(λ.

  7. iSpike: a spiking neural interface for the iCub robot

    International Nuclear Information System (INIS)

    Gamez, D; Fidjeland, A K; Lazdins, E

    2012-01-01

    This paper presents iSpike: a C++ library that interfaces between spiking neural network simulators and the iCub humanoid robot. It uses a biologically inspired approach to convert the robot’s sensory information into spikes that are passed to the neural network simulator, and it decodes output spikes from the network into motor signals that are sent to control the robot. Applications of iSpike range from embodied models of the brain to the development of intelligent robots using biologically inspired spiking neural networks. iSpike is an open source library that is available for free download under the terms of the GPL. (paper)

  8. AMORE Mo-99 Spike Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States); Krebs, John F. [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin J. [Argonne National Lab. (ANL), Argonne, IL (United States); Byrnes, James P. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, David A [Argonne National Lab. (ANL), Argonne, IL (United States); Brossard, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Wesolowski, Kenneth [Argonne National Lab. (ANL), Argonne, IL (United States); Alford, Kurt [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-27

    With funding from the National Nuclear Security Administrations Material Management and Minimization Office, Argonne National Laboratory (Argonne) is providing technical assistance to help accelerate the U.S. production of Mo-99 using a non-highly enriched uranium (non-HEU) source. A potential Mo-99 production pathway is by accelerator-initiated fissioning in a subcritical uranyl sulfate solution containing low enriched uranium (LEU). As part of the Argonne development effort, we are undertaking the AMORE (Argonne Molybdenum Research Experiment) project, which is essentially a pilot facility for all phases of Mo-99 production, recovery, and purification. Production of Mo-99 and other fission products in the subcritical target solution is initiated by putting an electron beam on a depleted uranium (DU) target; the fast neutrons produced in the DU target are thermalized and lead to fissioning of U-235. At the end of irradiation, Mo is recovered from the target solution and separated from uranium and most of the fission products by using a titania column. The Mo is stripped from the column with an alkaline solution. After acidification of the Mo product solution from the recovery column, the Mo is concentrated (and further purified) in a second titania column. The strip solution from the concentration column is then purified with the LEU Modified Cintichem process. A full description of the process can be found elsewhere [1–3]. The initial commissioning steps for the AMORE project include performing a Mo-99 spike test with pH 1 sulfuric acid in the target vessel without a beam on the target to demonstrate the initial Mo separation-and-recovery process, followed by the concentration column process. All glovebox operations were tested with cold solutions prior to performing the Mo-99 spike tests. Two Mo-99 spike tests with pH 1 sulfuric acid have been performed to date. Figure 1 shows the flow diagram for the remotely operated Mo-recovery system for the AMORE project

  9. A review of Ramadan fasting and regular physical activity on metabolic syndrome indices

    Directory of Open Access Journals (Sweden)

    Seyyed Reza Attarzadeh Hosseini

    2016-03-01

    Full Text Available Introduction: Metabolic syndrome constitutes a cluster of risk factors such as obesity, hyperglycemia,  hypertension, and dyslipidemia, which increase the risk of cardiovascular diseases and type II diabetes mellitus. In this review article, we aimed to discuss the possible effects of fasting and regular physical activity on risk factors for cardiovascular diseases.  Methods: Online databases including Google Scholar, SID, PubMed, and MagIran were searched, using the following keywords:  “training”, “exercise”, “physical activity”, “fasting”, “Ramadan”, “metabolic syndrome”, “fat percentage”, “blood pressure”, “blood sugar”, “cholesterol”, “triglyceride”, and “lowdensity lipoprotein-cholesterol”. All articles including research studies, review articles, descriptive and analytical studies, and ross-sectional research, published during 2006-2015, were reviewed. In case of any errors in the methodologyof articles, they were removed from our analysis. Results:Based on our literature review, inconsistent findings have been reported on risk factors formetabolic syndrome. However, the majority of conducted studies have suggested the positive effects offasting on reducing the risk factors for metabolic syndrome. Conclusion: Although fasting in different seasons of the year has no significant impacts on mental health or physical fitness, it can reduce the risk of various diseases such as cardiovascular diseases. Also, based on the conducted studies, if individuals adhere to a proper diet, avoid excessive eating, drink sufficient amounts of fluids, and keep a healthy level of physical activity, fasting can improve their physical health.

  10. Computational modeling of spike generation in serotonergic neurons of the dorsal raphe nucleus.

    Science.gov (United States)

    Tuckwell, Henry C; Penington, Nicholas J

    2014-07-01

    Serotonergic neurons of the dorsal raphe nucleus, with their extensive innervation of limbic and higher brain regions and interactions with the endocrine system have important modulatory or regulatory effects on many cognitive, emotional and physiological processes. They have been strongly implicated in responses to stress and in the occurrence of major depressive disorder and other psychiatric disorders. In order to quantify some of these effects, detailed mathematical models of the activity of such cells are required which describe their complex neurochemistry and neurophysiology. We consider here a single-compartment model of these neurons which is capable of describing many of the known features of spike generation, particularly the slow rhythmic pacemaking activity often observed in these cells in a variety of species. Included in the model are 11 kinds of ion channels: a fast sodium current INa, a delayed rectifier potassium current IKDR, a transient potassium current IA, a slow non-inactivating potassium current IM, a low-threshold calcium current IT, two high threshold calcium currents IL and IN, small and large conductance potassium currents ISK and IBK, a hyperpolarization-activated cation current IH and a leak current ILeak. In Sections 3-8, each current type is considered in detail and parameters estimated from voltage clamp data where possible. Three kinds of model are considered for the BK current and two for the leak current. Intracellular calcium ion concentration Cai is an additional component and calcium dynamics along with buffering and pumping is discussed in Section 9. The remainder of the article contains descriptions of computed solutions which reveal both spontaneous and driven spiking with several parameter sets. Attention is focused on the properties usually associated with these neurons, particularly long duration of action potential, steep upslope on the leading edge of spikes, pacemaker-like spiking, long-lasting afterhyperpolarization

  11. Comparison of abdominal muscle activity and peak expiratory flow between forced vital capacity and fast expiration exercise.

    Science.gov (United States)

    Ishida, Hiroshi; Suehiro, Tadanobu; Watanabe, Susumu

    2017-04-01

    [Purpose] The purpose of this investigation was to compare the activities of the abdominal muscles and peak expiratory flow between forced vital capacity and fast expiration exercise. [Subjects and Methods] Fifteen healthy male participated in this study. Peak expiratory flow and electromyographic activities of the rectus abdominis, external oblique, and internal oblique/transversus abdominis muscles were measured during forced vital capacity and fast expiration exercise and then peak amplitude and its appearance time were obtained. [Results] Peak expiratory flow values were significantly higher during fast expiration exercise than during forced vital capacity. The internal oblique/transversus abdominis muscles showed significantly higher peak amplitude during fast expiration exercise than during forced vital capacity. However, there were no significant differences between forced vital capacity and fast expiration exercise in the rectus abdominis and external oblique muscles. There was no difference in the appearance time of the peak amplitude between forced vital capacity and fast expiration exercise in any muscle. [Conclusion] Fast expiration exercise might be beneficial for increasing expiratory speed and neuromuscular activation of the internal oblique/transversus abdominis muscles compared to forced vital capacity. These findings could be considered when recommending a variation of expiratory muscle strength training as part of pulmonary rehabilitation programs.

  12. Realistic Modeling of Fast MHD Wave Trains in Coronal Active Regions

    Science.gov (United States)

    Ofman, Leon; Sun, Xudong

    2017-08-01

    Motivated by recent SDO/AIA observations we have developed realistic modeling of quasi-periodic, fast-mode propagating MHD wave trains (QFPs) using 3D MHD model initiated with potential magnetic field extrapolated from the solar coronal boundary. Localized quasi-periodic pulsations associated with C-class flares that drive the waves (as deduced from observations) are modeled with transverse periodic displacement of magnetic field at the lower coronal boundary. The modeled propagating speed and the form of the wave expansions matches the observed fast MHD waves speed >1000 km/s and topology. We study the parametric dependence of the amplitude, propagation, and damping of the waves for a range of key model parameters, such as the background temperature, density, and the location of the flaring site within the active region. We investigate the interaction of multiple QFP wave trains excited by adjacent flaring sources. We use the model results to synthesize EUV intensities in multiple AIA channels and obtain the model parameters that best reproduce the properties of observed QFPs, such as the recent DEM analysis. We discuss the implications of our modeling results for the seismological application of QFPs for the diagnostic of the active region field, flare pulsations, end estimate the energy flux carried by the waves.

  13. Fast Analysis of Superoxide Dismutase (SOD Activity in Barley Leaves Using Visible and Near Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2012-08-01

    Full Text Available Visible and near infrared (Vis/NIR spectroscopy was investigated for the fast analysis of superoxide dismutase (SOD activity in barley (Hordeum vulgare L. leaves. Seven different spectra preprocessing methods were compared. Four regression methods were used for comparison of prediction performance, including partial least squares (PLS, multiple linear regression (MLR, least squares-support vector machine (LS-SVM and Gaussian process regress (GPR. Successive projections algorithm (SPA and regression coefficients (RC were applied to select effective wavelengths (EWs to develop more parsimonious models. The results indicated that Savitzky-Golay smoothing (SG and multiplicative scatter correction (MSC should be selected as the optimum preprocessing methods. The best prediction performance was achieved by the LV-LS-SVM model on SG spectra, and the correlation coefficients (r and root mean square error of prediction (RMSEP were 0.9064 and 0.5336, respectively. The conclusion was that Vis/NIR spectroscopy combined with multivariate analysis could be successfully applied for the fast estimation of SOD activity in barley leaves.

  14. Dietary and physical activity adaptations to alternate day modified fasting: implications for optimal weight loss

    Directory of Open Access Journals (Sweden)

    Klempel Monica C

    2010-09-01

    Full Text Available Abstract Background Alternate day modified fasting (ADMF is an effective strategy for weight loss in obese adults. Objective The objective of this study was to examine the dietary and physical activity adaptations that occur during short-term ADMF, and to determine how these modulations affect rate of weight loss. Methods Sixteen obese subjects (12 women/4 men completed a 10-week trial consisting of 3 phases: 1 2-week control phase, 2 4-week ADMF controlled feeding phase, and 3 4-week ADMF self-selected feeding phase. Results Body weight decreased (P r = 0.42, P = 0.01. Dietary fat intake decreased (36% to 33% of kcal, P r = 0.38, P = 0.03. Hunger on the fast day decreased (P Conclusion These findings indicate that obese subjects quickly adapt to ADMF, and that changes in energy/macronutrient intake, hunger, and maintenance of physical activity play a role in influencing rate of weight loss by ADMF.

  15. Information transmission with spiking Bayesian neurons

    International Nuclear Information System (INIS)

    Lochmann, Timm; Deneve, Sophie

    2008-01-01

    Spike trains of cortical neurons resulting from repeatedpresentations of a stimulus are variable and exhibit Poisson-like statistics. Many models of neural coding therefore assumed that sensory information is contained in instantaneous firing rates, not spike times. Here, we ask how much information about time-varying stimuli can be transmitted by spiking neurons with such input and output variability. In particular, does this variability imply spike generation to be intrinsically stochastic? We consider a model neuron that estimates optimally the current state of a time-varying binary variable (e.g. presence of a stimulus) by integrating incoming spikes. The unit signals its current estimate to other units with spikes whenever the estimate increased by a fixed amount. As shown previously, this computation results in integrate and fire dynamics with Poisson-like output spike trains. This output variability is entirely due to the stochastic input rather than noisy spike generation. As a result such a deterministic neuron can transmit most of the information about the time varying stimulus. This contrasts with a standard model of sensory neurons, the linear-nonlinear Poisson (LNP) model which assumes that most variability in output spike trains is due to stochastic spike generation. Although it yields the same firing statistics, we found that such noisy firing results in the loss of most information. Finally, we use this framework to compare potential effects of top-down attention versus bottom-up saliency on information transfer with spiking neurons

  16. Feature Representations for Neuromorphic Audio Spike Streams.

    Science.gov (United States)

    Anumula, Jithendar; Neil, Daniel; Delbruck, Tobi; Liu, Shih-Chii

    2018-01-01

    Event-driven neuromorphic spiking sensors such as the silicon retina and the silicon cochlea encode the external sensory stimuli as asynchronous streams of spikes across different channels or pixels. Combining state-of-art deep neural networks with the asynchronous outputs of these sensors has produced encouraging results on some datasets but remains challenging. While the lack of effective spiking networks to process the spike streams is one reason, the other reason is that the pre-processing methods required to convert the spike streams to frame-based features needed for the deep networks still require further investigation. This work investigates the effectiveness of synchronous and asynchronous frame-based features generated using spike count and constant event binning in combination with the use of a recurrent neural network for solving a classification task using N-TIDIGITS18 dataset. This spike-based dataset consists of recordings from the Dynamic Audio Sensor, a spiking silicon cochlea sensor, in response to the TIDIGITS audio dataset. We also propose a new pre-processing method which applies an exponential kernel on the output cochlea spikes so that the interspike timing information is better preserved. The results from the N-TIDIGITS18 dataset show that the exponential features perform better than the spike count features, with over 91% accuracy on the digit classification task. This accuracy corresponds to an improvement of at least 2.5% over the use of spike count features, establishing a new state of the art for this dataset.

  17. Measurement of fluorine total concentration in dental enamel using fast neutron activation

    International Nuclear Information System (INIS)

    Mouadili, A.; Vernais, J.; Isabelle, D.B.

    1988-01-01

    Fluorine which is present in dental enamel, at the level of a few tens to a few hundred ppm, plays an important role in the behaviour of this tissue. Therefore quantitative determination is of interest for particular studies of the dental system. We present a nuclear nondestructive method to determine the total fluorine content in dental enamel by cyclotron-produced fast-neutron activation. The 19 F(n,2n) reaction leads to 18 F which is a β + emitter with a 109.8 min half-life. The irradiated sample activity is measured by detecting in coincidence the annihilation photons. A fluorine standard is used for calibration. The detection limit is of the order of 1 ppm, while the reproducibility is better than 95% [pt

  18. Determination of Substances Content of Soil Surface Using Fast Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Elin Nuraini; Elisabeth; Sunardi

    2002-01-01

    Determination of substances content of soil surface using neutron activation analysis has been performed. The aim of this research is to determine whether there are any dangerous, hazardous and toxic substances that released from The Research and Development Center for Advanced Technology (RDCAT) as a government institution has possibility in releasing that substances to the environment by surface water, sewage or rain water that give any dangerous the environmental. The fast neutron activation analysis was used to analyze the type and concentration of substances qualitative and quantitatively. The quantitative analysis was performed using relative method. Samples were counted using NaI(TI) detector. The result showed that there are several substances such as Mn-55, Fe-56, P-31, Al-27. Zn,65 and Mg-24. And there are found any hazardous, dangerous and toxic substances in the samples that causing any danger to human and environment. (author)

  19. Impact of substance P on the correlation of spike train evoked by electro acupuncture

    International Nuclear Information System (INIS)

    Jin, Chen; Zhang, Xuan; Wang, Jiang; Guo, Yi; Zhao, Xue; Guo, Yong-Ming

    2016-01-01

    Highlights: • We analyze spike trains induced by EA before and after inhibiting SP in PC6 area. • Inhibiting SP leads to an increase of spiking rate of median nerve. • SP may modulate membrane potential to affect the spiking rate. • SP has an influence on long-range correlation of spike train evoked by EA. • SP play an important role in EA-induced neural spiking and encoding. - Abstract: Substance P (SP) participates in the neural signal transmission evoked by electro-acupuncture (EA). This paper investigates the impact of SP on the correlation of spike train in the median nerve evoked by EA at 'Neiguan' acupoint (PC6). It shows that the spiking rate and interspike interval (ISI) distribution change obviously after inhibiting SP. This variation of spiking activity indicates that SP affects the temporal structure of spike train through modulating the action potential on median nerve filaments. Furtherly, the correlation coefficient and scaling exponent are considered to measure the correlation of spike train. Scaled Windowed Variance (SWV) method is applied to calculate scaling exponent which quantifies the long-range correlation of the neural electrical signals. It is found that the correlation coefficients of ISI increase after inhibiting SP released. In addition, the scaling exponents of neuronal spike train have significant differences between before and after inhibiting SP. These findings demonstrate that SP has an influence on the long-range correlation of spike train. Our results indicate that SP may play an important role in EA-induced neural spiking and encoding.

  20. Joint Probability-Based Neuronal Spike Train Classification

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2009-01-01

    Full Text Available Neuronal spike trains are used by the nervous system to encode and transmit information. Euclidean distance-based methods (EDBMs have been applied to quantify the similarity between temporally-discretized spike trains and model responses. In this study, using the same discretization procedure, we developed and applied a joint probability-based method (JPBM to classify individual spike trains of slowly adapting pulmonary stretch receptors (SARs. The activity of individual SARs was recorded in anaesthetized, paralysed adult male rabbits, which were artificially-ventilated at constant rate and one of three different volumes. Two-thirds of the responses to the 600 stimuli presented at each volume were used to construct three response models (one for each stimulus volume consisting of a series of time bins, each with spike probabilities. The remaining one-third of the responses where used as test responses to be classified into one of the three model responses. This was done by computing the joint probability of observing the same series of events (spikes or no spikes, dictated by the test response in a given model and determining which probability of the three was highest. The JPBM generally produced better classification accuracy than the EDBM, and both performed well above chance. Both methods were similarly affected by variations in discretization parameters, response epoch duration, and two different response alignment strategies. Increasing bin widths increased classification accuracy, which also improved with increased observation time, but primarily during periods of increasing lung inflation. Thus, the JPBM is a simple and effective method performing spike train classification.

  1. Fast determination of impurities in metallurgical grade silicon for photovoltaics by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Hampel, J.; Boldt, F.M.; Gerstenberg, H.; Hampel, G.; Kratz, J.V.; Reber, S.; Wiehl, N.

    2011-01-01

    Standard wafer solar cells are made of near-semiconductor quality silicon. This high quality material makes up a significant part of the total costs of a solar module. Therefore, new concepts with less expensive so called solar grade silicon directly based on physiochemically upgraded metallurgical grade silicon are investigated. Metallurgical grade silicon contains large amounts of impurities, mainly transition metals like Fe, Cr, Mn, and Co, which degrade the minority carrier lifetime and thus the solar cell efficiency. A major reduction of the transition metal content occurs during the unidirectional crystallization due to the low segregation coefficient between the solid and liquid phase. A further reduction of the impurity level has to be done by gettering procedures applied to the silicon wafers. The efficiency of such cleaning procedures of metallurgical grade silicon is studied by instrumental neutron activation analysis (INAA). Small sized silicon wafers of approximately 200 mg with and without gettering step were analyzed. To accelerate the detection of transition metals in a crystallized silicon ingot, experiments of scanning whole vertical silicon columns with a diameter of approximately 1 cm by gamma spectroscopy were carried out. It was demonstrated that impurity profiles can be obtained in a comparably short time. Relatively constant transition metal ratios were found throughout an entire silicon ingot. This led to the conclusion that the determination of several metal profiles might be possible by the detection of only one 'leading element'. As the determination of Mn in silicon can be done quite fast compared to elements like Fe, Cr, and Co, it could be used as a rough marker for the overall metal concentration level. Thus, a fast way to determine impurities in photovoltaic silicon material is demonstrated. - Highlights: → We demonstrate a fast way to determine impurities in photovoltaic silicon by NAA. → We make first experiments of locally

  2. Optimized Fast-FISH with a-satellite probes: acceleration by microwave activation

    Directory of Open Access Journals (Sweden)

    Durm M.

    1997-01-01

    Full Text Available It has been shown for several DNA probes that the recently introduced Fast-FISH (fluorescence in situ hybridization technique is well suited for quantitative microscopy. For highly repetitive DNA probes the hybridization (renaturation time and the number of subsequent washing steps were reduced considerably by omitting denaturing chemical agents (e.g., formamide. The appropriate hybridization temperature and time allow a clear discrimination between major and minor binding sites by quantitative fluorescence microscopy. The well-defined physical conditions for hybridization permit automatization of the procedure, e.g., by a programmable thermal cycler. Here, we present optimized conditions for a commercially available X-specific a-satellite probe. Highly fluorescent major binding sites were obtained for 74oC hybridization temperature and 60 min hybridization time. They were clearly discriminated from some low fluorescent minor binding sites on metaphase chromosomes as well as in interphase cell nuclei. On average, a total of 3.43 ± 1.59 binding sites were measured in metaphase spreads, and 2.69 ± 1.00 in interphase nuclei. Microwave activation for denaturation and hybridization was tested to accelerate the procedure. The slides with the target material and the hybridization buffer were placed in a standard microwave oven. After denaturation for 20 s at 900 W, hybridization was performed for 4 min at 90 W. The suitability of a microwave oven for Fast-FISH was confirmed by the application to a chromosome 1-specific a-satellite probe. In this case, denaturation was performed at 630 W for 60 s and hybridization at 90 W for 5 min. In all cases, the results were analyzed quantitatively and compared to the results obtained by Fast-FISH. The major binding sites were clearly discriminated by their brightness

  3. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.

    Directory of Open Access Journals (Sweden)

    Christian Albers

    Full Text Available Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP. Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious and strong (teacher spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns.

  4. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.

    Science.gov (United States)

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns.

  5. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity

    Science.gov (United States)

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns. PMID:26900845

  6. Effect of 48 h Fasting on Autonomic Function, Brain Activity, Cognition, and Mood in Amateur Weight Lifters

    Directory of Open Access Journals (Sweden)

    Rima Solianik

    2016-01-01

    Full Text Available Objectives. The acute fasting-induced cardiovascular autonomic response and its effect on cognition and mood remain debatable. Thus, the main purpose of this study was to estimate the effect of a 48 h, zero-calorie diet on autonomic function, brain activity, cognition, and mood in amateur weight lifters. Methods. Nine participants completed a 48 h, zero-calorie diet program. Cardiovascular autonomic function, resting frontal brain activity, cognitive performance, and mood were evaluated before and after fasting. Results. Fasting decreased (p<0.05 weight, heart rate, and systolic blood pressure, whereas no changes were evident regarding any of the measured heart rate variability indices. Fasting decreased (p<0.05 the concentration of oxygenated hemoglobin and improved (p<0.05 mental flexibility and shifting set, whereas no changes were observed in working memory, visuospatial discrimination, and spatial orientation ability. Fasting also increased (p<0.05 anger, whereas other mood states were not affected by it. Conclusions. 48 h fasting resulted in higher parasympathetic activity and decreased resting frontal brain activity, increased anger, and improved prefrontal-cortex-related cognitive functions, such as mental flexibility and set shifting, in amateur weight lifters. In contrast, hippocampus-related cognitive functions were not affected by it.

  7. Visually Evoked Spiking Evolves While Spontaneous Ongoing Dynamics Persist

    DEFF Research Database (Denmark)

    Huys, Raoul; Jirsa, Viktor K; Darokhan, Ziauddin

    2016-01-01

    by evoked spiking. This study of laminar recordings of spontaneous spiking and visually evoked spiking of neurons in the ferret primary visual cortex shows that the spiking dynamics does not change: the spontaneous spiking as well as evoked spiking is controlled by a stable and persisting fixed point...

  8. Activities of the AZTLAN team on the OECD/Nea benchmark on fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lopez S, R.; Gomez T, A.; Puente E, F. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E.; Arriaga R, L., E-mail: armando.gomez@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, 07738 Ciudad de Mexico (Mexico)

    2017-09-15

    In the present paper, the activities of the AZTLAN Platform Fast Reactor Group on the OECD/Nea Benchmark will be described. The main objective of these activities is to test the group staff and capabilities as well as the domestic code reliability by putting them into test in this exercise with different institutions from around the world. Six different core configurations were treated; these are described in two different versions of the Benchmark document. The main tools used by the group were the Finnish stochastic Monte Carlo code Serpent for full core calculations and macroscopic Cross Sections (X S) generation, and the domestic deterministic code AZNHEX for full core calculations. Different calculations were performed, such as full core calculations under nominal conditions, with control rods fully and partially inserted and with the sodium voided in the active zone as well as different reactivity shift values due to various conditions of radial and axial expansion of the fuel elements and structural material. The results obtained in the full core calculations and most of the reactivity shift calculations obtained by our group were indeed comparable to the ones obtained by different institutions when using similar methodologies. Given these favorable results it can be said that the main objective was met and the group showed their capabilities, as well as its possibility to collaborate with other institutes, placing Mexico in a good position in fast reactor analysis. Future work will continue with the calculations not yet treated and with the new core specifications on the new versions of the Benchmark document. (Author)

  9. Time course in calpain activity and autolysis in slow and fast skeletal muscle during clenbuterol treatment.

    Science.gov (United States)

    Douillard, Aymeric; Galbes, Olivier; Rossano, Bernadette; Vernus, Barbara; Bonnieu, Anne; Candau, Robin; Py, Guillaume

    2011-02-01

    Calpains are Ca2+ cysteine proteases that have been proposed to be involved in the cytoskeletal remodeling and wasting of skeletal muscle. Cumulative evidence also suggests that β2-agonists can lead to skeletal muscle hypertrophy through a mechanism probably related to calcium-dependent proteolytic enzyme. The aim of our study was to monitor calpain activity as a function of clenbuterol treatment in both slow and fast phenotype rat muscles. For this purpose, for 21 days we followed the time course of the calpain activity and of the ubiquitous calpain 1 and 2 autolysis, as well as muscle remodeling in the extensor digitorum longus (EDL) and soleus muscles of male Wistar rats treated daily with clenbuterol (4 mg·kg-1). A slow to fast fiber shift was observed in both the EDL and soleus muscles after 9 days of treatment, while hypertrophy was observed only in EDL after 9 days of treatment. Soleus muscle but not EDL muscle underwent an early apoptonecrosis phase characterized by hematoxylin and eosin staining. Total calpain activity was increased in both the EDL and soleus muscles of rats treated with clenbuterol. Moreover, calpain 1 autolysis increased significantly after 14 days in the EDL, but not in the soleus. Calpain 2 autolysis increased significantly in both muscles 6 hours after the first clenbuterol injection, indicating that clenbuterol-induced calpain 2 autolysis occurred earlier than calpain 1 autolysis. Together, these data suggest a preferential involvement of calpain 2 autolysis compared with calpain 1 autolysis in the mechanisms underlying the clenbuterol-induced skeletal muscle remodeling.

  10. Active and fast particle driven Alfvén eigenmodes in Alcator C-Moda)

    Science.gov (United States)

    Snipes, J. A.; Basse, N.; Boswell, C.; Edlund, E.; Fasoli, A.; Gorelenkov, N. N.; Granetz, R. S.; Lin, L.; Lin, Y.; Parker, R.; Porkolab, M.; Sears, J.; Sharapov, S.; Tang, V.; Wukitch, S.

    2005-05-01

    Alfvén eigenmodes (AEs) are studied to assess their stability in high density reactor relevant regimes where Ti≈Te and as a diagnostic tool. Stable AEs are excited with active magnetohydrodynamics antennas in the range of the expected AE frequency. Toroidal Alfvén eigenmode (TAE) damping rates between 0.5%<γ/ω<4.5% have been observed in diverted and limited Ohmic plasmas. Unstable AEs are excited with a fast ion tail driven by H minority ion cyclotron radio frequency (ICRF) heating with electron densities in the range of n¯e=0.5-2×1020m-3. Energetic particle modes or TAEs have been observed to decrease in frequency and mode number with time up to a large sawtooth collapse, indicating the role fast particles play in stabilizing sawteeth. In the current rise phase, unstable modes with frequencies that increase rapidly with time are observed with magnetic pick-up coils at the wall and phase contrast imaging density fluctuation measurements in the core. Modeling of these modes constrains the calculated safety factor profile to be very flat or with slightly reversed shear. AEs are found to be more stable for an inboard than for central or outboard ICRF resonances in qualitative agreement with modeling.

  11. Differences in Mucociliary activity of volunteers undergoing Ramadan versus Nineveh fasting.

    Science.gov (United States)

    Develioglu, Omer Necati; Sirazi, Sait; Topak, Murat; Purisa, Sevim; Kulekci, Mehmet

    2013-05-01

    This study, aimed to evaluate the difference in mucociliary clearance among volunteers who underwent Ramadan versus Nineveh fasting regimens as well as the difference between the fasting period and 4 weeks following the fasting period in both groups. In this study, two different fasting groups were established: Ramadan (fasting for an average of 15 h for 29 consecutive days, n = 40) and Nineveh (60 h of nonstop fasting, n = 26). Subjects in each group underwent saccharin testing twice: at the end of the fasting period prior to resumption of eating and at 4 weeks after the end of Ramadan or Nineveh fasting. Statistical analysis was performed using the Mann-Whitney U-test, Wilcoxon, Chi-square, and paired t test. A p value less than 0.05 was considered statistically significant. Forty subjects who underwent Ramadan fasting and 26 subjects who underwent Nineveh fasting were included in this study. Of the 66 study participants, 34 (51.5 %) were men and 32 (48.5 %) were women. Their median age was 31 years (range 17-70 years) for Nineveh fasting subjects and 40 years (range 17-70 years) for Ramadan fasting subjects. Chi-square tests revealed no significant difference between the Ramadan and Nineveh fasting groups in gender (p = 0.418), and the Mann-Whitney U-test showed no difference in age. A statistically significant difference was found in the mucociliary clearance time between the Nineveh fasting and non-fasting periods (p = 0.013). Using Wilcoxon signed-rank tests, we found no significant difference in the mucociliary clearance time between the Ramadan fasting and control (4 weeks after the fasting period) periods (p = 0.121). The percentage difference between the fasting and control periods was similar between groups and was not statistically significant for the Ramadan and Nineveh fasting groups (p = 0.086). The results of the present study indicated that long-term fasting with hypohydration contributed to the deterioration of nasal mucociliary clearance. Our

  12. FAST POWER LINE DETECTION AND LOCALIZATION USING STEERABLE FILTER FOR ACTIVE UAV GUIDANCE

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2012-08-01

    Full Text Available In this paper we present a fast power line detection and localisation algorithm as well as propose a high-level guidance architecture for active vision-based Unmanned Aerial Vehicle (UAV guidance. The detection stage is based on steerable filters for edge ridge detection, followed by a line fitting algorithm to refine candidate power lines in images. The guidance architecture assumes an UAV with an onboard Gimbal camera. We first control the position of the Gimbal such that the power line is in the field of view of the camera. Then its pose is used to generate the appropriate control commands such that the aircraft moves and flies above the lines. We present initial experimental results for the detection stage which shows that the proposed algorithm outperforms two state-of-the-art line detection algorithms for power line detection from aerial imagery.

  13. A Fast and Self-Acting Release-Caging-Mechanism for Actively Driven Drop Tower Systems

    Science.gov (United States)

    Gierse, Andreas; Kaczmarczik, Ulrich; Greif, Andreas; Selig, Hanns; von Kampen, Peter; Könemann, Thorben; Lämmerzahl, Claus

    2017-10-01

    Today's and future scientific research programs ask for high quality microgravity conditions of 10-6 g on ground combined with high repetition rates of 100 flights per day or more. Accordingly, a new type of drop tower, the GraviTower Bremen, (GTB), has been suggested and is currently under development. As a first stage of development, a GTB-Prototype (GTB-Pro) has been designed which uses an active rope drive to accelerate a slider/drag shield and an experiment therein on a vertical parabola. During the free fall phase, the experiment is decoupled from the slider by a self-acting Release-Caging-Mechanism (RCM). Our prototype will provide 2.5 s of microgravity for experiments of up to 500 kg for at least 100 times per day. In this article, the final concept of the engineering of the active rope drive and the RCM are presented in detail. Based on extensive simulations aiming at an optimization of the whole system we developed a hydraulic rope drive system with minimized vibrational amplitude and low number of eigenfrequencies. The RCM achieves a very fast (≤ 0.1 s) self-acting release of the experiment from the slider by making use of the dynamics of the hydraulic rope drive. Furthermore, passive hydraulic stop dampers in the RCM build a passive and self-acting recoupling mechanism. This system is optimized for a fast decoupling to compensate for the time limitation posed by the chosen drive technology. The simulations included a comparison of different drive technologies, physical effects like the Coriolis force, and the dynamics of the RCM system itself.

  14. High inter-reviewer variability of spike detection on intracranial EEG addressed by an automated multi-channel algorithm.

    Science.gov (United States)

    Barkmeier, Daniel T; Shah, Aashit K; Flanagan, Danny; Atkinson, Marie D; Agarwal, Rajeev; Fuerst, Darren R; Jafari-Khouzani, Kourosh; Loeb, Jeffrey A

    2012-06-01

    The goal of this study was to determine the consistency of human reviewer spike detection and then develop a computer algorithm to make the intracranial spike detection process more objective and reliable. Three human reviewers marked interictal spikes on samples of intracranial EEGs from 10 patients. The sensitivity, precision and agreement in channel ranking by activity were calculated between reviewers. A computer algorithm was developed to parallel the way human reviewers detect spikes by first identifying all potential spikes on each channel using frequency filtering and then block scaling all channels at the same time in order to exclude potential spikes that fall below an amplitude and slope threshold. Its performance was compared to the human reviewers on the same set of patients. Human reviewers showed surprisingly poor inter-reviewer agreement, but did broadly agree on the ranking of channels for spike activity. The computer algorithm performed as well as the human reviewers and did especially well at ranking channels from highest to lowest spike frequency. Our algorithm showed good agreement with the different human reviewers, even though they demonstrated different criteria for what constitutes a 'spike' and performed especially well at the clinically important task of ranking channels by spike activity. An automated, objective method to detect interictal spikes on intracranial recordings will improve both research and the surgical management of epilepsy patients. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. A Postsynaptic AMPK→p21-Activated Kinase Pathway Drives Fasting-Induced Synaptic Plasticity in AgRP Neurons.

    Science.gov (United States)

    Kong, Dong; Dagon, Yossi; Campbell, John N; Guo, Yikun; Yang, Zongfang; Yi, Xinchi; Aryal, Pratik; Wellenstein, Kerry; Kahn, Barbara B; Sabatini, Bernardo L; Lowell, Bradford B

    2016-07-06

    AMP-activated protein kinase (AMPK) plays an important role in regulating food intake. The downstream AMPK substrates and neurobiological mechanisms responsible for this, however, are ill defined. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus regulate hunger. Their firing increases with fasting, and once engaged they cause feeding. AgRP neuron activity is regulated by state-dependent synaptic plasticity: fasting increases dendritic spines and excitatory synaptic activity; feeding does the opposite. The signaling mechanisms underlying this, however, are also unknown. Using neuron-specific approaches to measure and manipulate kinase activity specifically within AgRP neurons, we establish that fasting increases AMPK activity in AgRP neurons, that increased AMPK activity in AgRP neurons is both necessary and sufficient for fasting-induced spinogenesis and excitatory synaptic activity, and that the AMPK phosphorylation target mediating this plasticity is p21-activated kinase. This provides a signaling and neurobiological basis for both AMPK regulation of energy balance and AgRP neuron state-dependent plasticity. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Proficiency test on incurred and spiked pesticide residues in cereals

    DEFF Research Database (Denmark)

    Poulsen, Mette Erecius; Christensen, Hanne Bjerre; Herrmann, Susan Strange

    2009-01-01

    A proficiency test on incurred and spiked pesticide residues in wheat was organised in 2008. The test material was grown in 2007 and treated in the field with 14 pesticides formulations containing the active substances, alpha-cypermethrin, bifentrin, carbendazim, chlormequat, chlorpyrifos-methyl,...

  17. To sort or not to sort: the impact of spike-sorting on neural decoding performance

    Science.gov (United States)

    Todorova, Sonia; Sadtler, Patrick; Batista, Aaron; Chase, Steven; Ventura, Valérie

    2014-10-01

    Objective. Brain-computer interfaces (BCIs) are a promising technology for restoring motor ability to paralyzed patients. Spiking-based BCIs have successfully been used in clinical trials to control multi-degree-of-freedom robotic devices. Current implementations of these devices require a lengthy spike-sorting step, which is an obstacle to moving this technology from the lab to the clinic. A viable alternative is to avoid spike-sorting, treating all threshold crossings of the voltage waveform on an electrode as coming from one putative neuron. It is not known, however, how much decoding information might be lost by ignoring spike identity. Approach. We present a full analysis of the effects of spike-sorting schemes on decoding performance. Specifically, we compare how well two common decoders, the optimal linear estimator and the Kalman filter, reconstruct the arm movements of non-human primates performing reaching tasks, when receiving input from various sorting schemes. The schemes we tested included: using threshold crossings without spike-sorting; expert-sorting discarding the noise; expert-sorting, including the noise as if it were another neuron; and automatic spike-sorting using waveform features. We also decoded from a joint statistical model for the waveforms and tuning curves, which does not involve an explicit spike-sorting step. Main results. Discarding the threshold crossings that cannot be assigned to neurons degrades decoding: no spikes should be discarded. Decoding based on spike-sorted units outperforms decoding based on electrodes voltage crossings: spike-sorting is useful. The four waveform based spike-sorting methods tested here yield similar decoding efficiencies: a fast and simple method is competitive. Decoding using the joint waveform and tuning model shows promise but is not consistently superior. Significance. Our results indicate that simple automated spike-sorting performs as well as the more computationally or manually intensive

  18. Reflections of hunger and satiation in the structure of temporal organization of slow electrical and spike activities of fundal and antral stomach muscles in rabbits.

    Science.gov (United States)

    Kromin, A A; Zenina, O Yu

    2012-11-01

    Manifestations of hunger and satiation in myoelectric activity patterns in different portions of the stomach were studied in chronic experiments. The state of hunger manifested in the structure of temporal organization of slow electric activity of muscles in the stomach body and antrum in the form of bimodal distributions of slow electric wave periods, while satiation as unimodal distribution. In hunger-specific bimodal distribution of slow electric wave periods generated by muscles of the stomach body and antrum, the position of the first maximum carries the information about oncoming food reinforcement, since this particular range of slow wave fluctuations determines temporal parameters of slow electric activity of muscles in all stomach regions in the course of subsequent successive food-procuring behavior. Under conditions of hunger, the pacemaker features of muscles in the lesser curvature are realized incompletely. Complete realization is achieved in the course of food intake and at the state of satiation.

  19. Ictal source imaging and electroclinical correlation in self-limited epilepsy with centrotemporal spikes

    DEFF Research Database (Denmark)

    Alving, Jørgen; Fabricius, Martin; Rosenzweig, Ivana

    2017-01-01

    PURPOSE: To elucidate the localization of ictal EEG activity, and correlate it to semiological features in self-limited epilepsy with centrotemporal spikes (formerly called "benign epilepsy with centrotemporal spikes"). METHODS: We have performed ictal electric source imaging, and we analysed...

  20. The shaping of two distinct dendritic spikes by A-type voltage-gated K+ channels

    Directory of Open Access Journals (Sweden)

    Sungchil eYang

    2015-12-01

    Full Text Available Dendritic ion channels have been a subject of intense research in neuroscience because active ion channels in dendrites shape input signals. Ca2+-permeable channels including NMDA receptors (NMDARs have been implicated in supralinear dendritic integration, and the IA conductance in sublinear integration. Despite their essential roles in dendritic integration, it has remained uncertain whether these conductances coordinate with, or counteract, each other in the process of dendritic integration. To address this question, experiments were designed in hippocampal CA1 neurons with a recent 3D digital holography system that has shown excellent performance for spatial photoactivation. The results demonstrated a role of IA as a key contributor to two distinct dendritic spikes, low- and high-threshold Ca2+ spikes, through a preferential action of IA on Ca2+-permeable channel-mediated currents, over fast AMPAR-mediated currents. It is likely that the rapid kinetics of IA provides feed-forward inhibition to counteract the delayed Ca2+ channel-mediated dendritic excitability. This research reveals one dynamic ionic mechanism of dendritic integration, and may contribute to a new understanding of neuronal hyperexcitability embedded in several neural diseases such as epilepsy, fragile X syndrome and Alzheimer's disease.

  1. Network oscillations drive correlated spiking of ON and OFF ganglion cells in the rd1 mouse model of retinal degeneration.

    Directory of Open Access Journals (Sweden)

    David J Margolis

    Full Text Available Following photoreceptor degeneration, ON and OFF retinal ganglion cells (RGCs in the rd-1/rd-1 mouse receive rhythmic synaptic input that elicits bursts of action potentials at ∼ 10 Hz. To characterize the properties of this activity, RGCs were targeted for paired recording and morphological classification as either ON alpha, OFF alpha or non-alpha RGCs using two-photon imaging. Identified cell types exhibited rhythmic spike activity. Cross-correlation of spike trains recorded simultaneously from pairs of RGCs revealed that activity was correlated more strongly between alpha RGCs than between alpha and non-alpha cell pairs. Bursts of action potentials in alpha RGC pairs of the same type, i.e. two ON or two OFF cells, were in phase, while bursts in dissimilar alpha cell types, i.e. an ON and an OFF RGC, were 180 degrees out of phase. This result is consistent with RGC activity being driven by an input that provides correlated excitation to ON cells and inhibition to OFF cells. A2 amacrine cells were investigated as a candidate cellular mechanism and found to display 10 Hz oscillations in membrane voltage and current that persisted in the presence of antagonists of fast synaptic transmission and were eliminated by tetrodotoxin. Results support the conclusion that the rhythmic RGC activity originates in a presynaptic network of electrically coupled cells including A2s via a Na(+-channel dependent mechanism. Network activity drives out of phase oscillations in ON and OFF cone bipolar cells, entraining similar frequency fluctuations in RGC spike activity over an area of retina that migrates with changes in the spatial locus of the cellular oscillator.

  2. Network oscillations drive correlated spiking of ON and OFF ganglion cells in the rd1 mouse model of retinal degeneration.

    Science.gov (United States)

    Margolis, David J; Gartland, Andrew J; Singer, Joshua H; Detwiler, Peter B

    2014-01-01

    Following photoreceptor degeneration, ON and OFF retinal ganglion cells (RGCs) in the rd-1/rd-1 mouse receive rhythmic synaptic input that elicits bursts of action potentials at ∼ 10 Hz. To characterize the properties of this activity, RGCs were targeted for paired recording and morphological classification as either ON alpha, OFF alpha or non-alpha RGCs using two-photon imaging. Identified cell types exhibited rhythmic spike activity. Cross-correlation of spike trains recorded simultaneously from pairs of RGCs revealed that activity was correlated more strongly between alpha RGCs than between alpha and non-alpha cell pairs. Bursts of action potentials in alpha RGC pairs of the same type, i.e. two ON or two OFF cells, were in phase, while bursts in dissimilar alpha cell types, i.e. an ON and an OFF RGC, were 180 degrees out of phase. This result is consistent with RGC activity being driven by an input that provides correlated excitation to ON cells and inhibition to OFF cells. A2 amacrine cells were investigated as a candidate cellular mechanism and found to display 10 Hz oscillations in membrane voltage and current that persisted in the presence of antagonists of fast synaptic transmission and were eliminated by tetrodotoxin. Results support the conclusion that the rhythmic RGC activity originates in a presynaptic network of electrically coupled cells including A2s via a Na(+)-channel dependent mechanism. Network activity drives out of phase oscillations in ON and OFF cone bipolar cells, entraining similar frequency fluctuations in RGC spike activity over an area of retina that migrates with changes in the spatial locus of the cellular oscillator.

  3. Low-grade endotoxemia, gut permeability and platelet activation in patients with impaired fasting glucose.

    Science.gov (United States)

    Carnevale, R; Pastori, D; Nocella, C; Cammisotto, V; Baratta, F; Del Ben, M; Angelico, F; Sciarretta, S; Bartimoccia, S; Novo, M; Targher, G; Violi, F

    2017-10-01

    Impaired fasting glucose (IFG) is associated with an increased risk of cardiovascular disease but the underlying mechanisms are still unclear. Aim of the study was to investigate the interplay between platelet activation, lipopolysaccharides (LPS) and markers of oxidative stress in patients with IFG and control subjects. We performed a cross-sectional study including 35 patients with IFG and 35 control subjects who were well comparable for age, sex, body mass index and smoking history. Serum levels of LPS, zonulin (a marker of gut permeability), oxidized LDL and plasma levels of soluble P-selectin, were measured. Patients with IFG had significantly higher levels of sP-selectin, LPS, zonulin and oxLDL compared to control subjects. The IFG status (beta coefficient: 0.518, p zonulin (r = 0.521, p = 0.001); this association was confirmed at multivariable analysis (beta coefficient: 0.512, p = 0.007). Our study provides evidence that patients with IFG have increased platelet activation, and suggests LPS as a potential trigger for in vivo platelet activation in this patient population. Copyright © 2017. Published by Elsevier B.V.

  4. Spike-threshold adaptation predicted by membrane potential dynamics in vivo.

    Directory of Open Access Journals (Sweden)

    Bertrand Fontaine

    2014-04-01

    Full Text Available Neurons encode information in sequences of spikes, which are triggered when their membrane potential crosses a threshold. In vivo, the spiking threshold displays large variability suggesting that threshold dynamics have a profound influence on how the combined input of a neuron is encoded in the spiking. Threshold variability could be explained by adaptation to the membrane potential. However, it could also be the case that most threshold variability reflects noise and processes other than threshold adaptation. Here, we investigated threshold variation in auditory neurons responses recorded in vivo in barn owls. We found that spike threshold is quantitatively predicted by a model in which the threshold adapts, tracking the membrane potential at a short timescale. As a result, in these neurons, slow voltage fluctuations do not contribute to spiking because they are filtered by threshold adaptation. More importantly, these neurons can only respond to input spikes arriving together on a millisecond timescale. These results demonstrate that fast adaptation to the membrane potential captures spike threshold variability in vivo.

  5. Stochastic hybrid model of spontaneous dendritic NMDA spikes

    International Nuclear Information System (INIS)

    Bressloff, Paul C; Newby, Jay M

    2014-01-01

    Following recent advances in imaging techniques and methods of dendritic stimulation, active voltage spikes have been observed in thin dendritic branches of excitatory pyramidal neurons, where the majority of synapses occur. The generation of these dendritic spikes involves both Na + ion channels and M-methyl-D-aspartate receptor (NMDAR) channels. During strong stimulation of a thin dendrite, the resulting high levels of glutamate, the main excitatory neurotransmitter in the central nervous system and an NMDA agonist, modify the current-voltage (I–V) characteristics of an NMDAR so that it behaves like a voltage-gated Na + channel. Hence, the NMDARs can fire a regenerative dendritic spike, just as Na + channels support the initiation of an action potential following membrane depolarization. However, the duration of the dendritic spike is of the order 100 ms rather than 1 ms, since it involves slow unbinding of glutamate from NMDARs rather than activation of hyperpolarizing K + channels. It has been suggested that dendritic NMDA spikes may play an important role in dendritic computations and provide a cellular substrate for short-term memory. In this paper, we consider a stochastic, conductance-based model of dendritic NMDA spikes, in which the noise originates from the stochastic opening and closing of a finite number of Na + and NMDA receptor ion channels. The resulting model takes the form of a stochastic hybrid system, in which membrane voltage evolves according to a piecewise deterministic dynamics that is coupled to a jump Markov process describing the opening and closing of the ion channels. We formulate the noise-induced initiation and termination of a dendritic spike in terms of a first-passage time problem, under the assumption that glutamate unbinding is negligible, which we then solve using a combination of WKB methods and singular perturbation theory. Using a stochastic phase-plane analysis we then extend our analysis to take proper account of the

  6. Robust spike-train learning in spike-event based weight update.

    Science.gov (United States)

    Shrestha, Sumit Bam; Song, Qing

    2017-12-01

    Supervised learning algorithms in a spiking neural network either learn a spike-train pattern for a single neuron receiving input spike-train from multiple input synapses or learn to output the first spike time in a feedforward network setting. In this paper, we build upon spike-event based weight update strategy to learn continuous spike-train in a spiking neural network with a hidden layer using a dead zone on-off based adaptive learning rate rule which ensures convergence of the learning process in the sense of weight convergence and robustness of the learning process to external disturbances. Based on different benchmark problems, we compare this new method with other relevant spike-train learning algorithms. The results show that the speed of learning is much improved and the rate of successful learning is also greatly improved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fast Geodesic Active Fields for Image Registration Based on Splitting and Augmented Lagrangian Approaches.

    Science.gov (United States)

    Zosso, Dominique; Bresson, Xavier; Thiran, Jean-Philippe

    2014-02-01

    In this paper, we present an efficient numerical scheme for the recently introduced geodesic active fields (GAF) framework for geometric image registration. This framework considers the registration task as a weighted minimal surface problem. Hence, the data-term and the regularization-term are combined through multiplication in a single, parametrization invariant and geometric cost functional. The multiplicative coupling provides an intrinsic, spatially varying and data-dependent tuning of the regularization strength, and the parametrization invariance allows working with images of nonflat geometry, generally defined on any smoothly parametrizable manifold. The resulting energy-minimizing flow, however, has poor numerical properties. Here, we provide an efficient numerical scheme that uses a splitting approach; data and regularity terms are optimized over two distinct deformation fields that are constrained to be equal via an augmented Lagrangian approach. Our approach is more flexible than standard Gaussian regularization, since one can interpolate freely between isotropic Gaussian and anisotropic TV-like smoothing. In this paper, we compare the geodesic active fields method with the popular Demons method and three more recent state-of-the-art algorithms: NL-optical flow, MRF image registration, and landmark-enhanced large displacement optical flow. Thus, we can show the advantages of the proposed FastGAF method. It compares favorably against Demons, both in terms of registration speed and quality. Over the range of example applications, it also consistently produces results not far from more dedicated state-of-the-art methods, illustrating the flexibility of the proposed framework.

  8. Small-Scale Activity Above the Penumbra of a Fast-Rotating Sunspot

    Science.gov (United States)

    Bharti, L.; Quintero Noda, C.; Rakesh, S.; Sobha, B.; Pandya, A.; Joshi, C.

    2018-03-01

    High-resolution observations of small-scale activity above the filamentary structure of a fast-rotating sunspot of NOAA Active Region 10930 are presented. The penumbral filament that intrudes into the umbra shows a central dark core and substructures. It almost approached another end of the umbra, like a light bridge. The chromospheric Ca ii H images show many jet-like structures with a bright leading edge above it. These bright jets move across the filament tips and show coordinated up and down motions. Transition region images also show brightening at the same location above the intrusion. Coronal 195 Å images suggest that one end of the bright coronal loop footpoints resides in this structure. The intrusion has opposite polarity with respect to the umbra. Strong downflows are observed at the edges along the length of the intrusion where the opposite-polarity field is enhanced. We also observe a counter-Evershed flow in the filamentary structure that also displays brightening and energy dissipation in the upper atmosphere. This scenario suggests that the jets and brightenings are caused by low-altitude reconnection driven by opposite-polarity fields and convective downflows above such structures.

  9. Spiking Neuron Network Helmholtz Machine

    Directory of Open Access Journals (Sweden)

    Pavel eSountsov

    2015-04-01

    Full Text Available An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule.

  10. Sialic Acid Binding Properties of Soluble Coronavirus Spike (S1) Proteins: Differences between Infectious Bronchitis Virus and Transmissible Gastroenteritis Virus

    Science.gov (United States)

    Shahwan, Katarina; Hesse, Martina; Mork, Ann-Kathrin; Herrler, Georg; Winter, Christine

    2013-01-01

    The spike proteins of a number of coronaviruses are able to bind to sialic acids present on the cell surface. The importance of this sialic acid binding ability during infection is, however, quite different. We compared the spike protein of transmissible gastroenteritis virus (TGEV) and the spike protein of infectious bronchitis virus (IBV). Whereas sialic acid is the only receptor determinant known so far for IBV, TGEV requires interaction with its receptor aminopeptidase N to initiate infection of cells. Binding tests with soluble spike proteins carrying an IgG Fc-tag revealed pronounced differences between these two viral proteins. Binding of the IBV spike protein to host cells was in all experiments sialic acid dependent, whereas the soluble TGEV spike showed binding to APN but had no detectable sialic acid binding activity. Our results underline the different ways in which binding to sialoglycoconjugates is mediated by coronavirus spike proteins. PMID:23896748

  11. Sialic Acid Binding Properties of Soluble Coronavirus Spike (S1 Proteins: Differences between Infectious Bronchitis Virus and Transmissible Gastroenteritis Virus

    Directory of Open Access Journals (Sweden)

    Christine Winter

    2013-07-01

    Full Text Available The spike proteins of a number of coronaviruses are able to bind to sialic acids present on the cell surface. The importance of this sialic acid binding ability during infection is, however, quite different. We compared the spike protein of transmissible gastroenteritis virus (TGEV and the spike protein of infectious bronchitis virus (IBV. Whereas sialic acid is the only receptor determinant known so far for IBV, TGEV requires interaction with its receptor aminopeptidase N to initiate infection of cells. Binding tests with soluble spike proteins carrying an IgG Fc-tag revealed pronounced differences between these two viral proteins. Binding of the IBV spike protein to host cells was in all experiments sialic acid dependent, whereas the soluble TGEV spike showed binding to APN but had no detectable sialic acid binding activity. Our results underline the different ways in which binding to sialoglycoconjugates is mediated by coronavirus spike proteins.

  12. The Second Spiking Threshold: Dynamics of Laminar Network Spiking in the Visual Cortex

    DEFF Research Database (Denmark)

    Forsberg, Lars E.; Bonde, Lars H.; Harvey, Michael A.

    2016-01-01

    visually evoked spiking driven by sharp transients. Here we examine whether this second threshold exists outside the granular layer and examine details of transitions between spiking states in ferrets exposed to moving objects. We found the second threshold, separating spiking states evoked by stationary...

  13. An active learning mammalian skeletal muscle lab demonstrating contractile and kinetic properties of fast- and slow-twitch muscle.

    Science.gov (United States)

    Head, S I; Arber, M B

    2013-12-01

    The fact that humans possess fast- and slow-twitch muscle in the ratio of ∼50% has profound implications for designing exercise training strategies for power and endurance activities. With the growth of exercise and sport science courses, we have seen the need to develop an undergraduate student laboratory that demonstrates the basic properties of fast- and slow-twitch mammalian skeletal muscle. This laboratory illustrates the major differences in contractile properties and fatigue profiles exhibited by the two muscle types. Students compare and contrast twitch kinetics, fused tetanus characteristics, force-frequency relationships, and fatigue properties of fast- and slow-twitch muscles. Examples of results collected by students during class are used to illustrate the type of data collected and analysis performed. During the laboratory, students are encouraged to connect factual information from their skeletal muscle lectures to their laboratory findings. This enables student learning in an active fashion; in particular, the isolated muscle preparation demonstrates that much of what makes muscle fast or slow is myogenic and not the product of the nervous or circulatory systems. This has far-reaching implications for motor control and exercise behavior and therefore is a crucial element in exercise science, with its focus on power and endurance sport activities. To measure student satisfaction with this active learning technique, a questionnaire was administered after the laboratory; 96% of the comments were positive in their support of active versus passive learning strategies.

  14. Efficient Architecture for Spike Sorting in Reconfigurable Hardware

    Science.gov (United States)

    Hwang, Wen-Jyi; Lee, Wei-Hao; Lin, Shiow-Jyu; Lai, Sheng-Ying

    2013-01-01

    This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA) and fuzzy C-means (FCM) algorithm are used for feature extraction and clustering, respectively. The employment of GHA allows efficient computation of principal components for subsequent clustering operations. The FCM is able to achieve near optimal clustering for spike sorting. Its performance is insensitive to the selection of initial cluster centers. The hardware implementations of GHA and FCM feature low area costs and high throughput. In the GHA architecture, the computation of different weight vectors share the same circuit for lowering the area costs. Moreover, in the FCM hardware implementation, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. To show the effectiveness of the circuit, the proposed architecture is physically implemented by field programmable gate array (FPGA). It is embedded in a System-on-Chip (SOC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient spike sorting design for attaining high classification correct rate and high speed computation. PMID:24189331

  15. Efficient Architecture for Spike Sorting in Reconfigurable Hardware

    Directory of Open Access Journals (Sweden)

    Sheng-Ying Lai

    2013-11-01

    Full Text Available This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA and fuzzy C-means (FCM algorithm are used for feature extraction and clustering, respectively. The employment of GHA allows efficient computation of principal components for subsequent clustering operations. The FCM is able to achieve near optimal clustering for spike sorting. Its performance is insensitive to the selection of initial cluster centers. The hardware implementations of GHA and FCM feature low area costs and high throughput. In the GHA architecture, the computation of different weight vectors share the same circuit for lowering the area costs. Moreover, in the FCM hardware implementation, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. To show the effectiveness of the circuit, the proposed architecture is physically implemented by field programmable gate array (FPGA. It is embedded in a System-on-Chip (SOC platform for performance measurement. Experimental results show that the proposed architecture is an efficient spike sorting design for attaining high classification correct rate and high speed computation.

  16. iRaster: a novel information visualization tool to explore spatiotemporal patterns in multiple spike trains.

    Science.gov (United States)

    Somerville, J; Stuart, L; Sernagor, E; Borisyuk, R

    2010-12-15

    Over the last few years, simultaneous recordings of multiple spike trains have become widely used by neuroscientists. Therefore, it is important to develop new tools for analysing multiple spike trains in order to gain new insight into the function of neural systems. This paper describes how techniques from the field of visual analytics can be used to reveal specific patterns of neural activity. An interactive raster plot called iRaster has been developed. This software incorporates a selection of statistical procedures for visualization and flexible manipulations with multiple spike trains. For example, there are several procedures for the re-ordering of spike trains which can be used to unmask activity propagation, spiking synchronization, and many other important features of multiple spike train activity. Additionally, iRaster includes a rate representation of neural activity, a combined representation of rate and spikes, spike train removal and time interval removal. Furthermore, it provides multiple coordinated views, time and spike train zooming windows, a fisheye lens distortion, and dissemination facilities. iRaster is a user friendly, interactive, flexible tool which supports a broad range of visual representations. This tool has been successfully used to analyse both synthetic and experimentally recorded datasets. In this paper, the main features of iRaster are described and its performance and effectiveness are demonstrated using various types of data including experimental multi-electrode array recordings from the ganglion cell layer in mouse retina. iRaster is part of an ongoing research project called VISA (Visualization of Inter-Spike Associations) at the Visualization Lab in the University of Plymouth. The overall aim of the VISA project is to provide neuroscientists with the ability to freely explore and analyse their data. The software is freely available from the Visualization Lab website (see www.plymouth.ac.uk/infovis). Copyright © 2010

  17. Linking investment spikes and productivity growth

    NARCIS (Netherlands)

    Geylani, P.C.; Stefanou, S.E.

    2013-01-01

    We investigate the relationship between productivity growth and investment spikes using Census Bureau’s plant-level dataset for the U.S. food manufacturing industry. There are differences in productivity growth and investment spike patterns across different sub-industries and food manufacturing

  18. Stochastic Variational Learning in Recurrent Spiking Networks

    Directory of Open Access Journals (Sweden)

    Danilo eJimenez Rezende

    2014-04-01

    Full Text Available The ability to learn and perform statistical inference with biologically plausible recurrent network of spiking neurons is an important step towards understanding perception and reasoning. Here we derive and investigate a new learning rule for recurrent spiking networks with hidden neurons, combining principles from variational learning and reinforcement learning. Our network defines a generative model over spike train histories and the derived learning rule has the form of a local Spike Timing Dependent Plasticity rule modulated by global factors (neuromodulators conveying information about ``novelty on a statistically rigorous ground.Simulations show that our model is able to learn bothstationary and non-stationary patterns of spike trains.We also propose one experiment that could potentially be performed with animals in order to test the dynamics of the predicted novelty signal.

  19. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale

    International Nuclear Information System (INIS)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    2016-01-01

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.

  20. An Active Learning Mammalian Skeletal Muscle Lab Demonstrating Contractile and Kinetic Properties of Fast- and Slow-Twitch Muscle

    Science.gov (United States)

    Head, S. I.; Arber, M. B.

    2013-01-01

    The fact that humans possess fast and slow-twitch muscle in the ratio of approximately 50% has profound implications for designing exercise training strategies for power and endurance activities. With the growth of exercise and sport science courses, we have seen the need to develop an undergraduate student laboratory that demonstrates the basic…

  1. Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset

    Science.gov (United States)

    Wendling, Fabrice; Bartolomei, Fabrice; Bellanger, Jean-Jacques; Bourien, Jérôme; Chauvel, Patrick

    2003-01-01

    Low-voltage rapid discharges (or fast EEG ictal activity) constitute a characteristic electrophysiological pattern in focal seizures of human epilepsy. They are characterized by a decrease of signal voltage with a marked increase of signal frequency (typically beyond 25 Hz). They have long been observed in stereoelectroencephalographic (SEEG) signals recorded with intra-cerebral electrodes, generally occurring at seizure onset and simultaneously involving distinct brain regions. Spectral properties of rapid ictal discharges as well as spatial correlations measured between SEEG signals generated from distant sites before, during and after these discharges were studied. Cross-correlation estimates within typical EEG sub-bands and statistical tests performed in ten patients suffering from partial epilepsy (frontal, temporal or fronto-temporal) reveal that SEEG signals are significantly de-correlated during the discharge period compared to periods that precede and follow this discharge. These results can be interpreted as a functional decoupling of distant brain sites at seizure onset followed by an abnormally high re-coupling when the seizure develops. They lead to the concept of “disruption” that is complementary of that of “activation” (revealed by significantly high correlations between signals recorded during seizures), both giving insights into our understanding of pathophysiological processes involved in human partial epilepsies as well as in the interpretation of clinical semiology. PMID:12764064

  2. Fast automatic analysis of antenatal dexamethasone on micro-seizure activity in the EEG

    International Nuclear Information System (INIS)

    Rastin, S.J.; Unsworth, C.P.; Bennet, L.

    2010-01-01

    Full text: In this work wc develop an automatic scheme for studying the effect of the antenatal Dexamethasone on the EEG activity. To do so an FFT (Fast Fourier Transform) based detector was designed and applied to the EEG recordings obtained from two groups of fetal sheep. Both groups received two injections with a time delay of 24 h between them. However the applied medicine was different for each group (Dex and saline). The detector developed was used to automatically identify and classify micro-seizures that occurred in the frequency bands corresponding to the EEG transients known as slow waves (2.5 14 Hz). For each second of the data recordings the spectrum was computed and the rise of the energy in each predefined frequency band then counted when the energy level exceeded a predefined corresponding threshold level (Where the threshold level was obtained from the long term average of the spectral points at each band). Our results demonstrate that it was possible to automatically count the micro-seizures for the three different bands in a time effective manner. It was found that the number of transients did not strongly depend on the nature of the injected medicine which was consistent with the results manually obtained by an EEG expert. Tn conclusion, the automatic detection scheme presented here would allow for rapid micro-seizure event identification of hours of highly sampled EEG data thus providing a valuable time-saving device.

  3. Detection and Isolation of Swine Influenza A Virus in Spiked Oral Fluid and Samples from Individually Housed, Experimentally Infected Pigs: Potential Role of Porcine Oral Fluid in Active Influenza A Virus Surveillance in Swine.

    Directory of Open Access Journals (Sweden)

    Inge Decorte

    Full Text Available The lack of seasonality of swine influenza A virus (swIAV in combination with the capacity of swine to harbor a large number of co-circulating IAV lineages, resulting in the risk for the emergence of influenza viruses with pandemic potential, stress the importance of swIAV surveillance. To date, active surveillance of swIAV worldwide is barely done because of the short detection period in nasal swab samples. Therefore, more sensitive diagnostic methods to monitor circulating virus strains are requisite.qRT-PCR and virus isolations were performed on oral fluid and nasal swabs collected from individually housed pigs that were infected sequentially with H1N1 and H3N2 swIAV strains. The same methods were also applied to oral fluid samples spiked with H1N1 to study the influence of conservation time and temperature on swIAV infectivity and detectability in porcine oral fluid.All swIAV infected animals were found qRT-PCR positive in both nasal swabs and oral fluid. However, swIAV could be detected for a longer period in oral fluid than in nasal swabs. Despite the high detectability of swIAV in oral fluid, virus isolation from oral fluid collected from infected pigs was rare. These results are supported by laboratory studies showing that the PCR detectability of swIAV remains unaltered during a 24 h incubation period in oral fluid, while swIAV infectivity drops dramatically immediately upon contact with oral fluid (3 log titer reduction and gets lost after 24 h conservation in oral fluid at ambient temperature.Our data indicate that porcine oral fluid has the potential to replace nasal swabs for molecular diagnostic purposes. The difficulty to isolate swIAV from oral fluid could pose a drawback for its use in active surveillance programs.

  4. Detection and Isolation of Swine Influenza A Virus in Spiked Oral Fluid and Samples from Individually Housed, Experimentally Infected Pigs: Potential Role of Porcine Oral Fluid in Active Influenza A Virus Surveillance in Swine

    Science.gov (United States)

    Decorte, Inge; Steensels, Mieke; Lambrecht, Bénédicte

    2015-01-01

    Background The lack of seasonality of swine influenza A virus (swIAV) in combination with the capacity of swine to harbor a large number of co-circulating IAV lineages, resulting in the risk for the emergence of influenza viruses with pandemic potential, stress the importance of swIAV surveillance. To date, active surveillance of swIAV worldwide is barely done because of the short detection period in nasal swab samples. Therefore, more sensitive diagnostic methods to monitor circulating virus strains are requisite. Methods qRT-PCR and virus isolations were performed on oral fluid and nasal swabs collected from individually housed pigs that were infected sequentially with H1N1 and H3N2 swIAV strains. The same methods were also applied to oral fluid samples spiked with H1N1 to study the influence of conservation time and temperature on swIAV infectivity and detectability in porcine oral fluid. Results All swIAV infected animals were found qRT-PCR positive in both nasal swabs and oral fluid. However, swIAV could be detected for a longer period in oral fluid than in nasal swabs. Despite the high detectability of swIAV in oral fluid, virus isolation from oral fluid collected from infected pigs was rare. These results are supported by laboratory studies showing that the PCR detectability of swIAV remains unaltered during a 24 h incubation period in oral fluid, while swIAV infectivity drops dramatically immediately upon contact with oral fluid (3 log titer reduction) and gets lost after 24 h conservation in oral fluid at ambient temperature. Conclusions Our data indicate that porcine oral fluid has the potential to replace nasal swabs for molecular diagnostic purposes. The difficulty to isolate swIAV from oral fluid could pose a drawback for its use in active surveillance programs. PMID:26431039

  5. Intracellular calcium spikes in rat suprachiasmatic nucleus neurons induced by BAPTA-based calcium dyes.

    Directory of Open Access Journals (Sweden)

    Jin Hee Hong

    Full Text Available BACKGROUND: Circadian rhythms in spontaneous action potential (AP firing frequencies and in cytosolic free calcium concentrations have been reported for mammalian circadian pacemaker neurons located within the hypothalamic suprachiasmatic nucleus (SCN. Also reported is the existence of "Ca(2+ spikes" (i.e., [Ca(2+](c transients having a bandwidth of 10 approximately 100 seconds in SCN neurons, but it is unclear if these SCN Ca(2+ spikes are related to the slow circadian rhythms. METHODOLOGY/PRINCIPAL FINDINGS: We addressed this issue based on a Ca(2+ indicator dye (fluo-4 and a protein Ca(2+ sensor (yellow cameleon. Using fluo-4 AM dye, we found spontaneous Ca(2+ spikes in 18% of rat SCN cells in acute brain slices, but the Ca(2+ spiking frequencies showed no day/night variation. We repeated the same experiments with rat (and mouse SCN slice cultures that expressed yellow cameleon genes for a number of different circadian phases and, surprisingly, spontaneous Ca(2+ spike was barely observed (<3%. When fluo-4 AM or BAPTA-AM was loaded in addition to the cameleon-expressing SCN cultures, however, the number of cells exhibiting Ca(2+ spikes was increased to 13 approximately 14%. CONCLUSIONS/SIGNIFICANCE: Despite our extensive set of experiments, no evidence of a circadian rhythm was found in the spontaneous Ca(2+ spiking activity of SCN. Furthermore, our study strongly suggests that the spontaneous Ca(2+ spiking activity is caused by the Ca(2+ chelating effect of the BAPTA-based fluo-4 dye. Therefore, this induced activity seems irrelevant to the intrinsic circadian rhythm of [Ca(2+](c in SCN neurons. The problems with BAPTA based dyes are widely known and our study provides a clear case for concern, in particular, for SCN Ca(2+ spikes. On the other hand, our study neither invalidates the use of these dyes as a whole, nor undermines the potential role of SCN Ca(2+ spikes in the function of SCN.

  6. A memristive spiking neuron with firing rate coding

    Directory of Open Access Journals (Sweden)

    Marina eIgnatov

    2015-10-01

    Full Text Available Perception, decisions, and sensations are all encoded into trains of action potentials in the brain. The relation between stimulus strength and all-or-nothing spiking of neurons is widely believed to be the basis of this coding. This initiated the development of spiking neuron models; one of today's most powerful conceptual tool for the analysis and emulation of neural dynamics. The success of electronic circuit models and their physical realization within silicon field-effect transistor circuits lead to elegant technical approaches. Recently, the spectrum of electronic devices for neural computing has been extended by memristive devices, mainly used to emulate static synaptic functionality. Their capabilities for emulations of neural activity were recently demonstrated using a memristive neuristor circuit, while a memristive neuron circuit has so far been elusive. Here, a spiking neuron model is experimentally realized in a compact circuit comprising memristive and memcapacitive devices based on the strongly correlated electron material vanadium dioxide (VO2 and on the chemical electromigration cell Ag/TiO2-x/Al. The circuit can emulate dynamical spiking patterns in response to an external stimulus including adaptation, which is at the heart of firing rate coding as first observed by E.D. Adrian in 1926.

  7. Spike-timing-based computation in sound localization.

    Directory of Open Access Journals (Sweden)

    Dan F M Goodman

    2010-11-01

    Full Text Available Spike timing is precise in the auditory system and it has been argued that it conveys information about auditory stimuli, in particular about the location of a sound source. However, beyond simple time differences, the way in which neurons might extract this information is unclear and the potential computational advantages are unknown. The computational difficulty of this task for an animal is to locate the source of an unexpected sound from two monaural signals that are highly dependent on the unknown source signal. In neuron models consisting of spectro-temporal filtering and spiking nonlinearity, we found that the binaural structure induced by spatialized sounds is mapped to synchrony patterns that depend on source location rather than on source signal. Location-specific synchrony patterns would then result in the activation of location-specific assemblies of postsynaptic neurons. We designed a spiking neuron model which exploited this principle to locate a variety of sound sources in a virtual acoustic environment using measured human head-related transfer functions. The model was able to accurately estimate the location of previously unknown sounds in both azimuth and elevation (including front/back discrimination in a known acoustic environment. We found that multiple representations of different acoustic environments could coexist as sets of overlapping neural assemblies which could be associated with spatial locations by Hebbian learning. The model demonstrates the computational relevance of relative spike timing to extract spatial information about sources independently of the source signal.

  8. Event-driven contrastive divergence for spiking neuromorphic systems.

    Science.gov (United States)

    Neftci, Emre; Das, Srinjoy; Pedroni, Bruno; Kreutz-Delgado, Kenneth; Cauwenberghs, Gert

    2013-01-01

    Restricted Boltzmann Machines (RBMs) and Deep Belief Networks have been demonstrated to perform efficiently in a variety of applications, such as dimensionality reduction, feature learning, and classification. Their implementation on neuromorphic hardware platforms emulating large-scale networks of spiking neurons can have significant advantages from the perspectives of scalability, power dissipation and real-time interfacing with the environment. However, the traditional RBM architecture and the commonly used training algorithm known as Contrastive Divergence (CD) are based on discrete updates and exact arithmetics which do not directly map onto a dynamical neural substrate. Here, we present an event-driven variation of CD to train a RBM constructed with Integrate & Fire (I&F) neurons, that is constrained by the limitations of existing and near future neuromorphic hardware platforms. Our strategy is based on neural sampling, which allows us to synthesize a spiking neural network that samples from a target Boltzmann distribution. The recurrent activity of the network replaces the discrete steps of the CD algorithm, while Spike Time Dependent Plasticity (STDP) carries out the weight updates in an online, asynchronous fashion. We demonstrate our approach by training an RBM composed of leaky I&F neurons with STDP synapses to learn a generative model of the MNIST hand-written digit dataset, and by testing it in recognition, generation and cue integration tasks. Our results contribute to a machine learning-driven approach for synthesizing networks of spiking neurons capable of carrying out practical, high-level functionality.

  9. A memristive spiking neuron with firing rate coding.

    Science.gov (United States)

    Ignatov, Marina; Ziegler, Martin; Hansen, Mirko; Petraru, Adrian; Kohlstedt, Hermann

    2015-01-01

    Perception, decisions, and sensations are all encoded into trains of action potentials in the brain. The relation between stimulus strength and all-or-nothing spiking of neurons is widely believed to be the basis of this coding. This initiated the development of spiking neuron models; one of today's most powerful conceptual tool for the analysis and emulation of neural dynamics. The success of electronic circuit models and their physical realization within silicon field-effect transistor circuits lead to elegant technical approaches. Recently, the spectrum of electronic devices for neural computing has been extended by memristive devices, mainly used to emulate static synaptic functionality. Their capabilities for emulations of neural activity were recently demonstrated using a memristive neuristor circuit, while a memristive neuron circuit has so far been elusive. Here, a spiking neuron model is experimentally realized in a compact circuit comprising memristive and memcapacitive devices based on the strongly correlated electron material vanadium dioxide (VO2) and on the chemical electromigration cell Ag/TiO2-x /Al. The circuit can emulate dynamical spiking patterns in response to an external stimulus including adaptation, which is at the heart of firing rate coding as first observed by E.D. Adrian in 1926.

  10. Event-Driven Contrastive Divergence for Spiking Neuromorphic Systems

    Directory of Open Access Journals (Sweden)

    Emre eNeftci

    2014-01-01

    Full Text Available Restricted Boltzmann Machines (RBMs and Deep Belief Networks have been demonstrated to perform efficiently in variety of applications, such as dimensionality reduction, feature learning, and classification. Their implementation on neuromorphic hardware platforms emulating large-scale networks of spiking neurons can have significant advantages from the perspectives of scalability, power dissipation and real-time interfacing with the environment. However the traditional RBM architecture and the commonly used training algorithm known as Contrastive Divergence (CD are based on discrete updates and exact arithmetics which do not directly map onto a dynamical neural substrate. Here, we present an event-driven variation of CD to train a RBM constructed with Integrate & Fire (I&F neurons, that is constrained by the limitations of existing and near future neuromorphic hardware platforms. Our strategy is based on neural sampling, which allows us to synthesize a spiking neural network that samples from a target Boltzmann distribution. The reverberating activity of the network replaces the discrete steps of the CD algorithm, while Spike Time Dependent Plasticity (STDP carries out the weight updates in an online, asynchronous fashion.We demonstrate our approach by training an RBM composed of leaky I&F neurons with STDP synapses to learn a generative model of the MNIST hand-written digit dataset, and by testing it in recognition, generation and cue integration tasks. Our results contribute to a machine learning-driven approach for synthesizing networks of spiking neurons capable of carrying out practical, high-level functionality.

  11. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex.

    Directory of Open Access Journals (Sweden)

    Laureline Logiaco

    2015-08-01

    Full Text Available The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70-200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys' behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators.

  12. Spike detection from noisy neural data in linear-probe recordings.

    Science.gov (United States)

    Takekawa, Takashi; Ota, Keisuke; Murayama, Masanori; Fukai, Tomoki

    2014-06-01

    Simultaneous recordings of multiple neuron activities with multi-channel extracellular electrodes are widely used for studying information processing by the brain's neural circuits. In this method, the recorded signals containing the spike events of a number of adjacent or distant neurons must be correctly sorted into spike trains of individual neurons, and a variety of methods have been proposed for this spike sorting. However, spike sorting is computationally difficult because the recorded signals are often contaminated by biological noise. Here, we propose a novel method for spike detection, which is the first stage of spike sorting and hence crucially determines overall sorting performance. Our method utilizes a model of extracellular recording data that takes into account variations in spike waveforms, such as the widths and amplitudes of spikes, by detecting the peaks of band-pass-filtered data. We show that the new method significantly improves the cost-performance of multi-channel electrode recordings by increasing the number of cleanly sorted neurons. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Effect of 48?h Fasting on Autonomic Function, Brain Activity, Cognition, and Mood in Amateur Weight Lifters

    OpenAIRE

    Solianik, Rima; Sujeta, Art?ras; Terentjevien?, Asta; Skurvydas, Albertas

    2016-01-01

    Objectives. The acute fasting-induced cardiovascular autonomic response and its effect on cognition and mood remain debatable. Thus, the main purpose of this study was to estimate the effect of a 48?h, zero-calorie diet on autonomic function, brain activity, cognition, and mood in amateur weight lifters. Methods. Nine participants completed a 48?h, zero-calorie diet program. Cardiovascular autonomic function, resting frontal brain activity, cognitive performance, and mood were evaluated befor...

  14. Fast Light Enhanced Active Gyroscopes, Accelerometers and Fiber- Optic Sensors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The fast-light effect, produced by anomalous dispersion, has emerged as a highly promising mechanism for enhancing the sensitivity of many devices. It is a...

  15. Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains

    Science.gov (United States)

    Onken, Arno; Liu, Jian K.; Karunasekara, P. P. Chamanthi R.; Delis, Ioannis; Gollisch, Tim; Panzeri, Stefano

    2016-01-01

    Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations), in their temporal dimension (temporal neural response variations), or in their combination (temporally coordinated neural population firing). Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together), temporal firing patterns (temporal activation of these groups of neurons) and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial). We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine-scale image

  16. Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains.

    Directory of Open Access Journals (Sweden)

    Arno Onken

    2016-11-01

    Full Text Available Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations, in their temporal dimension (temporal neural response variations, or in their combination (temporally coordinated neural population firing. Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together, temporal firing patterns (temporal activation of these groups of neurons and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial. We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine

  17. Memristors Empower Spiking Neurons With Stochasticity

    KAUST Repository

    Al-Shedivat, Maruan

    2015-06-01

    Recent theoretical studies have shown that probabilistic spiking can be interpreted as learning and inference in cortical microcircuits. This interpretation creates new opportunities for building neuromorphic systems driven by probabilistic learning algorithms. However, such systems must have two crucial features: 1) the neurons should follow a specific behavioral model, and 2) stochastic spiking should be implemented efficiently for it to be scalable. This paper proposes a memristor-based stochastically spiking neuron that fulfills these requirements. First, the analytical model of the memristor is enhanced so it can capture the behavioral stochasticity consistent with experimentally observed phenomena. The switching behavior of the memristor model is demonstrated to be akin to the firing of the stochastic spike response neuron model, the primary building block for probabilistic algorithms in spiking neural networks. Furthermore, the paper proposes a neural soma circuit that utilizes the intrinsic nondeterminism of memristive switching for efficient spike generation. The simulations and analysis of the behavior of a single stochastic neuron and a winner-take-all network built of such neurons and trained on handwritten digits confirm that the circuit can be used for building probabilistic sampling and pattern adaptation machinery in spiking networks. The findings constitute an important step towards scalable and efficient probabilistic neuromorphic platforms. © 2011 IEEE.

  18. Factors correlated with volleyball spike velocity.

    Science.gov (United States)

    Forthomme, Bénédicte; Croisier, Jean-Louis; Ciccarone, Guido; Crielaard, Jean-Michel; Cloes, Marc

    2005-10-01

    Spike effectiveness represents a determining element in volleyball. To compete at a high level, the player must, in particular, produce a spike characterized by a high ball velocity. Some muscular and physical features could influence ball velocity during the volleyball spike. Descriptive laboratory study. A total of 19 male volleyball players from the 2 highest Belgian national divisions underwent an isokinetic assessment of the dominant shoulder and elbow. Ball velocity performance (radar gun) during a spike test, morphological feature, and jump capacity (ergo jump) of the player were measured. We tested the relationship between the isokinetic parameters or physical features and field performances represented by spike velocity. We also compared first-division and second-division player data. Spike velocity correlated significantly with strength performance of the dominant shoulder (internal rotators) and of the dominant elbow (flexors and extensors) in the concentric mode. Negative correlations were established with the concentric external rotator on internal rotator ratio at 400 deg/s and with the mixed ratio (external rotator at 60 deg/s in the eccentric mode on internal rotator at 240 deg/s in the concentric mode). Positive correlations appeared with both the volleyball players' jump capacity and body mass index. First-division players differed from second-division players by higher ball velocity and increased jump capacity. Some specific strength and physical characteristics correlated significantly with spike performance in high-level volleyball practice. Our results could provide useful information for training management and propose some reflections on injury prevention.

  19. Corn stalks char from fast pyrolysis as precursor material for preparation of activated carbon in fluidized bed reactor.

    Science.gov (United States)

    Wang, Zhiqi; Wu, Jingli; He, Tao; Wu, Jinhu

    2014-09-01

    Corn stalks char from fast pyrolysis was activated by physical and chemical activation process in a fluidized bed reactor. The structure and morphology of the carbons were characterized by N2 adsorption and SEM. Effects of activation time and activation agents on the structure of activation carbon were investigated. The physically activated carbons with CO2 have BET specific surface area up to 880 m(2)/g, and exhibit microporous structure. The chemically activated carbons with H3PO4 have BET specific surface area up to 600 m(2)/g, and exhibit mesoporous structure. The surface morphology shows that physically activated carbons exhibit fibrous like structure in nature with long ridges, resembling parallel lines. Whereas chemically activated carbons have cross-interconnected smooth open pores without the fibrous like structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Solar-stellar connection : A solar analogous behaviour by an active ultra fast rotator

    Science.gov (United States)

    Sairam, Lalitha; Schmitt, Juergen; Pal Singh, Kulinder

    2015-08-01

    AB Dor is an ultra-fast rotating (Prot ~ 0.51 d) active young K dwarf with an age of ~40-50 Myr. Located as a foreground star towards large magellanic cloud (LMC), AB Dor has the advantage of being observed at all times by most of the X-ray satellites making it a favourite calibration target. AB Dor has been repeatedly observed for calibration by reflection grating spectrometer (RGS) on board XMM- Newton over last decade. This gives an ideal opportunity to perform a detailed analysis of the coronal emission, and to compare the flare characteristics with the Sun, since the Sun is usually considered as a prototype of low mass stars. Flares are frequent in low mass active stars across the electromagnetic spectrum similar to the Sun. We will for the first time, present an analysis of 30 intense X-ray flares observed from AB Dor. These flares detected in XMM-Newton data show a rapid rise (500-3000 s) and a slow decay (1000-6000 s). The derived X-ray luminosity during the flares ranges between 30.20 ≤ log(Lx) ≤ 30.83 erg/s; the flare peak temperature lies between 30-80 MK and the emission measures for these flares are in the range of 52.3 ≤ log(EM) ≤ 53.5 cm^-3. Our studies suggest that the scaling law between the flare peak emission measure and the flare peak temperature for all the flares observed on AB Dor is very similar to the relationship followed by solar flares, despite the fact that the AB Dor flare emission is ~250 times higher than the solar flare emission. We also carried out a homogenous study of flare frequencies, energetics and its occurrence in AB Dor. The frequency distribution of flare energies is a crucial diagnostic to calculate the overall energy residing in a flare. Our results of this study indicate that the large flare (33 ≤ log(E) ≤ 34 erg) may not contribute to the heating of the corona. We will show the presence of a possible long-term cycle in AB Dor both from a photospheric and coronal point of view, similar to the 11-year

  1. Spike Bursts from an Excitable Optical System

    Science.gov (United States)

    Rios Leite, Jose R.; Rosero, Edison J.; Barbosa, Wendson A. S.; Tredicce, Jorge R.

    Diode Lasers with double optical feedback are shown to present power drop spikes with statistical distribution controllable by the ratio of the two feedback times. The average time between spikes and the variance within long time series are studied. The system is shown to be excitable and present bursting of spikes created with specific feedback time ratios and strength. A rate equation model, extending the Lang-Kobayashi single feedback for semiconductor lasers proves to match the experimental observations. Potential applications to construct network to mimic neural systems having controlled bursting properties in each unit will be discussed. Brazilian Agency CNPQ.

  2. Cycle Training Increased GLUT4 and Activation of mTOR in Fast Twitch Muscle Fibers

    Science.gov (United States)

    Stuart, Charles A.; Howell, Mary E.A.; Baker, Jonathan D.; Dykes, Rhesa J.; Duffourc, Michelle M.; Ramsey, Michael W.; Stone, Michael H.

    2009-01-01

    Purpose To determine if cycle training of sedentary subjects would increase the expression of the principle muscle glucose transporters, six volunteers completed six weeks of progressively increasing intensity stationary cycle cycling. Methods In vastus lateralis muscle biopsies, changes in expression of GLUT1, GLUT4, GLUT5, and GLUT12 were compared using quantitative immunoblots with specific protein standards. Regulatory pathway components were evaluated by immunoblots of muscle homogenates and immunohistochemistry of microscopic sections. Results GLUT1 was unchanged, GLUT4 increased 66%, GLUT12 increased 104%, and GLUT5 decreased 72%. A mitochondrial marker (cytochrome c) and regulators of mitochondrial biogenesis (PGC-1α and phospho-AMPK) were unchanged, but the muscle hypertrophy pathway component, phospho-mTOR increased 83% after the exercise program. In baseline biopsies, GLUT4 by immunohistochemical techniques was 37% greater in Type I (slow twitch, red) muscle fibers, but the exercise training increased GLUT4 expression in Type II (fast twitch, white) fibers by 50%, achieving parity with the Type I fibers. Baseline phospho-mTOR expression was 50% higher in Type II fibers and increased more in Type II fibers (62%) with training, but also increased in Type I fibers (34%). Conclusion Progressive intensity stationary cycle training of previously sedentary subjects increased muscle insulin-responsive glucose transporters (GLUT4 and GLUT12) and decreased the fructose transporter (GLUT5). The increase in GLUT4 occurred primarily in Type II muscle fibers and this coincided with activation of the mTOR muscle hypertrophy pathway. There was little impact on Type I fiber GLUT4 expression and no evidence of change in mitochondrial biogenesis. PMID:20010125

  3. Cultivation of phagotrophic algae with waste activated sludge as a fast approach to reclaim waste organics.

    Science.gov (United States)

    Li, Cong; Xiao, Suo; Ju, Lu-Kwang

    2016-03-15

    Substantial energy is reserved in waste activated sludge (WAS) organics but much of it is difficult to recover because the solid organics require long time to solubilize. In this work we introduced the new approach of recovering WAS organics into the biomass of phagotrophic algae. Phagotrophic algae have the unique ability to grow by ingesting insoluble organic particles including microbial cells. This phagotrophic ability renders the solubilization of WAS organics unnecessary and makes this approach remarkably fast. The approach consists of two stages: a short anaerobic digestion treatment followed by the algal growth on treated WAS. The short anaerobic digestion was exploited to release discrete bacteria from WAS flocs. Phagotrophic algae could then grow rapidly with the released bacteria as well as the solubilized nutrients in the treated WAS. The results showed that WAS organics could be quickly consumed by phagotrophic algae. Among all studied conditions the highest WAS volatile solids (VS) reduction was achieved with 72 h anaerobic digestion and 24 h algal growth. In this optimal process, 28% of WAS VS was reduced, and 41% and 20% of the reduced VS were converted into algal biomass and lipids, respectively. In comparison, only 18% WAS VS were reduced after the same time of aerobic digestion without algae addition. Through this approach, the amount of WAS organics requiring further treatment for final disposal is significantly reduced. With the production of significant amounts of algal biomass and lipids, WAS treatment is expected to be more economical and sustainable in material recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Serum phospholipid monounsaturated fatty acid composition and Δ-9-desaturase activity are associated with early alteration of fasting glycemic status.

    Science.gov (United States)

    Cho, Jae Sun; Baek, Seung Han; Kim, Ji Young; Lee, Jong Ho; Kim, Oh Yoen

    2014-09-01

    Because alterations in blood fatty acid (FA) composition by dietary lipids are associated with insulin resistance and related metabolic disorders, we hypothesized that serum phospholipid FA composition would reflect the early alteration of fasting glycemic status, even in people without metabolic syndrome (MetS). To examine this hypothesis, serum phospholipid FA, desaturase activities, fasting glycemic status, and cardiometabolic parameters were measured in study participants (n = 1022; 30-69 years; male, n = 527; female, n = 495; nondiabetics without disease) who were stratified into normal fasting glucose (NFG) and impaired fasting glucose (IFG) groups. Total monounsaturated FA (MUFA), oleic acid (OA; 18:1n-9), dihomo-γ-linolenic acid (DGLA; 20:3n-6), Δ-9-desaturase activity (D9D; 18:1n-9/18:0), and DGLA/linoleic acid (20:3n-6/18:2n-6) in serum phospholipids were significantly higher in IFG subjects than NFG controls. Study subjects were subdivided into 4 groups, based on fasting glucose levels and MetS status. Palmitoleic acid (16:1n-7) was highest in IFG-MetS and lowest in NFG-non-MetS subjects. Oleic acid and D9D were higher in IFG-MetS than in the other 3 groups. Dihomo-γ-linolenic acid and DGLA/linoleic acid were higher in MetS than in non-MetS, regardless of fasting glucose levels. The high-sensitivity C-reactive proteins (hs-CRPs) and 8-epi-prostaglandin-F2α were higher in IFG than in NFG, regardless of MetS status. Oxidized low-density lipoproteins were higher in IFG-MetS than in the other 3 groups. Total MUFAs, OA, and D9D were positively correlated with homeostasis model assessment of insulin resistance, fasting glucose, triglyceride, hs-CRP, and 8-epi-prostaglandin-F2α. Palmitoleic acid was positively correlated with triglyceride and hs-CRP. Lastly, total MUFA, OA, palmitoleic acid, and D9D were associated with early alteration of fasting glycemic status, therefore suggesting that these may be useful markers for predicting the risk of type 2

  5. Unsupervised neural spike sorting for high-density microelectrode arrays with convolutive independent component analysis.

    Science.gov (United States)

    Leibig, Christian; Wachtler, Thomas; Zeck, Günther

    2016-09-15

    Unsupervised identification of action potentials in multi-channel extracellular recordings, in particular from high-density microelectrode arrays with thousands of sensors, is an unresolved problem. While independent component analysis (ICA) achieves rapid unsupervised sorting, it ignores the convolutive structure of extracellular data, thus limiting the unmixing to a subset of neurons. Here we present a spike sorting algorithm based on convolutive ICA (cICA) to retrieve a larger number of accurately sorted neurons than with instantaneous ICA while accounting for signal overlaps. Spike sorting was applied to datasets with varying signal-to-noise ratios (SNR: 3-12) and 27% spike overlaps, sampled at either 11.5 or 23kHz on 4365 electrodes. We demonstrate how the instantaneity assumption in ICA-based algorithms has to be relaxed in order to improve the spike sorting performance for high-density microelectrode array recordings. Reformulating the convolutive mixture as an instantaneous mixture by modeling several delayed samples jointly is necessary to increase signal-to-noise ratio. Our results emphasize that different cICA algorithms are not equivalent. Spike sorting performance was assessed with ground-truth data generated from experimentally derived templates. The presented spike sorter was able to extract ≈90% of the true spike trains with an error rate below 2%. It was superior to two alternative (c)ICA methods (≈80% accurately sorted neurons) and comparable to a supervised sorting. Our new algorithm represents a fast solution to overcome the current bottleneck in spike sorting of large datasets generated by simultaneous recording with thousands of electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Espícula-onda contínua durante o sono: aspectos clínicos e eletrencefalográficos Continuous spike-wave activity during sleep: clinical and electroencephalographical aspects

    Directory of Open Access Journals (Sweden)

    Laura M.F. Ferreira Guilhoto

    1997-01-01

    Full Text Available Dezessete crianças com espícula-onda contínua durante o sono foram estudadas retrospectivamente. Cinco apresentavam distúrbio da fala após desenvolvimento normal da linguagem e crises epilépticas (síndrome de Landau e Kleffner - grupo 1. Doze crianças tinham atraso do desenvolvimento neuropsicomotor e/ou deficiência mental (grupo 2. Crises epilépticas estavam presentes em 11 pacientes deste grupo, tetraparesia em 5, hemiparesia em 2, microcefalia em 2, distúrbios de comportamento em 4 casos. O eletrencefalograma mostrou em todos os casos espícula-onda contínua durante o sono. Pacientes do grupo 1 apresentavam atividade epileptiforme difusa com acentuação das descargas nas regiões temporais em 4 de 5 casos; e os do grupo 2, descargas difusas, incluindo atividade multifocal (5/ 12, por vezes com predomínio anterior (7/12. Concluímos que espícula-onda contínua durante o sono é um padrão eletrográfico inespecífico de certos tipos de epilepsia na infância com diferentes manifestações clínicas, que mostra no entanto certa diferenciação topográfica, de acordo com os prováveis sítios lesionais.Seventeen children were retrospectively evaluated. They exhibited continuous spike-wave activity during slow wave sleep (CSWS. Five of these had only speech problems and seizures (Landau-Kleffner syndrome (group 1. The other cases had developmental milestones acquisition delay and/or mental retardation (group 2. Epileptic seizures were present in 11 of these, tetraparesis was observed in 5, hemiparesis in 2, microcephaly in 2 and behavior disturbances in 4 cases. The electroencephalogram showed in all cases diffuse CSWS. Group 1 showed diffuse activity, at times accentuated in the centrotemporal region (4/5. Group 2 had widespread discharges, including multifocal activity (5/12, sometimes with anterior predominance (7/12. We concluded that CSWS is a non specific electrographic pattern observed in some types of epilepsy in childhood

  7. Essential role of axonal VGSC inactivation in time-dependent deceleration and unreliability of spike propagation at cerebellar Purkinje cells

    Science.gov (United States)

    2014-01-01

    Background The output of the neuronal digital spikes is fulfilled by axonal propagation and synaptic transmission to influence postsynaptic cells. Similar to synaptic transmission, spike propagation on the axon is not secure, especially in cerebellar Purkinje cells whose spiking rate is high. The characteristics, mechanisms and physiological impacts of propagation deceleration and infidelity remain elusive. The spike propagation is presumably initiated by local currents that raise membrane potential to the threshold of activating voltage-gated sodium channels (VGSC). Results We have investigated the natures of spike propagation and the role of VGSCs in this process by recording spikes simultaneously on the somata and axonal terminals of Purkinje cells in cerebellar slices. The velocity and fidelity of spike propagation decreased during long-lasting spikes, to which the velocity change was more sensitive than fidelity change. These time-dependent deceleration and infidelity of spike propagation were improved by facilitating axonal VGSC reactivation, and worsen by intensifying VGSC inactivation. Conclusion Our studies indicate that the functional status of axonal VGSCs is essential to influencing the velocity and fidelity of spike propagation. PMID:24382121

  8. Natural compounds' activity against cancer stem-like or fast-cycling melanoma cells.

    Directory of Open Access Journals (Sweden)

    Malgorzata Sztiller-Sikorska

    Full Text Available BACKGROUND: Accumulating evidence supports the concept that melanoma is highly heterogeneous and sustained by a small subpopulation of melanoma stem-like cells. Those cells are considered as responsible for tumor resistance to therapies. Moreover, melanoma cells are characterized by their high phenotypic plasticity. Consequently, both melanoma stem-like cells and their more differentiated progeny must be eradicated to achieve durable cure. By reevaluating compounds in heterogeneous melanoma populations, it might be possible to select compounds with activity not only against fast-cycling cells but also against cancer stem-like cells. Natural compounds were the focus of the present study. METHODS: We analyzed 120 compounds from The Natural Products Set II to identify compounds active against melanoma populations grown in an anchorage-independent manner and enriched with cells exerting self-renewing capacity. Cell viability, cell cycle arrest, apoptosis, gene expression, clonogenic survival and label-retention were analyzed. FINDINGS: Several compounds efficiently eradicated cells with clonogenic capacity and nanaomycin A, streptonigrin and toyocamycin were effective at 0.1 µM. Other anti-clonogenic but not highly cytotoxic compounds such as bryostatin 1, siomycin A, illudin M, michellamine B and pentoxifylline markedly reduced the frequency of ABCB5 (ATP-binding cassette, sub-family B, member 5-positive cells. On the contrary, treatment with maytansine and colchicine selected for cells expressing this transporter. Maytansine, streptonigrin, toyocamycin and colchicine, even if highly cytotoxic, left a small subpopulation of slow-dividing cells unaffected. Compounds selected in the present study differentially altered the expression of melanocyte/melanoma specific microphthalmia-associated transcription factor (MITF and proto-oncogene c-MYC. CONCLUSION: Selected anti-clonogenic compounds might be further investigated as potential adjuvants

  9. The Site of Spontaneous Ectopic Spike Initiation Facilitates Signal Integration in a Sensory Neuron.

    Science.gov (United States)

    Städele, Carola; Stein, Wolfgang

    2016-06-22

    Essential to understanding the process of neuronal signal integration is the knowledge of where within a neuron action potentials (APs) are generated. Recent studies support the idea that the precise location where APs are initiated and the properties of spike initiation zones define the cell's information processing capabilities. Notably, the location of spike initiation can be modified homeostatically within neurons to adjust neuronal activity. Here we show that this potential mechanism for neuronal plasticity can also be exploited in a rapid and dynamic fashion. We tested whether dislocation of the spike initiation zone affects signal integration by studying ectopic spike initiation in the anterior gastric receptor neuron (AGR) of the stomatogastric nervous system of Cancer borealis Like many other vertebrate and invertebrate neurons, AGR can generate ectopic APs in regions distinct from the axon initial segment. Using voltage-sensitive dyes and electrophysiology, we determined that AGR's ectopic spike activity was consistently initiated in the neuropil region of the stomatogastric ganglion motor circuits. At least one neurite branched off the AGR axon in this area; and indeed, we found that AGR's ectopic spike activity was influenced by local motor neurons. This sensorimotor interaction was state-dependent in that focal axon modulation with the biogenic amine octopamine, abolished signal integration at the primary spike initiation zone by dislocating spike initiation to a distant region of the axon. We demonstrate that the site of ectopic spike initiation is important for signal integration and that axonal neuromodulation allows for a dynamic adjustment of signal integration. Although it is known that action potentials are initiated at specific sites in the axon, it remains to be determined how the precise location of action potential initiation affects neuronal activity and signal integration. We addressed this issue by studying ectopic spiking in the axon of

  10. Inferring oscillatory modulation in neural spike trains.

    Science.gov (United States)

    Arai, Kensuke; Kass, Robert E

    2017-10-01

    Oscillations are observed at various frequency bands in continuous-valued neural recordings like the electroencephalogram (EEG) and local field potential (LFP) in bulk brain matter, and analysis of spike-field coherence reveals that spiking of single neurons often occurs at certain phases of the global oscillation. Oscillatory modulation has been examined in relation to continuous-valued oscillatory signals, and independently from the spike train alone, but behavior or stimulus triggered firing-rate modulation, spiking sparseness, presence of slow modulation not locked to stimuli and irregular oscillations with large variability in oscillatory periods, present challenges to searching for temporal structures present in the spike train. In order to study oscillatory modulation in real data collected under a variety of experimental conditions, we describe a flexible point-process framework we call the Latent Oscillatory Spike Train (LOST) model to decompose the instantaneous firing rate in biologically and behaviorally relevant factors: spiking refractoriness, event-locked firing rate non-stationarity, and trial-to-trial variability accounted for by baseline offset and a stochastic oscillatory modulation. We also extend the LOST model to accommodate changes in the modulatory structure over the duration of the experiment, and thereby discover trial-to-trial variability in the spike-field coherence of a rat primary motor cortical neuron to the LFP theta rhythm. Because LOST incorporates a latent stochastic auto-regressive term, LOST is able to detect oscillations when the firing rate is low, the modulation is weak, and when the modulating oscillation has a broad spectral peak.

  11. Energetics based spike generation of a single neuron: simulation results and analysis

    Directory of Open Access Journals (Sweden)

    Nagarajan eVenkateswaran

    2012-02-01

    Full Text Available Existing current based models that capture spike activity, though useful in studying information processing capabilities of neurons, fail to throw light on their internal functioning. It is imperative to develop a model that captures the spike train of a neuron as a function of its intra cellular parameters for non-invasive diagnosis of diseased neurons. This is the first ever article to present such an integrated model that quantifies the inter-dependency between spike activity and intra cellular energetics. The generated spike trains from our integrated model will throw greater light on the intra-cellular energetics than existing current models. Now, an abnormality in the spike of a diseased neuron can be linked and hence effectively analyzed at the energetics level. The spectral analysis of the generated spike trains in a time-frequency domain will help identify abnormalities in the internals of a neuron. As a case study, the parameters of our model are tuned for Alzheimer disease and its resultant spike trains are studied and presented.

  12. Determination of nitrogen in wheat flour through Activation analysis using Fast neutron flux of a Thermal nuclear reactor

    International Nuclear Information System (INIS)

    Ramirez G, T.

    1976-01-01

    In this work is done a technical study for determining Nitrogen (protein) and other elements in wheat flour Activation analysis, with Fast neutrons from a Thermal nuclear reactor. Initially it is given an introduction about the basic principles of the methods of analysis. Equipment used in Activation analysis and a brief description of the neutron source (Thermal nuclear reactor). The realized experiments for determining the flux form in the irradiation site, the half life of N-13 and the interferences due to the sample composition are included too. Finally, the obtained results by Activation and the Kjeldahl method are tabulated. (Author)

  13. Training Deep Spiking Neural Networks Using Backpropagation.

    Science.gov (United States)

    Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael

    2016-01-01

    Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.

  14. Towards statistical summaries of spike train data.

    Science.gov (United States)

    Wu, Wei; Srivastava, Anuj

    2011-01-30

    Statistical inference has an important role in analysis of neural spike trains. While current approaches are mostly model-based, and designed for capturing the temporal evolution of the underlying stochastic processes, we focus on a data-driven approach where statistics are defined and computed in function spaces where individual spike trains are viewed as points. The first contribution of this paper is to endow spike train space with a parameterized family of metrics that takes into account different time warpings and generalizes several currently used metrics. These metrics are essentially penalized L(p) norms, involving appropriate functions of spike trains, with penalties associated with time-warpings. The second contribution of this paper is to derive a notion of a mean spike train in the case when p=2. We present an efficient recursive algorithm, termed Matching-Minimization algorithm, to compute the sample mean of a set of spike trains. The proposed metrics as well as the mean computations are demonstrated using an experimental recording from the motor cortex. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Temporal Pattern of Online Communication Spike Trains in Spreading a Scientific Rumor: How Often, Who Interacts with Whom?

    Science.gov (United States)

    Sanli, Ceyda; Lambiotte, Renaud

    2015-09-01

    We study complex time series (spike trains) of online user communication while spreading messages about the discovery of the Higgs boson in Twitter. We focus on online social interactions among users such as retweet, mention, and reply, and construct different types of active (performing an action) and passive (receiving an action) spike trains for each user. The spike trains are analyzed by means of local variation, to quantify the temporal behavior of active and passive users, as a function of their activity and popularity. We show that the active spike trains are bursty, independently of their activation frequency. For passive spike trains, in contrast, the local variation of popular users presents uncorrelated (Poisson random) dynamics. We further characterize the correlations of the local variation in different interactions. We obtain high values of correlation, and thus consistent temporal behavior, between retweets and mentions, but only for popular users, indicating that creating online attention suggests an alignment in the dynamics of the two interactions.

  16. Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization

    Directory of Open Access Journals (Sweden)

    Gregor Strobbe

    2016-01-01

    Full Text Available Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time

  17. Fast and sensitive determination of Sr-90 and SR-89 activity in milk by ion-chromatography and liquid scintillation

    International Nuclear Information System (INIS)

    Figueiredo, V.; Herrmann, A.

    1992-01-01

    A method for fast and exact determination of both strontium isotopes in milk and other foodstuffs, combination high performance ion chromatographic separation with by liquid scintillation counting, which enables the desired results to be obtained with very satisfactory precision and reproducibility within 24 hours, has been developed. The lowest detectable activity lies by 3 Bq/liter for Sr-90 and 1 Bq/liter for Sr-89 which is satisfactory for assessing a situation in a time crisis. (author)

  18. Uroguanylin induces electroencephalographic spikes in rats

    Directory of Open Access Journals (Sweden)

    MDA. Teixeira

    Full Text Available Uroguanylin (UGN is an endogenous peptide that acts on membrane-bound guanylate cyclase receptors of intestinal and renal cells increasing cGMP production and regulating electrolyte and water epithelial transport. Recent research works demonstrate the expression of this peptide and its receptor in the central nervous system. The current work was undertaken in order to evaluate modifications of electroencephalographic spectra (EEG in anesthetized Wistar rats, submitted to intracisternal infusion of uroguanylin (0.0125 nmoles/min or 0.04 nmoles/min. The current observations demonstrate that 0.0125 nmoles/min and 0.04 nmoles/min intracisternal infusion of UGN significantly enhances amplitude and frequency of sharp waves and evoked spikes (p = 0.03. No statistical significance was observed on absolute alpha and theta spectra amplitude. The present data suggest that UGN acts on bioelectrogenesis of cortical cells by inducing hypersynchronic firing of neurons. This effect is blocked by nedocromil, suggesting that UGN acts by increasing the activity of chloride channels.

  19. Non-Hebbian spike-timing-dependent plasticity in cerebellar circuits

    Science.gov (United States)

    Piochon, Claire; Kruskal, Peter; MacLean, Jason; Hansel, Christian

    2013-01-01

    Spike-timing-dependent plasticity (STDP) provides a cellular implementation of the Hebb postulate, which states that synapses, whose activity repeatedly drives action potential firing in target cells, are potentiated. At glutamatergic synapses onto hippocampal and neocortical pyramidal cells, synaptic activation followed by spike firing in the target cell causes long-term potentiation (LTP)—as predicted by Hebb—whereas excitatory postsynaptic potentials (EPSPs) evoked after a spike elicit long-term depression (LTD)—a phenomenon that was not specifically addressed by Hebb. In both instances the action potential in the postsynaptic target neuron is an instructive signal that is capable of supporting synaptic plasticity. STDP generally relies on the propagation of Na+ action potentials that are initiated in the axon hillhock back into the dendrite, where they cause depolarization and boost local calcium influx. However, recent studies in CA1 hippocampal pyramidal neurons have suggested that local calcium spikes might provide a more efficient trigger for LTP induction than backpropagating action potentials. Dendritic calcium spikes also play a role in an entirely different type of STDP that can be observed in cerebellar Purkinje cells. These neurons lack backpropagating Na+ spikes. Instead, plasticity at parallel fiber (PF) to Purkinje cell synapses depends on the relative timing of PF-EPSPs and activation of the glutamatergic climbing fiber (CF) input that causes dendritic calcium spikes. Thus, the instructive signal in this system is externalized. Importantly when EPSPs are elicited before CF activity, PF-LTD is induced rather than LTP. Thus, STDP in the cerebellum follows a timing rule that is opposite to its hippocampal/neocortical counterparts. Regardless, a common motif in plasticity is that LTD/LTP induction depends on the relative timing of synaptic activity and regenerative dendritic spikes which are driven by the instructive signal. PMID:23335888

  20. The Ripple Pond: Enabling Spiking Networks to See

    Directory of Open Access Journals (Sweden)

    Saeed eAfshar

    2013-11-01

    Full Text Available We present the biologically inspired Ripple Pond Network (RPN, a simply connected spiking neural network which performs a transformation converting two dimensional images to one dimensional temporal patterns suitable for recognition by temporal coding learning and memory networks. The RPN has been developed as a hardware solution linking previously implemented neuromorphic vision and memory structures such as frameless vision sensors and neuromorphic temporal coding spiking neural networks. Working together such systems are potentially capable of delivering end-to-end high-speed, low-power and low-resolution recognition for mobile and autonomous applications where slow, highly sophisticated and power hungry signal processing solutions are ineffective. Key aspects in the proposed approach include utilising the spatial properties of physically embedded neural networks and propagating waves of activity therein for information processing, using dimensional collapse of imagery information into amenable temporal patterns and the use of asynchronous frames for information binding.

  1. Origin of the spike-timing-dependent plasticity rule

    Science.gov (United States)

    Cho, Myoung Won; Choi, M. Y.

    2016-08-01

    A biological synapse changes its efficacy depending on the difference between pre- and post-synaptic spike timings. Formulating spike-timing-dependent interactions in terms of the path integral, we establish a neural-network model, which makes it possible to predict relevant quantities rigorously by means of standard methods in statistical mechanics and field theory. In particular, the biological synaptic plasticity rule is shown to emerge as the optimal form for minimizing the free energy. It is further revealed that maximization of the entropy of neural activities gives rise to the competitive behavior of biological learning. This demonstrates that statistical mechanics helps to understand rigorously key characteristic behaviors of a neural network, thus providing the possibility of physics serving as a useful and relevant framework for probing life.

  2. Biophysical properties and computational modeling of calcium spikes in serotonergic neurons of the dorsal raphe nucleus.

    Science.gov (United States)

    Tuckwell, Henry C

    2013-06-01

    Serotonergic neurons of the dorsal raphe nuclei, with their extensive innervation of nearly the whole brain have important modulatory effects on many cognitive and physiological processes. They play important roles in clinical depression and other psychiatric disorders. In order to quantify the effects of serotonergic transmission on target cells it is desirable to construct computational models and to this end these it is necessary to have details of the biophysical and spike properties of the serotonergic neurons. Here several basic properties are reviewed with data from several studies since the 1960s to the present. The quantities included are input resistance, resting membrane potential, membrane time constant, firing rate, spike duration, spike and afterhyperpolarization (AHP) amplitude, spike threshold, cell capacitance, soma and somadendritic areas. The action potentials of these cells are normally triggered by a combination of sodium and calcium currents which may result in autonomous pacemaker activity. We here analyse the mechanisms of high-threshold calcium spikes which have been demonstrated in these cells the presence of TTX (tetrodotoxin). The parameters for calcium dynamics required to give calcium spikes are quite different from those for regular spiking which suggests the involvement of restricted parts of the soma-dendritic surface as has been found, for example, in hippocampal neurons. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Electricity market price spike analysis by a hybrid data model and feature selection technique

    International Nuclear Information System (INIS)

    Amjady, Nima; Keynia, Farshid

    2010-01-01

    In a competitive electricity market, energy price forecasting is an important activity for both suppliers and consumers. For this reason, many techniques have been proposed to predict electricity market prices in the recent years. However, electricity price is a complex volatile signal owning many spikes. Most of electricity price forecast techniques focus on the normal price prediction, while price spike forecast is a different and more complex prediction process. Price spike forecasting has two main aspects: prediction of price spike occurrence and value. In this paper, a novel technique for price spike occurrence prediction is presented composed of a new hybrid data model, a novel feature selection technique and an efficient forecast engine. The hybrid data model includes both wavelet and time domain variables as well as calendar indicators, comprising a large candidate input set. The set is refined by the proposed feature selection technique evaluating both relevancy and redundancy of the candidate inputs. The forecast engine is a probabilistic neural network, which are fed by the selected candidate inputs of the feature selection technique and predict price spike occurrence. The efficiency of the whole proposed method for price spike occurrence forecasting is evaluated by means of real data from the Queensland and PJM electricity markets. (author)

  4. Economic impact on the Florida economy of energy price spikes

    International Nuclear Information System (INIS)

    Mory, J.F.

    1992-01-01

    A substantial disturbance in oil supplies is likely to generate a large price upsurge and a downturn in the level of economic activity. Each of these two effects diminishes demand by a certain amount. The specific price surge required to reduce demand to the lower level of supply can be calculated with an oil demand function and with empirical estimations of the association between price spikes and declines in economic activity. The first section presents an energy demand model for Florida, which provides the price and income elasticities needed. The second section includes theoretical explanations and empirical estimations of the relationship between price spikes and recessions. Based on historical evidence, it seems that Florida's and the nation's economic systems are very sensitive to oil price surges. As price spikes appear damaging to the economy, it could be expected that reductions in the price of oil are beneficial to the system. That is likely to be the case in the long run, but no empirical evidence of favorable short-term effects of oil price decreases was found. Several possible explanations and theoretical reasons are offered to explain this lack of association. The final section presents estimates of the effect of oil disruptions upon specific industries in Florida and the nation

  5. Effects of exposure to electromagnetic field radiation (EMFR generated by activated mobile phones on fasting blood glucose

    Directory of Open Access Journals (Sweden)

    Sultan Ayoub Meo

    2013-04-01

    Full Text Available Objective: Extensive use of mobile phones has been accompanied by a common public debate about possible adverse effects on human health. No study has been published so far to establish any association between the fastest growing innovation of mobile phone and fasting blood glucose. The aim was to determine the effects of exposure to electromagnetic field radiation generated by mobile phones on fasting blood glucose in Wistar Albino rats. Materials and Methods: 40 Male Albino rats (Wistar Strain were divided into 5 equally numerous groups. Group A served as the control one, group B received mobile phone radiation for less than 15 min/day, group C: 15-30 min/day, group D: 31-45 min/day, and group E: 46-60 min/day for a total period of 3 months. Fasting blood glucose was determined by using Spectrophotometer and serum insulin by Enzyme-linked Immunosorbent Assay (ELISA. The Homeostatic Model (HOMA-B was applied for the assessment of β-cell function and (HOMA-IR for resistance to insulin. Results: Wister Albino rats exposed to mobile phone radiation for longer than 15 min a day for a total period of 3 months had significantly higher fasting blood glucose (p < 0.015 and serum insulin (p < 0.01 compared to the control group. HOMA-IR for insulin resistance was significantly increased (p < 0.003 in the groups that were exposed for 15-30 and 46-60 min/day compared to the control rats. Conclusion: The results of the present study show an association between long-term exposure to activated mobile phones and increase in fasting blood glucose and serum insulin in Albino rats.

  6. Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons.

    Directory of Open Access Journals (Sweden)

    Lars Buesing

    2011-11-01

    Full Text Available The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons.

  7. Nitrogen determination in wheat by neutron activation analysis using fast neutron flux from a thermal nuclear reactor

    International Nuclear Information System (INIS)

    Ramirez G, T.

    1976-01-01

    This is a study of the technique for the determination of nitrogen and other elements in wheat flour through activation analysis with fast neutrons from a thermal nuclear reactor. The study begins with an introduction about the basis of the analytical methods, the equipment used in activation analysis and a brief description of the neutrons source. In the study are included the experiments carried out in order to determine the flux form in the site of irradiation, the N-13 half life and the interference due to the sample composition. (author)

  8. Determination of Na, Mg, Al, Si, K, Cl, Ca and Fe in cigarette tobacco by fast neutron activation analysis

    International Nuclear Information System (INIS)

    Cam, N.F.; Yaprak, G.; Erduran, M.N.

    1999-01-01

    FNAA has been, for many years, a technique for the non-destructive analysis of a wide variety of sample materials - liquids, solids and powders. The important advantages of fast neutron activation analysis are good analytical sensitivity without sample preparation, accuracy and total analysis in a short time. In our work, the concentrations of the elements Na, Mg, Al, Si, K, Cl, Ca and Fe, were determined in cigarette tobacco of two brands commercially available in Turkey using 14.6 MeV neutron activation analysis. (author)

  9. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.

    Science.gov (United States)

    Kasabov, Nikola; Dhoble, Kshitij; Nuntalid, Nuttapod; Indiveri, Giacomo

    2013-05-01

    On-line learning and recognition of spatio- and spectro-temporal data (SSTD) is a very challenging task and an important one for the future development of autonomous machine learning systems with broad applications. Models based on spiking neural networks (SNN) have already proved their potential in capturing spatial and temporal data. One class of them, the evolving SNN (eSNN), uses a one-pass rank-order learning mechanism and a strategy to evolve a new spiking neuron and new connections to learn new patterns from incoming data. So far these networks have been mainly used for fast image and speech frame-based recognition. Alternative spike-time learning methods, such as Spike-Timing Dependent Plasticity (STDP) and its variant Spike Driven Synaptic Plasticity (SDSP), can also be used to learn spatio-temporal representations, but they usually require many iterations in an unsupervised or semi-supervised mode of learning. This paper introduces a new class of eSNN, dynamic eSNN, that utilise both rank-order learning and dynamic synapses to learn SSTD in a fast, on-line mode. The paper also introduces a new model called deSNN, that utilises rank-order learning and SDSP spike-time learning in unsupervised, supervised, or semi-supervised modes. The SDSP learning is used to evolve dynamically the network changing connection weights that capture spatio-temporal spike data clusters both during training and during recall. The new deSNN model is first illustrated on simple examples and then applied on two case study applications: (1) moving object recognition using address-event representation (AER) with data collected using a silicon retina device; (2) EEG SSTD recognition for brain-computer interfaces. The deSNN models resulted in a superior performance in terms of accuracy and speed when compared with other SNN models that use either rank-order or STDP learning. The reason is that the deSNN makes use of both the information contained in the order of the first input spikes

  10. Fast sleep spindle (13-15 hz) activity correlates with sleep-dependent improvement in visuomotor performance.

    Science.gov (United States)

    Tamaki, Masako; Matsuoka, Tatsuya; Nittono, Hiroshi; Hori, Tadao

    2008-02-01

    The relationship between memory enhancement and fast (13-16 Hz) versus slow (10-13 Hz) spindle activity during sleep was investigated. Standard polysomnographic recordings were conducted during an adaptation, control nonlearning, and learning night. Automatic spindle detection and measurement was utilized with visual confirmation. Participants slept in individual, temperature-controlled bedrooms in a sleep laboratory. Twelve healthy student volunteers (9 women and 3 men, mean age: 22.3 years) participated. On the learning night, participants completed a presleep learning session on a modified version of mirror-tracing task followed by a postsleep test session. No learning or test sessions were performed on the adaptation and nonlearning nights. Tracing time was reduced by 6.4 seconds (20.6% +/- 2.07%) from the presleep to the postsleep session. Mean amplitude and duration of fast spindles was greater on the learning night than on the nonlearning night (both P values duration [r = 0.67, P performance were also evident for the nonlearning night. There was no significant relationship between mirror-tracing performance and slow-spindle activity on any night. The thalamocortical network underlying fast-spindle generation may contribute to or reflect plasticity during sleep.

  11. High-performance rechargeable batteries with nanoparticle active materials, photochemically regenerable active materials, and fast solid-state ion conductors

    Science.gov (United States)

    Farmer, Joseph C.

    2017-04-04

    A high-performance rechargeable battery using ultra-fast ion conductors. In one embodiment the rechargeable battery apparatus includes an enclosure, a first electrode operatively connected to the enclosure, a second electrode operatively connected to the enclosure, a nanomaterial in the enclosure, and a heat transfer unit.

  12. Transcranial direct current stimulation in refractory continuous spikes and waves during slow sleep: a controlled study

    DEFF Research Database (Denmark)

    Varga, Edina T; Terney, Daniella; Atkins, Mary D

    2011-01-01

    Cathodal transcranial direct current stimulation (tDCS) decreases cortical excitability. The purpose of the study was to investigate whether cathodal tDCS could interrupt the continuous epileptiform activity. Five patients with focal, refractory continuous spikes and waves during slow sleep were...... recruited. Cathodal tDCS and sham stimulation were applied to the epileptic focus, before sleep (1 mA; 20 min). Cathodal tDCS did not reduce the spike-index in any of the patients....

  13. Enhancement of Spike-Timing-Dependent Plasticity in Spiking Neural Systems with Noise.

    Science.gov (United States)

    Nobukawa, Sou; Nishimura, Haruhiko

    2016-08-01

    Synaptic plasticity is widely recognized to support adaptable information processing in the brain. Spike-timing-dependent plasticity, one subtype of plasticity, can lead to synchronous spike propagation with temporal spiking coding information. Recently, it was reported that in a noisy environment, like the actual brain, the spike-timing-dependent plasticity may be made efficient by the effect of stochastic resonance. In the stochastic resonance, the presence of noise helps a nonlinear system in amplifying a weak (under barrier) signal. However, previous studies have ignored the full variety of spiking patterns and many relevant factors in neural dynamics. Thus, in order to prove the physiological possibility for the enhancement of spike-timing-dependent plasticity by stochastic resonance, it is necessary to demonstrate that this stochastic resonance arises in realistic cortical neural systems. In this study, we evaluate this stochastic resonance phenomenon in the realistic cortical neural system described by the Izhikevich neuron model and compare the characteristics of typical spiking patterns of regular spiking, intrinsically bursting and chattering experimentally observed in the cortex.

  14. Application of Fast Neutron Activation to Determinate of N, P and K Element Contents in the Sludge

    International Nuclear Information System (INIS)

    Supriyatni E; Yazid M; Nuraini E; Sunardi

    2003-01-01

    The application of fast neutron activation to determinate of N, P and K element contents in the sludge has been performed. The aim of this research is to determine the content of N, P and K elements in the sludge for the possibility of reuse as organic fertilizer. Sludge sample was taken from waste water retainer at Bantul Waste Water Treatment Plant. The sample was dried and ground, then irradiated using 14.7 MeV fast neutron from neutron generator. Result was qualitatively and quantitatively analyses using gamma spectrometer. The result showed that the sludge contains N with energy 511 keV, P with energy 1778 keV and K with energy 1273 keV. The concentration of N is (4.101 ± 0.007) mg/g, P is = (640.510 ± 14.34) mg/g and K = (3.045 ± 0.064) mg/g. (author)

  15. Fast learning of simple perceptual discriminations reduces brain activation in working memory and in high-level auditory regions.

    Science.gov (United States)

    Daikhin, Luba; Ahissar, Merav

    2015-07-01

    Introducing simple stimulus regularities facilitates learning of both simple and complex tasks. This facilitation may reflect an implicit change in the strategies used to solve the task when successful predictions regarding incoming stimuli can be formed. We studied the modifications in brain activity associated with fast perceptual learning based on regularity detection. We administered a two-tone frequency discrimination task and measured brain activation (fMRI) under two conditions: with and without a repeated reference tone. Although participants could not explicitly tell the difference between these two conditions, the introduced regularity affected both performance and the pattern of brain activation. The "No-Reference" condition induced a larger activation in frontoparietal areas known to be part of the working memory network. However, only the condition with a reference showed fast learning, which was accompanied by a reduction of activity in two regions: the left intraparietal area, involved in stimulus retention, and the posterior superior-temporal area, involved in representing auditory regularities. We propose that this joint reduction reflects a reduction in the need for online storage of the compared tones. We further suggest that this change reflects an implicit strategic shift "backwards" from reliance mainly on working memory networks in the "No-Reference" condition to increased reliance on detected regularities stored in high-level auditory networks.

  16. Approximate, computationally efficient online learning in Bayesian spiking neurons.

    Science.gov (United States)

    Kuhlmann, Levin; Hauser-Raspe, Michael; Manton, Jonathan H; Grayden, David B; Tapson, Jonathan; van Schaik, André

    2014-03-01

    Bayesian spiking neurons (BSNs) provide a probabilistic interpretation of how neurons perform inference and learning. Online learning in BSNs typically involves parameter estimation based on maximum-likelihood expectation-maximization (ML-EM) which is computationally slow and limits the potential of studying networks of BSNs. An online learning algorithm, fast learning (FL), is presented that is more computationally efficient than the benchmark ML-EM for a fixed number of time steps as the number of inputs to a BSN increases (e.g., 16.5 times faster run times for 20 inputs). Although ML-EM appears to converge 2.0 to 3.6 times faster than FL, the computational cost of ML-EM means that ML-EM takes longer to simulate to convergence than FL. FL also provides reasonable convergence performance that is robust to initialization of parameter estimates that are far from the true parameter values. However, parameter estimation depends on the range of true parameter values. Nevertheless, for a physiologically meaningful range of parameter values, FL gives very good average estimation accuracy, despite its approximate nature. The FL algorithm therefore provides an efficient tool, complementary to ML-EM, for exploring BSN networks in more detail in order to better understand their biological relevance. Moreover, the simplicity of the FL algorithm means it can be easily implemented in neuromorphic VLSI such that one can take advantage of the energy-efficient spike coding of BSNs.

  17. Spike-adding in parabolic bursters: The role of folded-saddle canards

    Science.gov (United States)

    Desroches, Mathieu; Krupa, Martin; Rodrigues, Serafim

    2016-09-01

    The present work develops a new approach to studying parabolic bursting, and also proposes a novel four-dimensional canonical and polynomial-based parabolic burster. In addition to this new polynomial system, we also consider the conductance-based model of the Aplysia R15 neuron known as the Plant model, and a reduction of this prototypical biophysical parabolic burster to three variables, including one phase variable, namely the Baer-Rinzel-Carillo (BRC) phase model. Revisiting these models from the perspective of slow-fast dynamics reveals that the number of spikes per burst may vary upon parameter changes, however the spike-adding process occurs in an explosive fashion that involves special solutions called canards. This spike-adding canard explosion phenomenon is analysed by using tools from geometric singular perturbation theory in tandem with numerical bifurcation techniques. We find that the bifurcation structure persists across all considered systems, that is, spikes within the burst are incremented via the crossing of an excitability threshold given by a particular type of canard orbit, namely the true canard of a folded-saddle singularity. However there can be a difference in the spike-adding transitions in parameter space from one case to another, according to whether the process is continuous or discontinuous, which depends upon the geometry of the folded-saddle canard. Using these findings, we construct a new polynomial approximation of the Plant model, which retains all the key elements for parabolic bursting, including the spike-adding transitions mediated by folded-saddle canards. Finally, we briefly investigate the presence of spike-adding via canards in planar phase models of parabolic bursting, namely the theta model by Ermentrout and Kopell.

  18. Comparison of four commercial DNA extraction kits for the recovery of Bacillus spp. spore DNA from spiked powder samples.

    Science.gov (United States)

    Mölsä, Markos; Kalin-Mänttäri, Laura; Tonteri, Elina; Hemmilä, Heidi; Nikkari, Simo

    2016-09-01

    Bacillus spp. include human pathogens such as Bacillus anthracis, the causative agent of anthrax and a biothreat agent. Bacillus spp. form spores that are physically highly resistant and may remain active over sample handling. We tested four commercial DNA extraction kits (QIAamp DNA Mini Kit, RTP Pathogen Kit, ZR Fungal/Bacterial DNA MiniPrep, and genesig Easy DNA/RNA Extraction kit) for sample inactivation and DNA recovery from two powders (icing sugar and potato flour) spiked with Bacillus thuringiensis spores. The DNA was analysed using a B. thuringiensis-specific real-time PCR assay. The detection limit was 3×10(1)CFU of spiked B. thuringiensis spores with the QIAamp DNA Mini, RTP Pathogen, and genesig Easy DNA/RNA Extraction kits, and 3×10(3)CFU with the ZR Fungal/Bacterial DNA MiniPrep kit. The results showed that manual extraction kits are effective and safe for fast and easy DNA extraction from powder samples even in field conditions. Adding a DNA filtration step to the extraction protocol ensures the removal of Bacillus spp. spores from DNA samples without affecting sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Statistical characteristics of climbing fiber spikes necessary for efficient cerebellar learning.

    Science.gov (United States)

    Kuroda, S; Yamamoto, K; Miyamoto, H; Doya, K; Kawat, M

    2001-03-01

    Mean firing rates (MFRs), with analogue values, have thus far been used as information carriers of neurons in most brain theories of learning. However, the neurons transmit the signal by spikes, which are discrete events. The climbing fibers (CFs), which are known to be essential for cerebellar motor learning, fire at the ultra-low firing rates (around 1 Hz), and it is not yet understood theoretically how high-frequency information can be conveyed and how learning of smooth and fast movements can be achieved. Here we address whether cerebellar learning can be achieved by CF spikes instead of conventional MFR in an eye movement task, such as the ocular following response (OFR), and an arm movement task. There are two major afferents into cerebellar Purkinje cells: parallel fiber (PF) and CF, and the synaptic weights between PFs and Purkinje cells have been shown to be modulated by the stimulation of both types of fiber. The modulation of the synaptic weights is regulated by the cerebellar synaptic plasticity. In this study we simulated cerebellar learning using CF signals as spikes instead of conventional MFR. To generate the spikes we used the following four spike generation models: (1) a Poisson model in which the spike interval probability follows a Poisson distribution, (2) a gamma model in which the spike interval probability follows the gamma distribution, (3) a max model in which a spike is generated when a synaptic input reaches maximum, and (4) a threshold model in which a spike is generated when the input crosses a certain small threshold. We found that, in an OFR task with a constant visual velocity, learning was successful with stochastic models, such as Poisson and gamma models, but not in the deterministic models, such as max and threshold models. In an OFR with a stepwise velocity change and an arm movement task, learning could be achieved only in the Poisson model. In addition, for efficient cerebellar learning, the distribution of CF spike

  20. Spike train encoding by regular-spiking cells of the visual cortex.

    Science.gov (United States)

    Carandini, M; Mechler, F; Leonard, C S; Movshon, J A

    1996-11-01

    1. To study the encoding of input currents into output spike trains by regular-spiking cells, we recorded intracellularly from slices of the guinea pig visual cortex while injecting step, sinusoidal, and broadband noise currents. 2. When measured with sinusoidal currents, the frequency tuning of the spike responses was markedly band-pass. The preferred frequency was between 8 and 30 Hz, and grew with stimulus amplitude and mean intensity. 3. Stimulation with broadband noise currents dramatically enhanced the gain of the spike responses at low and high frequencies, yielding an essentially flat frequency tuning between 0.1 and 130 Hz. 4. The averaged spike responses to sinusoidal currents exhibited two nonlinearities: rectification and spike synchronization. By contrast, no nonlinearity was evident in the averaged responses to broadband noise stimuli. 5. These properties of the spike responses were not present in the membrane potential responses. The latter were roughly linear, and their frequency tuning was low-pass and well fit by a single-compartment passive model of the cell membrane composed of a resistance and a capacitance in parallel (RC circuit). 6. To account for the spike responses, we used a "sandwich model" consisting of a low-pass linear filter (the RC circuit), a rectification nonlinearity, and a high-pass linear filter. The model is described by six parameters and predicts analog firing rates rather than discrete spikes. It provided satisfactory fits to the firing rate responses to steps, sinusoids, and broadband noise currents. 7. The properties of spike encoding are consistent with temporal nonlinearities of the visual responses in V1, such as the dependence of response frequency tuning and latency on stimulus contrast and bandwidth. We speculate that one of the roles of the high-frequency membrane potential fluctuations observed in vivo could be to amplify and linearize the responses to lower, stimulus-related frequencies.

  1. The electric potential of tripolar spikes

    International Nuclear Information System (INIS)

    Nocera, L.

    2010-01-01

    We present an analytical formula for the waveform of the electric potential associated with a tripolar spike in a plasma. This formula is based on the construction and on the subsequent solution of a differential equation for the waveform. We work out this equation as a direct consequence of the morphological and functional properties of the observed waveform, without making any reference to the velocity distributions of the electrons and of the ions which sustain the spike. In the approximation of small potential amplitudes, we solve this equation by quadrature. In particular, in the second order approximation, the solution of this equation is given in terms of elementary functions. This analytical solution is able to reproduce the potential waveforms associated with electron holes, ion holes, monotonic and nonmonotonic double layers and tripolar spikes, in excellent agreement with observations.

  2. Spike: Artificial intelligence scheduling for Hubble space telescope

    Science.gov (United States)

    Johnston, Mark; Miller, Glenn; Sponsler, Jeff; Vick, Shon; Jackson, Robert

    1990-01-01

    Efficient utilization of spacecraft resources is essential, but the accompanying scheduling problems are often computationally intractable and are difficult to approximate because of the presence of numerous interacting constraints. Artificial intelligence techniques were applied to the scheduling of the NASA/ESA Hubble Space Telescope (HST). This presents a particularly challenging problem since a yearlong observing program can contain some tens of thousands of exposures which are subject to a large number of scientific, operational, spacecraft, and environmental constraints. New techniques were developed for machine reasoning about scheduling constraints and goals, especially in cases where uncertainty is an important scheduling consideration and where resolving conflicts among conflicting preferences is essential. These technique were utilized in a set of workstation based scheduling tools (Spike) for HST. Graphical displays of activities, constraints, and schedules are an important feature of the system. High level scheduling strategies using both rule based and neural network approaches were developed. While the specific constraints implemented are those most relevant to HST, the framework developed is far more general and could easily handle other kinds of scheduling problems. The concept and implementation of the Spike system are described along with some experiments in adapting Spike to other spacecraft scheduling domains.

  3. Poisson-Like Spiking in Circuits with Probabilistic Synapses

    Science.gov (United States)

    Moreno-Bote, Rubén

    2014-01-01

    Neuronal activity in cortex is variable both spontaneously and during stimulation, and it has the remarkable property that it is Poisson-like over broad ranges of firing rates covering from virtually zero to hundreds of spikes per second. The mechanisms underlying cortical-like spiking variability over such a broad continuum of rates are currently unknown. We show that neuronal networks endowed with probabilistic synaptic transmission, a well-documented source of variability in cortex, robustly generate Poisson-like variability over several orders of magnitude in their firing rate without fine-tuning of the network parameters. Other sources of variability, such as random synaptic delays or spike generation jittering, do not lead to Poisson-like variability at high rates because they cannot be sufficiently amplified by recurrent neuronal networks. We also show that probabilistic synapses predict Fano factor constancy of synaptic conductances. Our results suggest that synaptic noise is a robust and sufficient mechanism for the type of variability found in cortex. PMID:25032705

  4. Selective assessment of the fast neutron component in mixed neutron-gamma field using TLD activation

    Energy Technology Data Exchange (ETDEWEB)

    Ranogajec-Komor, M. E-mail: marika@rudjer.irb.hr; Miljanic, S.; Blagus, S.; Knezevic, Z.Z.; Osvay, M

    2003-06-01

    Selective determination of the fast neutron component in a mixed radiation field by the TL dosimetry was studied. TL responses due to the induced radioactivity in Al{sub 2}O{sub 3}:C dosimeters via the {sup 27}Al(n,{alpha}){sup 24}Na reaction were used to measure the neutron part in a mixed 14.5 MeV neutron and gamma irradiation field. The lowest detectable neutron dose was found to be in order of 10 mSv of personal dose equivalent for Al{sub 2}O{sub 3}:C.

  5. Technology-aware algorithm design for neural spike detection, feature extraction, and dimensionality reduction.

    Science.gov (United States)

    Gibson, Sarah; Judy, Jack W; Marković, Dejan

    2010-10-01

    Applications such as brain-machine interfaces require hardware spike sorting in order to 1) obtain single-unit activity and 2) perform data reduction for wireless data transmission. Such systems must be low-power, low-area, high-accuracy, automatic, and able to operate in real time. Several detection, feature-extraction, and dimensionality-reduction algorithms for spike sorting are described and evaluated in terms of accuracy versus complexity. The nonlinear energy operator is chosen as the optimal spike-detection algorithm, being most robust over noise and relatively simple. Discrete derivatives is chosen as the optimal feature-extraction method, maintaining high accuracy across signal-to-noise ratios with a complexity orders of magnitude less than that of traditional methods such as principal-component analysis. We introduce the maximum-difference algorithm, which is shown to be the best dimensionality-reduction method for hardware spike sorting.

  6. Activity of etv5a and etv5b genes in the hypothalamus of fasted zebrafish is influenced by serotonin.

    Science.gov (United States)

    Mechaly, Alejandro S; Richardson, Ebony; Rinkwitz, Silke

    2017-05-15

    Serotonin has been implicated in the inhibition of food intake in vertebrates. However, the mechanisms through which serotonin acts has yet to be elucidated. Recently, ETV5 (ets variant gene 5) has been associated with obesity and food intake control mechanisms in mammals. We have analyzed a putative physiological function of the two etv5 paralogous genes (etv5a and etv5b) in neuronal food intake control in adult zebrafish that have been exposed to different nutritional conditions. A feeding assay was established and fluoxetine, a selective serotonin re-uptake inhibitor (SSRI), was applied. Gene expression changes in the hypothalamus were determined using real-time PCR. Fasting induced an up-regulation of etv5a and etv5b in the hypothalamus, whereas increased serotonin levels in the fasted fish counteracted the increase in expression. To investigate potential mechanisms the expression of further food intake control genes was determined. The results show that an increase of serotonin in fasting fish causes a reduction in the activity of genes stimulating food intake. This is in line with a previously demonstrated anorexigenic function of serotonin. Our results suggest that obesity-associated ETV5 has a food intake stimulating function and that this function is modulated through serotonin. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Neural spike sorting using iterative ICA and a deflation-based approach.

    Science.gov (United States)

    Tiganj, Z; Mboup, M

    2012-12-01

    We propose a spike sorting method for multi-channel recordings. When applied in neural recordings, the performance of the independent component analysis (ICA) algorithm is known to be limited, since the number of recording sites is much lower than the number of neurons. The proposed method uses an iterative application of ICA and a deflation technique in two nested loops. In each iteration of the external loop, the spiking activity of one neuron is singled out and then deflated from the recordings. The internal loop implements a sequence of ICA and sorting for removing the noise and all the spikes that are not fired by the targeted neuron. Then a final step is appended to the two nested loops in order to separate simultaneously fired spikes. We solve this problem by taking all possible pairs of the sorted neurons and apply ICA only on the segments of the signal during which at least one of the neurons in a given pair was active. We validate the performance of the proposed method on simulated recordings, but also on a specific type of real recordings: simultaneous extracellular-intracellular. We quantify the sorting results on the extracellular recordings for the spikes that come from the neurons recorded intracellularly. The results suggest that the proposed solution significantly improves the performance of ICA in spike sorting.

  8. NEA activities in preserving, evaluating and applying data from fast reactor experiments

    International Nuclear Information System (INIS)

    Gulliford, Jim; Cornet, S.M.; Hill, I.; Yamaji, A.

    2013-01-01

    Conclusions: Progress to date: • Extensive programme of work to preserve and evaluate data from integral experiments has been established since the mid 1990s. • NEA Data Bank maintains and distributes several databases of these integral experiments, notably through the ICSBEP and IRPhE projects. • More recently programmes of work have been established to help preserve data from the UK Fast Reactor Programme and from various experiments related to minor actinide management. • Data obtained from these programmes are made available to the nuclear science community to provide high quality benchmarks against which modelling methods can be validated. • Involvement of younger scientists and engineers to work alongside well-established experts in the process of evaluating the information is a highly efficient means of transmitting tacit knowledge to the new generation of nuclear specialists. Conclusions: Looking ahead - • Further development of Databases and Database tools, e.g. – improved coverage of fast reactor experiments, MAs; – improved treatment of correlations in uncertainties between experiments; – production of sensitivities to facilitate identification of similar experiments. • Continuation securing UK archives and creating framework for information: – Start identifying suitable integral experiments for inclusion in NEA databases

  9. Effects of short-term fasting on stress physiology, body condition, and locomotor activity in wintering male white-crowned sparrows.

    Science.gov (United States)

    Krause, Jesse S; Pérez, Jonathan H; Meddle, Simone L; Wingfield, John C

    2017-08-01

    For wild free-living animals the availability of food resources can be greatly affected by environmental perturbations such as weather events. In response to environmental perturbations, animals activate the hypothalamic-pituitary-adrenal (HPA) axis to adjust physiology and behavior. The literature asserts that during weather events food intake declines leading to changes in HPA axis activity, as measured by both baseline and stress-induced glucocorticoid concentrations. Here we investigated how body condition, locomotor activity, and stress physiology were affected by varying lengths of a fast (1, 2, 6, and 24h; similar to that experienced by free-living birds) compared to when food was provided ad libitum in captive wintering male white-crowned sparrows, Zonotrichia leucophrys gambelii, exposed to a short day photoperiod. Baseline corticosterone concentrations were increased for all fasting durations but were highest in 6 and 24h fasted birds. Stress-induced corticosterone was elevated in 1h fasted birds with a trend for the 2h of fast; no other differences were found. Baseline corticosterone concentrations were negatively related to both total fat scores and body mass. All birds lost body mass regardless of fast length but birds fasted for 24h lost the most. Fat scores declined in the 6 and 24h groups, and no measureable changes were detected in pectoralis muscle profile. Locomotor activity was increased over the entire period in which food was removed regardless of fasting duration. Together this suggests that reduced food availability is responsible, at least in part, for the rapid elevation both baseline corticosterone under any duration of fast and stress-induced concentrations during short-term fasts. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Span: spike pattern association neuron for learning spatio-temporal spike patterns.

    Science.gov (United States)

    Mohemmed, Ammar; Schliebs, Stefan; Matsuda, Satoshi; Kasabov, Nikola

    2012-08-01

    Spiking Neural Networks (SNN) were shown to be suitable tools for the processing of spatio-temporal information. However, due to their inherent complexity, the formulation of efficient supervised learning algorithms for SNN is difficult and remains an important problem in the research area. This article presents SPAN - a spiking neuron that is able to learn associations of arbitrary spike trains in a supervised fashion allowing the processing of spatio-temporal information encoded in the precise timing of spikes. The idea of the proposed algorithm is to transform spike trains during the learning phase into analog signals so that common mathematical operations can be performed on them. Using this conversion, it is possible to apply the well-known Widrow-Hoff rule directly to the transformed spike trains in order to adjust the synaptic weights and to achieve a desired input/output spike behavior of the neuron. In the presented experimental analysis, the proposed learning algorithm is evaluated regarding its learning capabilities, its memory capacity, its robustness to noisy stimuli and its classification performance. Differences and similarities of SPAN regarding two related algorithms, ReSuMe and Chronotron, are discussed.

  11. Fast detection of peroxidase (POD) activity in tomato leaves which infected with Botrytis cinerea using hyperspectral imaging

    Science.gov (United States)

    Kong, Wenwen; Liu, Fei; Zhang, Chu; Bao, Yidan; Yu, Jiajia; He, Yong

    2014-01-01

    Tomatoes are cultivated around the world and gray mold is one of its most prominent and destructive diseases. An early disease detection method can decrease losses caused by plant diseases and prevent the spread of diseases. The activity of peroxidase (POD) is very important indicator of disease stress for plants. The objective of this study is to examine the possibility of fast detection of POD activity in tomato leaves which infected with Botrytis cinerea using hyperspectral imaging data. Five pre-treatment methods were investigated. Genetic algorithm-partial least squares (GA-PLS) was applied to select optimal wavelengths. A new fast learning neural algorithm named extreme learning machine (ELM) was employed as multivariate analytical tool in this study. 21 optimal wavelengths were selected by GA-PLS and used as inputs of three calibration models. The optimal prediction result was achieved by ELM model with selected wavelengths, and the r and RMSEP in validation were 0.8647 and 465.9880 respectively. The results indicated that hyperspectral imaging could be considered as a valuable tool for POD activity prediction. The selected wavelengths could be potential resources for instrument development.

  12. Fast crystallization of amorphous Gd2Zr2O7 induced by thermally activated electron-beam irradiation

    Science.gov (United States)

    Huang, Zhangyi; Qi, Jianqi; Zhou, Li; Feng, Zhao; Yu, Xiaohe; Gong, Yichao; Yang, Mao; Shi, Qiwu; Wei, Nian; Lu, Tiecheng

    2015-12-01

    We investigate the ionization and displacement effects of an electron-beam (e-beam) on amorphous Gd2Zr2O7 synthesized by the co-precipitation and calcination methods. The as-received amorphous specimens were irradiated under electron beams at different energies (80 keV, 120 keV, and 2 MeV) and then characterized by X-ray diffraction and transmission electron microscopy. A metastable fluorite phase was observed in nanocrystalline Gd2Zr2O7 and is proposed to arise from the relatively lower surface and interface energy compared with the pyrochlore phase. Fast crystallization could be induced by 120 keV e-beam irradiation (beam current = 0.47 mA/cm2). The crystallization occurred on the nanoscale upon ionization irradiation at 400 °C after a dose of less than 1017 electrons/cm2. Under e-beam irradiation, the activation energy for the grain growth process was approximately 10 kJ/mol, but the activation energy was 135 kJ/mol by calcination in a furnace. The thermally activated ionization process was considered the fast crystallization mechanism.

  13. Spike Train SIMilarity Space (SSIMS): a frame-work for single neuron and ensemble data analysis

    Science.gov (United States)

    Vargas-Irwin, Carlos E.; Brandman, David M.; Zimmermann, Jonas B.; Donoghue, John P.; Black, Michael J.

    2014-01-01

    Increased emphasis on circuit level activity in the brain makes it necessary to have methods to visualize and evaluate large scale ensemble activity, beyond that revealed by raster-histograms or pairwise correlations. We present a method to evaluate the relative similarity of neural spiking patterns by combining spike train distance metrics with dimensionality reduction. Spike train distance metrics provide an estimate of similarity between activity patterns at multiple temporal resolutions. Vectors of pair-wise distances are used to represent the intrinsic relationships between multiple activity patterns at the level of single units or neuronal ensembles. Dimensionality reduction is then used to project the data into concise representations suitable for clustering analysis as well as exploratory visualization. Algorithm performance and robustness are evaluated using multielectrode ensemble activity data recorded in behaving primates. We demonstrate how Spike train SIMilarity Space (SSIMS) analysis captures the relationship between goal directions for an 8-directional reaching task and successfully segregates grasp types in a 3D grasping task in the absence of kinematic information. The algorithm enables exploration of virtually any type of neural spiking (time series) data, providing similarity-based clustering of neural activity states with minimal assumptions about potential information encoding models. PMID:25380335

  14. Reduced Tonoplast Fast-Activating and Slow-Activating Channel Activity Is Essential for Conferring Salinity Tolerance in a Facultative Halophyte, Quinoa1[C][W][OA

    Science.gov (United States)

    Bonales-Alatorre, Edgar; Shabala, Sergey; Chen, Zhong-Hua; Pottosin, Igor

    2013-01-01

    Halophyte species implement a “salt-including” strategy, sequestering significant amounts of Na+ to cell vacuoles. This requires a reduction of passive Na+ leak from the vacuole. In this work, we used quinoa (Chenopodium quinoa) to investigate the ability of halophytes to regulate Na+-permeable slow-activating (SV) and fast-activating (FV) tonoplast channels, linking it with Na+ accumulation in mesophyll cells and salt bladders as well as leaf photosynthetic efficiency under salt stress. Our data indicate that young leaves rely on Na+ exclusion to salt bladders, whereas old ones, possessing far fewer salt bladders, depend almost exclusively on Na+ sequestration to mesophyll vacuoles. Moreover, although old leaves accumulate more Na+, this does not compromise their leaf photochemistry. FV and SV channels are slightly more permeable for K+ than for Na+, and vacuoles in young leaves express less FV current and with a density unchanged in plants subjected to high (400 mm NaCl) salinity. In old leaves, with an intrinsically lower density of the FV current, FV channel density decreases about 2-fold in plants grown under high salinity. In contrast, intrinsic activity of SV channels in vacuoles from young leaves is unchanged under salt stress. In vacuoles of old leaves, however, it is 2- and 7-fold lower in older compared with young leaves in control- and salt-grown plants, respectively. We conclude that the negative control of SV and FV tonoplast channel activity in old leaves reduces Na+ leak, thus enabling efficient sequestration of Na+ to their vacuoles. This enables optimal photosynthetic performance, conferring salinity tolerance in quinoa species. PMID:23624857

  15. Spike-timing theory of working memory.

    Directory of Open Access Journals (Sweden)

    Botond Szatmáry

    Full Text Available Working memory (WM is the part of the brain's memory system that provides temporary storage and manipulation of information necessary for cognition. Although WM has limited capacity at any given time, it has vast memory content in the sense that it acts on the brain's nearly infinite repertoire of lifetime long-term memories. Using simulations, we show that large memory content and WM functionality emerge spontaneously if we take the spike-timing nature of neuronal processing into account. Here, memories are represented by extensively overlapping groups of neurons that exhibit stereotypical time-locked spatiotemporal spike-timing patterns, called polychronous patterns; and synapses forming such polychronous neuronal groups (PNGs are subject to associative synaptic plasticity in the form of both long-term and short-term spike-timing dependent plasticity. While long-term potentiation is essential in PNG formation, we show how short-term plasticity can temporarily strengthen the synapses of selected PNGs and lead to an increase in the spontaneous reactivation rate of these PNGs. This increased reactivation rate, consistent with in vivo recordings during WM tasks, results in high interspike interval variability and irregular, yet systematically changing, elevated firing rate profiles within the neurons of the selected PNGs. Additionally, our theory explains the relationship between such slowly changing firing rates and precisely timed spikes, and it reveals a novel relationship between WM and the perception of time on the order of seconds.

  16. Physics of volleyball: Spiking with a purpose

    Science.gov (United States)

    Behroozi, F.

    1998-05-01

    A few weeks ago our volleyball coach telephoned me with a problem: How high should a player jump to "spike" a "set" ball so it would clear the net and land at a known distance on the other side of the net?

  17. Investment spikes in Dutch greenhouse horticulture

    NARCIS (Netherlands)

    Goncharova, N.; Oskam, A.; Oude Lansink, A.G.J.M.; Vlist, van der A.J.; Verstegen, J.A.A.M.

    2008-01-01

    The presence of investment cycles demonstrates the long-run policy of firms investing in particular periods (investment spikes) with lower or zero investment levels in between, which contradicts the smooth pattern predicted by a convex adjustment model. This paper investigates the spells between

  18. Food Price Spikes, Price Insulation, and Poverty

    OpenAIRE

    Anderson, Kym; Ivanic, Maros; Martin, Will

    2013-01-01

    This paper has two purposes. It first considers the impact on world food prices of the changes in restrictions on trade in staple foods during the 2008 world food price crisis. Those changes -- reductions in import protection or increases in export restraints -- were meant to partially insulate domestic markets from the spike in international prices. The authors find that this insulation a...

  19. Gymnosporia montana Benth.(Mountain Spike Thorn)

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 23; Issue 2. Gymnosporia montana Benth. (Mountain Spike Thorn). Flowering Trees Volume 23 Issue 2 February 2018 pp 245-245. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/023/02/0245-0245 ...

  20. Training in the fasted state facilitates re-activation of eEF2 activity during recovery from endurance exercise

    OpenAIRE

    Van Proeyen, Karen; De Bock, Katrien; Hespel, Peter

    2011-01-01

    Nutrition is an important co-factor in exercise-induced training adaptations in muscle. We compared the effect of 6 weeks endurance training (3 days/week, 1-2 h at 75% VO(2peak)) in either the fasted state (F; n = 10) or in the high carbohydrate state (CHO, n = 10), on Ca(2+)-dependent intramyocellular signalling in young male volunteers. Subjects in CHO received a carbohydrate-rich breakfast before each training session, as well as ingested carbohydrates during exercise. Before (pretest) and...

  1. Fast Variability in Selected Chromospherically Active Dwarf Stars and Observational Equipment for Their Study

    Science.gov (United States)

    Bogdanovski, Rumen G.

    2015-06-01

    The observations of variable stars, especially those which show fast changes in their brightness, require high speed and high precision photometry. In order to study events like low amplitude optical oscillations and small scale fluctuations in the light curves, synchronous observations are required. These observations have to be carried out simultaneously at two or more, preferably distant, sites (Romanyuk et al., 2001), which allows the identification and elimination of artifacts produced by the equipment and the atmospheric interferences. In this way the fine structure of the light curve is revealed with a significant certainty. In order to study these events a new high speed time synchronized photometric system had to be designed, which addresses the requirements of the observations of high frequency subtle phenomena during stellar flares. It provides remote automatedand centralized control of the photometric equipment over a computer network,as well as remotemonitoring. Furthermore, some preliminary data processing can be performed at the time the data is obtained.

  2. Effect of low level doses of fast neutrons on the activity of the snake venom

    International Nuclear Information System (INIS)

    Hanafy, Magda S.; Amin, Aida M.

    1998-01-01

    In this work, the effect of low level doses of fast neutrons from 252 Cf on snake venom (Cerastes cerastes) was studied through measurements of biophysical and haematological changes. The absorption spectrum (200-700 nm) of haemoglobin (Hb) collected from the blood of rats after 3 and 24 hours post injection with irradiated and non-irradiated snake venom with neutron fluences of 3x10 6 , 2.8x10 7 and 3X10 8 n/cm 2 was measured. The results indicated that injection of animals with either non- irradiated or irradiated venom ( with different neutron fluences) resulted into the decrease of the absorption band intensities of Hb. These changes in the properties of the characteristic band showed to be a marker for irradiated venom and is dose dependent. It was concluded that neutron irradiation of the venom leads to the decrease of its toxicity and, consequently, to the increase of the chance of repair mechanism in livings. Obvious changes of most haematological erythrocytic values of Hb, packed cell volume (PCV), red blood counts (RBC), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCHb) and mean corpuscular haemoglobin concentration (MCHC) were observed in the blood of the rats injected with non-irradiated venom (as a first group) and those injected with the irradiated venom (as a second group). The microcytic haemolytic anemia was more acute in the first group than in the second one which showed lesser extent. It is concluded from this study that low level doses of fast neutrons could postpone and lower acute haematological action induced by the venom. (authors)

  3. Spiking Neural P Systems with Communication on Request.

    Science.gov (United States)

    Pan, Linqiang; Păun, Gheorghe; Zhang, Gexiang; Neri, Ferrante

    2017-12-01

    Spiking Neural [Formula: see text] Systems are Neural System models characterized by the fact that each neuron mimics a biological cell and the communication between neurons is based on spikes. In the Spiking Neural [Formula: see text] systems investigated so far, the application of evolution rules depends on the contents of a neuron (checked by means of a regular expression). In these [Formula: see text] systems, a specified number of spikes are consumed and a specified number of spikes are produced, and then sent to each of the neurons linked by a synapse to the evolving neuron. [Formula: see text]In the present work, a novel communication strategy among neurons of Spiking Neural [Formula: see text] Systems is proposed. In the resulting models, called Spiking Neural [Formula: see text] Systems with Communication on Request, the spikes are requested from neighboring neurons, depending on the contents of the neuron (still checked by means of a regular expression). Unlike the traditional Spiking Neural [Formula: see text] systems, no spikes are consumed or created: the spikes are only moved along synapses and replicated (when two or more neurons request the contents of the same neuron). [Formula: see text]The Spiking Neural [Formula: see text] Systems with Communication on Request are proved to be computationally universal, that is, equivalent with Turing machines as long as two types of spikes are used. Following this work, further research questions are listed to be open problems.

  4. Early decrease in total hemolytic complement activity (CH100) after fasting or intestinal bypass in the rat.

    Science.gov (United States)

    Montanari, M; Violi, V; Muri, M; Roncoroni, L; Mora, G; Ronzoni, M

    1986-01-01

    An evaluation of total hemolytic complement activity (CH100) after fasting or intestinal bypass was performed in rats. The experiment lasted 6 days. Three groups, of 5 animals each, were studied. On the 1st day, basal values of total complement (TC), albumin and body weight were determined. Group A received normal, ad libitum feeding, group B started on a 'water only' diet, group C underwent intestinal bypass. On the 4th and 6th day the parameters were assessed. TC mean values were significantly lower in groups B and C, as compared to group A, on the 4th as well as on the 6th day (p less than 0.01 by Mann-Whitney's U test). Body weight showed a similar trend. Differences in albumin were never statistically significant. Limitations of the analytical method are discussed. The data show that fasting or bypass-induced malabsorption may determine an early decrease in total hemolytic complement activity, though a development of an immune deficiency is not proved.

  5. Whole body analysis of the knockout gene mouse model for cystic fibrosis using thermal and fast neutron activation analysis

    International Nuclear Information System (INIS)

    Mason, M.M.; Morris, J.S.; Derenzy, B.A.; Spate, V.L.; Horsman, T.L.; Baskett, C.K.; Nichols, T.A.; Colbert, J.W.; Clarke, L.L.; Gawenis, L.R.; Hillman, L.S.

    1998-01-01

    A genetically engineered 'knockout gene' mouse model for human cystic fibrosis (CF) has been utilized to study bone mineralization. In CF, the so-called cystic fibrosis transmembrane conductance regulator (CFTR) protein, a chloride ion channel, is either absent or defective. To produce the animal model the murine CFTR gene has been inactivated producing CF symptoms in the homozygotic progeny. CF results in abnormal intestinal absorption of minerals and nutrients which presumably results in substandard bone mineralization. The objective of this study was to determine the feasibility of using whole-body thermal and fast neutron activation analysis to determine mineral and trace-element differences between homozygote controls (+/+) and CF (-/-), murine siblings. Gender-matched juvenile +/+ and -/- litter mates were lyophilized and placed in a BN capsule to reduce thermal-neutron activation and irradiated for 10 seconds at φ fast ∼ 1 x 10 13 n x cm -2 x s -1 using the MURR pneumatic-tube facility. Phosphorus was measured via the 31 P 15 (n,α) 28 Al 13 reaction. After several days decay, the whole-body specimens were re-irradiated in the same facility, but without thermal-neutron shielding, for 5 seconds and the gamma-ray spectrum was recorded at two different decay periods allowing measurement of 77m Se, 24 Na, 27m g, 38 Cl, 42k , 49 Ca, 56 Mn, 66 Cu and 80 Br from the corresponding radiative-capture reactions. (author)

  6. Experimental and Computational Interrogation of Fast SCR Mechanism and Active Sites on H-Form SSZ-13

    Energy Technology Data Exchange (ETDEWEB)

    Li, Sichi [Department; Zheng, Yang [Institute; Gao, Feng [Institute; Szanyi, Janos [Institute; Schneider, William F. [Department

    2017-07-05

    Experiment and density functional theory (DFT) models are combined to develop a unified, quantitative model of the mechanism and kinetics of fast selective catalytic reduction (SCR) of NO/NO2 mixtures over H-SSZ-13 zeolite. Rates, rate orders, and apparent activation energies collected under differential conditions reveal two distinct kinetic regimes. First-principles thermodynamics simulations are used to determine the relative coverages of free Brønsted sites, chemisorbed NH4+ and physisorbed NH3 as a function of reaction conditions. First-principles metadynamics calculations show that all three sites can contribute to the rate-limiting N-N bond forming step in fast SCR. The results are used to parameterize a kinetic model that encompasses the full range of reaction conditions and recovers observed rate orders and apparent activation energies. Observed kinetic regimes are related to changes in most-abundant surface intermediates. Financial support was provided by the National Science Foundation GAOLI program under award number 1258690-CBET. We thank the Center for Research Computing at Notre

  7. Complexity reduction in the H.264/AVC using highly adaptive fast mode decision based on macroblock motion activity

    Science.gov (United States)

    Abdellah, Skoudarli; Mokhtar, Nibouche; Amina, Serir

    2015-11-01

    The H.264/AVC video coding standard is used in a wide range of applications from video conferencing to high-definition television according to its high compression efficiency. This efficiency is mainly acquired from the newly allowed prediction schemes including variable block modes. However, these schemes require a high complexity to select the optimal mode. Consequently, complexity reduction in the H.264/AVC encoder has recently become a very challenging task in the video compression domain, especially when implementing the encoder in real-time applications. Fast mode decision algorithms play an important role in reducing the overall complexity of the encoder. In this paper, we propose an adaptive fast intermode algorithm based on motion activity, temporal stationarity, and spatial homogeneity. This algorithm predicts the motion activity of the current macroblock from its neighboring blocks and identifies temporal stationary regions and spatially homogeneous regions using adaptive threshold values based on content video features. Extensive experimental work has been done in high profile, and results show that the proposed source-coding algorithm effectively reduces the computational complexity by 53.18% on average compared with the reference software encoder, while maintaining the high-coding efficiency of H.264/AVC by incurring only 0.097 dB in total peak signal-to-noise ratio and 0.228% increment on the total bit rate.

  8. Photospheric Current Spikes And Their Possible Association With Flares - Results from an HMI Data Driven Model

    Science.gov (United States)

    Goodman, M. L.; Kwan, C.; Ayhan, B.; Eric, S. L.

    2016-12-01

    A data driven, near photospheric magnetohydrodynamic model predicts spikes in the horizontal current density, and associated resistive heating rate. The spikes appear as increases by orders of magnitude above background values in neutral line regions (NLRs) of active regions (ARs). The largest spikes typically occur a few hours to a few days prior to M or X flares. The spikes correspond to large vertical derivatives of the horizontal magnetic field. The model takes as input the photospheric magnetic field observed by the Helioseismic & Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) satellite. This 2.5 D field is used to determine an analytic expression for a 3 D magnetic field, from which the current density, vector potential, and electric field are computed in every AR pixel for 14 ARs. The field is not assumed to be force-free. The spurious 6, 12, and 24 hour Doppler periods due to SDO orbital motion are filtered out of the time series of the HMI magnetic field for each pixel. The subset of spikes analyzed at the pixel level are found to occur on HMI and granulation scales of 1 arcsec and 12 minutes. Spikes are found in ARs with and without M or X flares, and outside as well as inside NLRs, but the largest spikes are localized in the NLRs of ARs with M or X flares. The energy to drive the heating associated with the largest current spikes comes from bulk flow kinetic energy, not the electromagnetic field, and the current density is highly non-force free. The results suggest that, in combination with the model, HMI is revealing strong, convection driven, non-force free heating events on granulation scales, and it is plausible these events are correlated with subsequent M or X flares. More and longer time series need to be analyzed to determine if such a correlation exists.

  9. Computational investigations of blunt body drag-reduction spikes in hypersonic flows

    International Nuclear Information System (INIS)

    Kamran, N.; Zahir, S.; Khan, M.A.

    2003-01-01

    Drag is an important parameter in the designing of high-speed vehicles. Such vehicles include hypervelocity projectiles, reentry modules, and hypersonic aircrafts. Therefore, there exists an active or passive technique to reduce drag due to the high pressures at nosetip region of the vehicle. Drag can be reduced by attaching a forward facing spike on the nose of the vehicle. The present study reviews and deals with the CFD analysis made on a standard blunt body to reduce aerodynamic drag due to the attachment of forward facing spikes for High-Speed vehicles. Different spike lengths have been examined to study the forebody flowfield. The investigation concludes that spikes are an effective way to reduce the aerodynamic drag due to reduced dynamic pressure on the nose caused by the separated flow on the spikes. With the accomplishment of confidence on computational data, study was extended in hypersonic Mach range with a drag prediction accuracy of ± 10%. In the present work, viscous fluid dynamics studies were performed for a complete freestream Mach number range of 5.0, 6.0, 7.0 and 8.0 for different spike lengths and zero degree angle of attack. (author)

  10. Time Resolution Dependence of Information Measures for Spiking Neurons: Scaling and Universality

    Directory of Open Access Journals (Sweden)

    James P Crutchfield

    2015-08-01

    Full Text Available The mutual information between stimulus and spike-train response is commonly used to monitor neural coding efficiency, but neuronal computation broadly conceived requires more refined and targeted information measures of input-output joint processes. A first step towards that larger goal is todevelop information measures for individual output processes, including information generation (entropy rate, stored information (statisticalcomplexity, predictable information (excess entropy, and active information accumulation (bound information rate. We calculate these for spike trains generated by a variety of noise-driven integrate-and-fire neurons as a function of time resolution and for alternating renewal processes. We show that their time-resolution dependence reveals coarse-grained structural properties of interspike interval statistics; e.g., $tau$-entropy rates that diverge less quickly than the firing rate indicate interspike interval correlations. We also find evidence that the excess entropy and regularized statistical complexity of different types of integrate-and-fire neurons are universal in the continuous-time limit in the sense that they do not depend on mechanism details. This suggests a surprising simplicity in the spike trains generated by these model neurons. Interestingly, neurons with gamma-distributed ISIs and neurons whose spike trains are alternating renewal processes do not fall into the same universality class. These results lead to two conclusions. First, the dependence of information measures on time resolution reveals mechanistic details about spike train generation. Second, information measures can be used as model selection tools for analyzing spike train processes.

  11. Systematic regional variations in Purkinje cell spiking patterns.

    Directory of Open Access Journals (Sweden)

    Jianqiang Xiao

    Full Text Available In contrast to the uniform anatomy of the cerebellar cortex, molecular and physiological studies indicate that significant differences exist between cortical regions, suggesting that the spiking activity of Purkinje cells (PCs in different regions could also show distinct characteristics. To investigate this possibility we obtained extracellular recordings from PCs in different zebrin bands in crus IIa and vermis lobules VIII and IX in anesthetized rats in order to compare PC firing characteristics between zebrin positive (Z+ and negative (Z- bands. In addition, we analyzed recordings from PCs in the A2 and C1 zones of several lobules in the posterior lobe, which largely contain Z+ and Z- PCs, respectively. In both datasets significant differences in simple spike (SS activity were observed between cortical regions. Specifically, Z- and C1 PCs had higher SS firing rates than Z+ and A2 PCs, respectively. The irregularity of SS firing (as assessed by measures of interspike interval distribution was greater in Z+ bands in both absolute and relative terms. The results regarding systematic variations in complex spike (CS activity were less consistent, suggesting that while real differences can exist, they may be sensitive to other factors than the cortical location of the PC. However, differences in the interactions between SSs and CSs, including the post-CS pause in SSs and post-pause modulation of SSs, were also consistently observed between bands. Similar, though less strong trends were observed in the zonal recordings. These systematic variations in spontaneous firing characteristics of PCs between zebrin bands in vivo, raises the possibility that fundamental differences in information encoding exist between cerebellar cortical regions.

  12. Spike detection algorithm improvement, spike waveforms projections with PCA and hierarchical classification

    OpenAIRE

    Biffi, Emilia; Ghezzi, Diego; Pedrocchi, Alessandra; Ferrigno, Giancarlo

    2008-01-01

    Definition of single spikes from multiunit spike trains plays a critical role in neurophysiology and in neuroengineering. Moreover, long period analysis are needed to study synaptic plasticity effects and observe the long and medium term development on which all central nervous system (CNS) learning functions are based. Therefore, the increasing importance of long period recordings makes necessary on-line and real time analysis, memory use optimization and data transmission rate improvement. ...

  13. Information filtering by synchronous spikes in a neural population.

    Science.gov (United States)

    Sharafi, Nahal; Benda, Jan; Lindner, Benjamin

    2013-04-01

    Information about time-dependent sensory stimuli is encoded by the spike trains of neurons. Here we consider a population of uncoupled but noisy neurons (each subject to some intrinsic noise) that are driven by a common broadband signal. We ask specifically how much information is encoded in the synchronous activity of the population and how this information transfer is distributed with respect to frequency bands. In order to obtain some insight into the mechanism of information filtering effects found previously in the literature, we develop a mathematical framework to calculate the coherence of the synchronous output with the common stimulus for populations of simple neuron models. Within this frame, the synchronous activity is treated as the product of filtered versions of the spike trains of a subset of neurons. We compare our results for the simple cases of (1) a Poisson neuron with a rate modulation and (2) an LIF neuron with intrinsic white current noise and a current stimulus. For the Poisson neuron, formulas are particularly simple but show only a low-pass behavior of the coherence of synchronous activity. For the LIF model, in contrast, the coherence function of the synchronous activity shows a clear peak at high frequencies, comparable to recent experimental findings. We uncover the mechanism for this shift in the maximum of the coherence and discuss some biological implications of our findings.

  14. Activation of ion implanted Si for backside processing by Ultra-fast Laser Thermal Annealing: Energy homogeneity and micro-scale sheet resistance

    DEFF Research Database (Denmark)

    Huet, K.; Lin, Rong; Boniface, C

    2009-01-01

    In this paper ion activation of implanted silicon using ultra-fast laser thermal annealing (LTA) process was discussed. The results stated that there was high dopant activation using LTA process for over 70%, excellent within shot activation uniformity, and there was a possibility for overlap...

  15. Effects of electric stimulation of the hunger center in the lateral hypothalamus on slow electric activity and spike activity of fundal and antral stomach muscles in rabbits under conditions of hunger and satiation.

    Science.gov (United States)

    Kromin, A A; Zenina, O Yu

    2013-09-01

    In chronic experiments on rabbits, the effect of electric stimulation of the hunger center in the lateral hypothalamus on myoelectric activity of the fundal and antral parts of the stomach was studied under conditions of hunger and satiation in the absence of food. Stimulation of the lateral hypothalamus in rabbits subjected to 24-h food deprivation and in previously fed rabbits produced incessant seeking behavior, which was followed by reorganization of the structure of temporal organization of slow wave electric activity of muscles of the stomach body and antrum specific for hungry and satiated animals. Increased hunger motivation during electric stimulation of the lateral hypothalamus manifested in the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles in rabbits subjected to 24-h food deprivation in the replacement of bimodal distribution of slow wave periods to a trimodal type typical of 2-day deprivation, while transition from satiation to hunger caused by electric stimulation of the lateral hypothalamus was associated with a shift from monomodal distributions of slow wave periods to a bimodal type typical of 24-h deprivation. Reorganization of the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles during electric stimulation of the lateral hypothalamus was determined by descending inhibitory influences of food motivational excitation on activity of the myogenic pacemaker of the lesser curvature of the stomach.

  16. Relationships between short and fast brain timescales.

    Science.gov (United States)

    Déli, Eva; Tozzi, Arturo; Peters, James F

    2017-12-01

    Brain electric activity exhibits two important features: oscillations with different timescales, characterized by diverse functional and psychological outcomes, and a temporal power law distribution. In order to further investigate the relationships between low- and high- frequency spikes in the brain, we used a variant of the Borsuk-Ulam theorem which states that, when we assess the nervous activity as embedded in a sphere equipped with a fractal dimension, we achieve two antipodal points with similar features (the slow and fast, scale-free oscillations). We demonstrate that slow and fast nervous oscillations mirror each other over time via a sinusoid relationship and provide, through the Bloch theorem from solid-state physics, the possible equation which links the two timescale activities. We show that, based on topological findings, nervous activities occurring in micro-levels are projected to single activities at meso- and macro-levels. This means that brain functions assessed at the higher scale of the whole brain necessarily display a counterpart in the lower ones, and vice versa. Our topological approach makes it possible to assess brain functions both based on entropy, and in the general terms of particle trajectories taking place on donut-like manifolds. Condensed brain activities might give rise to ideas and concepts by combination of different functional and anatomical levels. Furthermore, cognitive phenomena, as well as social activity can be described by the laws of quantum mechanics; memories and decisions exhibit holographic organization. In physics, the term duality refers to a case where two seemingly different systems turn out to be equivalent. This topological duality holds for all the types of spatio-temporal brain activities, independent of their inter- and intra-level relationships, strength, magnitude and boundaries, allowing us to connect the physiological manifestations of consciousness to the electric activities of the brain.

  17. Stochastic spike synchronization in a small-world neural network with spike-timing-dependent plasticity.

    Science.gov (United States)

    Kim, Sang-Yoon; Lim, Woochang

    2018-01-01

    We consider the Watts-Strogatz small-world network (SWN) consisting of subthreshold neurons which exhibit noise-induced spikings. This neuronal network has adaptive dynamic synaptic strengths governed by the spike-timing-dependent plasticity (STDP). In previous works without STDP, stochastic spike synchronization (SSS) between noise-induced spikings of subthreshold neurons was found to occur in a range of intermediate noise intensities. Here, we investigate the effect of additive STDP on the SSS by varying the noise intensity. Occurrence of a "Matthew" effect in synaptic plasticity is found due to a positive feedback process. As a result, good synchronization gets better via long-term potentiation of synaptic strengths, while bad synchronization gets worse via long-term depression. Emergences of long-term potentiation and long-term depression of synaptic strengths are intensively investigated via microscopic studies based on the pair-correlations between the pre- and the post-synaptic IISRs (instantaneous individual spike rates) as well as the distributions of time delays between the pre- and the post-synaptic spike times. Furthermore, the effects of multiplicative STDP (which depends on states) on the SSS are studied and discussed in comparison with the case of additive STDP (independent of states). These effects of STDP on the SSS in the SWN are also compared with those in the regular lattice and the random graph. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Ball Lightning With Spiking and Cold Emission in the Maser-Caviton Interaction

    Science.gov (United States)

    Handel, P. H.; Carlson, G. A.; Leitner, J.

    2007-05-01

    The nonlinear system of maser and cold plasma caviton can sustain spiking oscillations around the stationary state. This is shown here in the linearized limit of small oscillations. The role of ionization and cold emission effects is considered, and the case of large spiking amplitudes is discussed qualitatively on this basis. This calculation allows us to predict the frequency of the often observed humming of ball lightning. Furthermore, four basic experiments are suggested, that should be performed in order to verify and further develop the present Maser-Soliton theory of ball lightning: comparative atmospheric absorption spectroscopy in thunderstorm conditions, electric field pulse experiment, wind tunnel experiment and laboratory ball lightning generation experiment. The latter experiment suggested is based on a 10-20KW Klystron amplifier with negative feedback, trying to simulate the behavior of the atmospheric maser. The klystron is connected through a directional coupler to a tuned resonator that serves as discharge chamber. From there, a wave guide completes the loop. An optical feedback strengthens the natural tendency of the klystron to spike almost instantaneously when the load decreases. The discharge sought is a glow at atmospheric pressure, at much lower temperature than the lowest temperature arch discharge ever obtained so far at normal pressure. At these low temperatures there are no electrons that could sustain the discharge. However, right when the discharge is dying, a powerful klystron spike is automatically caused by the sudden decrease of the load. This extracts electrons through cold (Fowler) emission, and rekindles the discharge. However, like in the case of the atmospheric maser, the presence of the large spike automatically stops the klystron power. The optical feedback is responsible in part for the fast reaction. Then the spiking cycle repeats itself. Our Maser-Soliton BL theory allows for the first time not only to understand the

  19. Attention deficit associated with early life interictal spikes in a rat model is improved with ACTH.

    Directory of Open Access Journals (Sweden)

    Amanda E Hernan

    Full Text Available Children with epilepsy often present with pervasive cognitive and behavioral comorbidities including working memory impairments, attention deficit hyperactivity disorder (ADHD and autism spectrum disorder. These non-seizure characteristics are severely detrimental to overall quality of life. Some of these children, particularly those with epilepsies classified as Landau-Kleffner Syndrome or continuous spike and wave during sleep, have infrequent seizure activity but frequent focal epileptiform activity. This frequent epileptiform activity is thought to be detrimental to cognitive development; however, it is also possible that these IIS events initiate pathophysiological pathways in the developing brain that may be independently associated with cognitive deficits. These hypotheses are difficult to address due to the previous lack of an appropriate animal model. To this end, we have recently developed a rat model to test the role of frequent focal epileptiform activity in the prefrontal cortex. Using microinjections of a GABA(A antagonist (bicuculline methiodine delivered multiple times per day from postnatal day (p 21 to p25, we showed that rat pups experiencing frequent, focal, recurrent epileptiform activity in the form of interictal spikes during neurodevelopment have significant long-term deficits in attention and sociability that persist into adulthood. To determine if treatment with ACTH, a drug widely used to treat early-life seizures, altered outcome we administered ACTH once per day subcutaneously during the time of the induced interictal spike activity. We show a modest amelioration of the attention deficit seen in animals with a history of early life interictal spikes with ACTH, in the absence of alteration of interictal spike activity. These results suggest that pharmacological intervention that is not targeted to the interictal spike activity is worthy of future study as it may be beneficial for preventing or ameliorating adverse

  20. Clinical value of magnetoencephalographic spike propagation represented by spatiotemporal source analysis: correlation with surgical outcome.

    Science.gov (United States)

    Tanaka, Naoaki; Peters, Jurriaan M; Prohl, Anna K; Takaya, Shigetoshi; Madsen, Joseph R; Bourgeois, Blaise F; Dworetzky, Barbara A; Hämäläinen, Matti S; Stufflebeam, Steven M

    2014-02-01

    To investigate the correlation between spike propagation represented by spatiotemporal source analysis of magnetoencephalographic (MEG) spikes and surgical outcome in patients with temporal lobe epilepsy. Thirty-seven patients were divided into mesial (n=27) and non-mesial (n=10) groups based on the presurgical evaluation. In each patient, ten ipsilateral spikes were averaged, and spatiotemporal source maps of the averaged spike were obtained by using minimum norm estimate. Regions of interest (ROIs) were created including temporoparietal, inferior frontal, mesial temporal, anterior and posterior part of the lateral temporal cortex. We extracted activation values from the source maps and the threshold was set at half of the maximum activation at the peak latency. The leading and propagated areas of the spike were defined as those ROIs with activation reaching the threshold at the earliest and at the peak latencies, respectively. Surgical outcome was assessed based on Engel's classification. Binary variables were created from leading areas (restricted to the anterior and mesial temporal ROIs or not) and from propagation areas (involving the temporoparietal ROI or not), and for surgical outcome (Class I or not). Fisher's exact test was used for significance testing. In total and mesial group, restricted anterior/mesial temporal leading areas were correlated with Class I (p<0.05). Temporoparietal propagation was correlated with Class II-IV (p<0.05). For the non-mesial group, no significant relation was found. Spike propagation patterns represented by spatiotemporal source analysis of MEG spikes may provide useful information for prognostic implication in presurgical evaluation of epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Two-day fasting evokes stress, but does not affect mood, brain activity, cognitive, psychomotor, and motor performance in overweight women.

    Science.gov (United States)

    Solianik, Rima; Sujeta, Artūras

    2018-02-15

    The physiological, cognitive state, and motor behavior changes that occur during acute fasting are not completely understood. Thus, the aim of this study was to estimate the effect of 2-day total fasting on evoked stress, mood, brain activity, and cognitive, psychomotor, and motor function in overweight women. Eleven overweight women (body mass index above 25kg/m 2 ) aged 20-30 years were tested under two conditions allocated randomly: 2-day zero-calorie diet with water provided ad libitum and 2-day usual diet. One week before the experiment, aerobic fitness was evaluated. Subjective stress ratings in relation to the diet, autonomic function, prefrontal cortex activity, cognitive performance, psychomotor coordination, and grip strength were evaluated before and after each diet. The study demonstrated that fasting decreased log-transformed high-frequency (HF) power, without affecting heart rate. The relative maximum oxygen uptake was negatively correlated with subjective stress rating and changes in log-transformed HF. Fasting did not affect mood, brain activity, and cognitive, motor, and psychomotor performance. Thus, 2-day total fasting evoked moderate stress with a shift of the autonomic nervous system balance toward sympathetic activity in overweight women. Better aerobic endurance is likely to facilitate the capacity for dealing with acute fasting. Regardless of the evoked stress, cognitive state and motor behavior remained intact. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Fluctuating inhibitory inputs promote reliable spiking at theta frequencies in hippocampal interneurons

    Directory of Open Access Journals (Sweden)

    Duluxan eSritharan

    2012-05-01

    Full Text Available Theta frequency (4-12 Hz rhythms in the hippocampus play important roles in learning and memory. CA1 interneurons located at the stratum lacunosum-moleculare and radiatum junction (LM/RAD are thought to contribute to hippocampal theta population activities by rhythmically pacing pyramidal cells with inhibitory postsynaptic potentials. This implies that LM/RAD cells need to fire reliably at theta frequencies in vivo. To determine whether this could occur, we use biophysically-based LM/RAD model cells and apply different cholinergic and synaptic inputs to simulate in vivo-like network environments. We assess spike reliabilities and spiking frequencies, identifying biophysical properties and network conditions that best promote reliable theta spiking. We find that synaptic background activities that feature large inhibitory, but not excitatory, fluctuations are essential. This suggests that strong inhibitory input to these cells is vital for them to be able to contribute to population theta activities. Furthermore, we find that Type I-like oscillator models produced by augmented persistent sodium currents (INap or diminished A type potassium currents (IA enhance reliable spiking at lower theta frequencies. These Type I-like models are also the most responsive to large inhibitory fluctuations and can fire more reliably under such conditions. In previous work, we showed that INap and IA are largely responsible for establishing LM/RAD cells’ subthreshold activities. Taken together with this study, we see that while both these currents are important for subthreshold theta fluctuations and reliable theta spiking, they contribute in different ways – INap to reliable theta spiking and subthreshold activity generation, and IA to subthreshold activities at theta frequencies. This suggests that linking subthreshold and suprathreshold activities should be done with consideration of both in vivo contexts and biophysical specifics.

  3. The Effect of Prolonged Fasting on Total Lipid Synthesis and Enzyme Activities in the Liver of the European Eel (Anguilla anguilla)

    DEFF Research Database (Denmark)

    Abraham, S. A.; Hansen, Heinz Johs. Max; Hansen, F.N.

    1984-01-01

    reduced (acetyl-CoA carboxylase decreased 2-fold and fatty acid synthetase declined 5-fold); others remained unchanged (G-6-P dehydrogenase, 6-phosphogluconate dehydrogenase, .alpha.-glycerol phosphate dehydrogenase as well as malic enzyme and ATP-citrate lyase). The optimum temperature for measuring both......The extent of fatty acid synthesis from [1-14C]acetate in liver slices was reduced 6-fold when eels were fasted for 1-7 wk and 20-fold when fasted for 39 wk, thereafter hepatic lipogenesis seemed to remain constant for up to 95 wk of fasting. After a 1-3 wk fast some hepatic enzyme activities were...... total lipid synthesis and lipogenic enzyme activity in eel liver was 30.degree. C....

  4. A ferricyanide-mediated activated sludge bioassay for fast determination of the biochemical oxygen demand of wastewaters.

    Science.gov (United States)

    Jordan, Mark A; Welsh, David T; Teasdale, Peter R; Catterall, Kylie; John, Richard

    2010-12-01

    Activated sludge was successfully incorporated as the biocatalyst in the fast, ferricyanide-mediated biochemical oxygen demand (FM-BOD) bioassay. Sludge preparation procedures were optimized for three potential biocatalysts; aeration basin mixed liquor, aerobic digester sludge and return activated sludge. Following a 24h starving period, the return activated sludge and mixed liquor sludges reported the highest oxidative degradation of a standard glucose/glutamic acid (GGA) mixture and the return activated sludge also recorded the lowest endogenous FM-respiration rate. Dynamic working ranges up to 170 mg BOD(5)L(-1) for OECD standard solutions and 300mg BOD(5)L(-1) for GGA were obtained. This is a considerable improvement upon the BOD(5) standard assay and most other rapid BOD techniques. Time-series ferricyanide-mediated oxidation of the OECD(170) standard approached that of the GGA(198) standard after 3-6h. This is noteworthy given the OECD standard is formulated as a synthetic sewage analogue. A highly significant correlation with the BOD(5) standard method (n=35, p<0.001, R=0.952) was observed for a wide diversity of real wastewater samples. The mean degradation efficiency was indistinguishable from that observed for the BOD(5) assay. These results demonstrate that the activated sludge FM-BOD assay may be used for simple, same-day BOD analysis of wastewaters. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Barbed micro-spikes for micro-scale biopsy

    Science.gov (United States)

    Byun, Sangwon; Lim, Jung-Min; Paik, Seung-Joon; Lee, Ahra; Koo, Kyo-in; Park, Sunkil; Park, Jaehong; Choi, Byoung-Doo; Seo, Jong Mo; Kim, Kyung-ah; Chung, Hum; Song, Si Young; Jeon, Doyoung; Cho, Dongil

    2005-06-01

    Single-crystal silicon planar micro-spikes with protruding barbs are developed for micro-scale biopsy and the feasibility of using the micro-spike as a micro-scale biopsy tool is evaluated for the first time. The fabrication process utilizes a deep silicon etch to define the micro-spike outline, resulting in protruding barbs of various shapes. Shanks of the fabricated micro-spikes are 3 mm long, 100 µm thick and 250 µm wide. Barbs protruding from micro-spike shanks facilitate the biopsy procedure by tearing off and retaining samples from target tissues. Micro-spikes with barbs successfully extracted tissue samples from the small intestines of the anesthetized pig, whereas micro-spikes without barbs failed to obtain a biopsy sample. Parylene coating can be applied to improve the biocompatibility of the micro-spike without deteriorating the biopsy function of the micro-spike. In addition, to show that the biopsy with the micro-spike can be applied to tissue analysis, samples obtained by micro-spikes were examined using immunofluorescent staining. Nuclei and F-actin of cells which are extracted by the micro-spike from a transwell were clearly visualized by immunofluorescent staining.

  6. The Mutation Frequency in Different Spike Categories in Barley

    DEFF Research Database (Denmark)

    Frydenberg, O.; Doll, Hans; Sandfær, J.

    1964-01-01

    After gamma irradiation of barley seeds, a comparison has been made between the chlorophyll-mutant frequencies in X1 spikes that had multicellular bud meristems in the seeds at the time of treatment (denoted as pre-formed spikes) and X1 spikes having no recognizable meristems at the time...

  7. Thermal impact on spiking properties in Hodgkin–Huxley neuron ...

    Indian Academy of Sciences (India)

    Abstract. The effect of environmental temperature on neuronal spiking behaviors is investigated by numerically simulating the temperature dependence of spiking threshold of the Hodgkin–Huxley neuron subject to synaptic stimulus. We find that the spiking threshold exhibits a global minimum in a specific temperature range ...

  8. Cytoplasmic tail of Coronavirus spike protein has intracellular ...

    Indian Academy of Sciences (India)

    58

    Transfection ability of YFP tagged spike protein constructs are much more efficient. 220 compared to wild type spike construct, the reasons for which are unclear (data not. 221 shown). Because of efficient detection of YFP fluorescence and the limitations of spike. 222 specific antibodies, we decided to use the YFP tagged ...

  9. Fast Temporal Activity Proposals for Efficient Detection of Human Actions in Untrimmed Videos

    KAUST Repository

    Heilbron, Fabian Caba

    2016-12-13

    In many large-scale video analysis scenarios, one is interested in localizing and recognizing human activities that occur in short temporal intervals within long untrimmed videos. Current approaches for activity detection still struggle to handle large-scale video collections and the task remains relatively unexplored. This is in part due to the computational complexity of current action recognition approaches and the lack of a method that proposes fewer intervals in the video, where activity processing can be focused. In this paper, we introduce a proposal method that aims to recover temporal segments containing actions in untrimmed videos. Building on techniques for learning sparse dictionaries, we introduce a learning framework to represent and retrieve activity proposals. We demonstrate the capabilities of our method in not only producing high quality proposals but also in its efficiency. Finally, we show the positive impact our method has on recognition performance when it is used for action detection, while running at 10FPS.

  10. Local Optogenetic Induction of Fast (20-40 Hz Pyramidal-Interneuron Network Oscillations in the In Vitro and In Vivo CA1 Hippocampus: Modulation by CRF and Enforcement of Perirhinal Theta Activity

    Directory of Open Access Journals (Sweden)

    Julien eDine

    2016-04-01

    Full Text Available The neurophysiological processes that can cause theta-to-gamma frequency range (4-80 Hz network oscillations in the rhinal cortical-hippocampal system and the potential connectivity-based interactions of such forebrain rhythms are a topic of intensive investigation. Here, using selective Channelrhodopsin-2 (ChR2 expression in mouse forebrain glutamatergic cells, we were able to locally, temporally precisely, and reliably induce fast (20-40 Hz field potential oscillations in hippocampal area CA1 in vitro (at 25°C and in vivo (i.e., slightly anaesthetized NEX-Cre-ChR2 mice. As revealed by pharmacological analyses and patch-clamp recordings from pyramidal cells and GABAergic interneurons in vitro, these light-triggered oscillations can exclusively arise from sustained suprathreshold depolarization (~200 ms or longer and feedback inhibition of CA1 pyramidal neurons, as being mandatory for prototypic pyramidal-interneuron network (P-I oscillations. Consistently, the oscillations comprised rhythmically occurring population spikes (generated by pyramidal cells and their frequency increased with increasing spectral power. We further demonstrate that the optogenetically driven CA1 oscillations, which remain stable over repeated evocations, are impaired by the stress hormone corticotropin-releasing factor (CRF, 125 nM in vitro and, even more remarkably, found that they are accompanied by concurrent states of enforced theta activity in the memory-associated perirhinal cortex (PrC in vivo. The latter phenomenon most likely derives from neurotransmission via a known, but poorly studied excitatory CA1PrC pathway. Collectively, our data provide evidence for the existence of a prototypic (CRF-sensitive P-I gamma rhythm generator in area CA1 and suggest that CA1 P-I oscillations can rapidly up-regulate theta activity strength in hippocampus-innervated rhinal networks, at least in the PrC.

  11. Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity.

    Science.gov (United States)

    Bichler, Olivier; Querlioz, Damien; Thorpe, Simon J; Bourgoin, Jean-Philippe; Gamrat, Christian

    2012-08-01

    A biologically inspired approach to learning temporally correlated patterns from a spiking silicon retina is presented. Spikes are generated from the retina in response to relative changes in illumination at the pixel level and transmitted to a feed-forward spiking neural network. Neurons become sensitive to patterns of pixels with correlated activation times, in a fully unsupervised scheme. This is achieved using a special form of Spike-Timing-Dependent Plasticity which depresses synapses that did not recently contribute to the post-synaptic spike activation, regardless of their activation time. Competitive learning is implemented with lateral inhibition. When tested with real-life data, the system is able to extract complex and overlapping temporally correlated features such as car trajectories on a freeway, after only 10 min of traffic learning. Complete trajectories can be learned with a 98% detection rate using a second layer, still with unsupervised learning, and the system may be used as a car counter. The proposed neural network is extremely robust to noise and it can tolerate a high degree of synaptic and neuronal variability with little impact on performance. Such results show that a simple biologically inspired unsupervised learning scheme is capable of generating selectivity to complex meaningful events on the basis of relatively little sensory experience. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Spiked instantons from intersecting D-branes

    Directory of Open Access Journals (Sweden)

    Nikita Nekrasov

    2017-01-01

    Full Text Available The moduli space of spiked instantons that arises in the context of the BPS/CFT correspondence [22] is realised as the moduli space of classical vacua, i.e. low-energy open string field configurations, of a certain stack of intersecting D1-branes and D5-branes in Type IIB string theory. The presence of a constant B-field induces an interesting dynamics involving the tachyon condensation.

  13. Non-singular spiked harmonic oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Guardiola, R.

    1990-01-01

    A perturbative study of a class of non-singular spiked harmonic oscillators defined by the hamiltonian H = d sup(2)/dr sup(2) + r sup(2) + λ/r sup(α) in the domain [0,∞] is carried out, in the two extremes of a weak coupling and a strong coupling regimes. A path has been found to connect both expansions for α near 2. (author)

  14. Noise-robust unsupervised spike sorting based on discriminative subspace learning with outlier handling

    Science.gov (United States)

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2017-06-01

    Objective. Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. Approach. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Main results. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. Significance. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.

  15. Basalt FRP Spike Repairing of Wood Beams

    Directory of Open Access Journals (Sweden)

    Luca Righetti

    2015-08-01

    Full Text Available This article describes aspects within an experimental program aimed at improving the structural performance of cracked solid fir-wood beams repaired with Basalt Fiber Reinforced Polymer (BFRP spikes. Fir wood is characterized by its low density, low compression strength, and high level of defects, and it is likely to distort when dried and tends to fail under tension due to the presence of cracks, knots, or grain deviation. The proposed repair technique consists of the insertion of BFRP spikes into timber beams to restore the continuity of cracked sections. The experimental efforts deal with the evaluation of the bending strength and deformation properties of 24 timber beams. An artificially simulated cracking was produced by cutting the wood beams in half or notching. The obtained results for the repaired beams were compared with those of solid undamaged and damaged beams, and increases of beam capacity, bending strength and of modulus of elasticity, and analysis of failure modes was discussed. For notched beams, the application of the BFRP spikes was able to restore the original bending capacity of undamaged beams, while only a small part of the original capacity was recovered for beams that were cut in half.

  16. Spiking Neural P Systems With Scheduled Synapses.

    Science.gov (United States)

    Cabarle, Francis George C; Adorna, Henry N; Jiang, Min; Zeng, Xiangxiang

    2017-12-01

    Spiking neural P systems (SN P systems) are models of computation inspired by biological spiking neurons. SN P systems have neurons as spike processors, which are placed on the nodes of a directed and static graph (the edges in the graph are the synapses). In this paper, we introduce a variant called SN P systems with scheduled synapses (SSN P systems). SSN P systems are inspired and motivated by the structural dynamism of biological synapses, while incorporating ideas from nonstatic (i.e., dynamic) graphs and networks. In particular, synapses in SSN P systems are available only at specific durations according to their schedules. The SSN P systems model is a response to the problem of introducing durations to synapses of SN P systems. Since SN P systems are in essence static graphs, it is natural to consider them for dynamic graphs also. We introduce local and global schedule types, also taking inspiration from the above-mentioned sources. We prove that SSN P systems are computationally universal as number generators and acceptors for both schedule types, under a normal form (i.e., a simplifying set of restrictions). The introduction of synapse schedules for either schedule type proves useful in programming the system, despite restrictions in the normal form.

  17. Linear stability analysis of retrieval state in associative memory neural networks of spiking neurons

    Science.gov (United States)

    Yoshioka, Masahiko

    2002-12-01

    We study associative memory neural networks of the Hodgkin-Huxley type of spiking neurons in which multiple periodic spatiotemporal patterns of spike timing are memorized as limit-cycle-type attractors. In encoding the spatiotemporal patterns, we assume the spike-timing-dependent synaptic plasticity with the asymmetric time window. Analysis for periodic solution of retrieval state reveals that if the area of the negative part of the time window is equivalent to the positive part, then crosstalk among encoded patterns vanishes. Phase transition due to the loss of the stability of periodic solution is observed when we assume fast α function for direct interaction among neurons. In order to evaluate the critical point of this phase transition, we employ Floquet theory in which the stability problem of the infinite number of spiking neurons interacting with α function is reduced to the eigenvalue problem with the finite size of matrix. Numerical integration of the single-body dynamics yields the explicit value of the matrix, which enables us to determine the critical point of the phase transition with a high degree of precision.

  18. A fast BK-type KCa current acts as a postsynaptic modulator of temporal selectivity for communication signals

    Directory of Open Access Journals (Sweden)

    Tsunehiko eKohashi

    2014-09-01

    Full Text Available Temporal patterns of spiking often convey behaviorally relevant information. Various synaptic mechanisms and intrinsic membrane properties can influence neuronal selectivity to temporal patterns of input. However, little is known about how synaptic mechanisms and intrinsic properties together determine the temporal selectivity of neuronal output. We tackled this question by recording from midbrain electrosensory neurons in mormyrid fish, in which the processing of temporal intervals between communication signals can be studied in a reduced in vitro preparation. Mormyrids communicate by varying interpulse intervals (IPIs between electric pulses. Within the midbrain posterior exterolateral nucleus (ELp, the temporal patterns of afferent spike trains are filtered to establish single-neuron IPI tuning. We performed whole-cell recording from ELp neurons in a whole-brain preparation and examined the relationship between intrinsic excitability and IPI tuning. We found that spike frequency adaptation of ELp neurons was highly variable. Postsynaptic potentials (PSPs of strongly adapting (phasic neurons were more sharply tuned to IPIs than weakly adapting (tonic neurons. Further, the synaptic filtering of IPIs by tonic neurons was more faithfully converted into variation in spiking output, particularly at short IPIs. Pharmacological manipulation under current- and voltage-clamp revealed that tonic firing is mediated by a fast, large-conductance Ca2+-activated K+ (KCa current (BK that speeds up action potential repolarization. These results suggest that BK currents can shape the temporal filtering of sensory inputs by modifying both synaptic responses and PSP-to-spike conversion. Slow SK-type KCa currents have previously been implicated in temporal processing. Thus, both fast and slow KCa currents can fine-tune temporal selectivity.

  19. Empirical validation of statistical parametric mapping for group imaging of fast neural activity using electrical impedance tomography.

    Science.gov (United States)

    Packham, B; Barnes, G; Dos Santos, G Sato; Aristovich, K; Gilad, O; Ghosh, A; Oh, T; Holder, D

    2016-06-01

    Electrical impedance tomography (EIT) allows for the reconstruction of internal conductivity from surface measurements. A change in conductivity occurs as ion channels open during neural activity, making EIT a potential tool for functional brain imaging. EIT images can have  >10 000 voxels, which means statistical analysis of such images presents a substantial multiple testing problem. One way to optimally correct for these issues and still maintain the flexibility of complicated experimental designs is to use random field theory. This parametric method estimates the distribution of peaks one would expect by chance in a smooth random field of a given size. Random field theory has been used in several other neuroimaging techniques but never validated for EIT images of fast neural activity, such validation can be achieved using non-parametric techniques. Both parametric and non-parametric techniques were used to analyze a set of 22 images collected from 8 rats. Significant group activations were detected using both techniques (corrected p  <  0.05). Both parametric and non-parametric analyses yielded similar results, although the latter was less conservative. These results demonstrate the first statistical analysis of such an image set and indicate that such an analysis is an approach for EIT images of neural activity.

  20. Development of a New Fast Shower Maximum Detector Based on Microchannel Plates Photomultipliers (MCP-PMT) as an Active Element

    Energy Technology Data Exchange (ETDEWEB)

    Ronzhin, A. [Fermilab; Los, S. [Fermilab; Ramberg, E. [Fermilab; Spiropulu, M. [Caltech; Apresyan, A. [Caltech; Xie, S. [Caltech; Kim, H. [Chicago U.; Zatserklyaniy, A. [UC, Santa Cruz

    2014-09-21

    One possibility to make a fast and radiation resistant shower maximum (SM) detector is to use a secondary emitter as an active element. We present below test beam results, obtained with different types of photodetectors based on microchannel plates (MCPs) as the secondary emitter. We performed the measurements at the Fermilab Test Beam Facility with 120GeV proton beam and 12GeV and 32GeV secondary beams. The goal of the measurement with 120GeV protons was to determine time resolution for minimum ionizing particles (MIPs). The SM time resolution we obtained for this new type of detector is at the level of 20-30ps. We estimate that a significant contribution to the detector response originates from secondary emission of the MCP. This work can be considered as the first step in building a new type of calorimeter based on this principle.

  1. A Catalytically Active Membrane Reactor for Fast, Highly Exothermic, Heterogeneous Gas Reactions. A Pilot Plant Study

    NARCIS (Netherlands)

    Veldsink, Jan W.; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1995-01-01

    Membrane reactors have been frequently studied because of their ability to combine chemical activity and separation properties into one device. Due to their thermal stability and mechanical strength, ceramic membranes are preferred over polymeric ones, but small transmembrane fluxes obstruct a

  2. A fast, sensitive and easy colorimetric assay for chitinase and cellulase activity detection.

    NARCIS (Netherlands)

    Ferrari, Alessandro; Gaber, Yasser; Fraaije, Marco

    2014-01-01

    BACKGROUND: Most of the current colorimetric methods for detection of chitinase or cellulase activities on the insoluble natural polymers chitin and cellulose depend on a chemical redox reaction. The reaction involves the reducing ends of the hydrolytic products. The Schales' procedure and the

  3. Fast and accurate enzyme activity measurements using a chip-based microfluidic calorimeter.

    Science.gov (United States)

    van Schie, Morten M C H; Ebrahimi, Kourosh Honarmand; Hagen, Wilfred R; Hagedoorn, Peter-Leon

    2018-03-01

    Recent developments in microfluidic and nanofluidic technologies have resulted in development of new chip-based microfluidic calorimeters with potential use in different fields. One application would be the accurate high-throughput measurement of enzyme activity. Calorimetry is a generic way to measure activity of enzymes, but unlike conventional calorimeters, chip-based calorimeters can be easily automated and implemented in high-throughput screening platforms. However, application of chip-based microfluidic calorimeters to measure enzyme activity has been limited due to problems associated with miniaturization such as incomplete mixing and a decrease in volumetric heat generated. To address these problems we introduced a calibration method and devised a convenient protocol for using a chip-based microfluidic calorimeter. Using the new calibration method, the progress curve of alkaline phosphatase, which has product inhibition for phosphate, measured by the calorimeter was the same as that recorded by UV-visible spectroscopy. Our results may enable use of current chip-based microfluidic calorimeters in a simple manner as a tool for high-throughput screening of enzyme activity with potential applications in drug discovery and enzyme engineering. Copyright © 2017. Published by Elsevier Inc.

  4. Fast activated charcoal prepurification of Fusarium solani β-glucosidase for an efficient oleuropein bioconversion.

    Science.gov (United States)

    Boudabbous, Manel; Saibi, Walid; Bouallagui, Zouhaier; Dardouri, Mosbeh; Sayadi, Sami; Belghith, Hafedh; Mechichi, Tahar; Gargouri, Ali

    2017-02-07

    Fungal β-glucosidases were extensively studied regarding their various potential biotechnology applications. Here, we report the selection of Fusarium solani strain producing high yield of β-glucosidase activity. The effect of some factors on β-glucosidase production was studied including: Initial pH, medium composition, concentration of carbon and nitrogen sources, and particle size of raw substrates. The optimal enzyme production was obtained with 4 units of pH. The highest β-glucosidase activity was produced on 4% wheat bran (WB) as raw carbon sources, reaching 5 U/mL. A positive correlation between WB particle size and the β-glucosidase production level was settled. The last one was enhanced to 13.60 U/mL in the presence of 0.5% (w/v) of ammonium sulfate. Interestingly, the activated charcoal was used as an inexpensive reagent enabling a rapid and efficient purification prior step that improved the enzyme-specific activity. Eventually, F. solani β-glucosidase acts efficiently during the bioconversion process of oleuropein. Indeed, 82.5% of oleuropein was deglycosylated after 1 hr at 40°C. Altogether, our data showed that the β-glucosidase of F. solani has a potential application to convert oleuropein to ameliorate food quality.

  5. Fast Back-Propagation Learning Using Steep Activation Functions and Automatic Weight

    Science.gov (United States)

    Tai-Hoon Cho; Richard W. Conners; Philip A. Araman

    1992-01-01

    In this paper, several back-propagation (BP) learning speed-up algorithms that employ the ãgainä parameter, i.e., steepness of the activation function, are examined. Simulations will show that increasing the gain seemingly increases the speed of convergence and that these algorithms can converge faster than the standard BP learning algorithm on some problems. However,...

  6. From spiking neuron models to linear-nonlinear models.

    Directory of Open Access Journals (Sweden)

    Srdjan Ostojic

    Full Text Available Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF, exponential integrate-and-fire (EIF and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.

  7. Spike timing analysis in neural networks with unsupervised synaptic plasticity

    Science.gov (United States)

    Mizusaki, B. E. P.; Agnes, E. J.; Brunnet, L. G.; Erichsen, R., Jr.

    2013-01-01

    The synaptic plasticity rules that sculpt a neural network architecture are key elements to understand cortical processing, as they may explain the emergence of stable, functional activity, while avoiding runaway excitation. For an associative memory framework, they should be built in a way as to enable the network to reproduce a robust spatio-temporal trajectory in response to an external stimulus. Still, how these rules may be implemented in recurrent networks and the way they relate to their capacity of pattern recognition remains unclear. We studied the effects of three phenomenological unsupervised rules in sparsely connected recurrent networks for associative memory: spike-timing-dependent-plasticity, short-term-plasticity and an homeostatic scaling. The system stability is monitored during the learning process of the network, as the mean firing rate converges to a value determined by the homeostatic scaling. Afterwards, it is possible to measure the recovery efficiency of the activity following each initial stimulus. This is evaluated by a measure of the correlation between spike fire timings, and we analysed the full memory separation capacity and limitations of this system.

  8. Precise-Spike-Driven Synaptic Plasticity: Learning Hetero-Association of Spatiotemporal Spike Patterns

    Science.gov (United States)

    Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2013-01-01

    A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe. PMID:24223789

  9. Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns.

    Directory of Open Access Journals (Sweden)

    Qiang Yu

    Full Text Available A new learning rule (Precise-Spike-Driven (PSD Synaptic Plasticity is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.

  10. Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns.

    Science.gov (United States)

    Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2013-01-01

    A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.

  11. Recent and past activity of the supergiant fast X-ray transient IGR J17544-2619 as seen by INTEGRAL

    NARCIS (Netherlands)

    Kuulkers, E.; Oneca, D.R.; Brandt, S.; Shaw, S.; Beckmann, V.; Chenevez, J.; Courvoisier, T.J.L.; Domingo, A.; Ebisawa, K.; Jonker, P.G.; Kretschmar, P.; Markwardt, C.; Oosterbroek, T.; Paizis, A.; Sanchez-Fernandez, C.; Wijnands, R.

    2007-01-01

    Following the report of the recent activity seen by Swift/BAT (ATel #1265) we note that the supergiant fast X-ray transient IGR J17544-2619 was also active about one and a half month earlier. During our INTEGRAL Galactic Bulge monitoring observations (see ATels #438, #874 and #1005) on UT 2007 Sep

  12. Design of activation counter cell for counting of fast neutrons produced by plasma focus device

    International Nuclear Information System (INIS)

    Rajabi Moghadam, S.; Abbasi Davani, F.

    2009-01-01

    In this paper two geometries for pulsed neutron counter structure have been introduced and to increase the activation counter efficiency, plastic scintillation along with silver foils was used. Cubic and cylindrical geometries for activation counter cell were modeled using MCNP4C code. In respect of absorption reaction rate in silver, the number of silver foils and the length of the counter were optimized. The optimum length of 14 centimeters had been proposed for counter cell and because of the economic aspects, the optimum number of silver foils for cubic and cylindrical geometries are 20 and 10, respectively. The optimum data were used to construct a cubic counter and the neutron yield of SBUPF1 plasma focus device was measured by this counter. Experimental results show that about 3.71*10 7 neutrons are produced per pulse.

  13. Low Capacitive Inductors for Fast Switching Devices in Active Power Factor Correction Applications

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.

    2014-01-01

    This paper examines different winding strategies for reduced capacitance inductors in active power factor correction circuits (PFC). The effect of the parasitic capacitance is analyzed from an electro magnetic compatibility (EMI) and efficiency point of views. The purpose of this work is to inves......This paper examines different winding strategies for reduced capacitance inductors in active power factor correction circuits (PFC). The effect of the parasitic capacitance is analyzed from an electro magnetic compatibility (EMI) and efficiency point of views. The purpose of this work...... is to investigate different winding approaches and identify suitable solutions for high switching frequency/high speed transition PFC designs. A low parasitic capacitance PCB based inductor design is proposed to address the challenges imposed by high switching frequency PFC Boost converters....

  14. Capturing Spike Variability in Noisy Izhikevich Neurons Using Point Process Generalized Linear Models.

    Science.gov (United States)

    Østergaard, Jacob; Kramer, Mark A; Eden, Uri T

    2018-01-01

    To understand neural activity, two broad categories of models exist: statistical and dynamical. While statistical models possess rigorous methods for parameter estimation and goodness-of-fit assessment, dynamical models provide mechanistic insight. In general, these two categories of models are separately applied; understanding the relationships between these modeling approaches remains an area of active research. In this letter, we examine this relationship using simulation. To do so, we first generate spike train data from a well-known dynamical model, the Izhikevich neuron, with a noisy input current. We then fit these spike train data with a statistical model (a generalized linear model, GLM, with multiplicative influences of past spiking). For different levels of noise, we show how the GLM captures both the deterministic features of the Izhikevich neuron and the variability driven by the noise. We conclude that the GLM captures essential features of the simulated spike trains, but for near-deterministic spike trains, goodness-of-fit analyses reveal that the model does not fit very well in a statistical sense; the essential random part of the GLM is not captured.

  15. Antioxidant Activity of the Lignins Derived from Fluidized-Bed Fast Pyrolysis

    Directory of Open Access Journals (Sweden)

    Sohail S. Qazi

    2017-03-01

    Full Text Available A challenge in recent years has been the rational use of forest and agriculture residues for the production of bio-fuel, biochemical, and other bioproducts. In this study, potentially useful compounds from pyrolytic lignins were identified by HPLC-MS/MS and untargeted metabolomics. The metabolites identified were 2-(4-allyl-2-methoxyphenoxy-1-(4-hydroxy-3-methoxyphenyl-1-propanol, benzyl benzoate, fisetinidol, phenyllactic acid, 2-phenylpropionic acid, 6,3′-dimethoxyflavone, and vanillin. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH, trolox equivalent antioxidant capacity (TEAC, and total phenolics content (TPC per gram of pyrolytic lignin ranged from 14 to 503 mg ascorbic acid equivalents, 35 to 277 mg trolox equivalents, and 0.42 to 50 mg gallic acid equivalents, respectively. A very significant correlation was observed between the DPPH and TPC (r = 0.8663, p ≤ 0.0001, TEAC and TPC (r = 0.8044, p ≤ 0.0001, and DPPH and TEAC (r = 0.8851, p ≤ 0.0001. The polyphenolic compounds in the pyrolytic lignins which are responsible for radical scavenging activity and antioxidant properties can be readily profiled with HPLC-MS/MS combined with untargeted metabolomics. The results also suggest that DPPH, TEAC, and TPC assays are suitable methods for the measurement of antioxidant activity in a variety of pyrolytic lignins. These data show that the pyrolytic lignins can be considered as promising sources of natural antioxidants and value-added chemicals.

  16. Information Entropy Production of Maximum Entropy Markov Chains from Spike Trains

    Directory of Open Access Journals (Sweden)

    Rodrigo Cofré

    2018-01-01

    Full Text Available The spiking activity of neuronal networks follows laws that are not time-reversal symmetric; the notion of pre-synaptic and post-synaptic neurons, stimulus correlations and noise correlations have a clear time order. Therefore, a biologically realistic statistical model for the spiking activity should be able to capture some degree of time irreversibility. We use the thermodynamic formalism to build a framework in the context maximum entropy models to quantify the degree of time irreversibility, providing an explicit formula for the information entropy production of the inferred maximum entropy Markov chain. We provide examples to illustrate our results and discuss the importance of time irreversibility for modeling the spike train statistics.

  17. A simple and fast kinetic assay for the determination of fructan exohydrolase activity in perennial ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    Anna eGasperl

    2015-12-01

    Full Text Available Despite the fact that fructans are the main constituent of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates, little knowledge is available on the regulation of the enzymes involved in fructan metabolism. The analysis of enzyme activities involved in this process has been hampered by the low affinity of the fructan enzymes for sucrose and fructans used as fructosyl donor. Further, the analysis of fructan composition and enzyme activities is restricted to specialized labs with access to suited HPLC equipment and appropriate fructan standards. The degradation of fructan polymers with high degree of polymerization (DP by fructan exohydrolases (FEHs to fructosyloligomers is important to liberate energy in the form of fructan, but also under conditions where the generation of low DP polymers is required. Based on published protocols employing enzyme coupled endpoint reactions in single cuvettes, we developed a simple and fast kinetic 1-FEH assay. This assay can be performed in multi-well plate format using plate readers to determine the activity of 1-FEH against 1-kestotriose, resulting in a significant time reduction. Kinetic assays allow an optimal and more precise determination of enzyme activities compared to endpoint assays, and enable to check the quality of any reaction with respect to linearity of the assay. The enzyme coupled kinetic 1-FEH assay was validated in a case study showing the expected increase in 1-FEH activity during cold treatment. This assay is cost effective and could be performed by any lab with access to a plate reader suited for kinetic measurements and readings at 340 nm, and is highly suited to assess temporal changes and relative differences in 1-FEH activities. Thus, this enzyme coupled kinetic 1-FEH assay is of high importance both to the field of basic fructan research and plant breeding.

  18. On the genesis of spike-wave oscillations in a mean-field model of human thalamic and corticothalamic dynamics

    International Nuclear Information System (INIS)

    Rodrigues, Serafim; Terry, John R.; Breakspear, Michael

    2006-01-01

    In this Letter, the genesis of spike-wave activity-a hallmark of many generalized epileptic seizures-is investigated in a reduced mean-field model of human neural activity. Drawing upon brain modelling and dynamical systems theory, we demonstrate that the thalamic circuitry of the system is crucial for the generation of these abnormal rhythms, observing that the combination of inhibition from reticular nuclei and excitation from the cortical signal, interplay to generate the spike-wave oscillation. The mechanism revealed provides an explanation of why approaches based on linear stability and Heaviside approximations to the activation function have failed to explain the phenomena of spike-wave behaviour in mean-field models. A mathematical understanding of this transition is a crucial step towards relating spiking network models and mean-field approaches to human brain modelling

  19. Activity assay of mangosteen (Garcinia mangostana L.) pericarp extract for decreasing fasting blood cholesterol level and lipid peroxidation in type-2 diabetic mice

    Science.gov (United States)

    Husen, Saikhu Akhmad; Winarni, Dwi; Khaleyla, Firas; Kalqutny, Septian Hary; Ansori, Arif Nur Muhammad

    2017-09-01

    This study aimed to explore the activity of pericarp extract of mangosteen (Garcinia mangostana L.). Mangosteen pericarp contains various active compounds which are beneficial for human health. In-vivo antioxidant assay of pericarp extract was carried out using 3-4 month male mice of strain BALB/c weighed 30-40 g. The mice were divided into two groups: normal control (KN) group and STZ-induced diabetic group. STZ induction was performed using multiple low-dose method 30 mg/kg body weight treated daily for five consecutive days. Diabetic group was separated into two subgroups: diabetic control (KD), metformin control (KM), and crude extract treatment subgroups. The fasting blood glucose and the cholesterol level were measured before and after lard treatment, we also did it on the first, seventh, and fourteenth day of mangosteen pericarp crude extract treatment. The mice were treated with mangosteen pericarp crude extract for 14 days. The MDA level of the fasting blood serum was measured. The body weight and fasting blood cholesterol level before and after lard treatment were analyzed by t-test, whereas, the fasting blood cholesterol and the MDA level were analyzed using one-way variant analysis continued with Duncan test. The correlation between the increasing body weight and the fasting blood cholesterol level was determined by Pearson correlation test. The results of the study showed that the administration of mangosteen pericarp crude extract was able to reduce the fasting blood cholesterol and the malondialdehide level significantly.

  20. Imaging fast electrical activity in the brain with electrical impedance tomography.

    Science.gov (United States)

    Aristovich, Kirill Y; Packham, Brett C; Koo, Hwan; Santos, Gustavo Sato Dos; McEvoy, Andy; Holder, David S

    2016-01-01

    Imaging of neuronal depolarization in the brain is a major goal in neuroscience, but no technique currently exists that could image neural activity over milliseconds throughout the whole brain. Electrical impedance tomography (EIT) is an emerging medical imaging technique which can produce tomographic images of impedance changes with non-invasive surface electrodes. We report EIT imaging of impedance changes in rat somatosensory cerebral cortex with a resolution of 2ms and brain so this technique, uniquely, has the potential to image functional connectivity of cortical and subcortical structures. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Comparison of electrodialytic removal of Cu from spiked kaolinite, spiked soil and industrially polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Lepkova, Katarina; Kubal, Martin

    2006-01-01

    Electrokinetic remediation methods for removal of heavy metals from polluted soils have been subjected for quite intense research during the past years since these methods are well suitable for fine-grained soils where other remediation methods fail. Electrodialytic remediation is an electrokinetic...... remediation method which is based on applying an electric DC field and the use of ion exchange membranes that ensures the main transport of heavy metals to be out of the pollutes soil. An experimental investigation was made with electrodialytic removal of Cu from spiked kaolinite, spiked soil and industrially...... polluted soil under the same operational conditions (constant current density 0.2 mA/cm2 and duration 28 days). The results of the present paper show that caution must be taken when generalising results obtained in spiked kaolinite to remediation of industrially polluted soils, as it was shown...

  2. Linearization of the activated sludge model ASM1 for fast and reliable predictions.

    Science.gov (United States)

    Smets, Ilse Y; Haegebaert, Jeroen V; Carrette, Ronald; Van Impe, Jan F

    2003-04-01

    In this paper a strategy is proposed to reduce the complexity of the activated sludge model no. 1 (ASM1) which describes the biotransformation processes in a common activated sludge process with N-removal. The key feature of the obtained reduced model is that it combines high predictive value (all state variables keep their biological interpretation) with very low computation time. Therefore, this model is a valuable tool in a risk assessment environment (designed for the evaluation of wastewater treatment plants facing stricter effluent norms) as well as in on-line (MPC) control strategies. The complexity reduction procedure consists of four steps. In the first step representative input/output data sets are generated by simulating the full ASM1 model. In the second step the ASM1 model is rewritten in state space format with linear approximations of the nonlinear (kinetic) terms. In the third step the unknown parameters in the linear terms are identified based on the generated input/output data. To reduce the amount of parameter sets that have to be identified (to cover the full operation range of the plant), a Multi-Model interpolation procedure is introduced as a last step.

  3. Activation of fast skeletal muscle: contributions of studies on skinned fibers.

    Science.gov (United States)

    Stephenson, E W

    1981-01-01

    The membrane potential of vertebrate twitch fibers closely controls Ca fluxes between intracellular compartments, which in turn control contraction. Recent work on intracellular Ca movement is reviewed in the general context of current efforts to synthesize physiological, biochemical, and structural observations on the contractile mechanism and its regulation, emphasizing the increasing role of functionally skinned fibers in this synthesis. Skinned fiber preparations, with removed or disrupted sarcolemma, bridge the gap between properties of isolated subsystems and their constrained operation in the intact fiber. Recent studies indicate that the surface action potential propagates along the transverse tubules, but not the sarcoplasmic reticulum (SR), which appears to be a distinct intracellular compartment. Voltage-dependent charge movements in the transverse tubules probably control Ca flux across the SR membranes. Current questions concern the mechanism of the signal that bridges the junctional gap between the two membrane systems, the mechanism and properties of the activated Ca efflux to the myofilament space, and the operation of the Ca pump of the SR during activation. New methods applied to intact fibers, cut fibers, skinned fibers, and subcellular systems are yielding the kind of information needed for a complete description of these central steps in excitation-contraction coupling and of Ca regulation of the myofilaments.

  4. Using Cherenkov Counting For Fast Determination of 90Sr/90Y Activity in Milk

    International Nuclear Information System (INIS)

    Tsroya, S.; Dolgin, B.; German, U.; Pelled, O.; Alfassi, Z. B.

    2014-01-01

    90Sr is one of the main long-lived fission products, and it is transferred into human body primarily by food, with milk being a substantial contributor. Due to its biochemical similarity to calcium, most strontium is efficiently incorporated into bone tissues. 90Sr is characterized by a long physical half life (28.8 y) and decays by beta particles with an Emax of 0.546 MeV to 90Y. This daughter isotope has a half life of 64 h and decays into 90Zr by beta particles with an Emax of 2.284 MeV. The milk components produce a high turbidity and light attenuation, causing a significant decrease of the counting efficiency in liquid scintillation counting (LSC) systems, mostly used for beta emitters detection. Most methods proposed in the past are time-consuming, as they are based on several stages of chemical and physical treatments, including precipitation, ashing, ion exchange and extraction (Wikins et al., 1984, Porter et al, 1961, Kimura et al., 1979). When measuring 90Sr/90Y activity by Cherenkov counting, most of the Cherenkov radiation is produced by 90Y (about 98.6%), due to the much higher energy of its beta particles relative to these from 90Sr. The counting efficiency varies strongly with color quenching, at a greater extent than in standard liquid scintillation counting (L'Annunziata, 2012), and therefore the quench correction is critical. The ‘‘external source area ratio’’ (ESAR) quench correction method was applied to measure 90Sr/90Y activities in aqueous samples with a wide range of quenching levels (Tsroya et al., 2009). This method was proved to be superior to all other quench correction methods (Tsroya et al., 2012) and is applicable also for determination of 90Sr/90Y in human urine (Tsroya et al., 2013). In the present work the applicability of the ESAR method to measurement of 90Sr/90Y activities in milk and some of its products was investigated

  5. Analysis of some egyptian cosmetic samples by using fast neutron activation analysis

    International Nuclear Information System (INIS)

    Medhat, M.E.; Hassan, M.F.; Ali, M.A.; Awaad, Z.

    2002-01-01

    A description of our neutron generator (NG) facility for neutron activation analysis is presented. As an example, the concentration of Na, Mg, Al, Si, K, Cl, Ca and Fe elements were determined in two domestic brands of face powder by using a beam of 14 MeV neutrons. An empirical expression for detector efficiency in terms of incident gamma ray energy and the source-detector distance has been obtained for a hyper pure germanium detector (HPGe) using different standard point sources. The comparison of the calculated efficiencies and the measured values in the energy range from 59.5 to 1332.2 keV and for source-to-detector distances of 5-30 cm show the agreement between the calculated values and the measured experimental values

  6. Improved Load Frequency Control Using a Fast Acting Active Disturbance Rejection Controller

    Directory of Open Access Journals (Sweden)

    Md Mijanur Rahman

    2017-10-01

    Full Text Available System frequency may change from defined values while transmitting power from one area to another in an interconnected power system due to various reasons such as load changes and faults. This frequency change causes a frequency error in the system. However, the system frequency should always be maintained close to the nominal value even in the presence of model uncertainties and physical constraints. This paper proposes an Active Disturbance Rejection Controller (ADRC-based load frequency control (LFC of an interconnected power system. The controller incorporates effects of generator inertia and generator electrical proximity to the point of disturbances. The proposed controller reduces the magnitude error of the area control error (ACE of an interconnected power system compared to the standard controller. The simulation results verify the effectiveness of proposed ADRC in the application of LFC of an interconnected power system.

  7. Diallel analysis to study the genetic makeup of spike and yield ...

    African Journals Online (AJOL)

    Five wheat genotypes were crossed in complete diallel fashion for gene action studies of spike length, spikelets per spike, grains per spike, grain weight per spike ... High magnitude of narrow sense heritability (h2n.s) was noticed for spikelets per spike (79%), and grains per spike (88%) thus illustrated fixable and additive ...

  8. Macroscopic phase-resetting curves for spiking neural networks

    Science.gov (United States)

    Dumont, Grégory; Ermentrout, G. Bard; Gutkin, Boris

    2017-10-01

    The study of brain rhythms is an open-ended, and challenging, subject of interest in neuroscience. One of the best tools for the understanding of oscillations at the single neuron level is the phase-resetting curve (PRC). Synchronization in networks of neurons, effects of noise on the rhythms, effects of transient stimuli on the ongoing rhythmic activity, and many other features can be understood by the PRC. However, most macroscopic brain rhythms are generated by large populations of neurons, and so far it has been unclear how the PRC formulation can be extended to these more common rhythms. In this paper, we describe a framework to determine a macroscopic PRC (mPRC) for a network of spiking excitatory and inhibitory neurons that generate a macroscopic rhythm. We take advantage of a thermodynamic approach combined with a reduction method to simplify the network description to a small number of ordinary differential equations. From this simplified but exact reduction, we can compute the mPRC via the standard adjoint method. Our theoretical findings are illustrated with and supported by numerical simulations of the full spiking network. Notably our mPRC framework allows us to predict the difference between effects of transient inputs to the excitatory versus the inhibitory neurons in the network.

  9. Automatic detection of interictal spikes using data mining models.

    Science.gov (United States)

    Valenti, Pablo; Cazamajou, Enrique; Scarpettini, Marcelo; Aizemberg, Ariel; Silva, Walter; Kochen, Silvia

    2006-01-15

    A prospective candidate for epilepsy surgery is studied both the ictal and interictal spikes (IS) to determine the localization of the epileptogenic zone. In this work, data mining (DM) classification techniques were utilized to build an automatic detection model. The selected DM algorithms are: Decision Trees (J 4.8), and Statistical Bayesian Classifier (naïve model). The main objective was the detection of IS, isolating them from the EEG's base activity. On the other hand, DM has an attractive advantage in such applications, in that the recognition of epileptic discharges does not need a clear definition of spike morphology. Furthermore, previously 'unseen' patterns could be recognized by the DM with proper 'training'. The results obtained showed that the efficacy of the selected DM algorithms is comparable to the current visual analysis used by the experts. Moreover, DM is faster than the time required for the visual analysis of the EEG. So this tool can assist the experts by facilitating the analysis of a patient's information, and reducing the time and effort required in the process.

  10. DETERMINATION OF LIMIT DETECTION OF THE ELEMENTS N, P, K, Si, Al, Fe, Cu, Cd, WITH FAST NEUTRON ACTIVATION USING NEUTRON GENERATOR

    OpenAIRE

    Sunardi, Sunardi; Muryono, Muryono

    2010-01-01

    Determination of limit detection of the elements N, P, K, Si, Al, Fe, Cu, Cd, with fast neutron activation using neutron generator has been done.  Samples prepared from SRM 2704, N, P, K elements from MERCK, Cu, Cd, Al from activation foil made in San Carlos, weighted and packed for certain weight then iradiated during 30 minutes with 14 MeV fast neutron using the neutron generator and then counted with gamma spectrometry (accuspec).  At this research condition of neutron generator was set at...

  11. Fast affine projections and the regularized modified filtered-error algorithm in multichannel active noise control.

    Science.gov (United States)

    Wesselink, J M; Berkhoff, A P

    2008-08-01

    In this paper, real-time results are given for broadband multichannel active noise control using the regularized modified filtered-error algorithm. As compared to the standard filtered-error algorithm, the improved convergence rate and stability of the algorithm are obtained by using an inner-outer factorization of the transfer path between the actuators and the error sensors, combined with a delay compensation technique using double control filters and a regularization technique that preserves the factorization properties. The latter techniques allow the use of relatively simple and efficient adaptation schemes in which filtering of the reference signals is unnecessary. Results are given for a multichannel adaptive feedback implementation based on the internal model control principle. In feedforward systems based on this algorithm, colored reference signals may lead to reduced convergence rates. An adaptive extension based on the use of affine projections is presented, for which real-time results and simulations are given, showing the improved convergence rates of the regularized modified filtered-error algorithm for colored reference signals.

  12. Fast feedback in active sensing: touch-induced changes to whisker-object interaction.

    Directory of Open Access Journals (Sweden)

    Dudi Deutsch

    Full Text Available Whisking mediated touch is an active sense whereby whisker movements are modulated by sensory input and behavioral context. Here we studied the effects of touching an object on whisking in head-fixed rats. Simultaneous movements of whiskers C1, C2, and D1 were tracked bilaterally and their movements compared. During free-air whisking, whisker protractions