WorldWideScience

Sample records for fast rotating stars

  1. MACULA: Fast Modeling of Rotational Modulations of Spotty Stars

    Science.gov (United States)

    Kipping, David

    2015-08-01

    Rotational modulations are frequently observed on stars observed by photometry surveys such as Kepler, with periodicities ranging from days to months and amplitudes of sub-parts-per-million to several percent. These variations may be studied to reveal important stellar properties such as rotational periods, inclinations and gradients of differential rotation. However, inverting the disk-integrated flux into a solution for spot number, sizes, contrasts, etc is highly degenerate and thereby necessitating an exhaustive search of the parameter space. In recognition of this, the software MACULA is designed to be a fast forward model of circular, grey spots on rotating stars, including effects such as differential rotation, spot evolution and even spot penumbra/umbra. MACULA seeks to achieve computational efficiency by using a wholly analytic description of the disk-integrated flux, which is described in Kipping (2012), leading to a computational improvement of three orders-of-magnitude over its numerical counterparts. As part of the hack day, I'll show how to simulate light curves with MACULA and provide examples with visualizations. I will also discuss the on-going development of the code, which will head towards modeling spot crossing events and radial velocity jitter and I encourage discussions amongst the participants on analytic methods to this end.

  2. Imprints of fast-rotating massive stars in the Galactic Bulge.

    Science.gov (United States)

    Chiappini, Cristina; Frischknecht, Urs; Meynet, Georges; Hirschi, Raphael; Barbuy, Beatriz; Pignatari, Marco; Decressin, Thibaut; Maeder, André

    2011-04-28

    The first stars that formed after the Big Bang were probably massive, and they provided the Universe with the first elements heavier than helium ('metals'), which were incorporated into low-mass stars that have survived to the present. Eight stars in the oldest globular cluster in the Galaxy, NGC 6522, were found to have surface abundances consistent with the gas from which they formed being enriched by massive stars (that is, with higher α-element/Fe and Eu/Fe ratios than those of the Sun). However, the same stars have anomalously high abundances of Ba and La with respect to Fe, which usually arises through nucleosynthesis in low-mass stars (via the slow-neutron-capture process, or s-process). Recent theory suggests that metal-poor fast-rotating massive stars are able to boost the s-process yields by up to four orders of magnitude, which might provide a solution to this contradiction. Here we report a reanalysis of the earlier spectra, which reveals that Y and Sr are also overabundant with respect to Fe, showing a large scatter similar to that observed in extremely metal-poor stars, whereas C abundances are not enhanced. This pattern is best explained as originating in metal-poor fast-rotating massive stars, which might point to a common property of the first stellar generations and even of the 'first stars'.

  3. Spectroscopic study of the extremely fast rotating star 44 Geminorum

    Czech Academy of Sciences Publication Activity Database

    Iliev, L.; Vennes, Stephane; Kawka, Adela; Kubát, Jiří; Németh, Péter; Borisov, G.; Kraus, Michaela

    2012-01-01

    Roč. 18, č. 12012 (2012), s. 20-28 ISSN 1313-2709 R&D Projects: GA AV ČR(CZ) IAA300030908; GA AV ČR IAA301630901; GA ČR GAP209/10/0967 Institutional support: RVO:67985815 Keywords : Be stars * emission line * fundamental parameter Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  4. Fast Rotating solar-like stars using asteroseismic datasets

    DEFF Research Database (Denmark)

    A. García, R.; Ceillier, T.; Campante, T.

    2011-01-01

    The NASA Kepler mission is providing an unprecedented set of asteroseismic data. In particular, short-cadence lightcurves (~60s samplings), allow us to study solar-like stars covering a wide range of masses, spectral types and evolutionary stages. Oscillations have been observed in around 600 out...

  5. Spinning like a blue straggler: the population of fast rotating blue straggler stars in ω Centauri

    Energy Technology Data Exchange (ETDEWEB)

    Mucciarelli, A.; Lovisi, L.; Ferraro, F. R.; Dalessandro, E.; Lanzoni, B. [Dipartimento di Fisica and Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Monaco, L. [European Southern Observatory, Casilla 19001, Santiago (Chile)

    2014-12-10

    By using high-resolution spectra acquired with FLAMES-GIRAFFE at the ESO/VLT, we measured the radial and rotational velocities for 110 blue straggler stars (BSSs) in ω Centauri, the globular cluster-like stellar system harboring the largest known BSS population. According to their radial velocities, 109 BSSs are members of the system. The rotational velocity distribution is very broad, with the bulk of BSSs spinning at less than ∼40 km s{sup –1} (in agreement with the majority of such stars observed in other globular clusters) and a long tail reaching ∼200 km s{sup –1}. About 40% of the sample has v{sub e} sin i > 40 km s{sup –1} and about 20% has v{sub e} sin i > 70 km s{sup –1}. Such a large fraction is very similar to the percentage of fast rotating BSSs observed in M4. Thus, ω Centauri is the second stellar cluster, beyond M4, with a surprisingly high population of fast spinning BSSs. We found a hint of radial behavior for a fraction of fast rotating BSSs, with a mild peak within one core radius, and a possible rise in the external regions (beyond four core radii). This may suggest that recent formation episodes of mass transfer BSSs occurred preferentially in the outskirts of ω Centauri, or that braking mechanisms able to slow down these stars are least efficient in the lowest density environments.

  6. The environment of the fast rotating star Achernar. III. Photospheric parameters revealed by the VLTI

    Science.gov (United States)

    Domiciano de Souza, A.; Kervella, P.; Moser Faes, D.; Dalla Vedova, G.; Mérand, A.; Le Bouquin, J.-B.; Espinosa Lara, F.; Rieutord, M.; Bendjoya, P.; Carciofi, A. C.; Hadjara, M.; Millour, F.; Vakili, F.

    2014-09-01

    Context. Rotation significantly impacts on the structure and life of stars. In phases of high rotation velocity (close to critical), the photospheric structure can be highly modified, and present in particular geometrical deformation (rotation flattening) and latitudinal-dependent flux (gravity darkening). The fastest known rotators among the nondegenerate stars close to the main sequence, Be stars, are key targets for studying the effects of fast rotation on stellar photospheres. Aims: We seek to determine the purely photospheric parameters of Achernar based on observations recorded during an emission-free phase (normal B phase). Methods: Several recent works proved that optical/IR long-baseline interferometry is the only technique able to sufficiently spatially resolve and measure photospheric parameters of fast rotating stars. We thus analyzed ESO-VLTI (PIONIER and AMBER) interferometric observations of Achernar to measure its photospheric parameters by fitting our physical model CHARRON using a Markov chain Monte Carlo method. This analysis was also complemented by spectroscopic, polarimetric, and photometric observations to investigate the status of the circumstellar environment of Achernar during the VLTI observations and to cross-check our model-fitting results. Results: Based on VLTI observations that partially resolve Achernar, we simultaneously measured five photospheric parameters of a Be star for the first time: equatorial radius (equatorial angular diameter), equatorial rotation velocity, polar inclination, position angle of the rotation axis projected on the sky, and the gravity darkening β coefficient (effective temperature distribution). The close circumstellar environment of Achernar was also investigated based on contemporaneous polarimetry, spectroscopy, and interferometry, including image reconstruction. This analysis did not reveal any important circumstellar contribution, so that Achernar was essentially in a normal B phase at least from mid

  7. Gravitational waves from rotating neutron stars and evaluation of fast chirp transform techniques

    CERN Document Server

    Strohmayer, T E

    2002-01-01

    X-ray observations suggest that neutron stars in low mass x-ray binaries (LMXB) are rotating with frequencies in the range 300-600 Hz. These spin rates are significantly less than the break-up rates for essentially all realistic neutron star equations of state, suggesting that some process may limit the spin frequencies of accreting neutron stars to this range. If the accretion-induced spin up torque is in equilibrium with gravitational radiation losses, these objects could be interesting sources of gravitational waves. I present a brief summary of current measurements of neutron star spins in LMXBs based on the observations of high-Q oscillations during thermonuclear bursts (so-called 'burst oscillations'). Further measurements of neutron star spins will be important in exploring the gravitational radiation hypothesis in more detail. To this end, I also present a study of fast chirp transform (FCT) techniques as described by Jenet and Prince (Prince T A and Jenet F A 2000 Phys. Rev. D 62 122001) in the conte...

  8. Chemical abundances of fast-rotating massive stars. I. Description of the methods and individual results

    Science.gov (United States)

    Cazorla, Constantin; Morel, Thierry; Nazé, Yaël; Rauw, Gregor; Semaan, Thierry; Daflon, Simone; Oey, M. S.

    2017-07-01

    Aims: Recent observations have challenged our understanding of rotational mixing in massive stars by revealing a population of fast-rotating objects with apparently normal surface nitrogen abundances. However, several questions have arisen because of a number of issues, which have rendered a reinvestigation necessary; these issues include the presence of numerous upper limits for the nitrogen abundance, unknown multiplicity status, and a mix of stars with different physical properties, such as their mass and evolutionary state, which are known to control the amount of rotational mixing. Methods: We have carefully selected a large sample of bright, fast-rotating early-type stars of our Galaxy (40 objects with spectral types between B0.5 and O4). Their high-quality, high-resolution optical spectra were then analysed with the stellar atmosphere modelling codes DETAIL/SURFACE or CMFGEN, depending on the temperature of the target. Several internal and external checks were performed to validate our methods; notably, we compared our results with literature data for some well-known objects, studied the effect of gravity darkening, or confronted the results provided by the two codes for stars amenable to both analyses. Furthermore, we studied the radial velocities of the stars to assess their binarity. Results: This first part of our study presents our methods and provides the derived stellar parameters, He, CNO abundances, and the multiplicity status of every star of the sample. It is the first time that He and CNO abundances of such a large number of Galactic massive fast rotators are determined in a homogeneous way. Based on observations obtained with the Heidelberg Extended Range Optical Spectrograph (HEROS) at the Telescopio Internacional de Guanajuato (TIGRE) with the SOPHIE échelle spectrograph at the Haute-Provence Observatory (OHP; Institut Pytheas; CNRS, France), and with the Magellan Inamori Kyocera Echelle (MIKE) spectrograph at the Magellan II Clay telescope

  9. NGC 1866: First Spectroscopic Detection of Fast-rotating Stars in a Young LMC Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Dotter, A.; Johnson, C. I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Marino, A. F.; Milone, A. P. [Australian National University, The Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Weston Creek, ACT 2611 (Australia); Bailey, J. I. III [Leiden Observatory, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands); Crane, J. D. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Mateo, M. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Olszewski, E. W. [The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States)

    2017-09-01

    High-resolution spectroscopic observations were taken of 29 extended main-sequence turnoff (eMSTO) stars in the young (∼200 Myr) Large Magellanic Cloud (LMC) cluster, NGC 1866, using the Michigan/ Magellan Fiber System and MSpec spectrograph on the Magellan -Clay 6.5 m telescope. These spectra reveal the first direct detection of rapidly rotating stars whose presence has only been inferred from photometric studies. The eMSTO stars exhibit H α emission (indicative of Be-star decretion disks), others have shallow broad H α absorption (consistent with rotation ≳150 km s{sup −1}), or deep H α core absorption signaling lower rotation velocities (≲150 km s{sup −1}). The spectra appear consistent with two populations of stars—one rapidly rotating, and the other, younger and slowly rotating.

  10. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Stergioulas Nikolaos

    2003-01-01

    Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.

  11. Rotating stars in relativity.

    Science.gov (United States)

    Paschalidis, Vasileios; Stergioulas, Nikolaos

    2017-01-01

    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  12. Characterizing exo-ring systems around fast-rotating stars using the Rossiter-McLaughlin effect

    Science.gov (United States)

    de Mooij, Ernst J. W.; Watson, Christopher A.; Kenworthy, Matthew A.

    2017-12-01

    Planetary rings produce a distinct shape distortion in transit light curves. However, to accurately model such light curves the observations need to cover the entire transit, especially ingress and egress, as well as an out-of-transit baseline. Such observations can be challenging for long period planets, where the transits may last for over a day. Planetary rings will also impact the shape of absorption lines in the stellar spectrum, as the planet and rings cover different parts of the rotating star (the Rossiter-McLaughlin effect). These line-profile distortions depend on the size, structure, opacity, obliquity and sky-projected angle of the ring system. For slow-rotating stars, this mainly impacts the amplitude of the induced velocity shift; however, for fast-rotating stars the large velocity gradient across the star allows the line distortion to be resolved, enabling direct determination of the ring parameters. We demonstrate that by modelling these distortions we can recover ring system parameters (sky-projected angle, obliquity and size) using only a small part of the transit. Substructure in the rings, e.g. gaps, can be recovered if the width of the features (δW) relative to the size of the star is similar to the intrinsic velocity resolution (set by the width of the local stellar profile, γ) relative to the stellar rotation velocity (v sini, i.e. δW/R* ≳ vsini/γ). This opens up a new way to study the ring systems around planets with long orbital periods, where observations of the full transit, covering the ingress and egress, are not always feasible.

  13. Why is there a dearth of close-in planets around fast-rotating stars?

    International Nuclear Information System (INIS)

    Teitler, Seth; Königl, Arieh

    2014-01-01

    We propose that the reported dearth of Kepler objects of interest (KOIs) with orbital periods P orb ≲ 2-3 days around stars with rotation periods P rot ≲ 5-10 days can be attributed to tidal ingestion of close-in planets by their host stars. We show that the planet distribution in this region of the log P orb -log P rot plane is qualitatively reproduced with a model that incorporates tidal interaction and magnetic braking as well as the dependence on the stellar core-envelope coupling timescale. We demonstrate the consistency of this scenario with the inferred break in the P orb distribution of close-in KOIs and point out a potentially testable prediction of this interpretation.

  14. NuSTAR and swift observations of the fast rotating magnetized white dwarf AE Aquarii

    DEFF Research Database (Denmark)

    Kitaguchi, Takao; An, Hongjun; Beloborodov, Andrei M.

    2014-01-01

    AE Aquarii is a cataclysmic variable with the fastest known rotating magnetized white dwarf (P-spin = 33.08 s). Compared to many intermediate polars, AE Aquarii shows a soft X-ray spectrum with a very low luminosity (L-X similar to 10(31) erg s(-1)). We have analyzed overlapping observations...... of this system with the NuSTAR and the Swift X-ray observatories in 2012 September. We find the 0.5-30 keV spectra to be well fitted by either an optically thin thermal plasma model with three temperatures of 0.75(-0.45)(+0.18), 2.29(-0.82)(+0.96), and 9.33(-2.18)(+6.07) keV, or an optically thin thermal plasma...

  15. Light-curve Modulation of Low-mass Stars in K2. I. Identification of 481 Fast Rotators in the Solar Neighborhood

    Science.gov (United States)

    Saylor, Dicy; Lepine, Sebastien; Crossfield, Ian; Petigura, Erik A.

    2018-01-01

    The K2 mission is targeting large numbers of nearby (d 40 mas yr‑1, V < 20). Additionally, the mission is targeting low-mass, high proper motion stars associated with the local (d < 500 pc) Galactic halo population also selected from SUPERBLINK. K2 campaigns 0 through 8 monitored a total of 26,518 of these cool main-sequence stars. We used the auto-correlation function to search for fast rotators by identifying short-period photometric modulations in the K2 light curves. We identified 481 candidate fast rotators with rotation periods <4 days that show light-curve modulations consistent with starspots. Their kinematics show low average transverse velocities, suggesting that they are part of the young disk population. A subset (13) of the fast rotators is found among those targets with colors and kinematics consistent with the local Galactic halo population and may represent stars spun up by tidal interactions in close binary systems. We further demonstrate that the M dwarf fast rotators selected from the K2 light curves are significantly more likely to have UV excess and discuss the potential of the K2 mission to identify new nearby young GKM dwarfs on the basis of their fast rotation rates. Finally, we discuss the possible use of local halo stars as fiducial, non-variable sources in the Kepler fields.

  16. NuSTAR AND SWIFT Observations of the Fast Rotating Magnetized White Dwarf AE Aquarii

    Science.gov (United States)

    Kitaguchi, Takao; An, Hongjun; Beloborodov, Andrei M.; Gotthelf, Eric V.; Hayashi, Takayuki; Kaspi, Victoria M.; Rana, Vikram R.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; hide

    2014-01-01

    AE Aquarii is a cataclysmic variable with the fastest known rotating magnetized white dwarf (P(sub spin) = 33.08 s). Compared to many intermediate polars, AE Aquarii shows a soft X-ray spectrum with a very low luminosity (LX (is) approximately 10(exp 31) erg per second). We have analyzed overlapping observations of this system with the NuSTAR and the Swift X-ray observatories in 2012 September. We find the 0.5-30 keV spectra to be well fitted by either an optically thin thermal plasma model with three temperatures of 0.75(+0.18 / -0.45), 2.29(+0.96 / -0.82), and 9.33 (+6.07 / -2.18) keV, or an optically thin thermal plasma model with two temperatures of 1.00 (+0.34 / -0.23) and 4.64 (+1.58 / -0.84) keV plus a power-law component with photon index of 2.50 (+0.17 / -0.23). The pulse profile in the 3-20 keV band is broad and approximately sinusoidal, with a pulsed fraction of 16.6% +/- 2.3%. We do not find any evidence for a previously reported sharp feature in the pulse profile.

  17. Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes

    NARCIS (Netherlands)

    Beck, P.G.; Montalban, J.; Kallinger, T.; De Ridder, J.; Aerts, C.; García, R.A.; Hekker, S.; Dupret, M.-A.; Mosser, B.; Eggenberger, P.; Stello, D.; Elsworth, Y.; Frandsen, S.; Carrier, F.; Hillen, M.; Gruberbauer, M.; Christensen-Dalsgaard, J.; Miglio, A.; Valentini, M.; Bedding, T.R.; Kjeldsen, H.; Girouard, F.R.; Hall, J.R.; Ibrahim, K.A.

    2012-01-01

    When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star's radius. Conservation of angular momentum requires that the cores of these stars

  18. Rotating Quark Stars in General Relativity

    Directory of Open Access Journals (Sweden)

    Enping Zhou

    2018-03-01

    Full Text Available We have built quasi-equilibrium models for uniformly rotating quark stars in general relativity. The conformal flatness approximation is employed and the Compact Object CALculator (cocal code is extended to treat rotating stars with surface density discontinuity. In addition to the widely used MIT bag model, we have considered a strangeon star equation of state (EoS, suggested by Lai and Xu, that is based on quark clustering and results in a stiff EoS. We have investigated the maximum mass of uniformly rotating axisymmetric quark stars. We have also built triaxially deformed solutions for extremely fast rotating quark stars and studied the possible gravitational wave emission from such configurations.

  19. Fast pulsars, strange stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1990-02-01

    The initial motivation for this work was the reported discovery in January 1989 of a 1/2 millisecond pulsar in the remnant of the spectacular supernova, 1987A. The status of this discovery has come into grave doubt as of data taken by the same group in February, 1990. At this time we must consider that the millisecond signal does not belong to the pulsar. The existence of a neutron star in remnant of the supernova is suspected because of recent observations on the light curve of the remnant, and of course by the neutrino burst that announced the supernova. However its frequency is unknown. I can make a strong case that a pulsar rotation period of about 1 ms divides those that can be understood quite comfortably as neutron stars, and those that cannot. What we will soon learn is whether there is an invisible boundary below which pulsar periods do not fall, in which case, all are presumable neutron stars, or whether there exist sub- millisecond pulsars, which almost certainly cannot be neutron stars. Their most plausible structure is that of a self-bound star, a strange-quark-matter star. The existence of such stars would imply that the ground state of the strong interaction is not, as we usually assume, hadronic matter, but rather strange quark matter. Let us look respectively at stars that are bound only by gravity, and hypothetical stars that are self-bound, for which gravity is so to speak, icing on the cake

  20. Rotating relativistic neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Glendenning, N.K.

    1991-07-21

    Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.

  1. Rotation of White Dwarf Stars

    OpenAIRE

    Kawaler, Steven D.

    2014-01-01

    I discuss and consider the status of observational determinations of the rotation velocities of white dwarf stars via asteroseismology and spectroscopy. While these observations have important implications on our understanding of the angular momentum evolution of stars in their late stages of evolution, more direct methods are sorely needed to disentangle ambiguities.

  2. THE FAST-ROTATING, LOW-GRAVITY SUBDWARF B STAR EC 22081-1916: REMNANT OF A COMMON ENVELOPE MERGER EVENT

    International Nuclear Information System (INIS)

    Geier, S.; Classen, L.; Heber, U.

    2011-01-01

    Hot subdwarf B stars (sdBs) are evolved core helium-burning stars with very thin hydrogen envelopes. In order to form an sdB, the progenitor has to lose almost all of its hydrogen envelope right at the tip of the red-giant branch. In binary systems, mass transfer to the companion provides the extraordinary mass loss required for their formation. However, apparently single sdBs exist as well and their formation has been unclear for decades. The merger of helium white dwarfs (He-WDs) leading to an ignition of core helium burning or the merger of a helium core and a low-mass star during the common envelope phase have been proposed as processes leading to sdB formation. Here we report the discovery of EC 22081-1916 as a fast-rotating, single sdB star of low gravity. Its atmospheric parameters indicate that the hydrogen envelope must be unusually thick, which is at variance with the He-WD merger scenario, but consistent with a common envelope merger of a low-mass, possibly substellar object with a red-giant core.

  3. Numerical study of rotating relativistic stars

    International Nuclear Information System (INIS)

    Wilson, J.R.

    1975-01-01

    The equations of structure for rotating stars in general relativity are presented and put in a form suitable for computer calculations. The results of equilibrium calculations for supermassive stars, neutron stars, and magnetically supported stars are reported, as are calculations of collapsing, rotating, and magnetized stars in the slowly changing gravitational field approximation. (auth)

  4. Differential rotation in magnetic stars

    International Nuclear Information System (INIS)

    Moss, D.

    1981-01-01

    The possibility that large-scale magnetic fields in stars are the product of a contemporary dynamo situated in the convective stellar core, rather than being a fossil from an earlier stage in the history of the star, is investigated. It is demonstrated that then the envelope will almost inevitably be in a state of differential rotation. Some simple models are constructed to illustrate the magnitude of the effects on the structure of the envelope and magnetic field. It is found that, for models which are relatively rapidly rotating, a modest differential rotation at the surface of the core may increase considerably the ratio of internal to surface field, but only give rise to a small surface differential rotation. (author)

  5. Slowly braked, rotating neutron stars

    Science.gov (United States)

    Sato, H.

    1975-01-01

    A slowly braked, rotating neutron star is believed to be a star which rapidly rotates, has no nebula, is nonpulsing, and has a long initial braking time of ten thousand to a million years because of a low magnetic field. Such an object might be observable as an extended weak source of infrared or radio wave radiation due to the scattering of low-frequency strong-wave photons by accelerated electrons. If these objects exist abundantly in the Galaxy, they would act as sources of relatively low-energy cosmic rays. Pulsars (rapidly braked neutron stars) are shown to have difficulties in providing an adequate amount of cosmic-ray matter, making these new sources seem necessary. The possibility that the acceleration mechanism around a slowly braked star may be not a direct acceleration by the strong wave but an acceleration due to plasma turbulence excited by the strong wave is briefly explored. It is shown that white dwarfs may also be slowly braked stars with braking times longer than 3.15 million years.

  6. Visualization and spectral synthesis of rotationally distorted stars

    International Nuclear Information System (INIS)

    Dall, T H; Sbordone, L

    2011-01-01

    Simple spherical, non-rotating stellar models are inadequate when describing real stars in the limit of very fast rotation: Both the observable spectrum and the geometrical shape of the star deviate strongly from simple models. We attempt to approach the problem of modeling geometrically distorted, rapidly rotating stars from a new angle: By constructing distorted geometrical models and integrating standard stellar models with varying temperature, gravity, and abundances, over the entire surface, we attempt a semi-empirical approach to modeling. Here we present our methodology, and present simple examples of applications.

  7. Hydromagnetic rotational braking of magnetic stars

    International Nuclear Information System (INIS)

    Fleck, R.C. Jr.

    1980-01-01

    It is suggested that the magnetic Ap stars can be rotationally decelerated to long periods by the braking action of the associated magnetic field on time scales of order 10 7 --10 10 years depending on whether the star's dipole field is aligned perpendicular or parallel to the rotation axis. Rotation includes a toroidal magnetic field in the plasma surrounding a star, and the accompanying magnetic stresses produce a net torque acting to despin the star. These results indicate that it is not necessary to postulate mass loss or mass accretion for this purely hydromagnetic braking effect

  8. Rotational velocities of low-mass stars

    International Nuclear Information System (INIS)

    Stauffer, J.B.; Hartmann, L.W.; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA)

    1986-01-01

    The rotational velocities of stars provide important clues to how stars form and evolve. Yet until recently, studies of stellar rotation were limited to stars more massive than the sun. This is beginning to change, and an observational outline of the rotational velocity evolution of stars less massive than the sun can now be provided. Low-mass stars rotate slowly during the early stages of premain-sequence evolution, and spin up as they contract to the main sequence. This spin-up culminates in a brief period of very rapid rotation at an age of order 50 million years. Physical interpretation of this increase in rotation and the subsequent main-sequence spin-down are complicated by the possibility of differential internal rotation. The observed rapidity of spin-down among G dwarfs suggests that initially only the outer convective envelopes of these stars are slowed. The data suggest an intrinsic spread in angular momentum among young stars of the same mass and age, a spread which is apparently minimized by the angular-momentum loss mechanism in old low-mass stars. 83 references

  9. Quark Deconfinement in Rotating Neutron Stars

    Directory of Open Access Journals (Sweden)

    Richard D. Mellinger

    2017-01-01

    Full Text Available In this paper, we use a three flavor non-local Nambu–Jona-Lasinio (NJL model, an improved effective model of Quantum Chromodynamics (QCD at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular emphasis is put on the possible existence of quark matter in the cores of rotating neutron stars (pulsars. In contrast to non-rotating neutron stars, whose particle compositions do not change with time (are frozen in, the type and structure of the matter in the cores of rotating neutron stars depends on the spin frequencies of these stars, which opens up a possible new window on the nature of matter deep in the cores of neutron stars. Our study shows that, depending on mass and rotational frequency, up to around 8% of the mass of a massive neutron star may be in the mixed quark-hadron phase, if the phase transition is treated as a Gibbs transition. We also find that the gravitational mass at which quark deconfinement occurs in rotating neutron stars varies quadratically with spin frequency, which can be fitted by a simple formula.

  10. The Fastest Rotating Pulsar: a Strange Star?

    Institute of Scientific and Technical Information of China (English)

    徐仁新; 徐轩彬; 吴鑫基

    2001-01-01

    According to the observational limits on the radius and mass, the fastest rotating pulsar (PSR 1937+21) is probably a strange star, or at least some neutron star equations of state should be ruled out, if we suggest that a dipole magnetic field is relevant to its radio emission. We presume that the millisecond pulsar is a strange star with much low mass, small radius and weak magnetic moment.

  11. Gravitational waves from rotating strained neutron stars

    International Nuclear Information System (INIS)

    Jones, D I

    2002-01-01

    In this review we examine the dynamics and gravitational wave detectability of rotating strained neutron stars. The discussion is divided into two halves: triaxial stars and precessing stars. We summarize recent studies on how crustal strains and magnetic fields can sustain triaxiality, and suggest that Magnus forces connected with pinned superfluid vortices might contribute to deformation also. The conclusions that could be drawn following the successful gravitational wave detection of a triaxial star are discussed, and areas requiring further study identified. The latest ideas regarding free precession are then outlined, and the recent suggestion of Middleditch et al (Middleditch et al 2000 New Astronomy 5 243; 2000 Preprint astro-ph/0010044) that the remnant of SN1987A contains a freely precessing star, spinning down by gravitational wave energy loss, is examined critically. We describe what we would learn about neutron stars should the gravitational wave detectors prove this hypothesis to be correct

  12. Strained coordinate methods in rotating stars. II

    International Nuclear Information System (INIS)

    Smith, B.L.

    1977-01-01

    It was shown in a previous paper (Smith, 1976) that the method of strained coordinates may be usefully employed in the determination of the structure of rotating polytropes. In the present work this idea is extended to Main-Sequence stars with conservative centrifugal fields. The structure variables, pressure, density and temperature are considered pure functions of an auxiliary coordinate s (the strained coordinate) and the governing equations written in a form that closely resembles the structure equations for spherical stars but with the correction factors that are functions of s. A systematic, order-by-order derivation of these factors is outlined and applied in detail to a Cowling-model star in uniform rotation. The techniques can be extended beyond first order and external boundary conditions are applied, as they should be, at the true surface of the star. Roche approximations are not needed. (Auth.)

  13. Evolution of rotating stars. III. Predicted surface rotation velocities for stars which conserve total angular momentum

    International Nuclear Information System (INIS)

    Endal, A.S.; Sofia, S.

    1979-01-01

    Predicted surface rotation velocities are presented for Population I stars at 10, 7, 5, 3, and 1.5M/sub sun/. The surface velocities have been computed for three different cases of angular momentum redistribution: no radial redistribution (rotation on decoupled shells), complete redistribution (rigid-body rotation), and partial redistribution as predicted by detailed consideration of circulation currents in rotation stars. The velocities for these cases are compared to each other and to observed stellar rotation rates (upsilon sin i).Near the main sequence, rotational effects can substantially reduce the moment of inertia of a star, so nonrotating models consistently underestimate the expected velocities for evolving stars. The magnitude of these effects is sufficient to explain the large numbers of Be stars and, perhaps, to explain the bimodal distribution of velocities observed for the O stars.On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Our calculations indicate that improved observations (by the Fourier-transform technique) of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection

  14. Physics, Formation and Evolution of Rotating Stars

    CERN Document Server

    Maeder, André

    2009-01-01

    Rotation is ubiquitous at each step of stellar evolution, from star formation to the final stages, and it affects the course of evolution, the timescales and nucleosynthesis. Stellar rotation is also an essential prerequisite for the occurrence of Gamma-Ray Bursts. In this book the author thoroughly examines the basic mechanical and thermal effects of rotation, their influence on mass loss by stellar winds, the effects of differential rotation and its associated instabilities, the relation with magnetic fields and the evolution of the internal and surface rotation. Further, he discusses the numerous observational signatures of rotational effects obtained from spectroscopy and interferometric observations, as well as from chemical abundance determinations, helioseismology and asteroseismology, etc. On an introductory level, this book presents in a didactical way the basic concepts of stellar structure and evolution in "track 1" chapters. The other more specialized chapters form an advanced course on the gradua...

  15. Limiting rotational period of neutron stars

    Science.gov (United States)

    Glendenning, Norman K.

    1992-11-01

    We seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties in which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass shedding would occur, is 0.33 ms for a M=1.442Msolar neutron star (the mass of PSR1913+16). A still lower curve, based only on the structure of Einstein's equations, limits any star whatsoever to lie in the plane above it. Hypothetical stars such as strange stars, if the matter of which they are made is self-bound in bulk at a sufficiently large equilibrium energy density, can lie in the region above the general-relativistic forbidden region, and in the region forbidden to neutron stars.

  16. Limiting rotational period of neutron stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1992-01-01

    We seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties in which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass shedding would occur, is 0.33 ms for a M=1.442M circle-dot neutron star (the mass of PSR1913+16). A still lower curve, based only on the structure of Einstein's equations, limits any star whatsoever to lie in the plane above it. Hypothetical stars such as strange stars, if the matter of which they are made is self-bound in bulk at a sufficiently large equilibrium energy density, can lie in the region above the general-relativistic forbidden region, and in the region forbidden to neutron stars

  17. Secular stability of rotating stars

    International Nuclear Information System (INIS)

    Imamura, J.N.; Friedman, J.L.; Durisen, R.H.

    1984-01-01

    In this work, we calculate the secular stability limits of rotating polytropes to nonaxisymmetric perturbations of low m. We consider polytropic indices ranging from 1 to 3 and several angular momentum distributions. Results are most conveniently presented in terms of the t-parameter, defined as the ratio of the rotational kinetic energy to the absolute value of the gravitational energy of the fluid. Previous work on polytropes considered only the m = 2 mode, which is unstable for values of the t-parameter greater than 0.14 +- 0.01 for the n values n = 1.5 and 3 and the angular momentum distributions tested (see Durisen and Imamura 1981). The GRR secular stability limit of the m = 2 mode for the Maclaurin spheroids (n = O) was determined by Chandrasekhar (1970). GRR stability limits of higher m modes for the Maclaurin spheroids were located approximately by Comins (1979a,b) and more precisely by Friedman (1983)

  18. General relativistic collapse of rotating stars

    International Nuclear Information System (INIS)

    Nakamura, T.

    1984-01-01

    When a rotating star begins to collapse, the gravity becomes so strong that there appears a region from which even a photon cannot escape. After the distortion of space-time is radiated as gravitational waves, a Kerr black hole is formed finally. One of the main goals for numerical relativity is to simulate the collapse of a rotating star under realistic conditions. However, to know both the dynamics of matter and the propagation of gravitational radiation seems to be very difficult. Therefore, in this paper the problem is divided into 4 stages. They are: (1) The time evolution of pure gravitational waves is calculated in a 2-D code. (2) In this stage, the author tries to understand the dynamics of a collapsing, rotating star in 2D code. (3) Combining the techniques from stages 1, 2, the author tries to know both the dynamics of matter and the propagation of gravitational waves generated by the nonspherical motion of matter. (4) The author simulates the gravitational collapse of a rotating star to a black hole in 3D. 25 references, 12 figures, 1 table

  19. Electromagnetic fields of rotating magnetized NUT stars

    International Nuclear Information System (INIS)

    Ahmedov, B.J.; Khugaev, A.V.; Ahmedov, B.J.

    2004-01-01

    Full text: Analytic general relativistic expressions for the electromagnetic fields external to a slowly-rotating magnetized NUT star with nonvanishing gravitomagnetic charge have been presented. Solutions for the electric and magnetic fields have been found after separating the Maxwell equations in the external background spacetime of a slowly rotating NUT star into angular and radial parts in the lowest order approximation. The star is considered isolated and in vacuum, with different models for stellar magnetic field: i) monopolar magnetic field and II) dipolar magnetic field aligned with the axis of rotation. We have shown that the general relativistic corrections due to the dragging of reference frames and gravitomagnetic charge are not present in the form of the magnetic fields but emerge only in the form of the electric fields. In particular, we have shown that the frame-dragging and gravitomagnetic charge provide an additional induced electric field which is analogous to the one introduced by the rotation of the star in the flat spacetime limit

  20. Secular stability of rotating stars

    International Nuclear Information System (INIS)

    Imamura, J.N.; Friedman, J.L.; Durisen, R.H.

    1984-01-01

    In this work, the authors calculate the secular stability limits of rotating polytropes to nonaxisymmetric perturbations of low m. Polytropic indices ranging from 1 to 3 and several angular momentum distributions are considered. Results are most conveniently presented in terms of the t-parameter, defined as the ratio of the rotational kinetic energy to the absolute value of the gravitational energy of the fluid. Previous work on polytropes considered only the m = 2 mode, which is unstable for values of the t-parameter greater than 0.14 +- 0.01 for the n values n = 1.5 and 3 and the angular momentum distributions tested (see Durisen and Imamura 1981). The GRR secular stability limit of the m - 2 mode for the Maclaurin spheroids (n = 0) was determined by Chandrasekhar (1970). GRR stability limits of higher m modes for the Maclaurin spheroids were located approximately by Comins (1979a,b) and more precisely by Friedman (1983). 16 references, 2 tables

  1. Prospects for asteroseismology of rapidly rotating B-type stars

    OpenAIRE

    Saio, Hideyuki

    2013-01-01

    In rapidly rotating stars Coriolis forces and centrifugal deformations modify the properties of oscillations; the Coriolis force is important for low-frequency modes, while the centrifugal deformation affects mainly p-modes. Here, we discuss properties of g- and r-mode oscillations in rotating stars. Predicted frequency spectra of high-order g-modes (and r-modes) excited in rapidly rotating stars show frequency groupings associated with azimuthal order $m$. We compare such properties with obs...

  2. Inertial modes of rigidly rotating neutron stars in Cowling approximation

    International Nuclear Information System (INIS)

    Kastaun, Wolfgang

    2008-01-01

    In this article, we investigate inertial modes of rigidly rotating neutron stars, i.e. modes for which the Coriolis force is dominant. This is done using the assumption of a fixed spacetime (Cowling approximation). We present frequencies and eigenfunctions for a sequence of stars with a polytropic equation of state, covering a broad range of rotation rates. The modes were obtained with a nonlinear general relativistic hydrodynamic evolution code. We further show that the eigenequations for the oscillation modes can be written in a particularly simple form for the case of arbitrary fast but rigid rotation. Using these equations, we investigate some general characteristics of inertial modes, which are then compared to the numerically obtained eigenfunctions. In particular, we derive a rough analytical estimate for the frequency as a function of the number of nodes of the eigenfunction, and find that a similar empirical relation matches the numerical results with unexpected accuracy. We investigate the slow rotation limit of the eigenequations, obtaining two different sets of equations describing pressure and inertial modes. For the numerical computations we only considered axisymmetric modes, while the analytic part also covers nonaxisymmetric modes. The eigenfunctions suggest that the classification of inertial modes by the quantum numbers of the leading term of a spherical harmonic decomposition is artificial in the sense that the largest term is not strongly dominant, even in the slow rotation limit. The reason for the different structure of pressure and inertial modes is that the Coriolis force remains important in the slow rotation limit only for inertial modes. Accordingly, the scalar eigenequation we obtain in that limit is spherically symmetric for pressure modes, but not for inertial modes

  3. Shoot the Stars--Focus on Earth's Rotation.

    Science.gov (United States)

    Russo, Richard

    1988-01-01

    Provides background information on the equipment and knowledge necessary to do an astronomy activity on the earth's rotation. Details an activity in which students can measure the rotation of the earth using a camera and the stars. (CW)

  4. Rotating neutron stars with exotic cores: masses, radii, stability

    Energy Technology Data Exchange (ETDEWEB)

    Haensel, P.; Bejger, M.; Fortin, M.; Zdunik, L. [Polish Academy of Sciences, N. Copernicus Astronomical Center, Warszawa (Poland)

    2016-03-15

    A set of theoretical mass-radius relations for rigidly rotating neutron stars with exotic cores, obtained in various theories of dense matter, is reviewed. Two basic observational constraints are used: the largest measured rotation frequency (716Hz) and the maximum measured mass (2M {sub CircleDot}). The present status of measuring the radii of neutron stars is described. The theory of rigidly rotating stars in general relativity is reviewed and limitations of the slow rotation approximation are pointed out. Mass-radius relations for rotating neutron stars with hyperon and quark cores are illustrated using several models. Problems related to the non-uniqueness of the crust-core matching are mentioned. Limits on rigid rotation resulting from the mass-shedding instability and the instability with respect to the axisymmetric perturbations are summarized. The problem of instabilities and of the back-bending phenomenon are discussed in detail. Metastability and instability of a neutron star core in the case of a first-order phase transition, both between pure phases, and into a mixed-phase state, are reviewed. The case of two disjoint families (branches) of rotating neutron stars is discussed and generic features of neutron-star families and of core-quakes triggered by the instabilities are considered. (orig.)

  5. Stellar dynamism. Activity and rotation of solar stars observed from the Kepler satellite

    International Nuclear Information System (INIS)

    Ceillier, Tugdual

    2015-01-01

    This thesis concerns the study of seismic solar-like stars' rotation and magnetic activity. We use data from the Kepler satellite to study the rotational history of these stars throughout their evolution. This allows to have a more complete picture of stellar rotation and magnetism. In the first part, we present the context of this PhD: astro-seismology, the seismic study of stars. We continue by describing the tool we developed to measure surface rotation of stars using photometric data from Kepler. We compare it to other methodologies used by the community and show that its efficiency is very high. In the second part, we apply this tool to around 500 main-sequence and sub-giant solar-like stars. We measure surface rotation periods and activity levels for 300 of them. We show that the measured periods and the ages from astro-seismology do not agree well with the standard period-age relationships and propose to modify these relationships for stars older than the Sun. We also use the surface rotation as a constraint to estimate the internal rotation of a small number of seismic targets. We demonstrate that these stars have, like the Sun, a very low differential rotation ratio. In the third part, we apply our surface rotation-measuring tool to the most extensive sample of red giants observed by Kepler, comprising more than 17,000 stars. We identify more than 360 fast rotating red giants and compare our detection rates with the ones predicted by theory to better understand the reasons for this rapid rotation. We also use stellar modelling to reproduce the internal rotation profile of a particular red giant. This allows us to emphasize how important implementing new angular momentum transport mechanisms in stellar evolution codes is. This work offers new results that are useful to a very wide community of stellar physicists. It also puts strong constraints on the evolution of solar-like stars' rotation and magnetic activity. (author) [fr

  6. ROTATION PERIODS OF OPEN-CLUSTER STARS .3.

    NARCIS (Netherlands)

    PROSSER, CF; SHETRONE, MD; DASGUPTA, A; BACKMAN, DE; LAAKSONEN, BD; BAKER, SW; MARSCHALL, LA; WHITNEY, BA; KUIJKEN, K; STAUFFER, [No Value

    We present the results from a photometric monitoring program of 15 open cluster stars and one weak-lined T Tauri star during late 1993/early 1994. Several slow rotators which are members of the Alpha Persei, Pleiades, and Hyades open clusters have been monitored and period estimates derived. Using

  7. Anelastic Models of Fully-Convective Stars: Differential Rotation, Meridional Circulation and Residual Entropy

    Science.gov (United States)

    Sainsbury-Martinez, Felix; Browning, Matthew; Miesch, Mark; Featherstone, Nicholas A.

    2018-01-01

    Low-Mass stars are typically fully convective, and as such their dynamics may differ significantly from sun-like stars. Here we present a series of 3D anelastic HD and MHD simulations of fully convective stars, designed to investigate how the meridional circulation, the differential rotation, and residual entropy are affected by both varying stellar parameters, such as the luminosity or the rotation rate, and by the presence of a magnetic field. We also investigate, more specifically, a theoretical model in which isorotation contours and residual entropy (σ‧ = σ ‑ σ(r)) are intrinsically linked via the thermal wind equation (as proposed in the Solar context by Balbus in 2009). We have selected our simulation parameters in such as way as to span the transition between Solar-like differential rotation (fast equator + slow poles) and ‘anti-Solar’ differential rotation (slow equator + fast poles), as characterised by the convective Rossby number and △Ω. We illustrate the transition from single-celled to multi-celled MC profiles, and from positive to negative latitudinal entropy gradients. We show that an extrapolation involving both TWB and the σ‧/Ω link provides a reasonable estimate for the interior profile of our fully convective stars. Finally, we also present a selection of MHD simulations which exhibit an almost unsuppressed differential rotation profile, with energy balances remaining dominated by kinetic components.

  8. Differential rotation of stars with multiple transiting planets

    Science.gov (United States)

    Netto, Yuri; Valio, Adriana

    2017-10-01

    If a star hosts a planet in an orbit such that it eclipses the star periodically, can be estimated the rotation profile of this star. If planets in multiplanetary system occult different stellar areas, spots in more than one latitude of the stellar disc can be detected. The monitored study of theses starspots in different latitudes allow us to infer the rotation profile of the star. We use the model described in Silva (2003) to characterize the starspots of Kepler-210, an active star with two planets. Kepler-210 is a late K star with an estimated age of 350 +/- 50 Myrs, average rotation period of 12.33 days, mass of 0.63 M⊙ and radius of 0.69 R⊙. The planets that eclipses this star have radii of 0.0498 R s and 0.0635 R s with orbital periods of 2.4532 +/- 0.0007 days and 7.9725 +/- 0.0014 days, respectively, where R s is the star radius.

  9. Investigating the Magnetospheres of Rapidly Rotating B-type Stars

    Science.gov (United States)

    Fletcher, C. L.; Petit, V.; Nazé, Y.; Wade, G. A.; Townsend, R. H.; Owocki, S. P.; Cohen, D. H.; David-Uraz, A.; Shultz, M.

    2017-11-01

    Recent spectropolarimetric surveys of bright, hot stars have found that ~10% of OB-type stars contain strong (mostly dipolar) surface magnetic fields (~kG). The prominent paradigm describing the interaction between the stellar winds and the surface magnetic field is the magnetically confined wind shock (MCWS) model. In this model, the stellar wind plasma is forced to move along the closed field loops of the magnetic field, colliding at the magnetic equator, and creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the hot wind material confined by the magnetic fields of these stars. Some B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force due to rapid rotation is predicted to cause faster wind outflows along the field lines, leading to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere (XADM) model, originally developed for slow rotators, with an implementation of new rapid rotational physics. Using X-ray spectroscopy from ESA's XMM-Newton space telescope, we observed 5 rapidly rotating B-types stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role the added centrifugal force plays in the magnetospheric X-ray emission of these stars.

  10. Lithium depletion and rotation in main-sequence stars

    International Nuclear Information System (INIS)

    Balachandran, S.

    1990-01-01

    Lithium abundances were measured in nearly 200 old disk-population F stars to examine the effects of rotational braking on the depletion of Li. The sample was selected to be slightly evolved off the main sequence so that the stars have completed all the Li depletion they will undergo on the main sequence. A large scatter in Li abundances in the late F stars is found, indicating that the Li depletion is not related to age and spectral type alone. Conventional depletion mechanisms like convective overshoot and microscopic diffusion are unable to explain Li depletion in F stars with thin convective envelopes and are doubly taxed to explain such a scatter. No correlation is found between Li abundance and the present projected rotational velocity and some of the most rapid rotators are undepleted, ruling out meridional circulation as the cause of Li depletion. There is a somewhat larger spread in Li abundances in the spun-down late F stars compared to the early F stars which should remain rotationally unaltered on the main sequence. 85 refs

  11. Asymmetric core collapse of rapidly rotating massive star

    Science.gov (United States)

    Gilkis, Avishai

    2018-02-01

    Non-axisymmetric features are found in the core collapse of a rapidly rotating massive star, which might have important implications for magnetic field amplification and production of a bipolar outflow that can explode the star, as well as for r-process nucleosynthesis and natal kicks. The collapse of an evolved rapidly rotating MZAMS = 54 M⊙ star is followed in three-dimensional hydrodynamic simulations using the FLASH code with neutrino leakage. A rotating proto-neutron star (PNS) forms with a non-zero linear velocity. This can contribute to the natal kick of the remnant compact object. The PNS is surrounded by a turbulent medium, where high shearing is likely to amplify magnetic fields, which in turn can drive a bipolar outflow. Neutron-rich material in the PNS vicinity might induce strong r-process nucleosynthesis. The rapidly rotating PNS possesses a rotational energy of E_rot ≳ 10^{52} erg. Magnetar formation proceeding in a similar fashion will be able to deposit a portion of this energy later on in the supernova ejecta through a spin-down mechanism. These processes can be important for rare supernovae generated by rapidly rotating progenitors, even though a complete explosion is not simulated in the present study.

  12. Effects of rotation on the evolution of primordial stars

    Science.gov (United States)

    Ekström, S.; Meynet, G.; Chiappini, C.; Hirschi, R.; Maeder, A.

    2008-10-01

    Context: Although still beyond our observational abilities, Population III stars are interesting objects from many perspectives. They are responsible for the re-ionisation of the inter-galactic medium. They also left their chemical imprint in the early Universe, which can be deciphered in the most metal-poor stars in the halo of our Galaxy. Aims: Rotation has been shown to play a determinant role at very low metallicity, bringing heavy mass loss where almost none was expected. Is this still true when the metallicity strictly equals zero? The aim of our study is to answer this question, and to determine how rotation changes the evolution and the chemical signature of the primordial stars. Methods: We have calculated seven differentially-rotating stellar models at zero metallicity, with masses between 9 and 200 M⊙. For each mass, we also calculated a corresponding model without rotation. The evolution is followed up to the pre-supernova stage. Results: We find that Z=0 models rotate with an internal profile Ω(r) close to local angular momentum conservation, because of a very weak core-envelope coupling. Rotational mixing drives an H-shell boost due to a sudden onset of the CNO cycle in the shell. This boost leads to a high 14N production, which can be as much as 106 times higher than the production of the non-rotating models. Generally, the rotating models produce much more metal than their non-rotating counterparts. The mass loss is very low, even for the models that reach critical velocity during the main sequence. It may however have an impact on the chemical enrichment of the Universe, because some of the stars are supposed to collapse directly into black holes. They would contribute to the enrichment only through their winds. While in that case non-rotating stars would not contribute at all, rotating stars may leave an imprint on their surrounding. Due to the low mass loss and the weak coupling, the core retains a high angular momentum at the end of the

  13. Hydrostatic Equilibria of Rotating Stars with Realistic Equation of State

    Science.gov (United States)

    Yasutake, Nobutoshi; Fujisawa, Kotaro; Okawa, Hirotada; Yamada, Shoichi

    Stars rotate generally, but it is a non-trivial issue to obtain hydrostatic equilibria for rapidly rotating stars theoretically, especially for baroclinic cases, in which the pressure depends not only on the density, but also on the temperature and compositions. It is clear that the stellar structures with realistic equation of state are the baroclinic cases, but there are not so many studies for such equilibria. In this study, we propose two methods to obtain hydrostatic equilibria considering rotation and baroclinicity, namely the weak-solution method and the strong-solution method. The former method is based on the variational principle, which is also applied to the calculation of the inhomogeneous phases, known as the pasta structures, in crust of neutron stars. We found this method might break the balance equation locally, then introduce the strong-solution method. Note that our method is formulated in the mass coordinate, and it is hence appropriated for the stellar evolution calculations.

  14. WHAT SETS THE INITIAL ROTATION RATES OF MASSIVE STARS?

    International Nuclear Information System (INIS)

    Rosen, Anna L.; Krumholz, Mark R.; Ramirez-Ruiz, Enrico

    2012-01-01

    The physical mechanisms that set the initial rotation rates in massive stars are a crucial unknown in current star formation theory. Observations of young, massive stars provide evidence that they form in a similar fashion to their low-mass counterparts. The magnetic coupling between a star and its accretion disk may be sufficient to spin down low-mass pre-main-sequence (PMS) stars to well below breakup at the end stage of their formation when the accretion rate is low. However, we show that these magnetic torques are insufficient to spin down massive PMS stars due to their short formation times and high accretion rates. We develop a model for the angular momentum evolution of stars over a wide range in mass, considering both magnetic and gravitational torques. We find that magnetic torques are unable to spin down either low-mass or high-mass stars during the main accretion phase, and that massive stars cannot be spun down significantly by magnetic torques during the end stage of their formation either. Spin-down occurs only if massive stars' disk lifetimes are substantially longer or their magnetic fields are much stronger than current observations suggest.

  15. A SCILAB Program for Computing General-Relativistic Models of Rotating Neutron Stars by Implementing Hartle's Perturbation Method

    Science.gov (United States)

    Papasotiriou, P. J.; Geroyannis, V. S.

    We implement Hartle's perturbation method to the computation of relativistic rigidly rotating neutron star models. The program has been written in SCILAB (© INRIA ENPC), a matrix-oriented high-level programming language. The numerical method is described in very detail and is applied to many models in slow or fast rotation. We show that, although the method is perturbative, it gives accurate results for all practical purposes and it should prove an efficient tool for computing rapidly rotating pulsars.

  16. SDSS-IV MaNGA: the different quenching histories of fast and slow rotators

    Science.gov (United States)

    Smethurst, R. J.; Masters, K. L.; Lintott, C. J.; Weijmans, A.; Merrifield, M.; Penny, S. J.; Aragón-Salamanca, A.; Brownstein, J.; Bundy, K.; Drory, N.; Law, D. R.; Nichol, R. C.

    2018-01-01

    Do the theorized different formation mechanisms of fast and slow rotators produce an observable difference in their star formation histories? To study this, we identify quenching slow rotators in the MaNGA sample by selecting those that lie below the star-forming sequence and identify a sample of quenching fast rotators that were matched in stellar mass. This results in a total sample of 194 kinematically classified galaxies, which is agnostic to visual morphology. We use u - r and NUV - u colours from the Sloan Digital Sky Survey and GALEX and an existing inference package, STARPY, to conduct a first look at the onset time and exponentially declining rate of quenching of these galaxies. An Anderson-Darling test on the distribution of the inferred quenching rates across the two kinematic populations reveals they are statistically distinguishable (3.2σ). We find that fast rotators quench at a much wider range of rates than slow rotators, consistent with a wide variety of physical processes such as secular evolution, minor mergers, gas accretion and environmentally driven mechanisms. Quenching is more likely to occur at rapid rates (τ ≲ 1 Gyr) for slow rotators, in agreement with theories suggesting slow rotators are formed in dynamically fast processes, such as major mergers. Interestingly, we also find that a subset of the fast rotators quench at these same rapid rates as the bulk of the slow rotator sample. We therefore discuss how the total gas mass of a merger, rather than the merger mass ratio, may decide a galaxy's ultimate kinematic fate.

  17. Nonlinear mode coupling in rotating stars and the r-mode instability in neutron stars

    International Nuclear Information System (INIS)

    Schenk, A.K.; Arras, P.; Flanagan, E.E.; Teukolsky, S.A.; Wasserman, I.

    2002-01-01

    We develop the formalism required to study the nonlinear interaction of modes in rotating Newtonian stars, assuming that the mode amplitudes are only mildly nonlinear. The formalism is simpler than previous treatments of mode-mode interactions for spherical stars, and simplifies and corrects previous treatments for rotating stars. At linear order, we elucidate and extend slightly a formalism due to Schutz, show how to decompose a general motion of a rotating star into a sum over modes, and obtain uncoupled equations of motion for the mode amplitudes under the influence of an external force. Nonlinear effects are added perturbatively via three-mode couplings, which suffices for moderate amplitude modal excitations; the formalism is easy to extend to higher order couplings. We describe a new, efficient way to compute the modal coupling coefficients, to zeroth order in the stellar rotation rate, using spin-weighted spherical harmonics. The formalism is general enough to allow computation of the initial trends in the evolution of the spin frequency and differential rotation of the background star. We apply this formalism to derive some properties of the coupling coefficients relevant to the nonlinear interactions of unstable r modes in neutron stars, postponing numerical integrations of the coupled equations of motion to a later paper. First, we clarify some aspects of the expansion in stellar rotation frequency Ω that is often used to compute approximate mode functions. We show that, in zero-buoyancy stars, the rotational modes (those modes whose frequencies vanish as Ω→0) are orthogonal to zeroth order in Ω. From an astrophysical viewpoint, the most interesting result of this paper is that many couplings of r modes to other rotational modes are small: either they vanish altogether because of various selection rules, or they vanish to lowest order in Ω or in compressibility. In particular, in zero-buoyancy stars, the coupling of three r modes is forbidden

  18. Extended I-Love relations for slowly rotating neutron stars

    Science.gov (United States)

    Gagnon-Bischoff, Jérémie; Green, Stephen R.; Landry, Philippe; Ortiz, Néstor

    2018-03-01

    Observations of gravitational waves from inspiralling neutron star binaries—such as GW170817—can be used to constrain the nuclear equation of state by placing bounds on stellar tidal deformability. For slowly rotating neutron stars, the response to a weak quadrupolar tidal field is characterized by four internal-structure-dependent constants called "Love numbers." The tidal Love numbers k2el and k2mag measure the tides raised by the gravitoelectric and gravitomagnetic components of the applied field, and the rotational-tidal Love numbers fo and ko measure those raised by couplings between the applied field and the neutron star spin. In this work, we compute these four Love numbers for perfect fluid neutron stars with realistic equations of state. We discover (nearly) equation-of-state independent relations between the rotational-tidal Love numbers and the moment of inertia, thereby extending the scope of I-Love-Q universality. We find that similar relations hold among the tidal and rotational-tidal Love numbers. These relations extend the applications of I-Love universality in gravitational-wave astronomy. As our findings differ from those reported in the literature, we derive general formulas for the rotational-tidal Love numbers in post-Newtonian theory and confirm numerically that they agree with our general-relativistic computations in the weak-field limit.

  19. Rapidly rotating general relativistic stars. Pt. 2. Differentially rotating polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Hidemi [Tokyo Univ. (Japan). Faculty of Science; Eriguchi, Yoshiharu [Tokyo Univ. (Japan). Dept. of Astronomy; Hachisu, Izumi [Kyoto Univ. (Japan). Dept. of Aeronautical Engineering

    1989-07-01

    We have applied the numerical method which was developed for Newtonian gravity to general relativistic, differentially rotating bodies including ring-like structures. A number of equilibrium structures are obtained for two different polytropic indices N=1/2 and N=3/2, because the various proposed equations of state for the nuclear density region fall into the range N=1/2 to 3/2 from the viewpoint of its softness. (author).

  20. for the internal rotation evolution of low-mass stars

    Directory of Open Access Journals (Sweden)

    Pinçon Charly

    2017-01-01

    Full Text Available Due to the space-borne missions CoRoT and Kepler, noteworthy breakthroughs have been made in our understanding of stellar evolution, and in particular about the angular momentum redistribution in stellar interiors. Indeed, the high-precision seismic data provide with the measurement of the mean core rotation rate for thousands of low-mass stars from the subgiant branch to the red giant branch. All these observations exhibit much lower core rotation rates than expected by current stellar evolution codes and they emphasize the need for an additional transport process. In this framework, internal gravity waves (herefater, IGW could play a signifivative role since they are known to be able to transport angular momentum. In this work, we estimate the effciency of the transport by the IGW that are generated by penetrative convection at the interface between the convective and the radiative regions. As a first step, this study is based on the comparison between the timescale for the waves to modify a given rotation profile and the contraction/expansion timescale throughout the radiative zone of 1.3M⊙ stellar models. We show that IGW, on their own, are ineffcient to slow down the core rotation of stars on the red giant branch, where the radiative damping becomes strong enough and prevent the IGW from reaching the innermost layers. However, we find that IGW generated by penetrative convection could effciently modify the core rotation of subgiant stars as soon as the amplitude of the radial differential rotation between the core and the base of the convective zone is high enough, with typical values close to the observed rotation rates in these stars. This result argues for the necessity to account for IGW generated by penetrative convection in stellar modeling and in the angular momentum redistribution issue.

  1. 26Al yields from rotating Wolf--Rayet star models

    OpenAIRE

    Vuissoz, C.; Meynet, G.; Knoedlseder, J.; Cervino, M.; Schaerer, D.; Palacios, A.; Mowlavi, N.

    2003-01-01

    We present new $^{26}$Al stellar yields from rotating Wolf--Rayet stellar models which, at solar metallicity, well reproduce the observed properties of the Wolf-Rayet populations. These new yields are enhanced with respect to non--rotating models, even with respect to non--rotating models computed with enhanced mass loss rates. We briefly discuss some implications of the use of these new yields for estimating the global contribution of Wolf-Rayet stars to the quantity of $^{26}$Al now present...

  2. Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment

    International Nuclear Information System (INIS)

    Comer, G.L.

    2004-01-01

    Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit

  3. EVOLUTION OF ROTATIONAL VELOCITIES OF A-TYPE STARS

    International Nuclear Information System (INIS)

    Yang Wuming; Bi Shaolan; Tian Zhijia; Meng Xiangcun

    2013-01-01

    The equatorial velocity of A-type stars undergoes an acceleration in the first third of the main sequence (MS) stage, but the velocity decreases as if the stars were not undergoing any redistribution of angular momentum in the external layers in the last stage of the MS phase. Our calculations show that the acceleration and the decrease of the equatorial velocity can be reproduced by the evolution of the differential rotation zero-age MS model with the angular momentum transport caused by hydrodynamic instabilities during the MS stage. The acceleration results from the fact that the angular momentum stored in the interiors of the stars is transported outward. In the last stage, the core and the radiative envelope are uncoupling, and the rotation of the envelope is a quasi-solid rotation; the uncoupling and the expansion of the envelope indicate that the decrease of the equatorial velocity approximately follows the slope for the change in the equatorial velocity of the model without any redistribution of angular momentum. When the fractional age 0.3 ∼ MS ∼< 0.5, the equatorial velocity remains almost constant for stars whose central density increases with age in the early stage of the MS phase, while the velocity decreases with age for stars whose central density decreases with age in the early stage of the MS phase.

  4. DISCOVERY OF TWO RARE RIGIDLY ROTATING MAGNETOSPHERE STARS IN THE APOGEE SURVEY

    International Nuclear Information System (INIS)

    Eikenberry, Stephen S.; Garner, Alan; Chojnowski, S. Drew; Majewski, Steven R.; Whelan, David G.; Borish, H. Jacob; Hearty, Fred; Li, Zhi-Yun; Nidever, David L.; Skrutskie, Michael; Wisniewski, John; Shetrone, Matthew; Bizyaev, Dmitry; Ebelke, Garrett; Davenport, James R. A.; Feuillet, Diane; Holtzman, Jon; Frinchaboy, Peter M.; Mészáros, Sz.; Schneider, Donald P.

    2014-01-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE)—one of the Sloan Digital Sky Survey III programs—is using near-infrared (NIR) spectra of ∼100,000 red giant branch star candidates to study the structure of the Milky Way. In the course of the survey, APOGEE also acquires spectra of hot field stars to serve as telluric calibrators for the primary science targets. We report the serendipitous discovery of two rare, fast-rotating B-stars of the σ Ori E type among those blue field stars observed during the first year of APOGEE operations. Both of the discovered stars display the spectroscopic signatures of rigidly rotating magnetospheres (RRM) common to this class of highly magnetized (B ∼ 10 kGauss) stars, increasing the number of known RRM stars by ∼10%. One (HD 345439) is a main-sequence B-star with unusually strong He absorption (similar to σ Ori E), while the other (HD 23478) fits a ''He-normal'' B3IV classification. We combine the APOGEE discovery spectra with other optical and NIR spectra of these two stars, and of σ Ori E itself, to show how NIR spectroscopy can be a uniquely powerful tool for discovering more of these rare objects, which may show little/no RRM signatures in their optical spectra. We discuss the potential for further discovery of σ Ori E type stars, as well as the implications of our discoveries for the population of these objects and insights into their origin and evolution

  5. DISCOVERY OF TWO RARE RIGIDLY ROTATING MAGNETOSPHERE STARS IN THE APOGEE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Eikenberry, Stephen S.; Garner, Alan [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Chojnowski, S. Drew; Majewski, Steven R.; Whelan, David G.; Borish, H. Jacob; Hearty, Fred; Li, Zhi-Yun; Nidever, David L.; Skrutskie, Michael [Department of Astronomy, University of Virginia, 530 McCormick Rd, Charlottesville, VA 22904 (United States); Wisniewski, John [Department of Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Shetrone, Matthew [University of Texas, McDonald Observatory, 3640 Dark Sky Drive, Fort Davis, TX (United States); Bizyaev, Dmitry; Ebelke, Garrett [Apache Point Observatory, 2001 Apache Point Rd, Sunspot, NM 88349 (United States); Davenport, James R. A. [Department of Astronomy, University of Washington, Box 351580, U.W., Seattle, WA 98195-1580 (United States); Feuillet, Diane; Holtzman, Jon [Department of Astronomy, New Mexico State University, 1780 E University Ave, Las Cruces, NM 88003 (United States); Frinchaboy, Peter M. [Department of Physics and Astronomy, Texas Christian University, Box 298840, Fort Worth, TX 76129 (United States); Mészáros, Sz. [Instituto de Astrofísica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); and others

    2014-04-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE)—one of the Sloan Digital Sky Survey III programs—is using near-infrared (NIR) spectra of ∼100,000 red giant branch star candidates to study the structure of the Milky Way. In the course of the survey, APOGEE also acquires spectra of hot field stars to serve as telluric calibrators for the primary science targets. We report the serendipitous discovery of two rare, fast-rotating B-stars of the σ Ori E type among those blue field stars observed during the first year of APOGEE operations. Both of the discovered stars display the spectroscopic signatures of rigidly rotating magnetospheres (RRM) common to this class of highly magnetized (B ∼ 10 kGauss) stars, increasing the number of known RRM stars by ∼10%. One (HD 345439) is a main-sequence B-star with unusually strong He absorption (similar to σ Ori E), while the other (HD 23478) fits a ''He-normal'' B3IV classification. We combine the APOGEE discovery spectra with other optical and NIR spectra of these two stars, and of σ Ori E itself, to show how NIR spectroscopy can be a uniquely powerful tool for discovering more of these rare objects, which may show little/no RRM signatures in their optical spectra. We discuss the potential for further discovery of σ Ori E type stars, as well as the implications of our discoveries for the population of these objects and insights into their origin and evolution.

  6. Seismology of rapidly rotating and solar-like stars

    Science.gov (United States)

    Reese, Daniel Roy

    2018-05-01

    A great deal of progress has been made in stellar physics thanks to asteroseismology, the study of pulsating stars. Indeed, asteroseismology is currently the only way to probe the internal structure of stars. The work presented here focuses on some of the theoretical aspects of this domain and addresses two broad categories of stars, namely solar-like pulsators (including red giants), and rapidly rotating pulsating stars. The work on solar-like pulsators focuses on setting up methods for efficiently characterising a large number of stars, in preparation for space missions like TESS and PLATO 2.0. In particular, the AIMS code applies an MCMC algorithm to find stellar properties and a sample of stellar models which fit a set of seismic and classic observational constraints. In order to reduce computation time, this code interpolates within a precalculated grid of models, using a Delaunay tessellation which allows a greater flexibility on the construction of the grid. Using interpolated models based on the outputs from this code or models from other forward modelling codes, it is possible to obtain refined estimates of various stellar properties such as the mean density thanks to inversion methods put together by me and G. Buldgen, my former PhD student. Finally, I show how inversion-type methods can also be used to test more qualitative information such as whether a decreasing rotation profile is compatible with a set of observed rotational splittings and a given reference model. In contrast to solar-like pulsators, the pulsation modes of rapidly rotating stars remain much more difficult to interpret due to the complexity of the numerical calculations needed to calculate such modes, the lack of simple frequency patterns, and the fact that it is difficult to predict mode amplitudes. The work described here therefore focuses on addressing the above difficulties one at a time in the hopes that it will one day be possible to carry out detailed asteroseismology in these

  7. Single rotating stars and the formation of bipolar planetary nebula

    Energy Technology Data Exchange (ETDEWEB)

    García-Segura, G. [Instituto de Astronomía, Universidad Nacional Autónoma de Mexico, Km. 103 Carr. Tijuana-Ensenada, 22860 Ensenada, B. C. (Mexico); Villaver, E. [Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Langer, N. [Argelander-Institut für Astronomie, Universität Bonn, D-53121 Bonn (Germany); Yoon, S.-C. [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul, 151-747 (Korea, Republic of); Manchado, A., E-mail: ggs@astrosen.unam.mx [Instituto de Astrofísica de Canarias, Via Láctea s/n, E-38200 La Laguna, Tenerife (Spain)

    2014-03-10

    We have computed new stellar evolution models that include the effects of rotation and magnetic torques under different hypotheses. The goal is to test whether a single star can sustain the rotational velocities needed in the envelope for magnetohydrodynamical(MHD) simulations to shape bipolar planetary nebulae (PNe) when high mass-loss rates take place. Stellar evolution models with main sequence masses of 2.5 and 5 M {sub ☉} and initial rotational velocities of 250 km s{sup –1} have been followed through the PNe formation phase. We find that stellar cores have to be spun down using magnetic torques in order to reproduce the rotation rates observed for white dwarfs. During the asymptotic giant branch phase and beyond, the magnetic braking of the core has a practically null effect on increasing the rotational velocity of the envelope since the stellar angular momentum is efficiently removed by the wind. We have also tested the best possible case scenarios in rather non-physical contexts to give enough angular momentum to the envelope. We find that we cannot get the envelope of a single star to rotate at the speeds needed for MHD simulations to form bipolar PNe. We conclude that single stellar rotators are unlikely to be the progenitors of bipolar PNe under the current MHD model paradigm.

  8. Absolute limit on rotation of gravitationally bound stars

    Science.gov (United States)

    Glendenning, N. K.

    1994-03-01

    The authors seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass-shedding would occur, is 0.33 ms for a M = 1.442 solar mass neutron star (the mass of PSR1913+16). If the limit were found to be broken by any pulsar, it would signal that the confined hadronic phase of ordinary nucleons and nuclei is only metastable.

  9. Eigenmode frequency distribution of rapidly rotating neutron stars

    International Nuclear Information System (INIS)

    Boutloukos, Stratos; Nollert, Hans-Peter

    2007-01-01

    We use perturbation theory and the relativistic Cowling approximation to numerically compute characteristic oscillation modes of rapidly rotating relativistic stars which consist of a perfect fluid obeying a polytropic equation of state. We present a code that allows the computation of modes of arbitrary order. We focus here on the overall distribution of frequencies. As expected, we find an infinite pressure mode spectrum extending to infinite frequency. In addition we obtain an infinite number of inertial mode solutions confined to a finite, well-defined frequency range which depends on the compactness and the rotation frequency of the star. For nonaxisymmetric modes we observe how this range is shifted with respect to the axisymmetric ones, moving towards negative frequencies and thus making all m>2 modes unstable. We discuss whether our results indicate that the star's spectrum must have a continuous part, as opposed to simply containing an infinite number of discrete modes

  10. Three-hair relations for rotating stars: Nonrelativistic limit

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Leo C. [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States); Yagi, Kent; Yunes, Nicolás, E-mail: leostein@astro.cornell.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2014-06-10

    The gravitational field outside of astrophysical black holes is completely described by their mass and spin frequency, as expressed by the no-hair theorems. These theorems assume vacuum spacetimes, and thus they apply only to black holes and not to stars. Despite this, we analytically find that the gravitational potential of arbitrarily rapid, rigidly rotating stars can still be described completely by only their mass, spin angular momentum, and quadrupole moment. Although these results are obtained in the nonrelativistic limit (to leading order in a weak-field expansion of general relativity, GR), they are also consistent with fully relativistic numerical calculations of rotating neutron stars. This description of the gravitational potential outside the source in terms of just three quantities is approximately universal (independent of equation of state). Such universality may be used to break degeneracies in pulsar and future gravitational wave observations to extract more physics and test GR in the strong-field regime.

  11. macula: Rotational modulations in the photometry of spotted stars

    Science.gov (United States)

    Kipping, David M.

    2012-09-01

    Photometric rotational modulations due to starspots remain the most common and accessible way to study stellar activity. Modelling rotational modulations allows one to invert the observations into several basic parameters, such as the rotation period, spot coverage, stellar inclination and differential rotation rate. The most widely used analytic model for this inversion comes from Budding (1977) and Dorren (1987), who considered circular, grey starspots for a linearly limb darkened star. That model is extended to be more suitable in the analysis of high precision photometry such as that by Kepler. Macula, a Fortran 90 code, provides several improvements, such as non-linear limb darkening of the star and spot, a single-domain analytic function, partial derivatives for all input parameters, temporal partial derivatives, diluted light compensation, instrumental offset normalisations, differential rotation, starspot evolution and predictions of transit depth variations due to unocculted spots. The inclusion of non-linear limb darkening means macula has a maximum photometric error an order-of-magnitude less than that of Dorren (1987) for Sun-like stars observed in the Kepler-bandpass. The code executes three orders-of-magnitude faster than comparable numerical codes making it well-suited for inference problems.

  12. Gravitational waves from rotating proto-neutron stars

    International Nuclear Information System (INIS)

    Ferrari, V; Gualtieri, L; Pons, J A; Stavridis, A

    2004-01-01

    We study the effects of rotation on the quasi-normal modes (QNMs) of a newly born proto-neutron star (PNS) at different evolutionary stages, until it becomes a cold neutron star (NS). We use the Cowling approximation, neglecting spacetime perturbations, and consider different models of evolving PNS. The frequencies of the modes of a PNS are considerably lower than those of a cold NS, and are further lowered by rotation; consequently, if QNMs were excited in a sufficiently energetic process, they would radiate waves that could be more easily detectable by resonant-mass and interferometric detectors than those emitted by a cold NS. We find that for high rotation rates, some of the g-modes become unstable via the CFS instability; however, this instability is likely to be suppressed by competing mechanisms before emitting a significant amount of gravitational waves

  13. Rotation, expansion and duplicity of Be stars

    International Nuclear Information System (INIS)

    Harmanec, P.

    1982-01-01

    Many different models have been suggested, or even computed, to explain various specific aspects of the Be phenomenon. According to the author, there are only three general conceptions attempting to explain the Be phenomenon in its complexity: the rotational hypothesis proposed originally by Struve (1931); the hypothesis of radial outflow of matter, first suggested by Gerasimovic (1934); and the binary hypothesis, formulated in a general way by Kriz and Harmanec (1975). The basic principles of these three competing conceptions are outlined and their successes and pitfalls are evaluated in their relation to the available observational data. (Auth.)

  14. The role of rotation in the evolution of massive stars losing mass

    International Nuclear Information System (INIS)

    Sreenivasan, S.R.; Wilson, W.J.F.

    1979-01-01

    The role of differential and solid body rotation in the evolution of massive stars undergoing mass loss is discussed. The implications for Of, WR, β Cephei stars and shell stars are brought out. (Auth.)

  15. An accurate metric for the spacetime around rotating neutron stars

    Science.gov (United States)

    Pappas, George

    2017-04-01

    The problem of having an accurate description of the spacetime around rotating neutron stars is of great astrophysical interest. For astrophysical applications, one needs to have a metric that captures all the properties of the spacetime around a rotating neutron star. Furthermore, an accurate appropriately parametrized metric, I.e. a metric that is given in terms of parameters that are directly related to the physical structure of the neutron star, could be used to solve the inverse problem, which is to infer the properties of the structure of a neutron star from astrophysical observations. In this work, we present such an approximate stationary and axisymmetric metric for the exterior of rotating neutron stars, which is constructed using the Ernst formalism and is parametrized by the relativistic multipole moments of the central object. This metric is given in terms of an expansion on the Weyl-Papapetrou coordinates with the multipole moments as free parameters and is shown to be extremely accurate in capturing the physical properties of a neutron star spacetime as they are calculated numerically in general relativity. Because the metric is given in terms of an expansion, the expressions are much simpler and easier to implement, in contrast to previous approaches. For the parametrization of the metric in general relativity, the recently discovered universal 3-hair relations are used to produce a three-parameter metric. Finally, a straightforward extension of this metric is given for scalar-tensor theories with a massless scalar field, which also admit a formulation in terms of an Ernst potential.

  16. 12000 rotation periods of Kepler stars (Nielsen+, 2013)

    DEFF Research Database (Denmark)

    Nielsen, M. B.; Gizon, L.; Schunker, H.

    2013-01-01

    Rotation periods of 12253 stars in the Kepler field. The periods are determined by the brightness variations, from star spots or active regions, in the light curves of the white light photometry obtained by the Kepler spacecraft. The median absolute deviation from the median (MAD) of the periods...... shows the scatter of periods for each star, over 6 or more (out of 8 analyzed) Kepler quarters. The g-r color index, E(B-V), radius, surface gravity, and effective temperature are from the Kepler Input Catalog (KIC). Column 9 (TF) indicates whether or not the msMAP data for a given star satisfies...... the selection criteria described in section 2. Of these, there are 86 stars with periods from the msMAP data that differ from the period derived from the PDCMAP data by more than one frequency resolution element (1/90d-1). For these stars the msMAP periods are therefore given in column 10 as a none-zero value...

  17. Rotation, activity, and lithium abundance in cool binary stars

    Science.gov (United States)

    Strassmeier, K. G.; Weber, M.; Granzer, T.; Järvinen, S.

    2012-10-01

    We have used two robotic telescopes to obtain time-series high-resolution optical echelle spectroscopy and V I and/or by photometry for a sample of 60 active stars, mostly binaries. Orbital solutions are presented for 26 double-lined systems and for 19 single-lined systems, seven of them for the first time but all of them with unprecedented phase coverage and accuracy. Eighteen systems turned out to be single stars. The total of 6609 {R=55 000} échelle spectra are also used to systematically determine effective temperatures, gravities, metallicities, rotational velocities, lithium abundances and absolute Hα-core fluxes as a function of time. The photometry is used to infer unspotted brightness, {V-I} and/or b-y colors, spot-induced brightness amplitudes and precise rotation periods. An extra 22 radial-velocity standard stars were monitored throughout the science observations and yield a new barycentric zero point for our STELLA/SES robotic system. Our data are complemented by literature data and are used to determine rotation-temperature-activity relations for active binary components. We also relate lithium abundance to rotation and surface temperature. We find that 74 % of all known rapidly-rotating active binary stars are synchronized and in circular orbits but 26 % (61 systems) are rotating asynchronously of which half have {P_rot>P_orb} and {e>0}. Because rotational synchronization is predicted to occur before orbital circularization active binaries should undergo an extra spin-down besides tidal dissipation. We suspect this to be due to a magnetically channeled wind with its subsequent braking torque. We find a steep increase of rotation period with decreasing effective temperature for active stars, P_rot ∝ T_eff-7, for both single and binaries, main sequence and evolved. For inactive, single giants with {P_rot>100} d, the relation is much weaker, {P_rot ∝ T_eff-1.12}. Our data also indicate a period-activity relation for Hα of the form {R_Hα ∝ P

  18. Collapse of differentially rotating neutron stars and cosmic censorship

    International Nuclear Information System (INIS)

    Giacomazzo, Bruno; Rezzolla, Luciano; Stergioulas, Nikolaos

    2011-01-01

    We present new results on the dynamics and gravitational-wave emission from the collapse of differentially rotating neutron stars. We have considered a number of polytropic stellar models having different values of the dimensionless angular momentum J/M 2 , where J and M are the asymptotic angular momentum and mass of the star, respectively. For neutron stars with J/M 2 2 >1, i.e. 'supra-Kerr' models, on the other hand, we were not able to find models that are dynamically unstable and all of the computed supra-Kerr models were found to be far from the stability threshold. For these models a gravitational collapse is possible only after a very severe and artificial reduction of the pressure, which then leads to a torus developing nonaxisymmetric instabilities and eventually contracting to a stable axisymmetric stellar configuration. While this does not exclude the possibility that a naked singularity can be produced by the collapse of a differentially rotating star, it also suggests that cosmic censorship is not violated and that generic conditions for a supra-Kerr progenitor do not lead to a naked singularity.

  19. Rotation and magnetism in intermediate-mass stars

    Science.gov (United States)

    Quentin, Léo G.; Tout, Christopher A.

    2018-06-01

    Rotation and magnetism are increasingly recognized as important phenomena in stellar evolution. Surface magnetic fields from a few to 20 000 G have been observed and models have suggested that magnetohydrodynamic transport of angular momentum and chemical composition could explain the peculiar composition of some stars. Stellar remnants such as white dwarfs have been observed with fields from a few to more than 109 G. We investigate the origin of and the evolution, on thermal and nuclear rather than dynamical time-scales, of an averaged large-scale magnetic field throughout a star's life and its coupling to stellar rotation. Large-scale magnetic fields sustained until late stages of stellar evolution with conservation of magnetic flux could explain the very high fields observed in white dwarfs. We include these effects in the Cambridge stellar evolution code using three time-dependant advection-diffusion equations coupled to the structural and composition equations of stars to model the evolution of angular momentum and the two components of the magnetic field. We present the evolution in various cases for a 3 M_{⊙} star from the beginning to the late stages of its life. Our particular model assumes that turbulent motions, including convection, favour small-scale field at the expense of large-scale field. As a result, the large-scale field concentrates in radiative zones of the star and so is exchanged between the core and the envelope of the star as it evolves. The field is sustained until the end of the asymptotic giant branch, when it concentrates in the degenerate core.

  20. Gamma-ray bursts from fast, galactic neutron stars

    International Nuclear Information System (INIS)

    Colgate, S.A.; Leonard, P.J.

    1996-01-01

    What makes a Galactic model of gamma-ray bursts (GBs) feasible is the observation of a new population of objects, fast neutron stars, that are isotropic with respect to the galaxy following a finite period, ∼30 My, after their formation (1). Our Galactic model for the isotropic component of GBs is based upon high-velocity neutron stars (NSs) that have accretion disks. These fast NSs are formed in tidally locked binaries, producing a unique population of high velocity (approx-gt 10 3 kms -1 ) and slowly rotating (8 s) NSs. Tidal locking occurs due to the meridional circulation caused by the conservation of angular momentum of the tidal lobes. Following the collapse to a NS and the explosion, these lobes initially perturb the NS in the direction of the companion. Subsequent accretion (1 to 2 s) occurs on the rear side of the initial motion, resulting in a runaway acceleration of the NS by neutrino emission from the hot accreted matter. The recoil momentum of the relativistic neutrino emission from the localized, down flowing matter far exceeds the momentum drag of the accreted matter. The recoil of the NS is oriented towards the companion, but the NS misses because of the pre-explosion orbital motion. The near miss captures matter from the companion and forms a disk around the NS. Accretion onto the NS from this initially gaseous disk due to the ''alpha'' viscosity results in a soft gamma-ray repeater phase, which lasts ∼10 4 yr. Later, after the neutron star has moved ∼30 kpc from its birthplace, solid bodies form in the disk, and accrete to planetoid size bodies after ∼3x10 7 years. Some of these planetoid bodies, with a mass of ∼10 21 endash 10 22 g, are perturbed into an orbit inside the tidal distortion radius of approx-gt 10 5 km. Of these ∼1% are captured by the magnetic field of the NS at R 3 km to create GBs

  1. Unveiling the Role of Galactic Rotation on Star Formation

    Science.gov (United States)

    Utreras, José; Becerra, Fernando; Escala, Andrés

    2016-12-01

    We study the star formation process at galactic scales and the role of rotation through numerical simulations of spiral and starburst galaxies using the adaptive mesh refinement code Enzo. We focus on the study of three integrated star formation laws found in the literature: the Kennicutt-Schmidt (KS) and Silk-Elmegreen (SE) laws, and the dimensionally homogeneous equation proposed by Escala {{{Σ }}}{SFR}\\propto \\sqrt{G/L}{{{Σ }}}{gas}1.5. We show that using the last we take into account the effects of the integration along the line of sight and find a unique regime of star formation for both types of galaxies, suppressing the observed bi-modality of the KS law. We find that the efficiencies displayed by our simulations are anti-correlated with the angular velocity of the disk Ω for the three laws studied in this work. Finally, we show that the dimensionless efficiency of star formation is well represented by an exponentially decreasing function of -1.9{{Ω }}{t}{ff}{ini}, where {t}{ff}{ini} is the initial free-fall time. This leads to a unique galactic star formation relation which reduces the scatter of the bi-modal KS, SE, and Escala relations by 43%, 43%, and 35%, respectively.

  2. How good a clock is rotation? The stellar rotation-mass-age relationship for old field stars

    International Nuclear Information System (INIS)

    Epstein, Courtney R.; Pinsonneault, Marc H.

    2014-01-01

    The rotation-mass-age relationship offers a promising avenue for measuring the ages of field stars, assuming the attendant uncertainties to this technique can be well characterized. We model stellar angular momentum evolution starting with a rotation distribution from open cluster M37. Our predicted rotation-mass-age relationship shows significant zero-point offsets compared to an alternative angular momentum loss law and published gyrochronology relations. Systematic errors at the 30% level are permitted by current data, highlighting the need for empirical guidance. We identify two fundamental sources of uncertainty that limit the precision of rotation-based ages and quantify their impact. Stars are born with a range of rotation rates, which leads to an age range at fixed rotation period. We find that the inherent ambiguity from the initial conditions is important for all young stars, and remains large for old stars below 0.6 M ☉ . Latitudinal surface differential rotation also introduces a minimum uncertainty into rotation period measurements and, by extension, rotation-based ages. Both models and the data from binary star systems 61 Cyg and α Cen demonstrate that latitudinal differential rotation is the limiting factor for rotation-based age precision among old field stars, inducing uncertainties at the ∼2 Gyr level. We also examine the relationship between variability amplitude, rotation period, and age. Existing ground-based surveys can detect field populations with ages as old as 1-2 Gyr, while space missions can detect stars as old as the Galactic disk. In comparison with other techniques for measuring the ages of lower main sequence stars, including geometric parallax and asteroseismology, rotation-based ages have the potential to be the most precise chronometer for 0.6-1.0 M ☉ stars.

  3. Stellar Evolution with Rotation: Mixing Processes in AGB Stars

    Science.gov (United States)

    Driebe, T.; Blöcker, T.

    We included diffusive angular momentum transport and rotationally induced mixing processes in our stellar evolution code and studied the influence of rotation on the evolution of intermediate mass stars (M*=2dots6 Msolar) towards and along the asymptotic giant branch (AGB). The calculations start in the fully convective pre-main sequence phase and the initial angular momentu m was adjusted such that on the zero-age main sequence vrot=200 km/ s is achieved. The diffusion coefficients for the five rotational instabilities considered (dynamical shear, secular shear, Eddington-Sweet (ES) circulation, Solberg-Høiland-instability and Goldreich-Schubert-Fricke (GSF) instability) were adopted from Heger et al. (2000, ApJ 528, 368). Mixing efficiency and sensitivity of these processes against molecular weight gradients have been determined by calibration of the main sequence width. In this study we focus on the abundance evolution of carbon. On the one hand, the surface abundance ratios of 12C/13C a nd 12C/16O at the base of the AGB were found to be ≈ 7dots 10 and ≈ 0.1, resp., being a factor of two lower than in non-rotating models. This results from the slow but continuously operating rotationally induced mixing due to the ES-circulation and the GSF-instability during the long main sequence phase. On the other hand, 13C serves as neutron source for interior s-process nucleosynthesis in AGB stars vi a 13C(α,n)16O. Herwig et al. (1997, A&A 324, L81) found that a 13C pocket is forme d in the intershell region of 3 Msolar AGB star if diffusive overshoot is considered. Our calculations show, that mixing processes due to rotation open an alternative channel for the formation of a 13C pocket as found by Langer et al. (1999, A&A 346, L37). Again, ES-circulation and GSF-instability are the predominant rotational mixing processes.

  4. Dragging of inertial frames inside the rotating neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Chandrachur; Modak, Kamakshya Prasad; Bandyopadhyay, Debades, E-mail: chandrachur.chakraborty@saha.ac.in, E-mail: kamakshya.modak@saha.ac.in [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India)

    2014-07-20

    We derive the exact frame-dragging rate inside rotating neutron stars. This formula is applied to show that the frame-dragging rate monotonically decreases from the center to the surface of the neutron star along the pole. In the case of the frame-dragging rate along the equatorial distance, it decreases initially away from the center, becomes negligibly small well before the surface of the neutron star, rises again, and finally approaches to a small value at the surface. The appearance of a local maximum and minimum in this case is the result of the dependence of frame-dragging frequency on the distance and angle. Moving from the equator to the pole, it is observed that this local maximum and minimum in the frame-dragging rate along the equator disappear after crossing a critical angle. It is also noted that the positions of the local maximum and minimum of the frame-dragging rate along the equator depend on the rotation frequency and central energy density of a particular pulsar.

  5. Effects of Density-Dependent Bag Constant and Strange Star Rotation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qiao-Er; GUO Hua

    2003-01-01

    With the emphasis on the effects of the density-dependent bag constant and the rotation of strange star the limiting mass of strange star is calculated. The obtained results show that the limiting mass and the corresponding radius of strange star increase as the rotation frequency increases, and tend to be lowered when the density-dependent bag constant is considered.

  6. The γ Dor stars as revealed by Kepler: A key to reveal deep-layer rotation in A and F stars

    Directory of Open Access Journals (Sweden)

    Salmon S. J. A. J.

    2017-01-01

    Full Text Available The γ Dor pulsating stars present high-order gravity modes, which make them important targets in the intermediate-and low-mass main-sequence region of the Hertzsprung-Russell diagram. Whilst we have only access to rotation in the envelope of the Sun, the g modes of γ Dor stars can in principle deliver us constraints on the inner layers. With the puzzling discovery of unexpectedly low rotation rates in the core of red giants, the γ Dor stars appear now as unique targets to explore internal angular momentum transport in the progenitors of red giants. Yet, the γ Dor pulsations remain hard to detect from the ground for their periods are close to 1 day. While the CoRoT space mission first revealed intriguing frequency spectra, the almost uninterrupted 4-year photometry from the Kepler mission eventually shed a new light on them. It revealed regularities in the spectra, expected to bear signature of physical processes, including rotation, in the shear layers close to the convective core. We present here the first results of our effort to derive exploitable seismic diagnosis for mid- to fast rotators among γ Dor stars. We confirm their potential to explore the rotation history of this early phase of stellar evolution.

  7. MR Persei - A new rotating, spotted flare star

    Science.gov (United States)

    Honeycutt, R. K.; Turner, G. W.; Vesper, D. N.; Schlegel, E. M.

    1992-01-01

    Spectroscopy and photometry are used to show that MR Persei, an object originally classified as a dwarf nova, is in fact a flare star. The automated CCD photometry consists of sequences of exposures within a single night as well as long-term photometry over a five-month interval. One sequence shows a 30-min flare, accompanied by post-flare 'dips'. A 0.2 mag variation with a period of about one-half day is also seen in this sequence. The long-term photometry is used to refine the period to 0.45483 d, which we attribute to the rotation of a spotted star. Evidence for membership of MR Per in the young Alpha Per cluster is considered, and found to be inconclusive.

  8. Dynamics of local isolated magnetic flux tubes in a fast-rotating stellar atmosphere

    International Nuclear Information System (INIS)

    Chou, W.; Tajima, C.T.; Shibata, K.

    1998-01-01

    Dynamics of magnetic flux tubes in the fast rotating stellar atmosphere is studied. We focus on the effects and signatures of the instability of the flux tube emergence influenced by the Coriolis force. We present the result from a linear stability analysis and discuss its possible signatures in the course of the evolution of G-type and M-type stars. We present a three dimensional magnetohydrodynamical simulation of local isolated magnetic flux tubes under a magnetic buoyancy instability in co-rotating Cartesian coordinates. We find that the combination of the buoyancy instability and the Coriolis effect gives rise to a mechanism, to twist the emerging magnetic flux tube into a helical structure. The tilt angle, east-west asymmetry and magnetic helicity of the Twisted flux tubes in the simulations are studied in detail. The linear and nonlinear analyses provide hints as to what kind of pattern of large spots in young M-type main-sequence stars might be observed. We find that young and old G-type stars may have different distributions of spots while M-type stars may always have low latitudes spots. The size of stellar spots may decrease when a star becomes older, due to the decreasing of magnetic field. A qualitative comparison with solar observations is also presented

  9. Theory of fast (nonadiabatic) nuclear rotation

    International Nuclear Information System (INIS)

    Nosov, V.G.; Kamchatnov, A.M.

    1977-01-01

    The theory of backbending is developed taking into accout the increasing role of nonadiabatic effects, which are concerned with quantum number K violation. Above the transition point, rotation quantum number j (>=) jsub(c) (second-kind transition point), all possible values of the quantity K in the interval -J ( Jsub(c) are obtained. The radius of global nucleon mass distribution in the nucleus is defined from the analysis of the experimental moments of inertia in n-phase. It is in agreement with the radius of distribution of protons alone obtained from electron scattering on nuclei. Assuming the simplest singularity of parametric derivative of the Hamiltonian of the system the general theory of non-temperature (ground state)second-kind phase transitions is developed

  10. Quasiequilibrium models for triaxially deformed rotating compact stars

    International Nuclear Information System (INIS)

    Huang Xing; Markakis, Charalampos; Sugiyama, Noriyuki; Uryu, Koji

    2008-01-01

    Quasiequilibrium models of rapidly rotating triaxially deformed stars are computed in general relativistic gravity, assuming a conformally flat spatial geometry (Isenberg-Wilson-Mathews formulation) and a polytropic equation of state. Highly deformed solutions are calculated on the initial slice covered by spherical coordinate grids, centered at the source, in all angular directions up to a large truncation radius. Constant rest mass sequences are calculated from nearly axisymmetric to maximally deformed triaxial configurations. Selected parameters are to model (proto-) neutron stars; the compactness is M/R=0.001, 0.1, 0.14, and 0.2 for polytropic index n=0.3 and M/R=0.001, 0.1, 0.12, and 0.14 for n=0.5, where M/R refers to that of a nonrotating spherical star having the same rest mass. We confirmed that the triaxial solutions exist for these parameters as in the case of Newtonian polytropes. However, it is also found that the triaxial sequences become shorter for higher compactness, and those disappear at a certain large compactness for the n=0.5 case. In the scenario of the contraction of proto-neutron stars being subject to strong viscosity and rapid cooling, it is plausible that, once the viscosity driven secular instability sets in during the contraction, the proto-neutron stars are always maximally deformed triaxial configurations, as long as the compactness and the equation of state parameters allow such triaxial sequences. Detection of gravitational waves from such sources may be used as another probe for the nuclear equation of state.

  11. The VLT-FLAMES Tarantula Survey. XII. Rotational velocities of the single O-type stars

    Science.gov (United States)

    Ramírez-Agudelo, O. H.; Simón-Díaz, S.; Sana, H.; de Koter, A.; Sabín-Sanjulían, C.; de Mink, S. E.; Dufton, P. L.; Gräfener, G.; Evans, C. J.; Herrero, A.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Najarro, F.; Puls, J.; Taylor, W. D.; Vink, J. S.

    2013-12-01

    Context. The 30 Doradus (30 Dor) region of the Large Magellanic Cloud, also known as the Tarantula nebula, is the nearest starburst region. It contains the richest population of massive stars in the Local Group, and it is thus the best possible laboratory to investigate open questions on the formation and evolution of massive stars. Aims: Using ground-based multi-object optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to establish the (projected) rotational velocity distribution for a sample of 216 presumably single O-type stars in 30 Dor. The sample is large enough to obtain statistically significant information and to search for variations among subpopulations - in terms of spectral type, luminosity class, and spatial location - in the field of view. Methods: We measured projected rotational velocities, νesini, by means of a Fourier transform method and a profile fitting method applied to a set of isolated spectral lines. We also used an iterative deconvolution procedure to infer the probability density, P(νe), of the equatorial rotational velocity, νe. Results: The distribution of νesini shows a two-component structure: a peak around 80 kms-1 and a high-velocity tail extending up to ~600 kms-1. This structure is also present in the inferred distribution P(νe) with around 80% of the sample having 0 rate less than 20% of their break-up velocity. For the bulk of the sample, mass loss in a stellar wind and/or envelope expansion is not efficient enough to significantly spin down these stars within the first few Myr of evolution. If massive-star formation results in stars rotating at birth with a large portion of their break-up velocities, an alternative braking mechanism, possibly magnetic fields, is thus required to explain the present-day rotational properties of the O-type stars in 30 Dor. The presence of a sizeable population of fast rotators is compatible with recent population synthesis computations that

  12. Evolution of magnetized, differentially rotating neutron stars: Simulations in full general relativity

    International Nuclear Information System (INIS)

    Duez, Matthew D.; Liu, Yuk Tung; Shapiro, Stuart L.; Stephens, Branson C.; Shibata, Masaru

    2006-01-01

    We study the effects of magnetic fields on the evolution of differentially rotating neutron stars, which can be formed in stellar core collapse or binary neutron star coalescence. Magnetic braking and the magnetorotational instability (MRI) both act on differentially rotating stars to redistribute angular momentum. Simulations of these stars are carried out in axisymmetry using our recently developed codes which integrate the coupled Einstein-Maxwell-MHD equations. We consider stars with two different equations of state (EOS), a gamma-law EOS with Γ=2, and a more realistic hybrid EOS, and we evolve them adiabatically. Our simulations show that the fate of the star depends on its mass and spin. For initial data, we consider three categories of differentially rotating, equilibrium configurations, which we label normal, hypermassive and ultraspinning. Normal configurations have rest masses below the maximum achievable with uniform rotation, and angular momentum below the maximum for uniform rotation at the same rest mass. Hypermassive stars have rest masses exceeding the mass limit for uniform rotation. Ultraspinning stars are not hypermassive, but have angular momentum exceeding the maximum for uniform rotation at the same rest mass. We show that a normal star will evolve to a uniformly rotating equilibrium configuration. An ultraspinning star evolves to an equilibrium state consisting of a nearly uniformly rotating central core, surrounded by a differentially rotating torus with constant angular velocity along magnetic field lines, so that differential rotation ceases to wind the magnetic field. In addition, the final state is stable against the MRI, although it has differential rotation. For a hypermassive neutron star, the MHD-driven angular momentum transport leads to catastrophic collapse of the core. The resulting rotating black hole is surrounded by a hot, massive, magnetized torus undergoing quasistationary accretion, and a magnetic field collimated along

  13. 3-D collapse of rotating stars to Kerr black holes

    International Nuclear Information System (INIS)

    Baiotti, L; Hawke, I; Montero, P J; Loeffler, F L; Rezzolla, L; Stergioulas, N; Font, J A; Seidel, E

    2005-01-01

    We study gravitational collapse of uniformly rotating neutron stars to Kerr black holes, using a new three-dimensional, fully general relativistic hydrodynamics code, which uses high-resolution shock-capturing techniques and a conformal traceless formulation of the Einstein equations. We investigate the gravitational collapse by carefully studying not only the dynamics of the matter, but also that of the trapped surfaces, i.e. of both the apparent and event horizons formed during the collapse. The use of these surfaces, together with the dynamical horizon framework, allows for a precise measurement of the black-hole mass and spin. The ability to successfully perform these simulations for sufficiently long times relies on excising a region of the computational domain which includes the singularity and is within the apparent horizon. The dynamics of the collapsing matter is strongly influenced by the initial amount of angular momentum in the progenitor star and, for initial models with sufficiently high angular velocities, the collapse can lead to the formation of an unstable disc in differential rotation

  14. The fate of ultrahigh energy nuclei in the immediate environment of young fast-rotating pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Kotera, Kumiko [Institut d' Astrophysique de Paris UMR7095—CNRS, Université Pierre and Marie Curie, 98 bis boulevard Arago, Paris, F-75014 France (France); Amato, Elena; Blasi, Pasquale, E-mail: kotera@iap.fr, E-mail: amato@arcetri.astro.it, E-mail: blasi@arcetri.astro.it [INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, Firenze, I-50125 Italy (Italy)

    2015-08-01

    Young, fast-rotating neutron stars are promising candidate sources for the production of ultrahigh energy cosmic rays (UHECRs). The interest in this model has recently been boosted by the latest chemical composition measurements of cosmic rays, that seem to show the presence of a heavy nuclear component at the highest energies. Neutrons stars, with their metal-rich surfaces, are potentially interesting sources of such nuclei, but some open issues remain: 1) is it possible to extract these nuclei from the star's surface? 2) Do the nuclei survive the severe conditions present in the magnetosphere of the neutron star? 3) What happens to the surviving nuclei once they enter the wind that is launched outside the light cylinder? In this paper we address these issues in a quantitative way, proving that for the most reasonable range of neutron star surface temperatures (T<10{sup 7} K), a large fraction of heavy nuclei survive photo-disintegration losses. These processes, together with curvature losses and acceleration in the star's electric potential, lead to injection of nuclei with a chemical composition that is mixed, even if only iron is extracted from the surface. We show that under certain conditions the chemical composition injected into the wind region is compatible with that required in previous work based on purely phenomenological arguments (typically ∼50% protons, ∼30% CNO and ∼20% Fe), and provides a reasonable explanation of the mass abundance inferred from ultra high energy data.

  15. The fate of ultrahigh energy nuclei in the immediate environment of young fast-rotating pulsars

    International Nuclear Information System (INIS)

    Kotera, Kumiko; Amato, Elena; Blasi, Pasquale

    2015-01-01

    Young, fast-rotating neutron stars are promising candidate sources for the production of ultrahigh energy cosmic rays (UHECRs). The interest in this model has recently been boosted by the latest chemical composition measurements of cosmic rays, that seem to show the presence of a heavy nuclear component at the highest energies. Neutrons stars, with their metal-rich surfaces, are potentially interesting sources of such nuclei, but some open issues remain: 1) is it possible to extract these nuclei from the star's surface? 2) Do the nuclei survive the severe conditions present in the magnetosphere of the neutron star? 3) What happens to the surviving nuclei once they enter the wind that is launched outside the light cylinder? In this paper we address these issues in a quantitative way, proving that for the most reasonable range of neutron star surface temperatures (T<10 7 K), a large fraction of heavy nuclei survive photo-disintegration losses. These processes, together with curvature losses and acceleration in the star's electric potential, lead to injection of nuclei with a chemical composition that is mixed, even if only iron is extracted from the surface. We show that under certain conditions the chemical composition injected into the wind region is compatible with that required in previous work based on purely phenomenological arguments (typically ∼50% protons, ∼30% CNO and ∼20% Fe), and provides a reasonable explanation of the mass abundance inferred from ultra high energy data

  16. DISK BRAKING IN YOUNG STARS: PROBING ROTATION IN CHAMAELEON I AND TAURUS-AURIGA

    International Nuclear Information System (INIS)

    Duy Cuong Nguyen; Jayawardhana, Ray; Van Kerkwijk, Marten H.; Damjanov, Ivana; Brandeker, Alexis; Scholz, Alexander

    2009-01-01

    We present a comprehensive study of rotation, disk, and accretion signatures for 144 T Tauri stars in the young (∼2 Myr old) Chamaeleon I and Taurus-Auriga star-forming regions based on multi-epoch high-resolution optical spectra from the Magellan Clay 6.5 m telescope supplemented by mid-infrared photometry from the Spitzer Space Telescope. In contrast to previous studies in the Orion Nebula Cluster and NGC 2264, we do not see a clear signature of disk braking in Tau-Aur and Cha I. We find that both accretors and non-accretors have similar distributions of vsin i. This result could be due to different initial conditions, insufficient time for disk braking, or a significant age spread within the regions. The rotational velocities in both regions show a clear mass dependence, with F-K stars rotating on average about twice as fast as M stars, consistent with results reported for other clusters of similar age. Similarly, we find the upper envelope of the observed values of specific angular momentum j varies as M 0.5 for our sample which spans a mass range of ∼0.16-3 M sun . This power law complements previous studies in Orion which estimated j ∝ M 0.25 for ∼ sun . Furthermore, the overall specific angular momentum of this ∼10 Myr population is five times lower than that of non-accretors in our sample, and implies a stellar braking mechanism other than disk braking could be at work. For a subsample of 67 objects with mid-infrared photometry, we examine the connection between accretion signatures and dusty disks: in the vast majority of cases (63/67), the two properties correlate well, which suggests that the timescale of gas accretion is similar to the lifetime of inner disks.

  17. Differential Rotation in Sun-like Stars from Surface Variability and Asteroseismology

    Science.gov (United States)

    Nielsen, Martin Bo

    2017-03-01

    The Sun and other stars are known to oscillate. Through the study of small perturbations to the frequencies of these oscillations the rotation of the deep interior can be inferred. However, thus far the internal rotation of other Sun-like stars is unknown. The NASA Kepler mission has observed a multitude of Sun-like stars over a period of four years. This has provided high-quality photometric data that can be used to study the rotation of stars with two different techniques: asteroseismology and surface activity. Asteroseismology provides a means of measuring rotation in the stellar interior, while photometric variability from magnetically active regions are sensitive to rotation at the stellar surface. The combination of these two methods can be used to constrain the radial differential rotation in Sun-like stars. First, we developed an automated method for measuring the rotation of stars using surface variability. This method was initially applied to the entire Kepler catalog, out of which we detected signatures of rotation in 12,000 stars across the main sequence, providing robust estimates of the surface rotation rates and the associated errors. Second, we performed an asteroseismic analysis of six Sun-like stars, where we were able to measure the rotational splitting as a function of frequency in the p-mode envelope. This was done by dividing the oscillation spectrum into individual segments, and fitting a model independently to each segment. We found that the measured splittings were all consistent with a constant value, indicating little differential rotation. Third, we compared the asteroseismic rotation rates of five Sun-like stars to their surface rotation rates. We found that the values were in good agreement, again indicating little differential rotation between the regions where the two methods are most sensitive. Finally, we discuss how the surface rotation rates may be used as a prior on the seismic envelope rotation rate in a double-zone model

  18. Nuclear elasticity applied to giant resonances of fast rotating nuclei

    International Nuclear Information System (INIS)

    Jang, S.; Bouyssy, A.

    1987-06-01

    Isoscalar giant resonances in fast rotating nuclei are investigated within the framework of nuclear elasticity by solving the equation of motion of elastic nuclear medium in a rotating frame of reference. Both Coriolis and centrifugal forces are taken into account. The nuclear rotation removes completely the azimuthal degeneracy of the giant resonance energies. Realistic large values of the angular velocity, which are still small as compared to the giant resonance frequencies, are briefly reviewed in relation to allowed high angular momenta. It is shown that for the A=150 region, the Coriolis force is dominating for small values (< ∼ 0.05) of the ratio of angular velocity to resonance frequency, whereas the centrifugal force plays a prominent part in the shift of the split resonance energies for larger values of the ratio. Typical examples of the resonance energies and their fragmentation due to both rotation and deformation are given

  19. Relativistic generalization of the Van-Cittert-Zernike theorem and coherent properties of rotating star radiation

    International Nuclear Information System (INIS)

    Mandjos, A.V.; Khmil', S.V.

    1979-01-01

    The formula is derived for the complex coherence degree of radiation from the surface moving arbitrarily in the gravitational field. The calculations are carried out referina to the rotating star observed at the spectral line by the interferometric method. The possibility of determining interferometrically the star rotational velocity and axis orientation is grounded

  20. Rotational Evolution and Magnetic Field of AP Stars

    Science.gov (United States)

    Xiaojun, C.; Matsuura, O. T.

    1990-11-01

    RESUMO. Prop6e- se qLie 0 campo de estrelas Ap pode ser 9cr ado pelo mecanismo de na base clo envelope c 0 fl V C C t V 0, C t r a ri S p 0 r t a d C) p a r a a S LI p e r f C 1 e p e I a Instabllidade de boiament 0 na ase de Haya hi. Campos cibservados permit em est imar uma perda de momento durante a ase pr -Seque%nC:ia P r ri C: p a I a ci ni p a t V C I C: C) m a s C) b s e r V a nT C 5. E S t r C I a S A normals, que ro t a ao , ria0 most ram camp Os :os superficia; importantes e isto pode ac:oriteaer C LIma protoestrela evolue para Sequencia Principal em passar pela fase de Hayashi. ABSTRACT: It 5 proposed that the ma9netic field o Ap stars may be enerated by the dynamo at the base of the convective envelope, arid transported to the surface b y t h C i ri s t a b iii t y C) f b LI 0 y a n c y i n t h C H a y a s hi p h a s e. Observed surface ma9netic fields allow to estimate a 1055 of an9ular momentum during the pre-Main Sequence phase compatible with the observations. apidIy rotating normal A stars do not shciw important surface magnetic fields and this may occur if a protostar evcilves to Main Sequence skipping the Hayashi phase. Key words: HYDROMAGNETICS - STARS-PECULIAR A

  1. A new asteroseismic diagnostic for internal rotation in γ Doradus stars

    DEFF Research Database (Denmark)

    Ouazzani, Rhita-Maria; Salmon, S. J. A. J.; Antoci, V.

    2017-01-01

    to rotation. In this paper, we define a new seismic diagnostic for rotation in γ Doradus stars which are too rapidly rotating to present rotational splittings. Based on the non-uniformity of their period spacings, we define the observable Σ as the slope of the period spacing when plotted as a function......With four years of nearly continuous photometry from Kepler, we are finally in a good position to apply asteroseismology to γ Doradus stars. In particular, several analyses have demonstrated the possibility to detect non-uniform period spacings, which have been predicted to be directly related...... of period. We provide a one-to-one relation between this observable Σ and the internal rotation, which applies widely in the instability strip of γ Doradus stars. We apply the diagnostic to a handful of stars observed by Kepler. Thanks to g modes in γ Doradus stars, we are now able to determine the internal...

  2. Photometric light curves for ten rapidly rotating stars in Alpha Persei, the Pleiades, and the field

    Science.gov (United States)

    Prosser, Charles F.; Schild, Rudolph E.; Stauffer, John R.; Jones, Burton F.

    1993-01-01

    We present the results from a photometric monitoring program of ten rapidly rotating stars observed during 1991 using the FLWO 48-in. telescope. Brightness variations for an additional six cluster stars observed with the Lick 40-in. telescope are also given. The periods and light curves for seven Alpha Persei members, two Pleiades members, and one naked T Tauri field star are reported.

  3. Rotation invariant fast features for large-scale recognition

    Science.gov (United States)

    Takacs, Gabriel; Chandrasekhar, Vijay; Tsai, Sam; Chen, David; Grzeszczuk, Radek; Girod, Bernd

    2012-10-01

    We present an end-to-end feature description pipeline which uses a novel interest point detector and Rotation- Invariant Fast Feature (RIFF) descriptors. The proposed RIFF algorithm is 15× faster than SURF1 while producing large-scale retrieval results that are comparable to SIFT.2 Such high-speed features benefit a range of applications from Mobile Augmented Reality (MAR) to web-scale image retrieval and analysis.

  4. Asteroseismology of Red-Giant Stars: Mixed Modes, Differential Rotation, and Eccentric Binaries

    Science.gov (United States)

    Beck, Paul G.

    2013-12-01

    Astronomers are aware of rotation in stars since Galileo Galilei attributed the movement of sunspots to rotation of the Sun in 1613. In contrast to the Sun, whose surface can be resolved by small telescopes or even the (protected) eye, we detect stars as point sources with no spatial information. Numerous techniques have been developed to derive information about stellar rotation. Unfortunately, most observational data allow only for the surface rotational rate to be inferred. The internal rotational profile, which has a great effect on the stellar structure and evolution, remains hidden below the top layers of the star - the essential is hidden to the eyes. Asteroseismology allows us to "sense" indirectly deep below the stellar surface. Oscillations that propagate through the star provide information about the deep stellar interiors while they also distort the stellar surface in characteristic patterns leading to detectable brightness or velocity variations. Also, certain oscillation modes are sensitive to internal rotation and carry information on how the star is spinning deep inside. Thanks to the unprecedented quality of NASA's space telescope Kepler, numerous detailed observations of stars in various evolutionary stages are available. Such high quality data allow that for many stars, rotation can not only be constrained from surface rotation, but also investigated through seismic studies. The work presented in this thesis focuses on the oscillations and internal rotational gradient of evolved single and binary stars. It is shown that the seismic analysis can reach the cores of oscillating red-giant stars and that these cores are rapidly rotating, while nested in a slowly rotating convective envelope.

  5. Magnetic cycles and rotation periods of late-type stars from photometric time series

    Science.gov (United States)

    Suárez Mascareño, A.; Rebolo, R.; González Hernández, J. I.

    2016-10-01

    Aims: We investigate the photometric modulation induced by magnetic activity cycles and study the relationship between rotation period and activity cycle(s) in late-type (FGKM) stars. Methods: We analysed light curves, spanning up to nine years, of 125 nearby stars provided by the All Sky Automated Survey (ASAS). The sample is mainly composed of low-activity, main-sequence late-A to mid-M-type stars. We performed a search for short (days) and long-term (years) periodic variations in the photometry. We modelled the light curves with combinations of sinusoids to measure the properties of these periodic signals. To provide a better statistical interpretation of our results, we complement our new results with results from previous similar works. Results: We have been able to measure long-term photometric cycles of 47 stars, out of which 39 have been derived with false alarm probabilities (FAP) of less than 0.1 per cent. Rotational modulation was also detected and rotational periods were measured in 36 stars. For 28 stars we have simultaneous measurements of activity cycles and rotational periods, 17 of which are M-type stars. We measured both photometric amplitudes and periods from sinusoidal fits. The measured cycle periods range from 2 to 14 yr with photometric amplitudes in the range of 5-20 mmag. We found that the distribution of cycle lengths for the different spectral types is similar, as the mean cycle is 9.5 yr for F-type stars, 6.7 yr for G-type stars, 8.5 yr for K-type stars, 6.0 yr for early M-type stars, and 7.1 yr for mid-M-type stars. On the other hand, the distribution of rotation periods is completely different, trending to longer periods for later type stars, from a mean rotation of 8.6 days for F-type stars to 85.4 days in mid-M-type stars. The amplitudes induced by magnetic cycles and rotation show a clear correlation. A trend of photometric amplitudes with rotation period is also outlined in the data. The amplitudes of the photometric variability

  6. Development of a fast response rotating polarimeter for a faraday rotation measurement

    International Nuclear Information System (INIS)

    Maeno, Masaki; Ogiwara, Norio; Ogawa, Hiroaki; Matsuda, Toshiaki

    1994-03-01

    This paper describes a method for using a spindle sustained with active magnetic bearing to make a rotating half waveplate frequency more fast. The time interval of the zero-cross phase measurement is 189 μsec in this experiment. The magnetic bearing is applicable to increase the rotating waveplate frequency by a factor of 2-3 compared with the conventional one. The waveplate speed as well as the deviation with respect to the stationary laser beam has no influence on the amplitude and phase shift of the rotating polarized beam signal. There is also no influence of the mirror reflections on the phase shift. The overall phase resolution is estimated to be about 0.1 degrees. (author)

  7. Rotation in moderate-mass pre-main-sequence radiative track G stars

    International Nuclear Information System (INIS)

    Mcnamara, B.

    1990-01-01

    Recent studies suggest that the observed high-mass radiative track velocity histograms for pre-main-sequence stars differ significantly. In the Vogel and Kuhi (1981) study, these stars were found to possess a rather broad distribution of rotational velocities with a moderate peak at low velocities. In contrast, Smith et al. (1983), found a very sharply peaked distribution located at low values of v sin i. The difference in these velocity distributions is shown to be due to inadequate allowance for field stars in the Smith, et al., work. Once these stars are removed, the high-mass velocity distributions of the two regions are remarkably similar. This result suggests that a unique velocity distribution might be used in modeling very young stars. Assuming that the Orion Ic proto-F stars continue to contract in a homologous fashion, their average current rotational velocity is in agreement with that expected for zero-age main sequence F stars. 27 refs

  8. Rotation invariant deep binary hashing for fast image retrieval

    Science.gov (United States)

    Dai, Lai; Liu, Jianming; Jiang, Aiwen

    2017-07-01

    In this paper, we study how to compactly represent image's characteristics for fast image retrieval. We propose supervised rotation invariant compact discriminative binary descriptors through combining convolutional neural network with hashing. In the proposed network, binary codes are learned by employing a hidden layer for representing latent concepts that dominate on class labels. A loss function is proposed to minimize the difference between binary descriptors that describe reference image and the rotated one. Compared with some other supervised methods, the proposed network doesn't have to require pair-wised inputs for binary code learning. Experimental results show that our method is effective and achieves state-of-the-art results on the CIFAR-10 and MNIST datasets.

  9. Stellar Rotation with Kepler and Gaia: Evidence for a Bimodal Star Formation History

    Science.gov (United States)

    Davenport, James

    2018-01-01

    Kepler stars with rotation periods measured via starspot modulations in their light curves have been matched against the astrometric data from Gaia Data Release 1. A total of 1,299 bright rotating stars were recovered, most with temperatures hotter than 5000 K. From these, 894 were selected as being near the main sequence. These main sequence stars show a bimodality in their rotation period distribution, centered around a ~600 Myr rotation-isochrone. This feature matches the bimodal period distribution found in cooler stars with Kepler, but was previously undetected for solar-type stars due to sample contamination by subgiant and binary stars. A tenuous connection between the rotation period and total proper motion is found, suggesting the period bimodality is due to the age distribution of stars within 300pc of the Sun, rather than a phase of rapid angular momentum loss. I will discuss how the combination of Kepler/K2/TESS with Gaia will enable us to map the star formation history of our galactic neighborhood.

  10. Asteroseismic measurement of surface-to-core rotation in a main-sequence star*

    Directory of Open Access Journals (Sweden)

    Kurtz Donald W.

    2015-01-01

    Full Text Available We have discovered rotationally split core g-mode triplets and surface p-mode triplets and quintuplets in a terminal age main-sequence A star, KIC 11145123, that shows both δ Sct p-mode pulsations and γ Dor g-mode pulsations. This gives the first robust determination of the rotation of the deep core and surface of a main-sequence star, essentially model-independently. We find its rotation to be nearly uniform with a period near 100 d, but we show with high confidence that the surface rotates slightly faster than the core. A strong angular momentum transfer mechanism must be operating to produce the nearly rigid rotation, and a mechanism other than viscosity must be operating to produce a more rapidly rotating surface than core. Our asteroseismic result, along with previous asteroseismic constraints on internal rotation in some B stars, and measurements of internal rotation in some subgiant, giant and white dwarf stars, has made angular momentum transport in stars throughout their lifetimes an observational science.

  11. Rapidly rotating single late-type giants: New FK Comae stars?

    Science.gov (United States)

    Fekel, Francis C.

    1986-01-01

    A group of rapidly rotating single late-type giants was found from surveys of chromospherically active stars. These stars have V sin I's ranging from 6 to 46 km/sec, modest ultraviolet emission line fluxes, and strong H alpha absorption lines. Although certainly chromospherically active, their characteristics are much less extreme than those of FK Com and one or two other similar systems. One possible explanation for the newly identified systems is that they have evolved from stars similar to FK Com. The chromospheric activity and rotation of single giant stars like FK Com would be expected to decrease with time as they do in single dwarfs. Alternatively, this newly identified group may have evolved from single rapidly rotating A, or early F stars.

  12. Growth of black holes in the interior of rotating neutron stars

    DEFF Research Database (Denmark)

    Kouvaris, C.; Tinyakov, P.

    2014-01-01

    Mini-black holes made of dark matter that can potentially form in the interior of neutron stars always have been thought to grow by accreting the matter of the core of the star via a spherical Bondi accretion. However, neutron stars have sometimes significant angular velocities that can...... in principle stall the spherical accretion and potentially change the conclusions derived about the time it takes for black holes to destroy a star. We study the effect of the star rotation on the growth of such black holes and the evolution of the black hole spin. Assuming no mechanisms of angular momentum...... evacuation, we find that even moderate rotation rates can in fact destroy spherical accretion at the early stages of the black hole growth. However, we demonstrate that the viscosity of nuclear matter can alleviate the effect of rotation, making it possible for the black hole to maintain spherical accretion...

  13. A high-resolution spectropolarimetric survey of Herbig Ae/Be stars - II. Rotation

    Science.gov (United States)

    Alecian, E.; Wade, G. A.; Catala, C.; Grunhut, J. H.; Landstreet, J. D.; Böhm, T.; Folsom, C. P.; Marsden, S.

    2013-02-01

    We report the analysis of the rotational properties of our sample of Herbig Ae/Be (HAeBe) and related stars for which we have obtained high-resolution spectropolarimetric observations. Using the projected rotational velocities measured at the surface of the stars, we have calculated the angular momentum of the sample and plotted it as a function of age. We have then compared the angular momentum and the v sin i distributions of the magnetic to the non-magnetic HAeBe stars. Finally, we have predicted v sin i of the non-magnetic, non-binary (`normal') stars in our sample when they reach the zero-age main sequence (ZAMS), and compared them to various catalogues of v sin i of main-sequence stars. First, we observe that magnetic HAeBe stars are much slower rotators than normal stars, indicating that they have been more efficiently braked than the normal stars. In fact, the magnetic stars have already lost most of their angular momentum, despite their young ages (lower than 1 Myr for some of them). Secondly, our analysis suggests that the low-mass (1.5 5 M⊙) are losing angular momentum. We propose that winds, which are expected to be stronger in massive stars, are at the origin of this phenomenon.

  14. The magnetic early B-type stars I: magnetometry and rotation

    Science.gov (United States)

    Shultz, M. E.; Wade, G. A.; Rivinius, Th; Neiner, C.; Alecian, E.; Bohlender, D.; Monin, D.; Sikora, J.; MiMeS Collaboration; BinaMIcS Collaboration

    2018-04-01

    The rotational and magnetic properties of many magnetic hot stars are poorly characterized, therefore the Magnetism in Massive Stars and Binarity and Magnetic Interactions in various classes of Stars collaborations have collected extensive high-dispersion spectropolarimetric data sets of these targets. We present longitudinal magnetic field measurements for 52 early B-type stars (B5-B0), with which we attempt to determine their rotational periods Prot. Supplemented with high-resolution spectroscopy, low-resolution Dominion Astrophysical Observatory circular spectropolarimetry, and archival Hipparcos photometry, we determined Prot for 10 stars, leaving only five stars for which Prot could not be determined. Rotational ephemerides for 14 stars were refined via comparison of new to historical magnetic measurements. The distribution of Prot is very similar to that observed for the cooler Ap/Bp stars. We also measured v sin i and vmac for all stars. Comparison to non-magnetic stars shows that v sin i is much lower for magnetic stars, an expected consequence of magnetic braking. We also find evidence that vmac is lower for magnetic stars. Least-squares deconvolution profiles extracted using single-element masks revealed widespread, systematic discrepancies in between different elements: this effect is apparent only for chemically peculiar stars, suggesting it is a consequence of chemical spots. Sinusoidal fits to H line measurements (which should be minimally affected by chemical spots), yielded evidence of surface magnetic fields more complex than simple dipoles in six stars for which this has not previously been reported; however, in all six cases, the second- and third-order amplitudes are small relative to the first-order (dipolar) amplitudes.

  15. Fast online replanning for interfraction rotation correction in prostate radiotherapy.

    Science.gov (United States)

    Kontaxis, Charis; Bol, Gijsbert H; Kerkmeijer, Linda G W; Lagendijk, Jan J W; Raaymakers, Bas W

    2017-10-01

    To enable fast online replanning for prostate radiotherapy with the inclusion of interfraction rotations and translations and investigate the possibility for margin reduction via this regime. Online daily replanning for a 35-fraction treatment for five prostate cases is simulated while accounting for anatomical transformations derived from fiducial marker data available in our clinic. Two online replanning strategies were simulated, compensating for: (a) rotation-only in combination with a couch shift and (b) both translation and rotation without a couch shift. They were compared against our current clinical protocol consisting of a single offline plan used over all fractions with daily couch repositioning (translations only). For every patient, the above methods were generated for several planning margins (0-8 mm with 2 mm increments) in order to assess the performance of online replanning in terms of target coverage and investigate the possible dosimetric benefit for the organs at risk. The daily DVHs for each treatment strategy were used for evaluation and the non tumor integral dose (NTID) for the different margins was calculated in order to quantify the overall reduction of the delivered energy to the patient. Our system is able to generate a daily automated prostate plan in less than 2 min. For every patient, the daily treatment plans produce similar dose distributions to the original approved plan (average CTV D99 relative difference: 0.2%). The inclusion of both shifts and rotations can be effectively compensated via replanning among all planning margins (average CTV D99 difference: 0.01 Gy between the two replanning regimes). Online replanning is able to maintain target coverage among all margins, while - as expected - the conventional treatment plan is increasingly affected by the interfraction rotations as the margins shrink (average CTV D99 decrease: 0.2 Gy at 8 mm to 2.9 Gy at 0 mm margin). The possible gain in total delivered energy to the patient was

  16. A Rigidly Rotating Magnetosphere Model for the Circumstellar Environments of Magnetic OB Stars

    Science.gov (United States)

    Townsend, R.; Owocki, S.; Groote, D.

    2005-11-01

    We report on a new model for the circumstellar environments of rotating, magnetic hot stars. This model predicts the channeling of wind plasma into a corotating magnetosphere, where -- supported against gravity by centrifugal forces -- it can steadily accumulate over time. We apply the model to the B2p star σ Ori E, demonstrating that it can simultaneously reproduce the spectroscopic, photometric and magnetic variations exhibited by the star.

  17. On the stability and maximum mass of differentially rotating relativistic stars

    Science.gov (United States)

    Weih, Lukas R.; Most, Elias R.; Rezzolla, Luciano

    2018-01-01

    The stability properties of rotating relativistic stars against prompt gravitational collapse to a black hole are rather well understood for uniformly rotating models. This is not the case for differentially rotating neutron stars, which are expected to be produced in catastrophic events such as the merger of binary system of neutron stars or the collapse of a massive stellar core. We consider sequences of differentially rotating equilibrium models using the j-constant law and by combining them with their dynamical evolution, we show that a sufficient stability criterion for differentially rotating neutron stars exists similar to the one of their uniformly rotating counterparts. Namely: along a sequence of constant angular momentum, a dynamical instability sets in for central rest-mass densities slightly below the one of the equilibrium solution at the turning point. In addition, following Breu & Rezzolla, we show that 'quasi-universal' relations can be found when calculating the turning-point mass. In turn, this allows us to compute the maximum mass allowed by differential rotation, Mmax,dr, in terms of the maximum mass of the non-rotating configuration, M_{_TOV}, finding that M_{max, dr} ˜eq (1.54 ± 0.05) M_{_TOV} for all the equations of state we have considered.

  18. M-dwarf rapid rotators and the detection of relatively young multiple M-star systems

    International Nuclear Information System (INIS)

    Rappaport, S.; Joss, M.; Sanchis-Ojeda, R.

    2014-01-01

    We have searched the Kepler light curves of ∼3900 M-star targets for evidence of periodicities that indicate, by means of the effects of starspots, rapid stellar rotation. Several analysis techniques, including Fourier transforms, inspection of folded light curves, 'sonograms', and phase tracking of individual modulation cycles, were applied in order to distinguish the periodicities due to rapid rotation from those due to stellar pulsations, eclipsing binaries, or transiting planets. We find 178 Kepler M-star targets with rotation periods, P rot , of <2 days, and 110 with P rot < 1 day. Some 30 of the 178 systems exhibit two or more independent short periods within the same Kepler photometric aperture, while several have 3 or more short periods. Adaptive optics imaging and modeling of the Kepler pixel response function for a subset of our sample support the conclusion that the targets with multiple periods are highly likely to be relatively young physical binary, triple, and even quadruple M star systems. We explore in detail the one object with four incommensurate periods all less than 1.2 days, and show that two of the periods arise from one of a close pair of stars, while the other two arise from the second star, which itself is probably a visual binary. If most of these M-star systems with multiple periods turn out to be bound M stars, this could prove a valuable way discovering young hierarchical M-star systems; the same approach may also be applicable to G and K stars. The ∼5% occurrence rate of rapid rotation among the ∼3900 M star targets is consistent with spin evolution models that include an initial contraction phase followed by magnetic braking, wherein a typical M star can spend several hundred Myr before spinning down to periods longer than 2 days.

  19. White-dwarf rotational equilibria in magnetic cataclysmic variable stars

    Energy Technology Data Exchange (ETDEWEB)

    Warner, B. (Cape Town Univ. (South Africa). Dept. of Astronomy Australian National Univ., Canberra (Australia). Dept. of Mathematics); Wickramasinghe, D.T. (Australian National Univ., Canberra (Australia). Dept. of Mathematics)

    1991-02-01

    The magnetic cataclysmic variable stars (polars, intermediate polars and DQ Her stars) are grouped about three lines in the orbital period-spin period diagram. This segregation is shown to be the consequence of competition between braking and accretion torques when combined with the effects of cyclical variations in rate of mass transfer. (author).

  20. Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?

    Science.gov (United States)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.

    2017-06-01

    Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.

  1. Angular momentum transfer in primordial discs and the rotation of the first stars

    Science.gov (United States)

    Hirano, Shingo; Bromm, Volker

    2018-05-01

    We investigate the rotation velocity of the first stars by modelling the angular momentum transfer in the primordial accretion disc. Assessing the impact of magnetic braking, we consider the transition in angular momentum transport mode at the Alfvén radius, from the dynamically dominated free-fall accretion to the magnetically dominated solid-body one. The accreting protostar at the centre of the primordial star-forming cloud rotates with close to breakup speed in the case without magnetic fields. Considering a physically motivated model for small-scale turbulent dynamo amplification, we find that stellar rotation speed quickly declines if a large fraction of the initial turbulent energy is converted to magnetic energy (≳ 0.14). Alternatively, if the dynamo process were inefficient, for amplification due to flux freezing, stars would become slow rotators if the pre-galactic magnetic field strength is above a critical value, ≃10-8.2 G, evaluated at a scale of nH = 1 cm-3, which is significantly higher than plausible cosmological seed values (˜10-15 G). Because of the rapid decline of the stellar rotational speed over a narrow range in model parameters, the first stars encounter a bimodal fate: rapid rotation at almost the breakup level, or the near absence of any rotation.

  2. Neutron stars, fast pulsars, supernovae and the equation of state of dense matter

    International Nuclear Information System (INIS)

    Glendening, N.K.

    1989-01-01

    We discuss the prospects for obtaining constraints on the equation of state from astrophysical sources. Neutron star masses although few are known at present, provide a very direct constraint in as much as the connection to the equation of state involves only the assumption that Einstein's general theory of relativity is correct at the macroscopic scale. If the millisecond pulses briefly observed in the remnant of SN1987A can be attributed to uniform rotation of a pulsar, then a very severe constraint is placed on the equation of state. The theory again is very secure. The precise nature of the constraint is not yet understood, but it appears that the equation of state must be neither too soft nor stiff, and it may be that there is information not only on the stiffness of the equation of state but on its shape. Supernovae simulations involve such a plethora of physical processes including those involved in the evolution of the precollapse configuration, not all of them known or understood, that they provide no constraint at the present time. Not even the broad category of mechanism for the explosion is agreed upon (prompt shock, delayed shock, or nuclear explosion). In connection with very fast pulsars, we include some speculations on pure quark matter stars, and on possible scenarios for understanding the disappearance of the fast pulsar in SN1987A. 47 refs., 16 figs., 1 tab

  3. Neutron stars, fast pulsars, supernovae and the equation of state of dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Glendening, N.K.

    1989-06-01

    We discuss the prospects for obtaining constraints on the equation of state from astrophysical sources. Neutron star masses although few are known at present, provide a very direct constraint in as much as the connection to the equation of state involves only the assumption that Einstein's general theory of relativity is correct at the macroscopic scale. If the millisecond pulses briefly observed in the remnant of SN1987A can be attributed to uniform rotation of a pulsar, then a very severe constraint is placed on the equation of state. The theory again is very secure. The precise nature of the constraint is not yet understood, but it appears that the equation of state must be neither too soft nor stiff, and it may be that there is information not only on the stiffness of the equation of state but on its shape. Supernovae simulations involve such a plethora of physical processes including those involved in the evolution of the precollapse configuration, not all of them known or understood, that they provide no constraint at the present time. Not even the broad category of mechanism for the explosion is agreed upon (prompt shock, delayed shock, or nuclear explosion). In connection with very fast pulsars, we include some speculations on pure quark matter stars, and on possible scenarios for understanding the disappearance of the fast pulsar in SN1987A. 47 refs., 16 figs., 1 tab.

  4. FAST RADIO BURSTS FROM THE INSPIRAL OF DOUBLE NEUTRON STARS

    International Nuclear Information System (INIS)

    Wang, Jie-Shuang; Yang, Yuan-Pei; Dai, Zi-Gao; Wang, Fa-Yin; Wu, Xue-Feng

    2016-01-01

    In this Letter, we propose that a fast radio burst (FRB) could originate from the magnetic interaction between double neutron stars (NSs) during their final inspiral within the framework of a unipolar inductor model. In this model, an electromotive force is induced on one NS to accelerate electrons to an ultra-relativistic speed instantaneously. We show that coherent curvature radiation from these electrons moving along magnetic field lines in the magnetosphere of the other NS is responsible for the observed FRB signal, that is, the characteristic emission frequency, luminosity, duration, and event rate of FRBs can be well understood. In addition, we discuss several implications of this model, including double-peaked FRBs and possible associations of FRBs with short-duration gamma-ray bursts and gravitational-wave events.

  5. Fast Radio Bursts from the Collapse of Strange Star Crusts

    Science.gov (United States)

    Zhang, Yue; Geng, Jin-Jun; Huang, Yong-Feng

    2018-05-01

    Fast radio bursts (FRBs) are transient radio sources at cosmological distances. No counterparts in other bands have been observed for non-repeating FRBs. Here we suggest the collapse of strange star (SS) crusts as a possible origin for FRBs. SSs, which are composed of almost equal numbers of u, d, and s quarks, may be encapsulated by a thin crust of normal hadronic matter. When a SS accretes matter from its environment, the crust becomes heavier and heavier. It may finally collapse, leading to the release of a large amount of magnetic energy and plenty of electron/positron pairs on a very short timescale. Electron/positron pairs in the polar cap region of the SS can be accelerated to relativistic velocities, streaming along the magnetic field lines to form a thin shell. FRBs are produced by coherent emission from these electrons when the shell is expanding. Basic characteristics of observed FRBs can be explained in our model.

  6. FAST RADIO BURSTS FROM THE INSPIRAL OF DOUBLE NEUTRON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jie-Shuang; Yang, Yuan-Pei; Dai, Zi-Gao; Wang, Fa-Yin [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wu, Xue-Feng, E-mail: dzg@nju.edu.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-05-01

    In this Letter, we propose that a fast radio burst (FRB) could originate from the magnetic interaction between double neutron stars (NSs) during their final inspiral within the framework of a unipolar inductor model. In this model, an electromotive force is induced on one NS to accelerate electrons to an ultra-relativistic speed instantaneously. We show that coherent curvature radiation from these electrons moving along magnetic field lines in the magnetosphere of the other NS is responsible for the observed FRB signal, that is, the characteristic emission frequency, luminosity, duration, and event rate of FRBs can be well understood. In addition, we discuss several implications of this model, including double-peaked FRBs and possible associations of FRBs with short-duration gamma-ray bursts and gravitational-wave events.

  7. Breakdown of I-Love-Q Universality in Rapidly Rotating Relativistic Stars

    Science.gov (United States)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.; Stergioulas, Nikolaos; Kokkotas, Kostas D.

    2014-01-01

    It was shown recently that normalized relations between the moment of inertia (I), the quadrupole moment (Q), and the tidal deformability (Love number) exist and for slowly rotating neutron stars they are almost independent of the equation of state (EOS). We extend the computation of the I-Q relation to models rotating up to the mass-shedding limit and show that the universality of the relations is lost. With increasing rotation rate, the normalized I-Q relation departs significantly from its slow-rotation limit, deviating up to 40% for neutron stars and up to 75% for strange stars. The deviation is also EOS dependent and for a broad set of hadronic and strange matter EOSs the spread due to rotation is comparable to the spread due to the EOS, if one considers sequences with fixed rotational frequency. Still, for a restricted sample of modern realistic EOSs one can parameterize the deviations from universality as a function of rotation only. The previously proposed I-Love-Q relations should thus be used with care, because they lose their universality in astrophysical situations involving compact objects rotating faster than a few hundred Hz.

  8. BREAKDOWN OF I-LOVE-Q UNIVERSALITY IN RAPIDLY ROTATING RELATIVISTIC STARS

    International Nuclear Information System (INIS)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.; Kokkotas, Kostas D.; Stergioulas, Nikolaos

    2014-01-01

    It was shown recently that normalized relations between the moment of inertia (I), the quadrupole moment (Q), and the tidal deformability (Love number) exist and for slowly rotating neutron stars they are almost independent of the equation of state (EOS). We extend the computation of the I-Q relation to models rotating up to the mass-shedding limit and show that the universality of the relations is lost. With increasing rotation rate, the normalized I-Q relation departs significantly from its slow-rotation limit, deviating up to 40% for neutron stars and up to 75% for strange stars. The deviation is also EOS dependent and for a broad set of hadronic and strange matter EOSs the spread due to rotation is comparable to the spread due to the EOS, if one considers sequences with fixed rotational frequency. Still, for a restricted sample of modern realistic EOSs one can parameterize the deviations from universality as a function of rotation only. The previously proposed I-Love-Q relations should thus be used with care, because they lose their universality in astrophysical situations involving compact objects rotating faster than a few hundred Hz

  9. Repeating and non-repeating fast radio bursts from binary neutron star mergers

    Science.gov (United States)

    Yamasaki, Shotaro; Totani, Tomonori; Kiuchi, Kenta

    2018-04-01

    Most fast radio bursts (FRB) do not show evidence of repetition, and such non-repeating FRBs may be produced at the time of a merger of binary neutron stars (BNS), provided that the BNS merger rate is close to the high end of the currently possible range. However, the merger environment is polluted by dynamical ejecta, which may prohibit the radio signal from propagating. We examine this by using a general-relativistic simulation of a BNS merger, and show that the ejecta appears about 1 ms after the rotation speed of the merged star becomes the maximum. Therefore there is a time window in which an FRB signal can reach outside, and the short duration of non-repeating FRBs can be explained by screening after ejecta formation. A fraction of BNS mergers may leave a rapidly rotating and stable neutron star, and such objects may be the origin of repeating FRBs like FRB 121102. We show that a merger remnant would appear as a repeating FRB on a time scale of ˜1-10 yr, and expected properties are consistent with the observations of FRB 121102. We construct an FRB rate evolution model that includes these two populations of repeating and non-repeating FRBs from BNS mergers, and show that the detection rate of repeating FRBs relative to non-repeating ones rapidly increases with improving search sensitivity. This may explain why only the repeating FRB 121102 was discovered by the most sensitive FRB search with Arecibo. Several predictions are made, including the appearance of a repeating FRB 1-10 yr after a BNS merger that is localized by gravitational waves and subsequent electromagnetic radiation.

  10. Rotational mixing in carbon-enhanced metal-poor stars with s-process enrichment

    Science.gov (United States)

    Matrozis, E.; Stancliffe, R. J.

    2017-10-01

    Carbon-enhanced metal-poor (CEMP) stars with s-process enrichment (CEMP-s) are believed to be the products of mass transfer from an asymptotic giant branch (AGB) companion, which has long since become a white dwarf. The surface abundances of CEMP-s stars are thus commonly assumed to reflect the nucleosynthesis output of the first AGB stars. We have previously shown that, for this to be the case, some physical mechanism must counter atomic diffusion (gravitational settling and radiative levitation) in these nearly fully radiative stars, which otherwise leads to surface abundance anomalies clearly inconsistent with observations. Here we take into account angular momentum accretion by these stars. We compute in detail the evolution of typical CEMP-s stars from the zero-age main sequence, through the mass accretion, and up the red giant branch for a wide range of specific angular momentum ja of the accreted material, corresponding to surface rotation velocities, vrot, between about 0.3 and 300 kms-1. We find that only for ja ≳ 1017 cm2s-1 (vrot > 20 kms-1, depending on mass accreted) angular momentum accretion directly causes chemical dilution of the accreted material. This could nevertheless be relevant to CEMP-s stars, which are observed to rotate more slowly, if they undergo continuous angular momentum loss akin to solar-like stars. In models with rotation velocities characteristic of CEMP-s stars, rotational mixing primarily serves to inhibit atomic diffusion, such that the maximal surface abundance variations (with respect to the composition of the accreted material) prior to first dredge-up remain within about 0.4 dex without thermohaline mixing or about 0.5-1.5 dex with thermohaline mixing. Even in models with the lowest rotation velocities (vrot ≲ 1 kms-1), rotational mixing is able to severely inhibit atomic diffusion, compared to non-rotating models. We thus conclude that it offers a natural solution to the problem posed by atomic diffusion and cannot be

  11. Gravitational wave content and stability of uniformly, rotating, triaxial neutron stars in general relativity.

    Science.gov (United States)

    Tsokaros, Antonios; Ruiz, Milton; Paschalidis, Vasileios; Shapiro, Stuart L; Baiotti, Luca; Uryū, Kōji

    2017-06-15

    Targets for ground-based gravitational wave interferometers include continuous, quasiperiodic sources of gravitational radiation, such as isolated, spinning neutron stars. In this work, we perform evolution simulations of uniformly rotating, triaxially deformed stars, the compressible analogs in general relativity of incompressible, Newtonian Jacobi ellipsoids. We investigate their stability and gravitational wave emission. We employ five models, both normal and supramassive, and track their evolution with different grid setups and resolutions, as well as with two different evolution codes. We find that all models are dynamically stable and produce a strain that is approximately one-tenth the average value of a merging binary system. We track their secular evolution and find that all our stars evolve toward axisymmetry, maintaining their uniform rotation, rotational kinetic energy, and angular momentum profiles while losing their triaxiality.

  12. Rotation of the Mass Donors in High-mass X-ray Binaries and Symbiotic Stars

    Directory of Open Access Journals (Sweden)

    K. Stoyanov

    2015-02-01

    Full Text Available Our aim is to investigate the tidal interaction in High-mass X-ray Binaries and Symbiotic stars in order to determine in which objects the rotation of the mass donors is synchronized or pseudosynchronized with the orbital motion of the compact companion. We find that the Be/X-ray binaries are not synchronized and the orbital periods of the systems are greater than the rotational periods of the mass donors. The giant and supergiant High-mass X-ray binaries and symbiotic stars are close to synchronization. We compare the rotation of mass donors in symbiotics with the projected rotational velocities of field giants and find that the M giants in S-type symbiotics rotate on average 1.5 times faster than the field M giants. We find that the projected rotational velocity of the red giant in symbiotic star MWC 560 is v sin i= 8.2±1.5 km.s−1, and estimate its rotational period to be Prot<>/sub = 144 - 306 days. Using the theoretical predictions of tidal interaction and pseudosynchronization, we estimate the orbital eccentricity e = 0.68 − 0.82.

  13. Effects of the new fast forward rotating five-shift roster at a Dutch steel company

    NARCIS (Netherlands)

    Klein Hesselink, J.; Leede, J. de; Goudswaard, A.

    2010-01-01

    This article reports a field study of a shift roster change in a large steel producer. The changes in the roster are threefold: (1) from backward rotating to forward rotating; (2) from rather slow (three) to fast rotating (two consecutive shifts); (3) the number of days off after the night shifts

  14. Secular instability of axisymmetric rotating stars to gravitational radiation reaction

    International Nuclear Information System (INIS)

    Managan, R.A.

    1985-01-01

    A generalization of the Eulerian variational principle derived by Ipser and Managan, for nonaxisymmetric neutral modes of axisymmetric fluid configurations, is developed. The principle provides a variational basis for calculating the frequencies of nonaxisymmetric normal modes proportional to e/sup i/(sigmat + mphi). A modified form of this principle, valid for sigma near 0, is also developed. The latter principle is used to locate the points where the frequency of a nonaxisymmetric normal mode of an axisymmetric rotating fluid configuration passes through zero. lt is at these points that the configuration becomes secularly unstable to gravitational radiation reaction (GRR). This is demonstrated directly by including the GRR potential and showing that the imaginary part of sigma passes through zero and becomes negative at these points. The imaginary part of the frequency is used to estimate the e-folding time of the mode. This variational principle is applied to sequences of rotating polytropes. The sequences are constructed using four rotation laws at each value of the polytropic index n = 0.5, 1.0, 1.5, 2.0, and 3.0. The values of (T/W)/sub m/, the ratio of the rotational kinetic energy to the magnitude of the gravitational potential energy at the onset of instability, and timescales for the modes with m = 2, 3, and 4 are estimated for each sequence. The value of (T/W) 2 is largely independent of the equation of state and rotation law. For m > 2, (T/W)/sub m/ decreases as the equation of state becomes softer, i.e., as the polytropic index n increases, and increases as the amount of differential rotation increases. The most striking result of this behavior occurs for uniform rotation

  15. Broad-band linear polarization and magnetic intensification in rotating magnetic stars

    International Nuclear Information System (INIS)

    Degl'Innocenti, M.L.; Calamai, G.; Degl'Innocenti, E.L.; Patriarchi, P.

    1981-01-01

    Magnetic intensification is proposed as a mechanism to explain the general features of the variable broad-band linear polarization emerging from rotating magnetic stars. This mechanism is studied in detail, and some efforts are made to investigate the wide variety of polarization diagrams that can result from it. Theoretical results are compared with direct observations of the variable magnetic star 53 Cam to determine its geometric and magnetic configuration

  16. Differential rotation, flares and coronae in A to M stars

    Czech Academy of Sciences Publication Activity Database

    Balona, L. A.; Švanda, Michal; Karlický, Marian

    2016-01-01

    Roč. 463, č. 2 (2016), s. 1740-1750 ISSN 0035-8711 R&D Projects: GA ČR GAP209/12/0103 Grant - others:GA ČR(CZ) GA15-02112S Institutional support: RVO:67985815 Keywords : stars * activity * flare Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.961, year: 2016

  17. Spectroscopic and physical parameters of Galactic O-type stars. III. Mass discrepancy and rotational mixing

    Science.gov (United States)

    Markova, N.; Puls, J.; Langer, N.

    2018-05-01

    Context. Massive stars play a key role in the evolution of galaxies and our Universe. Aims: Our goal is to compare observed and predicted properties of single Galactic O stars to identify and constrain uncertain physical parameters and processes in stellar evolution and atmosphere models. Methods: We used a sample of 53 objects of all luminosity classes and with spectral types from O3 to O9.7. For 30 of these, we determined the main photospheric and wind parameters, including projected rotational rates accounting for macroturbulence, and He and N surface abundances, using optical spectroscopy and applying the model atmosphere code FASTWIND. For the remaining objects, similar data from the literature, based on analyses by means of the CMFGEN code, were used instead. The properties of our sample were then compared to published predictions based on two grids of single massive star evolution models that include rotationally induced mixing. Results: Any of the considered model grids face problem in simultaneously reproducing the stellar masses, equatorial gravities, surface abundances, and rotation rates of our sample stars. The spectroscopic masses derived for objects below 30 M⊙ tend to be smaller than the evolutionary ones, no matter which of the two grids have been used as a reference. While this result may indicate the need to improve the model atmosphere calculations (e.g. regarding the treatment of turbulent pressure), our analysis shows that the established mass problem cannot be fully explained in terms of inaccurate parameters obtained by quantitative spectroscopy or inadequate model values of Vrot on the zero age main sequence. Within each luminosity class, we find a close correlation of N surface abundance and luminosity, and a stronger N enrichment in more massive and evolved O stars. Additionally, we also find a correlation of the surface nitrogen and helium abundances. The large number of nitrogen-enriched stars above 30 M⊙ argues for rotationally

  18. PROJECTED ROTATIONAL VELOCITIES OF 136 EARLY B-TYPE STARS IN THE OUTER GALACTIC DISK

    Energy Technology Data Exchange (ETDEWEB)

    Garmany, C. D.; Glaspey, J. W. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); Bragança, G. A.; Daflon, S.; Fernandes, M. Borges; Cunha, K. [Observatório Nacional-MCTI, Rua José Cristino, 77. CEP: 20921-400, Rio de Janeiro, RJ (Brazil); Oey, M. S. [University of Michigan, Department of Astronomy, 311 West Hall, 1085 S. University Ave., Ann Arbor, MI: 48109-1107 (United States); Bensby, T., E-mail: garmany@noao.edu [Lund Observatory, Department of Astronomy and Theoretical Physics, Box 43, SE-22100, Lund (Sweden)

    2015-08-15

    We have determined projected rotational velocities, v sin i, from Magellan/MIKE echelle spectra for a sample of 136 early B-type stars having large Galactocentric distances. The target selection was done independently of their possible membership in clusters, associations or field stars. We subsequently examined the literature and assigned each star as Field, Association, or Cluster. Our v sin i results are consistent with a difference in aggregate v sin i with stellar density. We fit bimodal Maxwellian distributions to the Field, Association, and Cluster subsamples representing sharp-lined and broad-lined components. The first two distributions, in particular, for the Field and Association are consistent with strong bimodality in v sin i. Radial velocities are also presented, which are useful for further studies of binarity in B-type stars, and we also identify a sample of possible new double-lined spectroscopic binaries. In addition, we find 18 candidate Be stars showing emission at Hα.

  19. Radial modes of slowly rotating compact stars in the presence of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Panda, N.R. [Institute of Physics, Bhubaneswar (India); Siksha ' O' Anusandhan University, Bhubaneswar (India); Mohanta, K.K. [Rairangpur College, Rairangpur, Odisha (India); Sahu, P.K. [Institute of Physics, Bhubaneswar (India)

    2016-09-15

    Compact stars are composed of very high-density hadron matter. When the matter is above nuclear matter density, then there is a chance of different phases of matter such as hadron matter to quark matter. There is a possible phase which, having the quark core surrounded by a mixed phase followed by hadronic matter, may be considered as a hybrid phase inside the stars called hybrid star (HS). The star which consists of only u, d and s quarks is called quark star (QS) and the star which has only hadronic matter is called neutron star (NS). For the equation of state (EOS) of hadronic matter, we have considered the Relativistic Mean Field (RMF) theory and we incorporated the effect of strong magnetic fields. For the EOS of the quark phase we use the simple MIT bag model. We have assumed Gaussian parametrization to make the density dependent for both bag pressure in quark matter and magnetic field. We have constructed the intermediate mixed phase by using the Glendenning conjecture. Eigenfrequencies of radial pulsations of slowly rotating magnetized compact stars (NS, QS, HS) are calculated in a general relativistic formalism given by Chandrasekhar and Friedman. We have studied the effect of central density on the square of the frequencies of the compact stars in the presence of zero and strong magnetic field. (orig.)

  20. Rotation of Low-mass Stars in Upper Scorpius and ρ Ophiuchus with K2

    Science.gov (United States)

    Rebull, L. M.; Stauffer, J. R.; Cody, A. M.; Hillenbrand, L. A.; David, T. J.; Pinsonneault, M.

    2018-05-01

    We present an analysis of K2 light curves (LCs) for candidate members of the young Upper Sco (USco) association (∼8 Myr) and the neighboring ρ Oph embedded cluster (∼1 Myr). We establish ∼1300 stars as probable members, ∼80% of which are periodic. The phased LCs have a variety of shapes which can be attributed to physical causes ranging from stellar pulsation and stellar rotation to disk-related phenomena. We identify and discuss a number of observed behaviors. The periods are ∼0.2–30 days with a peak near 2 days and the rapid period end nearing breakup velocity. M stars in the young USco region rotate systematically faster than GK stars, a pattern also present in K2 data for the older Pleiades and Praesepe systems. At higher masses (types FGK), the well-defined period–color relationship for slowly rotating stars seen in the Pleiades and Praesepe systems is not yet present in USco. Circumstellar disks are present predominantly among the more slowly rotating M stars in USco, with few disks in the subday rotators. However, M dwarfs with disks rotate faster on average than FGK systems with disks. For four of these disked M dwarfs, we provide direct evidence for disk locking based on the K2 LC morphologies. Our preliminary analysis shows a relatively mass-independent spin-up by a factor of ∼3.5 between USco and the Pleiades, then mass-dependent spin-down between Pleiades and Praesepe.

  1. Accretion by rotating magnetic neutron stars. III. Accretion torques and period changes in pulsating X-ray sources

    International Nuclear Information System (INIS)

    Ghosh, P.; Lamb, F.K.

    1979-01-01

    We use the solutions of the two-dimensional hydromagnetic equations obtained previously to calculate the torque on a magnetic neutron star accreting from a Keplerian disk. We find that the magnetic coupling between the star and the plasma outside the inner edge of the disk is appreciable. As a result of this coupling the spin-up torque on fast rotators is substantially less than that on slow rotators; for sufficiently high stellar angular velocities or sufficiently low accretion rates this coupling dominates that de to the plasma and the magnetic field at the inner edge of the disk, braking the star's rotation even while accretion, and hence X-ray emission, continues.We apply these results to pulsating X-ray sources, and show that the observed secular spin-up rates of all the sources in which this rate has been measured can be accounted for quantitatively if one assumes that these sources are accreting from Keplerian disks and have magnetic moments approx.10 29 --10 32 gauss cm 3 . The reduction of the torque on fast rotators provides a natural explanation of the spin-up rate of Her X-1, which is much below that expected for slow rotators. We show further that a simple relation between the secular spin-up rate : P and the quantity PL/sup 3/7/ adequately represents almost all the observational data, P and L being the pulse period and the luminosity of the source, respectively. This ''universal'' relation enables one to estimate any one of the parameters P, P, and L for a given source if the other two are known. We show that the short-term period fluctuations observed in Her X-1, Cen X-3, Vela X-1, and X Per can be accounted for quite naturally as consequences of torque variations caused by fluctuations in the mass transfer rate. We also indicate how the spin-down torque at low luminosities found here may account for the paradoxical existence of a large number of long-period sources with short spin-up time scales

  2. A variational principle for the axisymmetric stability of rotating relativistic stars

    International Nuclear Information System (INIS)

    Prabhu, Kartik; Wald, Robert M; Schiffrin, Joshua S

    2016-01-01

    It is well known that all rotating perfect fluid stars in general relativity are unstable to certain non-axisymmetric perturbations via the Chandrasekhar–Friedman–Schutz (CFS) instability. However, the mechanism of the CFS instability requires, in an essential way, the loss of angular momentum by gravitational radiation and, in many instances, it acts on too long a timescale to be physically/astrophysically relevant. It is therefore of interest to examine the stability of rotating, relativistic stars to axisymmetric perturbations, where the CFS instability does not occur. In this paper, we provide a Rayleigh–Ritz-type variational principle for testing the stability of perfect fluid stars to axisymmetric perturbations, which generalizes to axisymmetric perturbations of rotating stars a variational principle given by Chandrasekhar for spherical perturbations of static, spherical stars. Our variational principle provides a lower bound to the rate of exponential growth in the case of instability. The derivation closely parallels the derivation of a recently obtained variational principle for analyzing the axisymmetric stability of black holes. (paper)

  3. Nitrogen excess in slowly-rotating beta Cephei stars: deep mixing or diffusion?

    NARCIS (Netherlands)

    Morel, T.; Butler, K.; Aerts, C.C.; Neiner, C.; Briquet, M.

    2007-01-01

    We present the results of an NLTE abundance study of a small sample of beta Cephei stars, which point to the existence of a population of slowly-rotating B-type pulsators exhibiting a significant amount of nitrogen-enriched material at their surface. Although the origin of this nitrogen excess

  4. Fast radio bursts and their possible neutron star origins

    Science.gov (United States)

    Hessels, J. W. T.

    2017-12-01

    The discovery of the ‘Lorimer Burst’, a little over a decade ago, ignited renewed interest in searching for short-duration radio transients (Lorimer et al 2007 Science 318 777). This event is now considered to be the first established Fast Radio Burst (FRB), which is a class of millisecond-duration radio transients (Thornton et al 2013 Science 341 53). The large dispersive delays observed in FRBs distinguish them from the individual bright pulses from Galactic pulsars, and suggests that they originate deep in extragalactic space. Amazingly, FRBs are not rare: the implied event rate ranges up to many thousands of events per sky, per day (Champion et al 2016 MNRAS 460 L30). The fact that only two dozen FRBs have been discovered to date is a consequence of the limited sensitivity and field of view of current radio telescopes (Petroff et al 2016 PASA 33 e045). The precise localization of FRB 121102, the first and currently only FRB observed to repeat (Spitler et al 2014 ApJ 790 101; Spitler et al 2016 Nature 531 202; Scholz et al 2016 ApJ 833 177), has led to the unambiguous identification of its host galaxy and thus proven its extragalactic origin and large energy scale (Chatterjee et al 2017 Nature 541 58; Tendulkar et al 2017 ApJL 834 L7; Marcote et al 2017 ApJL 834 L8). It remains unclear, however, whether all FRBs are capable of repeating [many appear far less active (Petroff et al 2015 MNRAS 454 457)] or whether FRB 121102 implies that there are multiple sub-classes. Regardless, the repetitive nature of FRB 121102 and its localization to within a star-forming region in the host galaxy (Bassa et al 2017 ApJL 843 L8) imply that the bursts might originate from an exceptionally powerful neutron star - one necessarily quite unlike any we have observed in the Milky Way. In these proceedings, I give a very brief introduction to the FRB phenomenon and focus primarily on the insights that FRB 121102 has provided thus far.

  5. THE ROTATION RATES OF MASSIVE STARS: THE ROLE OF BINARY INTERACTION THROUGH TIDES, MASS TRANSFER, AND MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    De Mink, S. E. [Space Telescope Science Institute, Baltimore, MD (United States); Langer, N.; Izzard, R. G. [Argelander-Institut fuer Astronomie der Universitaet Bonn, D-53121 Bonn (Germany); Sana, H.; De Koter, A. [Astronomical Institute Anton Pannekoek, University of Amsterdam, 1098 XH Amsterdam (Netherlands)

    2013-02-20

    Rotation is thought to be a major factor in the evolution of massive stars-especially at low metallicity-with consequences for their chemical yields, ionizing flux, and final fate. Deriving the birth spin distribution is of high priority given its importance as a constraint on theories of massive star formation and as input for models of stellar populations in the local universe and at high redshift. Recently, it has become clear that the majority of massive stars interact with a binary companion before they die. We investigate how this affects the distribution of rotation rates, through stellar winds, expansion, tides, mass transfer, and mergers. For this purpose, we simulate a massive binary-star population typical for our Galaxy assuming continuous star formation. We find that, because of binary interaction, 20{sup +5} {sub -10}% of all massive main-sequence stars have projected rotational velocities in excess of 200 km s{sup -1}. We evaluate the effect of uncertain input distributions and physical processes and conclude that the main uncertainties are the mass transfer efficiency and the possible effect of magnetic braking, especially if magnetic fields are generated or amplified during mass accretion and stellar mergers. The fraction of rapid rotators we derive is similar to that observed. If indeed mass transfer and mergers are the main cause for rapid rotation in massive stars, little room remains for rapidly rotating stars that are born single. This implies that spin-down during star formation is even more efficient than previously thought. In addition, this raises questions about the interpretation of the surface abundances of rapidly rotating stars as evidence for rotational mixing. Furthermore, our results allow for the possibility that all early-type Be stars result from binary interactions and suggest that evidence for rotation in explosions, such as long gamma-ray bursts, points to a binary origin.

  6. TIME-DEPENDENT NONEXTENSIVITY ARISING FROM THE ROTATIONAL EVOLUTION OF SOLAR-TYPE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J. R. P.; Nepomuceno, M. M. F.; Soares, B. B.; De Freitas, D. B., E-mail: joseronaldo@uern.br [Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró-RN (Brazil)

    2013-11-01

    Nonextensive formalism is a generalization of the Boltzmann-Gibbs statistics. In this formalism, the entropic index q is a quantity characterizing the degree of nonextensivity and is interpreted as a parameter of long-memory or long-range interactions between the components of the system. Since its proposition in 1988, this formalism has been applied to investigate a wide variety of natural phenomena. In stellar astrophysics, a theoretical distribution function based on nonextensive formalism (q distributions) has been successfully applied to reproduce the distribution of stellar radial and rotational velocity data. In this paper, we investigate the time variation of the entropic index q obtained from the distribution of rotation, Vsin i, for a sample of 254 rotational data for solar-type stars from 11 open clusters aged between 35.5 Myr and 2.6 Gyr. As a result, we have found an anti-correlation between the entropic index q and the age of clusters, and that the distribution of rotation Vsin i for these stars becomes extensive for an age greater than about 170 Myr. Assuming that the parameter q is associated with long-memory effects, we suggest that the memory of the initial angular momentum of solar-type stars can be scaled by the entropic index q. We also propose a physical link between the parameter q and the magnetic braking of stellar rotation.

  7. THE DISCOVERY OF DIFFERENTIAL RADIAL ROTATION IN THE PULSATING SUBDWARF B STAR KIC 3527751

    Energy Technology Data Exchange (ETDEWEB)

    Foster, H. M.; Reed, M. D. [Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO 65897 (United States); Telting, J. H. [Nordic Optical Telescope, Rambla José Ana Fernández Pérez 7, E-38711 Breña Baja (Spain); Østensen, R. H. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Baran, A. S. [Uniwersytet Pedagogiczny, Obserwatorium na Suhorze, ul. Podchorażych 2, 30-084 Kraków (Poland)

    2015-06-01

    We analyze 3 yr of nearly continuous Kepler spacecraft short cadence observations of the pulsating subdwarf B (sdB) star KIC 3527751. We detect a total of 251 periodicities, most in the g-mode domain, but some where p-modes occur, confirming that KIC 3527751 is a hybrid pulsator. We apply seismic tools to the periodicities to characterize the properties of KIC 3527751. Techniques to identify modes include asymptotic period spacing relationships, frequency multiplets, and the separation of multiplet splittings. These techniques allow for 189 (75%) of the 251 periods to be associated with pulsation modes. Included in these are three sets of ℓ = 4 multiplets and possibly an ℓ = 9 multiplet. Period spacing sequences indicate ℓ = 1 and 2 overtone spacings of 266.4 ± 0.2 and 153.2 ± 0.2 s, respectively. We also calculate reduced periods, from which we find evidence of trapped pulsations. Such mode trappings can be used to constrain the core/atmosphere transition layers. Interestingly, frequency multiplets in the g-mode region, which sample deep into the star, indicate a rotation period of 42.6 ± 3.4 days while p-mode multiplets, which sample the outer envelope, indicate a rotation period of 15.3 ± 0.7 days. We interpret this as differential rotation in the radial direction with the core rotating more slowly. This is the first example of differential rotation for a sdB star.

  8. Rotational broadening and conservation of angular momentum in post-extreme horizontal branch stars

    Science.gov (United States)

    Fontaine, G.; Latour, M.

    2018-06-01

    We show that the recent realization that isolated post-extreme horizontal branch (post-EHB) stars are generally characterized by rotational broadening with values of V rot sini between 25 and 30 km s-1 can be explained as a natural consequence of the conservation of angular momentum from the previous He-core burning phase on the EHB. The progenitors of these evolved objects, the EHB stars, are known to be slow rotators with an average value of V rot sini of 7.7 km s-1. This implies significant spin-up between the EHB and post-EHB phases. Using representative evolutionary models of hot subdwarf stars, we demonstrate that angular momentum conservation in uniformly rotating structures (rigid-body rotation) boosts that value of the projected equatorial rotation speed by a factor 3.6 by the time the model has reached the region of the surface gravity-effective temperature plane where the newly-studied post-EHB objects are found. This is exactly what is needed to account for their observed atmospheric broadening. We note that the decrease of the moment of inertia causing the spin-up is mostly due to the redistribution of matter that produces more centrally-condensed structures in the post-EHB phase of evolution, not to the decrease of the radius per se.

  9. Relation between radio luminosity and rotation for late-type stars

    International Nuclear Information System (INIS)

    Stewart, R.T.; Innis, J.L.; Slee, O.B.; Nelson, G.J.; Wright, A.E.

    1988-01-01

    A relation is found between peak radio luminosities measured at 8 GHz and the rotational velocity of 51 late-type F, G, and K stars (including the sun). The sample includes both single stars and active components of close binary systems, with equatorial surface velocities ranging from 1 to 100 km/s. A gyrosynchrotron source model originally developed to explain solar microwave bursts could explain the relation. The main parameter depending on rotation rate is the filling factor, i.e., the fraction of the stellar surface and corona occupied by intense magnetic fields. As the rotation speed increases, the scale size of the coronal structures emitting microwave gyrosynchrotron radiation increases, and there is a corresponding increase in the area of the surface covered by intense starspot magnetic fields. However, the peak magnetic field of the starspots probably does not increase significantly above observed sunspot values. 47 references

  10. Perceptual strategies of pigeons to detect a rotational centre--a hint for star compass learning?

    Directory of Open Access Journals (Sweden)

    Bianca Alert

    Full Text Available Birds can rely on a variety of cues for orientation during migration and homing. Celestial rotation provides the key information for the development of a functioning star and/or sun compass. This celestial compass seems to be the primary reference for calibrating the other orientation systems including the magnetic compass. Thus, detection of the celestial rotational axis is crucial for bird orientation. Here, we use operant conditioning to demonstrate that homing pigeons can principally learn to detect a rotational centre in a rotating dot pattern and we examine their behavioural response strategies in a series of experiments. Initially, most pigeons applied a strategy based on local stimulus information such as movement characteristics of single dots. One pigeon seemed to immediately ignore eccentric stationary dots. After special training, all pigeons could shift their attention to more global cues, which implies that pigeons can learn the concept of a rotational axis. In our experiments, the ability to precisely locate the rotational centre was strongly dependent on the rotational velocity of the dot pattern and it crashed at velocities that were still much faster than natural celestial rotation. We therefore suggest that the axis of the very slow, natural, celestial rotation could be perceived by birds through the movement itself, but that a time-delayed pattern comparison should also be considered as a very likely alternative strategy.

  11. RADII OF RAPIDLY ROTATING STARS, WITH APPLICATION TO TRANSITING-PLANET HOSTS

    International Nuclear Information System (INIS)

    Brown, Timothy M.

    2010-01-01

    The currently favored method for estimating radii and other parameters of transiting-planet host stars is to match theoretical models to observations of the stellar mean density ρ * , the effective temperature T eff , and the composition parameter [Z]. This explicitly model-dependent approach is based on readily available observations, and results in small formal errors. Its performance will be central to the reliability of results from ground-based transit surveys such as TrES, HAT, and SuperWASP, as well as to the space-borne missions MOST, CoRoT, and Kepler. Here, I use two calibration samples of stars (eclipsing binaries (EBs) and stars for which asteroseismic analyses are available) having well-determined masses and radii to estimate the accuracy and systematic errors inherent in the ρ * method. When matching to the Yonsei-Yale stellar evolution models, I find the most important systematic error results from selection bias favoring rapidly rotating (hence probably magnetically active) stars among the EB sample. If unaccounted for, this bias leads to a mass-dependent underestimate of stellar radii by as much as 4% for stars of 0.4 M sun , decreasing to zero for masses above about 1.4 M sun . Relative errors in estimated stellar masses are three times larger than those in radii. The asteroseismic sample suggests (albeit with significant uncertainty) that systematic errors are small for slowly rotating, inactive stars. Systematic errors arising from failings of the Yonsei-Yale models of inactive stars probably exist, but are difficult to assess because of the small number of well-characterized comparison stars having low mass and slow rotation. Poor information about [Z] is an important source of random error, and may be a minor source of systematic error as well. With suitable corrections for rotation, it is likely that systematic errors in the ρ * method can be comparable to or smaller than the random errors, yielding radii that are accurate to about 2% for

  12. Evolutionary period changes in rotating hot pre--white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Kawaler, S.D.; Winget, D.E.; Hansen, C.J.

    1985-11-15

    We have calculated and splitting of high order nonradial g-modes due to slow rotation in models of hot pre-white dwarf (''PWD'') stars of 0.60 M/sub sun/. We have investigated the effects of rotational spin-up, produced by gravitational contraction, on the rate of evolutionary period change for the cases of uniform and differential rotation. For models in the luminosity range of PG 1159-035 (Lapprox.100 L/sub sun/), we find that rotation rates of a few thousand seconds for modes with m< or approx. =-2 produce values of d(ln P)/dt that are consistent with the measurement of the rate of period change of the 516 second period of PG 1159-035.

  13. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS

    International Nuclear Information System (INIS)

    Paxton, Bill; Cantiello, Matteo; Bildsten, Lars; Arras, Phil; Brown, Edward F.; Dotter, Aaron; Mankovich, Christopher; Montgomery, M. H.; Stello, Dennis; Timmes, F. X.; Townsend, Richard

    2013-01-01

    We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA star. Improvements in MESA star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 M ☉ stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA star solves the fully coupled stellar structure and composition equations, and we show how this has improved the scaling of MESA's calculational speed on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit that packages all the required components needed to form a unified, maintained, and well-validated build environment for MESA. We also highlight a few tools developed by the community for rapid visualization of MESA star results

  14. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Bill; Cantiello, Matteo; Bildsten, Lars [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Arras, Phil [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Brown, Edward F. [Department of Physics and Astronomy, National Superconducting Cyclotron Laboratory, and Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48864 (United States); Dotter, Aaron [Research School of Astronomy and Astrophysics, The Australian National University, Weston, ACT 2611 (Australia); Mankovich, Christopher [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Montgomery, M. H. [Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Stello, Dennis [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Timmes, F. X. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Townsend, Richard, E-mail: matteo@kitp.ucsb.edu [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2013-09-15

    We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA star. Improvements in MESA star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 M{sub Sun} stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA star solves the fully coupled stellar structure and composition equations, and we show how this has improved the scaling of MESA's calculational speed on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit that packages all the required components needed to form a unified, maintained, and well-validated build environment for MESA. We also highlight a few tools developed by the community for rapid visualization of MESA star

  15. Design and DSP implementation of star image acquisition and star point fast acquiring and tracking

    Science.gov (United States)

    Zhou, Guohui; Wang, Xiaodong; Hao, Zhihang

    2006-02-01

    Star sensor is a special high accuracy photoelectric sensor. Attitude acquisition time is an important function index of star sensor. In this paper, the design target is to acquire 10 samples per second dynamic performance. On the basis of analyzing CCD signals timing and star image processing, a new design and a special parallel architecture for improving star image processing are presented in this paper. In the design, the operation moving the data in expanded windows including the star to the on-chip memory of DSP is arranged in the invalid period of CCD frame signal. During the CCD saving the star image to memory, DSP processes the data in the on-chip memory. This parallelism greatly improves the efficiency of processing. The scheme proposed here results in enormous savings of memory normally required. In the scheme, DSP HOLD mode and CPLD technology are used to make a shared memory between CCD and DSP. The efficiency of processing is discussed in numerical tests. Only in 3.5ms is acquired the five lightest stars in the star acquisition stage. In 43us, the data in five expanded windows including stars are moved into the internal memory of DSP, and in 1.6ms, five star coordinates are achieved in the star tracking stage.

  16. Gyrochronology of Low-mass Stars - Age-Rotation-Activity Relations for Young M Dwarfs

    Science.gov (United States)

    Kidder, Benjamin; Shkolnik, E.; Skiff, B.

    2014-01-01

    New rotation periods for 34 young understanding of the underlying mechanisms that govern angular momentum evolution. Yet, on average, the data still support the predicted trends for spin-up during contraction and spin-down on the main sequence, with the turnover occurring at around 150 Myr for early Ms. This suggests that rotation period distributions can be helpful in evaluating the ages of coeval groups of stars. Many thanks to the National Science Foundation for their support through the Research Experience for Undergraduates Grant AST- 1004107.

  17. Features of the mass transfer in magnetic cataclysmic variables with fast-rotating white dwarfs

    Directory of Open Access Journals (Sweden)

    Isakova Polina

    2014-01-01

    Full Text Available The flow structure in magnetic cataclysmic variables was investigated taking into account the effects of strong magnetic field and fast rotation of the white dwarf. We modeled the AE Aqr system as a unique object that has the rotation period of the white dwarf is about 1000 times shorter than the orbital period of the binary system. Observations show that in spite of fast rotation of the white dwarf some part of the stream from the inner Lagrange point comes into the Roche lobe region. We analyzed possible mechanisms preventing material to outflow from the system.

  18. Some aspects of cool main sequence star ages derived from stellar rotation (gyrochronology)

    Science.gov (United States)

    Barnes, S. A.; Spada, F.; Weingrill, J.

    2016-09-01

    Rotation periods for cool stars can be measured with good precision by monitoring starspot light modulation. Observations have shown that the rotation periods of dwarf stars of roughly solar metallicity have such systematic dependencies on stellar age and mass that they can be used to derive reliable ages, a procedure called gyrochronology. We review the method and show illustrative cases, including recent ground- and space-based data. The age uncertainties approach 10 % in the best cases, making them a valuable complement to, and constraint on, asteroseismic or other ages. Edited, updated, and refereed version of a presentation at the WE-Heraeus-Seminar in Bad Honnef, Germany: Reconstructing the Milky Way's History: Spectroscopic Surveys, Asteroseismology and Chemodynamical Models

  19. Imperical relationship in the properties of static and rotating protoneutron star

    International Nuclear Information System (INIS)

    Mahajan, Gulshan; Dhiman, Shashi K.

    2012-01-01

    In the present work, the extended relativistic mean field (ERMF) model and its perametrizations BSR1- BSR21 are employed. The Lagrangian density, Lagrangian terms and the Euler-Lagrangian equations for ground state expectation values of the meson fields are same as earlier studies. At finite temperatures the baryon vector density, scalar density and charge density are as defined in earlier studies. The Keplerian configurations of rapidly rotating protoneutron stars have been computed in framework of general relativity by solving the Einstein eld equations for stationary axisymmetric space time and references therein. The numerical calculations have been performed by employing the Rotating Neutron Star (RNS) code. The perametrizations have been generated by varying the ω meson self-coupling ζ and neutron skin thickness Δr for the 208 Pb nucleus

  20. Universal relations for differentially rotating relativistic stars at the threshold to collapse

    Science.gov (United States)

    Bozzola, Gabriele; Stergioulas, Nikolaos; Bauswein, Andreas

    2018-03-01

    A binary neutron star merger produces a rapidly and differentially rotating compact remnant whose lifespan heavily affects the electromagnetic and gravitational emissions. Its stability depends on both the equation of state (EOS) and the rotation law and it is usually investigated through numerical simulations. Nevertheless, by means of a sufficient criterion for secular instability, equilibrium sequences can be used as a computational inexpensive way to estimate the onset of dynamical instability, which, in general, is close to the secular one. This method works well for uniform rotation and relies on the location of turning points: stellar models that are stationary points in a sequence of equilibrium solutions with constant rest mass or angular momentum. Here, we investigate differentially rotating models (using a large number of EOSs and different rotation laws) and find that several universal relations between properly scaled gravitational mass, rest mass and angular momentum of the turning-point models that are valid for uniform rotation are insensitive to the degree of differential rotation, to high accuracy.

  1. On the mass of rotating stars in Newtonian gravity and GR

    International Nuclear Information System (INIS)

    Reina, Borja; Vera, Raül

    2016-01-01

    We show how the correction to the calculation of the mass in the original relativistic model of a rotating star by Hartle (1967 Astrophys. J. 150 1005–29), found recently by Reina and Vera (2015 Class. Quantum Grav. 32 155008), appears in the Newtonian limit, and that the correcting term is indeed present, albeit hidden, in the original Newtonian approach by Chandrasekhar (1933 Mon. Not. Roy. Astr. Soc. 93 390–406). (note)

  2. Gamma-ray burst progenitors and the population of rotating Wolf-Rayet stars.

    Science.gov (United States)

    Vink, Jorick S

    2013-06-13

    In our quest for gamma-ray burst (GRB) progenitors, it is relevant to consider the progenitor evolution of normal supernovae (SNe). This is largely dominated by mass loss. We discuss the mass-loss rate for very massive stars up to 300M⊙. These objects are in close proximity to the Eddington Γ limit. We describe the new concept of the transitional mass-loss rate, enabling us to calibrate wind mass loss. This allows us to consider the occurrence of pair-instability SNe in the local Universe. We also discuss luminous blue variables and their link to luminous SNe. Finally, we address the polarization properties of Wolf-Rayet (WR) stars, measuring their wind asphericities. We argue to have found a group of rotating WR stars that fulfil the required criteria to make long-duration GRBs.

  3. A Method to Measure the Transverse Magnetic Field and Orient the Rotational Axis of Stars

    Energy Technology Data Exchange (ETDEWEB)

    Leone, Francesco; Scalia, Cesare; Gangi, Manuele; Giarrusso, Marina [Università di Catania, Dipartimento di Fisica e Astronomia, Sezione Astrofisica, Via S. Sofia 78, I-95123 Catania (Italy); Munari, Matteo; Scuderi, Salvatore; Trigilio, Corrado [INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Stift, Martin J. [Armagh Observatory, College Hill, Armagh BT61 9DG. Northern Ireland (United Kingdom)

    2017-10-20

    Direct measurements of stellar magnetic fields are based on the splitting of spectral lines into polarized Zeeman components. With a few exceptions, Zeeman signatures are hidden in data noise, and a number of methods have been developed to measure the average, over the visible stellar disk, of longitudinal components of the magnetic field. At present, faint stars are only observable via low-resolution spectropolarimetry, which is a method based on the regression of the Stokes V signal against the first derivative of Stokes I . Here, we present an extension of this method to obtain a direct measurement of the transverse component of stellar magnetic fields by the regression of high-resolution Stokes Q and U as a function of the second derivative of Stokes I . We also show that it is possible to determine the orientation in the sky of the rotation axis of a star on the basis of the periodic variability of the transverse component due to its rotation. The method is applied to data, obtained with the Catania Astrophysical Observatory Spectropolarimeter along the rotational period of the well known magnetic star β CrB.

  4. Search of Large Super-Fast Rotator between NEAs

    Czech Academy of Sciences Publication Activity Database

    Carbognani, A.; Pravec, Petr; Kušnirák, Peter; Hornoch, Kamil; Galád, Adrián; Monte, S.; Bertaina, M.

    2016-01-01

    Roč. 87, č. 1 (2016), s. 66-71 ISSN 0037-8720. [Italian national workshop of planetary sciences /12./. Bormio, 02.02.2015-06.02.2015] R&D Projects: GA ČR GAP209/12/0229 Institutional support: RVO:67985815 Keywords : minor planets * near Earth asteroids * rotation periods Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://sait.oat.ts.astro.it/MmSAI/87/PDF/66.pdf

  5. Matching of analytical and numerical solutions for neutron stars of arbitrary rotation

    International Nuclear Information System (INIS)

    Pappas, George

    2009-01-01

    We demonstrate the results of an attempt to match the two-soliton analytical solution with the numerically produced solutions of the Einstein field equations, that describe the spacetime exterior of rotating neutron stars, for arbitrary rotation. The matching procedure is performed by equating the first four multipole moments of the analytical solution to the multipole moments of the numerical one. We then argue that in order to check the effectiveness of the matching of the analytical with the numerical solution we should compare the metric components, the radius of the innermost stable circular orbit (R ISCO ), the rotation frequency and the epicyclic frequencies Ω ρ , Ω z . Finally we present some results of the comparison.

  6. Matching of analytical and numerical solutions for neutron stars of arbitrary rotation

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, George, E-mail: gpappas@phys.uoa.g [Section of Astrophysics, Astronomy, and Mechanics, Department of Physics, University of Athens, Panepistimiopolis Zografos GR15783, Athens (Greece)

    2009-10-01

    We demonstrate the results of an attempt to match the two-soliton analytical solution with the numerically produced solutions of the Einstein field equations, that describe the spacetime exterior of rotating neutron stars, for arbitrary rotation. The matching procedure is performed by equating the first four multipole moments of the analytical solution to the multipole moments of the numerical one. We then argue that in order to check the effectiveness of the matching of the analytical with the numerical solution we should compare the metric components, the radius of the innermost stable circular orbit (R{sub ISCO}), the rotation frequency and the epicyclic frequencies {Omega}{sub {rho}}, {Omega}{sub z}. Finally we present some results of the comparison.

  7. Rapidly rotating neutron stars with a massive scalar field—structure and universal relations

    International Nuclear Information System (INIS)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.

    2016-01-01

    We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly and rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I -Love- Q relations.

  8. Rapidly rotating neutron stars with a massive scalar field—structure and universal relations

    Energy Technology Data Exchange (ETDEWEB)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S., E-mail: daniela.doneva@uni-tuebingen.de, E-mail: yazad@phys.uni-sofia.bg [Theoretical Astrophysics, Eberhard Karls University of Tübingen, Tübingen 72076 (Germany)

    2016-11-01

    We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly and rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I -Love- Q relations.

  9. Distribution of rotational velocities for low-mass stars in the Pleiades

    International Nuclear Information System (INIS)

    Stauffer, J.R.; Hartmann, L.W.; Dominion Astrophysical Observatory, Victoria, Canada; Smithsonian Astrophysical Observatory, Cambridge, MA)

    1987-01-01

    The available spectral type and color data for late-type Pleiades members have been reanalyzed, and new reddening estimates are obtained. New photometry for a small number of stars and a compilation of H-alpha equivalent widths for Pleiades dwarfs are presented. These data are used to examine the location of the rapid rotators in color-magnitude diagrams and the correlation between chromospheric activity and rotation. It is shown that the wide range of angular momenta exhibited by Pleiades K and M dwarfs is not necessarily produced by a combination of main-sequence spin-downs and a large age spread; it can also result from a plausible spread in initial angular momenta, coupled with initial main-sequence spin-down rates that are only weakly dependent on rotation. The new reddening estimates confirm Breger's (1985) finding of large extinctions confined to a small region in the southern portion of the Merope nebula. 79 references

  10. The distribution of rotational velocities for low-mass stars in the Pleiades

    Science.gov (United States)

    Stauffer, John R.; Hartmann, Lee W.

    1987-01-01

    The available spectral type and color data for late-type Pleiades members have been reanalyzed, and new reddening estimates are obtained. New photometry for a small number of stars and a compilation of H-alpha equivalent widths for Pleiades dwarfs are presented. These data are used to examine the location of the rapid rotators in color-magnitude diagrams and the correlation between chromospheric activity and rotation. It is shown that the wide range of angular momenta exhibited by Pleiades K and M dwarfs is not necessarily produced by a combination of main-sequence spin-downs and a large age spread; it can also result from a plausible spread in initial angular momenta, coupled with initial main-sequence spin-down rates that are only weakly dependent on rotation. The new reddening estimates confirm Breger's (1985) finding of large extinctions confined to a small region in the southern portion of the Merope nebula.

  11. LARGE SUPER-FAST ROTATOR HUNTING USING THE INTERMEDIATE PALOMAR TRANSIENT FACTORY

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen [Institute of Astronomy, National Central University, Jhongli, Taiwan (China); Prince, Thomas A.; Kulkarni, Shrinivas R.; Levitan, David [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Laher, Russ; Surace, Jason, E-mail: rex@astro.ncu.edu.tw [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States)

    2016-12-01

    In order to look for large super-fast rotators, in late 2014 and early 2015, five dedicated surveys covering ∼188 deg{sup 2} in the ecliptic plane have been carried out in the R -band, with ∼10 minute cadence using the intermediate Palomar Transient Factory. Among 1029 reliable rotation periods obtained from the surveys, we discovered 1 new large super-fast rotator, (40511) 1999 RE88, and 18 other candidates. (40511) 1999 RE88 is an S-type inner main-belt asteroid with a diameter of D  = 1.9 ± 0.3 km, a rotation period of P  = 1.96 ± 0.01 hr, and a light curve amplitude of Δ m  ∼ 1.0 mag. To maintain such fast rotation, an internal cohesive strength of ∼780 Pa is required. Combining all known large super-fast rotators, their cohesive strengths all fall in the range of 100–1000 Pa of lunar regolith. However, the number of large super-fast rotators seems to be far less than the whole asteroid population. This might indicate a peculiar asteroid group for them. Although the detection efficiency for a long rotation period is greatly reduced due to our two-day observation time span, the spin-rate distributions of this work show consistent results with Chang et al. (2015), after considering the possible observational bias in our surveys. It shows a number decrease with an increase of spin rate for asteroids with a diameter of 3 ⩽  D  ⩽ 15 km, and a number drop at a spin rate of f  = 5 rev day{sup −1} for asteroids with D  ⩽ 3 km.

  12. INTERNAL ROTATION OF THE RED-GIANT STAR KIC 4448777 BY MEANS OF ASTEROSEISMIC INVERSION

    Energy Technology Data Exchange (ETDEWEB)

    Di Mauro, M. P.; Cardini, D. [INAF, IAPS Istituto di Astrofisica e Planetologia Spaziali, Roma (Italy); Ventura, R.; Paternò, L. [INAF, Astrophysical Observatory of Catania, Catania (Italy); Stello, D. [Sydney Institute for Astronomy, School of Physics, University of Sydney (Australia); Christensen-Dalsgaard, J.; Hekker, S. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Dziembowski, W. A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warsaw (Poland); Beck, P. G.; De Smedt, K.; Tkachenko, A. [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven (Belgium); Bloemen, S. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands); Davies, G. R.; Garcia, R. A. [Laboratoire AIM, CEA/DSM-CNRS-Univ. Paris Diderot, IRFU/Sap, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Elsworth, Y. [School of Physics and Astronomy, University of Birmingham (United Kingdom); Mosser, B. [LESIA, PSL Research University, CNRS, Universitè Pierre et Marie Curie, Université Denis Diderot, Observatoire de Paris, Meudon Cedex (France)

    2016-01-20

    We study the dynamics of the stellar interior of the early red-giant star KIC 4448777 by asteroseismic inversion of 14 splittings of the dipole mixed modes obtained from Kepler observations. In order to overcome the complexity of the oscillation pattern typical of red-giant stars, we present a procedure to extract the rotational splittings from the power spectrum. We find not only that the core rotates from a minimum of 8 to a maximum of 17 times faster than the surface, confirming previous inversion results generated for other red giants (Deheuvels et al.), but we also estimate the variation of the angular velocity within the helium core with a spatial resolution of 0.001R and verify the hypothesis of a sharp discontinuity in the inner stellar rotation. The results show that the entire core rotates rigidly and provide evidence for an angular velocity gradient around the base of the hydrogen-burning shell; however, we do not succeed in characterizing the rotational slope, due to the intrinsic limits of the applied techniques. The angular velocity, from the edge of the core, appears to decrease with increasing distance from the center, reaching an average value in the convective envelope of 68 ± 22 nHz. We conclude that a set of data that includes only dipolar modes is sufficient to infer quite accurately the rotation of a red giant not only in the dense core but also, with a lower level of confidence, in part of the radiative region and in the convective envelope.

  13. NuSTAR Results and Future Plans for Magnetar and Rotation-Powered Pulsar Observations

    Science.gov (United States)

    An, H.; Kaspi, V. M.; Archibald, R.; Bachetti, M.; Bhalerao, V.; Bellm, E. C.; Beloborodov, A. M.; Boggs, S. E.; Chakrabarty, D.; Christensen, F. E.; hide

    2014-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing hard X-ray mission in orbit and operates in the 3-79 keV range. NuSTAR's sensitivity is roughly two orders of magnitude better than previous missions in this energy band thanks to its superb angular resolution. Since its launch in 2012 June, NuSTAR has performed excellently and observed many interesting sources including four magnetars, two rotation-powered pulsars and the cataclysmic variable AE Aquarii. NuSTAR also discovered 3.76-s pulsations from the transient source SGR J1745-29 recently found by Swift very close to the Galactic center, clearly identifying the source as a transient magnetar. For magnetar 1E 1841-045, we show that the spectrum is well fit by an absorbed blackbody plus broken power-law model with a hard power-law photon index of approximately 1.3. This is consistent with previous results by INTEGRAL and RXTE. We also find an interesting double-peaked pulse profile in the 25-35 keV band. For AE Aquarii, we show that the spectrum can be described by a multi-temperature thermal model or a thermal plus non-thermal model; a multi-temperature thermal model without a non-thermal component cannot be ruled out. Furthermore, we do not see a spiky pulse profile in the hard X-ray band, as previously reported based on Suzaku observations. For other magnetars and rotation-powered pulsars observed with NuSTAR, data analysis results will be soon available.

  14. Hot subdwarf stars in close-up view. I. Rotational properties of subdwarf B stars in close binary systems and nature of their unseen companions

    Science.gov (United States)

    Geier, S.; Heber, U.; Podsiadlowski, Ph.; Edelmann, H.; Napiwotzki, R.; Kupfer, T.; Müller, S.

    2010-09-01

    mass companions appears to be consistent with expectations, whereas a lack of high inclinations becomes obvious for the massive systems. We show that the formation of such systems can be explained with common envelope evolution and present an appropriate formation channel including two phases of unstable mass transfer and one supernova explosion. The sample also contains a candidate post-RGB star, which rotates fast despite its long orbital period. The post-RGB stars are expected to spin-up caused by their ongoing contraction. The age of the sdB is another important factor. If the EHB star is too young, the synchronisation process might not be finished yet. Estimating the ages of the target stars from their positions on the EHB band, we found PG 2345+318, which is known not to be synchronised, to lie near the zero-age extreme horizontal branch as are the massive candidates PG 1232-136, PG 1432+159 and PG 1101+249. These star may possibly be too young to have reached synchronisation. The derived large fraction of putative massive sdB binary systems in low inclination orbits is inconsistent with theoretical predictions. Even if we dismiss three candidates because they may be too young and assume that the other sdB primaries are of low mass, PG 1743+477 and, in particular, HE 0532-4503 remain as candidates whose companions may have masses close to or above the Chandrasekhar limit. X-ray observations and accurate photometry are suggested to clarify their nature. As high inclination systems must also exist, an appropriate survey has already been launched to find such binaries. Based on observations at the Paranal Observatory of the European Southern Observatory for programmes number 165.H-0588(A), 167.D-0407(A), 068.D-0483(A), 069.D-0534(A), 070.D-0334(A), 071.D-0380(A), 071.D-0383(A) and 382.D-0841(A). Based on observations at the La Silla Observatory of the European Southern Observatory for programmes number 073.D-0495(A), 074.B-0455(A) and 077.D-0515(A). Some of the data

  15. Meridional circulation in rotating stars. VII. The effects of chemical inhomogeneities

    International Nuclear Information System (INIS)

    Tassoul, M.; Tassoul, J.

    1984-01-01

    In this paper we discuss the effects of a gradient of mean molecular weight μ on the rotationally driven currents that pervade the radiative zone of a single, nonmagnetic, main-sequence star. Detailed numerical calculations are made for the hydrogen-burning core of a solar-type star, assuming that departures from spherical symmetry are not too large. It is found that meridional streaming virtually dies out from the center outward as the μ-gradient grows in a leisurely fashion. This prevents a substantial mixing of matter between the inner (inhomogeneous) and outer (homogeneous) regions in the radiative zone, although the inner region may be penetrated to some degree. To first order in the ratio of the centrifugal force to gravity at the equator, this pattern of circulation is independent of the mean angular velocity. To this order, then, there is no critical rotation rate above which unimpeded mixing may take place. These quantitative results are compared with diverse statements that can be found in the phenomenological literature on rotational mixing

  16. Recurrent star-spot activity and differential rotation in KIC 11560447

    Science.gov (United States)

    Özavcı, I.; Şenavcı, H. V.; Işık, E.; Hussain, G. A. J.; O'Neal, D.; Yılmaz, M.; Selam, S. O.

    2018-03-01

    We present a detailed analysis of surface inhomogeneities on the K1-type subgiant component of the rapidly rotating eclipsing binary KIC 11560447, using high-precision Kepler light curves spanning nearly 4 yr, which corresponds to about 2800 orbital revolutions. We determine the system parameters precisely, using high-resolution spectra from the 2.1-m Otto Struve Telescope at the McDonald Observatory. We apply the maximum entropy method to reconstruct the relative longitudinal spot occupancy. Our numerical tests show that the procedure can recover large-scale random distributions of individually unresolved spots, and it can track the phase migration of up to three major spot clusters. By determining the drift rates of various spotted regions in orbital longitude, we suggest a way to constrain surface differential rotation and we show that the results are consistent with periodograms. The K1IV star exhibits two mildly preferred longitudes of emergence, indications of solar-like differential rotation, and a 0.5-1.3-yr recurrence period in star-spot emergence, accompanied by a secular increase in the axisymmetric component of spot occupancy.

  17. BANYAN. III. Radial velocity, rotation, and X-ray emission of low-mass star candidates in nearby young kinematic groups

    Energy Technology Data Exchange (ETDEWEB)

    Malo, Lison; Artigau, Étienne; Doyon, René; Lafrenière, David; Albert, Loïc; Gagné, Jonathan, E-mail: malo@astro.umontreal.ca, E-mail: doyon@astro.umontreal.ca [Département de physique and Observatoire du Mont-Mégantic, Université de Montréal, Montréal, QC H3C 3J7 (Canada)

    2014-06-10

    Based on high-resolution spectra obtained with PHOENIX at Gemini-South, CRIRES at VLT-UT1, and ESPaDOnS at the Canada-France-Hawaii Telescope, we present new measurements of the radial and projected rotational velocities of 219 low-mass stars. The target likely membership was initially established using the Bayesian analysis tool recently presented in Malo et al., taking into account only the position, proper motion, and photometry of the stars to assess their membership probability. In the present study, we include radial velocity as an additional input to our analysis, and in doing so we confirm the high membership probability for 130 candidates: 27 in β Pictoris, 22 in Tucana-Horologium, 25 in Columba, 7 in Carina, 18 in Argus and 18 in AB Doradus, and 13 with an ambiguous membership. Our analysis also confirms the membership of 57 stars proposed in the literature. A subsample of 16 candidates was observed at 3 or more epochs, allowing us to discover 6 new spectroscopic binaries. The fraction of binaries in our sample is 25%, consistent with values in the literature. Of the stars in our sample, 20% show projected rotational velocities (vsin i) higher than 30 km s{sup –1} and therefore are considered as fast rotators. A parallax and other youth indicators are still needed to fully confirm the 130 highly probable candidates identified here as new bona fide members. Finally, based on the X-ray emission of bona fide and highly probable group members, we show that for low-mass stars in the 12-120 Myr age range, the X-ray luminosity is an excellent indicator of youth and better than the more traditionally used R {sub X} parameter, the ratio of X-ray to bolometric luminosity.

  18. Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general relativity

    International Nuclear Information System (INIS)

    Shibata, Masaru; Sekiguchi, Yu-ichirou

    2004-01-01

    Axisymmetric numerical simulations of rotating stellar core collapse to a neutron star are performed in the framework of full general relativity. The so-called Cartoon method, in which the Einstein field equations are solved in Cartesian coordinates and the axisymmetric condition is imposed around the y=0 plane, is adopted. The hydrodynamic equations are solved in cylindrical coordinates (on the y=0 plane in Cartesian coordinates) using a high-resolution shock-capturing scheme with maximum grid size (2500,2500). A parametric equation of state is adopted to model collapsing stellar cores and neutron stars following Dimmelmeier, Font, and Mueller. It is found that the evolution of the central density during the collapse, bounce, and formation of protoneutron stars agrees well with that in the work of Dimmelmeier, Font, and Mueller in which an approximate general relativistic formulation is adopted. This indicates that such an approximation is appropriate for following axisymmetric stellar core collapses and the subsequent formation of protoneutron stars. Gravitational waves are computed using a quadrupole formula. It is found that the waveforms are qualitatively in good agreement with those by Dimmelmeier, Font, and Mueller. However, quantitatively, two waveforms do not agree well. The possible reasons for the disagreement are discussed

  19. Effectively universal behavior of rotating neutron stars in general relativity makes them even simpler than their Newtonian counterparts.

    Science.gov (United States)

    Pappas, George; Apostolatos, Theocharis A

    2014-03-28

    Recently, it was shown that slowly rotating neutron stars exhibit an interesting correlation between their moment of inertia I, their quadrupole moment Q, and their tidal deformation Love number λ (the I-Love-Q relations), independently of the equation of state of the compact object. In the present Letter a similar, more general, universality is shown to hold true for all rotating neutron stars within general relativity; the first four multipole moments of the neutron star are related in a way independent of the nuclear matter equation of state we assume. By exploiting this relation, we can describe quite accurately the geometry around a neutron star with fewer parameters, even if we don't know precisely the equation of state. Furthermore, this universal behavior displayed by neutron stars could promote them to a more promising class of candidates (next to black holes) for testing theories of gravity.

  20. Fast radio bursts and their possible neutron star origins

    NARCIS (Netherlands)

    Hessels, J.W.T.

    2017-01-01

    The discovery of the ‘Lorimer Burst’, a little over a decade ago, ignited renewed interest in searching for short-duration radio transients (Lorimer et al 2007 Science 318 777). This event is now considered to be the first established Fast Radio Burst (FRB), which is a class of millisecond-duration

  1. Introduction to modeling convection in planets and stars magnetic field, density stratification, rotation

    CERN Document Server

    Glatzmaier, Gary

    2013-01-01

    This book provides readers with the skills they need to write computer codes that simulate convection, internal gravity waves, and magnetic field generation in the interiors and atmospheres of rotating planets and stars. Using a teaching method perfected in the classroom, Gary Glatzmaier begins by offering a step-by-step guide on how to design codes for simulating nonlinear time-dependent thermal convection in a two-dimensional box using Fourier expansions in the horizontal direction and finite differences in the vertical direction. He then describes how to implement more efficient and accura

  2. Computing the Dust Distribution in the Bow Shock of a Fast-moving, Evolved Star

    NARCIS (Netherlands)

    van Marle, A. -J; Meliani, Z.; Keppens, R.; Decin, L.

    2011-01-01

    We study the hydrodynamical behavior occurring in the turbulent interaction zone of a fast-moving red supergiant star, where the circumstellar and interstellar material collide. In this wind–interstellar-medium collision, the familiar bow shock, contact discontinuity, and wind termination shock

  3. ROTATING STARS AND THE FORMATION OF BIPOLAR PLANETARY NEBULAE. II. TIDAL SPIN-UP

    Energy Technology Data Exchange (ETDEWEB)

    García-Segura, G. [Instituto de Astronomía, Universidad Nacional Autónoma de Mexico, Km. 103 Carr. Tijuana-Ensenada, 22860, Ensenada, B. C. (Mexico); Villaver, E. [Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Manchado, A. [Instituto de Astrofísica de Canarias, Via Láctea s/n, E-38200 La Laguna, Tenerife (Spain); Langer, N. [Argelander-Institut für Astronomie, Universität Bonn, D-53121 Bonn (Germany); Yoon, S.-C., E-mail: ggs@astrosen.unam.mx [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul, 151-747 (Korea, Republic of)

    2016-06-01

    We present new binary stellar evolution models that include the effects of tidal forces, rotation, and magnetic torques with the goal of testing planetary nebulae (PNs) shaping via binary interaction. We explore whether tidal interaction with a companion can spin-up the asymptotic giant brach (AGB) envelope. To do so, we have selected binary systems with main-sequence masses of 2.5 M {sub ⊙} and 0.8 M {sub ⊙} and evolve them allowing initial separations of 5, 6, 7, and 8 au. The binary stellar evolution models have been computed all the way to the PNs formation phase or until Roche lobe overflow (RLOF) is reached, whatever happens first. We show that with initial separations of 7 and 8 au, the binary avoids entering into RLOF, and the AGB star reaches moderate rotational velocities at the surface (∼3.5 and ∼2 km s{sup −1}, respectively) during the inter-pulse phases, but after the thermal pulses it drops to a final rotational velocity of only ∼0.03 km s{sup −1}. For the closest binary separations explored, 5 and 6 au, the AGB star reaches rotational velocities of ∼6 and ∼4 km s{sup −1}, respectively, when the RLOF is initiated. We conclude that the detached binary models that avoid entering the RLOF phase during the AGB will not shape bipolar PNs, since the acquired angular momentum is lost via the wind during the last two thermal pulses. This study rules out tidal spin-up in non-contact binaries as a sufficient condition to form bipolar PNs.

  4. PROPAGATION OF RELATIVISTIC, HYDRODYNAMIC, INTERMITTENT JETS IN A ROTATING, COLLAPSING GRB PROGENITOR STAR

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Jin-Jun [School of Astronomy and Space Science, Nanjing University, Nanjing 210046 (China); Zhang, Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, NV 89154 (United States); Kuiper, Rolf, E-mail: gengjinjun@gmail.com, E-mail: zhang@physics.unlv.edu [Institute of Astronomy and Astrophysics, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen (Germany)

    2016-12-10

    The prompt emission of gamma-ray bursts (GRBs) is characterized by rapid variabilities, which may be a direct reflection of the unsteady central engine. We perform a series of axisymmetric 2.5-dimensional simulations to study the propagation of relativistic, hydrodynamic, intermittent jets through the envelope of a GRB progenitor star. A realistic rapidly rotating star is incorporated as the background of jet propagation, and the star is allowed to collapse due to the gravity of the central black hole. By modeling the intermittent jets with constant-luminosity pulses with equal on and off durations, we investigate how the half period, T , affects the jet dynamics. For relatively small T values (e.g., 0.2 s), the jet breakout time t {sub bo} depends on the opening angle of the jet, with narrower jets more penetrating and reaching the surface at shorter times. For T  ≤ 1 s, the reverse shock (RS) crosses each pulse before the jet penetrates through the stellar envelope. As a result, after the breakout of the first group of pulses at t {sub bo}, several subsequent pulses vanish before penetrating the star, causing a quiescent gap. For larger half periods ( T = 2.0 and 4.0 s), all the pulses can successfully penetrate through the envelope, since each pulse can propagate through the star before the RS crosses the shell. Our results may interpret the existence of a weak precursor in some long GRBs, given that the GRB central engine injects intermittent pulses with a half period T  ≤ 1 s. The observational data seem to be consistent with such a possibility.

  5. Rotation and kinematics of the premain-sequence stars in Taurus-Auriga with Ca II emission

    Science.gov (United States)

    Hartmann, Lee W.; Soderblom, David R.; Stauffer, John R.

    1987-01-01

    Radial velocities and v sin i values for the stars in the Taurus-Auriga region that were found to have strong Ca II H and K emission by Herbig, Vrba, and Rydgren 'HVR', (1986) are reported. Most of the velocities are determined to better than 2 km/s precision. The kinematic properties of the Ca II emission stars with strong Li are found to be indistinguishable from conventional T Tauris in Taurus-Auriga, contrary to HVR. These Li-rich stars also rotate like T Tauris. Most of the stars that lack Li are probable or possible members of the Hyades, in the foreground, and are among the brightest and most active stars in that cluster for their spectral types. It is suggested following Jones and Herbig (1979), that the apparent absence of low-mass stars older than 10 Myr in Taurus-Auriga is real, and is due to the finite lifetime of the cloud.

  6. Rotation and kinematics of the premain-sequence stars in Taurus-Auriga with CA II emission

    Science.gov (United States)

    Hartmann, Lee W.; Soderblom, David R.; Stauffer, John R.

    1987-04-01

    The authors report radial velocities and v sin i values for the stars in the Taurus-Auriga region that were found to have strong Ca II H and K emission by Herbig, Vrba, and Rydgren (HVR). Most of the velocities are determined to better than 2 km s-1 precision. The authors find the kinematic properties of the Ca II emission stars with strong Li to be indistinguishable from conventional T Tauris in Taurus-Auriga, contrary to HVR. These Li-rich stars also rotate like T Tauris. Most of the stars that lack Li are probable or possible members of the Hyades, in the foreground, and are among the brightest and most active stars in that cluster for their spectral types. The authors suggest, following Jones and Herbig, that the apparent absence of low-mass stars older than 10 Myr in Taurus-Auriga is real, and is due to the finite lifetime of the cloud.

  7. 3D Realistic Radiative Hydrodynamic Modeling of a Moderate-Mass Star: Effects of Rotation

    Science.gov (United States)

    Kitiashvili, Irina; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.

    2018-01-01

    Recent progress in stellar observations opens new perspectives in understanding stellar evolution and structure. However, complex interactions in the turbulent radiating plasma together with effects of magnetic fields and rotation make inferences of stellar properties uncertain. The standard 1D mixing-length-based evolutionary models are not able to capture many physical processes of stellar interior dynamics, but they provide an initial approximation of the stellar structure that can be used to initialize 3D time-dependent radiative hydrodynamics simulations, based on first physical principles, that take into account the effects of turbulence, radiation, and others. In this presentation we will show simulation results from a 3D realistic modeling of an F-type main-sequence star with mass 1.47 Msun, in which the computational domain includes the upper layers of the radiation zone, the entire convection zone, and the photosphere. The simulation results provide new insight into the formation and properties of the convective overshoot region, the dynamics of the near-surface, highly turbulent layer, the structure and dynamics of granulation, and the excitation of acoustic and gravity oscillations. We will discuss the thermodynamic structure, oscillations, and effects of rotation on the dynamics of the star across these layers.

  8. CHARACTERIZING THE RIGIDLY ROTATING MAGNETOSPHERE STARS HD 345439 AND HD 23478

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, J. P.; Lomax, J. R. [Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Chojnowski, S. D. [Department of Astronomy, New Mexico State University, 1780 E University Avenue, Las Cruces, NM 88003 (United States); Davenport, J. R. A. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Bartz, J.; Pepper, J. [Lehigh University, Department of Physics, 413 Deming Lewis Lab, 16 Memorial Drive, East Bethlehem, PA 18015 (United States); Whelan, D. G. [Department of Physics, Austin College, 900 N. Grand Avenue, Sherman, TX 75090 (United States); Eikenberry, S. S. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Majewski, S. R.; Skrutskie, M. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Richardson, N. D., E-mail: wisniewski@ou.edu [Département de Physique and Centre de Recherche en Astrophysique du Québec (CRAQ), Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7 (Canada)

    2015-10-01

    The SDSS III APOGEE survey recently identified two new σ Ori E type candidates, HD 345439 and HD 23478, which are a rare subset of rapidly rotating massive stars whose large (kGauss) magnetic fields confine circumstellar material around these systems. Our analysis of multi-epoch photometric observations of HD 345439 from the Kilodegree Extremely Little Telescope, Wide Angle Search for Planets, and ASAS surveys reveals the presence of a ∼0.7701 day period in each data set, suggesting the system is among the faster known σ Ori E analogs. We also see clear evidence that the strength of Hα, H i Brackett series lines, and He i lines also vary on a ∼0.7701 day period from our analysis of multi-epoch, multi-wavelength spectroscopic monitoring of the system from the APO 3.5 m telescope. We trace the evolution of select emission line profiles in the system, and observe coherent line profile variability in both optical and infrared H i lines, as expected for rigidly rotating magnetosphere stars. We also analyze the evolution of the H i Br-11 line strength and line profile in multi-epoch observations of HD 23478 from the SDSS-III APOGEE instrument. The observed periodic behavior is consistent with that recently reported by Sikora and collaborators in optical spectra.

  9. The Role of Rotation in Convective Heat Transport: an Application to Low-Mass Stars

    Science.gov (United States)

    Matilsky, Loren; Hindman, Bradley W.; Toomre, Juri; Featherstone, Nicholas

    2018-06-01

    It is often supposed that the convection zones (CZs) of low-mass stars are purely adiabatically stratified. This is thought to be because convective motions are extremely efficient at homogenizing entropy within the CZ. For a purely adiabatic fluid layer, only very small temperature variations are required to drive convection, making the amplitude and overall character of the convection highly sensitive to the degree of adiabaticity established in the CZ. The presence of rotation, however, fundamentally changes the dynamics of the CZ; the strong downflow plumes that are required to homogenize entropy are unable to penetrate through the entire fluid layer if they are deflected too soon by the Coriolis force. This talk discusses 3D global models of spherical-shell convection subject to different rotation rates. The simulation results emphasize the possibility that for stars with a high enough rotation rate, large fractions of their CZs are not in fact adiabatically stratified; rather, there is a finite superadiabatic gradient that varies in magnitude with radius, being at a minimum in the CZ’s middle layers. Two consequences of the varying superadiabatic gradient are that the convective amplitudes at the largest length scales are effectively suppressed and that there is a strong latitudinal temperature gradient from a cold equator to a hot pole, which self-consistently drives a thermal wind. A connection is naturally drawn to the Sun’s CZ, which has supergranulation as an upper limit to its convective length scales and isorotational contours along radial lines, which can be explained by the presence of a thermal wind.

  10. SPITZER MAPPING OF MOLECULAR HYDROGEN PURE ROTATIONAL LINES IN NGC 1333: A DETAILED STUDY OF FEEDBACK IN STAR FORMATION

    International Nuclear Information System (INIS)

    Maret, Sebastien; Bergin, Edwin A.; Neufeld, David A.; Sonnentrucker, Paule; Yuan Yuan; Green, Joel D.; Watson, Dan M.; Harwit, Martin O.; Kristensen, Lars E.; Melnick, Gary J.; Tolls, Volker; Werner, Michael W.; Willacy, Karen

    2009-01-01

    We present mid-infrared spectral maps of the NGC 1333 star-forming region, obtained with the infrared spectrometer on board the Spitzer Space Telescope. Eight pure H 2 rotational lines, from S(0) to S(7), are detected and mapped. The H 2 emission appears to be associated with the warm gas shocked by the multiple outflows present in the region. A comparison between the observed intensities and the predictions of detailed shock models indicates that the emission arises in both slow (12-24 km s -1 ) and fast (36-53 km s -1 ) C-type shocks with an initial ortho-to-para ratio (opr) ∼ 2 opr exhibits a large degree of spatial variations. In the postshocked gas, it is usually about 2, i.e., close to the equilibrium value (∼3). However, around at least two outflows, we observe a region with a much lower (∼0.5) opr. This region probably corresponds to gas which has been heated up recently by the passage of a shock front, but whose ortho-to-para has not reached equilibrium yet. This, together with the low initial opr needed to reproduce the observed emission, provide strong evidence that H 2 is mostly in para form in cold molecular clouds. The H 2 lines are found to contribute to 25%-50% of the total outflow luminosity, and thus can be used to ascertain the importance of star formation feedback on the natal cloud. From these lines, we determine the outflow mass loss rate and, indirectly, the stellar infall rate, the outflow momentum and the kinetic energy injected into the cloud over the embedded phase. The latter is found to exceed the binding energy of individual cores, suggesting that outflows could be the main mechanism for core disruption.

  11. Evidence of resonant mode coupling and the relationship between low and high frequencies in a rapidly rotating a star

    International Nuclear Information System (INIS)

    Breger, M.; Montgomery, M. H.

    2014-01-01

    In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day –1 (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of 'normal' combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day –1 in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.

  12. Evidence of resonant mode coupling and the relationship between low and high frequencies in a rapidly rotating a star

    Energy Technology Data Exchange (ETDEWEB)

    Breger, M.; Montgomery, M. H. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2014-03-10

    In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day{sup –1} (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of 'normal' combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day{sup –1} in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.

  13. Balancing fast-rotating parts of hand-held machine drive

    Science.gov (United States)

    Korotkov, V. S.; Sicora, E. A.; Nadeina, L. V.; Yongzheng, Wang

    2018-03-01

    The article considers the issues related to the balancing of fast rotating parts of the hand-held machine drive including a wave transmission with intermediate rolling elements, which is constructed on the basis of the single-phase collector motor with a useful power of 1 kW and a nominal rotation frequency of 15000 rpm. The forms of balancers and their location are chosen. The method of balancing is described. The scheme for determining of residual unbalance in two correction planes is presented. Measurement results are given in tables.

  14. Chemical evolution with rotating massive star yields - I. The solar neighbourhood and the s-process elements

    Science.gov (United States)

    Prantzos, N.; Abia, C.; Limongi, M.; Chieffi, A.; Cristallo, S.

    2018-05-01

    We present a comprehensive study of the abundance evolution of the elements from H to U in the Milky Way halo and local disc. We use a consistent chemical evolution model, metallicity-dependent isotopic yields from low and intermediate mass stars and yields from massive stars which include, for the first time, the combined effect of metallicity, mass loss, and rotation for a large grid of stellar masses and for all stages of stellar evolution. The yields of massive stars are weighted by a metallicity-dependent function of the rotational velocities, constrained by observations as to obtain a primary-like 14N behaviour at low metallicity and to avoid overproduction of s-elements at intermediate metallicities. We show that the Solar system isotopic composition can be reproduced to better than a factor of 2 for isotopes up to the Fe-peak, and at the 10 per cent level for most pure s-isotopes, both light ones (resulting from the weak s-process in rotating massive stars) and the heavy ones (resulting from the main s-process in low and intermediate mass stars). We conclude that the light element primary process (LEPP), invoked to explain the apparent abundance deficiency of the s-elements with A values of ^{12}C/^{13}C in halo red giants, which is rather due to internal processes in those stars.

  15. Measuring the rotation periods of 4-10 Myr T-Tauri stars in the Orion OB1 association

    Science.gov (United States)

    Karim, Md Tanveer; Stassun, Keivan; Briceno, Cesar; Vivas, Kathy; Raetz, Stefanie; Calvet, Nuria; Mateu, Cecilia; Downes, Juan Jose; Hernandez, Jesus; Neuhäuser, Ralph; Mugrauer, Markus; Takahashi, Hidenori; Tachihara, Kengo; Chini, Rolf; YETI

    2016-01-01

    Most existing studies of young stellar populations have focused on the youngest (Investigaciones de Astronomía-Quest Equatorial Survey Team (CIDA-QUEST), the Young Exoplanet Transit Initiative (YETI) and from a Kitt Peak National Observatory (KPNO) campaign. We investigated stellar rotation periods according to the type of stars (Classical or Weak-lined T-Tauri stars) and their locations, to look for population-wide trends. We detected 563 periodic variables and 1411 non-periodic variables by investigating the light curves of these stars. We find that ~ 30% of Weak-line T-Tauri stars (WTTS) and ~ 20% of Classical T-Tauri stars (CTTS) are periodic. Though we did not find any noticeable difference in rotation period between CTTS and WTTS, our study does show a change in the overall rotation periods of stars 4-10 Myr old, consistent with predictions of angular momentum evolution models, an important constraint for theoretical models for an age range for which no similar data existed.

  16. FIRST OBSERVATIONAL SIGNATURE OF ROTATIONAL DECELERATION IN A MASSIVE, INTERMEDIATE-AGE STAR CLUSTER IN THE MAGELLANIC CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaohan [School of Physics, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871 (China); Li, Chengyuan; De Grijs, Richard [Kavli Institute for Astronomy and Astrophysics and Department of Astronomy, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871 (China); Deng, Licai, E-mail: grijs@pku.edu.cn [Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China)

    2016-07-20

    While the extended main-sequence turnoffs (eMSTOs) found in almost all 1–2 Gyr old star clusters in the Magellanic Clouds are often explained by postulating extended star formation histories (SFHs), the tight subgiant branches (SGBs) seen in some clusters challenge this popular scenario. Puzzlingly, the SGB of the eMSTO cluster NGC 419 is significantly broader at bluer than at redder colors. We carefully assess and confirm the reality of this observational trend. If we would assume that the widths of the features in color–magnitude space were entirely owing to a range in stellar ages, the SFHs of the eMSTO stars and the blue SGB region would be significantly more prolonged than that of the red part of the SGB. This cannot be explained by assuming an internal age spread. We show that rotational deceleration of a population of rapidly rotating stars, a currently hotly debated alternative scenario, naturally explains the observed trend along the SGB. Our analysis shows that a “converging” SGB could be produced if the cluster is mostly composed of rapidly rotating stars that slow down over time owing to the conservation of angular momentum during their evolutionary expansion from main-sequence turnoff stars to red giants.

  17. New BVI C photometry of low-mass pleiades stars: Exploring the effects of rotation on broadband colors

    International Nuclear Information System (INIS)

    Kamai, Brittany L.; Stassun, Keivan G.; Vrba, Frederick J.; Stauffer, John R.

    2014-01-01

    We present new BVI C photometry for 350 Pleiades proper motion members with 9 < V ≲ 17. Importantly, our new catalog includes a large number of K- and early M-type stars, roughly doubling the number of low-mass stars with well-calibrated Johnson/Cousins photometry in this benchmark cluster. We combine our new photometry with existing photometry from the literature to define a purely empirical isochrone at Pleiades age (≈100 Myr) extending from V = 9 to 17. We use the empirical isochrone to identify 48 new probable binaries and 14 likely nonmembers. The photometrically identified single stars are compared against their expected positions in the color-magnitude diagram (CMD). At 100 Myr, the mid K and early M stars are predicted to lie above the zero-age main sequence (ZAMS) having not yet reached the ZAMS. We find in the B – V versus V CMD that mid K and early M dwarfs are instead displaced below (or blueward of) the ZAMS. Using the stars' previously reported rotation periods, we find a highly statistically significant correlation between rotation period and CMD displacement, in the sense that the more rapidly rotating stars have the largest displacements in the B – V CMD.

  18. Exoplanet dynamics. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars.

    Science.gov (United States)

    Leconte, Jérémy; Wu, Hanbo; Menou, Kristen; Murray, Norman

    2015-02-06

    Planets in the habitable zone of lower-mass stars are often assumed to be in a state of tidally synchronized rotation, which would considerably affect their putative habitability. Although thermal tides cause Venus to rotate retrogradely, simple scaling arguments tend to attribute this peculiarity to the massive Venusian atmosphere. Using a global climate model, we show that even a relatively thin atmosphere can drive terrestrial planets' rotation away from synchronicity. We derive a more realistic atmospheric tide model that predicts four asynchronous equilibrium spin states, two being stable, when the amplitude of the thermal tide exceeds a threshold that is met for habitable Earth-like planets with a 1-bar atmosphere around stars more massive than ~0.5 to 0.7 solar mass. Thus, many recently discovered terrestrial planets could exhibit asynchronous spin-orbit rotation, even with a thin atmosphere. Copyright © 2015, American Association for the Advancement of Science.

  19. Pelvic rotation torque during fast-pitch softball hitting under three ball height conditions.

    Science.gov (United States)

    Iino, Yoichi; Fukushima, Atsushi; Kojima, Takeji

    2014-08-01

    The purpose of this study was to investigate the relevance of hip joint angles to the production of the pelvic rotation torque in fast-pitch softball hitting and to examine the effect of ball height on this production. Thirteen advanced female softball players hit stationary balls at three different heights: high, middle, and low. The pelvic rotation torque, defined as the torque acting on the pelvis through the hip joints about the pelvic superior-inferior axis, was determined from the kinematic and force plate data using inverse dynamics. Irrespective of the ball heights, the rear hip extension, rear hip external rotation, front hip adduction, and front hip flexion torques contributed to the production of pelvic rotation torque. Although the contributions of the adduction and external rotation torques at each hip joint were significantly different among the ball heights, the contributions of the front and rear hip joint torques were similar among the three ball heights owing to cancelation of the two torque components. The timings of the peaks of the hip joint torque components were significantly different, suggesting that softball hitters may need to adjust the timings of the torque exertions fairly precisely to rotate the upper body effectively.

  20. Magnetic Inflation and Stellar Mass. II. On the Radii of Single, Rapidly Rotating, Fully Convective M-Dwarf Stars

    Science.gov (United States)

    Kesseli, Aurora Y.; Muirhead, Philip S.; Mann, Andrew W.; Mace, Greg

    2018-06-01

    Main-sequence, fully convective M dwarfs in eclipsing binaries are observed to be larger than stellar evolutionary models predict by as much as 10%–15%. A proposed explanation for this discrepancy involves effects from strong magnetic fields, induced by rapid rotation via the dynamo process. Although, a handful of single, slowly rotating M dwarfs with radius measurements from interferometry also appear to be larger than models predict, suggesting that rotation or binarity specifically may not be the sole cause of the discrepancy. We test whether single, rapidly rotating, fully convective stars are also larger than expected by measuring their R\\sin i distribution. We combine photometric rotation periods from the literature with rotational broadening (v\\sin i) measurements reported in this work for a sample of 88 rapidly rotating M dwarf stars. Using a Bayesian framework, we find that stellar evolutionary models underestimate the radii by 10 % {--}15{ % }-2.5+3, but that at higher masses (0.18 theory is 13%–18%, and we argue that the discrepancy is unlikely to be due to effects from age. Furthermore, we find no statistically significant radius discrepancy between our sample and the handful of M dwarfs with interferometric radii. We conclude that neither rotation nor binarity are responsible for the inflated radii of fully convective M dwarfs, and that all fully convective M dwarfs are larger than models predict.

  1. A study of fast bunch rotation in the negative mass region

    CERN Document Server

    Rumolo, Giovanni

    2001-01-01

    Fast bunch rotation of high-intensity proton or ion bunches above transition is - in principle - supported by the self-bunching effect of the attractive space charge force ("negative instabilities"). Due to the broad-band nature of the space charge impedance, the highest harmonics of this negative mass mode grow fast and inhibit compression, unless the bunch rotation is accelerated by a sufficiently high rf-voltage. Using particle-in-cell simulation we establish the threshold below which effective compression is still possible. We find that the required rf-voltage for compression of a given bunch above transition can be reduced at most by a factor 2 compared with compression below transition, where space charge requires extra voltage.

  2. Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature

    Directory of Open Access Journals (Sweden)

    Shouyi Yin

    2015-01-01

    Full Text Available Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.

  3. Evolution of rotating star clusters at the inelastic-collision stage. II. Dynamics of a disk of gas and stars

    International Nuclear Information System (INIS)

    Romanova, M.M.

    1985-01-01

    The dynamics of a gas--star disk embedded in a dense, mildly oblate (flattening epsilon-c or approx. =0.2--0.3 the stable disk will survive for at least half the cluster evolution time. The possibility of a thin disk of stars existing inside a dense star cluster is considered. For small epsilon-c and for disk member stars having > or approx. =0.04 the mass of the cluster members, collisions between cluster and disk stars will have no effect on the disk evolution prior to instability

  4. TIME-SERIES PHOTOMETRY OF STARS IN AND AROUND THE LAGOON NEBULA. I. ROTATION PERIODS OF 290 LOW-MASS PRE-MAIN-SEQUENCE STARS IN NGC 6530

    International Nuclear Information System (INIS)

    Henderson, Calen B.; Stassun, Keivan G.

    2012-01-01

    We have conducted a long-term, wide-field, high-cadence photometric monitoring survey of ∼50,000 stars in the Lagoon Nebula H II region. This first paper presents rotation periods for 290 low-mass stars in NGC 6530, the young cluster illuminating the nebula, and for which we assemble a catalog of infrared and spectroscopic disk indicators, estimated masses and ages, and X-ray luminosities. The distribution of rotation periods we measure is broadly uniform for 0.5 days X /L bol ≈ –3.3). However, we find a significant positive correlation between L X /L bol and corotation radius, suggesting that the observed X-ray luminosities are regulated by centrifugal stripping of the stellar coronae. The period-mass relationship in NGC 6530 is broadly similar to that of the Orion Nebula Cluster (ONC), but the slope of the relationship among the slowest rotators differs from that in the ONC and other young clusters. We show that the slope of the period-mass relationship for the slowest rotators can be used as a proxy for the age of a young cluster, and we argue that NGC 6530 may be slightly younger than the ONC, making it a particularly important touchstone for models of angular momentum evolution in young, low-mass stars.

  5. Surprisingly different star-spot distributions on the near equal-mass equal-rotation-rate stars in the M dwarf binary GJ 65 AB

    Science.gov (United States)

    Barnes, J. R.; Jeffers, S. V.; Haswell, C. A.; Jones, H. R. A.; Shulyak, D.; Pavlenko, Ya. V.; Jenkins, J. S.

    2017-10-01

    We aim to understand how stellar parameters such as mass and rotation impact the distribution of star-spots on the stellar surface. To this purpose, we have used Doppler imaging to reconstruct the surface brightness distributions of three fully convective M dwarfs with similar rotation rates. We secured high cadence spectral time series observations of the 5.5 au separation binary GJ 65, comprising GJ 65A (M5.5V, Prot = 0.24 d) and GJ 65B (M6V, Prot = 0.23 d). We also present new observations of GJ 791.2A (M4.5V, Prot = 0.31 d). Observations of each star were made on two nights with UVES, covering a wavelength range from 0.64 - 1.03μm. The time series spectra reveal multiple line distortions that we interpret as cool star-spots and which are persistent on both nights suggesting stability on the time-scale of 3 d. Spots are recovered with resolutions down to 8.3° at the equator. The global spot distributions for GJ 791.2A are similar to observations made a year earlier. Similar high latitude and circumpolar spot structure is seen on GJ 791.2A and GJ 65A. However, they are surprisingly absent on GJ 65B, which instead reveals more extensive, larger, spots concentrated at intermediate latitudes. All three stars show small amplitude latitude-dependent rotation that is consistent with solid body rotation. We compare our measurements of differential rotation with previous Doppler imaging studies and discuss the results in the wider context of other observational estimates and recent theoretical predictions.

  6. Line strength variations in gamma-ray burst GB870303: Possible evidence of neutron star rotation

    International Nuclear Information System (INIS)

    Graziani, C.; Fenimore, E.E.; Murakami, T.; Yoshida, A.; Lamb, D.Q.; Wang, J.C.L.; Loredo, T.J.

    1991-01-01

    An exhaustive search of the Ginga data on γ-ray burst GB870303 reveals two separate time intervals during which statistically significant line features are evident. One (previously unreported) interval shows a single prominent line feature at ∼20 keV; a second, corresponding to the interval reported by Murakami et al., shows two line features at ∼20 and 40 keV. From model fits to the data, we find that both sets of lines are well-described by cyclotron resonant scattering in a magnetic field B∼1.8x10 12 G, and that the differences in the line strengths between the two intervals are significant. The variations are qualitatively similar to those produced by a change in the viewing angle θ relative the magnetic field. We conjecture that the change in θ is due to rotation of the neutron star, and derive limits 45 sec approx-lt P approx-lt 180 sec on the rotation period P

  7. Rotational studies of late-type stars. II. Ages of solar-type stars and the rotational history of the sun

    International Nuclear Information System (INIS)

    Soderblom, D.R.

    1983-01-01

    In the first part of this investigation, age indicators for solar-type stars are discussed. A Li abundance-age calibration is derived; it indicates that 1 M/sub sun/ stars have lost as much as 80% of their initial Li before reaching the main sequence. The e-folding time for Li depletion on the main sequence is 1 1/4 Gyr. The distribution of Li abundances for 1 M/sub sun/ stars is consistent with a uniform initial Li abundance for all stars

  8. Origin and Evolution of Magnetic Field in PMS Stars: Influence of Rotation and Structural Changes

    Energy Technology Data Exchange (ETDEWEB)

    Emeriau-Viard, Constance; Brun, Allan Sacha, E-mail: constance.emeriau@cea.fr, E-mail: sacha.brun@cea.fr [Laboratoire AIM Paris-Saclay CEA/DSM—CNRS—Université Paris Diderot, IRFU/DAp CEA Paris-Saclay, F-91191 Gif-sur-Yvette Cedex (France)

    2017-09-01

    During stellar evolution, especially in the pre-main-sequence phase, stellar structure and rotation evolve significantly, causing major changes in the dynamics and global flows of the star. We wish to assess the consequences of these changes on stellar dynamo, internal magnetic field topology, and activity level. To do so, we have performed a series of 3D HD and MHD simulations with the ASH code. We choose five different models characterized by the radius of their radiative zone following an evolutionary track computed by a 1D stellar evolution code. These models characterized stellar evolution from 1 to 50 Myr. By introducing a seed magnetic field in the fully convective model and spreading its evolved state through all four remaining cases, we observe systematic variations in the dynamical properties and magnetic field amplitude and topology of the models. The five MHD simulations develop a strong dynamo field that can reach an equipartition state between the kinetic and magnetic energies and even superequipartition levels in the faster-rotating cases. We find that the magnetic field amplitude increases as it evolves toward the zero-age main sequence. Moreover, the magnetic field topology becomes more complex, with a decreasing axisymmetric component and a nonaxisymmetric one becoming predominant. The dipolar components decrease as the rotation rate and the size of the radiative core increase. The magnetic fields possess a mixed poloidal-toroidal topology with no obvious dominant component. Moreover, the relaxation of the vestige dynamo magnetic field within the radiative core is found to satisfy MHD stability criteria. Hence, it does not experience a global reconfiguration but slowly relaxes by retaining its mixed stable poloidal-toroidal topology.

  9. Temperature measurements on fast-rotating objects using a thermographic camera with an optomechanical image derotator

    Science.gov (United States)

    Altmann, Bettina; Pape, Christian; Reithmeier, Eduard

    2017-08-01

    Increasing requirements concerning the quality and lifetime of machine components in industrial and automotive applications require comprehensive investigations of the components in conditions close to the application. Irregularities in heating of mechanical parts reveal regions with increased loading of pressure, draft or friction. In the long run this leads to damage and total failure of the machine. Thermographic measurements of rotating objects, e.g., rolling bearings, brakes, and clutches provide an approach to investigate those defects. However, it is challenging to measure fast-rotating objects accurately. Currently one contact-free approach is performing stroboscopic measurements using an infrared sensor. The data acquisition is triggered so that the image is taken once per revolution. This leads to a huge loss of information on the majority of the movement and to motion blur. The objective of this research is showing the potential of using an optomechanical image derotator together with a thermographic camera. The derotator follows the rotation of the measurement object so that quasi-stationary thermal images during motion can be acquired by the infrared sensor. Unlike conventional derotators which use a glass prism to achieve this effect, the derotator within this work is equipped with a sophisticated reflector assembly. These reflectors are made of aluminum to transfer infrared radiation emitted by the rotating object. Because of the resulting stationary thermal image, the operation can be monitored continuously even for fast-rotating objects. The field of view can also be set to a small off-axis region of interest which then can be investigated with higher resolution or frame rate. To depict the potential of this approach, thermographic measurements on a rolling bearings in different operating states are presented.

  10. License plate localization in complex scenes based on oriented FAST and rotated BRIEF feature

    Science.gov (United States)

    Wang, Ran; Xia, Yuanchun; Wang, Guoyou; Tian, Jiangmin

    2015-09-01

    Within intelligent transportation systems, fast and robust license plate localization (LPL) in complex scenes is still a challenging task. Real-world scenes introduce complexities such as variation in license plate size and orientation, uneven illumination, background clutter, and nonplate objects. These complexities lead to poor performance using traditional LPL features, such as color, edge, and texture. Recently, state-of-the-art performance in LPL has been achieved by applying the scale invariant feature transform (SIFT) descriptor to LPL for visual matching. However, for applications that require fast processing, such as mobile phones, SIFT does not meet the efficiency requirement due to its relatively slow computational speed. To address this problem, a new approach for LPL, which uses the oriented FAST and rotated BRIEF (ORB) feature detector, is proposed. The feature extraction in ORB is much more efficient than in SIFT and is invariant to scale and grayscale as well as rotation changes, and hence is able to provide superior performance for LPL. The potential regions of a license plate are detected by considering spatial and color information simultaneously, which is different from previous approaches. The experimental results on a challenging dataset demonstrate the effectiveness and efficiency of the proposed method.

  11. Comparing models of rapidly rotating relativistic stars constructed by two numerical methods

    Science.gov (United States)

    Stergioulas, Nikolaos; Friedman, John L.

    1995-05-01

    We present the first direct comparison of codes based on two different numerical methods for constructing rapidly rotating relativistic stars. A code based on the Komatsu-Eriguchi-Hachisu (KEH) method (Komatsu et al. 1989), written by Stergioulas, is compared to the Butterworth-Ipser code (BI), as modified by Friedman, Ipser, & Parker. We compare models obtained by each method and evaluate the accuracy and efficiency of the two codes. The agreement is surprisingly good, and error bars in the published numbers for maximum frequencies based on BI are dominated not by the code inaccuracy but by the number of models used to approximate a continuous sequence of stars. The BI code is faster per iteration, and it converges more rapidly at low density, while KEH converges more rapidly at high density; KEH also converges in regions where BI does not, allowing one to compute some models unstable against collapse that are inaccessible to the BI code. A relatively large discrepancy recently reported (Eriguchi et al. 1994) for models based on Friedman-Pandharipande equation of state is found to arise from the use of two different versions of the equation of state. For two representative equations of state, the two-dimensional space of equilibrium configurations is displayed as a surface in a three-dimensional space of angular momentum, mass, and central density. We find, for a given equation of state, that equilibrium models with maximum values of mass, baryon mass, and angular momentum are (generically) either all unstable to collapse or are all stable. In the first case, the stable model with maximum angular velocity is also the model with maximum mass, baryon mass, and angular momentum. In the second case, the stable models with maximum values of these quantities are all distinct. Our implementation of the KEH method will be available as a public domain program for interested users.

  12. PSR1987A: the case for strange-quark stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-01-01

    The new fast pulsar observed in the remnant of SN1987A, together with other considerations, provide evidence that there are two types of collapsed stars: neutron stars, having moderate central densities and subject to the usual mass constraint, and strange-quark-matter stars. We show that (i) all known pulsar masses and frequencies, with the exception of the new one, can be accounted for by plausible neutron star models; (ii) no known neutron star model can withstand the fast rotation of the new pulsar unless the central energy density is ∼ 15 that of normal nuclei, at which densities hadrons cannot plausibly exist as constituents; and (iii) if strange-quark matter is the true ground state of the strong interactions, strange-quark stars can sustain the high rotation imputed to the new pulsar. In the absence of another plausible structure that can withstand the fast rotation, we provisionally infer that the new pulsar is such a star. (author)

  13. Do axes of rotation change during fast and slow motions of the dominant and non-dominate arms?

    Directory of Open Access Journals (Sweden)

    Pagano Christopher

    2011-12-01

    Full Text Available The velocity-dependent change in rotational axes observed in the control of unconstrained 3D arm rotations for the dominant limb seems to conform to a minimum inertia resistance (MIR principle [4]. This is an efficient biomechanical solution that allows for the reduction of torques. We tested whether the MIR principle governs rotating movement when subjects were instructed to maintain the shoulder-elbow joint axis close to horizontal for both dominant and non dominant limbs. Subjects (n=12 performed externalinternal rotations of their arms in two angular positions (90° versus 150°, two angular velocities (slow (S versus fast (F, and in two sensory conditions (kinaesthetic (K versus visuo- kinaesthetic (VK. We expected more scattered displacements of the rotation axis employed for rotating the non dominant limb compared to the dominant limb. The results showed that the rotational axis of a multiarticulated limb coincided with SH-EL at S & F velocity for both arms.

  14. A STUDY OF VEGA: A RAPIDLY ROTATING POLE-ON STAR

    International Nuclear Information System (INIS)

    Hill, Graham; Gulliver, Austin F.; Adelman, Saul J.

    2010-01-01

    Ultra-high signal-to-noise, high dispersion spectroscopy over the wavelength range λλ4519-4535 shows Vega to be a rapidly rotating star with V eq of 211 km s -1 seen almost pole-on. The analysis of five independent series of spectroscopic data is combined with analyses of the hydrogen lines, Hγ, Hβ, and Hα, and the latest absolute continuum flux for Vega to yield the following results: Vsin i = 20.8 ± 0.2 km s -1 , polar T eff = 10, 000 ± 30 K, polar log g = 4.04 ± 0.01 dex, V eq = 211 ± 4 km s -1 , breakup fraction = 0.81 ± 0.02, microturbulence (ξ T ) = 1.0 ± 0.1 km s -1 , macroturbulence (ζ) = 7.4 ± 0.5 km s -1 , and an inclination i = 5. 0 7 ± 0. 0 1. The variations in T eff and log g over the photosphere total 1410 K and 0.26 dex, respectively, while the mean temperature is 9560 ± 30 K and log g is 3.95 ± 0.01 dex. Low level variations in the Ti II 4529 A profile are also illustrated.

  15. Non-radial oscillations of rotating stars and their relevance to the short-period oscillations of cataclysmic variables

    International Nuclear Information System (INIS)

    Papaloizou, J.; Pringle, J.E.

    1978-01-01

    The usual hypothesis, that the short-period coherent oscillations seen in cataclysmic variables are attributable to g modes in a slowly rotating white dwarf, is considered. It is shown that this hypothesis is untenable for three main reasons: (i) the observed periods are too short for reasonable white dwarf models, (ii) the observed variability of the oscillations is too rapid and (iii) the expected rotation of the white dwarf, due to accretion, invalidates the slow rotation assumption on which standard g-mode theory is based. The low-frequency spectrum of a rotating pulsating star is investigated taking the effects of rotation fully into account. In this case there are two sets of low-frequency modes, the g modes, and modes similar to Rossby waves in the Earth's atmosphere and oceans, which are designated r modes. Typical periods for such modes are 1/m times the rotation period of the white dwarfs outer layers (m is the aximuthal wavenumber). It is concluded that non-radial oscillations of rotating white dwarfs can account for the properties of the oscillations seen in dwarf novae. Application of these results to other systems is also discussed. (author)

  16. ISO observations of far-infrared rotational emission lines of water vapor toward the supergiant star VY Canis Majoris

    OpenAIRE

    Neufeld, David A.; Feuchtgruber, Helmut; Harwit, Martin; Melnick, Gary J.

    1999-01-01

    We report the detection of numerous far-infrared emission lines of water vapor toward the supergiant star VY Canis Majoris. A 29.5 - 45 micron grating scan of VY CMa, obtained using the Short Wavelength Spectrometer (SWS) of the Infrared Space Observatory (ISO) at a spectral resolving power of approximately 2000, reveals at least 41 spectral features due to water vapor that together radiate a total luminosity ~ 25 solar luminosities. In addition to pure rotational transitions within the groun...

  17. Low-metallicity massive single stars with rotation. Evolutionary models applicable to I Zwicky 18

    NARCIS (Netherlands)

    Szécsi, D.; Langer, N.; Yoon, S.C.; Sanyal, D.; de Mink, S.; Evans, C.J.; Dermine, T.

    2015-01-01

    Context. Low-metallicity environments such as the early Universe and compact star-forming dwarf galaxies contain many massive stars. These stars influence their surroundings through intense UV radiation, strong winds and explosive deaths. A good understanding of low-metallicity environments requires

  18. Doppler-Zeeman Mapping of the Rapidly Rotating Magnetic CP Star HD37776

    Science.gov (United States)

    Khokhlova, V. L.; Vasilchenko, D. V.; Stepanov, V. V.; Romanyuk, I. I.

    2000-03-01

    We present the results of our analysis of magnetic-field configuration and abundance anomalies on the surface of the rapidly rotating, chemically peculiar helium-strong variable B2 V star HD37776 with unresolved Zeeman components of spectral lines. Simultaneous inversion of the observed Stokes I and V profiles, which realizes the method of Doppler-Zeeman mapping (Vasilchenko et al. 1996), has been applied for the first time. Spectroscopic observations were carried out with the Main stellar spectrograph of the 6-m Special Astrophysical Observatory telescope equipped with a Zeeman analyzer and a CCD array, which allowed spectra in right- and left-hand circularly polarized light to be taken simultaneously at a signal-to-noise ratio S/N > 200 (Romanyuk et al. 1999). The profile width of winged spectral lines (reaching 5 A) is determined by Zeeman line splitting; however, the observed Zeeman components are blurred and unresolved because of the rapid stellar rotation. When solving the inverse problem, we sought for the magnetic-field configuration in the form of a combination of arbitrarily oriented dipole, quadrupole, and octupole placed at the stellar center. The observed Stokes I and V profiles for eight spectral lines of He, OII, AlIII, SiIII, and FeIII averaged over the visible stellar surface were used as input data. We constructed a model of the magnetic field from the condition of coincidence of magnetic maps obtained from different lines of different chemical elements and from the condition of a minimum profile residual. This model is a combination of centered coaxial dipole and quadrupole with the dominant quadrupole component at 30 deg < i < 50 deg, beta = 40 deg, and a maximum surface field strength H_s = 60 kG. A comparison of our abundance maps with the field configuration shows that the He concentration is at a maximum in the regions of maximum radial field, while the maximum concentrations of O, Al, Si, and Fe coincide with the regions of maximum

  19. Triple system HD 201433 with a SPB star component seen by BRITE - Constellation: Pulsation, differential rotation, and angular momentum transfer

    Science.gov (United States)

    Kallinger, T.; Weiss, W. W.; Beck, P. G.; Pigulski, A.; Kuschnig, R.; Tkachenko, A.; Pakhomov, Y.; Ryabchikova, T.; Lüftinger, T.; Palle, , P. L.; Semenko, E.; Handler, G.; Koudelka, O.; Matthews, J. M.; Moffat, A. F. J.; Pablo, H.; Popowicz, A.; Rucinski, S.; Wade, G. A.; Zwintz, K.

    2017-07-01

    Context. Stellar rotation affects the transport of chemical elements and angular momentum and is therefore a key process during stellar evolution, which is still not fully understood. This is especially true for massive OB-type stars, which are important for the chemical enrichment of the Universe. It is therefore important to constrain the physical parameters and internal angular momentum distribution of massive OB-type stars to calibrate stellar structure and evolution models. Stellar internal rotation can be probed through asteroseismic studies of rotationally split non radial oscillations but such results are still quite rare, especially for stars more massive than the Sun. The slowly pulsating B9V star HD 201433 is known to be part of a single-lined spectroscopic triple system, with two low-mass companions orbiting with periods of about 3.3 and 154 days. Aims: Our goal is to measure the internal rotation profile of HD 201433 and investigate the tidal interaction with the close companion. Methods: We used probabilistic methods to analyse the BRITE - Constellation photometry and radial velocity measurements, to identify a representative stellar model, and to determine the internal rotation profile of the star. Results: Our results are based on photometric observations made by BRITE - Constellation and the Solar Mass Ejection Imager on board the Coriolis satellite, high-resolution spectroscopy, and more than 96 yr of radial velocity measurements. We identify a sequence of nine frequency doublets in the photometric time series, consistent with rotationally split dipole modes with a period spacing of about 5030 s. We establish that HD 201433 is in principle a solid-body rotator with a very slow rotation period of 297 ± 76 days. Tidal interaction with the inner companion has, however, significantly accelerated the spin of the surface layers by a factor of approximately one hundred. The angular momentum transfer onto the surface of HD 201433 is also reflected by the

  20. Long-term evolution and gravitational wave radiation of neutron stars with differential rotation induced by r-modes

    International Nuclear Information System (INIS)

    Yu Yunwei; Cao Xiaofeng; Zheng Xiaoping

    2009-01-01

    In a second-order r-mode theory, Sa and Tome found that the r-mode oscillation in neutron stars (NSs) could induce stellar differential rotation, which naturally leads to a saturated state of the oscillation. Based on a consideration of the coupling of the r-modes and the stellar spin and thermal evolution, we carefully investigate the influences of the differential rotation on the long-term evolution of isolated NSs and NSs in low-mass X-ray binaries, where the viscous damping of the r-modes and its resultant effects are taken into account. The numerical results show that, for both kinds of NSs, the differential rotation can significantly prolong the duration of the r-modes. As a result, the stars can keep nearly a constant temperature and constant angular velocity for over a thousand years. Moreover, the persistent radiation of a quasi-monochromatic gravitational wave would also be predicted due to the long-term steady r-mode oscillation and stellar rotation. This increases the detectability of gravitational waves from both young isolated and old accreting NSs. (research papers)

  1. COMBINED EFFECTS OF BINARIES AND STELLAR ROTATION ON THE COLOR-MAGNITUDE DIAGRAMS OF INTERMEDIATE-AGE STAR CLUSTERS

    International Nuclear Information System (INIS)

    Li Zhongmu; Mao Caiyan; Chen Li; Zhang Qian

    2012-01-01

    About 70% of intermediate-age star clusters in the Large Magellanic Clouds have been confirmed to have broad main sequence, multiple or extended turnoffs, and dual red giant clumps. The observed result seems to be at odds with the classical idea that such clusters are simple stellar populations. Although many models have been used to explain the results via factors such as prolonged star formation history, metallicity spread, differential reddening, selection effect, observational uncertainty, stellar rotation, and binary interaction, the reason for the special color-magnitude diagrams is still uncertain. We revisit this question via the combination of stellar rotation and binary effects. As a result, it shows 'golf club' color-magnitude diagrams with broad or multiple turnoffs, dual red clumps, blue stragglers, red stragglers, and extended main sequences. Because both binaries and massive rotators are common, our result suggests that most color-magnitude diagrams, including extended turnoff or multiple turnoffs, can be explained using simple stellar populations including both binary and stellar rotation effects, or composite populations with two components.

  2. Fast radio bursts as giant pulses from young rapidly rotating pulsars

    Science.gov (United States)

    Lyutikov, Maxim; Burzawa, Lukasz; Popov, Sergei B.

    2016-10-01

    We discuss possible association of fast radio bursts (FRBs) with supergiant pulses emitted by young pulsars (ages ˜ tens to hundreds of years) born with regular magnetic field but very short - few milliseconds - spin periods. We assume that FRBs are extra-Galactic events coming from distances d ≲ 100 Mpc and that most of the dispersion measure (DM) comes from the material in the freshly ejected SNR shell. We then predict that for a given burst the DM should decrease with time and that FRBs are not expected to be seen below ˜300 MHz due to free-free absorption in the expanding ejecta. A supernova might have been detected years before the burst; FRBs are mostly associated with star-forming galaxies. The model requires that some pulsars are born with very fast spins, of the order of few milliseconds. The observed distribution of spin-down powers dot{E} in young energetic pulsars is consistent with equal birth rate per decade of dot{E}. Accepting this injection distribution and scaling the intrinsic brightness of FRBs with dot{E}, we predict the following properties of a large sample of FRBs: (I) the brightest observed events come from a broad distribution in distances; (II) for repeating bursts brightness either remains nearly constant (if the spin-down time is longer than the age of the pulsar) or decreases with time otherwise; in the latter case DM ∝ dot{E}.

  3. Control of finger forces during fast, slow and moderate rotational hand movements.

    Science.gov (United States)

    Kazemi, Hamed; Kearney, Robert E; Milner, Theodore E

    2014-01-01

    The goal of this study was to investigate the effect of speed on patterns of grip forces during twisting movement involving forearm supination against a torsional load (combined elastic and inertial load). For slow and moderate speed rotations, the grip force increased linearly with load torque. However, for fast rotations in which the contribution of the inertia to load torque was significantly greater than slower movements, the grip force-load torque relationship could be segmented into two phases: a linear ascending phase corresponding to the acceleration part of the movement followed by a plateau during deceleration. That is, during the acceleration phase, the grip force accurately tracked the combined elastic and inertial load. However, the coupling between grip force and load torque was not consistent during the deceleration phase of the movement. In addition, as speed increased, both the position and the force profiles became smoother. No differences in the baseline grip force, safety margin to secure the grasp during hold phase or the overall change in grip force were observed across different speeds.

  4. Optimal and fast rotational alignment of volumes with missing data in Fourier space.

    Science.gov (United States)

    Shatsky, Maxim; Arbelaez, Pablo; Glaeser, Robert M; Brenner, Steven E

    2013-11-01

    Electron tomography of intact cells has the potential to reveal the entire cellular content at a resolution corresponding to individual macromolecular complexes. Characterization of macromolecular complexes in tomograms is nevertheless an extremely challenging task due to the high level of noise, and due to the limited tilt angle that results in missing data in Fourier space. By identifying particles of the same type and averaging their 3D volumes, it is possible to obtain a structure at a more useful resolution for biological interpretation. Currently, classification and averaging of sub-tomograms is limited by the speed of computational methods that optimize alignment between two sub-tomographic volumes. The alignment optimization is hampered by the fact that the missing data in Fourier space has to be taken into account during the rotational search. A similar problem appears in single particle electron microscopy where the random conical tilt procedure may require averaging of volumes with a missing cone in Fourier space. We present a fast implementation of a method guaranteed to find an optimal rotational alignment that maximizes the constrained cross-correlation function (cCCF) computed over the actual overlap of data in Fourier space. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Fast MR arthrography using VIBE sequences to evaluate the rotator cuff

    Energy Technology Data Exchange (ETDEWEB)

    Vandevenne, Jan E. [Ziekenhuizen Oost-Limburg, Department of Radiology, Genk (Belgium); Universitair Ziekenhuis Antwerpen, University of Antwerp, Department of Radiology, Edegem (Belgium); Vanhoenacker, Filip; Parizel, Paul M. [Universitair Ziekenhuis Antwerpen, University of Antwerp, Department of Radiology, Edegem (Belgium); Mahachie John, Jestinah M. [University of Hasselt, Centre for Statistics, Diepenbeek (Belgium); Gelin, Geert [Ziekenhuizen Oost-Limburg, Department of Radiology, Genk (Belgium)

    2009-07-15

    The purpose of this paper was to evaluate if short volumetric interpolated breath-hold examination (VIBE) sequences can be used as a substitute for T1-weighted with fat saturation (T1-FS) sequences when performing magnetic resonance (MR) arthrography to diagnose rotator cuff tears. Eighty-two patients underwent direct MR arthrography of the shoulder joint using VIBE (acquisition time of 13 s) and T1-FS (acquisition time of 5 min) sequences in the axial and paracoronal plane on a 1.0-T MR unit. Two radiologists scored rotator cuff tendons on VIBE and T1-FS images separately as normal, small/large partial thickness and full thickness tears with or without geyser sign. T1-FS sequences were considered the gold standard. Surgical correlation was available in a small sample. Sensitivity, specificity, and positive and negative predictive values of VIBE were greater than 92% for large articular-sided partial thickness and full thickness tears. For detecting fraying and articular-sided small partial thickness tears, these parameters were 55%, 94%, 94%, and 57%, respectively. The simple kappa value was 0.76, and the weighted kappa value was 0.86 for agreement between T1-FS and VIBE scores. All large partial and full thickness tears at surgery were correctly diagnosed using VIBE or T1-FS MR images. Fast MR arthrography of the shoulder joint using VIBE sequences showed good concordance with the classically used T1-FS sequences for the appearance of the rotator cuff, in particular for large articular-sided partial thickness tears and for full thickness tears. Due to its very short acquisition time, VIBE may be especially useful when performing MR arthrography in claustrophobic patients or patients with a painful shoulder. (orig.)

  6. Radiation-pressure-driven sub-Keplerian rotation of the disc around the AGB star L2 Pup

    Science.gov (United States)

    Haworth, Thomas J.; Booth, Richard A.; Homan, Ward; Decin, Leen; Clarke, Cathie J.; Mohanty, Subhanjoy

    2018-01-01

    We study the sub-Keplerian rotation and dust content of the circumstellar material around the asymptotic giant branch (AGB) star L2 Puppis. We find that the thermal pressure gradient alone cannot explain the observed rotation profile. We find that there is a family of possible dust populations for which radiation pressure can drive the observed sub-Keplerian rotation. This set of solutions is further constrained by the spectral energy distribution (SED) of the system, and we find that a dust-to-gas mass ratio of ∼10-3 and a maximum grain size that decreases radially outwards can satisfy both the rotation curve and SED. These dust populations are dynamically tightly coupled to the gas azimuthally. However, grains larger than ∼ 0.5 μm are driven outwards radially by radiation pressure at velocities ∼5 km s-1, which implies a dust replenishment rate of ∼3 × 10-9 M⊙ yr-1. This replenishment rate is consistent with observational estimates to within uncertainties. Coupling between the radial motion of the dust and gas is weak and hence the gas does not share in this rapid outward motion. Overall, we conclude that radiation pressure is a capable and necessary mechanism to explain the observed rotation profile of L2 Pup, and offers other additional constraints on the dust properties.

  7. COMPUTING THE DUST DISTRIBUTION IN THE BOW SHOCK OF A FAST-MOVING, EVOLVED STAR

    International Nuclear Information System (INIS)

    Van Marle, A. J.; Meliani, Z.; Keppens, R.; Decin, L.

    2011-01-01

    We study the hydrodynamical behavior occurring in the turbulent interaction zone of a fast-moving red supergiant star, where the circumstellar and interstellar material collide. In this wind-interstellar-medium collision, the familiar bow shock, contact discontinuity, and wind termination shock morphology form, with localized instability development. Our model includes a detailed treatment of dust grains in the stellar wind and takes into account the drag forces between dust and gas. The dust is treated as pressureless gas components binned per grain size, for which we use 10 representative grain size bins. Our simulations allow us to deduce how dust grains of varying sizes become distributed throughout the circumstellar medium. We show that smaller dust grains (radius <0.045 μm) tend to be strongly bound to the gas and therefore follow the gas density distribution closely, with intricate fine structure due to essentially hydrodynamical instabilities at the wind-related contact discontinuity. Larger grains which are more resistant to drag forces are shown to have their own unique dust distribution, with progressive deviations from the gas morphology. Specifically, small dust grains stay entirely within the zone bound by shocked wind material. The large grains are capable of leaving the shocked wind layer and can penetrate into the shocked or even unshocked interstellar medium. Depending on how the number of dust grains varies with grain size, this should leave a clear imprint in infrared observations of bow shocks of red supergiants and other evolved stars.

  8. An astrophysical interpretation of the remarkable g-mode frequency groups of the rapidly rotating γ Dor star, KIC 5608334

    Science.gov (United States)

    Saio, Hideyuki; Bedding, Timothy R.; Kurtz, Donald W.; Murphy, Simon J.; Antoci, Victoria; Shibahashi, Hiromoto; Li, Gang; Takata, Masao

    2018-06-01

    The Fourier spectrum of the γ-Dor variable KIC 5608334 shows remarkable frequency groups at ˜3, ˜6, ˜9, and 11-12 d-1. We explain the four frequency groups as prograde sectoral g modes in a rapidly rotating star. Frequencies of intermediate-to-high radial order prograde sectoral g modes in a rapidly rotating star are proportional to |m| (i.e. ν ∝ |m|) in the corotating frame as well as in the inertial frame. This property is consistent with the frequency groups of KIC 5608334 as well as the period versus period-spacing relation present within each frequency group, if we assume a rotation frequency of 2.2 d-1, and that each frequency group consists of prograde sectoral g modes of |m| = 1, 2, 3, and 4, respectively. In addition, these modes naturally satisfy near-resonance conditions νi ≈ νj + νk with mi = mj + mk. We even find exact resonance frequency conditions (within the precise measurement uncertainties) in many cases, which correspond to combination frequencies.

  9. The Radius and Entropy of a Magnetized, Rotating, Fully Convective Star: Analysis with Depth-dependent Mixing Length Theories

    Science.gov (United States)

    Ireland, Lewis G.; Browning, Matthew K.

    2018-04-01

    Some low-mass stars appear to have larger radii than predicted by standard 1D structure models; prior work has suggested that inefficient convective heat transport, due to rotation and/or magnetism, may ultimately be responsible. We examine this issue using 1D stellar models constructed using Modules for Experiments in Stellar Astrophysics (MESA). First, we consider standard models that do not explicitly include rotational/magnetic effects, with convective inhibition modeled by decreasing a depth-independent mixing length theory (MLT) parameter α MLT. We provide formulae linking changes in α MLT to changes in the interior specific entropy, and hence to the stellar radius. Next, we modify the MLT formulation in MESA to mimic explicitly the influence of rotation and magnetism, using formulations suggested by Stevenson and MacDonald & Mullan, respectively. We find rapid rotation in these models has a negligible impact on stellar structure, primarily because a star’s adiabat, and hence its radius, is predominantly affected by layers near the surface; convection is rapid and largely uninfluenced by rotation there. Magnetic fields, if they influenced convective transport in the manner described by MacDonald & Mullan, could lead to more noticeable radius inflation. Finally, we show that these non-standard effects on stellar structure can be fabricated using a depth-dependent α MLT: a non-magnetic, non-rotating model can be produced that is virtually indistinguishable from one that explicitly parameterizes rotation and/or magnetism using the two formulations above. We provide formulae linking the radially variable α MLT to these putative MLT reformulations.

  10. A comparison of the Health Star Rating system when used for restaurant fast foods and packaged foods.

    Science.gov (United States)

    Dunford, Elizabeth K; Wu, Jason H Y; Wellard-Cole, Lyndal; Watson, Wendy; Crino, Michelle; Petersen, Kristina; Neal, Bruce

    2017-10-01

    In June 2014, the Australian government agreed to the voluntary implementation of an interpretive 'Health Star Rating' (HSR) front-of-pack labelling system for packaged foods. The aim of the system is to make it easier for consumers to compare the healthiness of products based on number of stars. With many Australians consuming fast food there is a strong rationale for extending the HSR system to include fast food items. To examine the performance of the HSR system when applied to fast foods. Nutrient content data for fast food menu items were collected from the websites of 13 large Australian fast-food chains. The HSR was calculated for each menu item. Statistics describing HSR values for fast foods were calculated and compared to results for comparable packaged foods. Data for 1529 fast food products were compared to data for 3810 packaged food products across 16 of 17 fast food product categories. The mean HSR for the fast foods was 2.5 and ranged from 0.5 to 5.0 and corresponding values for the comparator packaged foods were 2.6 and 0.5 to 5.0. Visual inspection of the data showed broadly comparable distributions of HSR values across the fast food and the packaged food categories, although statistically significant differences were apparent for seven categories (all p fast foods and packaged food, and in others it appeared to reflect primarily differences in the mix of product types within a category. These data support the idea that the HSR system could be extended to Australian fast foods. There are likely to be significant benefits to the community from the use of a single standardised signposting system for healthiness across all fresh, packaged and restaurant foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. RELATIONSHIP BETWEEN LOW AND HIGH FREQUENCIES IN δ SCUTI STARS: PHOTOMETRIC KEPLER AND SPECTROSCOPIC ANALYSES OF THE RAPID ROTATOR KIC 8054146

    International Nuclear Information System (INIS)

    Breger, M.; Robertson, P.; Fossati, L.; Balona, L.; Kurtz, D. W.; Bohlender, D.; Lenz, P.; Müller, I.; Lüftinger, Th.; Clarke, Bruce D.; Hall, Jennifer R.; Ibrahim, Khadeejah A.

    2012-01-01

    Two years of Kepler data of KIC 8054146 (δ Sct/γ Dor hybrid) revealed 349 statistically significant frequencies between 0.54 and 191.36 cycles day –1 (6.3 μHz to 2.21 mHz). The 117 low frequencies cluster in specific frequency bands, but do not show the equidistant period spacings predicted for gravity modes of successive radial order, n, and reported for at least one other hybrid pulsator. The four dominant low frequencies in the 2.8-3.0 cycles day –1 (32-35 μHz) range show strong amplitude variability with timescales of months and years. These four low frequencies also determine the spacing of the higher frequencies in and beyond the δ Sct pressure-mode frequency domain. In fact, most of the higher frequencies belong to one of three families with spacings linked to a specific dominant low frequency. In the Fourier spectrum, these family regularities show up as triplets, high-frequency sequences with absolutely equidistant frequency spacings, side lobes (amplitude modulations), and other regularities in frequency spacings. Furthermore, within two families the amplitude variations between the low and high frequencies are related. We conclude that the low frequencies (gravity modes, rotation) and observed high frequencies (mostly pressure modes) are physically connected. This unusual behavior may be related to the very rapid rotation of the star: from a combination of high- and low-resolution spectroscopy we determined that KIC 8054146 is a very fast rotator (υ sin i = 300 ± 20 km s –1 ) with an effective temperature of 7600 ± 200 K and a surface gravity log g of 3.9 ± 0.3. Several astrophysical ideas explaining the origin of the relationship between the low and high frequencies are explored.

  12. Constraining stellar physics from red-giant stars in binaries – stellar rotation, mixing processes and stellar activity

    Directory of Open Access Journals (Sweden)

    Beck P. G.

    2017-01-01

    Full Text Available The unparalleled photometric data obtained by NASA’s Kepler Space Telescope has led to an improved understanding of stellar structure and evolution - in particular for solar-like oscillators in this context. Binary stars are fascinating objects. Because they were formed together, binary systems provide a set of two stars with very well constrained parameters. Those can be used to study properties and physical processes, such as the stellar rotation, dynamics and rotational mixing of elements and allows us to learn from the differences we find between the two components. In this work, we discussed a detailed study of the binary system KIC 9163796, discovered through Kepler photometry. The ground-based follow-up spectroscopy showed that this system is a double-lined spectroscopic binary, with a mass ratio close to unity. However, the fundamental parameters of the components of this system as well as their lithium abundances differ substantially. Kepler photometry of this system allows to perform a detailed seismic analysis as well as to derive the orbital period and the surface rotation rate of the primary component of the system. Indications of the seismic signature of the secondary are found. The differing parameters are best explained with both components located in the early and the late phase of the first dredge up at the bottom of the red-giant branch. Observed lithium abundances in both components are in good agreement with prediction of stellar models including rotational mixing. By combining observations and theory, a comprehensive picture of the system can be drawn.

  13. The High-Energy Polarization-Limiting Radius of Neutron Star Magnetospheres 1, Slowly Rotating Neutron Stars

    CERN Document Server

    Heyl, J S; Lloyd, D; CERN. Geneva; Heyl, Jeremy S.; Shaviv, Nir J.; Lloyd, Don

    2003-01-01

    In the presence of strong magnetic fields, the vacuum becomes a birefringent medium. We show that this QED effect decouples the polarization modes of photons leaving the NS surface. Both the total intensity and the intensity in each of the two modes is preserved along a ray's path through the neutron-star magnetosphere. We analyze the consequences that this effect has on aligning the observed polarization vectors across the image of the stellar surface to generate large net polarizations. Counter to previous predictions, we show that the thermal radiation of NSs should be highly polarized even in the optical. When detected, this polarization will be the first demonstration of vacuum birefringence. It could be used as a tool to prove the high magnetic field nature of AXPs and it could also be used to constrain physical NS parameters, such as $R/M$, to which the net polarization is sensitive.

  14. Extended Main-sequence Turn-offs in Intermediate-age Star Clusters: Stellar Rotation Diminishes, but Does Not Eliminate, Age Spreads

    Energy Technology Data Exchange (ETDEWEB)

    Goudfrooij, Paul; Correnti, Matteo [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Girardi, Léo, E-mail: goudfroo@stsci.edu [Osservatorio Astronomico di Padova—INAF, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy)

    2017-09-01

    Extended main-sequence turn-off (eMSTO) regions are a common feature in color–magnitude diagrams of young- and intermediate-age star clusters in the Magellanic Clouds. The nature of eMSTOs remains debated in the literature. The currently most popular scenarios are extended star formation activity and ranges of stellar rotation rates. Here we study details of differences in main-sequence turn-off (MSTO) morphology expected from spreads in age versus spreads in rotation rates, using Monte Carlo simulations with the Geneva syclist isochrone models that include the effects of stellar rotation. We confirm a recent finding of Niederhofer et al. that a distribution of stellar rotation velocities yields an MSTO extent that is proportional to the cluster age, as observed. However, we find that stellar rotation yields MSTO crosscut widths that are generally smaller than observed ones at a given age. We compare the simulations with high-quality Hubble Space Telescope data of NGC 1987 and NGC 2249, which are the two only relatively massive star clusters with an age of ∼1 Gyr for which such data is available. We find that the distribution of stars across the eMSTOs of these clusters cannot be explained solely by a distribution of stellar rotation velocities, unless the orientations of rapidly rotating stars are heavily biased toward an equator-on configuration. Under the assumption of random viewing angles, stellar rotation can account for ∼60% and ∼40% of the observed FWHM widths of the eMSTOs of NGC 1987 and NGC 2249, respectively. In contrast, a combination of distributions of stellar rotation velocities and stellar ages fits the observed eMSTO morphologies very well.

  15. Modules for Experiments in Stellar Astrophysics (MESA): Giant Planets, Oscillations, Rotation, and Massive Stars

    OpenAIRE

    Paxton, Bill; Cantiello, Matteo; Arras, Phil; Bildsten, Lars; Brown, Edward F.; Dotter, Aaron; Mankovich, Christopher; Montgomery, M. H.; Stello, Dennis; Timmes, F. X.; Townsend, Richard

    2013-01-01

    We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA Star. Improvements in MESA Star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiab...

  16. Torsional oscillations and observed rotational period variations in early-type stars

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Mikulášek, Z.; Henry, G.W.; Kurfürst, P.; Karlický, Marian

    2017-01-01

    Roč. 464, č. 1 (2017), s. 933-939 ISSN 0035-8711 R&D Projects: GA ČR(CZ) GA16-01116S; GA ČR GAP209/12/0103 Institutional support: RVO:67985815 Keywords : MHD * chemically peculiar stars * early-type stars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 4.961, year: 2016

  17. Effect of rotational mixing and metallicity on the hot star wind mass-loss rates

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2014-01-01

    Roč. 567, July (2014), A63/1-A63/7 ISSN 0004-6361 R&D Projects: GA ČR GA13-10589S Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:67985815 Keywords : stars: winds * outflows * stars: mass-loss Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  18. A unique, fast-forwards rotating schedule with 12-h long shifts prevents chronic sleep debt.

    Science.gov (United States)

    Fischer, Dorothee; Vetter, Céline; Oberlinner, Christoph; Wegener, Sven; Roenneberg, Till

    2016-01-01

    Sleep debt--together with circadian misalignment--is considered a central factor for adverse health outcomes associated with shift work. Here, we describe in detail sleep-wake behavior in a fast-forward rotating 12-h shift schedule, which involves at least 24 hours off after each shift and thus allows examining the role of immediate recovery after shift-specific sleep debt. Thirty-five participants at two chemical plants in Germany were chronotyped using the Munich ChronoType Questionnaire for Shift-Workers (MCTQ(Shift)) and wore actimeters throughout the two-week study period. From these actimetry recordings, we computed sleep and nap duration, social jetlag (a measure of circadian misalignment), and the daily timing of activity and sleep (center of gravity and mid-sleep, respectively). We observed that the long off-work periods between each shift create a fast alternation between shortened (mean ± standard deviation, 5h 17min ± 56min) and extended (8h 25min ± 72min) sleep episodes resulting in immanent reductions of sleep debt. Additionally, extensive napping of early chronotypes (up to 3 hours before the night shift) statistically compensated short sleep durations after the night shift. Partial rank correlations showed chronotype-dependent patterns of sleep and activity that were similar to those previously described in 8-h schedules; however, sleep before the day shift did not differ between chronotypes. Our findings indicate that schedules preventing a build-up of chronic sleep debt may reduce detrimental effects of shift work irrespective of shift duration. Prospective studies are needed to further elucidate the relationship between sleep, the circadian system, and health and safety hazards.

  19. Broad absorption line symbiotic stars: highly ionized species in the fast outflow from MWC 560

    Science.gov (United States)

    Lucy, Adrian B.; Knigge, Christian; Sokoloski, J. L.

    2018-04-01

    In symbiotic binaries, jets and disk winds may be integral to the physics of accretion onto white dwarfs from cool giants. The persistent outflow from symbiotic star MWC 560 (≡V694 Mon) is known to manifest as broad absorption lines (BALs), most prominently at the Balmer transitions. We report the detection of high-ionization BALs from C IV, Si IV, N V, and He II in International Ultraviolet Explorer spectra obtained on 1990 April 29 - 30, when an optical outburst temporarily erased the obscuring `iron curtain' of absorption troughs from Fe II and similar ions. The C IV and Si IV BALs reached maximum radial velocities at least 1000 km s-1 higher than contemporaneous Mg II and He II BALs; the same behaviors occur in the winds of quasars and cataclysmic variables. An iron curtain lifts to unveil high-ionization BALs during the P Cygni phase observed in some novae, suggesting by analogy a temporary switch in MWC 560 from persistent outflow to discrete mass ejection. At least three more symbiotic stars exhibit broad absorption with blue edges faster than 1500 km s-1; high-ionization BALs have been reported in AS 304 (≡V4018 Sgr), while transient Balmer BALs have been reported in Z And and CH Cyg. These BAL-producing fast outflows can have wider opening angles than has been previously supposed. BAL symbiotics are short-timescale laboratories for their giga-scale analogs, broad absorption line quasars (BALQSOs), which display a similarly wide range of ionization states in their winds.

  20. Recent Chandra/HETGS and NuSTAR observations of the quasar PDS 456 and its Ultra-Fast Outflow

    Science.gov (United States)

    Boissay Malaquin, Rozenn; Marshall, Herman L.; Nowak, Michael A.

    2018-01-01

    Evidence is growing that the interaction between outflows from active galactic nuclei (AGN) and their surrounding medium may play an important role in galaxy evolution, i.e. in the regulation of star formation in galaxies, through AGN feedback processes. Indeed, powerful outflows, such as the ultra-fast outflows (UFOs) that can reach mildly relativistic velocities of 0.2-0.4c, could blow away a galaxy’s reservoir of star-forming gas and hence quench the star formation in host galaxies. The low-redshift (z=0.184) radio-quiet quasar PDS 456 has showed the presence of a strong and blueshifted absorption trough in the Fe K band above 7 keV, that has been associated with the signature of such a fast and highly ionized accretion disk wind of a velocity of 0.25-0.3c. This persistent and variable feature has been detected in many observations of PDS 456, in particular by XMM-Newton, Suzaku and NuSTAR, together with other blueshifted absorption lines in the soft energy band (e.g. Nardini et al. 2015, Reeves et al. 2016). I will present here the results of the analysis of recent and contemporaneous high-resolution Chandra/HETGS and NuSTAR observations of PDS 456, and compare them with the previous findings.

  1. Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures

    Science.gov (United States)

    Prisk, T. R.; Hoffmann, C.; Kolesnikov, A. I.; Mamontov, E.; Podlesnyak, A. A.; Wang, X.; Kent, P. R. C.; Anovitz, L. M.

    2018-05-01

    Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factor reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10-100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.

  2. Kinematics of fast cervical rotations in persons with chronic neck pain: a cross-sectional and reliability study.

    Science.gov (United States)

    Röijezon, Ulrik; Djupsjöbacka, Mats; Björklund, Martin; Häger-Ross, Charlotte; Grip, Helena; Liebermann, Dario G

    2010-09-27

    Assessment of sensorimotor function is useful for classification and treatment evaluation of neck pain disorders. Several studies have investigated various aspects of cervical motor functions. Most of these have involved slow or self-paced movements, while few have investigated fast cervical movements. Moreover, the reliability of assessment of fast cervical axial rotation has, to our knowledge, not been evaluated before. Cervical kinematics was assessed during fast axial head rotations in 118 women with chronic nonspecific neck pain (NS) and compared to 49 healthy controls (CON). The relationship between cervical kinematics and symptoms, self-rated functioning and fear of movement was evaluated in the NS group. A sub-sample of 16 NS and 16 CON was re-tested after one week to assess the reliability of kinematic variables. Six cervical kinematic variables were calculated: peak speed, range of movement, conjunct movements and three variables related to the shape of the speed profile. Together, peak speed and conjunct movements had a sensitivity of 76% and a specificity of 78% in discriminating between NS and CON, of which the major part could be attributed to peak speed (NS: 226 ± 88°/s and CON: 348 ± 92°/s, p conjunct movements was poor. Peak speed of fast cervical axial rotations is reduced in people with chronic neck pain, and even further reduced in subjects with concomitant low back pain. Fast cervical rotation test seems to be a reliable and valid tool for assessment of neck pain disorders on group level, while a rather large between subject variation and overlap between groups calls for caution in the interpretation of individual assessments.

  3. Rotating plug size study for liquid-metal fast breeder reactors

    International Nuclear Information System (INIS)

    Nemeth, L.J.

    1980-01-01

    A study was performed to evaluate possible rotating plug arrangements. The three-, two-, and one-rotating plug schemes were developed using a set of established restrictions and component sizes. The three-rotating plug configuration is the recommended reference design

  4. A Neutron Star-White Dwarf Binary Model for Repeating Fast Radio Burst 121102

    Science.gov (United States)

    Gu, Wei-Min; Dong, Yi-Ze; Liu, Tong; Ma, Renyi; Wang, Junfeng

    2016-06-01

    We propose a compact binary model for the fast radio burst (FRB) repeaters, where the system consists of a magnetic white dwarf (WD) and a neutron star (NS) with strong bipolar magnetic fields. When the WD fills its Roche lobe, mass transfer will occur from the WD to the NS through the inner Lagrange point. The accreted magnetized materials may trigger magnetic reconnection when they approach the NS surface, and therefore the electrons can be accelerated to an ultra-relativistic speed. In this scenario, the curvature radiation of the electrons moving along the NS magnetic field lines can account for the characteristic frequency and the timescale of an FRB. Owing to the conservation of angular momentum, the WD may be kicked away after a burst, and the next burst may appear when the system becomes semi-detached again through the gravitational radiation. By comparing our analyses with the observations, we show that such an intermittent Roche-lobe overflow mechanism can be responsible for the observed repeating behavior of FRB 121102.

  5. Radiation yield from SHIVA Star plasma flow switch driven fast liner implosions

    International Nuclear Information System (INIS)

    Degnan, J.H.; Baker, W.L.; Beason, J.D.

    1987-01-01

    A 2.5 Terawatt 0.5 MJ isotropic equivalent radiation yield was obtained in a SHIVA Star plasma flow switch driven fast liner implosion. The 1313 μF 80 kV discharge delivered 13 MA to a coaxial vacuum inductive store with a plasma armature. Over 9.4 MA current was plasma flow switched to the implosion load (>90% of the gun muzzle current at that time). The load wa a 5 cm radius, 2 cm tall, 200 μg/cm/sup 2/ aluminum plated Formvar cylindrical foil. The radiation pulse was measured with an array of seven X-ray diodes (XRDs). The XRDs all had aluminum photocathodes, a variety of filters and nickel mesh to reduce the incident X-ray photon flux to avoid Child-Langmuir saturation. The filters were chosen so that the authors had seven different diode response functions covering the energy range from 15 eV to about 3 keV. The filters were mounted remote (about 30 cm) from the XRDs. The anode mesh served as part of the mesh array. The distance between meshes was greater than 10 cm. Each XRD had a 5 cm diameter cathode with an aperture limited to a 2 cm diameter. The XRD anode-cathode gap was 1 cm and the bias was 5 kV. The theoretical Child-Langmuir saturation signal was 125 V with 50 Ω termination. The maximum observed signal was 75 V

  6. FAST RADIO BURSTS: COLLISIONS BETWEEN NEUTRON STARS AND ASTEROIDS/COMETS

    Energy Technology Data Exchange (ETDEWEB)

    Geng, J. J.; Huang, Y. F., E-mail: hyf@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210046 (China)

    2015-08-10

    Fast radio bursts (FRBs) are newly discovered radio transient sources. Their high dispersion measures indicate an extragalactic origin. However, due to the lack of observational data in other wavelengths, their progenitors still remain unclear. Here we suggest that the collisions between neutron stars (NSs) and asteroids/comets are promising mechanisms for FRBs. During the impact process, a hot plasma fireball forms after the material of the small body penetrates into the NS surface. The ionized matter inside the fireball then expands along the magnetic field lines. Coherent radiation from the thin shell at the top of the fireball will account for the observed FRBs. Our scenario can reasonably explain the main features of FRBs, such as their durations, luminosities, and the event rate. We argue that for a single NS, FRBs are not likely to happen repeatedly in a forseeable timespan since such impacts are of low probability. We predict that faint remnant X-ray emissions should be associated with FRBs, but it may be too faint to be detected by detectors at work.

  7. FAST RADIO BURSTS: COLLISIONS BETWEEN NEUTRON STARS AND ASTEROIDS/COMETS

    International Nuclear Information System (INIS)

    Geng, J. J.; Huang, Y. F.

    2015-01-01

    Fast radio bursts (FRBs) are newly discovered radio transient sources. Their high dispersion measures indicate an extragalactic origin. However, due to the lack of observational data in other wavelengths, their progenitors still remain unclear. Here we suggest that the collisions between neutron stars (NSs) and asteroids/comets are promising mechanisms for FRBs. During the impact process, a hot plasma fireball forms after the material of the small body penetrates into the NS surface. The ionized matter inside the fireball then expands along the magnetic field lines. Coherent radiation from the thin shell at the top of the fireball will account for the observed FRBs. Our scenario can reasonably explain the main features of FRBs, such as their durations, luminosities, and the event rate. We argue that for a single NS, FRBs are not likely to happen repeatedly in a forseeable timespan since such impacts are of low probability. We predict that faint remnant X-ray emissions should be associated with FRBs, but it may be too faint to be detected by detectors at work

  8. Large amplitude change in spot-induced rotational modulation of the Kepler Ap star KIC 2569073

    DEFF Research Database (Denmark)

    Drury, Jason A.; Murphy, Simon J.; Derekas, Aliz

    2017-01-01

    An investigation of the 200 x 200 pixel 'superstamp' images of the centres of the open clusters NGC 6791 and NGC 6819 allows for the identification and study of many variable stars that were not included in the Kepler target list. KIC 2569073 (V= 14.22), is a particularly interesting variable Ap ...

  9. A magnetic confinement versus rotation classification of massive-star magnetospheres

    Czech Academy of Sciences Publication Activity Database

    Petit, V.; Owocki, S. P.; Wade, G.A.; Cohen, D.H.; Sundqvist, J.O.; Gagne, M.; Maiz Apellaniz, J.M.; Oksala, Mary E.; Bohlender, D.A.; Rivinius, T.; Henrichs, H.F.; Alecian, E.; Townsend, R. H. D.; Ud-Doula, A.

    2013-01-01

    Roč. 429, č. 1 (2013), s. 398-422 ISSN 0035-8711 R&D Projects: GA ČR(CZ) GAP209/11/1198 Institutional support: RVO:67985815 Keywords : circumstellar matter * early-type stars * fundamental parameters Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.226, year: 2013

  10. THE VLT-FLAMES TARANTULA SURVEY: THE FASTEST ROTATING O-TYPE STAR AND SHORTEST PERIOD LMC PULSAR-REMNANTS OF A SUPERNOVA DISRUPTED BINARY?

    Energy Technology Data Exchange (ETDEWEB)

    Dufton, P. L.; Dunstall, P. R.; Fraser, M. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Evans, C. J. [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Brott, I. [University of Vienna, Department of Astronomy, Tuerkenschanzstr. 17, A-1180 Vienna (Austria); Cantiello, M.; Langer, N. [Argelander Institut fuer Astronomie der Universitaet Bonn, Auf dem Huegel 71, 53121 Bonn (Germany); De Koter, A.; Sana, H. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); De Mink, S. E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Henault-Brunet, V.; Taylor, W. D. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Howarth, I. D. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lennon, D. J. [ESA, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Markova, N., E-mail: p.dufton@qub.ac.uk [Institute of Astronomy with NAO, Bulgarian Academy of Sciences, P.O. Box 136, 4700 Smoljan (Bulgaria)

    2011-12-10

    We present a spectroscopic analysis of an extremely rapidly rotating late O-type star, VFTS102, observed during a spectroscopic survey of 30 Doradus. VFTS102 has a projected rotational velocity larger than 500 km s{sup -1} and probably as large as 600 km s{sup -1}; as such it would appear to be the most rapidly rotating massive star currently identified. Its radial velocity differs by 40 km s{sup -1} from the mean for 30 Doradus, suggesting that it is a runaway. VFTS102 lies 12 pc from the X-ray pulsar PSR J0537-6910 in the tail of its X-ray diffuse emission. We suggest that these objects originated from a binary system with the rotational and radial velocities of VFTS102 resulting from mass transfer from the progenitor of PSR J0537-691 and the supernova explosion, respectively.

  11. Magnetic field topology and chemical abundance distributions of the young, rapidly rotating, chemically peculiar star HR 5624

    Science.gov (United States)

    Kochukhov, O.; Silvester, J.; Bailey, J. D.; Landstreet, J. D.; Wade, G. A.

    2017-09-01

    Context. The young, rapidly rotating Bp star HR 5624 (HD 133880) shows an unusually strong non-sinusoidal variability of its longitudinal magnetic field. This behaviour was previously interpreted as the signature of an exceptionally strong, quadrupole-dominated surface magnetic field geometry. Aims: We studied the magnetic field structure and chemical abundance distributions of HR 5624 with the aim to verify the unusual quadrupolar nature of its magnetic field and to investigate correlations between the field topology and chemical spots. Methods: We analysed high-resolution, time series Stokes parameter spectra of HR 5624 with the help of a magnetic Doppler imaging inversion code based on detailed polarised radiative transfer modelling of the line profiles. Results: We refined the stellar parameters, revised the rotational period, and obtained new longitudinal magnetic field measurements. Our magnetic Doppler inversions reveal that the field structure of HR 5624 is considerably simpler and the field strength is much lower than proposed by previous studies. We find a maximum local field strength of 12 kG and a mean field strength of 4 kG, which is about a factor of three weaker than predicted by quadrupolar field models. Our model implies that overall large-scale field topology of HR 5624 is better described as a distorted, asymmetric dipole rather than an axisymmetric quadrupole. The chemical abundance maps of Mg, Si, Ti, Cr, Fe, and Nd obtained in our study are characterised by large-scale, high-contrast abundance patterns. These structures correlate weakly with the magnetic field geometry and, in particular, show no distinct element concentrations in the horizontal field regions predicted by theoretical atomic diffusion calculations. Conclusions: We conclude that the surface magnetic field topology of HR 5624 is not as unusual as previously proposed. Considering these results together with other recent magnetic mapping analyses of early-type stars suggests that

  12. Monte Carlo problem and parallel computers, and how to do a fast particle mover on the STAR 100

    International Nuclear Information System (INIS)

    Sinz, K.H.P.H.

    1975-01-01

    Particle simulation problems of the Monte Carlo type are widely believed to be intrinsically highly scalar problems. In the absence of a definitive mathematical theorem to the contrary, this belief is based on the very apparent programming difficulties encountered on a vector machine. This class of problem is therefore thought to be ill-suited to highly parallel and vectorized computers. However, it is demonstrated by several examples that a particle mover is fully vectorizable. In the case of the CDC STAR 100 it is found that the performance of such a particle mover is not hopeless but hopeful, and is in fact helpful. One of the several possible vectorizations is estimated to yield a gain of a factor of 15 on the STAR over good serial coding on the same machine. This falls far short of the STAR's peak vector performance of 30 to 70 times scalar rates because certain fast vector instructions are not available and have to be simulated. The current STAR algorithm outperforms the carefully handcoded 7600 by a factor of 3. This performance margin is achievable despite the 7600's fivefold superior scalar capability. A more generally vectorized particle mover will always substantially outperform scalar coding on any machine equipped with a properly chosen set of fast vector instructions. (U.S.)

  13. First detection of rotational CO line emission in a red giant branch star

    Science.gov (United States)

    Groenewegen, M. A. T.

    2014-01-01

    Context. For stars with initial masses below ~1 M⊙, the mass loss during the first red giant branch (RGB) phase dominates mass loss in the later asymptotic giant branch (AGB) phase. Nevertheless, mass loss on the RGB is still often parameterised by a simple Reimers law in stellar evolution models. Aims: To try to detect CO thermal emission in a small sample of nearby RGB stars with reliable Hipparcos parallaxes that were shown to have infrared excess in an earlier paper. Methods: A sample of five stars was observed in the CO J = 2-1 and J = 3-2 lines with the IRAM and APEX telescopes. Results: One star, the one with the largest mass-loss rate based on the previous analysis of the spectral energy distribution, was detected. The expansion velocity is unexpectedly large at 12 km s-1. The line profile and intensity are compared to the predictions from a molecular line emission code. The standard model predicts a double-peaked profile, while the observations indicate a flatter profile. A model that does fit the data has a much smaller CO envelope (by a factor of 3), and a CO abundance that is two times larger and/or a larger mass-loss rate than the standard model. This could indicate that the phase of large mass loss has only recently started. Conclusions: The detection of CO in an RGB star with a luminosity of only ~1300 L⊙ and a mass-loss rate as low as a few 10-9M⊙ yr-1 is important and the results also raise new questions. However, ALMA observations are required in order to study the mass-loss process of RGB stars in more detail, both for reasons of sensitivity (6 h of integration in superior weather at IRAM were needed to get a 4σ detection in the object with the largest detection probability), and spatial resolution (to determine the size of the CO envelope). Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme ID 091.D-0073 (ESO time) and 091.F-9322 (Swedish time). Based on observations with the Atacama

  14. Turbulent transport stabilization by ICRH minority fast ions in low rotating JET ILW L-mode plasmas

    Science.gov (United States)

    Bonanomi, N.; Mantica, P.; Di Siena, A.; Delabie, E.; Giroud, C.; Johnson, T.; Lerche, E.; Menmuir, S.; Tsalas, M.; Van Eester, D.; Contributors, JET

    2018-05-01

    The first experimental demonstration that fast ion induced stabilization of thermal turbulent transport takes place also at low values of plasma toroidal rotation has been obtained in JET ILW (ITER-like wall) L-mode plasmas with high (3He)-D ICRH (ion cyclotron resonance heating) power. A reduction of the gyro-Bohm normalized ion heat flux and higher values of the normalized ion temperature gradient have been observed at high ICRH power and low NBI (neutral beam injection) power and plasma rotation. Gyrokinetic simulations indicate that ITG (ion temperature gradient) turbulence stabilization induced by the presence of high-energetic 3He ions is the key mechanism in order to explain the experimental observations. Two main mechanisms have been identified to be responsible for the turbulence stabilization: a linear electrostatic wave-fast particle resonance mechanism and a nonlinear electromagnetic mechanism. The dependence of the stabilization on the 3He distribution function has also been studied.

  15. Constraining the near-core rotation of the γ Doradus star 43 Cygni using BRITE-Constellation data

    Science.gov (United States)

    Zwintz, K.; Van Reeth, T.; Tkachenko, A.; Gössl, S.; Pigulski, A.; Kuschnig, R.; Handler, G.; Moffat, A. F. J.; Popowicz, A.; Wade, G.; Weiss, W. W.

    2017-12-01

    Context. Photometric time series of the γ Doradus star 43 Cyg obtained with the BRITE-Constellation nano-satellites allow us to study its pulsational properties in detail and to constrain its interior structure. Aims: We aim to find a g-mode period-spacing pattern that allows us to determine the near-core rotation rate of 43 Cyg and redetermine the star's fundamental atmospheric parameters and chemical composition. Methods: We conducted a frequency analysis using the 156-day long data set obtained with the BRITE-Toronto satellite and employed a suite of MESA/GYRE models to derive the mode identification, asymptotic period-spacing, and near-core rotation rate. We also used high-resolution spectroscopic data with high signal-to-noise ratio obtained at the 1.2 m Mercator telescope with the HERMES spectrograph to redetermine the fundamental atmospheric parameters and chemical composition of 43 Cyg using the software Spectroscopy Made Easy (SME). Results: We detected 43 intrinsic pulsation frequencies and identified 18 of them to be part of a period-spacing pattern consisting of prograde dipole modes with an asymptotic period-spacing ΔΠl = 1 of 2970-570+700 s. The near-core rotation rate was determined to be frot = 0.56-0.14+0.12 d-1. The atmosphere of 43 Cyg shows solar chemical composition at an effective temperature, Teff, of 7150 ± 150 K, a log g of 4.2 ± 0.6 dex, and a projected rotational velocity, υsini, of 44 ± 4 km s-1. Conclusions: The morphology of the observed period-spacing patterns shows indications of a significant chemical gradient in the stellar interior. Based on data collected by the BRITE Constellation satellite mission, designed, built, launched, operated and supported by the Austrian Research Promotion Agency (FFG), the University of Vienna, the Technical University of Graz, the Canadian Space Agency (CSA), the University of Toronto Institute for Aerospace Studies (UTIAS), the Foundation for Polish Science & Technology (FNiTP MNiSW), and

  16. The KMOS3D Survey: Rotating Compact Star-forming Galaxies and the Decomposition of Integrated Line Widths

    Science.gov (United States)

    Wisnioski, E.; Mendel, J. T.; Förster Schreiber, N. M.; Genzel, R.; Wilman, D.; Wuyts, S.; Belli, S.; Beifiori, A.; Bender, R.; Brammer, G.; Chan, J.; Davies, R. I.; Davies, R. L.; Fabricius, M.; Fossati, M.; Galametz, A.; Lang, P.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Rosario, D.; Saglia, R.; Tacconi, L. J.; Tadaki, K.; Übler, H.; van Dokkum, P. G.

    2018-03-01

    Using integral field spectroscopy, we investigate the kinematic properties of 35 massive centrally dense and compact star-forming galaxies (SFGs; {log}{\\overline{M}}* [{M}ȯ ]=11.1, {log}({{{Σ }}}1{kpc}[{M}ȯ {kpc}}-2])> 9.5, {log}({M}* /{r}e1.5[{M}ȯ {kpc}}-1.5])> 10.3) at z ∼ 0.7–3.7 within the KMOS3D survey. We spatially resolve 23 compact SFGs and find that the majority are dominated by rotational motions with velocities ranging from 95 to 500 km s‑1. The range of rotation velocities is reflected in a similar range of integrated Hα line widths, 75–400 km s‑1, consistent with the kinematic properties of mass-matched extended galaxies from the full KMOS3D sample. The fraction of compact SFGs that are classified as “rotation-dominated” or “disklike” also mirrors the fractions of the full KMOS3D sample. We show that integrated line-of-sight gas velocity dispersions from KMOS3D are best approximated by a linear combination of their rotation and turbulent velocities with a lesser but still significant contribution from galactic-scale winds. The Hα exponential disk sizes of compact SFGs are, on average, 2.5 ± 0.2 kpc, 1–2× the continuum sizes, in agreement with previous work. The compact SFGs have a 1.4× higher active galactic nucleus (AGN) incidence than the full KMOS3D sample at fixed stellar mass with an average AGN fraction of 76%. Given their high and centrally concentrated stellar masses, as well as stellar-to-dynamical mass ratios close to unity, the compact SFGs are likely to have low molecular gas fractions and to quench on a short timescale unless replenished with inflowing gas. The rotation in these compact systems suggests that their direct descendants are rotating passive galaxies. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs 092A-0091, 093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025, 097.A-0028, and 098.A-0045).

  17. Effect Of Superfluidity And Differential Rotation Of Quark Matter On Magetic Field Evolution in Neutron Star And Black Hole

    Science.gov (United States)

    Aurongzeb, Deeder

    2010-11-01

    Anomalous X-ray pulsars and soft gamma-ray repeaters reveal that existence of very strong magnetic field(> 10e15G) from neutron stars. It has been estimated that at the core the magnitude can be even higher at the center. Apart from dynamo mechanism it has been shown that color locked ferromagnetic phase [ Phys. Rev. D. 72,114003(2005)] can be a possible origin of magnetic field. In this study, we explore electric charge of strange quark matter and its effect on forming chirality in the quark-gluon plasma. We show that electromagnetic current induced by chiral magnetic effect [(Phys. Rev. D. 78.07033(2008)] can induce differential rotation in super fluid quark-gluon plasma giving additional boost to the magnetic field. The internal phase and current has no effect from external magnetic field originating from active galactic nuclei due to superconducting phase formation which screens the fields due to Meissner effect. We show that differential motion can create high radial electric field at the surface making all radiation highly polarized and directional including thermal radiation. As the electric field strength can be even stronger for a collapsing neutron star, the implication of this study to detect radiation from black holes will also be discussed. The work was partly completed at the University of Texas at austin

  18. Properties of rotating protoneutron star within the extended field theoretical model

    International Nuclear Information System (INIS)

    Mahajan, Gulshan; Dhiman, Shashi K.

    2012-01-01

    In the present work, BSR1, BSR3, BSR5, and BSR7 parameter set correspond to the value of ω-meson self-coupling ζ = 0.00, BSR8, BSR10, BSR12, and BSR14 parameter set correspond to the value of ω meson self-coupling ζ = 0.03, and BSR15, BSR17, BSR19, BSR21 parameter set correspond to the value of ω meson self-coupling ζ = 0.06, and for each parametrization set the value of neutron skin thickness of 208 Pb varies from 0.16 to 0.28 fm in intervals of 0.04 fm have been employed. The values of the maximum gravitational mass (M) and corresponding radius (R) of a rotating PNS rotating with Keplerian frequency, are presented as a function of the neutron skin thickness Δr in the 208 Pb nucleus

  19. Growth-related problems of aging and senescence in fast growing trees grown on short rotations

    Energy Technology Data Exchange (ETDEWEB)

    Blake, T J

    1981-06-01

    The paper is aimed at identifying some possible problem areas in the future management of coppice stands on short rotations. The paper considers the possible role of plant hormones, water, cultural and enviromental factors in regulating shoot production, growth and senescence in hardwoods grown on short rotations for biomass production. 77 references.

  20. Does the chemical signature of TYC 8442-1036-1 originate from a rotating massive star that died in a faint explosion?

    Science.gov (United States)

    Cescutti, G.; Valentini, M.; François, P.; Chiappini, C.; Depagne, E.; Christlieb, N.; Cortés, C.

    2016-11-01

    Context. We have recently investigated the origin of chemical signatures observed in Galactic halo stars by means of a stochastic chemical evolution model. We found that rotating massive stars are a promising way to explain several signatures observed in these fossil stars. Aims: We discuss how the extremely metal-poor halo star TYC 8442-1036-1, for which we have now obtained detailed abundances from VLT-UVES spectra, fits into the framework of our previous work. Methods: We applied a standard one-dimensional (1D) LTE analysis to the spectrum of this star. We measured the abundances of 14 chemical elements; we computed the abundances for Na, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, and Zn using equivalent widths; we obtained the abundances for C, Sr, and Ba by means of synthetic spectra generated by MOOG. Results: We find an abundance of [Fe/H] = -3.5 ±0.13 dex based on our high-resolution spectrum; this points to an iron content that is lower by a factor of three (0.5 dex) compared to that obtained by a low-resolution spectrum. The star has a [C/Fe] = 0.4 dex, and it is not carbon enhanced like most of the stars at this metallicity. Moreover, this star lies in the plane [Ba/Fe] versus [Fe/H] in a relatively unusual position, shared by a few other Galactic halo stars, which is only marginally explained by our past results. Conclusions: The comparison of the model results with the chemical abundance characteristics of this group of stars can be improved if we consider in our model the presence of faint supernovae coupled with rotating massive stars. These results seem to imply that rotating massive stars and faint supernovae scenarios are complementary to each other, and are both required in order to match the observed chemistry of the earliest phases of the chemical enrichment of the Universe. Based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (ID 094.B-0781(A); P.I. G. Cescutti).

  1. EFFECTS OF ROTATIONALLY INDUCED MIXING IN COMPACT BINARY SYSTEMS WITH LOW-MASS SECONDARIES AND IN SINGLE SOLAR-TYPE STARS

    International Nuclear Information System (INIS)

    Chatzopoulos, E.; Robinson, Edward L.; Wheeler, J. Craig

    2012-01-01

    Many population synthesis and stellar evolution studies have addressed the evolution of close binary systems in which the primary is a compact remnant and the secondary is filling its Roche lobe, thus triggering mass transfer. Although tidal locking is expected in such systems, most studies have neglected the rotationally induced mixing that may occur. Here we study the possible effects of mixing in mass-losing stars for a range of secondary star masses and metallicities. We find that tidal locking can induce rotational mixing prior to contact and thus affect the evolution of the secondary star if the effects of the Spruit-Tayler dynamo are included both for angular momentum and chemical transport. Once contact is made, the effect of mass transfer tends to be more rapid than the evolutionary timescale, so the effects of mixing are no longer directly important, but the mass-transfer strips matter to inner layers that may have been affected by the mixing. These effects are enhanced for secondaries of 1-1.2 M ☉ and for lower metallicities. We discuss the possible implications for the paucity of carbon in the secondaries of the cataclysmic variable SS Cyg and the black hole candidate XTE J1118+480 and for the progenitor evolution of Type Ia supernovae. We also address the issue of the origin of blue straggler stars in globular and open clusters. We find that for models that include rotation consistent with that observed for some blue straggler stars, evolution is chemically homogeneous. This leads to tracks in the H-R diagram that are brighter and bluer than the non-rotating main-sequence turn-off point. Rotational mixing could thus be one of the factors that contribute to the formation of blue stragglers.

  2. Displacement, distance, and shape measurements of fast-rotating rough objects by two mutually tilted interference fringe systems.

    Science.gov (United States)

    Günther, Philipp; Kuschmierz, Robert; Pfister, Thorsten; Czarske, Jürgen W

    2013-05-01

    The precise distance measurement of fast-moving rough surfaces is important in several applications such as lathe monitoring. A nonincremental interferometer based on two mutually tilted interference fringe systems has been realized for this task. The distance is coded in the phase difference between the generated interference signals corresponding to the fringe systems. Large tilting angles between the interference fringe systems are necessary for a high sensitivity. However, due to the speckle effect at rough surfaces, different envelopes and phase jumps of the interference signals occur. At large tilting angles, these signals become dissimilar, resulting in a small correlation coefficient and a high measurement uncertainty. Based on a matching of illumination and receiving optics, the correlation coefficient and the phase difference estimation have been improved significantly. For axial displacement measurements of recurring rough surfaces, laterally moving with velocities of 5 m/s, an uncertainty of 110 nm has been attained. For nonrecurring surfaces, a distance measurement uncertainty of 830 nm has been achieved. Incorporating the additionally measured lateral velocity and the rotational speed, the two-dimensional shape of rotating objects results. Since the measurement uncertainty of the displacement, distance, and shape is nearly independent of the lateral surface velocity, this technique is predestined for fast-rotating objects, such as crankshafts, camshafts, vacuum pump shafts, or turning parts of lathes.

  3. A prescription and fast code for the long-term evolution of star clusters

    Science.gov (United States)

    Alexander, Poul E. R.; Gieles, Mark

    2012-06-01

    We introduce the star cluster evolution code Evolve Me A Cluster of StarS (EMACSS), a simple yet physically motivated computational model that describes the evolution of some fundamental properties of star clusters in static tidal fields. We base our prescription upon the flow of energy within the cluster, which is a constant fraction of the total energy per half-mass relaxation time. According to Hénon's predictions, this flow is independent of the precise mechanisms for energy production within the core, and therefore does not require a complete description of the many-body interactions therein. For a cluster of equal-mass stars, we use dynamical theory and analytic descriptions of escape mechanisms to construct a series of coupled differential equations expressing the evolution of cluster mass and radius. These equations are numerically solved using a fourth-order Runge-Kutta integration kernel, and the results benchmarked against a data base of direct N-body simulations. We use simulations containing a modest initial number of stars (1024 ≤N≤ 65 536) and point-mass tidal fields of various strengths. Our prescription is publicly available and reproduces the N-body results to within ˜10 per cent accuracy for the entire post-collapse evolution of star clusters.

  4. SOAP-T: a tool to study the light curve and radial velocity of a system with a transiting planet and a rotating spotted star

    Science.gov (United States)

    Oshagh, M.; Boisse, I.; Boué, G.; Montalto, M.; Santos, N. C.; Bonfils, X.; Haghighipour, N.

    2013-01-01

    We present an improved version of SOAP named "SOAP-T", which can generate the radial velocity variations and light curves for systems consisting of a rotating spotted star with a transiting planet. This tool can be used to study the anomalies inside transit light curves and the Rossiter-McLaughlin effect, to better constrain the orbital configuration and properties of planetary systems and the active zones of their host stars. Tests of the code are presented to illustrate its performance and to validate its capability when compared with analytical models and real data. Finally, we apply SOAP-T to the active star, HAT-P-11, observed by the NASA Kepler space telescope and use this system to discuss the capability of this tool in analyzing light curves for the cases where the transiting planet overlaps with the star's spots. The tool's public interface is available at http://www.astro.up.pt/resources/soap-t/

  5. Generation of plasma rotation in a tokamak by ion-cyclotron absorption of fast Alfven waves

    International Nuclear Information System (INIS)

    Perkins, F.W.; White, R.B.; Bonoli, P.T.; Chan, V.S.

    2001-01-01

    A mechanism is proposed and evaluated for driving rotation in tokamak plasmas by minority ion-cyclotron heating, even though this heating introduces negligible angular momentum. The mechanism has two elements: First, angular momentum transport is governed by a diffusion equation with a boundary condition at the separatrix. Second, Monte Carlo calculations show that ion-cyclotron energized particles will provide a torque density source which has a zero volume integral but separated positive and negative regions. With such a source, a solution of the diffusion equation predicts that ion-cyclotron heating will cause a rotational shear layer to develop. The corresponding jump in plasma rotation ΔΩ is found to be negative outwards when the ion-cyclotron surface lies on the low-field side of the magnetic axis and positive outwards with the resonance on the high-field side. The magnitude of the jump ΔΩ=(4q max WJ 2 *) (eBR 3 a 2 n e (2π) 2 ) -1 (τ M /τ E ) where |J 2 *|≅2-4 is a nondimensional rotation frequency calculated by the Monte Carlo ORBIT code [R. B. White and M. S. Chance, Phys. Fluids 27, 2455 (1984)]. For a no-slip boundary condition when the resonance lies on the low-field side of the magnetic axis, the sense of predicted axial rotation is co-current and overall agreement with experiment is good. When the resonance lies on the high-field side, the predicted rotation becomes countercurrent for a no-slip boundary while the observed rotation remains co-current. The rotational shear layer position is controllable and of sufficient magnitude to affect microinstabilities

  6. Gyrochronology relating star age to rotational period is derived from first principles through a novel time dual for thermodynamics, named lingerdynamics

    Science.gov (United States)

    Feria, Erlan H.

    2017-10-01

    Gyrochronology estimates the age of a low-mass star from its rotational period, which is found from changes in brightness caused by dark star spots. First revealed as an insight in (Skumanich, A. 1972, The Astrophysical Journal. 171: 565) it allows astronomers to find true sun-like stars that may harbor life in its planets (Meibom, S. et. al., Nature. 517: 589-591). Here a simple expression for the age of a star is derived through a novel linger thermo theory (LTT) integrating thermodynamics with its revealed time-dual, named lingerdynamics. This expression relates the star age to the ratio of past and present rotational period metrics (RPM) of lingerdynamics. LTT has been used earlier to derive a simple expression for the finding of the entropy of spherical-homogeneous mediums (Feria, E. H. Nov. 19, 2016, Linger Thermo Theory, IEEE Int’l Conf. on Smart Cloud, 18 pages, DOI 10.1109/SmartCloud.2016.57, Colombia Univ., N.Y., N.Y. and Feria, E. H. June 7th 2017, AAS 340th Meeting). In LTT the lifespan of system operation τ is given by: τ = (2Π /3v3)G2M2 x RPM where G is the gravitational constant, Π is the pace of mass-energy retention in s/m3 units (e.g., for our current sun it is given by 5 billion ‘future’ years over its volume), and v is the perpetual radial speed about the point-mass M. Since in LTT a star is modeled as a point mass at the center of its spherical volume, its RPM is not the same as the measured rotational period of an actual star. For instance, for our sun its equator rotational period is approximately 25.34 days, while in lingerdynamics it is a fraction of a day, i.e., 0.116 days, where this value is derived from the RPM expression 2πrsun/(GMsun / rsun)1/2 where 2πrsun is the circumference of the sun, (GMsun/rsun)1/2 is the perpetual radial speed v for our point-mass modeled sun, and rsun and Msun are the sun radius and point-mass, respectively. However, using conservation of angular momentum arguments it is assumed that the ratio of

  7. LIVING WITH A RED DWARF: ROTATION AND X-RAY AND ULTRAVIOLET PROPERTIES OF THE HALO POPULATION KAPTEYN’S STAR

    Energy Technology Data Exchange (ETDEWEB)

    Guinan, Edward F.; Engle, Scott G.; Durbin, Allyn, E-mail: scott.engle@villanova.edu [Department of Astrophysics and Planetary Science, Villanova University, Villanova, PA 19085 (United States)

    2016-04-20

    As part of Villanova’s Living with a Red Dwarf program, we have obtained UV, X-ray, and optical data of the Population II red dwarf—Kapteyn’s Star. Kapteyn’s Star is noteworthy for its large proper motions and high radial velocity of ∼+245 km s{sup −1}. As the nearest Pop II red dwarf, it serves as an old age anchor for calibrating activity/irradiance–rotation–age relations, and an important test bed for stellar dynamos and the resulting X-ray–UV emissions of slowly rotating, near-fully convective red dwarf stars. Adding to the notoriety, Kapteyn’s Star has recently been reported to host two super-Earth candidates, one of which (Kapteyn b) is orbiting within the habitable zone. However, Robertson et al. questioned the planet’s existence since its orbital period may be an artifact of activity, related to the star’s rotation period. Because of its large Doppler-shift, measures of the important, chromospheric H i Lyα 1215.67 Å emission line can be reliably made, because it is mostly displaced from ISM and geo-coronal sources. Lyα emission dominates the FUV region of cool stars. Our measures can help determine the X-ray–UV effects on planets hosted by Kapteyn’s Star, and planets hosted by other old red dwarfs. Stellar X-ray and Lyα emissions have strong influences on the heating and ionization of upper planetary atmospheres and can (with stellar winds and flares) erode or even eliminate planetary atmospheres. Using our program stars, we have reconstructed the past exposures of Kapteyn’s Star's planets to coronal—chromospheric XUV emissions over time.

  8. LIVING WITH A RED DWARF: ROTATION AND X-RAY AND ULTRAVIOLET PROPERTIES OF THE HALO POPULATION KAPTEYN’S STAR

    International Nuclear Information System (INIS)

    Guinan, Edward F.; Engle, Scott G.; Durbin, Allyn

    2016-01-01

    As part of Villanova’s Living with a Red Dwarf program, we have obtained UV, X-ray, and optical data of the Population II red dwarf—Kapteyn’s Star. Kapteyn’s Star is noteworthy for its large proper motions and high radial velocity of ∼+245 km s −1 . As the nearest Pop II red dwarf, it serves as an old age anchor for calibrating activity/irradiance–rotation–age relations, and an important test bed for stellar dynamos and the resulting X-ray–UV emissions of slowly rotating, near-fully convective red dwarf stars. Adding to the notoriety, Kapteyn’s Star has recently been reported to host two super-Earth candidates, one of which (Kapteyn b) is orbiting within the habitable zone. However, Robertson et al. questioned the planet’s existence since its orbital period may be an artifact of activity, related to the star’s rotation period. Because of its large Doppler-shift, measures of the important, chromospheric H i Lyα 1215.67 Å emission line can be reliably made, because it is mostly displaced from ISM and geo-coronal sources. Lyα emission dominates the FUV region of cool stars. Our measures can help determine the X-ray–UV effects on planets hosted by Kapteyn’s Star, and planets hosted by other old red dwarfs. Stellar X-ray and Lyα emissions have strong influences on the heating and ionization of upper planetary atmospheres and can (with stellar winds and flares) erode or even eliminate planetary atmospheres. Using our program stars, we have reconstructed the past exposures of Kapteyn’s Star's planets to coronal—chromospheric XUV emissions over time

  9. Choice of rotatable plug seals for prototype fast breeder reactor: Review of historical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, N.K., E-mail: nksinha@igcar.gov.in; Raj, Baldev, E-mail: baldev.dr@gmail.com

    2015-09-15

    Highlights: • Choice and arrangement of elastomeric inflatable and backup seals as primary and secondary barriers. • With survey (mid-1930s onwards) of reactor, sealing, R&D and rubber technology. • Load, reliability, safety, life and economy of seals and reactors are key factors. • PFBR blends concepts and experience of MOX fuelled FBRs with original solutions. • R&D indicates inflatable seal advanced fluoroelastomer pivotal in unifying nuclear sealing. - Abstract: Choice and arrangement of elastomeric primary inflatable and secondary backup seals for the rotatable plugs (RPs) of 500 MW (e), sodium cooled, pool type, 2-loop, mixed oxide (MOX) fuelled Prototype Fast Breeder Reactor (PFBR) is depicted with review of various historical perspectives. Static and dynamic operation, largest diameters (PFBR: ∼6.4 m, ∼4.2 m), widest gaps and variations (5 ± 2 mm) and demanding operating requirements make RP openings on top shield (TS) the most difficult to seal which necessitated extensive development from 1950s to early 1990s. Liquid metal freeze seals with life equivalent to reactor prevailed as primary barrier (France, Japan, U.S.S.R.) during pre-1980s in spite of bulk, cost and complexity due to the abilities to meet zero leakage and resist core disruptive accident (CDA). Redefinition of CDA as beyond design basis accident, tolerable leakage and enhanced economisation drive during post-1980s established elastomeric inflatable seal as primary barrier excepting in U.S.S.R. (MOX fuel, freeze seal) and U.S.A. (metallic fuel). Choice of inflatable seal for PFBR RPs considers these perspectives, inherent advantages of elastomers and those of inflatable seals which maximise seal life. Choice of elastomeric backup seal as secondary barrier was governed by reliability and minimisation as well as distribution of load (temperature, radiation, mist) to maximise seal life. The compact sealing combination brings the hanging RPs at about the same elevation to reduce

  10. A novel RE-chrome-boronizing technology assisted by fast multiple rotation rolling treatment at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xing-dong [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); School of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101 (China); Xu, Bin, E-mail: xubin@sdjzu.edu.cn [School of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101 (China); Cai, Yu-cheng [School of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101 (China)

    2015-12-01

    Highlights: • A nanostructured layer with grain size of approximately 30 nm was successfully fabricated in the upper-layer of carbon steel. • The penetrating rate was enhanced significantly by the fast multiple rotation rolling (FMRR) treatment at low temperature. • A novel and efficient RE-Chrome-Boronizing technology assisted by fast multiple rotation rolling (FMRR) treatment at low temperature was used to fabricate boride layers on the surface of carbon steel. - Abstract: The boride layer was fabricated on the surface of carbon steel by a novel RE-Chrome-Boronizing technology assisted by fast multiple rotation rolling (FMRR) treatment at low temperature. The microstructure of the boride layer was characterized by using scanning electron microscopy (SEM). The microstructure of the top surface layer of substrate was characterized by transmission electron microscopy (TEM) and high resolution rransmission electron microscopy (HRTEM). Experimental results showed that a nanostructured layer with grain size of approximately 30 nm was obtained; the amorphous phase and high-density dislocations were observed in upper-layer of FMRR samples, which led to the reduction of diffusion activation energy of boron atoms. Boride layers fabricated on the FMRR samples are continuous, dense, uniform, and low in brittleness. The penetrating rate was enhanced significantly when the FMRR samples were Cr-Rare earth-boronized at 650 °C for 6 h. The thickness of the boride layer of FMRR samples on carbon steel was approximately 25 μm when the duration was 60 min, which was approximately 1.5 times higher than the original sample. The boride layer consisted of mainly Fe2B, and adheres well to the metallic substrate.

  11. PRE-SUPERNOVA EVOLUTION OF ROTATING SOLAR METALLICITY STARS IN THE MASS RANGE 13-120 M {sub Sun} AND THEIR EXPLOSIVE YIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Chieffi, Alessandro [Istituto Nazionale di Astrofisica-Istituto di Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Limongi, Marco, E-mail: alessandro.chieffi@inaf.it, E-mail: marco.limongi@oa-roma.inaf.it [Centre for Stellar and Planetary Astrophysics, School of Mathematical Sciences, P.O. Box 28M, Monash University, Victoria 3800 (Australia)

    2013-02-10

    We present the first set of a new generation of models of massive stars with a solar composition extending between 13 and 120 M {sub Sun }, computed with and without the effects of rotation. We included two instabilities induced by rotation: the meridional circulation and the shear instability. We implemented two alternative schemes to treat the transport of the angular momentum: the advection-diffusion formalism and the simpler purely diffusive one. The full evolution from the pre-main sequence up to the pre-supernova stage is followed in detail with a very extended nuclear network. The explosive yields are provided for a variety of possible mass cuts and are available at the Web site http://www.iasf-roma.inaf.it/orfeo/public{sub h}tml. We find that both the He and the CO core masses are larger than those of their non-rotating counterparts. Also the C abundance left by the He burning is lower than in the non-rotating case, especially for stars with an initial mass of 13-25 M {sub Sun }, and this affects the final mass-radius relation, basically the final binding energy, at the pre-supernova stage. The elemental yields produced by a generation of stars rotating initially at 300 km s{sup -1} do not change substantially with respect to those produced by a generation of non-rotating massive stars, the main differences being a slight overproduction of the weak s-component and a larger production of F. Since rotation also affects the mass-loss rate, either directly or indirectly, we find substantial differences in the lifetimes as O-type and Wolf-Rayet subtypes between the rotating and non-rotating models. The maximum mass exploding as Type IIP supernova ranges between 15 and 20 M {sub Sun} in both sets of models (this value depends basically on the larger mass-loss rates in the red supergiant phase due to the inclusion of the dust-driven wind). This limiting value is in remarkably good agreement with current estimates.

  12. Spontaneous Formation of Anti-ferromagnetic Vortex Lattice in a Fast Rotating BEC with Dipole Interactions

    International Nuclear Information System (INIS)

    Yang Shijie; Feng Shiping; Wen Yuchuan; Yu Yue

    2007-01-01

    When a Bose-Einstein condensate is set to rotate, superfluid vortices will be formed, which finally condense into a vortex lattice as the rotation frequency further increases. We show that the dipole-dipole interactions renormalize the short-range interaction strength and result in a distinction between interactions of parallel-polarized atoms and interactions of antiparallel-polarized atoms. This effect may lead to a spontaneous breakdown of the rapidly rotating Bose condensate into a novel anti-ferromagnetic-like vortex lattice. The upward-polarized Bose condensate forms a vortex lattice, which is staggered against a downward-polarized vortex lattice. A phase diagram related to the coupling strength is obtained.

  13. On the symmetry of cylindrical implosions driven by a rotating beam of fast ions

    International Nuclear Information System (INIS)

    Basko, M.M.; Schlegel, T.; Maruhn, J.

    2004-01-01

    Cylindrical implosions driven by intense beams of heavy ions are one of the promising ways to create high energy density states in matter. To ensure the needed azimuthal symmetry of the beam energy deposition, it was proposed [Sharkov et al., Nucl. Instrum. Methods Phys. Res. A 464, 1 (2001)] to rotate the ion beam around the target axis. Combining analytical calculations with two-dimensional hydrodynamic simulations, a lower limit is established on the frequency ν of the beam rotation dictated by the target hydrodynamics. This limit is shown to be directly proportional to the desired radial convergence ratio C r for stepwise beam power profiles, and to C r 1/2 for smooth pulses. With a smooth pulse, 6-10 beam revolutions per pulse should be sufficient to reach C r ≅30, while a stepwise pulse requires ≅100 revolutions. Also, the upper bound on the asymmetry of the elliptical focal spot of a rotating ion beam is calculated

  14. Membership, binarity, and rotation of F-G-K stars in the open cluster Blanco 1

    Science.gov (United States)

    Mermilliod, J.-C.; Platais, I.; James, D. J.; Grenon, M.; Cargile, P. A.

    2008-07-01

    Context: The nearby open cluster Blanco 1 is of considerable astrophysical interest for formation and evolution studies of open clusters because it is the third highest Galactic latitude cluster known. It has been observed often, but so far no definitive and comprehensive membership determination is readily available. Aims: An observing programme was carried out to study the stellar population of Blanco 1, and especially the membership and binary frequency of the F5-K0 dwarfs. Methods: We obtained radial-velocities with the CORAVEL spectrograph in the field of Blanco 1 for a sample of 148 F-G-K candidate stars in the magnitude range 10 rate reaches 40% (27/68) if one includes the photometric binaries. The cluster mean heliocentric radial velocity is +5.53 ± 0.11 km s-1 based on the most reliable 49 members. The V sin i distribution is similar to that of the Pleiades, confirming the age similarities between the two clusters. Conclusions: This study clearly demonstrates that, in spite of the cluster's high Galactic latitude, three membership criteria - radial velocity, proper motion, and photometry - are necessary for performing a reliable membership selection. Furthermore, even with accurate and extensive data, ambiguous cases still remain. Based on observations collected with the Danish 1.54-m and the Swiss telescopes at the European Southern Observatory, La Silla, Chile, and with the old YALO 1-m telescope at the Cerro Tololo InterAmerican Observatory, Chile. Table [see full textsee full textsee full textsee full textsee full textsee full text] is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/485/95

  15. Theory of symmetry and of exact solution properties for fast rotating nuclei

    International Nuclear Information System (INIS)

    Heydon, B.

    1995-01-01

    We propose a study of rotating multi-fermionic systems. The method we developed is based on unitary group theory. The formalism of Gel'fand-Tsetlin is is simplified to binary calculations. With the help of operator of Casimir and physical interpretations using dichotomic symmetries (signature, parity), we show rotating Hamiltonians obey to a new quantum symmetry called P. The study of short range two-body interaction breaking weakly this symmetry, is made by using single j-shell. Nuclear interactions coupling two j-shell are introduced. This study allows us to compare ours results to experimental data for three isotopes of Zirconium. (author)

  16. Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light

    International Nuclear Information System (INIS)

    Shahriar, M. S.; Pati, G. S.; Tripathi, R.; Gopal, V.; Messall, M.; Salit, K.

    2007-01-01

    We describe a resonator-based optical gyroscope whose sensitivity for measuring absolute rotation is enhanced via use of the anomalous dispersion characteristic of superluminal light propagation. The enhancement is given by the inverse of the group index, saturating to a bound determined by the group velocity dispersion. We also show how the offsetting effect of the concomitant broadening of the resonator linewidth may be circumvented by using an active cavity. For realistic conditions, the enhancement factor is as high as 10 6 . We also show how normal dispersion used for slow light can enhance relative rotation sensing in a specially designed Sagnac interferometer, with the enhancement given by the slowing factor

  17. Efficient computation of quasiperiodic oscillations in nonlinear systems with fast rotating parts

    DEFF Research Database (Denmark)

    Schilder, Frank; Rübel, Jan; Starke, Jens

    2008-01-01

    We present a numerical method for the investigation of quasiperiodic oscillations in applications modeled by systems of ordinary differential equations. We focus on systems with parts that have a significant rotational speed. An important element of our approach is that it allows us to verify whe...

  18. The ATLAS3D project - IX. The merger origin of a fast- and a slow-rotating early-type galaxy revealed with deep optical imaging: first results

    Science.gov (United States)

    Duc, Pierre-Alain; Cuillandre, Jean-Charles; Serra, Paolo; Michel-Dansac, Leo; Ferriere, Etienne; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M.

    2011-10-01

    680 is typical for fast rotators which make the bulk of nearby ETGs in the ATLAS3D sample. On the other hand, NGC 5557 belongs to the poorly populated class of massive, round, slow rotators that are predicted by semi-analytic models and cosmological simulations to be the end-product of a complex mass accretion history, involving ancient major mergers and more recent minor mergers. Our observations suggest that under specific circumstances a single binary merger may dominate the formation history of such objects and thus that at least some massive ETGs may form at relatively low redshift. Whether the two galaxies studied here are representative of their own sub-class of ETGs is still an open question that will be addressed by an on-going deep optical survey of ATLAS3D galaxies.

  19. Validity of the top-down approach of inverse dynamics analysis in fast and large rotational trunk movements.

    Science.gov (United States)

    Iino, Yoichi; Kojima, Takeji

    2012-08-01

    This study investigated the validity of the top-down approach of inverse dynamics analysis in fast and large rotational movements of the trunk about three orthogonal axes of the pelvis for nine male collegiate students. The maximum angles of the upper trunk relative to the pelvis were approximately 47°, 49°, 32°, and 55° for lateral bending, flexion, extension, and axial rotation, respectively, with maximum angular velocities of 209°/s, 201°/s, 145°/s, and 288°/s, respectively. The pelvic moments about the axes during the movements were determined using the top-down and bottom-up approaches of inverse dynamics and compared between the two approaches. Three body segment inertial parameter sets were estimated using anthropometric data sets (Ae et al., Biomechanism 11, 1992; De Leva, J Biomech, 1996; Dumas et al., J Biomech, 2007). The root-mean-square errors of the moments and the absolute errors of the peaks of the moments were generally smaller than 10 N·m. The results suggest that the pelvic moment in motions involving fast and large trunk movements can be determined with a certain level of validity using the top-down approach in which the trunk is modeled as two or three rigid-link segments.

  20. Doubly differential star-16-QAM for fast wavelength switching coherent optical packet transceiver.

    Science.gov (United States)

    Liu, Fan; Lin, Yi; Walsh, Anthony J; Yu, Yonglin; Barry, Liam P

    2018-04-02

    A coherent optical packet transceiver based on doubly differential star 16-ary quadrature amplitude modulation (DD-star-16-QAM) is presented for spectrally and energy efficient reconfigurable networks. The coding and decoding processes for this new modulation format are presented, simulations and experiments are then performed to investigate the performance of the DD-star-16-QAM in static and dynamic scenarios. The static results show that the influence of frequency offset (FO) can be cancelled out by doubly differential (DD) coding and the correction range is only limited by the electronic bandwidth of the receivers. In the dynamic scenario with a time-varying FO and linewidth, the DD-star-16-QAM can overcome the time-varying FO, and the switching time of around 70 ns is determined by the time it takes the dynamic linewidth to reach the requisite level. This format can thus achieve a shorter waiting time after switching tunable lasers than the commonly used square-16-QAM, in which the transmission performance is limited by the frequency transients after the wavelength switch.

  1. Eye position signals modify vestibulo- and cervico-ocular fast phases during passive yaw rotations in humans.

    Science.gov (United States)

    Anastasopoulos, D; Mandellos, D; Kostadima, V; Pettorossi, V E

    2002-08-01

    We studied the amplitude, latency, and probability of occurrence of fast phases (FP) in darkness to unpredictable vestibular and/or cervical yaw stimulation in normal human subjects. The rotational stimuli were smoothed trapezoidal motion transients of 14 degrees amplitude and 1.25 s duration. Eye position before stimulus application (initial eye position, IEP) was introduced as a variable by asking the subjects to fixate a spot appearing either straight ahead or at 7 degrees eccentric positions. The recordings demonstrated that the generation of FP during vestibular stimulation was facilitated when the whole-body rotation was directed opposite the eccentric IEP. Conversely, FP were attenuated if the whole-body rotation was directed toward the eccentric IEP; i.e., the FP attenuated if they were made to further eccentric positions. Cervical stimulation-induced FP were small and variable in direction when IEP was directed straight ahead before stimulus onset. Eccentric IEPs resulted in large FP, the direction of which was essentially independent of the neck-proprioceptive stimulus. They tended to move the eye toward the primary position, both when the trunk motion under the stationary head was directed toward or away from the IEP. FP dependence on IEP was evident also during head-on-trunk rotations. No consistent interaction between vestibularly and cervically induced FP was found. We conclude that extraretinal eye position signals are able to modify vestibularly evoked reflexive FP in darkness, aiming at minimizing excursions of the eyes away from the primary position. However, neck-induced FP do not relate to specific tasks of stabilization or visual search. By keeping the eyes near the primary position, FP may permit flexibility of orienting responses to incoming stimuli. This recentering bias for both vestibularly and cervically generated FP may represent a visuomotor optimizing strategy.

  2. Cloud Atlas: Discovery of Rotational Spectral Modulations in a Low-mass, L-type Brown Dwarf Companion to a Star

    Science.gov (United States)

    Manjavacas, Elena; Apai, Dániel; Zhou, Yifan; Karalidi, Theodora; Lew, Ben W. P.; Schneider, Glenn; Cowan, Nicolas; Metchev, Stan; Miles-Páez, Paulo A.; Burgasser, Adam J.; Radigan, Jacqueline; Bedin, Luigi R.; Lowrance, Patrick J.; Marley, Mark S.

    2018-01-01

    Observations of rotational modulations of brown dwarfs and giant exoplanets allow the characterization of condensate cloud properties. As of now, rotational spectral modulations have only been seen in three L-type brown dwarfs. We report here the discovery of rotational spectral modulations in LP261-75B, an L6-type intermediate surface gravity companion to an M4.5 star. As a part of the Cloud Atlas Treasury program, we acquired time-resolved Wide Field Camera 3 grism spectroscopy (1.1–1.69 μm) of LP261-75B. We find gray spectral variations with the relative amplitude displaying only a weak wavelength dependence and no evidence for lower-amplitude modulations in the 1.4 μm water band than in the adjacent continuum. The likely rotational modulation period is 4.78 ± 0.95 hr, although the rotational phase is not well sampled. The minimum relative amplitude in the white light curve measured over the whole wavelength range is 2.41% ± 0.14%. We report an unusual light curve, which seems to have three peaks approximately evenly distributed in rotational phase. The spectral modulations suggests that the upper atmosphere cloud properties in LP261-75B are similar to two other mid-L dwarfs of typical infrared colors, but differ from that of the extremely red L-dwarf WISE0047.

  3. NuSTAR Reveals Relativistic Reflection But No Ultra-Fast Outflow in the Quasar Pg∼1211+143

    Science.gov (United States)

    Zoghbi, A.; Miller, J. M.; Walton, D. J.; Harrison, F. A.; Fabian, A. C.; Reynolds, C. S.; Boggs, S. E.; Christensen, F. E.; Craig, W.; Hailey, C. J.; Stern, D.; Zhang, W. W.

    2015-01-01

    We report on four epochs of observations of the quasar PG 1211+143 using NuSTAR. The net exposure time is 300 ks. Prior work on this source found suggestive evidence of an ultra-fast outflow (UFO) in the Fe K band with a velocity of approximately 0.1c. The putative flow would carry away a high-mass flux and kinetic power, with broad implications for feedback and black hole--galaxy co-evolution. NuSTAR detects PG 1211+143 out to 30 keV, meaning that the continuum is well-defined both through and above the Fe K band. A characteristic relativistic disk reflection spectrum is clearly revealed via a broad Fe K emission line and Compton back-scattering curvature. The data offer only weak constraints on the spin of the black hole. A careful search for UFOs shows no significant absorption feature above 90% confidence. The limits are particularly tight when relativistic reflection is included. We discuss the statistics and the implications of these results in terms of connections between accretion onto quasars, Seyferts, and stellar-mass black holes, and feedback into their host environments.

  4. NuSTAR REVEALS RELATIVISTIC REFLECTION BUT NO ULTRA-FAST OUTFLOW IN THE QUASAR PG 1211+143

    International Nuclear Information System (INIS)

    Zoghbi, A.; Miller, J. M.; Walton, D. J.; Stern, D.; Harrison, F. A.; Fabian, A. C.; Reynolds, C. S.; Boggs, S. E.; Craig, W.; Christensen, F. E.; Hailey, C. J.; Zhang, W. W.

    2015-01-01

    We report on four epochs of observations of the quasar PG 1211+143 using NuSTAR. The net exposure time is 300 ks. Prior work on this source found suggestive evidence of an ultra-fast outflow (UFO) in the Fe K band with a velocity of approximately 0.1c. The putative flow would carry away a high-mass flux and kinetic power, with broad implications for feedback and black hole--galaxy co-evolution. NuSTAR detects PG 1211+143 out to 30 keV, meaning that the continuum is well-defined both through and above the Fe K band. A characteristic relativistic disk reflection spectrum is clearly revealed via a broad Fe K emission line and Compton back-scattering curvature. The data offer only weak constraints on the spin of the black hole. A careful search for UFOs shows no significant absorption feature above 90% confidence. The limits are particularly tight when relativistic reflection is included. We discuss the statistics and the implications of these results in terms of connections between accretion onto quasars, Seyferts, and stellar-mass black holes, and feedback into their host environments

  5. NuSTAR REVEALS RELATIVISTIC REFLECTION BUT NO ULTRA-FAST OUTFLOW IN THE QUASAR PG 1211+143

    Energy Technology Data Exchange (ETDEWEB)

    Zoghbi, A.; Miller, J. M. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Walton, D. J.; Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Harrison, F. A. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Fabian, A. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 OHA (United Kingdom); Reynolds, C. S. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Boggs, S. E.; Craig, W. [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, F. E. [DTU Space. National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Zhang, W. W., E-mail: abzoghbi@umich.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-02-01

    We report on four epochs of observations of the quasar PG 1211+143 using NuSTAR. The net exposure time is 300 ks. Prior work on this source found suggestive evidence of an ultra-fast outflow (UFO) in the Fe K band with a velocity of approximately 0.1c. The putative flow would carry away a high-mass flux and kinetic power, with broad implications for feedback and black hole--galaxy co-evolution. NuSTAR detects PG 1211+143 out to 30 keV, meaning that the continuum is well-defined both through and above the Fe K band. A characteristic relativistic disk reflection spectrum is clearly revealed via a broad Fe K emission line and Compton back-scattering curvature. The data offer only weak constraints on the spin of the black hole. A careful search for UFOs shows no significant absorption feature above 90% confidence. The limits are particularly tight when relativistic reflection is included. We discuss the statistics and the implications of these results in terms of connections between accretion onto quasars, Seyferts, and stellar-mass black holes, and feedback into their host environments.

  6. Fast Rotation-Free Feature-Based Image Registration Using Improved N-SIFT and GMM-Based Parallel Optimization.

    Science.gov (United States)

    Yu, Dongdong; Yang, Feng; Yang, Caiyun; Leng, Chengcai; Cao, Jian; Wang, Yining; Tian, Jie

    2016-08-01

    Image registration is a key problem in a variety of applications, such as computer vision, medical image processing, pattern recognition, etc., while the application of registration is limited by time consumption and the accuracy in the case of large pose differences. Aimed at these two kinds of problems, we propose a fast rotation-free feature-based rigid registration method based on our proposed accelerated-NSIFT and GMM registration-based parallel optimization (PO-GMMREG). Our method is accelerated by using the GPU/CUDA programming and preserving only the location information without constructing the descriptor of each interest point, while its robustness to missing correspondences and outliers is improved by converting the interest point matching to Gaussian mixture model alignment. The accuracy in the case of large pose differences is settled by our proposed PO-GMMREG algorithm by constructing a set of initial transformations. Experimental results demonstrate that our proposed algorithm can fast rigidly register 3-D medical images and is reliable for aligning 3-D scans even when they exhibit a poor initialization.

  7. Anomalies in the Spectra of the Uncorrelated Components of the Electric Field of the Earth at Frequencies that are Multiples of the Frequencies of Rotation of Relativistic Binary Star Systems

    Science.gov (United States)

    Grunskaya, L. V.; Isakevich, V. V.; Isakevich, D. V.

    2018-05-01

    A system is constructed, which, on the basis of extensive experimental material and the use of eigenoscopy, has allowed us to detect anomalies in the spectra of uncorrelated components localized near the rotation frequencies and twice the rotation frequencies of relativistic binary star systems with vanishingly low probability of false alarm, not exceeding 10-17.

  8. 2D Rotational Angiography for Fast and Standardized Evaluation of Peripheral and Visceral Artery Stenoses

    International Nuclear Information System (INIS)

    Katoh, Marcus; Opitz, Armin; Minko, Peter; Massmann, Alexander; Berlich, Joachim; Bücker, Arno

    2011-01-01

    Purpose: To investigate the value of rotational digital subtraction angiography (rDSA) for evaluation of peripheral and visceral artery stenoses compared to conventional digital subtraction angiography (cDSA). Methods: A phantom study was performed comparing the radiation dose of cDSA with two projections and rDSA by means of the 2D Dynavision technique (Siemens Medical Solutions, Forchheim, Germany). Subsequently, 33 consecutive patients (18 women, 15 men; mean ± SD age 67 ± 15 years) were examined by both techniques. In total, 63 vessel segments were analyzed by two observers with respect to stenoses, image contrast, and vessel sharpness. Results: Radiation dose was significantly lower with rDSA. cDSA and rDSA revealed 21 and 24 flow-relevant stenotic lesions and vessel occlusions (70–100%), respectively. The same stenosis grade was assessed in 45 segments. By means of rDSA, 10 lesions were judged to have a higher and 8 lesions a lower stenosis grade compared to cDSA. rDSA yielded additive information regarding the vessel anatomy and pathology in 29 segments. However, a tendency toward better image quality and sharper vessel visualization was seen with cDSA. Conclusion: rDSA allows for multiprojection assessment of peripheral and visceral arteries and provides additional clinically relevant information after a single bolus of contrast medium. At the same time, radiation dose can be significantly reduced compared to cDSA.

  9. The ATLAS3D project - VIII. Modelling the formation and evolution of fast and slow rotator early-type galaxies within ΛCDM

    NARCIS (Netherlands)

    Khochfar, Sadegh; Emsellem, Eric; Serra, Paolo; Bois, Maxime; Alatalo, Katherine; Bacon, R.; Blitz, Leo; Bournaud, Frédéric; Bureau, M.; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M.

    2011-01-01

    We propose a simple model for the origin of fast and slow rotator early-type galaxies (ETG) within the hierarchical Λcold dark matter (ΛCDM) scenario, that is based on the assumption that the mass fraction of stellar discs in ETGs is a proxy for the specific angular momentum expressed via λR. Within

  10. The ATLAS(3D) project : VIII. Modelling the formation and evolution of fast and slow rotator early-type galaxies within lambda CDM

    NARCIS (Netherlands)

    Khochfar, Sadegh; Emsellem, Eric; Serra, Paolo; Bois, Maxime; Alatalo, Katherine; Bacon, R.; Blitz, Leo; Bournaud, Frederic; Bureau, M.; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Krajnovic, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M.

    2011-01-01

    We propose a simple model for the origin of fast and slow rotator early-type galaxies (ETG) within the hierarchical Lambda cold dark matter (Lambda CDM) scenario, that is based on the assumption that the mass fraction of stellar discs in ETGs is a proxy for the specific angular momentum expressed

  11. EXPLOSIVE NUCLEOSYNTHESIS IN THE NEUTRINO-DRIVEN ASPHERICAL SUPERNOVA EXPLOSION OF A NON-ROTATING 15 Msun STAR WITH SOLAR METALLICITY

    International Nuclear Information System (INIS)

    Fujimoto, Shin-ichiro; Kotake, Kei; Hashimoto, Masa-aki; Ono, Masaomi; Ohnishi, Naofumi

    2011-01-01

    We investigate explosive nucleosynthesis in a non-rotating 15 M sun star with solar metallicity that explodes by a neutrino-heating supernova (SN) mechanism aided by both standing accretion shock instability (SASI) and convection. To trigger explosions in our two-dimensional hydrodynamic simulations, we approximate the neutrino transport with a simple light-bulb scheme and systematically change the neutrino fluxes emitted from the protoneutron star. By a post-processing calculation, we evaluate abundances and masses of the SN ejecta for nuclei with a mass number ≤70, employing a large nuclear reaction network. Aspherical abundance distributions, which are observed in nearby core-collapse SN remnants, are obtained for the non-rotating spherically symmetric progenitor, due to the growth of a low-mode SASI. The abundance pattern of the SN ejecta is similar to that of the solar system for models whose masses range between (0.4-0.5) M sun of the ejecta from the inner region (≤10, 000 km) of the precollapse core. For the models, the explosion energies and the 56 Ni masses are ≅ 10 51 erg and (0.05-0.06) M sun , respectively; their estimated baryonic masses of the neutron star are comparable to the ones observed in neutron-star binaries. These findings may have little uncertainty because most of the ejecta is composed of matter that is heated via the shock wave and has relatively definite abundances. The abundance ratios for Ne, Mg, Si, and Fe observed in the Cygnus loop are reproduced well with the SN ejecta from an inner region of the 15 M sun progenitor.

  12. Star formation

    International Nuclear Information System (INIS)

    Woodward, P.R.

    1978-01-01

    Theoretical models of star formation are discussed beginning with the earliest stages and ending in the formation of rotating, self-gravitating disks or rings. First a model of the implosion of very diffuse gas clouds is presented which relies upon a shock at the edge of a galactic spiral arm to drive the implosion. Second, models are presented for the formation of a second generation of massive stars in such a cloud once a first generation has formed. These models rely on the ionizing radiation from massive stars or on the supernova shocks produced when these stars explode. Finally, calculations of the gravitational collapse of rotating clouds are discussed with special focus on the question of whether rotating disks or rings are the result of such a collapse. 65 references

  13. Mixing by shear instabilities in differentially rotating inhomogeneous stars with application to accreting white dwarf models for novae

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, J.

    1983-10-01

    The problem of how shear instabilities redistribute matter and angular momentum accreted by a star from a disk is considered. Necessary conditions for stability of the star to nonaxisymmetric perturbations are derived by use of the short wavelength approximation. By considering growth rates, it is shown that freshly accreted material rapidly takes up a quasi-spherical distribution due to dynamical instabilities. However, mixing inward toward the stellar interior occurs on a thermal time scale or longer.

  14. Rotational state modification and fast ortho-para conversion of H2 trapped within the highly anisotropic potential of Pd(210)

    Science.gov (United States)

    Ohno, S.; Ivanov, D.; Ogura, S.; Wilde, M.; Arguelles, E. F.; Diño, W. A.; Kasai, H.; Fukutani, K.

    2018-02-01

    The rotational state and ortho-para conversion of H2 on a Pd(210) surface is investigated with rotational-state-selective temperature-programmed desorption (RS-TPD) and theoretical calculations. The isotope dependence of TPD shows a higher desorption energy for D2 than that for H2, which is ascribed to the rotational and zero-point vibrational energies. The RS-TPD data show that the desorption energy of H2(J =1 ) (J : rotational quantum number) is higher than that of H2(J =0 ). This is due to the orientationally anisotropic potential confining the adsorbed H2, which is in agreement with theoretical calculations. Furthermore, the H2 desorption intensity ratio in J =1 and J =0 indicates fast ortho-para conversion in the adsorption state, which we estimate to be of the order of 1 s.

  15. A CENSUS OF ROTATION AND VARIABILITY IN L1495: A UNIFORM ANALYSIS OF TRANS-ATLANTIC EXOPLANET SURVEY LIGHT CURVES FOR PRE-MAIN-SEQUENCE STARS IN TAURUS

    International Nuclear Information System (INIS)

    Xiao Hongyu; Covey, Kevin R.; Lloyd, James P.; Rebull, Luisa; Charbonneau, David; Mandushev, Georgi; O'Donovan, Francis; Slesnick, Catherine

    2012-01-01

    We analyze light curves obtained by the Trans-atlantic Exoplanet Survey (TrES) for a field centered on the L1495 dark cloud in Taurus. The Spitzer Taurus Legacy Survey catalog identifies 179 bona fide Taurus members within the TrES field; 48 of the known Taurus members are detected by TrES, as well as 26 candidate members identified by the Spitzer Legacy team. We quantify the variability of each star in our sample using the ratio of the standard deviation of the original light curve (σ orig. ) to the standard deviation of a light curve that has been smoothed by 9 or 1001 epochs (σ 9 and σ 1001 , respectively). Known Taurus members typically demonstrate (σ orig. /σ 9 ) orig. /σ 1001 ) orig. /σ 9 ) ∼ 3.0 and (σ orig. /σ 1001 ) ∼ 10, as expected for light curves dominated by unstructured white noise. Of the 74 Taurus members/candidates with TrES light curves, we detect significant variability in 49 sources. Adapting a quantitative metric originally developed to assess the reliability of transit detections, we measure the amount of red and white noise in each light curve and identify 18 known or candidate Taurus members with highly significant period measurements. These appear to be the first periods measured for four of these sources (HD 282276, CX Tau, FP Tau, TrES J042423+265008), and in two other cases, the first non-aliased periods (LkCa 21 and DK Tau AB). For the remainder, the TrES measurements typically agree very well (δP < 1%) with previously reported values. Including periods measured at lower confidence for 15 additional sources, we report periods for 11 objects where no previous periods were found, including 8 confirmed Taurus members. We also identify 10 of the 26 candidate Taurus members that demonstrate variability levels consistent with being bona fide T Tauri stars. A Kolomgorov-Smirnov (K-S) test confirms that these new periods confirm the distinction between the rotation period distributions of stars with and without circumstellar

  16. FAST

    DEFF Research Database (Denmark)

    Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.

    2012-01-01

    ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with aqu...

  17. Properties of Hot and Fast Rotating Atomic Nuclei Studied by Means of Giant Dipole Resonance in Exclusive Experiments

    International Nuclear Information System (INIS)

    Maj, A.

    2000-01-01

    This work entitled ''Properties of hot and fast rotating atomic nuclei studied by means of Giant Dipole Resonance in exclusive experiments'', is the habilitation thesis of dr. Adam Maj. It consists of the review (in Polish) of performed research and of attached reprints from 16 original publications (in English) which A. Maj is the main or one of the main authors. All the studies were performed in collaboration with the groups from Milano and Copenhagen, using the HECTOR array equipment (described in chapter V). The Giant Dipole Resonance couples to the quadrupole degrees of freedom of the nucleus, and therefore constitutes a unique probe to test the shapes of atomic nuclei. In addition, the γ decay of the GDR from highly excited nuclei is a very fast process, it can compete with other modes of nuclear decay, and therefore can provide the information on the initial stages of excited nuclei. The presented investigations were concentrated on the following aspects: the shapes and thermal shape fluctuations, the origin of the behaviour of the GDR width, the properties of some exotic nuclei (Jacobi shapes, superdeformation, superheavy nuclei) and on ''entrance channel'' effects. The GDR γ decay was measured for nuclei with very different masses: from light nuclei with A≅45, through A≅110, 145,170,190, up to superheavy nuclei with A≅270. The shapes of hot nuclei are not fixed but fluctuate. The extent of these fluctuations and their influence on the measured quantities (GDR strength function, angular distribution and effective shape) is discussed in chapter VI.1. The observed width of the GDR is found to arise from the interplay of two effects: the thermal shape fluctuations, which are controlled by the nuclear temperature, and the deformation effects, controlled by the angular momentum. The ''collisional damping'' effect, which should influence the intrinsic GDR width, was found to be negligible (chapter VI.2). The GDR γ decay from hot superheavy nucleus 272 Hs

  18. Effect of treatment duration on surface nanocrystallization induced by fast multiple rotation rolling and its thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Chui Pengfei; Liu Yi; Liang Yanjie; Li Yang [Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Fan Suhua [Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Shandong Women' s University, Jinan 250300 (China); Sun Kangning, E-mail: sunkangning@sdu.edu.cn [Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Effect of treatment time on surface nanocrystallization of a low carbon steel. Black-Right-Pointing-Pointer The grain size decreases gradually with the increase of treatment duration. Black-Right-Pointing-Pointer The microhardness of FMRR treated sample reaches 284 HV. Black-Right-Pointing-Pointer The nanocrystalline layer is stable during annealing treatment up to 400 Degree-Sign C. - Abstract: A nanocrystalline surface layer of low carbon steel induced by fast multiple rotation rolling (FMRR) was determined by optical microscopy and transmission electron microscopy. The results show that the grain size decreases gradually with the increase of treatment duration. Equiaxed nanocrystalline with the average grain size about 20 nm is obtained in the top surface layer after FMRR treatment for 30 min. With the increase of treatment duration (60 min), the average grain size further reduces to about 9 nm. At the same time, the microhardness of surface layer for treated sample is improved correspondingly owing to grain refinement and work-hardening. Compared with original sample, the microhardness of FMRR treated sample is increased by more than 200%. After annealing treatment, the investigation of thermal stability of nanocrystalline layer indicates that the grains begin to grow obviously at annealing for 400 Degree-Sign C, and abnormal grain growth also occurs in individual grains. Due to grain growth and stress relaxation during annealing, the microhardness slightly decreases at 400 Degree-Sign C. In spite of this, the majority of grains are still nanocrystalline, ranging from about 30 to 60 nm. It demonstrates that the nanocrystalline layer has high thermal stability.

  19. Theory of symmetry and of exact solution properties for fast rotating nuclei; Theorie de la symetrie et des proprietes de solutions exactes pour les noyaux en rotation rapide

    Energy Technology Data Exchange (ETDEWEB)

    Heydon, B

    1995-07-19

    We propose a study of rotating multi-fermionic systems. The method we developed is based on unitary group theory. The formalism of Gel`fand-Tsetlin is is simplified to binary calculations. With the help of operator of Casimir and physical interpretations using dichotomic symmetries (signature, parity), we show rotating Hamiltonians obey to a new quantum symmetry called P. The study of short range two-body interaction breaking weakly this symmetry, is made by using single j-shell. Nuclear interactions coupling two j-shell are introduced. This study allows us to compare ours results to experimental data for three isotopes of Zirconium. (author). 155 refs.

  20. Globular Cluster Formation at High Density: A Model for Elemental Enrichment with Fast Recycling of Massive-star Debris

    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G., E-mail: bge@us.ibm.com [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)

    2017-02-10

    The self-enrichment of massive star clusters by p -processed elements is shown to increase significantly with increasing gas density as a result of enhanced star formation rates and stellar scatterings compared to the lifetime of a massive star. Considering the type of cloud core where a globular cluster (GC) might have formed, we follow the evolution and enrichment of the gas and the time dependence of stellar mass. A key assumption is that interactions between massive stars are important at high density, including interactions between massive stars and massive-star binaries that can shred stellar envelopes. Massive-star interactions should also scatter low-mass stars out of the cluster. Reasonable agreement with the observations is obtained for a cloud-core mass of ∼4 × 10{sup 6} M {sub ⊙} and a density of ∼2 × 10{sup 6} cm{sup −3}. The results depend primarily on a few dimensionless parameters, including, most importantly, the ratio of the gas consumption time to the lifetime of a massive star, which has to be low, ∼10%, and the efficiency of scattering low-mass stars per unit dynamical time, which has to be relatively large, such as a few percent. Also for these conditions, the velocity dispersions of embedded GCs should be comparable to the high gas dispersions of galaxies at that time, so that stellar ejection by multistar interactions could cause low-mass stars to leave a dwarf galaxy host altogether. This could solve the problem of missing first-generation stars in the halos of Fornax and WLM.

  1. Rotation, spectral variability, magnetic geometry and magnetosphere of the Of?p star CPD -28° 2561

    OpenAIRE

    Wade, G. A.; Barba, R. H.; Grunhut, J.; Martins, F.; Petit, V.; Sundqvist, J. O.; Townsend, R. H. D.; Walborn, N. R.; Alecian, E.; Alfaro, E. J.; Maíz Apellaniz, J; Arias, Julia Ines; Gamen, Roberto Claudio; Morrell, Nidia Irene; Naze, Y.

    2017-01-01

    We report magnetic and spectroscopic observations and modelling of the Of?p star CPD −28° 2561. Using more than 75 new spectra, we have measured the equivalent width variations and examined the dynamic spectra of photospheric and wind-sensitive spectral lines. A period search results in an unambiguous 73.41 d variability period. High-resolution spectropolarimetric data analysed using least-squares deconvolution yield a Zeeman signature detected in the mean Stokes V profile corresponding to ph...

  2. The Rotation Rates of Massive Stars: The Role of Binary Interaction through Tides, Mass Transfer, and Mergers

    NARCIS (Netherlands)

    de Mink, S.E.; Langer, N.; Izzard, R.G.; Sana, H.; de Koter, A.

    2013-01-01

    Rotation is thought to be a major factor in the evolution of massive stars—especially at low metallicity—with consequences for their chemical yields, ionizing flux, and final fate. Deriving the birth spin distribution is of high priority given its importance as a constraint on theories of massive

  3. Maximally Rotating Supermassive Stars at the Onset of Collapse: The Perturbative Effects of Gas Pressure, Magnetic Fields, Dark Matter and Dark Energy

    Science.gov (United States)

    Butler, Satya P.; Lima, Alicia R.; Baumgarte, Thomas W.; Shapiro, Stuart L.

    2018-04-01

    The discovery of quasars at increasingly large cosmological redshifts may favor "direct collapse" as the most promising evolutionary route to the formation of supermassive black holes. In this scenario, supermassive black holes form when their progenitors - supermassive stars - become unstable to gravitational collapse. For uniformly rotating stars supported by pure radiation pressure and spinning at the mass-shedding limit, the critical configuration at the onset of collapse is characterized by universal values of the dimensionless spin and radius parameters J/M2 and R/M, independent of mass M. We consider perturbative effects of gas pressure, magnetic fields, dark matter and dark energy on these parameters, and thereby determine the domain of validity of this universality. We obtain leading-order corrections for the critical parameters and establish their scaling with the relevant physical parameters. We compare two different approaches to approximate the effects of gas pressure, which plays the most important role, find identical results for the above dimensionless parameters, and also find good agreement with recent numerical results.

  4. Infrared Space Observatory Observations of Far-Infrared Rotational Emission Lines of Water Vapor toward the Supergiant Star VY Canis Majoris

    Science.gov (United States)

    Neufeld, David A.; Feuchtgruber, Helmut; Harwit, Martin; Melnick, Gary J.

    1999-06-01

    We report the detection of numerous far-infrared emission lines of water vapor toward the supergiant star VY Canis Majoris. A 29.5-45 μm grating scan of VY CMa, obtained using the Short-Wavelength Spectrometer (SWS) of the Infrared Space Observatory at a spectral resolving power λ/Δλ of ~2000, reveals at least 41 spectral features due to water vapor that together radiate a total luminosity of ~25 Lsolar. In addition to pure rotational transitions within the ground vibrational state, these features include rotational transitions within the (010) excited vibrational state. The spectrum also shows the 2Π1/2(J=5/2)VY CMa were carried out in the instrument's Fabry-Perot mode for three water transitions: the 725-616 line at 29.8367 μm, the 441-312 line at 31.7721 μm, and the 432-303 line at 40.6909 μm. The higher spectral resolving power λ/Δλ of approximately 30,000 thereby obtained permits the line profiles to be resolved spectrally for the first time and reveals the ``P Cygni'' profiles that are characteristic of emission from an outflowing envelope. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands, and the UK) with the participation of ISAS and NASA.

  5. THE H α EMISSION OF NEARBY M DWARFS AND ITS RELATION TO STELLAR ROTATION

    Energy Technology Data Exchange (ETDEWEB)

    Newton, Elisabeth R.; Irwin, Jonathan; Charbonneau, David; Berlind, Perry; Calkins, Michael L.; Mink, Jessica [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-01-01

    The high-energy emission from low-mass stars is mediated by the magnetic dynamo. Although the mechanisms by which fully convective stars generate large-scale magnetic fields are not well understood, it is clear that, as for solar-type stars, stellar rotation plays a pivotal role. We present 270 new optical spectra of low-mass stars in the Solar Neighborhood. Combining our observations with those from the literature, our sample comprises 2202 measurements or non-detections of H α emission in nearby M dwarfs. This includes 466 with photometric rotation periods. Stars with masses between 0.1 and 0.6 M {sub ⊙} are well-represented in our sample, with fast and slow rotators of all masses. We observe a threshold in the mass–period plane that separates active and inactive M dwarfs. The threshold coincides with the fast-period edge of the slowly rotating population, at approximately the rotation period at which an era of rapid rotational evolution appears to cease. The well-defined active/inactive boundary indicates that H α activity is a useful diagnostic for stellar rotation period, e.g., for target selection for exoplanet surveys, and we present a mass-period relation for inactive M dwarfs. We also find a significant, moderate correlation between L{sub Hα} / L{sub bol} and variability amplitude: more active stars display higher levels of photometric variability. Consistent with previous work, our data show that rapid rotators maintain a saturated value of L{sub Hα} / L {sub bol}. Our data also show a clear power-law decay in L{sub Hα} / L{sub bol} with Rossby number for slow rotators, with an index of −1.7 ± 0.1.

  6. THE H α EMISSION OF NEARBY M DWARFS AND ITS RELATION TO STELLAR ROTATION

    International Nuclear Information System (INIS)

    Newton, Elisabeth R.; Irwin, Jonathan; Charbonneau, David; Berlind, Perry; Calkins, Michael L.; Mink, Jessica

    2017-01-01

    The high-energy emission from low-mass stars is mediated by the magnetic dynamo. Although the mechanisms by which fully convective stars generate large-scale magnetic fields are not well understood, it is clear that, as for solar-type stars, stellar rotation plays a pivotal role. We present 270 new optical spectra of low-mass stars in the Solar Neighborhood. Combining our observations with those from the literature, our sample comprises 2202 measurements or non-detections of H α emission in nearby M dwarfs. This includes 466 with photometric rotation periods. Stars with masses between 0.1 and 0.6 M ⊙ are well-represented in our sample, with fast and slow rotators of all masses. We observe a threshold in the mass–period plane that separates active and inactive M dwarfs. The threshold coincides with the fast-period edge of the slowly rotating population, at approximately the rotation period at which an era of rapid rotational evolution appears to cease. The well-defined active/inactive boundary indicates that H α activity is a useful diagnostic for stellar rotation period, e.g., for target selection for exoplanet surveys, and we present a mass-period relation for inactive M dwarfs. We also find a significant, moderate correlation between L Hα / L bol and variability amplitude: more active stars display higher levels of photometric variability. Consistent with previous work, our data show that rapid rotators maintain a saturated value of L Hα / L bol . Our data also show a clear power-law decay in L Hα / L bol with Rossby number for slow rotators, with an index of −1.7 ± 0.1.

  7. The Hα Emission of Nearby M Dwarfs and its Relation to Stellar Rotation

    Science.gov (United States)

    Newton, Elisabeth R.; Irwin, Jonathan; Charbonneau, David; Berlind, Perry; Calkins, Michael L.; Mink, Jessica

    2017-01-01

    The high-energy emission from low-mass stars is mediated by the magnetic dynamo. Although the mechanisms by which fully convective stars generate large-scale magnetic fields are not well understood, it is clear that, as for solar-type stars, stellar rotation plays a pivotal role. We present 270 new optical spectra of low-mass stars in the Solar Neighborhood. Combining our observations with those from the literature, our sample comprises 2202 measurements or non-detections of Hα emission in nearby M dwarfs. This includes 466 with photometric rotation periods. Stars with masses between 0.1 and 0.6 M⊙ are well-represented in our sample, with fast and slow rotators of all masses. We observe a threshold in the mass-period plane that separates active and inactive M dwarfs. The threshold coincides with the fast-period edge of the slowly rotating population, at approximately the rotation period at which an era of rapid rotational evolution appears to cease. The well-defined active/inactive boundary indicates that Hα activity is a useful diagnostic for stellar rotation period, e.g., for target selection for exoplanet surveys, and we present a mass-period relation for inactive M dwarfs. We also find a significant, moderate correlation between LHα/Lbol and variability amplitude: more active stars display higher levels of photometric variability. Consistent with previous work, our data show that rapid rotators maintain a saturated value of LHα/Lbol. Our data also show a clear power-law decay in LHα/Lbol with Rossby number for slow rotators, with an index of -1.7 ± 0.1.

  8. The ATLAS(3D) project : XIX. The hot gas content of early-type galaxies: fast versus slow rotators

    NARCIS (Netherlands)

    Sarzi, Marc; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, Martin; Cappellari, Michele; Crocker, Alison; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Young, Lisa M.; Weijmans, Anne-Marie

    2013-01-01

    For early-type galaxies, the ability to sustain a corona of hot, X-ray-emitting gas could have played a key role in quenching their star formation history. A halo of hot gas may act as an effective shield against the acquisition of cold gas and can quickly absorb stellar mass loss material. Yet,

  9. The ATLAS3D project - XIX. The hot gas content of early-type galaxies: fast versus slow rotators

    NARCIS (Netherlands)

    Sarzi, Marc; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Young, Lisa M.; Weijmans, Anne-Marie

    For early-type galaxies, the ability to sustain a corona of hot, X-ray-emitting gas could have played a key role in quenching their star formation history. A halo of hot gas may act as an effective shield against the acquisition of cold gas and can quickly absorb stellar mass loss material. Yet,

  10. One common structural peculiarity of the Solar system bodies including the star, planets, satellites and resulting from their globes rotation

    Science.gov (United States)

    Kochemasov, G. G.

    2008-09-01

    Often observed a sensible difference in appearance and structure between tropical and extra-tropical zones of various heavenly bodies including rocky and gas planets, satellites and Sun compels to look for a common reason of such phenomenon. All bodies rotate and their spherical shape makes zones at different latitudes to have differing angular momenta as a distance to the rotation axis diminishes gradually from the equator to the poles (this is felt particularly when one launches rockets into space -preferable more cheap launches are from the equatorial regions - Kourou is better than Baikonur). One of remarkable changes occurs at tropics. As a single rotating planetary body tends to have angular momenta of its tectonic blocks equilibrated it starts mechanisms leveling this basic physical property. At tropical zones (bulged also due to the rotation ellipsoid) the outer shell - crust as a consequence tends to be destroyed, sunk, subsided and shrunk; a density of crust material changes; the atmosphere reacts changing chemistry and structure; in terrestrial anthroposphere man looses its mass and stature. But according to the Le Chatelier rule mechanisms with an opposing tendency also begin to act. At Earth the wide planetary long tropical zone is marked by destruction of the crust. It is demonstrated by development of numerous islands of the Malay Archipelago (the Sunda Isls., Maluku Isls, Philippines) between the Southeastern Asia and Australia. In Africa and South America huge depressions of the Congo and Amazon Rivers develops where the Archean crust is subsided to depths of more than 2 km. In the Pacific along the equator numerous islands of Micronesia occur. Subsidence of the basaltic oceanic crust is followed by an intensive folding and faulting of basalt and sedimentary layers (Fig. 1) as a larger mass must be held by a smaller space (a planetary radius is diminished). The central Atlantic is very demonstrative in this sense suffering huge transform fault

  11. NuSTAR Reveals Relativistic Reflection but no Ultra-fast Outflow in the Quasar PG1211+143

    DEFF Research Database (Denmark)

    Zoghbi, A.; Miller, J. M.; Walton, D. J.

    2015-01-01

    We report on four epochs of observations of the quasar PG 1211+143 using NuSTAR. The net exposure time is 300 ks. Prior work on this source found suggestive evidence of an ultra-fast outflow ( UFO) in the Fe K band with a velocity of approximately 0.1c. The putative flow would carry away a high...... a broad Fe K emission line and Compton back-scattering curvature. The data offer only weak constraints on the spin of the black hole. A careful search for UFOs shows no significant absorption feature above 90% confidence. The limits are particularly tight when relativistic reflection is included. We...

  12. A detailed study of lithium in 107 CHEPS dwarf stars

    Science.gov (United States)

    Pavlenko, Ya. V.; Jenkins, J. S.; Ivanyuk, O. M.; Jones, H. R. A.; Kaminsky, B. M.; Lyubchik, Yu. P.; Yakovina, L. A.

    2018-03-01

    Context. We report results from lithium abundance determinations using high resolution spectral analysis of the 107 metal-rich stars from the Calan-Hertfordshire Extrasolar Planet Search programme. Aims: We aim to set out to understand the lithium distribution of the population of stars taken from this survey. Methods: The lithium abundance taking account of non-local thermodynamical equilibrium effects was determined from the fits to the Li I 6708 Å resonance doublet profiles in the observed spectra. Results: We find that a) fast rotators tend to have higher lithium abundances; b) log N(Li) is higher in more massive and hot stars; c) log N(Li) is higher in stars of lower log g; d) stars with the metallicities >0.25 dex do not show the lithium lines in their spectra; e) most of our planet hosts rotate slower; and f) a lower limit of lithium isotopic ratio is 7Li/6Li > 10 in the atmospheres of two stars with planets (SWP) and two non-SWP stars. Conclusions: Measurable lithium abundances were found in the atmospheres of 45 stars located at distances of 20-170 pc from the Sun, for the other 62 stars the upper limits of log N(Li) were computed. We found well defined dependences of lithium abundances on Teff, V sin i, and less pronounced for the log g. In case of V sin i we see two sequences of stars: with measurable lithium and with the upper limit of log N(Li). About 10% of our targets are known to host planets. Only two SWP have notable lithium abundances, so we found a lower proportion of stars with detectable Li among known planet hosts than among stars without planets. However, given the small sample size of our planet-host sample, our analysis does not show any statistically significant differences in the lithium abundance between SWP and stars without known planets.

  13. Spectral and Timing Nature of the Symbiotic X-Ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in AN X-Ray Binary System

    Science.gov (United States)

    Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'Ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jorn

    2014-01-01

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its approx. 5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (is approx. 7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-K alpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (approx. 60%-80%), and the location in the Corbet diagram favor high B-field (approx. greater than 10(exp12) G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10(exp33)-10(exp35) erg s(exp-1)), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a approx. 10(exp13) G NS, this scheme can explain the approx. 5.4 hr equilibrium rotation without employing the magnetar-like field (approx. 10(exp16) G) required in the disk accretion case. The timescales of multiple irregular flares (approx. 50 s) can also be attributed to the free-fall time from the Alfv´en shell for a approx. 10(exp13) G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  14. Effects of fast ions and an external inductive electric field on the neoclassical parallel flow, current, and rotation in general toroidal systems

    International Nuclear Information System (INIS)

    Nakajima, Noriyoshi; Okamoto, Masao.

    1992-05-01

    Effects of external momentum sources, i.e., fast ions produced by the neutral beam injection and an external inductive electric field, on the neoclassical ion parallel flow, current, and rotation are analytically investigated for a simple plasma in general toroidal systems. It is shown that the contribution of the external sources to the ion parallel flow becomes large as the collision frequency of thermal ions increases because of the momentum conservation of Coulomb collisions and sharply decreasing viscosity coefficients, with collision frequency. As a result, the beam-driven parallel flow of thermal ions becomes comparable to that of electrons in the Pfirsh-Schluter collisionality regime, whereas in the 1/μ or banana regime it is smaller than that of electrons by the order of √(m e /m i ) (m e and m i are electron and ion masses). This beam-driven ion parallel flow can not produce a large beam-driven current because of the cancellation with electron parallel flow, but produces a large toroidal rotation of ions. As both electrons and ions approach the Pfirsh-Schluter collisionality regime the contribution of thermodynamical forces becomes negligibly small and the large toroidal rotation of ions is predominated by the beam-driven component in the non-axisymmetric configuration with large helical ripples. (author)

  15. Energy production in stars

    International Nuclear Information System (INIS)

    Bethe, Hans.

    1977-01-01

    Energy in stars is released partly by gravitation, partly by nuclear reactions. For ordinary stars like our sun, nuclear reactions predominate. However, at the end of the life of a star very large amounts of energy are released by gravitational collapse; this can amount to as much as 10 times the total energy released nuclear reactions. The rotational energy of pulsars is a small remnant of the energy of gravitation. The end stage of small stars is generally a white dwarf, of heavy stars a neutron star of possibly a black hole

  16. Searching for Be stars in the open cluster NGC 663

    Energy Technology Data Exchange (ETDEWEB)

    Yu, P. C.; Lin, C. C.; Chen, W. P.; Lee, C. D.; Ip, W. H.; Ngeow, C. C. [Graduate Institute of Astronomy, National Central University, 300 Jhongda Road, Jhongli 32001, Taiwan (China); Laher, Russ; Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States); Kulkarni, Shrinivas R. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-02-01

    We present Be star candidates in the open cluster NGC 663, identified by Hα imaging photometry with the Palomar Transient Factory Survey, as a pilot program to investigate how the Be star phenomena, the emission spectra, extended circumstellar envelopes, and fast rotation, correlate with massive stellar evolution. Stellar membership of the candidates was verified by 2MASS magnitudes and colors and by proper motions (PMs). We discover four new Be stars and exclude one known Be star from being a member due to its inconsistent PMs. The fraction of Be stars to member stars [N(Be)/N(members)] in NGC 663 is 3.5%. The spectral type of the 34 Be stars in NGC 663 shows bimodal peaks at B0–B2 and B5–B7, which is consistent with the statistics in most star clusters. Additionally, we also discover 23 emission-line stars of different types, including non-member Be stars, dwarfs, and giants.

  17. [Working time and sleep in nursing staff employed in "3 x 8" and "2 x 12" fast rotating shift schedules].

    Science.gov (United States)

    Castellini, G; Anelli, M M; Punzi, S; Boari, P; Camerino, D; Costa, G

    2011-01-01

    The study is aimed at assessing, in 200 nurses shift workers, the impact on sleep of two different working areas ("emergency" and "hospitalization") having the same "3 x 8" shift system, and of two different shift schedules at quick rotation ("2 x 12" and "3 x 8") in the same working area ("emergency"). Night and morning shifts prove to interfere to a greater extent with sleep in relation to both "2 x 12" and "3 x 8" shift systems as well as to the two operative areas. Hence the importance to consider in shift work planning, the direction of shift rotation and the length of the duty period according to the type of activity.

  18. In-flight measurements of aircraft propeller deformation by means of an autarkic fast rotating imaging system

    Science.gov (United States)

    Stasicki, Boleslaw; Boden, Fritz

    2015-03-01

    The non-intrusive in-flight measurement of the deformation and pitch of the aircraft propeller is a demanding task. The idea of an imaging system integrated and rotating with the aircraft propeller has been presented on the 30th International Congress on High-Speed Imaging and Photonics (ICHSIP30) in 2012. Since then this system has been constructed and tested in the laboratory as well as on the real aircraft. In this paper we outline the principle of Image Pattern Correlation Technique (IPCT) based on Digital Image Correlation (DIC) and describe the construction of a dedicated autarkic 3D camera system placed on the investigated propeller and rotating at its full speed. Furthermore, the results of the first ground and in-flight tests are shown and discussed. This development has been found by the European Commission within the 7th frame project AIM2 (contract no. 266107).

  19. NuSTAR J163433-4738.7: A fast X-ray transient in the galactic plane

    International Nuclear Information System (INIS)

    Tomsick, John A.; Bodaghee, Arash; Boggs, Steven E.; Craig, William W.; Fornasini, Francesca M.; Krivonos, Roman; Gotthelf, Eric V.; Hailey, Charles J.; Rahoui, Farid; Assef, Roberto J.; Bauer, Franz E.; Christensen, Finn E.; Grindlay, Jonathan; Harrison, Fiona A.; Natalucci, Lorenzo; Stern, Daniel; Zhang, William W.

    2014-01-01

    During hard X-ray observations of the Norma spiral arm region by the Nuclear Spectroscopic Telescope Array (NuSTAR) in 2013 February, a new transient source, NuSTAR J163433-4738.7, was detected at a significance level of 8σ in the 3-10 keV bandpass. The source is consistent with having a constant NuSTAR count rate over a period of 40 ks and is also detected simultaneously by Swift at lower significance. The source is not significantly detected by NuSTAR, Swift, or Chandra in the days before or weeks after the discovery of the transient, indicating that the strong X-ray activity lasted between ∼0.5 and 1.5 days. Near-infrared imaging observations were carried out before and after the X-ray activity, but we are not able to identify the counterpart. The combined NuSTAR and Swift energy spectrum is consistent with a power law with a photon index of Γ=4.1 −1.0 +1.5 (90% confidence errors), a blackbody with kT = 1.2 ± 0.3 keV, or a Bremsstrahlung model with kT=3.0 −1.2 +2.1 keV. The reduced-χ 2 values for the three models are not significantly different, ranging from 1.23 to 1.44 for 8 degrees of freedom. The spectrum is strongly absorbed with N H =(2.8 −1.4 +2.3 )×10 23 cm –2 , (9 −7 +15 )×10 22 cm –2 , and (1.7 −0.9 +1.7 )×10 23 cm –2 , for the power-law, blackbody, and Bremsstrahlung models, respectively. Although the high column density could be due to material local to the source, it is consistent with absorption from interstellar material along the line of sight at a distance of 11 kpc, which would indicate an X-ray luminosity >10 34 erg s –1 . Although we do not reach a definitive determination of the nature of NuSTAR J163433-4738.7, we suggest that it may be an unusually bright active binary or a magnetar.

  20. NuSTAR J163433-4738.7: A fast X-ray transient in the galactic plane

    Energy Technology Data Exchange (ETDEWEB)

    Tomsick, John A.; Bodaghee, Arash; Boggs, Steven E.; Craig, William W.; Fornasini, Francesca M.; Krivonos, Roman [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Gotthelf, Eric V.; Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Rahoui, Farid [European Southern Observatory, Karl Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany); Assef, Roberto J. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Bauer, Franz E. [Instituto de Astrofísica, Facultad de Física, Pontifica Universidad Católica de Chile, 306, Santiago 22 (Chile); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Grindlay, Jonathan [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Harrison, Fiona A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Natalucci, Lorenzo [Istituto Nazionale di Astrofisica, INAF-IAPS, via del Fosso del Cavaliere, I-00133 Roma (Italy); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Zhang, William W., E-mail: jtomsick@ssl.berkeley.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-04-10

    During hard X-ray observations of the Norma spiral arm region by the Nuclear Spectroscopic Telescope Array (NuSTAR) in 2013 February, a new transient source, NuSTAR J163433-4738.7, was detected at a significance level of 8σ in the 3-10 keV bandpass. The source is consistent with having a constant NuSTAR count rate over a period of 40 ks and is also detected simultaneously by Swift at lower significance. The source is not significantly detected by NuSTAR, Swift, or Chandra in the days before or weeks after the discovery of the transient, indicating that the strong X-ray activity lasted between ∼0.5 and 1.5 days. Near-infrared imaging observations were carried out before and after the X-ray activity, but we are not able to identify the counterpart. The combined NuSTAR and Swift energy spectrum is consistent with a power law with a photon index of Γ=4.1{sub −1.0}{sup +1.5} (90% confidence errors), a blackbody with kT = 1.2 ± 0.3 keV, or a Bremsstrahlung model with kT=3.0{sub −1.2}{sup +2.1} keV. The reduced-χ{sup 2} values for the three models are not significantly different, ranging from 1.23 to 1.44 for 8 degrees of freedom. The spectrum is strongly absorbed with N{sub H}=(2.8{sub −1.4}{sup +2.3})×10{sup 23} cm{sup –2}, (9{sub −7}{sup +15})×10{sup 22} cm{sup –2}, and (1.7{sub −0.9}{sup +1.7})×10{sup 23} cm{sup –2}, for the power-law, blackbody, and Bremsstrahlung models, respectively. Although the high column density could be due to material local to the source, it is consistent with absorption from interstellar material along the line of sight at a distance of 11 kpc, which would indicate an X-ray luminosity >10{sup 34} erg s{sup –1}. Although we do not reach a definitive determination of the nature of NuSTAR J163433-4738.7, we suggest that it may be an unusually bright active binary or a magnetar.

  1. NuSTAR J163433-4738.7: A Fast X-Ray Transient in the Galactic Plane

    Science.gov (United States)

    Tomsick, John A.; Gotthelf, Eric V.; Rahoui, Farid; Assef, Roberto J.; Bauer, Franz E.; Bodaghee, Arash; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Fornasini, Francesca M.; hide

    2014-01-01

    During hard X-ray observations of the Norma spiral arm region by the Nuclear Spectroscopic Telescope Array (NuSTAR) in 2013 February, a new transient source, NuSTAR J163433-4738.7, was detected at a significance level of 8sigma in the 3-10 keV bandpass. The source is consistent with having a constant NuSTAR count rate over a period of 40 ks and is also detected simultaneously by Swift at lower significance. The source is not significantly detected by NuSTAR, Swift, or Chandra in the days before or weeks after the discovery of the transient, indicating that the strong X-ray activity lasted between approx. 0.5 and 1.5 days. Near-infrared imaging observations were carried out before and after the X-ray activity, but we are not able to identify the counterpart. The combined NuSTAR and Swift energy spectrum is consistent with a power law with a photon index of Gamma = 4.1(+1.5/-1.0) (90% confidence errors), a blackbody with kT = 1.2+/-0.3 keV, or a Bremsstrahlung model with kT = 3.0(+2.1/-1.2) keV. The reduced-?2 values for the three models are not significantly different, ranging from 1.23 to 1.44 for 8 degrees of freedom. The spectrum is strongly absorbed with NH = (2.8(+2.3/-1.4) × 10(exp23) cm(exp-2), (9(+15 /-7) ) × 10(exp22) cm(exp-2), and (1.7(+1.7/-0.9)) × 10(exp23) cm(exp-2), for the power-law, blackbody, and Bremsstrahlung models, respectively. Although the high column density could be due to material local to the source, it is consistent with absorption from interstellar material along the line of sight at a distance of 11 kpc, which would indicate an X-ray luminosity greater than 10(exp34) erg s(exp-1). Although we do not reach a definitive determination of the nature of NuSTAR J163433-4738.7, we suggest that it may be an unusually bright active binary or a magnetar.

  2. NuSTAR J163433-4738.7: A Fast X-ray Transient in the Galactic Plane

    DEFF Research Database (Denmark)

    Tomsick, John A.; Gotthelf, Eric V.; Rahoui, Farid

    2014-01-01

    During hard X-ray observations of the Norma spiral arm region by the Nuclear Spectroscopic Telescope Array (NuSTAR) in 2013 February, a new transient source, NuSTAR J163433-4738.7, was detected at a significance level of 8σ in the 3-10 keV bandpass. The source is consistent with having a constant......T = 1.2 ± 0.3 keV, or a Bremsstrahlung model with keV. The reduced-χ2 values for the three models are not significantly different, ranging from 1.23 to 1.44 for 8 degrees of freedom. The spectrum is strongly absorbed with cm-2, cm-2, and cm-2, for the power-law, blackbody, and Bremsstrahlung models...

  3. STAR-H2: a battery-type lead-cooled fast reactor for hydrogen manufacture in a sustainable hierarchical hub-spoke energy infrastructure

    International Nuclear Information System (INIS)

    Wade, D.C.; Doctor, R. D.; Peddicord, K.L.

    2003-01-01

    The Secure Transportable Autonomous Reactor for Hydrogen production STAR-H2 is designed to fit into a sustainable global, mid-21st century hierarchical hub-spoke nuclear energy supply architecture based on nuclear fuel, hydrogen, and electricity energy carriers and having favorable energy security, ecological and nonproliferation features. It will produce hydrogen, oxygen and potable water to service cities and their surrounding regions under an assumed electrical generation network based on fuel cells and microturbines and an assumed transportation sector using hydrogen fueled vehicles. STAR-H2 is a long refueling interval (Battery) turnkey heat supply reactor intended for production of hydrogen by thermochemical water cracking. The reactor is a Pb-cooled, mixed U-TRU-Nitride-fueled, fast spectrum reactor delivering 400 MW th of heat at 800degC core outlet temperature. The primary coolant circulates by natural circulation; the 400 MW th heat rating is set by dual requirements for natural circulation; the 400 MW th heat rating is set by dual requirements for natural circulation and for rail shippability of the vessel. An intermediate low pressure He loop carries the heat to a Ca-Br thermochemical water cracking cycle for the manufacture of H 2 (and O 2 ). The water cracking cycle rejects heat at 550degC and that heat is used in a supercritical CO 2 Brayton cycle turbogenerator to provide hotel load electricity. A thermal desalinisation plant receives discharge heat at 125degC from the Brayton cycle and the brine provides for ultimate heat rejection from the cascaded thermodynamic cycles. The modified UT-3 cycle used in STAR-H2, called the Ca-Br cycle, operates at atmospheric pressure and 750-725degC, uses solid/gas separation steps and achieves about 44% efficiency. Unlike UT-3, it employs a single-stage HBr-dissociation step based on a plasma chemistry technique operating near ambient conditions. The STAR-H2 power plant will operate on a 20 year refueling interval

  4. Dark stars

    DEFF Research Database (Denmark)

    Maselli, Andrea; Pnigouras, Pantelis; Nielsen, Niklas Grønlund

    2017-01-01

    to the formation of compact objects predominantly made of dark matter. Considering both fermionic and bosonic (scalar φ4) equations of state, we construct the equilibrium structure of rotating dark stars, focusing on their bulk properties and comparing them with baryonic neutron stars. We also show that these dark......Theoretical models of self-interacting dark matter represent a promising answer to a series of open problems within the so-called collisionless cold dark matter paradigm. In case of asymmetric dark matter, self-interactions might facilitate gravitational collapse and potentially lead...... objects admit the I-Love-Q universal relations, which link their moments of inertia, tidal deformabilities, and quadrupole moments. Finally, we prove that stars built with a dark matter equation of state are not compact enough to mimic black holes in general relativity, thus making them distinguishable...

  5. The Evolution of Low-Metallicity Massive Stars

    Science.gov (United States)

    Szécsi, Dorottya

    2016-07-01

    Massive star evolution taking place in astrophysical environments consisting almost entirely of hydrogen and helium - in other words, low-metallicity environments - is responsible for some of the most intriguing and energetic cosmic phenomena, including supernovae, gamma-ray bursts and gravitational waves. This thesis aims to investigate the life and death of metal-poor massive stars, using theoretical simulations of the stellar structure and evolution. Evolutionary models of rotating, massive stars (9-600 Msun) with an initial metal composition appropriate for the low-metallicity dwarf galaxy I Zwicky 18 are presented and analyzed. We find that the fast rotating models (300 km/s) become a particular type of objects predicted only at low-metallicity: the so-called Transparent Wind Ultraviolet INtense (TWUIN) stars. TWUIN stars are fast rotating massive stars that are extremely hot (90 kK), very bright and as compact as Wolf-Rayet stars. However, as opposed to Wolf-Rayet stars, their stellar winds are optically thin. As these hot objects emit intense UV radiation, we show that they can explain the unusually high number of ionizing photons of the dwarf galaxy I Zwicky 18, an observational quantity that cannot be understood solely based on the normal stellar population of this galaxy. On the other hand, we find that the most massive, slowly rotating models become another special type of object predicted only at low-metallicity: core-hydrogen-burning cool supergiant stars. Having a slow but strong stellar wind, these supergiants may be important contributors in the chemical evolution of young galactic globular clusters. In particular, we suggest that the low mass stars observed today could form in a dense, massive and cool shell around these, now dead, supergiants. This scenario is shown to explain the anomalous surface abundances observed in these low mass stars, since the shell itself, having been made of the mass ejected by the supergiant’s wind, contains nuclear

  6. Development of inflatable seals for the rotatable plugs of sodium cooled fast breeder reactors. Pt. II. R and D necessities and development across the world. A review

    International Nuclear Information System (INIS)

    Sinha, Nilay K.; Raj, Baldev

    2013-01-01

    Identification of development areas and their implementation for rotatable plug (RP) inflatable seals of Na cooled, 500 Mw (e) Prototype Fast Breeder Reactor (PFBR) and 40 MW (t) Fast Breeder Test Reactor (FBTR) are described, largely based on a late 1990s survey of cover gas seal development (1950s - early 1990s) which defined a set of shortlisted design options and developmental strategy to minimize effort, cost and time. Comparative study of top shield sealing and evolving FBR designs suggest suitability of inflatable seal as primary barrier in RPs. International experience identified choice and qualification of seal elastomer under synergistic degrading environment of reactor as the prime element of development. The low pressure, non-reinforced, unbeaded, PFBR inflatable seal (made of 50/50 blend of Viton registered GBL 200S/600S) developed for 10 y life provides a unification scheme for nuclear elastomeric sealing based on 5 peroxide cured fluoroelastomer blend formulations, 1 finite element analysis approach, 1 Teflon-like plasma coating technique and 2 manufacturing processes promising significant gains in standardization, economy and safety. Uniqueness was ab initio development in the absence of established industry or readymade supply. R and D necessities for inflatable seals and their development across the world are given closer look in Part II of the review in continuation of Part I. (orig.)

  7. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  8. Evolution of variable stars

    International Nuclear Information System (INIS)

    Becker, S.A.

    1986-08-01

    Throughout the domain of the H R diagram lie groupings of stars whose luminosity varies with time. These variable stars can be classified based on their observed properties into distinct types such as β Cephei stars, δ Cephei stars, and Miras, as well as many other categories. The underlying mechanism for the variability is generally felt to be due to four different causes: geometric effects, rotation, eruptive processes, and pulsation. In this review the focus will be on pulsation variables and how the theory of stellar evolution can be used to explain how the various regions of variability on the H R diagram are populated. To this end a generalized discussion of the evolutionary behavior of a massive star, an intermediate mass star, and a low mass star will be presented. 19 refs., 1 fig., 1 tab

  9. Theories for the winds from Wolf Rayet stars

    International Nuclear Information System (INIS)

    Cassinelli, J.P.

    1982-01-01

    The massive and fast winds of Wolf Rayet stars present a serious momentum problem for the line-driven wind theories that are commonly used to explain the fast winds of early type stars. It is perhaps possible for the winds to be driven by lines, if multiple scattering occurs and if there are a sufficient number of lines in the spectrum so that large fraction of the continuum is blocked by line opacity in the winds. Several other mechanisms are discussed, in particular two that rely on strong magnetic fields: a) Alfven wave driven wind models like those recently developed by Hartmann and MacGregor for late type supergiants and b) the ''Fast Magnetic Rotator'' model that was developed by Belcher and MacGregor for the winds from pre-main sequence stars. In either model, large magnetic fields (approximately equal to 10 4 gauss) are required to drive the massive and fast winds of Wolf Rayet stars. Smaller fields might be possible if the multiple scattering line radiation force can be relied on to provide a final acceleration to terminal velocity. (Auth.)

  10. Fast and Careless or Careful and Slow? Apparent Holistic Processing in Mental Rotation Is Explained by Speed-Accuracy Trade-Offs

    Science.gov (United States)

    Liesefeld, Heinrich René; Fu, Xiaolan; Zimmer, Hubert D.

    2015-01-01

    A major debate in the mental-rotation literature concerns the question of whether objects are represented holistically during rotation. Effects of object complexity on rotational speed are considered strong evidence against such holistic representations. In Experiment 1, such an effect of object complexity was markedly present. A closer look on…

  11. Uncertainties in s-process nucleosynthesis in massive stars determined by Monte Carlo variations

    Science.gov (United States)

    Nishimura, N.; Hirschi, R.; Rauscher, T.; St. J. Murphy, A.; Cescutti, G.

    2017-08-01

    The s-process in massive stars produces the weak component of the s-process (nuclei up to A ˜ 90), in amounts that match solar abundances. For heavier isotopes, such as barium, production through neutron capture is significantly enhanced in very metal-poor stars with fast rotation. However, detailed theoretical predictions for the resulting final s-process abundances have important uncertainties caused both by the underlying uncertainties in the nuclear physics (principally neutron-capture reaction and β-decay rates) as well as by the stellar evolution modelling. In this work, we investigated the impact of nuclear-physics uncertainties relevant to the s-process in massive stars. Using a Monte Carlo based approach, we performed extensive nuclear reaction network calculations that include newly evaluated upper and lower limits for the individual temperature-dependent reaction rates. We found that most of the uncertainty in the final abundances is caused by uncertainties in the neutron-capture rates, while β-decay rate uncertainties affect only a few nuclei near s-process branchings. The s-process in rotating metal-poor stars shows quantitatively different uncertainties and key reactions, although the qualitative characteristics are similar. We confirmed that our results do not significantly change at different metallicities for fast rotating massive stars in the very low metallicity regime. We highlight which of the identified key reactions are realistic candidates for improved measurement by future experiments.

  12. A fast parallel code for calculating energies and oscillator strengths of many-electron atoms at neutron star magnetic field strengths in adiabatic approximation

    Science.gov (United States)

    Engel, D.; Klews, M.; Wunner, G.

    2009-02-01

    We have developed a new method for the fast computation of wavelengths and oscillator strengths for medium-Z atoms and ions, up to iron, at neutron star magnetic field strengths. The method is a parallelized Hartree-Fock approach in adiabatic approximation based on finite-element and B-spline techniques. It turns out that typically 15-20 finite elements are sufficient to calculate energies to within a relative accuracy of 10-5 in 4 or 5 iteration steps using B-splines of 6th order, with parallelization speed-ups of 20 on a 26-processor machine. Results have been obtained for the energies of the ground states and excited levels and for the transition strengths of astrophysically relevant atoms and ions in the range Z=2…26 in different ionization stages. Catalogue identifier: AECC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3845 No. of bytes in distributed program, including test data, etc.: 27 989 Distribution format: tar.gz Programming language: MPI/Fortran 95 and Python Computer: Cluster of 1-26 HP Compaq dc5750 Operating system: Fedora 7 Has the code been vectorised or parallelized?: Yes RAM: 1 GByte Classification: 2.1 External routines: MPI/GFortran, LAPACK, PyLab/Matplotlib Nature of problem: Calculations of synthetic spectra [1] of strongly magnetized neutron stars are bedevilled by the lack of data for atoms in intense magnetic fields. While the behaviour of hydrogen and helium has been investigated in detail (see, e.g., [2]), complete and reliable data for heavier elements, in particular iron, are still missing. Since neutron stars are formed by the collapse of the iron cores of massive stars, it may be assumed that their atmospheres contain an iron plasma. Our objective is to fill the gap

  13. Which of Kepler's Stars Flare?

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    The habitability of distant exoplanets is dependent upon many factors one of which is the activity of their host stars. To learn about which stars are most likely to flare, a recent study examines tens of thousands of stellar flares observed by Kepler.Need for a Broader SampleArtists rendering of a flaring dwarf star. [NASAs Goddard Space Flight Center/S. Wiessinger]Most of our understanding of what causes a star to flare is based on observations of the only star near enough to examine in detail the Sun. But in learning from a sample size of one, a challenge arises: we must determine which conclusions are unique to the Sun (or Sun-like stars), and which apply to other stellar types as well.Based on observations and modeling, astronomers think that stellar flares result from the reconnection of magnetic field lines in a stars outer atmosphere, the corona. The magnetic activity is thought to be driven by a dynamo caused by motions in the stars convective zone.HR diagram of the Kepler stars, with flaring main-sequence (yellow), giant (red) and A-star (green) stars in the authors sample indicated. [Van Doorsselaere et al. 2017]To test whether these ideas are true generally, we need to understand what types of stars exhibit flares, and what stellar properties correlate with flaring activity. A team of scientists led by Tom Van Doorsselaere (KU Leuven, Belgium) has now used an enormous sample of flares observed by Kepler to explore these statistics.Intriguing TrendsVan Doorsselaere and collaborators used a new automated flare detection and characterization algorithm to search through the raw light curves from Quarter 15 of the Kepler mission, building a sample of 16,850 flares on 6,662 stars. They then used these to study the dependence of the flare occurrence rate, duration, energy, and amplitude on the stellar spectral type and rotation period.This large statistical study led the authors to several interesting conclusions, including:Flare star incidence rate as a a

  14. Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles - I. Theoretical model - Mass-loss history unravelled in VYCMa

    NARCIS (Netherlands)

    Decin, L.; Hony, S.; de Koter, A.; Justtanont, K.; Tielens, A. G. G. M.; Waters, L. B. F. M.

    Context. Mass loss plays a dominant role in the evolution of low mass stars while they are on the Asymptotic Giant Branch (AGB). The gas and dust ejected during this phase are a major source in the mass budget of the interstellar medium. Recent studies have pointed towards the importance of

  15. Rotating NSs/QSs and recent astrophysical observations

    International Nuclear Information System (INIS)

    Li, Ang; Dong, Jianmin

    2017-01-01

    Both fast and slow configurations of rotating neutron stars (NSs) are studied with the recently-constructed unified NS EoSs. The calculations for pure quark stars (QSs) and hybrid stars (HSs) are also done, using several updated quark matter EoSs and Gibbs construction for obtaining hadron-quark mixed phase. All three types of EoSs fulfill the recent 2-solar-mass constraint. By confronting the glitch observations with the theoretical calculations for the crustal moment of inertia (MoI), we find that the glitch crisis is still present in Vela-like pulsars. An upcoming accurate MoI measurement (eg., a possible 10% accuracy for pulsar PSR J0737–3039A) allows one to distinguish QSs from NSs, since the MoIs of QSs are generally ≳ 1.5 times larger than NSs and HSs, no matter the compactness and the mass of the stars. Using tabulated EoSs, we compute stationary and equilibrium sequences of rapidly rotating, relativistic stars in general relativity from the well-tested rns code, assuming the matter comprising the star to be a perfect fluid. All three observed properties of the short gamma-ray bursts (SGRBs) internal plateaus sample are simulated using the rotating configurations of NSs/QSs as basic inputs. We finally argue that for some characteristic SGRBs, the post-merger products of NS-NS mergers are probably supramassive QSs rather than NSs, and NS-NS mergers are a plausible location for quark deconfinement and the formation of QSs. (paper)

  16. Investigating stellar surface rotation using observations of starspots

    DEFF Research Database (Denmark)

    Korhonen, Heidi Helena

    2011-01-01

    Rapid rotation enhances the dynamo operating in stars, and thus also introduces significantly stronger magnetic activity than is seen in slower rotators. Many young cool stars still have the rapid, primordial rotation rates induced by the interstellar molecular cloud from which they were formed....... Also older stars in close binary systems are often rapid rotators. These types of stars can show strong magnetic activity and large starspots. In the case of large starspots which cause observable changes in the brightness of the star, and even in the shapes of the spectral line profiles, one can get...... information on the rotation of the star. At times even information on the spot rotation at different stellar latitudes can be obtained, similarly to the solar surface differential rotation measurements using magnetic features as tracers. Here, I will review investigations of stellar rotation based...

  17. By Draconis Stars

    Science.gov (United States)

    Bopp, Bernard W.

    An optical spectroscopic survey of dK-M stars has resulted in the discovery of several new H-alpha emission objects. Available optical data suggest these stars have a level of chromospheric activity midway between active BY Dra stars and quiet dM's. These "marginal" BY Dra stars are single objects that have rotation velocities slightly higher than that of quiet field stars but below that of active flare/BY Dra objects. The marginal BY Dra stars provide us with a class of objects rotating very near a "trigger velocity" (believed to be 5 km/s) which appears to divide active flare/BY Dra stars from quiet dM's. UV data on Mg II emission fluxes and strength of transition region features such as C IV will serve to fix activity levels in the marginal objects and determine chromosphere and transition-region heating rates. Simultaneous optical magnetic field measures will be used to explore the connection between fieldstrength/filling-factor and atmospheric heating. Comparison of these data with published information on active and quiet dM stars will yield information on the character of the stellar dynamo as it makes a transition from "low" to "high" activity.

  18. The first stars: CEMP-no stars and signatures of spinstars

    Science.gov (United States)

    Maeder, André; Meynet, Georges; Chiappini, Cristina

    2015-04-01

    Aims: The CEMP-no stars are "carbon-enhanced-metal-poor" stars that in principle show no evidence of s- and r-elements from neutron captures. We try to understand the origin and nucleosynthetic site of their peculiar CNO, Ne-Na, and Mg-Al abundances. Methods: We compare the observed abundances to the nucleosynthetic predictions of AGB models and of models of rotating massive stars with internal mixing and mass loss. We also analyze the different behaviors of α- and CNO-elements, as well the abundances of elements involved in the Ne-Na and Mg-Al cycles. Results: We show that CEMP-no stars exhibit products of He-burning that have gone through partial mixing and processing by the CNO cycle, producing low 12C/13C and a broad variety of [C/N] and [O/N] ratios. From a 12C/13C vs. [C/N] diagram, we conclude that neither the yields of AGB stars (in binaries or not) nor the yields of classic supernovae can fully account for the observed CNO abundances in CEMP-no stars. Better agreement is obtained once the chemical contribution by stellar winds of fast-rotating massive stars is taken into account, where partial mixing takes place, leading to various amounts of CNO being ejected. The [(C+N+O)/H] ratios of CEMP-no stars vary linearly with [Fe/H] above [Fe/H] = -4.0 indicating primary behavior by (C+N+O). Below [Fe/H] = -4.0, [(C+N+O)/H] is almost constant as a function of [Fe/H], implying very high [(C+N+O)/Fe] ratios up to 4 dex. In view of the timescales, such abundance ratios reflect more individual nucleosynthetic properties, rather than an average chemical evolution. The high [(C+N+O)/Fe] ratios (as well as the high [(C+N+O)/α-elements]) imply that stellar winds from partially mixed stars were the main source of these excesses of heavy elements now observed in CEMP-no stars. The ranges covered by the variations of [Na/Fe], [Mg/Fe], and [Al/Fe] are much broader than for the α-elements (with an atomic mass number above 24) and are comparable to the wide ranges covered

  19. General Relativity and Compact Stars

    International Nuclear Information System (INIS)

    Glendenning, Norman K.

    2005-01-01

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10 14 times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed

  20. Neutron star/red giant encounters in globular clusters

    International Nuclear Information System (INIS)

    Bailyn, C.D.

    1988-01-01

    The author presents a simple expression for the amount by which xsub(crit) is diminished as a star evolves xsub(crit) Rsub(crit)/R*, where Rsub(crit) is the maximum distance of closest approach between two stars for which the tidal energy is sufficient to bind the system, and R* is the radius of the star on which tides are being raised. Also it is concluded that tidal capture of giants by neutron stars resulting in binary systems is unlikely in globular clusters. However, collisions between neutron stars and red giants, or an alternative process involving tidal capture of a main-sequence star into an initially detached binary system, may result either in rapidly rotating neutron stars or in white dwarf/neutron star binaries. (author)

  1. Symbiotic stars

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.

    1975-01-01

    There are some arguments that the symbiotic stars are binary, where one component is a red giant and the other component is a small hot star which is exciting a nebula. The symbiotic stars belong to the old disc population. Probably, symbiotic stars are just such an evolutionary stage for double stars as planetary nebulae for single stars. (Auth.)

  2. MMT hypervelocity star survey. III. The complete survey

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J., E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-05-20

    We describe our completed spectroscopic survey for unbound hypervelocity stars (HVSs) ejected from the Milky Way. Three new discoveries bring the total number of unbound late B-type stars to 21. We place new constraints on the nature of the stars and on their distances using moderate resolution MMT spectroscopy. Half of the stars are fast rotators; they are certain 2.5-4 M {sub ☉} main sequence stars at 50-120 kpc distances. Correcting for stellar lifetime, our survey implies that unbound 2.5-4 M {sub ☉} stars are ejected from the Milky Way at a rate of 1.5 × 10{sup –6} yr{sup –1}. These unbound HVSs are likely ejected continuously over the past 200 Myr and do not share a common flight time. The anisotropic spatial distribution of HVSs on the sky remains puzzling. Southern hemisphere surveys like SkyMapper will soon allow us to map the all-sky distribution of HVSs. Future proper motion measurements with Hubble Space Telescope and Gaia will provide strong constraints on origin. Existing observations are all consistent with HVS ejections from encounters with the massive black hole in the Galactic center.

  3. MMT hypervelocity star survey. III. The complete survey

    International Nuclear Information System (INIS)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.

    2014-01-01

    We describe our completed spectroscopic survey for unbound hypervelocity stars (HVSs) ejected from the Milky Way. Three new discoveries bring the total number of unbound late B-type stars to 21. We place new constraints on the nature of the stars and on their distances using moderate resolution MMT spectroscopy. Half of the stars are fast rotators; they are certain 2.5-4 M ☉ main sequence stars at 50-120 kpc distances. Correcting for stellar lifetime, our survey implies that unbound 2.5-4 M ☉ stars are ejected from the Milky Way at a rate of 1.5 × 10 –6 yr –1 . These unbound HVSs are likely ejected continuously over the past 200 Myr and do not share a common flight time. The anisotropic spatial distribution of HVSs on the sky remains puzzling. Southern hemisphere surveys like SkyMapper will soon allow us to map the all-sky distribution of HVSs. Future proper motion measurements with Hubble Space Telescope and Gaia will provide strong constraints on origin. Existing observations are all consistent with HVS ejections from encounters with the massive black hole in the Galactic center.

  4. COMMISSIONING SPIN ROTATORS IN RHIC

    International Nuclear Information System (INIS)

    MACKAY, W.W.; AHRENS, L.; BAI, M.; COURANT, E.D.; FISCHER, W.; HUANG, H.; LUCCIO, A.; MONTAG, C.; PILAT, F.; PTITSYN, V.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; VANZIEJTS, J.

    2003-01-01

    During the summer of 2002, eight superconducting helical spin rotators were installed into RHIC in order to control the polarization directions independently at the STAR and PHENIX experiments. Without the rotators, the orientation of polarization at the interaction points would only be vertical. With four rotators around each of the two experiments, we can rotate either or both beams from vertical into the horizontal plane through the interaction region and then back to vertical on the other side. This allows independent control for each beam with vertical, longitudinal, or radial polarization at the experiment. In this paper, we present results from the first run using the new spin rotators at PHENIX

  5. A PHOTON-DOMINATED REGION MODEL FOR THE FIR MID-J CO LADDER WITH UNIVERSAL ROTATIONAL TEMPERATURE IN STAR FORMING REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seokho; Park, Yong-Sun [Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Lee, Jeong-Eun [Department of Astronomy and Space Science, Kyung Hee University, Yongin-shi, Kyungki-do 449-701 (Korea, Republic of); Bergin, Edwin A., E-mail: shlee@astro.snu.ac.kr [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States)

    2014-08-01

    A photon-dominated region (PDR) is one of the leading candidate mechanisms for the origin of warm CO gas with near universal ∼300 K rotational temperature inferred from the CO emission detected toward embedded protostars by Herschel/PACS. We have developed a PDR model in general coordinates, where we can use the most adequate coordinate system for an embedded protostar having outflow cavity walls, to solve chemistry and gas energetics self-consistently for given UV radiation fields with different spectral shapes. Simple one-dimensional tests and applications show that FIR mid-J (14 ≤ J ≤ 24) CO lines are emitted from close to the surface of a dense region exposed to high UV fluxes. We apply our model to HH46 and find that the UV-heated outflow cavity wall can reproduce the mid-J CO transitions observed by Herschel/PACS. A model with UV radiation corresponding to a blackbody of 10,000 K results in a rotational temperature lower than 300 K, while models with the Draine interstellar radiation field and the 15,000 K blackbody radiation field predict a rotational temperature similar to the observed one.

  6. Stationary Magnetohydrodynamic Models of Three-Dimensional Rigidly Rotating Magnetized Coronae

    International Nuclear Information System (INIS)

    Al-Salti, Nasser; Neukirch, Thomas

    2009-01-01

    Example solutions of a theory for stationary 3D non-potential solutions of the MHD equations (in the co-rotating frame of reference) are presented. As a first step we present solutions for the mathematically simpler case of a massive central cylinder, but the theory can also be applied to spherical bodies. The fundamental equation of the theory is linear and in the cylindrical case it can be solved using standard methods. Possible application is the structure of coronae of (fast) rotating stars.

  7. Stars get dizzy after lunch

    International Nuclear Information System (INIS)

    Zhang, Michael; Penev, Kaloyan

    2014-01-01

    Exoplanet searches have discovered a large number of h ot Jupiters — high-mass planets orbiting very close to their parent stars in nearly circular orbits. A number of these planets are sufficiently massive and close-in to be significantly affected by tidal dissipation in the parent star, to a degree parameterized by the tidal quality factor Q * . This process speeds up their star's rotation rate while reducing the planet's semimajor axis. In this paper, we investigate the tidal destruction of hot Jupiters. Because the orbital angular momenta of these planets are a significant fraction of their star's rotational angular momenta, they spin up their stars significantly while spiraling to their deaths. Using the Monte Carlo simulation, we predict that for Q * = 10 6 , 3.9 × 10 –6 of stars with the Kepler Target Catalog's mass distribution should have a rotation period shorter than 1/3 day (8 hr) due to accreting a planet. Exoplanet surveys such as SuperWASP, HATnet, HATsouth, and KELT have already produced light curves of millions of stars. These two facts suggest that it may be possible to search for tidally destroyed planets by looking for stars with extremely short rotational periods, then looking for remnant planet cores around those candidates, anomalies in the metal distribution, or other signatures of the recent accretion of the planet.

  8. NuSTAR detection of a cyclotron line in the supergiant fast X-ray transient IGR J17544-2619

    DEFF Research Database (Denmark)

    Bhalerao, Varun; Romano, Patrizia; Tomsick, John

    2015-01-01

    that the compact object in IGR J17544-2619 is indeed a neutron star. This is the first measurement of the magnetic field in an SFXT. The inferred magnetic field strength, B = (1.45 +/- 0.03) x 1012 G (1 + z) is typical of neutron stars in X-ray binaries, and rules out a magnetar nature for the compact object. We...

  9. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.

    Science.gov (United States)

    Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M

    2001-01-25

    Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.

  10. Strangeon and Strangeon Star

    Science.gov (United States)

    Xiaoyu, Lai; Renxin, Xu

    2017-06-01

    The nature of pulsar-like compact stars is essentially a central question of the fundamental strong interaction (explained in quantum chromo-dynamics) at low energy scale, the solution of which still remains a challenge though tremendous efforts have been tried. This kind of compact objects could actually be strange quark stars if strange quark matter in bulk may constitute the true ground state of the strong-interaction matter rather than 56Fe (the so-called Witten’s conjecture). From astrophysical points of view, however, it is proposed that strange cluster matter could be absolutely stable and thus those compact stars could be strange cluster stars in fact. This proposal could be regarded as a general Witten’s conjecture: strange matter in bulk could be absolutely stable, in which quarks are either free (for strange quark matter) or localized (for strange cluster matter). Strange cluster with three-light-flavor symmetry is renamed strangeon, being coined by combining “strange nucleon” for the sake of simplicity. A strangeon star can then be thought as a 3-flavored gigantic nucleus, and strangeons are its constituent as an analogy of nucleons which are the constituent of a normal (micro) nucleus. The observational consequences of strangeon stars show that different manifestations of pulsarlike compact stars could be understood in the regime of strangeon stars, and we are expecting more evidence for strangeon star by advanced facilities (e.g., FAST, SKA, and eXTP).

  11. The metastable dynamo model of stellar rotational evolution

    International Nuclear Information System (INIS)

    Brown, Timothy M.

    2014-01-01

    This paper introduces a new empirical model for the rotational evolution of Sun-like stars—those with surface convection zones and non-convective interior regions. Previous models do not match the morphology of observed (rotation period)-color diagrams, notably the existence of a relatively long-lived 'C-sequence' of fast rotators first identified by Barnes. This failure motivates the Metastable Dynamo Model (MDM) described here. The MDM posits that stars are born with their magnetic dynamos operating in a mode that couples very weakly to the stellar wind, so their (initially very short) rotation periods at first change little with time. At some point, this mode spontaneously and randomly changes to a strongly coupled mode, the transition occurring with a mass-dependent lifetime that is of the order of 100 Myr. I show that with this assumption, one can obtain good fits to observations of young clusters, particularly for ages of 150-200 Myr. Previous models and the MDM both give qualitative agreement with the morphology of the slower-rotating 'I-sequence' stars, but none of them have been shown to accurately reproduce the stellar-mass-dependent evolution of the I-sequence stars, especially for clusters older than a few hundred million years. I discuss observational experiments that can test aspects of the MDM, and speculate that the physics underlying the MDM may be related to other situations described in the literature, in which stellar dynamos may have a multi-modal character.

  12. Observations spotted solar type stars in Pleiades

    International Nuclear Information System (INIS)

    Magnitskij, A.K.

    1987-01-01

    The september - october 1986 observations discovered periodic light variations in three solar type stars in the Pleiades cluster: Hz 296 (0.8 M Sun ), Hz152(0.91 M Sun ) and Hz739(1.15 M Sun ). Periods and amplitudes are accordingly 2 d and 0 m .11, 4 d .12 and 0 m .07, 2 d .70 and 0 m .05. Considerable light variations of these stars in Pleiades are due to the rotation of spotted stars. Contrast spots of solar type stars likely exist when stars are young and rapidly rotate

  13. Calculation of spherical harmonics and Wigner d functions by FFT. Applications to fast rotational matching in molecular replacement and implementation into AMoRe.

    Science.gov (United States)

    Trapani, Stefano; Navaza, Jorge

    2006-07-01

    The FFT calculation of spherical harmonics, Wigner D matrices and rotation function has been extended to all angular variables in the AMoRe molecular replacement software. The resulting code avoids singularity issues arising from recursive formulas, performs faster and produces results with at least the same accuracy as the original code. The new code aims at permitting accurate and more rapid computations at high angular resolution of the rotation function of large particles. Test calculations on the icosahedral IBDV VP2 subviral particle showed that the new code performs on the average 1.5 times faster than the original code.

  14. Improved autonomous star identification algorithm

    International Nuclear Information System (INIS)

    Luo Li-Yan; Xu Lu-Ping; Zhang Hua; Sun Jing-Rong

    2015-01-01

    The log–polar transform (LPT) is introduced into the star identification because of its rotation invariance. An improved autonomous star identification algorithm is proposed in this paper to avoid the circular shift of the feature vector and to reduce the time consumed in the star identification algorithm using LPT. In the proposed algorithm, the star pattern of the same navigation star remains unchanged when the stellar image is rotated, which makes it able to reduce the star identification time. The logarithmic values of the plane distances between the navigation and its neighbor stars are adopted to structure the feature vector of the navigation star, which enhances the robustness of star identification. In addition, some efforts are made to make it able to find the identification result with fewer comparisons, instead of searching the whole feature database. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition rate and robustness by the proposed algorithm are better than those by the LPT algorithm and the modified grid algorithm. (paper)

  15. Rotation-supported Neutrino-driven Supernova Explosions in Three Dimensions and the Critical Luminosity Condition

    Science.gov (United States)

    Summa, Alexander; Janka, Hans-Thomas; Melson, Tobias; Marek, Andreas

    2018-01-01

    We present the first self-consistent, 3D core-collapse supernova simulations performed with the PROMETHEUS-VERTEX code for a rotating progenitor star. Besides using the angular momentum of the 15 M ⊙ model as obtained in the stellar evolution calculation with an angular frequency of ∼10‑3 rad s‑1 (spin period of more than 6000 s) at the Si/Si–O interface, we also computed 2D and 3D cases with no rotation and with a ∼300 times shorter rotation period and different angular resolutions. In 2D, only the nonrotating and slowly rotating models explode, while rapid rotation prevents an explosion within 500 ms after bounce because of lower radiated neutrino luminosities and mean energies and thus reduced neutrino heating. In contrast, only the fast-rotating model develops an explosion in 3D when the Si/Si–O interface collapses through the shock. The explosion becomes possible by the support of a powerful standing accretion shock instability spiral mode, which compensates for the reduced neutrino heating and pushes strong shock expansion in the equatorial plane. Fast rotation in 3D leads to a “two-dimensionalization” of the turbulent energy spectrum (yielding roughly a ‑3 instead of a ‑5/3 power-law slope at intermediate wavelengths) with enhanced kinetic energy on the largest spatial scales. We also introduce a generalization of the “universal critical luminosity condition” of Summa et al. to account for the effects of rotation, and we demonstrate its viability for a set of more than 40 core-collapse simulations, including 9 and 20 M ⊙ progenitors, as well as black-hole-forming cases of 40 and 75 M ⊙ stars to be discussed in forthcoming papers.

  16. Flares on a Bp Star

    Science.gov (United States)

    Mullan, D. J.

    2009-09-01

    Two large X-ray flares have been reported from the direction of a magnetic B2p star (σ Ori E). Sanz-Forcada et al. have suggested that the flares did not occur on the B2p star but on a companion of late spectral type. A star which is a candidate for a late-type flare star near σ Ori E has recently been identified by Bouy et al. However, based on the properties of the flares, and based on a recent model of rotating magnetospheres, we argue that, rather than attributing the two flares to a late-type dwarf, it is a viable hypothesis that the flares were magnetic phenomena associated with the rotating magnetosphere of the B2p star itself.

  17. FLARES ON A Bp STAR

    International Nuclear Information System (INIS)

    Mullan, D. J.

    2009-01-01

    Two large X-ray flares have been reported from the direction of a magnetic B2p star (σ Ori E). Sanz-Forcada et al. have suggested that the flares did not occur on the B2p star but on a companion of late spectral type. A star which is a candidate for a late-type flare star near σ Ori E has recently been identified by Bouy et al. However, based on the properties of the flares, and based on a recent model of rotating magnetospheres, we argue that, rather than attributing the two flares to a late-type dwarf, it is a viable hypothesis that the flares were magnetic phenomena associated with the rotating magnetosphere of the B2p star itself.

  18. The lithium-rotation connection in the 125 Myr-old Pleiades cluster

    Science.gov (United States)

    Bouvier, J.; Barrado, D.; Moraux, E.; Stauffer, J.; Rebull, L.; Hillenbrand, L.; Bayo, A.; Boisse, I.; Bouy, H.; DiFolco, E.; Lillo-Box, J.; Calderón, M. Morales

    2018-06-01

    Context. The evolution of lithium abundance over a star's lifetime is indicative of transport processes operating in the stellar interior. Aims: We revisit the relationship between lithium content and rotation rate previously reported for cool dwarfs in the Pleiades cluster. Methods: We derive new LiI 670.8 nm equivalent width measurements from high-resolution spectra obtained for low-mass Pleiades members. We combine these new measurements with previously published ones, and use the Kepler K2 rotational periods recently derived for Pleiades cool dwarfs to investigate the lithium-rotation connection in this 125 Myr-old cluster. Results: The new data confirm the correlation between lithium equivalent width and stellar spin rate for a sample of 51 early K-type members of the cluster, where fast rotating stars are systematically lithium-rich compared to slowly rotating ones. The correlation is valid for all stars over the (J-Ks) color range 0.50-0.70 mag, corresponding to a mass range from about 0.75 to 0.90 M⊙, and may extend down to lower masses. Conclusions: We argue that the dispersion in lithium equivalent widths observed for cool dwarfs in the Pleiades cluster reflects an intrinsic scatter in lithium abundances, and suggest that the physical origin of the lithium dispersion pattern is to be found in the pre-main sequence rotational history of solar-type stars. Based on observations made at Observatoire de Haute Provence (CNRS), France, at the Nordic Optical Telescope (IAC), Spain, and at the W. M. Keck Observatory, Hawaii, USA.Full Table B.1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A63

  19. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Nicholl, M.; Berger, E.; Kasen, D.; Metzger, B. D.; Elias, J.; Briceño, C.; Alexander, K. D.; Blanchard, P. K.; Chornock, R.; Cowperthwaite, P. S.; Eftekhari, T.; Fong, W.; Margutti, R.; Villar, V. A.; Williams, P. K. G.; Brown, W.; Annis, J.; Bahramian, A.; Brout, D.; Brown, D. A.; Chen, H. -Y.; Clemens, J. C.; Dennihy, E.; Dunlap, B.; Holz, D. E.; Marchesini, E.; Massaro, F.; Moskowitz, N.; Pelisoli, I.; Rest, A.; Ricci, F.; Sako, M.; Soares-Santos, M.; Strader, J.

    2017-10-16

    We present optical and ultraviolet spectra of the first electromagnetic counterpart to a gravitational wave (GW) source, the binary neutron star merger GW170817. Spectra were obtained nightly between 1.5 and 9.5 days post-merger, using the SOAR and Magellan telescopes; the UV spectrum was obtained with the \\textit{Hubble Space Telescope} at 5.5 days. Our data reveal a rapidly-fading blue component ($T\\approx5500$ K at 1.5 days) that quickly reddens; spectra later than $\\gtrsim 4.5$ days peak beyond the optical regime. The spectra are mostly featureless, although we identify a possible weak emission line at $\\sim 7900$ \\AA\\ at $t\\lesssim 4.5$ days. The colours, rapid evolution and featureless spectrum are consistent with a "blue" kilonova from polar ejecta comprised mainly of light $r$-process nuclei with atomic mass number $A\\lesssim 140$. This indicates a sight-line within $\\theta_{\\rm obs}\\lesssim 45^{\\circ}$ of the orbital axis. Comparison to models suggests $\\sim0.03$ M$_\\odot$ of blue ejecta, with a velocity of $\\sim 0.3c$. The required lanthanide fraction is $\\sim 10^{-4}$, but this drops to $<10^{-5}$ in the outermost ejecta. The large velocities point to a dynamical origin, rather than a disk wind, for this blue component, suggesting that both binary constituents are neutron stars (as opposed to a binary consisting of a neutron star and a black hole). For dynamical ejecta, the high mass favors a small neutron star radius of $\\lesssim 12$ km. This mass also supports the idea that neutron star mergers are a major contributor to $r$-process nucleosynthesis.

  20. The different origins of magnetic fields and activity in the Hertzsprung gap stars, OU Andromedae and 31 Comae

    Science.gov (United States)

    Borisova, A.; Aurière, M.; Petit, P.; Konstantinova-Antova, R.; Charbonnel, C.; Drake, N. A.

    2016-06-01

    Context. When crossing the Hertzsprung gap, intermediate-mass stars develop a convective envelope. Fast rotators on the main sequence, or Ap star descendants, are expected to become magnetic active subgiants during this evolutionary phase. Aims: We compare the surface magnetic fields and activity indicators of two active, fast rotating red giants with similar masses and spectral class but different rotation rates - OU And (Prot = 24.2 d) and 31 Com (Prot = 6.8 d) - to address the question of the origin of their magnetism and high activity. Methods: Observations were carried out with the Narval spectropolarimeter in 2008 and 2013. We used the least-squares deconvolution (LSD) technique to extract Stokes V and I profiles with high signal-to-noise ratio to detect Zeeman signatures of the magnetic field of the stars. We then provide Zeeman-Doppler imaging (ZDI), activity indicators monitoring, and a precise estimation of stellar parameters. We use state-of-the-art stellar evolutionary models, including rotation, to infer the evolutionary status of our giants, as well as their initial rotation velocity on the main sequence, and we interpret our observational results in the light of the theoretical Rossby numbers. Results: The detected magnetic field of OU Andromedae (OU And) is a strong one. Its longitudinal component Bl reaches 40 G and presents an about sinusoidal variation with reversal of the polarity. The magnetic topology of OU And is dominated by large-scale elements and is mainly poloidal with an important dipole component, as well as a significant toroidal component. The detected magnetic field of 31 Comae (31 Com) is weaker, with a magnetic map showing a more complex field geometry, and poloidal and toroidal components of equal contributions. The evolutionary models show that the progenitors of OU And and 31 Com must have been rotating at velocities that correspond to 30 and 53%, respectively, of their critical rotation velocity on the zero age main sequence

  1. Optical photometric variable stars towards the Galactic H II region NGC 2282

    Science.gov (United States)

    Dutta, Somnath; Mondal, Soumen; Joshi, Santosh; Jose, Jessy; Das, Ramkrishna; Ghosh, Supriyo

    2018-05-01

    We report here CCD I-band time series photometry of a young (2-5 Myr) cluster NGC 2282, in order to identify and understand the variability of pre-main-sequence (PMS) stars. The I-band photometry, down to ˜20.5 mag, enables us to probe the variability towards the lower mass end (˜0.1 M⊙) of PMS stars. From the light curves of 1627 stars, we identified 62 new photometric variable candidates. Their association with the region was established from H α emission and infrared (IR) excess. Among 62 variables, 30 young variables exhibit H α emission, near-IR (NIR)/mid-IR (MIR) excess or both and are candidate members of the cluster. Out of 62 variables, 41 are periodic variables, with a rotation rate ranging from 0.2-7 d. The period distribution exhibits a median period at ˜1 d, as in many young clusters (e.g. NGC 2264, ONC, etc.), but it follows a unimodal distribution, unlike others that have bimodality, with slow rotators peaking at ˜6-8 d. To investigate the rotation-disc and variability-disc connection, we derived the NIR excess from Δ(I - K) and the MIR excess from Spitzer [3.6]-[4.5] μm data. No conclusive evidence of slow rotation with the presence of discs around stars and fast rotation for discless stars is obtained from our periodic variables. A clear increasing trend of the variability amplitude with IR excess is found for all variables.

  2. The STAR trigger

    International Nuclear Information System (INIS)

    Bieser, F.S.; Crawford, H.J.; Engelage, J.; Eppley, G.; Greiner, L.C.; Judd, E.G.; Klein, S.R.; Meissner, F.; Minor, R.; Milosevich, Z.; Mutchler, G.; Nelson, J.M.; Schambach, J.; VanderMolen, A.S.; Ward, H.; Yepes, P.

    2003-01-01

    We describe the trigger system that we designed and implemented for the STAR detector at RHIC. This is a 10 MHz pipelined system based on fast detector output that controls the event selection for the much slower tracking detectors. Results from the first run are presented and new detectors for the 2001 run are discussed

  3. What CoRoT tells us about δ Scuti stars

    Directory of Open Access Journals (Sweden)

    Michel Eric

    2017-01-01

    Full Text Available Inspired by the so appealing example of red giants, where going from a handful of stars to thousands revealed the structure of the eigenspectrum, we inspected a large homogeneous set of around 1860 δ Scuti stars observed with CoRoT. This unique data set reveals a common regular pattern which appears to be in agreement with island modes featured by theoretical non-perturbative treatments of fast rotation. The comparison of these data with models and linear stability calculations suggests that spectra can be fruitfully characterized to first order by a few parameters which might play the role of seismic indices for δ Scuti stars, as Δv and vmax do for red giants. The existence of this pattern offers an observational support for guiding further theoretical works on fast rotation. It also provides a framework for further investigation of the observational material collected by CoRoT ([1] and Kepler ([2]. Finally, it sketches out the perspective of using δ Scuti stars pulsations for ensemble asteroseismology

  4. Stars and Star Myths.

    Science.gov (United States)

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  5. Strange-quark-matter stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-11-01

    We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 13 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to consist of individual hadrons. We conclude that it is implausible that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, is a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation if strange matter is stable at an energy density exceeding about 5.4 times that of nuclear matter. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 34 refs., 10 figs., 1 tab

  6. Rotating flow

    CERN Document Server

    Childs, Peter R N

    2010-01-01

    Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...

  7. Rotational seismology

    Science.gov (United States)

    Lee, William H K.

    2016-01-01

    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  8. Physics of rotation: problems and challenges

    Science.gov (United States)

    Maeder, Andre; Meynet, Georges

    2015-01-01

    We examine some debated points in current discussions about rotating stars: the shape, the gravity darkening, the critical velocities, the mass loss rates, the hydrodynamical instabilities, the internal mixing and N-enrichments. The study of rotational mixing requires high quality data and careful analysis. From recent studies where such conditions are fulfilled, rotational mixing is well confirmed. Magnetic coupling with stellar winds may produce an apparent contradiction, i.e. stars with a low rotation and a high N-enrichment. We point out that it rather confirms the large role of shears in differentially rotating stars for the transport processes. New models of interacting binaries also show how shears and mixing may be enhanced in close binaries which are either spun up or down by tidal interactions.

  9. ROTATIONAL VELOCITIES FOR M DWARFS

    International Nuclear Information System (INIS)

    Jenkins, J. S.; Ramsey, L. W.; Jones, H. R. A.; Pavlenko, Y.; Barnes, J. R.; Pinfield, D. J.; Gallardo, J.

    2009-01-01

    We present spectroscopic rotation velocities (v sin i) for 56 M dwarf stars using high-resolution Hobby-Eberly Telescope High Resolution Spectrograph red spectroscopy. In addition, we have also determined photometric effective temperatures, masses, and metallicities ([Fe/H]) for some stars observed here and in the literature where we could acquire accurate parallax measurements and relevant photometry. We have increased the number of known v sin i values for mid M stars by around 80% and can confirm a weakly increasing rotation velocity with decreasing effective temperature. Our sample of v sin is peak at low velocities (∼3 km s -1 ). We find a change in the rotational velocity distribution between early M and late M stars, which is likely due to the changing field topology between partially and fully convective stars. There is also a possible further change in the rotational distribution toward the late M dwarfs where dust begins to play a role in the stellar atmospheres. We also link v sin i to age and show how it can be used to provide mid-M star age limits. When all literature velocities for M dwarfs are added to our sample, there are 198 with v sin i ≤ 10 km s -1 and 124 in the mid-to-late M star regime (M3.0-M9.5) where measuring precision optical radial velocities is difficult. In addition, we also search the spectra for any significant Hα emission or absorption. Forty three percent were found to exhibit such emission and could represent young, active objects with high levels of radial-velocity noise. We acquired two epochs of spectra for the star GJ1253 spread by almost one month and the Hα profile changed from showing no clear signs of emission, to exhibiting a clear emission peak. Four stars in our sample appear to be low-mass binaries (GJ1080, GJ3129, Gl802, and LHS3080), with both GJ3129 and Gl802 exhibiting double Hα emission features. The tables presented here will aid any future M star planet search target selection to extract stars with low v

  10. Banyan. X. Discovery of a Wide, Low-gravity L-type Companion to a Fast-rotating M3 Dwarf

    Science.gov (United States)

    Desrochers, Marie-Eve; Artigau, Étienne; Gagné, Jonathan; Doyon, René; Malo, Lison; Faherty, Jacqueline K.; Lafrenière, David

    2018-01-01

    We report the discovery of a substellar-mass co-moving companion to 2MASS J22501512+2325342, an M3 candidate member of the young (130–200 Myr) AB Doradus Moving Group (ABDMG). This L3 β companion was discovered in a 2MASS search for companions at separations of 3″–18″ from a list of 2812 stars suspected to be young (≲500 Myr) in the literature, and was confirmed with follow-up astrometry and spectroscopy. Evolutionary models yield a companion mass of {30}-4+11 {M}{Jup} at the age of ABDMG. The 2MASS J22501512+2325342 AB system appears to be a spatial outlier to the bulk of ABDMG members, similarly to the young 2MASS J22362452+4751425 AB system. Future searches for young objects around these two systems would make it possible to determine whether they are part of a spatial extension of the known ABDMG distribution. Based on observations obtained at the Canada–France–Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientique of France, and the University of Hawaii.

  11. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  12. Neutron star pulsations and instabilities

    International Nuclear Information System (INIS)

    Lindblom, L.

    2001-01-01

    Gravitational radiation (GR) drives an instability in certain modes of rotating stars. This instability is strong enough in the case of the r-modes to cause their amplitudes to grow on a timescale of tens of seconds in rapidly rotating neutron stars. GR emitted by these modes removes angular momentum from the star at a rate which would spin it down to a relatively small angular velocity within about one year, if the dimensionless amplitude of the mode grows to order unity. A pedagogical level discussion is given here on the mechanism of GR instability in rotating stars, on the relevant properties of the r-modes, and on our present understanding of the dissipation mechanisms that tend to suppress this instability in neutron stars. The astrophysical implications of this GR driven instability are discussed for young neutron stars, and for older systems such as low mass x-ray binaries. Recent work on the non-linear evolution of the r-modes is also presented. (author)

  13. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF WARM AND HOT JUPITERS: EFFECTS OF ORBITAL DISTANCE, ROTATION PERIOD, AND NONSYNCHRONOUS ROTATION

    Energy Technology Data Exchange (ETDEWEB)

    Showman, Adam P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Fortney, Jonathan J., E-mail: showman@lpl.arizona.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-03-10

    Efforts to characterize extrasolar giant planet (EGP) atmospheres have so far emphasized planets within 0.05 AU of their stars. Despite this focus, known EGPs populate a continuum of orbital separations from canonical hot Jupiter values (0.03–0.05 AU) out to 1 AU and beyond. Unlike typical hot Jupiters, these more distant EGPs will not generally be synchronously rotating. In anticipation of observations of this population, we here present three-dimensional atmospheric circulation models exploring the dynamics that emerge over a broad range of rotation rates and incident stellar fluxes appropriate for warm and hot Jupiters. We find that the circulation resides in one of two basic regimes. On typical hot Jupiters, the strong day–night heating contrast leads to a broad, fast superrotating (eastward) equatorial jet and large day–night temperature differences. At faster rotation rates and lower incident fluxes, however, the day–night heating gradient becomes less important, and baroclinic instabilities emerge as a dominant player, leading to eastward jets in the midlatitudes, minimal temperature variations in longitude, and, often, weak winds at the equator. Our most rapidly rotating and least irradiated models exhibit similarities to Jupiter and Saturn, illuminating the dynamical continuum between hot Jupiters and the weakly irradiated giant planets of our own solar system. We present infrared (IR) light curves and spectra of these models, which depend significantly on incident flux and rotation rate. This provides a way to identify the regime transition in future observations. In some cases, IR light curves can provide constraints on the rotation rate of nonsynchronously rotating planets.

  14. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF WARM AND HOT JUPITERS: EFFECTS OF ORBITAL DISTANCE, ROTATION PERIOD, AND NONSYNCHRONOUS ROTATION

    International Nuclear Information System (INIS)

    Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J.

    2015-01-01

    Efforts to characterize extrasolar giant planet (EGP) atmospheres have so far emphasized planets within 0.05 AU of their stars. Despite this focus, known EGPs populate a continuum of orbital separations from canonical hot Jupiter values (0.03–0.05 AU) out to 1 AU and beyond. Unlike typical hot Jupiters, these more distant EGPs will not generally be synchronously rotating. In anticipation of observations of this population, we here present three-dimensional atmospheric circulation models exploring the dynamics that emerge over a broad range of rotation rates and incident stellar fluxes appropriate for warm and hot Jupiters. We find that the circulation resides in one of two basic regimes. On typical hot Jupiters, the strong day–night heating contrast leads to a broad, fast superrotating (eastward) equatorial jet and large day–night temperature differences. At faster rotation rates and lower incident fluxes, however, the day–night heating gradient becomes less important, and baroclinic instabilities emerge as a dominant player, leading to eastward jets in the midlatitudes, minimal temperature variations in longitude, and, often, weak winds at the equator. Our most rapidly rotating and least irradiated models exhibit similarities to Jupiter and Saturn, illuminating the dynamical continuum between hot Jupiters and the weakly irradiated giant planets of our own solar system. We present infrared (IR) light curves and spectra of these models, which depend significantly on incident flux and rotation rate. This provides a way to identify the regime transition in future observations. In some cases, IR light curves can provide constraints on the rotation rate of nonsynchronously rotating planets

  15. MULTIPLE FAST MOLECULAR OUTFLOWS IN THE PRE-PLANETARY NEBULA CRL 618

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chin-Fei; Huang, Po-Sheng [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Sahai, Raghvendra [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Sánchez Contreras, Carmen [Astrobiology Center (CSIC-INTA), ESAC Campus, E-28691 Villanueva de la Canada, Madrid (Spain); Tay, Jeremy Jian Hao [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore)

    2013-11-01

    CRL 618 is a well-studied pre-planetary nebula. It has multiple highly collimated optical lobes, fast molecular outflows along the optical lobes, and an extended molecular envelope that consists of a dense torus in the equator and a tenuous round halo. Here we present our observations of this source in CO J = 3-2 and HCN J = 4-3 obtained with the Submillimeter Array at up to ∼0.''3 resolutions. We spatially resolve the fast molecular outflow region previously detected in CO near the central star and find it to be composed of multiple outflows that have similar dynamical ages and are oriented along the different optical lobes. We also detect fast molecular outflows further away from the central star near the tips of the extended optical lobes and a pair of equatorial outflows inside the dense torus. We find that two episodes of bullet ejections in different directions are needed, one producing the fast molecular outflows near the central star and one producing the fast molecular outflows near the tips of the extended optical lobes. One possibility to launch these bullets is a magneto-rotational explosion of the stellar envelope.

  16. Global rotation

    International Nuclear Information System (INIS)

    Rosquist, K.

    1980-01-01

    Global rotation in cosmological models is defined on an observational basis. A theorem is proved saying that, for rigid motion, the global rotation is equal to the ordinary local vorticity. The global rotation is calculated in the space-time homogeneous class III models, with Godel's model as a special case. It is shown that, with the exception of Godel's model, the rotation in these models becomes infinite for finite affine parameter values. In some directions the rotation changes sign and becomes infinite in a direction opposite to the local vorticity. The points of infinite rotation are identified as conjugate points along the null geodesics. The physical interpretation of the infinite rotation is discussed, and a comparison with the behaviour of the area distance at conjugate points is given. (author)

  17. Additional measurements of pre-main-sequence stellar rotation

    International Nuclear Information System (INIS)

    Hartmann, L.; Stauffer, J.R.

    1989-01-01

    New rotational-velocity measurements for pre-main-sequence stars in the Taurus-Auriga molecular cloud are reported. Rotational velocities or upper limits of 10 km/s are now available for 90 percent of the T Tauri stars with V less than 14.7 in the catalog of Cohen and Kuhi. Measurements of 'continuum emission' stars, thought to be accreting high-angular-momentum material from a circumstellar disk, show that these objects are not especially rapid rotators. The results confirm earlier findings that angular-momentum loss proceeds very efficiently in the earliest stages of star formation, and suggest that stars older than about one million yr contract to the main sequence at nearly constant angular momentum. The slow rotation of T Tauri stars probably requires substantial angular-momentum loss via a magnetically coupled wind. 35 references

  18. Gravitational waves from neutron stars and asteroseismology

    Science.gov (United States)

    Ho, Wynn C. G.

    2018-05-01

    Neutron stars are born in the supernova explosion of massive stars. Neutron stars rotate as stably as atomic clocks and possess densities exceeding that of atomic nuclei and magnetic fields millions to billions of times stronger than those created in laboratories on the Earth. The physical properties of neutron stars are determined by many areas of fundamental physics, and detection of gravitational waves can provide invaluable insights into our understanding of these areas. Here, we describe some of the physics and astrophysics of neutron stars and how traditional electromagnetic wave observations provide clues to the sorts of gravitational waves we expect from these stars. We pay particular attention to neutron star fluid oscillations, examining their impact on electromagnetic and gravitational wave observations when these stars are in a wide binary or isolated system, then during binary inspiral right before merger, and finally at times soon after merger. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  19. Velocity structure of protostellar envelopes: gravitational collapse and rotation

    International Nuclear Information System (INIS)

    Belloche, Arnaud

    2002-01-01

    Stars form from the gravitational collapse of pre-stellar condensations in molecular clouds. The major aim of this thesis is to compare the predictions of collapse models with observations of both very young (class 0) protostars and starless condensations in millimeter molecular lines. We wish to understand what determines the masses of forming stars and whether the initial conditions have an effect on the dynamical evolution of a condensation. Using a Monte-Carlo radiative transfer code, we analyze rotation and infall spectroscopic signatures to study the velocity structure of a sample of protostellar condensations. We show that the envelope of the class 0 protostar IRAM 04191 in the Taurus molecular cloud is undergoing both extended, subsonic infall and fast, differential rotation. We propose that the inner part of the envelope is a magnetically supercritical core in the process of decoupling from the ambient cloud still supported by the magnetic field. We suggest that the kinematical properties observed for IRAM 04191 are representative of the physical conditions characterizing isolated protostars shortly after point mass formation. On the other hand, a similar study for the pre-stellar condensations of the Rho Ophiuchi proto-cluster yields mass accretion rates that are an order of magnitude higher than in IRAM 04191. This suggests that individual protostellar collapse in clusters is induced by external disturbances. Moreover, we show that the condensations do not have time to orbit significantly through the proto-cluster gas before evolving into protostars and pre-main-sequence stars. This seems inconsistent with models which resort to dynamical interactions and competitive accretion to build up a mass spectrum comparable to the stellar initial mass function. We conclude that protostellar collapse is nearly spontaneous in regions of isolated star formation such as the Taurus cloud but probably strongly induced in proto-clusters. (author) [fr

  20. Dark stars in Starobinsky's model

    Science.gov (United States)

    Panotopoulos, Grigoris; Lopes, Ilídio

    2018-01-01

    In the present work we study non-rotating dark stars in f (R ) modified theory of gravity. In particular, we have considered bosonic self-interacting dark matter modeled inside the star as a Bose-Einstein condensate, while as far as the modified theory of gravity is concerned we have assumed Starobinsky's model R +a R2. We solve the generalized structure equations numerically, and we obtain the mass-to-ratio relation for several different values of the parameter a , and for two different dark matter equation-of-states. Our results show that the dark matter stars become more compact in the R-squared gravity compared to general relativity, while at the same time the highest star mass is slightly increased in the modified gravitational theory. The numerical value of the highest star mass for each case has been reported.

  1. DYNAMICAL TIDES IN ROTATING PLANETS AND STARS

    International Nuclear Information System (INIS)

    Goodman, J.; Lackner, C.

    2009-01-01

    Tidal dissipation may be important for the internal evolution as well as the orbits of short-period massive planets-hot Jupiters. We revisit a mechanism proposed by Ogilvie and Lin for tidal forcing of inertial waves, which are short-wavelength, low-frequency disturbances restored primarily by Coriolis rather than buoyancy forces. This mechanism is of particular interest for hot Jupiters, because it relies upon a rocky core, and because these bodies are otherwise largely convective. Compared to waves excited at the base of the stratified, externally heated atmosphere, waves excited at the core are more likely to deposit heat in the convective region and thereby affect the planetary radius. However, Ogilvie and Lin's results were numerical, and the manner of the wave excitation was not clear. Using WKB methods, we demonstrate the production of short waves by scattering of the equilibrium tide off the core at critical latitudes. The tidal dissipation rate associated with these waves scales as the fifth power of the core radius, and the implied tidal Q is of order ten million for nominal values of the planet's mass, radius, orbital period, and core size. We comment upon an alternative proposal by Wu for exciting inertial waves in an unstratified fluid body by means of compressibility rather than a core. We also find that even a core of rock is unlikely to be rigid. But Ogilvie and Lin's mechanism should still operate if the core is substantially denser than its immediate surroundings.

  2. Nitrogen chronology of massive main sequence stars

    NARCIS (Netherlands)

    Köhler, K.; Borzyszkowski, M.; Brott, I.; Langer, N.; de Koter, A.

    2012-01-01

    Context. Rotational mixing in massive main sequence stars is predicted to monotonically increase their surface nitrogen abundance with time. Aims. We use this effect to design a method for constraining the age and the inclination angle of massive main sequence stars, given their observed luminosity,

  3. On Fallback Disks around Young Neutron Stars

    Science.gov (United States)

    Alpar, M. Ali; Ertan, Ü.; Erkut, M. H.

    2006-08-01

    Some bound matter in the form of a fallback disk may be an initial parameter of isolated neutron stars at birth, which, along with the initial rotation rate and dipole (and higher multipole) magnetic moments, determines the evolution of neutron stars and the categories into which they fall. This talk reviews the possibilities of fallback disk models in explaining properties of isolated neutron stars of different categories. Recent observations of a fallback disk and observational limits on fallback disks will also be discussed.

  4. Long GRBs from binary stars: runaway, Wolf-Rayet progenitors

    NARCIS (Netherlands)

    Cantiello, M.; Yoon, S.C.; Langer, N.; Livio, M.

    2007-01-01

    The collapsar model for long gamma-ray bursts requires a rapidly rotating Wolf-Rayet star as progenitor. We test the idea of producing rapidly rotating Wolf-Rayet stars in massive close binaries through mass accretion and consecutive quasi-chemically homogeneous evolution — the latter had previously

  5. Long GRBs from Binary Stars: Runaway, Wolf-Rayet Progenitors

    NARCIS (Netherlands)

    Cantiello, M.; Yoon, S.C.; Langer, N.; Livio, M.

    2007-01-01

    The collapsar model for long gamma-ray bursts requires a rapidly rotating Wolf-Rayet star as progenitor. We test the idea of producing rapidly rotating Wolf-Rayet stars in massive close binaries through mass accretion and consecutive quasi-chemically homogeneous evolution - the latter had previously

  6. Energy flux determines magnetic field strength of planets and stars.

    Science.gov (United States)

    Christensen, Ulrich R; Holzwarth, Volkmar; Reiners, Ansgar

    2009-01-08

    The magnetic fields of Earth and Jupiter, along with those of rapidly rotating, low-mass stars, are generated by convection-driven dynamos that may operate similarly (the slowly rotating Sun generates its field through a different dynamo mechanism). The field strengths of planets and stars vary over three orders of magnitude, but the critical factor causing that variation has hitherto been unclear. Here we report an extension of a scaling law derived from geodynamo models to rapidly rotating stars that have strong density stratification. The unifying principle in the scaling law is that the energy flux available for generating the magnetic field sets the field strength. Our scaling law fits the observed field strengths of Earth, Jupiter, young contracting stars and rapidly rotating low-mass stars, despite vast differences in the physical conditions of the objects. We predict that the field strengths of rapidly rotating brown dwarfs and massive extrasolar planets are high enough to make them observable.

  7. Asteroid rotation. IV

    International Nuclear Information System (INIS)

    Harris, A.W.; Young, J.W.

    1983-01-01

    The results from the year 1979 of an ongoing program of asteroid photometry at Table Mountain Observatory are presented. The results for 53 asteroids are summarized in a table, showing the number, name, opposition date, taxonomic class, diameter, absolute magnitude, mean absolute magnitude at zero phase angle and values of the absolute magnitude and linear phase coefficient derived from it, the rotation period in hours, peak-to-peak amplitude of variation, difference between mean and maximum brightness, and reliability index. Another table presents data on aspect and comparison stars, including brightness and distance data. Reliable rotation periods are reported for 22 asteroids for which no previous values are known. For seven asteroids, periods are reported which are revisions of previously reported values

  8. Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae

    Science.gov (United States)

    Del Zanna, L.; Pili, A. G.; Olmi, B.; Bucciantini, N.; Amato, E.

    2018-01-01

    Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ∼ {10}46 {erg} are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ∼ {10}15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3D MHD simulations of relativistic pulsar winds and their associated nebulae.

  9. The VLT-FLAMES survey of massive stars

    NARCIS (Netherlands)

    Evans, C.; Langer, N.; Brott, I.; Hunter, I.; Smartt, S.J.; Lennon, D.J.

    2008-01-01

    The VLT-FLAMES Survey of Massive Stars was an ESO Large Programme to understand rotational mixing and stellar mass loss in different metallicity environments, in order to better constrain massive star evolution. We gathered high-quality spectra of over 800 stars in the Galaxy and in the Magellanic

  10. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.

    1976-01-01

    Any discussion of the radio emission from stars should begin by emphasizing certain unique problems. First of all, one must clarify a semantic confusion introduced into radio astronomy in the late 1950's when most new radio sources were described as radio stars. All of these early 'radio stars' were eventually identified with other galactic and extra-galactic objects. The study of true radio stars, where the radio emission is produced in the atmosphere of a star, began only in the 1960's. Most of the work on the subject has, in fact, been carried out in only the last few years. Because the real information about radio stars is quite new, it is not surprising that major aspects of the subject are not at all understood. For this reason this paper is organized mainly around three questions: what is the available observational information; what physical processes seem to be involved; and what working hypotheses look potentially fruitful. (Auth.)

  11. Rotating Wavepackets

    Science.gov (United States)

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  12. Rotating dryer

    International Nuclear Information System (INIS)

    Noe, C.

    1984-01-01

    Products to dry are introduced inside a rotating tube placed in an oven, the cross section of the tube is an arc of spiral. During clockwise rotation of the tube products are maintained inside and mixed, during anticlockwise products are removed. Application is made to drying of radioactive wastes [fr

  13. Shooting stars

    International Nuclear Information System (INIS)

    Maurette, M.; Hammer, C.

    1985-01-01

    A shooting star passage -even a star shower- can be sometimes easily seen during moonless black night. They represent the partial volatilization in earth atmosphere of meteorites or micrometeorites reduced in cosmic dusts. Everywhere on earth, these star dusts are searched to be gathered. This research made one year ago on the Greenland ice-cap is this article object; orbit gathering projects are also presented [fr

  14. Can planetary nebulae rotate

    International Nuclear Information System (INIS)

    Grinin, V.P.

    1982-01-01

    It is shown that the inclination of spectral lines observed in a number of planetary nebulae when the spectrograph slit is placed along the major axis, which is presently ascribed to nonuniform expansion of the shells, actually may be due to rotation of the nebulae about their minor axes, as Campbell and Moore have suggested in their reports. It is assumed that the rotation of the central star (or, if the core is a binary system, circular motions of gas along quasi-Keplerian orbits) serves as the source of the original rotation of a protoplanetary nebula. The mechanism providing for strengthening of the original rotation in the process of expansion of the shell is the tangential pressure of L/sub α/ radiation due to the anisotropic properties of the medium and radiation field. The dynamic effect produced by them is evidently greatest in the epoch when the optical depth of the nebula in the L/sub c/ continuum becomes on the order of unity in the course of its expansion

  15. ALMA Long Baseline Observations of the Dynamical Atmospheres of AGB Stars

    Science.gov (United States)

    Vlemmings, Wouter

    2018-04-01

    I will present the current status of ALMA long baseline observations of W Hya, R Leo, R Dor and Mira. We have recently obtained band 4, 6 and 7 observations of the line and continuum emission tracing the temperature and dynamics in their extended atmosphere. Our preliminary analysis confirms our previous detection of a hotspot on W Hya, and reveals unexpected lines in most of the sources, as well as possible fast rotation in the atmopshere of one of the stars. The observations show the unique power of ALMA in observing the extended stellar atmospheres.

  16. Development of a PIGE-Detection System for in-situ Inspection and Quality Assurance in the Evolution of Fast Rotating Parts in High Temperature Environment Manufactured from TiAl

    Directory of Open Access Journals (Sweden)

    S. Neve

    2013-04-01

    Full Text Available Intermetallic -titanium aluminides are a promising material in high temperature technologies. Their high specific strength at temperatures above 700°C offers the possibility for their use as components of aerospace and automotive industries. With a specific weight of 50% of that of the widely used Ni-based superalloys TiAl is very suitable as material for fast rotating parts like turbine blades in aircraft engines and land based power stations or turbocharger rotors. Thus lower mechanical stresses and a reduced fuel consumption and CO2-emission are expected. To overcome the insufficient oxidation protection the halogen effect offers an innovative way. After surface doping using F-implantation or liquid phase-treatment with an F-containing solution and subsequent oxidation at high temperatures the formation of a protective alumina scale can be achieved. By using non-destructive ion beam analyses (PIGE, RBS F was found at the metal/oxide interface. For analysis of large scale components a new vacuum chamber at the IKF was installed and became operative. With this prototype of in-situ quality assurance system for the F-doping of manufactured parts from TiAl some performance test measurements were done and presented in this paper

  17. Development of a PIGE-Detection System for in-situ Inspection and Quality Assurance in the Evolution of Fast Rotating Parts in High Temperature Environment Manufactured from TiAl

    International Nuclear Information System (INIS)

    Neve, S.; Zschau, H. E.; Masset, P.J.; Schütze, M.

    2013-01-01

    Intermetallic γ-titanium aluminides are a promising material in high temperature technologies. Their high specific strength at temperatures above 700 O C offers the possibility for their use as components of aerospace and automotive industries. With a specific weight of 50% of that of the widely used Ni-based superalloys TiAl is very suitable as material for fast rotating parts like turbine blades in aircraft engines and land based power stations or turbocharger rotors. Thus lower mechanical stresses and a reduced fuel consumption and CO 2 -emission are expected. To overcome the insufficient oxidation protection the halogen effect offers an innovative way. After surface doping using F-implantation or liquid phase-treatment with an F-containing solution and subsequent oxidation at high temperatures the formation of a protective alumina scale can be achieved. By using non-destructive ion beam analyses (PIGE, RBS) F was found at the metal/oxide interface. For analysis of large scale components a new vacuum chamber at the IKF was installed and became operative. With this prototype of in-situ quality assurance system for the F-doping of manufactured parts from TiAl some performance test measurements were done and presented in this paper. (author)

  18. Halo Star Lithium Depletion

    International Nuclear Information System (INIS)

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-01-01

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  19. Antisolar differential rotation with surface lithium enrichment on the single K-giant V1192 Orionis

    Science.gov (United States)

    Kővári, Zs.; Strassmeier, K. G.; Carroll, T. A.; Oláh, K.; Kriskovics, L.; Kővári, E.; Kovács, O.; Vida, K.; Granzer, T.; Weber, M.

    2017-10-01

    Context. Stars with about 1-2 solar masses at the red giant branch (RGB) represent an intriguing period of stellar evolution, I.e. when the convective envelope interacts with the fast-rotating core. During these mixing episodes freshly synthesized lithium can come up to the stellar surface along with high angular momentum material. This high angular momentum may alter the surface rotation pattern. Aims: The single rapidly rotating K-giant V1192 Ori is revisited to determine its surface differential rotation, lithium abundance, and basic stellar properties such as a precise rotation period. The aim is to independently verify the antisolar differential rotation of the star and possibly find a connection to the surface lithium abundance. Methods: We applied time-series Doppler imaging to a new multi-epoch data set. Altogether we reconstructed 11 Doppler images from spectroscopic data collected with the STELLA robotic telescope between 2007-2016. We used our inversion code iMap to reconstruct all stellar surface maps. We extracted the differential rotation from these images by tracing systematic spot migration as a function of stellar latitude from consecutive image cross-correlations. Results: The position of V1192 Ori in the Hertzsprung-Russell diagram suggests that the star is in the helium core-burning phase just leaving the RGB bump. We measure A(Li)NLTE = 1.27, I.e. a value close to the anticipated transition value of 1.5 from Li-normal to Li-rich giants. Doppler images reveal extended dark areas arranged quasi-evenly along an equatorial belt. No cool polar spot is found during the investigated epoch. Spot displacements clearly suggest antisolar surface differential rotation with α = - 0.11 ± 0.02 shear coefficient. Conclusions: The surface Li enrichment and the peculiar surface rotation pattern may indicate a common origin. Based on data obtained with the STELLA robotic observatory in Tenerife, an AIP facility jointly operated by AIP and IAC.

  20. Longer rest periods for intensive rotational grazing limit diet quality ...

    African Journals Online (AJOL)

    Longer rest periods for intensive rotational grazing limit diet quality of sheep without enhancing environmental benefits. ... This experiment was established to compare three intensive rotational grazing strategies (fast rotation [FR], average 57-day rest; slow rotation [SR], average 114-day rest; and flexible grazing [FX], based ...

  1. Relativistic stars with purely toroidal magnetic fields

    International Nuclear Information System (INIS)

    Kiuchi, Kenta; Yoshida, Shijun

    2008-01-01

    We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The basic equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these basic equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows: (1) For the nonrotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.

  2. Star Polymers.

    Science.gov (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  3. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  4. Star Imager

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Thuesen, Gøsta

    1997-01-01

    The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol.......The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol....

  5. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.; Gibson, D.M.

    1985-01-01

    Studies of stellar radio emission became an important field of research in the 1970's and have now expanded to become a major area of radio astronomy with the advent of new instruments such as the Very Large Array in New Mexico and transcontinental telescope arrays. This volume contains papers from the workshop on stellar continuum radio astronomy held in Boulder, Colorado, and is the first book on the rapidly expanding field of radio emission from stars and stellar systems. Subjects covered include the observational and theoretical aspects of stellar winds from both hot and cool stars, radio flares from active double star systems and red dwarf stars, bipolar flows from star-forming regions, and the radio emission from X-ray binaries. (orig.)

  6. Neutron star evolution and emission

    Science.gov (United States)

    Epstein, R. I.; Edwards, B. C.; Haines, T. J.

    1997-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors investigated the evolution and radiation characteristics of individual neutron stars and stellar systems. The work concentrated on phenomena where new techniques and observations are dramatically enlarging the understanding of stellar phenomena. Part of this project was a study of x-ray and gamma-ray emission from neutron stars and other compact objects. This effort included calculating the thermal x-ray emission from young neutron stars, deriving the radio and gamma-ray emission from active pulsars and modeling intense gamma-ray bursts in distant galaxies. They also measured periodic optical and infrared fluctuations from rotating neutron stars and search for high-energy TeV gamma rays from discrete celestial sources.

  7. A Search for Coronal Emission at the Bottom of the Main-Sequence: Stars and Brown Dwarf Candidates with Spectral Types Later than M7 and the Rotation-Activity Relation

    Science.gov (United States)

    Stringfellow, Guy

    2004-01-01

    This program intended to test whether the lowest mass stars at the bottom end of the main sequence and the lower mass brown dwarfs have coronae. If they have coronae, what are the coronal characteristics and what drives them? In the classical dynamo picture, the closed magnetic loop structure is generated near the boundary of the convective envelope and the radiative core. Stars with mass below 0.30 Msun however are fully convective, and the nature of the dynamo responsible for the generation of the coronae in this regime is poorly understood. Previous results from the ROSAT mission (e.g., Fleming et al. 1993, 1995; Schmitt et al. 1995) had confirmed three very important characteristics of M-star coronae: (1) a very high percentage of all M dwarfs have coronae (of order 85% in the local 7 pc sample), (2) those M dwarfs showing high chromospheric activity, such as having the Balmer series in emission or large/numerous optical flaring, indeed exhibit the highest coronal activity, and (3) that the maximum saturation boundary in X-ray luminosity, which amounts to 0.0001-0.001 for Lx/Lbol for the dMe stars, extends down to the current detection limit, through spectral types M7. It was likely that the incompleteness noted for result (1) above was simply a detection limit problem; for more distant sources, the X-ray fainter dM stars will drop below detection thresholds before the more X-ray luminous dMe stars. The latest stars for which direct detection of the corona had been successful were of spectral type dM7 (e.g., VB8, LHS 3003). This program proposed to obtain ROSAT HRI observations for a large number of the coolest known (at that time) stars at the bottom of the main-sequence, which had spectral types of M9 or later. Three stars were approved for observations with ROSAT-HRI totaling 180 ksec. The goal was to obtain X-ray detections or low upper limits for the three approved stars.

  8. Solar rotation and activity in the past and their possible influence upon the evolution of life

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, E H

    1980-01-01

    Observations of enhanced spot active main sequence stars of solar type led to the formulation of the hypothesis which states that the rotational angular momentum, J/sub r/, of stars with spectral types later than F5 determines the intensity of their magnetic activity, bar A. Such very spot active stars are exclusively found as the components of fairly close binary stars, and show rotation periods smaller or more or less synchronous to the orbital period. Single stars of the lower main sequence are generally slow rotators, and do not show detectable activity in optical spectral regions, similar to the Sun if observed from stellar distances.

  9. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102

    Science.gov (United States)

    Michilli, D.; Seymour, A.; Hessels, J. W. T.; Spitler, L. G.; Gajjar, V.; Archibald, A. M.; Bower, G. C.; Chatterjee, S.; Cordes, J. M.; Gourdji, K.; Heald, G. H.; Kaspi, V. M.; Law, C. J.; Sobey, C.; Adams, E. A. K.; Bassa, C. G.; Bogdanov, S.; Brinkman, C.; Demorest, P.; Fernandez, F.; Hellbourg, G.; Lazio, T. J. W.; Lynch, R. S.; Maddox, N.; Marcote, B.; McLaughlin, M. A.; Paragi, Z.; Ransom, S. M.; Scholz, P.; Siemion, A. P. V.; Tendulkar, S. P.; van Rooy, P.; Wharton, R. S.; Whitlow, D.

    2018-01-01

    Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin. The only known repeating fast radio burst source—FRB 121102—has been localized to a star-forming region in a dwarf galaxy at redshift 0.193 and is spatially coincident with a compact, persistent radio source. The origin of the bursts, the nature of the persistent source and the properties of the local environment are still unclear. Here we report observations of FRB 121102 that show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure in the source frame (varying from +1.46 × 105 radians per square metre to +1.33 × 105 radians per square metre at epochs separated by seven months) and narrow (below 30 microseconds) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin. Such large rotation measures have hitherto been observed only in the vicinities of massive black holes (larger than about 10,000 solar masses). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole. The bursts may therefore come from a neutron star in such an environment or could be explained by other models, such as a highly magnetized wind nebula or supernova remnant surrounding a young neutron star.

  10. Symbiotic stars

    International Nuclear Information System (INIS)

    Kafatos, M.; Michalitsianos, A.G.

    1984-01-01

    Among the several hundred million binary systems estimated to lie within 3000 light years of the solar system, a tiny fraction, no more than a few hundred, belong to a curious subclass whose radiation has a wavelength distribution so peculiar that it long defied explanation. Such systems radiate strongly in the visible region of the spectrum, but some of them do so even more strongly at both shorter and longer wavelengths: in the ultraviolet region and in the infrared and radio regions. This odd distribution of radiation is best explained by the pairing of a cool red giant star and an intensely hot small star that is virtually in contact with its larger companion. Such objects have become known as symbiotic stars. On photographic plate only the giant star can be discerned, but evidence for the existence of the hot companion has been supplied by satellite-born instruments capable of detecting ultraviolet radiation. The spectra of symbiotic stars indicate that the cool red giant is surrounded by a very hot ionized gas. Symbiotic stars also flared up in outbursts indicating the ejection of material in the form of a shell or a ring. Symbiotic stars may therefore represent a transitory phase in the evolution of certain types of binary systems in which there is substantial transfer of matter from the larger partner to the smaller

  11. Impact of the uncertainty in α-captures on {sup 22}Ne on the weak s-process in massive stars

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, N. [Astrophysics group, EPSAM, Keele University, Keele, ST5 1BH, UK and NuGrid Project (United Kingdom); Hirschi, R. [Astrophysics group, EPSAM, Keele University, Keele, ST5 1BH, UK and Kavli IPMU (WPI), University of Tokyo, Kashiwa, 277-8583 (Japan); Pignatari, M. [NuGrid Project and Department of Physics, University of Basel, Basel, CH-4056 (Switzerland); Herwig, F. [NuGrid Project and Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P5C2 (Canada); Beard, M. [NuGrid Project and Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Imbriani, G. [Dipartiment di Scienze Fisiche, Universita di Napoli Federico II, Napoli (Italy); Görres, J.; Boer, R. J. de; Wiescher, M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2014-05-02

    Massive stars at solar metallicity contribute to the production of heavy elements with atomic masses between A = 60 and A = 90 via the so-called weak s-process (which takes place during core He and shell C burning phases). Furthermore, recent studies have shown that rotation boosts the s-process production in massive stars at low metallicities, with a production that may reach the barium neutron-magic peak. These results are very sensitive to neutron source and neutron poison reaction rates. For the weak s-process, the main neutron source is the reaction {sup 22}Ne(α,n){sup 25}Mg, which is in competition with {sup 22}Ne(α,γ){sup 26}Mg. The uncertainty of both rates strongly affects the nucleosynthesis predictions from stellar model calculations. In this study, we investigate the impact of the uncertainty in α-captures on {sup 22}Ne on the s-process nucleosynthesis in massive stars both at solar and at very low metallicity. For this purpose, we post-process, with the Nugrid mppnp code, non-rotating and rotating evolutionary models 25M{sub ⊙} stars at two different metallicities: Z = Z{sub ⊙} and Z = 10{sup −5}Z{sub ⊙}, respectively. Our results show that uncertainty of {sup 22}Ne(α,n){sup 25}Mg and {sup 22}Ne(α,γ){sup 26}Mg rates have a significant impact on the final elemental production especially for metal poor rotating models. Beside uncertainties in the neutron source reactions, for fast rotating massive stars at low metallicity we revisit the impact of the neutron poisoning effect by the reaction chain {sup 16}O(n,γ){sup 17}O(α,γ){sup 21}Ne, in competition with the {sup 17}O(α,n){sup 20}Ne, recycling the neutrons captured by {sup 16}O.

  12. The Mystery of the Lonely Neutron Star

    Science.gov (United States)

    2000-09-01

    The VLT Reveals Bowshock Nebula around RX J1856.5-3754 Deep inside the Milky Way, an old and lonely neutron star plows its way through interstellar space. Known as RX J1856.5-3754 , it measures only ~ 20 km across. Although it is unusually hot for its age, about 700,000 °C, earlier observations did not reveal any activity at all, contrary to all other neutron stars known so far. In order to better understand this extreme type of object, a detailed study of RX J1856.5-3754 was undertaken by Marten van Kerkwijk (Institute of Astronomy of the University of Utrecht, The Netherlands) and Shri Kulkarni (California Institute of Technology, Pasadena, California, USA). To the astronomers' delight and surprise, images and spectra obtained with the ESO Very Large Telescope (VLT) now show a small nearby cone-shaped ("bowshock") nebula. It shines in the light from hydrogen atoms and is obviously a product of some kind of interaction with this strange star. Neutron stars - remnants of supernova explosions Neutron stars are among the most extreme objects in the Universe. They are formed when a massive star dies in a "supernova explosion" . During this dramatic event, the core of the star suddenly collapses under its own weight and the outer parts are violently ejected into surrounding space. One of the best known examples is the Crab Nebula in the constellation Taurus (The Bull). It is the gaseous remnant of a star that exploded in the year 1054 and also left behind a pulsar , i.e., a rotating neutron star [1]. A supernova explosion is a very complex event that is still not well understood. Nor is the structure of a neutron star known in any detail. It depends on the extreme properties of matter that has been compressed to incredibly high densities, far beyond the reach of physics experiments on Earth [2]. The ultimate fate of a neutron star is also unclear. From the observed rates of supernova explosions in other galaxies, it appears that several hundred million neutron stars

  13. VARIABILITY IN HOT CARBON-DOMINATED ATMOSPHERE (HOT DQ) WHITE DWARFS: RAPID ROTATION?

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kurtis A.; Bierwagen, Michael [Department of Physics and Astrophysics, Texas A and M University-Commerce, P.O. Box 3011, Commerce, TX, 75429 (United States); Montgomery, M. H.; Winget, D. E.; Falcon, Ross E., E-mail: Kurtis.Williams@tamuc.edu [Department of Astronomy, University of Texas, 1 University Station C1400, Austin, TX, 78712 (United States)

    2016-01-20

    Hot white dwarfs (WDs) with carbon-dominated atmospheres (hot DQs) are a cryptic class of WDs. In addition to their deficiency of hydrogen and helium, most of these stars are highly magnetic, and a large fraction vary in luminosity. This variability has been ascribed to nonradial pulsations, but increasing data call this explanation into question. We present studies of short-term variability in seven hot DQ WDs. Three (SDSS J1426+5752, SDSS J2200−0741, and SDSS J2348−0942) were known to be variable. Their photometric modulations are coherent over at least two years, and we find no evidence for variability at frequencies that are not harmonics. We present the first time-series photometry for three additional hot DQs (SDSS J0236−0734, SDSS J1402+3818, and SDSS J1615+4543); none are observed to vary, but the signal-to-noise is low. Finally, we present high speed photometry for SDSS J0005−1002, known to exhibit a 2.1-day photometric variation; we do not observe any short-term variability. Monoperiodicity is rare among pulsating WDs, so we contemplate whether the photometric variability is due to rotation rather than pulsations; similar hypotheses have been raised by other researchers. If the variability is due to rotation, then hot DQ WDs as a class contain many rapid rotators. Given the lack of companions to these stars, the origin of any fast rotation is unclear—both massive progenitor stars and double degenerate merger remnants are possibilities. We end with suggestions of future work that would best clarify the nature of these rare, intriguing objects.

  14. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  15. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  16. Rotating preventers

    International Nuclear Information System (INIS)

    Tangedahl, M.J.; Stone, C.R.

    1992-01-01

    This paper reports that recent changes in the oil and gas industry and ongoing developments in horizontal and underbalanced drilling necessitated development of a better rotating head. A new device called the rotating blowout preventer (RBOP) was developed by Seal-Tech. It is designed to replace the conventional rotating control head on top of BOP stacks and allows drilling operations to continue even on live (underbalanced) wells. Its low wear characteristics and high working pressure (1,500 psi) allow drilling rig crews to drill safely in slightly underbalanced conditions or handle severe well control problems during the time required to actuate other BOPs in the stack. Drilling with a RBOP allows wellbores to be completely closed in tat the drill floor rather than open as with conventional BOPs

  17. STARS no star on Kauai

    International Nuclear Information System (INIS)

    Jones, M.

    1993-01-01

    The island of Kuai, home to the Pacific Missile Range Facility, is preparing for the first of a series of Star Wars rocket launches expected to begin early this year. The Strategic Defense Initiative plans 40 launches of the Stategic Target System (STARS) over a 10-year period. The focus of the tests appears to be weapons and sensors designed to combat multiple-warhead ICBMs, which will be banned under the START II Treaty that was signed in January. The focus of this article is to express the dubious value of testing the STARS at a time when their application will not be an anticipated problem

  18. Flare stars

    International Nuclear Information System (INIS)

    Nicastro, A.J.

    1981-01-01

    The least massive, but possibly most numerous, stars in a galaxy are the dwarf M stars. It has been observed that some of these dwarfs are characterized by a short increase in brightness. These stars are called flare stars. These flare stars release a lot of energy in a short amount of time. The process producing the eruption must be energetic. The increase in light intensity can be explained by a small area rising to a much higher temperature. Solar flares are looked at to help understand the phenomenon of stellar flares. Dwarfs that flare are observed to have strong magnetic fields. Those dwarf without the strong magnetic field do not seem to flare. It is believed that these regions of strong magnetic fields are associated with star spots. Theories on the energy that power the flares are given. Astrophysicists theorize that the driving force of a stellar flare is the detachment and collapse of a loop of magnetic flux. The mass loss due to stellar flares is discussed. It is believed that stellar flares are a significant contributor to the mass of interstellar medium in the Milky Way

  19. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  20. The STAR Vertex Position Detector

    Energy Technology Data Exchange (ETDEWEB)

    Llope, W.J., E-mail: llope@rice.edu [Rice University, Houston, TX 77005 (United States); Zhou, J.; Nussbaum, T. [Rice University, Houston, TX 77005 (United States); Hoffmann, G.W. [University of Texas, Austin, TX 78712 (United States); Asselta, K. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Brandenburg, J.D.; Butterworth, J. [Rice University, Houston, TX 77005 (United States); Camarda, T.; Christie, W. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Crawford, H.J. [University of California, Berkeley, CA 94720 (United States); Dong, X. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Engelage, J. [University of California, Berkeley, CA 94720 (United States); Eppley, G.; Geurts, F. [Rice University, Houston, TX 77005 (United States); Hammond, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Judd, E. [University of California, Berkeley, CA 94720 (United States); McDonald, D.L. [Rice University, Houston, TX 77005 (United States); Perkins, C. [University of California, Berkeley, CA 94720 (United States); Ruan, L.; Scheblein, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); and others

    2014-09-21

    The 2×3 channel pseudo Vertex Position Detector (pVPD) in the STAR experiment at RHIC has been upgraded to a 2×19 channel detector in the same acceptance, called the Vertex Position Detector (VPD). This detector is fully integrated into the STAR trigger system and provides the primary input to the minimum-bias trigger in Au+Au collisions. The information from the detector is used both in the STAR Level-0 trigger and offline to measure the location of the primary collision vertex along the beam pipe and the event “start time” needed by other fast-timing detectors in STAR. The offline timing resolution of single detector channels in full-energy Au+Au collisions is ∼100 ps, resulting in a start time resolution of a few tens of picoseconds and a resolution on the primary vertex location of ∼1 cm.

  1. The diversity of atomic hydrogen in slow rotator early-type galaxies

    Science.gov (United States)

    Young, Lisa M.; Serra, Paolo; Krajnović, Davor; Duc, Pierre-Alain

    2018-06-01

    We present interferometric observations of H I in nine slow rotator early-type galaxies of the Atlas3D sample. With these data, we now have sensitive H I searches in 34 of the 36 slow rotators. The aggregate detection rate is 32 per cent ± 8 per cent, consistent with the previous work; however, we find two detections with extremely high H I masses, whose gas kinematics are substantially different from what was previously known about H I in slow rotators. These two cases (NGC 1222 and NGC 4191) broaden the known diversity of H I properties in slow rotators. NGC 1222 is a merger remnant with prolate-like rotation and, if it is indeed prolate in shape, an equatorial gas disc; NGC 4191 has two counter-rotating stellar discs and an unusually large H I disc. We comment on the implications of this disc for the formation of 2σ galaxies. In general, the H I detection rate, the incidence of relaxed H I discs, and the H I/stellar mass ratios of slow rotators are indistinguishable from those of fast rotators. These broad similarities suggest that the H I we are detecting now is unrelated to the galaxies' formation processes and was often acquired after their stars were mostly in place. We also discuss the H I non-detections; some of these galaxies that are undetected in H I or CO are detected in other tracers (e.g. FIR fine structure lines and dust). The question of whether there is cold gas in massive galaxies' scoured nuclear cores still needs work. Finally, we discuss an unusual isolated H I cloud with a surprisingly faint (undetected) optical counterpart.

  2. Supernovae, compact stars and nuclear physics

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-01-01

    We briefly review the current understanding of supernova. We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 12 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to plausibly consist of individual hadrons. We conclude that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, cannot be a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation under appropriate conditions. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 39 refs., 8 figs., 2 tabs

  3. How Massive Single Stars End Their Life

    Science.gov (United States)

    Heger, A.; Fryer, C. L.; Woosley, S. E.; Langer, N.; Hartmann, D. H.

    2003-01-01

    How massive stars die-what sort of explosion and remnant each produces-depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided that single stars rotate rapidly enough at death, we speculate on stellar populations that might produce gamma-ray bursts and jet-driven supernovae.

  4. Gravity darkening in late-type stars. I. The Coriolis effect

    Science.gov (United States)

    Raynaud, R.; Rieutord, M.; Petitdemange, L.; Gastine, T.; Putigny, B.

    2018-02-01

    Context. Recent interferometric data have been used to constrain the brightness distribution at the surface of nearby stars, in particular the so-called gravity darkening that makes fast rotating stars brighter at their poles than at their equator. However, good models of gravity darkening are missing for stars that posses a convective envelope. Aim. In order to better understand how rotation affects the heat transfer in stellar convective envelopes, we focus on the heat flux distribution in latitude at the outer surface of numerical models. Methods: We carry out a systematic parameter study of three-dimensional, direct numerical simulations of anelastic convection in rotating spherical shells. As a first step, we neglect the centrifugal acceleration and retain only the Coriolis force. The fluid instability is driven by a fixed entropy drop between the inner and outer boundaries where stress-free boundary conditions are applied for the velocity field. Restricting our investigations to hydrodynamical models with a thermal Prandtl number fixed to unity, we consider both thick and thin (solar-like) shells, and vary the stratification over three orders of magnitude. We measure the heat transfer efficiency in terms of the Nusselt number, defined as the output luminosity normalised by the conductive state luminosity. Results: We report diverse Nusselt number profiles in latitude, ranging from brighter (usually at the onset of convection) to darker equator and uniform profiles. We find that the variations of the surface brightness are mainly controlled by the surface value of the local Rossby number: when the Coriolis force dominates the dynamics, the heat flux is weakened in the equatorial region by the zonal wind and enhanced at the poles by convective motions inside the tangent cylinder. In the presence of a strong background density stratification however, as expected in real stars, the increase of the local Rossby number in the outer layers leads to uniformisation of

  5. Time-scales of stellar rotational variability and starspot diagnostics

    Science.gov (United States)

    Arkhypov, Oleksiy V.; Khodachenko, Maxim L.; Lammer, Helmut; Güdel, Manuel; Lüftinger, Teresa; Johnstone, Colin P.

    2018-01-01

    The difference in stability of starspot distribution on the global and hemispherical scales is studied in the rotational spot variability of 1998 main-sequence stars observed by Kepler mission. It is found that the largest patterns are much more stable than smaller ones for cool, slow rotators, whereas the difference is less pronounced for hotter stars and/or faster rotators. This distinction is interpreted in terms of two mechanisms: (1) the diffusive decay of long-living spots in activity complexes of stars with saturated magnetic dynamos, and (2) the spot emergence, which is modulated by gigantic turbulent flows in convection zones of stars with a weaker magnetism. This opens a way for investigation of stellar deep convection, which is yet inaccessible for asteroseismology. Moreover, a subdiffusion in stellar photospheres was revealed from observations for the first time. A diagnostic diagram was proposed that allows differentiation and selection of stars for more detailed studies of these phenomena.

  6. X-ray sources in regions of star formation. II. The pre-main-sequence G star HDE 283572

    International Nuclear Information System (INIS)

    Walter, F.M.; Brown, A.; Linsky, J.L.; Rydgren, A.E.; Vrba, F.; Joint Institute for Laboratory Astrophysics, Boulder, CO; Computer Sciences Corp., El Segundo, CA; Naval Observatory, Flagstaff, AZ)

    1987-01-01

    This paper reports the detection of HDE 283572, a ninth-magnitude G star 8 arcmin south of RY Tau, as a bright X-ray source. The observations reveal this object to be a fairly massive (about 2 solar masses) pre-main-sequence star associated with the Taurus-Auriga star formation complex. It exhibits few of the characteristics of the classical T Tauri stars and is a good example of a naked T Tauri star. The star is a mid-G subgiant, of about three solar radii and rotates with a period of 1.5 d. The coronal and chromospheric surface fluxes are similar to those of the most active late type stars (excluding T Tauri stars). The X-ray and UV lines most likely arise in different atmospheric structures. Radiative losses are some 1000 times the quiet solar value and compare favorably with those of T Tauri stars. 49 references

  7. Polarimetry of symbiotic stars

    International Nuclear Information System (INIS)

    Piirola, V.

    1983-01-01

    Five symbiotic stars have been observed for linear polarization (UBVRI) in September 1981. Three systems, CH Cyg, CI Cyg and AG Peg show intrinsic polarization while in the case of Z And and AX Per the observed polarization seems to be mostly of interstellar origin. The position angle of polarization of CI Cyg and AG Peg rotates strongly vs. wavelength, as observed also for CH Cyg in 1977-80. The polarization of CH Cyg has decreased since May 1980, especially in the I, R and U bands, so that the maximum polarization is now in the blue (Psub(B) approx. 0.3%). Probably one is monitoring the formation, growth and disappearance of dust particles in the atmosphere of this star. Two related systems, PU Vul (Nova Vul 1979) and R Aql (Mira) have polarization behaviour rather similar to that of symbiotic stars which suggests that the M type giant present in these systems is responsible for most of the intrinsic polarization. (Auth.)

  8. Symbiotic stars

    Science.gov (United States)

    Kafatos, M.; Michalitsianos, A. G.

    1984-01-01

    The physical characteristics of symbiotic star systems are discussed, based on a review of recent observational data. A model of a symbiotic star system is presented which illustrates how a cool red-giant star is embedded in a nebula whose atoms are ionized by the energetic radiation from its hot compact companion. UV outbursts from symbiotic systems are explained by two principal models: an accretion-disk-outburst model which describes how material expelled from the tenuous envelope of the red giant forms an inwardly-spiralling disk around the hot companion, and a thermonuclear-outburst model in which the companion is specifically a white dwarf which superheats the material expelled from the red giant to the point where thermonuclear reactions occur and radiation is emitted. It is suspected that the evolutionary course of binary systems is predetermined by the initial mass and angular momentum of the gas cloud within which binary stars are born. Since red giants and Mira variables are thought to be stars with a mass of one or two solar mass, it is believed that the original cloud from which a symbiotic system is formed can consist of no more than a few solar masses of gas.

  9. A Physical Model of Pulsars as Gravitational Shielding and Oscillating Neutron Stars

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2015-04-01

    Full Text Available Pulsars are thought to be fast rotating neutron stars, synchronously emitting periodic Dirac-delta-shape radio-frequency pulses and Lorentzian-shape oscillating X-rays. The acceleration of charged particles along the magnetic field lines of neutron stars above the magnetic poles that deviate from the rotating axis initiates coherent beams of ra- dio emissions, which are viewed as pulses of radiation whenever the magnetic poles sweep the viewers. However, the conventional lighthouse model of pulsars is only con- ceptual. The mechanism through which particles are accelerated to produce coherent beams is still not fully understood. The process for periodically oscillating X-rays to emit from hot spots at the inner edge of accretion disks remains a mystery. In addition, a lack of reflecting X-rays of the pulsar by the Crab Nebula in the OFF phase does not support the lighthouse model as expected. In this study, we develop a physical model of pulsars to quantitatively interpret the emission characteristics of pulsars, in accor- dance with the author’s well-developed five-dimensional fully covariant Kaluza-Klein gravitational shielding theory and the physics of thermal and accelerating charged par- ticle radiation. The results obtained from this study indicate that, with the significant gravitational shielding by scalar field, a neutron star nonlinearly oscillates and produces synchronous periodically Dirac-delta-shape radio-frequency pulses (emitted by the os- cillating or accelerating charged particles as well as periodically Lorentzian-shape os- cillating X-rays (as the thermal radiation of neutron stars whose temperature varies due to the oscillation. This physical model of pulsars broadens our understanding of neu- tron stars and develops an innovative mechanism to model the emissions of pulsars.

  10. Rotation and Accretion Powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, V M [Department of Physics, McGill University, 3600 University St, Montreal, QC H3A 2T8 (Canada)

    2008-03-07

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly

  11. Rotation and Accretion Powered Pulsars

    International Nuclear Information System (INIS)

    Kaspi, V M

    2008-01-01

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you

  12. T Tauri stars - Wild as dust

    International Nuclear Information System (INIS)

    Bertout, C.

    1989-01-01

    T Tauri stars (TTSs), their surroundings, and their common evolution toward the main sequence are discussed. The photospheric properties of TTSs and their solar-type outer atmospheres, recent evidence for circumstellar disks around classical TTSs (CTTSs), and CTTS mass outflows are examined. TTSs are depicted as complex systems whose properties depend mostly on the initial conditions of star formation and on their rotation rates, which appear to control the magnetodynamic activity in the stars. The most exotic traits of CTTSs are primarily due to the disk and its interaction with the star, and the properties of weak-line TTSs (WTTSs) are mainly manifestations of the enhanced solar-type magnetic activity expected from their rotation rates. CTTSs are expected to become WTTSs when their disks dissipate. 217 refs

  13. Search for bright stars with infrared excess

    Energy Technology Data Exchange (ETDEWEB)

    Raharto, Moedji, E-mail: moedji@as.itb.ac.id [Astronomy Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Bright stars, stars with visual magnitude smaller than 6.5, can be studied using small telescope. In general, if stars are assumed as black body radiator, then the color in infrared (IR) region is usually equal to zero. Infrared data from IRAS observations at 12 and 25μm (micron) with good flux quality are used to search for bright stars (from Bright Stars Catalogues) with infrared excess. In magnitude scale, stars with IR excess is defined as stars with IR color m{sub 12}−m{sub 25}>0; where m{sub 12}−m{sub 25} = −2.5log(F{sub 12}/F{sub 25})+1.56, where F{sub 12} and F{sub 25} are flux density in Jansky at 12 and 25μm, respectively. Stars with similar spectral type are expected to have similar color. The existence of infrared excess in the same spectral type indicates the existence of circum-stellar dust, the origin of which is probably due to the remnant of pre main-sequence evolution during star formation or post AGB evolution or due to physical process such as the rotation of those stars.

  14. Dynamical effects of the spiral arms on the velocity distribution of disc stars

    Science.gov (United States)

    Hattori, Kohei; Gouda, Naoteru; Yano, Taihei; Sakai, Nobuyuki; Tagawa, Hiromichi

    2018-04-01

    Nearby disc stars in Gaia DR1 (TGAS) and RAVE DR5 show a bimodal velocity distribution in the metal-rich region (characterized by the Hercules stream) and mono-modal velocity distribution in the metal-poor region. We investigate the origin of this [Fe/H] dependence of the local velocity distribution by using 2D test particle simulations. We found that this [Fe/H] dependence can be well reproduced if we assume fast rotating bar models with Ωbar ~= 52 km s-1 kpc-1. A possible explanation for this result is that the metal-rich, relatively young stars are more likely to be affected by bar's outer Lindblad resonance due to their relatively cold kinematics. We also found that slowly rotating bar models with Ωbar ~= 39 km s-1 kpc-1 can not reproduce the observed data. Interestingly, when we additionally consider spiral arms, some models can reproduce the observed velocity distribution even when the bar is slowly rotating.

  15. Effect of tidal fields on star clusters

    Science.gov (United States)

    Chernoff, David; Weinberg, Martin

    1991-01-01

    We follow the dynamical evolution of a star cluster in a galactic tidal field using a restricted N-body code. We find large asymmetric distortions in the outer profile of the cluster in the first 10 or so crossing times as material is lost. Prograde stars escape preferentially and establish a potentially observable retrograde rotation in the halo. We present the rate of particle loss and compare with the prescription proposed by Lee and Ostriker (1987).

  16. CHEMICAL AND KINEMATICAL PROPERTIES OF BLUE STRAGGLER STARS AND HORIZONTAL BRANCH STARS IN NGC 6397

    International Nuclear Information System (INIS)

    Lovisi, L.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Contreras Ramos, R.; Gratton, R.

    2012-01-01

    We used three sets of high-resolution spectra acquired with the multifiber facility FLAMES at the Very Large Telescope of the European Southern Observatory to investigate the chemical and kinematical properties of a sample of 42 horizontal branch (HB) stars, 18 blue straggler stars (BSSs), and 86 main-sequence (MS) turnoff (TO) and sub-giant branch stars in the nearby globular cluster NGC 6397. We measured rotational velocities and Fe, O, and Mg abundances. All of the unevolved stars in our sample have low rotational velocites (vsin i –1 ), while the HB stars and BSSs show a broad distribution, with values ranging from 0 to ∼70 km s –1 . For HB stars with T 8200 K and T > 10,500 K, respectively) also show significant deviations in their iron abundance with respect to the cluster metallicity (as traced by the unevolved stars, [Fe/H] = –2.12). While similar chemical patterns have already been observed in other hot HB stars, this is the first evidence ever collected for BSSs. We interpret these abundance anomalies as due to the metal radiative levitation, occurring in stars with shallow or no convective envelopes.

  17. Rotational discontinuities in anisotropic plasmas

    International Nuclear Information System (INIS)

    Omidi, N.

    1992-01-01

    The kinetic structure of rotational discontinuities (RDs) in anisotropic plasmas with T perpendicular /T parallel > 1 is investigated by using a one-dimensional electromagnetic hybrid code. To form the RD, a new approach is used where the plasma is injected from one boundary and reflected from the other, resulting in the generation of a traveling fast shock and an RD. Unlike the previously used methods, no a priori assumptions are made regarding the initial structure (i.e. width or sense of rotation) of the rotational discontinuity. The results show that across the RD both the magnetic field strength and direction, as well as the plasma density change. Given that such a change can also be associated with an intermediate shock, the Rankine-Hugoniot relations are used to confirm that the observed structures are indeed RDs. It is found that the thickness of RDs is a few ion inertial lengths and is independent of the rotation angle. Also, the preferred sense of rotation is in the electron sense; however, RDs with a rotation angle larger than 180 degree are found to be unstable, changing their rotation to a stable ion sense

  18. SPECTRAL ENERGY DISTRIBUTIONS OF YOUNG STARS IN IC 348: THE ROLE OF DISKS IN ANGULAR MOMENTUM EVOLUTION OF YOUNG, LOW-MASS STARS

    International Nuclear Information System (INIS)

    Le Blanc, Thompson S.; Stassun, Keivan G.; Covey, Kevin R.

    2011-01-01

    Theoretical work suggests that a young star's angular momentum content and rotation rate may be strongly influenced by magnetic interactions with its circumstellar disk. A generic prediction of these 'disk-locking' theories is that a disk-locked star will be forced to co-rotate with the Keplerian angular velocity of the inner edge of the disk; that is, the disk's inner-truncation radius should equal its co-rotation radius. These theories have also been interpreted to suggest a gross correlation between young stars' rotation periods and the structural properties of their circumstellar disks, such that slowly rotating stars possess close-in disks that enforce the star's slow rotation, whereas rapidly rotating stars possess anemic or evacuated inner disks that are unable to brake the stars and instead the stars spin up as they contract. To test these expectations, we model the spectral energy distributions (SEDs) of 33 young stars in IC 348 with known rotation periods and infrared excesses indicating the presence of circumstellar disks. For each star, we match the observed SED, typically sampling 0.6-8.0 μm, to a grid of 200,000 pre-computed star+disk radiative transfer models, from which we infer the disk's inner-truncation radius. We then compare this truncation radius to the disk's co-rotation radius, calculated from the star's measured rotation period. We do not find obvious differences in the disk truncation radii of slow rotators versus rapid rotators. This holds true both at the level of whether close-in disk material is present at all, and in analyzing the precise location of the inner disk edge relative to the co-rotation radius among the subset of stars with close-in disk material. One interpretation is that disk locking is unimportant for the IC 348 stars in our sample. Alternatively, if disk locking does operate, then it must operate on both the slow and rapid rotators, potentially producing both spin-up and spin-down torques, and the transition from the

  19. The Diversity of Atomic Hydrogen in Slow Rotator Early-type Galaxies

    Science.gov (United States)

    Young, Lisa M.; Serra, Paolo; Krajnović, Davor; Duc, Pierre-Alain

    2018-02-01

    We present interferometric observations of H I in nine slow rotator early-type galaxies of the ATLAS3D sample. With these data, we now have sensitive H I searches in 34 of the 36 slow rotators. The aggregate detection rate is 32% ± 8%, consistent with previous work; however, we find two detections with extremely high H I masses, whose gas kinematics are substantially different from what was previously known about H I in slow rotators. These two cases (NGC 1222 and NGC 4191) broaden the known diversity of H I properties in slow rotators. NGC 1222 is a merger remnant with prolate-like rotation and, if it is indeed prolate in shape, an equatorial gas disc; NGC 4191 has two counterrotating stellar discs and an unusually large H I disc. We comment on the implications of this disc for the formation of 2σ galaxies. In general, the H I detection rate, the incidence of relaxed H I discs, and the H I/stellar mass ratios of slow rotators are indistinguishable from those of fast rotators. These broad similarities suggest that the H I we are detecting now is unrelated to the galaxies' formation processes and was often acquired after their stars were mostly in place. We also discuss the H I nondetections; some of these galaxies that are undetected in H I or CO are detected in other tracers (e.g. FIR fine structure lines and dust). The question of whether there is cold gas in massive galaxies' scoured nuclear cores still needs work. Finally, we discuss an unusual isolated H I cloud with a surprisingly faint (undetected) optical counterpart.

  20. Testing the Young Neutron Star Scenario with Persistent Radio Emission Associated with FRB 121102

    International Nuclear Information System (INIS)

    Kashiyama, Kazumi; Murase, Kohta

    2017-01-01

    Recently a repeating fast radio burst (FRB) 121102 has been confirmed to be an extragalactic event and a persistent radio counterpart has been identified. While other possibilities are not ruled out, the emission properties are broadly consistent with Murase et al. that theoretically proposed quasi-steady radio emission as a counterpart of both FRBs and pulsar-driven supernovae. Here, we constrain the model parameters of such a young neutron star scenario for FRB 121102. If the associated supernova has a conventional ejecta mass of M ej ≳ a few M ⊙ , a neutron star with an age of t age ∼ 10–100 years, an initial spin period of P i ≲ a few ms, and a dipole magnetic field of B dip ≲ a few × 10 13 G can be compatible with the observations. However, in this case, the magnetically powered scenario may be favored as an FRB energy source because of the efficiency problem in the rotation-powered scenario. On the other hand, if the associated supernova is an ultra-stripped one or the neutron star is born by the accretion-induced collapse with M ej ∼ 0.1 M ⊙ , a younger neutron star with t age ∼ 1–10 years can be the persistent radio source and might produce FRBs with the spin-down power. These possibilities can be distinguished by the decline rate of the quasi-steady radio counterpart.

  1. AN INTERFEROMETRIC AND SPECTROSCOPIC ANALYSIS OF THE MULTIPLE STAR SYSTEM HD 193322

    International Nuclear Information System (INIS)

    Ten Brummelaar, Theo A.; Farrington, Christopher D.; Schaefer, Gail H.

    2011-01-01

    The star HD 193322 is a remarkable multiple system of massive stars that lies at the heart of the cluster Collinder 419. Here we report on new spectroscopic observations and radial velocities of the narrow-lined component Ab1 which we use to determine its orbital motion around a close companion Ab2 (P = 312 days) and around a distant third star Aa (P = 35 years). We have also obtained long baseline interferometry of the target in the K' band with the CHARA Array which we use in two ways. First, we combine published speckle interferometric measurements with CHARA separated fringe packet measurements to improve the visual orbit for the wide Aa,Ab binary. Second, we use measurements of the fringe packet from Aa to calibrate the visibility of the fringes of the Ab1,Ab2 binary, and we analyze these fringe visibilities to determine the visual orbit of the close system. The two most massive stars, Aa and Ab1, have masses of approximately 21 and 23 M sun , respectively, and their spectral line broadening indicates that they represent extremes of fast and slow projected rotational velocity, respectively.

  2. Testing the Young Neutron Star Scenario with Persistent Radio Emission Associated with FRB 121102

    Energy Technology Data Exchange (ETDEWEB)

    Kashiyama, Kazumi [Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Murase, Kohta [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-04-10

    Recently a repeating fast radio burst (FRB) 121102 has been confirmed to be an extragalactic event and a persistent radio counterpart has been identified. While other possibilities are not ruled out, the emission properties are broadly consistent with Murase et al. that theoretically proposed quasi-steady radio emission as a counterpart of both FRBs and pulsar-driven supernovae. Here, we constrain the model parameters of such a young neutron star scenario for FRB 121102. If the associated supernova has a conventional ejecta mass of M {sub ej} ≳ a few M {sub ⊙}, a neutron star with an age of t {sub age} ∼ 10–100 years, an initial spin period of P{sub i} ≲ a few ms, and a dipole magnetic field of B {sub dip} ≲ a few × 10{sup 13} G can be compatible with the observations. However, in this case, the magnetically powered scenario may be favored as an FRB energy source because of the efficiency problem in the rotation-powered scenario. On the other hand, if the associated supernova is an ultra-stripped one or the neutron star is born by the accretion-induced collapse with M {sub ej} ∼ 0.1 M {sub ⊙}, a younger neutron star with t {sub age} ∼ 1–10 years can be the persistent radio source and might produce FRBs with the spin-down power. These possibilities can be distinguished by the decline rate of the quasi-steady radio counterpart.

  3. Observational Effects of Magnetism in O Stars: Surface Nitrogen Abundances

    Science.gov (United States)

    Martins, F.; Escolano, C.; Wade, G. A.; Donati, J. F.; Bouret, J. C.

    2011-01-01

    Aims. We investigate the surface nitrogen content of the six magnetic O stars known to date as well as of the early B-type star Tau Sco.. We compare these abundances to predictions of evolutionary models to isolate the effects of magnetic field on the transport of elements in stellar interiors. Methods. We conduct a quantitative spectroscopic analysis of the ample stars with state-of-the-art atmosphere models. We rely on high signal-to-noise ratio, high resolution optical spectra obtained with ESPADONS at CFHT and NARVAL at TBL. Atmosphere models and synthetic spectra are computed with the code CMFGEN. Values of N/H together with their uncertainties are determined and compared to predictions of evolutionary models. Results. We find that the magnetic stars can be divided into two groups: one with stars displaying no N enrichment (one object); and one with stars most likely showing extra N enrichment (5 objects). For one star (Ori C) no robust conclusion can be drawn due to its young age. The star with no N enrichment is the one with the weakest magnetic field, possibly of dynamo origin. It might be a star having experienced strong magnetic braking under the condition of solid body rotation, but its rotational velocity is still relatively large. The five stars with high N content were probably slow rotators on the zero age main sequence, but they have surface N/H typical of normal O stars, indicating that the presence of a (probably fossil) magnetic field leads to extra enrichment. These stars may have a strong differential rotation inducing shear mixing. Our results shOuld be viewed as a basis on which new theoretical simulations can rely to better understand the effect of magnetism on the evolution of massive stars.

  4. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors.

    Science.gov (United States)

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-07-07

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.

  5. Hybrid stars

    Indian Academy of Sciences (India)

    Hybrid stars. AsHOK GOYAL. Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India. Abstract. Recently there have been important developments in the determination of neutron ... number and the electric charge. ... available to the system to rearrange concentration of charges for a given fraction of.

  6. Pulsating stars

    CERN Document Server

    Catelan, M?rcio

    2014-01-01

    The most recent and comprehensive book on pulsating stars which ties the observations to our present understanding of stellar pulsation and evolution theory.  Written by experienced researchers and authors in the field, this book includes the latest observational results and is valuable reading for astronomers, graduate students, nuclear physicists and high energy physicists.

  7. Variable stars

    International Nuclear Information System (INIS)

    Feast, M.W.; Wenzel, W.; Fernie, J.D.; Percy, J.R.; Smak, J.; Gascoigne, S.C.B.; Grindley, J.E.; Lovell, B.; Sawyer Hogg, H.B.; Baker, N.; Fitch, W.S.; Rosino, L.; Gursky, H.

    1976-01-01

    A critical review of variable stars is presented. A fairly complete summary of major developments and discoveries during the period 1973-1975 is given. The broad developments and new trends are outlined. Essential problems for future research are identified. (B.R.H. )

  8. Differential rotation of viscous neutron matter

    International Nuclear Information System (INIS)

    Nitsch, J.; Pfarr, J.; Heintzmann, H.

    1976-08-01

    The reaction of homogeneous sphere of neutron matter set in rotational motion under the influence of an external torque acting on its surface is investigated. For neutron matter with a typical neutron star density of 10 15 gcm -3 and a temperature varying between 10 6 and 10 9 K originally in uniform rotation, a time dependent differential motion sets in, which lasts a time scale of hours to some decades, resulting finally in co-rotation. During these times the braking index of a magnetic neutron sphere very sensitively depends on time

  9. Dense magnetized plasma associated with a fast radio burst.

    Science.gov (United States)

    Masui, Kiyoshi; Lin, Hsiu-Hsien; Sievers, Jonathan; Anderson, Christopher J; Chang, Tzu-Ching; Chen, Xuelei; Ganguly, Apratim; Jarvis, Miranda; Kuo, Cheng-Yu; Li, Yi-Chao; Liao, Yu-Wei; McLaughlin, Maura; Pen, Ue-Li; Peterson, Jeffrey B; Roman, Alexander; Timbie, Peter T; Voytek, Tabitha; Yadav, Jaswant K

    2015-12-24

    Fast radio bursts are bright, unresolved, non-repeating, broadband, millisecond flashes, found primarily at high Galactic latitudes, with dispersion measures much larger than expected for a Galactic source. The inferred all-sky burst rate is comparable to the core-collapse supernova rate out to redshift 0.5. If the observed dispersion measures are assumed to be dominated by the intergalactic medium, the sources are at cosmological distances with redshifts of 0.2 to 1 (refs 10 and 11). These parameters are consistent with a wide range of source models. One fast burst revealed circular polarization of the radio emission, but no linear polarization was detected, and hence no Faraday rotation measure could be determined. Here we report the examination of archival data revealing Faraday rotation in the fast radio burst FRB 110523. Its radio flux and dispersion measure are consistent with values from previously reported bursts and, accounting for a Galactic contribution to the dispersion and using a model of intergalactic electron density, we place the source at a maximum redshift of 0.5. The burst has a much higher rotation measure than expected for this line of sight through the Milky Way and the intergalactic medium, indicating magnetization in the vicinity of the source itself or within a host galaxy. The pulse was scattered by two distinct plasma screens during propagation, which requires either a dense nebula associated with the source or a location within the central region of its host galaxy. The detection in this instance of magnetization and scattering that are both local to the source favours models involving young stellar populations such as magnetars over models involving the mergers of older neutron stars, which are more likely to be located in low-density regions of the host galaxy.

  10. Global and photospheric physical parameters of active dwarf stars

    International Nuclear Information System (INIS)

    Pettersen, B.R.

    1983-01-01

    Physical parameters (temperature, luminosity, radius, mass and chemical abundance) of the photospheres of red dwarf flare stars and spotted stars are determined for quiescent conditions. The interrelations between these quantities are compared to the results of theoretical investigation for low mass stars. The evolutionary state of flare stars is discussed. Observational results from spectroscopic and photometric methods to determine the rotation of active dwarfs are reviewed. The possibilities of global oscillations in dwarf stars are considered and preliminary results of a photometric search for oscillation in red dwarf luminosities are presented. (orig.)

  11. Conflicting evidence on the composition of Am stars

    International Nuclear Information System (INIS)

    't Veer, C. van

    1976-01-01

    The programme involves the study of Am stars of differing temperatures and luminosities as well as of the Am stars deviating from the positions of the classical ones in the photometric diagrams. For certain stars a significant disagreement between the so-called 'abundance indices' and the abundances determined at high dispersion is found. Often giants or spectroscopic binaries, or stars with a detectable rotation, are involved. However, there are no consistent relationships between these different peculiarities and the observed disagreements. Examples are given of stars studied. Are these 'abundance indices' really what they are supposed to be in all cases. In which cases are they not and why. (Auth.)

  12. Star Products and Applications

    OpenAIRE

    Iida, Mari; Yoshioka, Akira

    2010-01-01

    Star products parametrized by complex matrices are defined. Especially commutative associative star products are treated, and star exponentials with respect to these star products are considered. Jacobi's theta functions are given as infinite sums of star exponentials. As application, several concrete identities are obtained by properties of the star exponentials.

  13. Solar neighbourhood flare stars - a review

    International Nuclear Information System (INIS)

    Kunkel, W.E.

    1975-01-01

    The review concentrates on 'astronomical' aspects of flare activity, such as where, and under what circumstances flare activity is found in the solar vicinity. Non-classical activity is briefly described (without regard for completeness) and the influence of detection effects on flare observations is treated. Flare stars discovered during the last four years are described and flare activity of local dMe stars is compared. The BY Draconis syndrome is discussed followed by some remarks about rotation. Pleiades flare activity is compared to that of the solar neighbourhood and evidence for the evolution of flare activity in stars is examined. (Auth.)

  14. Cartography of the sun and the stars

    CERN Document Server

    Neiner, Coralie

    2016-01-01

    The mapping of the surface of stars requires diverse skills, analysis techniques and advanced modeling, i.e. the collaboration of scientists in various specialties. This volume gives insights into new techniques allowing for the first time to obtain resolved images of stars. It takes stock of what has been achieved so far in Chile, on the ESO VLTI instrument or, in the States, on the CHARA instrument. In recent times interferometry, combined with adaptive optics has allowed to reconstruct images of stars. Besides the Sun (of course) by now five stars have been resolved in detail. In addition to interferometry, this book highlights techniques used for mapping the surfaces of stars using photometry made by space observatories; Zeeman- and Doppler Imaging; mapping the surface element abundances via spectroscopy. This book will also take stock of the best images of the  solar surface, made by connecting the differential rotation to the underlying physical parameters derived from helioseismology. Recent measureme...

  15. Metallicism and pulsation: an analysis of the delta Delphini stars

    International Nuclear Information System (INIS)

    Kurtz, D.W.

    1976-01-01

    Fine abundance analyses of seven delta Delphini stars and one delta Scuti star relative to four comparison standards are presented. Five of the delta Del stars are shown to have abundances most similar to the evolved Am stars. It is argued that these abundances are different from the classical Am star and Ap star abundances and that similarities to the Ba II star abundances are coincidental. We suggest that the anomalous abundance delta Del stars are evolved metallic line stars on the basis of their abundances, position in the β, M/sub v/ plane, inferred rotational velocities, and perhaps their binary incidence. Some of the delta Del stars are delta Scuti pulsators. We argue that pulsation and metallicism are mutually exclusive among the classical Am stars but may coexist in other stars related to the classical Am stars. A preference for the diffusion hypothesis model for the metallic line stars is stated and supported and the implications of the coexistence of pulsation and diffusion are discussed

  16. ROTATION PERIODS OF YOUNG BROWN DWARFS: K2 SURVEY IN UPPER SCORPIUS

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Alexander [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Kostov, Veselin [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Jayawardhana, Ray [Faculty of Science, York University, 355 Lumbers Building, 4700 Keele Street, Toronto, ON M3J 1P2 (Canada); Mužić, Koraljka, E-mail: as110@st-andrews.ac.uk [Nucleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejercito 441, Santiago (Chile)

    2015-08-20

    We report rotational periods for 16 young brown dwarfs in the nearby Upper Scorpius association, based on 72 days of high-cadence, high-precision photometry from the Keplerspace telescope’s K2 mission. The periods range from a few hours to two days (plus one outlier at five days), with a median just above one day, confirming that brown dwarfs, except at the very youngest ages, are fast rotators. Interestingly, four of the slowest rotators in our sample exhibit mid-infrared excess emission from disks; at least two also show signs of disk eclipses and accretion in the light curves. Comparing these new periods with those for two other young clusters and simple angular momentum evolution tracks, we find little or no rotational braking in brown dwarfs between 1–10 Myr, in contrast to low-mass stars. Our findings show that disk braking, while still at work, is inefficient in the substellar regime, thus providing an important constraint on the mass dependence of the braking mechanism.

  17. ROTATION PERIODS OF YOUNG BROWN DWARFS: K2 SURVEY IN UPPER SCORPIUS

    International Nuclear Information System (INIS)

    Scholz, Alexander; Kostov, Veselin; Jayawardhana, Ray; Mužić, Koraljka

    2015-01-01

    We report rotational periods for 16 young brown dwarfs in the nearby Upper Scorpius association, based on 72 days of high-cadence, high-precision photometry from the Keplerspace telescope’s K2 mission. The periods range from a few hours to two days (plus one outlier at five days), with a median just above one day, confirming that brown dwarfs, except at the very youngest ages, are fast rotators. Interestingly, four of the slowest rotators in our sample exhibit mid-infrared excess emission from disks; at least two also show signs of disk eclipses and accretion in the light curves. Comparing these new periods with those for two other young clusters and simple angular momentum evolution tracks, we find little or no rotational braking in brown dwarfs between 1–10 Myr, in contrast to low-mass stars. Our findings show that disk braking, while still at work, is inefficient in the substellar regime, thus providing an important constraint on the mass dependence of the braking mechanism

  18. On the theory of group generation of stars

    Science.gov (United States)

    Zhilyayev, B. Y.; Porfiryev, V. V.; Shulman, L. M.

    1973-01-01

    The hypothesis proposed is that topology of a rotating gaseous cloud can be variable in the contraction process. Due to rotation an originally spherical cloud is transformed into a toroidal body. The contraction of a thin torus is considered with different suppositions on cooling the gas. In the determined time the torus will become gravitationally unstable. The excitation of Jeans' waves is shown to result in the disintegration of the torus into fragments. The number of the fragments and their mass distributions are calculated. The proposed hypothesis on toroidal stages in stellar evolution can remove some difficulties in the theory of structure and evolution of stars, such as absence of limitary stars, distribution of rotation velocities of early-type stars, origin of poloidal magnetic fields and decline rotators with the magnetic axis orthogonal to the axis of rotation.

  19. Polarized bow shocks reveal features of the winds and environments of massive stars

    Science.gov (United States)

    Shrestha, Manisha

    2018-01-01

    Massive stars strongly affect their surroundings through their energetic stellar winds and deaths as supernovae. The bow shock structures created by fast-moving massive stars contain important information about the winds and ultimate fates of these stars as well as their local interstellar medium (ISM). Since bow shocks are aspherical, the light scattered in the dense shock material becomes polarized. Analyzing this polarization reveals details of the bow shock geometry as well as the composition, velocity, density, and albedo of the scattering material. With these quantities, we can constrain the properties of the stellar wind and thus the evolutionary state of the star, as well as the dust composition of the local ISM.In my dissertation research, I use a Monte Carlo radiative transfer code that I optimized to simulate the polarization signatures produced by both resolved and unresolved stellar wind bow shocks (SWBS) illuminated by a central star and by shock emission. I derive bow shock shapes and densities from published analytical calculations and smooth particle hydrodynamic (SPH) models. In the case of the analytical SWBS and electron scattering, I find that higher optical depths produce higher polarization and position angle rotations at specific viewing angles compared to theoretical predictions for low optical depths. This is due to the geometrical properties of the bow shock combined with multiple scattering effects. For dust scattering, the polarization signature is strongly affected by wavelength, dust grain properties, and viewing angle. The behavior of the polarization as a function of wavelength in these cases can distinguish among different dust models for the local ISM. In the case of SPH density structures, I investigate how the polarization changes as a function of the evolutionary phase of the SWBS. My dissertation compares these simulations with polarization data from Betelgeuse and other massive stars with bow shocks. I discuss the

  20. Rotational Modulation and Activity Cycles at Rotational Extremes: 25 yrs of NURO Photometry for HII 1883

    Science.gov (United States)

    Milingo, Jackie; Saar, Steven; Marschall, Laurence

    2018-01-01

    We present a 25 yr compilation of V-band differential photometry for the Pleiades K dwarf HII 1883 (V660 Tau). HII 1883 has a rotational period of ~ 0.24 d and displays significant rotational modulation due to non-uniform surface brightness or "starspots". Preliminary work yields a cycle period of ~ 9 yrs and rotational shear (ΔP_rot/) considerably less than solar. HII 1883 is one of the fastest rotating single stars with a known cycle. With additional data available we compare newly determined P_cyc and ΔP_rot/ values with those of other stars, putting HII 1883 into the broader context of dynamo properties in single cool dwarfs.

  1. THE CHANDRA VARIABLE GUIDE STAR CATALOG

    International Nuclear Information System (INIS)

    Nichols, Joy S.; Lauer, Jennifer L.; Morgan, Douglas L.; Sundheim, Beth A.; Henden, Arne A.; Huenemoerder, David P.; Martin, Eric

    2010-01-01

    Variable stars have been identified among the optical-wavelength light curves of guide stars used for pointing control of the Chandra X-ray Observatory. We present a catalog of these variable stars along with their light curves and ancillary data. Variability was detected to a lower limit of 0.02 mag amplitude in the 4000-10000 A range using the photometrically stable Aspect Camera on board the Chandra spacecraft. The Chandra Variable Guide Star Catalog (VGUIDE) contains 827 stars, of which 586 are classified as definitely variable and 241 are identified as possibly variable. Of the 586 definite variable stars, we believe 319 are new variable star identifications. Types of variables in the catalog include eclipsing binaries, pulsating stars, and rotating stars. The variability was detected during the course of normal verification of each Chandra pointing and results from analysis of over 75,000 guide star light curves from the Chandra mission. The VGUIDE catalog represents data from only about 9 years of the Chandra mission. Future releases of VGUIDE will include newly identified variable guide stars as the mission proceeds. An important advantage of the use of space data to identify and analyze variable stars is the relatively long observations that are available. The Chandra orbit allows for observations up to 2 days in length. Also, guide stars were often used multiple times for Chandra observations, so many of the stars in the VGUIDE catalog have multiple light curves available from various times in the mission. The catalog is presented as both online data associated with this paper and as a public Web interface. Light curves with data at the instrumental time resolution of about 2 s, overplotted with the data binned at 1 ks, can be viewed on the public Web interface and downloaded for further analysis. VGUIDE is a unique project using data collected during the mission that would otherwise be ignored. The stars available for use as Chandra guide stars are

  2. The heterogeneity of surfaces of magnetic Ap stars

    International Nuclear Information System (INIS)

    Hack, M.

    1977-01-01

    The observations of spectrum-variability and light-variability of Ap stars are reviewed. It is shown that these variations are interpretable as due to the changing aspect of the spotted surface as the star rotates. It is stressed that the geometry of the phenomenon is understood fairly well but the physics is very far from being understood. (Auth.)

  3. Seismic diagnosis from gravity modes strongly affected by rotation

    Science.gov (United States)

    Prat, Vincent; Mathis, Stéphane; Lignières, François; Ballot, Jérôme; Culpin, Pierre-Marie

    2017-10-01

    Most of the information we have about the internal rotation of stars comes from modes that are weakly affected by rotation, for example by using rotational splittings. In contrast, we present here a method, based on the asymptotic theory of Prat et al. (2016), which allows us to analyse the signature of rotation where its effect is the most important, that is in low-frequency gravity modes that are strongly affected by rotation. For such modes, we predict two spectral patterns that could be confronted to observed spectra and those computed using fully two-dimensional oscillation codes.

  4. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter; Brorsen, Michael

    Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....

  5. Spectroscopic survey of Kepler stars - II. FIES/NOT observations of A- and F-type stars

    DEFF Research Database (Denmark)

    Niemczura, E.; Polinska, M.; Murphy, S. J.

    2017-01-01

    to derive effective temperatures, surface gravities and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined...... obtained are typical for stars in the observed temperature and surface gravity ranges. Moreover, we affirm the results of Niemczura et al. that Am stars do not have systematically higher microturbulent velocities than normal stars of the same temperature....

  6. The evolution of single stars

    International Nuclear Information System (INIS)

    Tayler, R.J.

    1982-01-01

    The general outline of the evolution of single stars is well understood but at most stages of evolution important uncertainties remain. This paper contains a very personal view of what are the major uncertainties and of what problems remain to be solved before one can be satisfied with the theory. It is suggested that some problems may be essentially insoluble even with the very large and fast computers that are currently available. (author)

  7. A combined multiwavelength VLA/ALMA/Chandra study unveils the complex magnetosphere of the B-type star HR5907

    Science.gov (United States)

    Leto, P.; Trigilio, C.; Oskinova, L. M.; Ignace, R.; Buemi, C. S.; Umana, G.; Ingallinera, A.; Leone, F.; Phillips, N. M.; Agliozzo, C.; Todt, H.; Cerrigone, L.

    2018-05-01

    We present new radio/millimeter measurements of the hot magnetic star HR 5907 obtained with the VLA and ALMA interferometers. We find that HR 5907 is the most radio luminous early type star in the cm-mm band among those presently known. Its multi-wavelength radio light curves are strongly variable with an amplitude that increases with radio frequency. The radio emission can be explained by the populations of the non-thermal electrons accelerated in the current sheets on the outer border of the magnetosphere of this fast-rotating magnetic star. We classify HR 5907 as another member of the growing class of strongly magnetic fast-rotating hot stars where the gyro-synchrotron emission mechanism efficiently operates in their magnetospheres. The new radio observations of HR 5907 are combined with archival X-ray data to study the physical condition of its magnetosphere. The X-ray spectra of HR 5907 show tentative evidence for the presence of non-thermal spectral component. We suggest that non-thermal X-rays originate a stellar X-ray aurora due to streams of non-thermal electrons impacting on the stellar surface. Taking advantage of the relation between the spectral indices of the X-ray power-law spectrum and the non-thermal electron energy distributions, we perform 3-D modelling of the radio emission for HR 5907. The wavelength-dependent radio light curves probe magnetospheric layers at different heights above the stellar surface. A detailed comparison between simulated and observed radio light curves leads us to conclude that the stellar magnetic field of HR 5907 is likely non-dipolar, providing further indirect evidence of the complex magnetic field topology of HR 5907.

  8. THE CLASSIFICATION OF KEPLER B-STAR VARIABLES

    International Nuclear Information System (INIS)

    McNamara, Bernard J.; Jackiewicz, Jason; McKeever, Jean

    2012-01-01

    The light curves of 252 B-star candidates in the Kepler database are analyzed in a similar fashion to that done by Balona et al. to further characterize B-star variability, increase the sample of variable B stars for future study, and to identify stars whose power spectra include particularly interesting features such as frequency groupings. Stars are classified as either constant light emitters, β Cep stars, slowly pulsating B stars (SPBs), hybrid pulsators, binaries or stars whose light curves are dominated by rotation (Bin/Rot), hot subdwarfs, or white dwarfs. One-hundred stars in our sample were found to be either light constants or to be variable at a level of less than 0.02 mmag. We increase the number of candidate B-star variables found in the Kepler database by Balona et al. in the following fashion: β Cep stars from 0 to 10, SPBs from eight to 54, hybrid pulsators from seven to 21, and Bin/Rot stars from 23 to 82. For comparison purposes, approximately 51 SPBs and six hybrids had been known prior to 2007. The number of β Cep stars known prior to 2004 was 93. A secondary result of this study is the identification of an additional 11 pulsating white dwarf candidates, four of which possess frequency groupings.

  9. The rotation of spiral galaxies.

    Science.gov (United States)

    Rubin, V C

    1983-06-24

    There is accumulating evidence that as much as 90 percent of the mass of the universe is nonluminous and is clumped, halo-like, around individual galaxies. The gravitational force of this dark matter is presumed to be responsible for the high rotational velocities of stars and gas in the disks of spiral galaxie. At present, the form of the dark matter is unknown. Possible candidates span a range in mass of 10(70), from non-zero-mass neutrinos to massive black holes.

  10. Habitability of planets around red dwarf stars.

    Science.gov (United States)

    Heath, M J; Doyle, L R; Joshi, M M; Haberle, R M

    1999-08-01

    Recent models indicate that relatively moderate climates could exist on Earth-sized planets in synchronous rotation around red dwarf stars. Investigation of the global water cycle, availability of photosynthetically active radiation in red dwarf sunlight, and the biological implications of stellar flares, which can be frequent for red dwarfs, suggests that higher plant habitability of red dwarf planets may be possible.

  11. On the angular momentum in star formation

    International Nuclear Information System (INIS)

    Horedt, G.P.

    1978-01-01

    The author discusses the rotation of interstellar clouds which are in a stage immediately before star formation. Cloud collisions seem to be the principal cause of the observed rotation of interstellar clouds. The rotational motion of the clouds is strongly influenced by turbulence. Theories dealing with the resolution of the angular momentum problem in star formation are classified into five major groups. The old idea that the angular momentum of an interstellar cloud passes during star formation into the angular momentum of double star systems and/or circumstellar clouds, is developed. It is suggested that a rotating gas cloud contracts into a ring-like structure which fragments into self-gravitating subcondensations. By collisions and gas accretion these subcondensations accrete into binary systems surrounded by circumstellar clouds. Using some rough approximations the authors find analytical expressions for the semi-major axis of the binary system and for the density of the circumstellar clouds as a function of the initial density and of the initial angular velocity of an interstellar cloud. The obtained values are well within the observational limits. (Auth.)

  12. Gamma-ray bursts from tidally spun-up Wolf-Rayet stars?

    NARCIS (Netherlands)

    Detmers, R.G.; Langer, N.; Podsiadlowski, Ph.; Izzard, R.G.

    2008-01-01

    Context. The collapsar model requires rapidly rotating Wolf-Rayet stars as progenitors of long gamma-ray bursts. However, Galactic Wolf-Rayet stars rapidly lose angular momentum due to their intense stellar winds. Aims. We investigate whether the tidal interaction of a Wolf-Rayet star with a compact

  13. Evolution of long-lived globular cluster stars. III. Effect of the initial helium spread on the position of stars in a synthetic Hertzsprung-Russell diagram

    Science.gov (United States)

    Chantereau, W.; Charbonnel, C.; Meynet, G.

    2016-08-01

    Context. Globular clusters host multiple populations of long-lived low-mass stars whose origin remains an open question. Several scenarios have been proposed to explain the associated photometric and spectroscopic peculiarities. They differ, for instance, in the maximum helium enrichment they predict for stars of the second population, which these stars can inherit at birth as the result of the internal pollution of the cluster by different types of stars of the first population. Aims: We present the distribution of helium-rich stars in present-day globular clusters as it is expected in the original framework of the fast-rotating massive stars scenario (FRMS) as first-population polluters. We focus on NGC 6752. Methods: We completed a grid of 330 stellar evolution models for globular cluster low-mass stars computed with different initial chemical compositions corresponding to the predictions of the original FRMS scenario for [Fe/H] = -1.75. Starting from the initial helium-sodium relation that allows reproducing the currently observed distribution of sodium in NGC 6752, we deduce the helium distribution expected in that cluster at ages equal to 9 and 13 Gyr. We distinguish the stars that are moderately enriched in helium from those that are very helium-rich (initial helium mass fraction below and above 0.4, respectively), and compare the predictions of the FRMS framework with other scenarios for globular cluster enrichment. Results: The effect of helium enrichment on the stellar lifetime and evolution reduces the total number of very helium-rich stars that remain in the cluster at 9 and 13 Gyr to only 12% and 10%, respectively, from an initial fraction of 21%. Within this age range, most of the stars still burn their hydrogen in their core, which widens the MS band significantly in effective temperature. The fraction of very helium-rich stars drops in the more advanced evolution phases, where the associated spread in effective temperature strongly decreases. These

  14. Unsupervised classification of variable stars

    Science.gov (United States)

    Valenzuela, Lucas; Pichara, Karim

    2018-03-01

    During the past 10 years, a considerable amount of effort has been made to develop algorithms for automatic classification of variable stars. That has been primarily achieved by applying machine learning methods to photometric data sets where objects are represented as light curves. Classifiers require training sets to learn the underlying patterns that allow the separation among classes. Unfortunately, building training sets is an expensive process that demands a lot of human efforts. Every time data come from new surveys; the only available training instances are the ones that have a cross-match with previously labelled objects, consequently generating insufficient training sets compared with the large amounts of unlabelled sources. In this work, we present an algorithm that performs unsupervised classification of variable stars, relying only on the similarity among light curves. We tackle the unsupervised classification problem by proposing an untraditional approach. Instead of trying to match classes of stars with clusters found by a clustering algorithm, we propose a query-based method where astronomers can find groups of variable stars ranked by similarity. We also develop a fast similarity function specific for light curves, based on a novel data structure that allows scaling the search over the entire data set of unlabelled objects. Experiments show that our unsupervised model achieves high accuracy in the classification of different types of variable stars and that the proposed algorithm scales up to massive amounts of light curves.

  15. Cooling of hypernuclear compact stars

    Science.gov (United States)

    Raduta, Adriana R.; Sedrakian, Armen; Weber, Fridolin

    2018-04-01

    We study the thermal evolution of hypernuclear compact stars constructed from covariant density functional theory of hypernuclear matter and parametrizations which produce sequences of stars containing two-solar-mass objects. For the input in the simulations, we solve the Bardeen-Cooper-Schrieffer gap equations in the hyperonic sector and obtain the gaps in the spectra of Λ, Ξ0, and Ξ- hyperons. For the models with masses M/M⊙ ≥ 1.5 the neutrino cooling is dominated by hyperonic direct Urca processes in general. In the low-mass stars the (Λp) plus leptons channel is the dominant direct Urca process, whereas for more massive stars the purely hyperonic channels (Σ-Λ) and (Ξ-Λ) are dominant. Hyperonic pairing strongly suppresses the processes on Ξ-s and to a lesser degree on Λs. We find that intermediate-mass 1.5 ≤ M/M⊙ ≤ 1.8 models have surface temperatures which lie within the range inferred from thermally emitting neutron stars, if the hyperonic pairing is taken into account. Most massive models with M/M⊙ ≃ 2 may cool very fast via the direct Urca process through the (Λp) channel because they develop inner cores where the S-wave pairing of Λs and proton is absent.

  16. ROTATION AND MAGNETIC ACTIVITY IN A SAMPLE OF M-DWARFS

    International Nuclear Information System (INIS)

    Browning, Matthew K.; Basri, Gibor; Marcy, Geoffrey W.; Zhang Jiahao; West, Andrew A.

    2010-01-01

    We have analyzed the rotational broadening and chromospheric activity in a sample of 123 M-dwarfs, using spectra taken at the W.M. Keck Observatory as part of the California Planet Search program. We find that only seven of these stars are rotating more rapidly than our detection threshold of v sin i ∼ 2.5 km s -1 . Rotation appears to be more common in stars later than M3 than in the M0-M2.5 mass range: we estimate that less than 10% of early-M stars are detectably rotating, whereas roughly a third of those later than M4 show signs of rotation. These findings lend support to the view that rotational braking becomes less effective in fully convective stars. By measuring the equivalent widths of the Ca II H and K lines for the stars in our sample, and converting these to approximate L Ca /L bol measurements, we also provide constraints on the connection between rotation and magnetic activity. Measurable rotation is a sufficient, but not necessary condition for activity in our sample: all the detectable rotators show strong Ca II emission, but so too do a small number of non-rotating stars, which we presume may lie at high inclination angles relative to our line of sight. Our data are consistent with a 'saturation-type' rotation-activity relationship, with activity roughly independent of rotation above a threshold velocity of less than 6 km s -1 . We also find weak evidence for a 'gap' in L Ca /L bol between a highly active population of stars, which typically are detected as rotators, and another much less active group.

  17. A new interpretation of luminous blue stars

    International Nuclear Information System (INIS)

    Stothers, R.

    1976-01-01

    A major revision of current theoretical ideas about the brightest blue stars must be made if Carson's new radiative opacities are adopted in stellar models. Unlike earlier opacities, the new opacities exhibit a large ''bump'' due to CNO ionization, which leads to very strong central condensation, convective instability, and pulsational instability in hot, diffuse stellar envelopes (typically those in which L/M>10 3 solar units). Despite a number of theoretical uncertainties, the new picture of the structure of very luminous stars is reasonably successful in accounting for a variety of previously unexplained observations. Thus, the new stellar models for the phase of core hydrogen burning predict large radii and rather cool effective temperatures (which are yet to be observationally confirmed) for O stars, and a spreading out of the main-sequence band in the H-R diagram toward luminous cool supergiants for masses higher than approx.20 M/sub sun/, beginning at M/sub v/=-4.5 and Sp=B1. They also predict slower surface rotations for O stars compared with B stars; and, in binary systems, slower apsidal motions, closer rotational-revolutional synchronism, and smaller orbital eccentricities. In massive X-ray binary systems, circular orbits and supergiant-like visual companions are expected to be quite common. Radial pulsations of the models have been calculated by employing linearized nonadiabatic pulsation theory. Long-period variability is predicted to exist for massive blue supergiants of luminosity class Ia. The new models for helium stars predict large radii and rather cool effective temperatures for Wolf-Rayet stars, as well as multimodal pulsational instability and, possibly, surface turbulence for these stars. Ultrashort-period variability, observed in many classes of hot luminous stars, may be due, in part, to high radial overtone pulsations (or, possibly, to nonradial pulsation or convective modes)

  18. Gravitational waves from neutron stars and asteroseismology.

    Science.gov (United States)

    Ho, Wynn C G

    2018-05-28

    Neutron stars are born in the supernova explosion of massive stars. Neutron stars rotate as stably as atomic clocks and possess densities exceeding that of atomic nuclei and magnetic fields millions to billions of times stronger than those created in laboratories on the Earth. The physical properties of neutron stars are determined by many areas of fundamental physics, and detection of gravitational waves can provide invaluable insights into our understanding of these areas. Here, we describe some of the physics and astrophysics of neutron stars and how traditional electromagnetic wave observations provide clues to the sorts of gravitational waves we expect from these stars. We pay particular attention to neutron star fluid oscillations, examining their impact on electromagnetic and gravitational wave observations when these stars are in a wide binary or isolated system, then during binary inspiral right before merger, and finally at times soon after merger.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).

  19. Hyperon-mixed neutron stars

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki

    2004-01-01

    Hyperon mixing in neutron star matter is investigated by the G-matrix-based effective interaction approach under the attention to use the YN and the YY potentials compatible with hypernuclear data and is shown to occur at densities relevant to neutron star cores, together with discussions to clarify the mechanism of hyperon contamination. It is remarked that developed Y-mixed phase causes a dramatic softening of the neutron star equation of state and leads to the serious problem that the resulting maximum mass M max for neutron star model contradicts the observed neutron star mass (M max obs = 1.44 M Θ ), suggesting the necessity of some extra repulsion'' in hypernuclear system. It is shown that the introduction of three-body repulsion similar to that in nuclear system can resolve the serious situation and under the consistency with observation (M max > M obs ) the threshold densities for Λ and Σ - are pushed to higher density side, from 2ρ 0 to ∼ 4ρ 0 (ρ 0 being the nuclear density). On the basis of a realistic Y-mixed neutron star model, occurrence of Y-superfluidity essential for ''hyperon cooling'' scenario is studied and both of Λ- and Σ - -superfluids are shown to be realized with their critical temperatures 10 8-9 K, meaning that the hyperon cooling'' is a promising candidate for a fast non-standard cooling demanded for some neutron stars with low surface temperature. A comment is given as to the consequence of less attractive ΛΛ interaction suggested by the ''NAGARA event'' ΛΛ 6 He. (author)

  20. Another Possibility for Boyajian's Star

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    2017]Foukal recognized that this phenomenon may also provide an explanation for Boyajians star. He modeled how this might occur for Boyajians star, demonstrating that if its flux is somehow blocked from reaching the surface and stored in a shallow convective zone, this can account for the 20% dips seen in the stars light curve.In addition, these sporadic flux-blocking events would cause Boyajians star to constantly be relaxing from the post-blockage enhanced luminosity. This decay which occurs at rates of 0.11% brightness per year for convective-zone depths of tens of thousands of kilometers would nicely account for the long-term, gradual dimming observed.Whats blocking the flux? Foukal postulates a few options, including magnetic activity (as with the Sun), differential rotation, sporadic changes in photospheric abundances, and simply random variation in convective efficiency.Strangely UniqueBoyajians stars flux in May and June shows some brand new dips. Note that the team now names them! [Tabetha Boyajian and team]So why have we only found one star with light curves like Boyajians? If these are inherently natural processes in the star, we would expect to have seen more than one such object. This may be selection effect Boyajians star lies at the hot end of the range of stars that Kepler observes or it may be that the star is reaching the end of its convective lifetime.Until we discover more cases, the best we can hope for is more data from Boyajians star itself. Conveniently, it has continued to keep us on our toes, with new dips in May and June. Perhaps our continued observations will finally reveal the answer to this mystery.CitationPeter Foukal 2017 ApJL 842 L3. doi:10.3847/2041-8213/aa740f

  1. Discriminating strange star mergers from neutron star mergers by gravitational-wave measurements

    International Nuclear Information System (INIS)

    Bauswein, A.; Oechslin, R.; Janka, H.-T.

    2010-01-01

    We perform three-dimensional relativistic hydrodynamical simulations of the coalescence of strange stars and explore the possibility to decide on the strange matter hypothesis by means of gravitational-wave measurements. Self-binding of strange quark matter and the generally more compact stars yield features that clearly distinguish strange star from neutron star mergers, e.g. hampering tidal disruption during the plunge of quark stars. Furthermore, instead of forming dilute halo structures around the remnant as in the case of neutron star mergers, the coalescence of strange stars results in a differentially rotating hypermassive object with a sharp surface layer surrounded by a geometrically thin, clumpy high-density strange quark matter disk. We also investigate the importance of including nonzero temperature equations of state in neutron star and strange star merger simulations. In both cases we find a crucial sensitivity of the dynamics and outcome of the coalescence to thermal effects, e.g. the outer remnant structure and the delay time of the dense remnant core to black hole collapse depend on the inclusion of nonzero temperature effects. For comparing and classifying the gravitational-wave signals, we use a number of characteristic quantities like the maximum frequency during inspiral or the dominant frequency of oscillations of the postmerger remnant. In general, these frequencies are higher for strange star mergers. Only for particular choices of the equation of state the frequencies of neutron star and strange star mergers are similar. In such cases additional features of the gravitational-wave luminosity spectrum like the ratio of energy emitted during the inspiral phase to the energy radiated away in the postmerger stage may help to discriminate coalescence events of the different types. If such characteristic quantities could be extracted from gravitational-wave signals, for instance with the upcoming gravitational-wave detectors, a decision on the

  2. STATISTICAL PROPERTIES OF GALACTIC δ SCUTI STARS: REVISITED

    International Nuclear Information System (INIS)

    Chang, S.-W.; Kim, D.-W.; Byun, Y.-I.; Protopapas, P.

    2013-01-01

    We present statistical characteristics of 1578 δ Scuti stars including nearby field stars and cluster member stars within the Milky Way. We obtained 46% of these stars (718 stars) from work by Rodríguez and collected the remaining 54% of stars (860 stars) from other literature. We updated the entries with the latest information of sky coordinates, color, rotational velocity, spectral type, period, amplitude, and binarity. The majority of our sample is well characterized in terms of typical period range (0.02-0.25 days), pulsation amplitudes (<0.5 mag), and spectral types (A-F type). Given this list of δ Scuti stars, we examined relations between their physical properties (i.e., periods, amplitudes, spectral types, and rotational velocities) for field stars and cluster members, and confirmed that the correlations of properties are not significantly different from those reported in Rodríguez's work. All the δ Scuti stars are cross-matched with several X-ray and UV catalogs, resulting in 27 X-ray and 41 UV-only counterparts. These counterparts are interesting targets for further study because of their uniqueness in showing δ Scuti-type variability and X-ray/UV emission at the same time. The compiled catalog can be accessed through the Web interface http://stardb.yonsei.ac.kr/DeltaScuti.

  3. Fast Winds and Mass Loss from Metal-Poor Field Giants

    Science.gov (United States)

    Dupree, A. K.; Smith, Graeme H.; Strader, Jay

    2009-11-01

    Echelle spectra of the infrared He I λ10830 line were obtained with NIRSPEC on the Keck 2 telescope for 41 metal-deficient field giant stars including those on the red giant branch (RGB), asymptotic giant branch (AGB), and red horizontal branch (RHB). The presence of this He I line is ubiquitous in stars with T effgsim 4500 K and MV fainter than -1.5, and reveals the dynamics of the atmosphere. The line strength increases with effective temperature for T effgsim 5300 K in RHB stars. In AGB and RGB stars, the line strength increases with luminosity. Fast outflows (gsim 60 km s-1) are detected from the majority of the stars and about 40% of the outflows have sufficient speed as to allow escape of material from the star as well as from a globular cluster. Outflow speeds and line strengths do not depend on metallicity for our sample ([Fe/H]= -0.7 to -3.0), suggesting the driving mechanism for these winds derives from magnetic and/or hydrodynamic processes. Gas outflows are present in every luminous giant, but are not detected in all stars of lower luminosity indicating possible variability. Mass loss rates ranging from ~3 × 10-10 to ~6 × 10-8 M sun yr-1 estimated from the Sobolev approximation for line formation represent values with evolutionary significance for red giants and RHB stars. We estimate that 0.2 M sun will be lost on the RGB, and the torque of this wind can account for observations of slowly rotating RHB stars in the field. About 0.1-0.2 M sun will be lost on the RHB itself. This first empirical determination of mass loss on the RHB may contribute to the appearance of extended horizontal branches in globular clusters. The spectra appear to resolve the problem of missing intracluster material in globular clusters. Opportunities exist for "wind smothering" of dwarf stars by winds from the evolved population, possibly leading to surface pollution in regions of high stellar density. Data presented herein were obtained at the W. M. Keck Observatory, which

  4. Grids of rotating stellar models with masses between 1.0 and 3.0 M⊙

    International Nuclear Information System (INIS)

    Yang Wu-Ming; Bi Shao-Lan; Meng Xiang-Cun

    2013-01-01

    We calculated a grid of evolutionary tracks of rotating models with masses between 1.0 and 3.0 M ⊙ and resolution δM ≤ 0.02 M ⊙ , which can be used to study the effects of rotation on stellar evolution and on the characteristics of star clusters. The value of ∼ 2.05 M ⊙ is a critical mass for the effects of rotation on stellar structure and evolution. For stars with M > 2.05 M ⊙ , rotation leads to an increase in the convective core and prolongs their lifetime on the main sequence (MS); rotating models evolve more slowly than non-rotating ones; the effects of rotation on the evolution of these stars are similar to those of convective core overshooting. However for stars with 1.1 < M/M ⊙ < 2.05, rotation results in a decrease in the convective core and shortens the duration of the MS stage;