WorldWideScience

Sample records for fast rotating parts

  1. Efficient computation of quasiperiodic oscillations in nonlinear systems with fast rotating parts

    DEFF Research Database (Denmark)

    Schilder, Frank; Rübel, Jan; Starke, Jens

    2008-01-01

    whether one can neglect gravitational forces after a change of coordinates into a co-rotating frame. Specifically, we show that this leads to a dramatic reduction of computational effort. As a practical example we study a turbocharger model for which we give a thorough comparison of results for a model......We present a numerical method for the investigation of quasiperiodic oscillations in applications modeled by systems of ordinary differential equations. We focus on systems with parts that have a significant rotational speed. An important element of our approach is that it allows us to verify...

  2. Magnetic flux emergence in fast rotating stars

    OpenAIRE

    Holzwarth, V.

    2007-01-01

    Fast rotating cool stars are characterised by high magnetic activity levels and frequently show dark spots up to polar latitudes. Their distinctive surface distributions of magnetic flux are investigated in the context of the solar-stellar connection by applying the solar flux eruption and surface flux transport models to stars with different rotation rates, mass, and evolutionary stage. The rise of magnetic flux tubes through the convection zone is primarily buoyancy-driven, though their evo...

  3. Physical characterization of fast rotator NEOs

    Science.gov (United States)

    Kikwaya Eluo, Jean-Baptiste; Hergenrother, Carl W.

    2015-08-01

    Understanding the physical characteristics of fast rotator NEOs (sub-km sizes with H > 22) is important for two reasons: to establish properties that can constraint models of their potential hazard, and to learn about the origin and the evolution of the solar system. Technically it is difficult to cover different ranges of wavelengths using one telescope with one instrument. Setting up a network of telescopes with different instruments observing simultaneously the same object will efficiently contribute to the characterization of NEOs.ART (Arizona Robotic Telescope) is a University of Arizona initiative whose goal is to use local 2-m size telescopes to provide near real-time observations of Target of Opportunity objects covering the visible and the near- infrared wavelengths. We plan to use three telescopes of the ART project to observe fast rotator NEOs: 1) VATT (Vatican Advanced Technology Telescope) at Mount Graham (longitude: -109.8719, latitude: 32.7016, elevation: 10469 feet) with VATT-4K optical imager for photometry to estimate colors, lightcurves to get the rotation rate, and estimate the phase angle function of NEOs, 2) Bok 2.3 m at Kitt Peak (longitude: -111.6004, latitude: 31.9629, elevation: 6795 feet) with BCSpec (Boller & Chivens Spectrograph) for visible spectroscopy, and 3) Kuiper 1.5-m at Mount Bigelow (longitude: -110.7345, latitude: 32.4165, elevation: 8235 feet) with a near-infrared instrument.We report here the preliminary results of several NEOs whose rotation rate, color, and type have been estimated using photometry with images recorded with VATT-4K. 2009 SQ104 has a rotation rate of 6.85+/- 0.03 h, 2014 AY28 has a rotation rate of 0.91 +/- 0.02 h, 2014 EC of 0.54 +/-0.04 h, 2014 FA44 of 3.45 +/- 0.05 h, 2014 KS40 of 1.11 +/- 0.06 h, 2011 PT of 0.17 +/- 0.05 h, 2014 SC324 of 0.36 +/- 0.43 h, 2014 WF201 of 1.00 +/- 0.03 h. Of these objects, 2014 HM2, 2014 FA, 2014 SB145, 2011 PT fall among X-type asteroids; 2014 KS, 2014 WF are likely to be

  4. MACULA: Fast Modeling of Rotational Modulations of Spotty Stars

    Science.gov (United States)

    Kipping, David

    2015-08-01

    Rotational modulations are frequently observed on stars observed by photometry surveys such as Kepler, with periodicities ranging from days to months and amplitudes of sub-parts-per-million to several percent. These variations may be studied to reveal important stellar properties such as rotational periods, inclinations and gradients of differential rotation. However, inverting the disk-integrated flux into a solution for spot number, sizes, contrasts, etc is highly degenerate and thereby necessitating an exhaustive search of the parameter space. In recognition of this, the software MACULA is designed to be a fast forward model of circular, grey spots on rotating stars, including effects such as differential rotation, spot evolution and even spot penumbra/umbra. MACULA seeks to achieve computational efficiency by using a wholly analytic description of the disk-integrated flux, which is described in Kipping (2012), leading to a computational improvement of three orders-of-magnitude over its numerical counterparts. As part of the hack day, I'll show how to simulate light curves with MACULA and provide examples with visualizations. I will also discuss the on-going development of the code, which will head towards modeling spot crossing events and radial velocity jitter and I encourage discussions amongst the participants on analytic methods to this end.

  5. Fast dose optimization for rotating shield brachytherapy.

    Science.gov (United States)

    Cho, Myung; Wu, Xiaodong; Dadkhah, Hossein; Yi, Jirong; Flynn, Ryan T; Kim, Yusung; Xu, Weiyu

    2017-07-26

    To provide a fast computational method, based on the proximal graph solver (POGS) - a convex optimization solver using the alternating direction method of multipliers (ADMM), for calculating an optimal treatment plan in rotating shield brachytherapy (RSBT). RSBT treatment planning has more degrees of freedom than conventional high-dose-rate brachytherapy due to the addition of emission direction, and this necessitates a fast optimization technique to enable clinical usage. The multi-helix RSBT (H-RSBT) delivery technique(1) was investigated for five representative cervical cancer patients. Treatment plans were generated for all patients using the POGS method and the commercially available solver IBM ILOG CPLEX(2) . The rectum, bladder, sigmoid colon, high-risk clinical target volume (HRCTV), and HR-CTV boundary were the structures included in our optimization, which applied an asymmetric dose-volume optimization with smoothness control. Dose calculation resolution was 1X1X3 mm(3) for all cases. The H-RSBT applicator had 6 helices, with 33:3 mm of translation along the applicator per helical rotation and 1:7 mm spacing between dwell positions, yielding 17.5° emission angle spacing per 5 mm along the applicator. For each patient, HR-CTV D90, HR-CTV D100, rectum D2cc, sigmoid D2cc, and bladder D2cc matched within 1% for CPLEX and POGS methods. Also, similar EQD2 values between CPLEX and POGS methods were obtained. POGS was around 18 times faster than CPLEX. Over all patients, total optimization times were 32.1-65.4 seconds for CPLEX and 2.1-3.9 seconds for POGS. POGS reduced treatment plan optimization time approximately 18 times for RSBT with similar HR-CTV D90, organ at risk (OAR) D2cc values, and EQD2 values compared to CPLEX, which is significant progress toward clinical translation of RSBT. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. FAST FOSSIL ROTATION OF NEUTRON STAR CORES

    Energy Technology Data Exchange (ETDEWEB)

    Melatos, A., E-mail: amelatos@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia)

    2012-12-10

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed {approx}10{sup 3} yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  7. Development of a PIGE-Detection System for in-situ Inspection and Quality Assurance in the Evolution of Fast Rotating Parts in High Temperature Environment Manufactured from TiAl

    Directory of Open Access Journals (Sweden)

    S. Neve

    2013-04-01

    Full Text Available Intermetallic -titanium aluminides are a promising material in high temperature technologies. Their high specific strength at temperatures above 700°C offers the possibility for their use as components of aerospace and automotive industries. With a specific weight of 50% of that of the widely used Ni-based superalloys TiAl is very suitable as material for fast rotating parts like turbine blades in aircraft engines and land based power stations or turbocharger rotors. Thus lower mechanical stresses and a reduced fuel consumption and CO2-emission are expected. To overcome the insufficient oxidation protection the halogen effect offers an innovative way. After surface doping using F-implantation or liquid phase-treatment with an F-containing solution and subsequent oxidation at high temperatures the formation of a protective alumina scale can be achieved. By using non-destructive ion beam analyses (PIGE, RBS F was found at the metal/oxide interface. For analysis of large scale components a new vacuum chamber at the IKF was installed and became operative. With this prototype of in-situ quality assurance system for the F-doping of manufactured parts from TiAl some performance test measurements were done and presented in this paper

  8. Fast Drug Release Using Rotational Motion of Magnetic Gel Beads

    Directory of Open Access Journals (Sweden)

    Jun-Ichi Takimoto

    2008-03-01

    Full Text Available Accelerated drug release has been achieved by means of the fast rotation of magnetic gel beads. The magnetic gel bead consists of sodium alginate crosslinked by calcium chlorides, which contains barium ferrite of ferrimagnetic particles, and ketoprofen as a drug. The bead underwent rotational motion in response to rotational magnetic fields. In the case of bead without rotation, the amount of drug release into a phosphate buffer solution obeyed non-Fickian diffusion. The spontaneous drug release reached a saturation value of 0.90 mg at 25 minutes, which corresponds to 92% of the perfect release. The drug release was accelerated with increasing the rotation speed. The shortest time achieving the perfect release was approximately 3 minutes, which corresponds to 1/8 of the case without rotation. Simultaneous with the fast release, the bead collapsed probably due to the strong water flow surrounding the bead. The beads with high elasticity were hard to collapse and the fast release was not observed. Hence, the fast release of ketoprofen is triggered by the collapse of beads. Photographs of the collapse of beads, time profiles of the drug release, and a pulsatile release modulated by magnetic fields were presented.

  9. On the fast magnetic rotator regime of stellar winds

    Science.gov (United States)

    Johnstone, C. P.

    2017-01-01

    Aims: We study the acceleration of the stellar winds of rapidly rotating low mass stars and the transition between the slow magnetic rotator and fast magnetic rotator regimes. We aim to understand the properties of stellar winds in the fast magnetic rotator regime and the effects of magneto-centrifugal forces on wind speeds and mass loss rates. Methods: We extend a solar wind model to 1D magnetohydrodynamic simulations of the winds of rotating stars. We test two assumptions for how to scale the wind temperature to other stars and assume the mass loss rate scales as dot{M_star ∝ R_star2 Ω_star1.33 M_star-3.36}, in the unsaturated regime, as estimated from observed rotational evolution. Results: For 1.0 M⊙ stars, the winds can be accelerated to several thousand km s-1, and the effects of magneto-centrifugal forces are much weaker for lower mass stars. We find that the different assumptions for how to scale the wind temperature to other stars lead to significantly different mass loss rates for the rapid rotators. If we assume a constant temperature, the mass loss rates of solar mass stars do not saturate at rapid rotation, which we show to be inconsistent with observed rotational evolution. If we assume the wind temperatures scale positively with rotation, the mass loss rates are only influenced significantly at rotation rates above 75 Ω⊙. We suggest that models with increasing wind speed for more rapid rotators are preferable to those that assume a constant wind speed. If this conclusion is confirmed by more sophisticated wind modelling. it might provide an interesting observational constraint on the properties of stellar winds. All of the codes and output data used in this paper can be downloaded from http://https://zenodo.org/record/160052#.V_y6drWkVC1 or obtained by contacting the author.

  10. Mass-loss induced instabilities in fast rotating stars

    CERN Document Server

    Lignières, F; Mangeney, A

    2000-01-01

    To explain the origin of Herbig Ae/Be stars activity, it has been recently proposed that strong mass-losses trigger rotational instabilities in the envelope of fast rotating stars. The kinetic energy transferred to turbulent motions would then be the energy source of the active phenomena observed in the outer atmosphere of Herbig Ae/Be stars (Vigneron et al. 1990; Lignieres et al. 1996). In this paper, we present a one-dimensional model of angular momentum transport which allows to estimate the degree of differential rotation induced by mass-loss. Gradients of angular velocity are very close to - 2 Ømega / R mass-loss, this process occurs in a short time scale as compared to other processes of angular momentum transport. Application of existing stability criteria indicates that rotational instabilities should develop for fast rotating star. Thus, in fast rotating stars with strong winds, shear instabilities are expected to develop and to generate subphotospheric turbulent motions. Albeit very simple, this mo...

  11. On Plasma Rotation Induced by Traveling Fast Alfvin Waves

    Energy Technology Data Exchange (ETDEWEB)

    F.W. Perkins; R.B. White; and V.S. Chan

    2001-08-09

    Absorption of fast Alfven waves by the minority fundamental ion-cyclotron resonance, coupled with finite banana width physics, generates torque distributions and ultimately rotational shear layers in the bulk plasma, even when the toroidal wavenumber k(subscript ''phi'') = n/R of the fast wave vanishes (n=0) and cyclotron absorption introduces no angular momentum nor canonical angular momentum [F.W. Perkins, R.B. White, P.T. Bonoli, and V.S. Chan, Phys. Plasmas 8 (2001) 2181]. The present work extends these results to travelling waves with non-zero n where heating directly introduces angular momentum. Since tokamak fast-wave antennas have approximately one wavelength per toroidal field coil, the toroidal mode number n lies in the range n = 10-20, independent of machine size. A zero-dimensional analysis shows that the rotation rate arising from direct torque is comparable to that of the rotational shear layer and has the same scaling. Nondimensional rotation profiles for n = (-10, 10) show modest changes from the n = 0 case in the expected direction. For a balanced antenna spectrum, the nondimensional rotational profile (averaged over n = -10, 10) lies quite close to the n = 0 profile.

  12. Fast Rotation Search with Stereographic Projections for 3D Registration.

    Science.gov (United States)

    Parra Bustos, Alvaro; Chin, Tat-Jun; Eriksson, Anders; Li, Hongdong; Suter, David

    2016-11-01

    Registering two 3D point clouds involves estimating the rigid transform that brings the two point clouds into alignment. Recently there has been a surge of interest in using branch-and-bound (BnB) optimisation for point cloud registration. While BnB guarantees globally optimal solutions, it is usually too slow to be practical. A fundamental source of difficulty lies in the search for the rotational parameters. In this work, first by assuming that the translation is known, we focus on constructing a fast rotation search algorithm. With respect to an inherently robust geometric matching criterion, we propose a novel bounding function for BnB that is provably tighter than previously proposed bounds. Further, we also propose a fast algorithm to evaluate our bounding function. Our idea is based on using stereographic projections to precompute and index all possible point matches in spatial R-trees for rapid evaluations. The result is a fast and globally optimal rotation search algorithm. To conduct full 3D registration, we co-optimise the translation by embedding our rotation search kernel in a nested BnB algorithm. Since the inner rotation search is very efficient, the overall 6DOF optimisation is speeded up significantly without losing global optimality. On various challenging point clouds, including those taken out of lab settings, our approach demonstrates superior efficiency.

  13. Regolith Levitation on Small Fast Rotating Asteroids

    Science.gov (United States)

    Campo Bagatin, Adriano; Moreno, Fernando; Molina, Antonio

    2014-11-01

    A number of NEAs larger than few hundred meters are found with relatively high spin rates (from ~2.2 to less than 4 hr, depending on composition). On those bodies, local acceleration near their equator may be directed outwards, as in the case of the primaries of binary asteroids Didymos and 1996 FG3. They both are potential targets of future space missions. What are the effects of high spin states on regolith material at low asteroidal latitudes?NEAs come from the asteroid belt and are believed to be mostly gravitational aggregates at D > 0.5 - 1 km due to their former collisional evolution history (Campo Bagatin et al, 2001). Once in the inner Solar System, NEAs may undergo spin up evolution through YORP causing their components to disperse, shed mass or fission and eventually form binary, multiple systems or asteroid pairs (Walsh et al, 2008, Jacobson and Scheers, 2010, Pravec et al, 2009 and 2010). The end state of those events is often an object spinning above any Chandrasekhar stability limit, kept together by friction (Holsapple, 2007) and sometimes characterized by an equatorial “bulge”, as shown by radar images (Ostro et al, 2006).The centrifugal force acting on surface particles at equatorial latitudes may overcome the gravitational pull of the asteroid itself, and particles may leave its suface. Centrifugal is an apparent contact force, and as soon as particles lift off they mainly move under the gravitational field of the asteroid and the satellite, they may levitate for some time, land on the surface and repeat this cycle over and over. We are studying the motion of particles in the 1 μm to 10 cm range in the non-inertial reference frame of the rotating primary, accounting for centrifugal and Coriolis apparent forces as well as the gravitational fields of the primary, the secondary, the Sun and the radiation forces by the Sun itself. The main features of this effect are presented in the case of Didymos and 1996 FG3.

  14. On the Fast Magnetic Rotator Regime of Stellar Winds

    CERN Document Server

    Johnstone, C P

    2016-01-01

    Aims: We study the acceleration of the stellar winds of rapidly rotating low mass stars and the transition between the slow magnetic rotator and fast magnetic rotator regimes. We aim to understand the properties of stellar winds in the fast magnetic rotator regime and the effects of magneto-centrifugal forces on wind speeds and mass loss rates. Methods: We extend the solar wind model of Johnstone et al. (2015b) to 1D magnetohydrodynamic (MHD) simulations of the winds of rotating stars. We test two assumptions for how to scale the wind temperature to other stars and assume the mass loss rate scales as Mdot ~ Rstar^2 OmegaStar^1.33 Mstar^-3.36, in the unsaturated regime, as estimated by Johnstone et al. (2015a). Results: For 1.0 Msun stars, the winds can be accelerated to several thousand km/s, and the effects of magneto-centrifugal forces are much weaker for lower mass stars. We find that the different assumptions for how to scale the wind temperature to other stars lead to significantly different mass loss ra...

  15. Star-planet interactions: II. Is planet engulfment the origin of fast rotating red giants?

    CERN Document Server

    Privitera, Giovanni; Eggenberger, Patrick; Vidotto, Aline A; Villaver, Eva; Bianda, Michele

    2016-01-01

    Context. Fast rotating red giants in the upper part of the red giant branch have surface velocities that cannot be explained by single star evolution. Aims. We check whether tides between a star and a planet followed by planet engulfment can indeed accelerate the surface rotation of red giants for a sufficient long time in order to produce these fast rotating red giants. Methods. Using rotating stellar models, accounting for the redistribution of the angular momentum inside the star by different transport mechanisms, for the exchanges of angular momentum between the planet orbit and the star before the engulfment and for the deposition of angular momentum inside the star at the engulfment, we study how the surface rotation velocity at the stellar surface evolves. Results. We show that the surface velocities reached at the end of the orbital decay due to tidal forces and planet engulfment can be similar to values observed for fast rotating red giants. This surface velocity then decreases when the star evolves ...

  16. Fast rotating Blue Stragglers in the globular cluster M4

    CERN Document Server

    Lovisi, L; Ferraro, F R; Lucatello, S; Lanzoni, B; Dalessandro, E; Beccari, G; Rood, R T; Sills, A; Pecci, F Fusi; Gratton, R; Piotto, G

    2010-01-01

    We have used high resolution spectra obtained with the spectrograph FLAMES at the ESO Very Large Telescope to determine the kinematical properties and the abundance patterns of 20 blue straggler stars (BSSs) in the globular cluster M4. We found that ~ 40% of the measured BSSs are fast rotators (with rotational velocities > 50 km/s). This is the largest frequency of rapidly rotating BSSs ever detected in a globular cluster. In addition, at odds with what has been found in 47 Tucanae, no evidence of carbon and/or oxygen depletion has been revealed in the sample of 11 BSSs for which we were able to measure the abundances. This could be due either to low statistics, or to a different BSS formation process acting in M4.

  17. Dynamo-generated magnetic fields in fast rotating single giants

    CERN Document Server

    Konstantinova-Antova, Renada; Schröder, Klaus-Peter; Petit, Pascal

    2009-01-01

    Red giants offer a good opportunity to study the interplay of magnetic fields and stellar evolution. Using the spectro-polarimeter NARVAL of the Telescope Bernard Lyot (TBL), Pic du Midi, France and the LSD technique, we began a survey of magnetic fields in single G-K-M giants. Early results include 6 MF-detections with fast rotating giants, and for the first time a magnetic field was detected directly in an evolved M-giant: EK Boo. Our results could be explained in the terms of $\\alpha$--$\\omega$ dynamo operating in these giants.

  18. Fast online replanning for interfraction rotation correction in prostate radiotherapy.

    Science.gov (United States)

    Kontaxis, Charis; Bol, Gijsbert H; Kerkmeijer, Linda G W; Lagendijk, Jan J W; Raaymakers, Bas W

    2017-07-12

    To enable fast online replanning for prostate radiotherapy with the inclusion of interfraction rotations and translations and investigate the possibility for margin reduction via this regime. Online daily replanning for a 35-fraction treatment for five prostate cases is simulated while accounting for anatomical transformations derived from fiducial marker data available in our clinic. Two online replanning strategies were simulated, compensating for: (a) rotation-only in combination with a couch shift and (b) both translation and rotation without a couch shift. They were compared against our current clinical protocol consisting of a single offline plan used over all fractions with daily couch repositioning (translations only). For every patient, the above methods were generated for several planning margins (0-8 mm with 2 mm increments) in order to assess the performance of online replanning in terms of target coverage and investigate the possible dosimetric benefit for the organs at risk. The daily DVHs for each treatment strategy were used for evaluation and the non tumor integral dose (NTID) for the different margins was calculated in order to quantify the overall reduction of the delivered energy to the patient. Our system is able to generate a daily automated prostate plan in less than 2 min. For every patient, the daily treatment plans produce similar dose distributions to the original approved plan (average CTV D99 relative difference: 0.2%). The inclusion of both shifts and rotations can be effectively compensated via replanning among all planning margins (average CTV D99 difference: 0.01 Gy between the two replanning regimes). Online replanning is able to maintain target coverage among all margins, while - as expected - the conventional treatment plan is increasingly affected by the interfraction rotations as the margins shrink (average CTV D99 decrease: 0.2 Gy at 8 mm to 2.9 Gy at 0 mm margin). The possible gain in total delivered energy to the patient was

  19. PN fast winds: Temporal structure and stellar rotation

    CERN Document Server

    Prinja, R K; Urbaneja, M A; Kudritzki, R -P

    2012-01-01

    To diagnose the time-variable structure in the fast winds of central stars of planetary nebulae (CSPN), we present an analysis of P Cygni line profiles in FUSE satellite far-UV spectroscopic data. Archival spectra are retrieved to form time-series datasets for the H-rich CSPN NGC 6826, IC 418, IC 2149, IC 4593 and NGC 6543. Despite limitations due to the fragmented sampling of the time-series, we demonstrate that in all 5 CSPN the UV resonance lines are variable primarily due to the occurrence of blueward migrating discrete absorption components (DACs). Empirical (SEI) line-synthesis modelling is used to determine the range of fluctuations in radial optical depth, which are assigned to the temporal changes in large-scale wind structures. We argue that DACs are common in CSPN winds, and their empirical properties are akin to those of similar structures seen in the absorption troughs of massive OB stars. Constraints on PN central star rotation velocities are derived from Fast-Fourier Transform analysis of photo...

  20. Synoptic Observations for Physical Characterization of Fast Rotator NEOs

    Science.gov (United States)

    Kikwaya Eluo, Jean-Baptiste; Hergenrother, Carl W.

    2014-11-01

    NEOs can be studied not only dynamically, to learn about their impact hazard, but also physically, to establish various properties important both to better address their potential hazard and also to understand what they can tell us about the origin of the solar system and its ongoing processes.Taking advantage of the two-meter-class telescopes around Tucson, we plan to observe NEOs synoptically using telescopes at three different locations: VATT (Vatican Advanced Technology Telescope) at Mount Graham (longitude: -109.8719, latitude: 32.7016, elevation: 10469 feet), Bok 2.3 m at Kitt Peak (longitude: -111.6004, latitude: 31.9629, elevation: 6795 feet) and Kuiper 1.5-m at Mount Bigelow (longitude: -110.7345, latitude: 32.4165, elevation: 8235 feet). All three telescopes will aim simultaneously at the same object, each with a different instrument. The three telescopes will be part of the Arizona Robotic Telescope (ART) network, a University of Arizona initiative to provide near real-time observations of Target of Opportunity objects across the visible and near-infrared wavelengths. The VATT-4K optical imager mounted on the VATT has already been used for photometry. In the future we plan to utilize the BCSpec (Boller & Chivens Spectrograph) for visible spectroscopy on Bok 2.3 meter and a near-infrared instrument on Kuiper 1.5 meter. We report here the preliminary results of several NEOs whose rotation rate and color have been estimated using photometry with images recorded with VATT-4K. 2009 SQ104 has a rotation rate of 6.85+/- 0.03 h, 2014 AY28 has a rotation rate of 0.91 +/- 0.02 h, 2014 EC of 0.54 +/-0.04 h, 2014 FA44 of 3.45 +/- 0.05 h, and 2014 KS40 of 1.11 +/- 0.06 h.

  1. Star-planet interactions. II. Is planet engulfment the origin of fast rotating red giants?

    Science.gov (United States)

    Privitera, Giovanni; Meynet, Georges; Eggenberger, Patrick; Vidotto, Aline A.; Villaver, Eva; Bianda, Michele

    2016-10-01

    Context. Fast rotating red giants in the upper part of the red giant branch have surface velocities that cannot be explained by single star evolution. Aims: We check whether tides between a star and a planet followed by planet engulfment can indeed accelerate the surface rotation of red giants for a sufficiently long time to produce these fast rotating red giants. Methods: We studied how the surface rotation velocity at the stellar surface evolves using rotating stellar models, accounting for the redistribution of the angular momentum inside the star by different transport mechanisms, the exchanges of angular momentum between the planet orbit and the star before the engulfment, and for the deposition of angular momentum inside the star at the engulfment. We considered different situations with masses of stars in the range between 1.5 and 2.5 M⊙, masses of the planets between 1 and 15 MJ (Jupiter mass), and initial semimajor axis between 0.5 and 1.5 au. The metallicity Z for our stellar models is 0.02. Results: We show that the surface velocities reached at the end of the orbital decay due to tidal forces and planet engulfment can be similar to values observed for fast rotating red giants. This surface velocity then decreases when the star evolves along the red giant branch but at a sufficiently slow pace to allowing stars to be detected with such a high velocity. More quantitatively, star-planet interaction can produce a rapid acceleration of the surface of the star, above values equal to 8 km s-1, for periods lasting up to more than 30% the red giant branch phase. As found already by previous works, the changes of the surface carbon isotopic ratios produced by the dilution of the planetary material into the convective envelope is modest. The increase of the lithium abundance due to this effect might be much more important, however lithium may be affected by many different, still uncertain, processes. Thus any lithium measurement can hardly be taken as a support

  2. Fast rotation of neutron stars and equation of state of dense matter

    CERN Document Server

    Haensel, P; Bejger, M

    2008-01-01

    Fast rotation of compact stars (at submillisecond period) and, in particular, their stability, are sensitive to the equation of state (EOS) of dense matter. Recent observations of XTE J1739-285 suggest that it contains a neutron star rotating at 1122 Hz (Kaaret et al. 2007). At such rotational frequency the effects of rotation on star's structure are significant. We study the interplay of fast rotation, EOS and gravitational mass of a submillisecond pulsar. We discuss the EOS dependence of spin-up to a submillisecond period, via mass accretion from a disk in a low-mass X-ray binary.

  3. Optical vibration and deviation measurement of rotating machine parts

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is of interest to get appropriate information about the dynamic behaviour of rotating machinery parts in service. This paper presents an approach of optical vibration and deviation measurement of such parts. Essential of this method is an image derotator combined with a high speed camera or a laser doppler vibrometer (LDV).

  4. Fast visual part inspection for bin picking

    DEFF Research Database (Denmark)

    Rofalis, Nikolaos; Olesen, Anders Sig; Jakobsen, Michael Linde

    2016-01-01

    In this paper we present a novel 3D sensing approach for industrial bin-picking applications that is low-cost, fast and precise. The system uses a simple laser-line emitter. While a robot arm moves the object through the laser light, a synchronized camera captures the laser line image on the object...

  5. Fluid dynamics analysis of a rotating axisymmetric part using FIDAP

    Science.gov (United States)

    Giles, G. E.; Kirkpatrick, J. R.; Wendel, M. W.; Bullock, J. S., IV

    1990-03-01

    The effect of fluid flow on electrochemical plating on a rotating axisymmetric part was investigated by using a finite element computer code, FIDAP. The results from these investigations compare well with analytical results for laminar flow conditions. The addition of a nonrotating shield was also investigated for laminar flow conditions. An attempt to extend these analyses to turbulent conditions was unsuccessful.

  6. Large Super-Fast Rotator Hunting Using the Intermediate Palomar Transient Factory

    CERN Document Server

    Chang, Chan-Kao; Ip, Wing-Huen; Prince, Thomas A; Kulkarni, Shrinivas R; Levitan, David; Laher, Russ; Surace, Jason

    2016-01-01

    In order to look for large super-fast rotators, five dedicated surveys covering ~ 188 square degree in the ecliptic plane have been carried out in R-band with ~10 min cadence using the intermediate Palomar Transient Factory in late 2014 and early 2015. Among 1029 reliable rotation periods obtained from the surveys, we discovered one new large super-fast rotator, (40511) 1999 RE88, and other 18 candidates. (40511) 1999 RE88 is an S-type inner main-belt asteroid with a diameter of D = 1.9 +- 0.3 km, which has a rotation period of P = 1.96 +- 0.01 hr and a lightcurve amplitude of ~0.1 mag. To maintain such fast rotation, an internal cohesive strength of ~780 Pa is required. Combining all known large super-fast rotators, their cohesive strengths all fall in the range of 100 to 1000 Pa of lunar regolith. However, the number of large super-fast rotators seems to be far less than the whole asteroid population. This might indicate a peculiar asteroid group for them. Although the detection efficiency for a long rotati...

  7. Pair-Instability Supernovae of Fast Rotating Stars

    CERN Document Server

    Chen, Ke-Jung

    2015-01-01

    We present 2D simulations of pair-instability supernovae considering rapid rotation during their explosion phases. Recent studies of the Pop III star formation suggested that these stars could be born with a mass scale about 100 Msun and with a strong rotation. Based on stellar evolution models, these massive Pop III stars might have died as highly energetic pair-instability supernovae. We perform 2D calculations to investigate the impact of rotation on pair-instability supernovae. Our results suggest that rotation leads to an aspherical explosion due to an anisotropic collapse. If the first stars have a 50% of keplerian rotational rate of the oxygen core before their pair-instability explosions, the overall Ni production can be significantly reduced by about two orders of magnitude. An extreme case of 100% keplerian rotational rate shows an interesting feature of fluid instabilities along the equatorial plane caused by non-synchronized and non-isotropic ignitions of explosions, so that the shocks run into th...

  8. Simulations of binary galaxy mergers and the link with Fast Rotators, Slow Rotators, and Kinematically Distinct Cores

    CERN Document Server

    Bois, Maxime; Bournaud, Frédéric; Alatalo, Katherine; Blitz, Leo; Bureau, Martin; Cappellari, Michele; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2012-01-01

    We study the formation of early-type galaxies (ETGs) through mergers with a sample of 70 high-resolution numerical simulations of binary mergers of disc galaxies. These simulations encompass various mass ratios, initial conditions and orbital parameters. We find that binary mergers of disc galaxies with mass ratios of 3:1 and 6:1 are nearly always classified as Fast Rotators according to the Atlas3D criterion: they preserve the structure of the input fast rotating spiral progenitors. Major disc mergers (mass ratios of 2:1 and 1:1) lead to both Fast and Slow Rotators. Most of the Slow Rotators hold a stellar Kinematically Distinct Core (KDC) in their 1-3 central kilo-parsec: these KDCs are built from the stellar components of the progenitors. The mass ratio of the progenitors is a fundamental parameter for the formation of Slow Rotators in binary mergers, but it also requires a retrograde spin for the progenitor galaxies with respect to the orbital angular momentum. The importance of the initial spin of the pr...

  9. Fast Rotating solar-like stars using asteroseismic datasets

    DEFF Research Database (Denmark)

    A. García, R.; Ceillier, T.; Campante, T.;

    2011-01-01

    of 2000 stars observed for one month during the survey phase of the Kepler mission. The measured light curves can present features related to the surface magnetic activity (starspots) and, thus we are able to obtain a good estimation of the surface (differential) rotation. In this work we establish...

  10. Fast rotating stars resulting from binary evolution will often appear to be single

    CERN Document Server

    de Mink, S E; Izzard, R G

    2010-01-01

    Rapidly rotating stars are readily produced in binary systems. An accreting star in a binary system can be spun up by mass accretion and quickly approach the break-up limit. Mergers between two stars in a binary are expected to result in massive, fast rotating stars. These rapid rotators may appear as Be or Oe stars or at low metallicity they may be progenitors of long gamma-ray bursts. Given the high frequency of massive stars in close binaries it seems likely that a large fraction of rapidly rotating stars result from binary interaction. It is not straightforward to distinguish a a fast rotator that was born as a rapidly rotating single star from a fast rotator that resulted from some kind of binary interaction. Rapidly rotating stars resulting from binary interaction will often appear to be single because the companion tends to be a low mass, low luminosity star in a wide orbit. Alternatively, they became single stars after a merger or disruption of the binary system during the supernova explosion of the p...

  11. How Fast Could a Proto-pulsar Rotate?

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    According to two estimated relations between the initial period andthe dynamo-generated magnetic dipole field of pulsars, we calculate the statisticaldistributions of pulsar initial periods. It is found that proto-pulsars are very likelyto have rotation periods between 20 ms and 30 ms, and that most of the pulsarsrotate initially at a period < 60 ms. Our result supports the asymmetric neutrinoemission model for pulsar kick.

  12. A Note on Viscous Capillary Fluids in Fast Rotation

    Directory of Open Access Journals (Sweden)

    Francesco Fanelli

    2015-12-01

    Full Text Available The present note is devoted to the study of singular perturbation problems for a Navier-Stokes-Korteweg system with Coriolis force. Such a model describes the motion of viscous compressible capillary fluids under the action of the Earth rotation. We are interested in the asymptotic behavior of a family of weak solutions in the limit for the Mach, the Rossby and the Weber numbers going to 0.

  13. Strong dipole magnetic fields in fast rotating fully convective stars

    Science.gov (United States)

    Shulyak, D.; Reiners, A.; Engeln, A.; Malo, L.; Yadav, R.; Morin, J.; Kochukhov, O.

    2017-08-01

    M dwarfs are the most numerous stars in our Galaxy, with masses between approximately 0.5 and 0.1 solar masses. Many of them show surface activity qualitatively similar to our Sun and generate flares, high X-ray fluxes and large-scale magnetic fields1,2,3,4. Such activity is driven by a dynamo powered by the convective motions in their interiors2,5,6,7,8. Understanding properties of stellar magnetic fields in these stars finds a broad application in astrophysics, including theory of stellar dynamos and environment conditions around planets that may be orbiting these stars. Most stars with convective envelopes follow a rotation-activity relationship where various activity indicators saturate in stars with rotation periods shorter than a few days2,6,8. The activity gradually declines with rotation rate in stars rotating more slowly. It is thought that, due to a tight empirical correlation between X-ray radiance and magnetic flux9, the stellar magnetic fields will also saturate, to values around 4 kG (ref. 10). Here we report the detection of magnetic fields above the presumed saturation limit in four fully convective M dwarfs. By combining results from spectroscopic and polarimetric studies, we explain our findings in terms of bistable dynamo models11,12: stars with the strongest magnetic fields are those in a dipole dynamo state, whereas stars in a multipole state cannot generate fields stronger than about 4 kG. Our study provides observational evidence that the dynamo in fully convective M dwarfs generates magnetic fields that can differ not only in the geometry of their large-scale component, but also in the total magnetic energy.

  14. The fast spin-rotation of a young extrasolar planet

    CERN Document Server

    Snellen, Ignas; de Kok, Remco; Brogi, Matteo; Birkby, Jayne; Schwarz, Henriette

    2014-01-01

    The spin-rotation of a planet arises from the accretion of angular momentum during its formation, but the details of this process are still unclear. In the solar system, the equatorial rotation velocities and spin angular momentum of the planets show a clear trend with mass, except for Mercury and Venus which have significantly spun down since their formation due to tidal interactions. Here we report on near-infrared spectroscopic observations at R=100,000 of the young extra-solar gas giant beta Pictoris b. The absorption signal from carbon monoxide in the planet's thermal spectrum is found to be blueshifted with respect to the velocity of the parent star by (-15+-1.7) km/sec, consistent with a circular orbit. The combined line profile exhibits a rotational broadening of 25+-3 km/sec, meaning that Beta Pictoris b spins significantly faster than any planet in the solar system, in line with the extrapolation of the known trend in spin velocity with planet mass.

  15. Large Super-fast Rotator Hunting Using the Intermediate Palomar Transient Factory

    Science.gov (United States)

    Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen; Prince, Thomas A.; Kulkarni, Shrinivas R.; Levitan, David; Laher, Russ; Surace, Jason

    2016-12-01

    In order to look for large super-fast rotators, in late 2014 and early 2015, five dedicated surveys covering ˜188 deg2 in the ecliptic plane have been carried out in the R-band, with ˜10 minute cadence using the intermediate Palomar Transient Factory. Among 1029 reliable rotation periods obtained from the surveys, we discovered 1 new large super-fast rotator, (40511) 1999 RE88, and 18 other candidates. (40511) 1999 RE88 is an S-type inner main-belt asteroid with a diameter of D = 1.9 ± 0.3 km, a rotation period of P = 1.96 ± 0.01 hr, and a light curve amplitude of Δm ˜ 1.0 mag. To maintain such fast rotation, an internal cohesive strength of ˜780 Pa is required. Combining all known large super-fast rotators, their cohesive strengths all fall in the range of 100-1000 Pa of lunar regolith. However, the number of large super-fast rotators seems to be far less than the whole asteroid population. This might indicate a peculiar asteroid group for them. Although the detection efficiency for a long rotation period is greatly reduced due to our two-day observation time span, the spin-rate distributions of this work show consistent results with Chang et al. (2015), after considering the possible observational bias in our surveys. It shows a number decrease with an increase of spin rate for asteroids with a diameter of 3 ⩽ D ⩽ 15 km, and a number drop at a spin rate of f = 5 rev day-1 for asteroids with D ⩽ 3 km.

  16. Kinematics of fast cervical rotations in persons with chronic neck pain: a cross-sectional and reliability study

    Directory of Open Access Journals (Sweden)

    Häger-Ross Charlotte

    2010-09-01

    Full Text Available Abstract Background Assessment of sensorimotor function is useful for classification and treatment evaluation of neck pain disorders. Several studies have investigated various aspects of cervical motor functions. Most of these have involved slow or self-paced movements, while few have investigated fast cervical movements. Moreover, the reliability of assessment of fast cervical axial rotation has, to our knowledge, not been evaluated before. Methods Cervical kinematics was assessed during fast axial head rotations in 118 women with chronic nonspecific neck pain (NS and compared to 49 healthy controls (CON. The relationship between cervical kinematics and symptoms, self-rated functioning and fear of movement was evaluated in the NS group. A sub-sample of 16 NS and 16 CON was re-tested after one week to assess the reliability of kinematic variables. Six cervical kinematic variables were calculated: peak speed, range of movement, conjunct movements and three variables related to the shape of the speed profile. Results Together, peak speed and conjunct movements had a sensitivity of 76% and a specificity of 78% in discriminating between NS and CON, of which the major part could be attributed to peak speed (NS: 226 ± 88 °/s and CON: 348 ± 92 °/s, p Conclusions Peak speed of fast cervical axial rotations is reduced in people with chronic neck pain, and even further reduced in subjects with concomitant low back pain. Fast cervical rotation test seems to be a reliable and valid tool for assessment of neck pain disorders on group level, while a rather large between subject variation and overlap between groups calls for caution in the interpretation of individual assessments.

  17. Fast rotating group of stars observed in Gaia TGAS: a signature driven by the Perseus arm?

    CERN Document Server

    Hunt, Jason A S; Monari, Giacomo; Grand, Robert J J; Famaey, Benoit; Siebert, Arnaud

    2016-01-01

    We report on the detection of a small overdensity of stars in velocity space with systematically higher Galactocentric rotation velocity than the Sun by about 20 km s$^{-1}$ in the $Gaia$ Data Release 1 Tycho-Gaia astrometric solution (TGAS) data. We find the fast rotating group of stars more clearly outside of the Solar radius, compared to inside of the Solar radius. In addition, the velocity of the fast rotating group is independent of the Galactocentric distance up to $R-R_{\\odot}\\sim 0.6$ kpc. Comparing with numerical models, we discuss that a possible cause of this feature is the co-rotation resonance of the Perseus spiral arm, where the stars in peri-centre phase in the trailing side of the Perseus spiral arm experience an extended period of acceleration owing to the torque from the Perseus arm.

  18. Variant Computer Aided Process Planning System for Rotational Parts

    Institute of Scientific and Technical Information of China (English)

    AHMED Hassan; YAO Zhen-qiang; CAI Jian-guo

    2005-01-01

    The amount of material must be removed away to produce the final product should minimize, excess stock will increase not only the material cost, but also processing cost, fixture cost, tooling cost, and increases machine cycle times.Noticing in recent years that the world is running out of mineral resources, and the price of engineering materials will continually rise in the future, the percentage of the cost of manufactured part that is due to the cost of materials is also rising. This paper proposed a variant CAPP system for rotational parts based on the concept of group technology,this system accepts part features characteristics code number as an input and provides operation details for manufacturing route with the suitable primary processes required to produce the blank work piece as an output.

  19. FAST ROTATION AND TRAILING FRAGMENTS OF THE ACTIVE ASTEROID P/2012 F5 (GIBBS)

    Energy Technology Data Exchange (ETDEWEB)

    Drahus, Michał; Waniak, Wacław [Astronomical Observatory, Jagiellonian University, Kraków (Poland); Tendulkar, Shriharsh [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA (United States); Agarwal, Jessica [Max Planck Institute for Solar System Research, Göttingen (Germany); Jewitt, David [Department of Earth, Planetary and Space Sciences and Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA (United States); Sheppard, Scott S., E-mail: drahus@oa.uj.edu.pl [Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC (United States)

    2015-03-20

    While having a comet-like appearance, P/2012 F5 (Gibbs) has an orbit native to the Main Asteroid Belt, and physically is a km-sized asteroid which recently (mid 2011) experienced an impulsive mass ejection event. Here we report new observations of this object obtained with the Keck II telescope on UT 2014 August 26. The data show previously undetected 200 m scale fragments of the main nucleus, and reveal a rapid nucleus spin with a rotation period of 3.24 ± 0.01 hr. The existence of large fragments and the fast nucleus spin are both consistent with rotational instability and partial disruption of the object. To date, many fast rotators have been identified among the minor bodies, which, however, do not eject detectable fragments at the present-day epoch, and also fragmentation events have been observed, but with no rotation period measured. P/2012 F5 is unique in that for the first time we detected fragments and quantified the rotation rate of one and the same object. The rapid spin rate of P/2012 F5 is very close to the spin rates of two other active asteroids in the Main Belt, 133P/Elst-Pizarro and (62412), confirming the existence of a population of fast rotators among these objects. But while P/2012 F5 shows impulsive ejection of dust and fragments, the mass loss from 133P is prolonged and recurrent. We believe that these two types of activity observed in the rapidly rotating active asteroids have a common origin in the rotational instability of the nucleus.

  20. Fast iteration of cocyles over rotations and Computation of hyperbolic bundles

    CERN Document Server

    Huguet, Gemma; Sire, Yannick

    2011-01-01

    In this paper, we develop numerical algorithms that use small requirements of storage and operations for the computation of hyperbolic cocycles over a rotation. We present fast algorithms for the iteration of the quasi-periodic cocycles and the computation of the invariant bundles, which is a preliminary step for the computation of invariant whiskered tori.

  1. On fast solid-body rotation of the solar core and differential (liquid-like) rotation of the solar surface

    Science.gov (United States)

    Pashitskii, E. A.

    2017-07-01

    On the basis of a two-component (two-fluid) hydrodynamic model, it is shown that the probable phenomenon of solar core rotation with a velocity higher than the average velocity of global rotation of the Sun, discovered by the SOHO mission, can be related to fast solid-body rotation of the light hydrogen component of the solar plasma, which is caused by thermonuclear fusion of hydrogen into helium inside the hot dense solar core. Thermonuclear fusion of four protons into a helium nucleus (α-particle) creates a large free specific volume per unit particle due to the large difference between the densities of the solar plasma and nuclear matter. As a result, an efficient volumetric sink of one of the components of the solar substance—hydrogen—forms inside the solar core. Therefore, a steady-state radial proton flux converging to the center should exist inside the Sun, which maintains a constant concentration of hydrogen as it burns out in the solar core. It is demonstrated that such a converging flux of hydrogen plasma with the radial velocity v r ( r) = -β r creates a convective, v r ∂ v φ/∂ r, and a local Coriolis, v r v φ/ r,φ nonlinear hydrodynamic forces in the solar plasma, rotating with the azimuthal velocity v φ. In the absence of dissipation, these forces should cause an exponential growth of the solid-body rotation velocity of the hydrogen component inside the solar core. However, friction between the hydrogen and helium components of the solar plasma due to Coulomb collisions of protons with α-particles results in a steady-state regime of rotation of the hydrogen component in the solar core with an angular velocity substantially exceeding the global rotational velocity of the Sun. It is suggested that the observed differential (liquid-like) rotation of the visible surface of the Sun (photosphere) with the maximum angular velocity at the equator is caused by sold-body rotation of the solar plasma in the radiation zone and strong turbulence in

  2. Two-dimensional models of early-type fast rotating stars: the ESTER project

    CERN Document Server

    Rieutord, Michel

    2015-01-01

    In this talk I present the latest results of the ESTER project that has taken up the challenge of building two dimensional (axisymmetric) models of stars rotating at any rotation rate. In particular, I focus on main sequence massive and intermediate mass stars. I show what should be expected in such stars as far as the differential rotation and the associated meridional circulation are concerned, notably the emergence of a Stewartson layer along the tangent cylinder of the core. I also indicate what may be inferred about the evolution of an intermediate-mass star at constant angular momentum and how Be stars may form. I finally give some comparisons between models and observations of the gravity darkening on some nearby fast rotators as it has been derived from interferometric observations. In passing, I also discuss how 2D models can help to recover the fundamental parameters of a star.

  3. Spinning like a blue straggler: the population of fast rotating blue straggler stars in ω Centauri

    Energy Technology Data Exchange (ETDEWEB)

    Mucciarelli, A.; Lovisi, L.; Ferraro, F. R.; Dalessandro, E.; Lanzoni, B. [Dipartimento di Fisica and Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Monaco, L. [European Southern Observatory, Casilla 19001, Santiago (Chile)

    2014-12-10

    By using high-resolution spectra acquired with FLAMES-GIRAFFE at the ESO/VLT, we measured the radial and rotational velocities for 110 blue straggler stars (BSSs) in ω Centauri, the globular cluster-like stellar system harboring the largest known BSS population. According to their radial velocities, 109 BSSs are members of the system. The rotational velocity distribution is very broad, with the bulk of BSSs spinning at less than ∼40 km s{sup –1} (in agreement with the majority of such stars observed in other globular clusters) and a long tail reaching ∼200 km s{sup –1}. About 40% of the sample has v{sub e} sin i > 40 km s{sup –1} and about 20% has v{sub e} sin i > 70 km s{sup –1}. Such a large fraction is very similar to the percentage of fast rotating BSSs observed in M4. Thus, ω Centauri is the second stellar cluster, beyond M4, with a surprisingly high population of fast spinning BSSs. We found a hint of radial behavior for a fraction of fast rotating BSSs, with a mild peak within one core radius, and a possible rise in the external regions (beyond four core radii). This may suggest that recent formation episodes of mass transfer BSSs occurred preferentially in the outskirts of ω Centauri, or that braking mechanisms able to slow down these stars are least efficient in the lowest density environments.

  4. Kinematic principles of primate rotational vestibulo-ocular reflex. I. Spatial organization of fast phase velocity axes

    Science.gov (United States)

    Hess, B. J.; Angelaki, D. E.

    1997-01-01

    The spatial organization of fast phase velocity vectors of the vestibulo-ocular reflex (VOR) was studied in rhesus monkeys during yaw rotations about an earth-horizontal axis that changed continuously the orientation of the head relative to gravity ("barbecue spit" rotation). In addition to a velocity component parallel to the rotation axis, fast phases also exhibited a velocity component that invariably was oriented along the momentary direction of gravity. As the head rotated through supine and prone positions, torsional components of fast phase velocity axes became prominent. Similarly, as the head rotated through left and right ear-down positions, fast phase velocity axes exhibited prominent vertical components. The larger the speed of head rotation the greater the magnitude of this fast phase component, which was collinear with gravity. The main sequence properties of VOR fast phases were independent of head position. However, peak amplitude as well as peak velocity of fast phases were both modulated as a function of head orientation, exhibiting a minimum in prone position. The results suggest that the fast phases of vestibulo-ocular reflexes not only redirect gaze and reposition the eye in the direction of head motion but also reorient the eye with respect to earth-vertical when the head moves relative to gravity. As further elaborated in the companion paper, the underlying mechanism could be described as a dynamic, gravity-dependent modulation of the coordinates of ocular rotations relative to the head.

  5. A fast stroboscopic spectral method for rotating systems in numerical relativity

    CERN Document Server

    Bonazzola, S; Novák, J; Bonazzola, Silvano; Jaramillo, Jos{\\'e}-Luis; Novak, Jerome

    2007-01-01

    We present a numerical technique for solving evolution equations, as the wave equation, in the description of rotating astrophysical compact objects in comoving coordinates, which avoids the problems associated with the light cylinder. The technique implements a fast spectral matching between two domains in relative rotation: an inner spherical domain, comoving with the sources and lying strictly inside the light cylinder, and an outer inertial spherical shell. Even though the emphasis is placed on spectral techniques, the matching is independent of the specific manner in which equations are solved inside each domain, and can be adapted to different schemes. We illustrate the strategy with some simple but representative examples.

  6. Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature

    Directory of Open Access Journals (Sweden)

    Shouyi Yin

    2015-01-01

    Full Text Available Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.

  7. Digital Integrator for Fast Accurate Measurement of Magnetic Flux by Rotating Coils

    CERN Document Server

    Arpaia, P; Spiezia, G

    2007-01-01

    A fast digital integrator (FDI) with dynamic accuracy and a trigger frequency higher than those of a portable digital integrator (PDI), which is a state-of-the-art instrument for magnetic measurements based on rotating coils, was developed for analyzing superconducting magnets in particle accelerators. Results of static and dynamic metrological characterization show how the FDI prototype is already capable of overcoming the dynamic performance of PDI as well as covering operating regions that used to be inaccessible

  8. Thermal X-ray emission from massive, fast rotating, highly magnetized white dwarfs

    CERN Document Server

    Caceres, D L; Coelho, J G; de Lima, R C R; Rueda, Jorge A

    2016-01-01

    There is solid observational evidence on the existence of massive, $M\\sim 1~M_\\odot$, highly magnetized white dwarfs (WDs) with surface magnetic fields up to $B\\sim 10^9$ G. We show that, if in addition to these features, the star is fast rotating, it can become a rotation-powered pulsar-like WD and emit detectable high-energy radiation. We infer the values of the structure parameters (mass, radius, moment of inertia), magnetic field, rotation period and spin-down rates of a WD pulsar death-line. We show that WDs above the death-line emit blackbody radiation in the soft X-ray band via the magnetic polar cap heating by back flowing pair-created particle bombardment and discuss as an example the X-ray emission of soft gamma-repeaters and anomalous X-ray pulsars within the WD model.

  9. Near-Infrared Structure of Fast and Slow Rotating Disk Galaxies

    CERN Document Server

    Schechtman-Rook, Andrew

    2014-01-01

    We investigate the stellar disk structure of six nearby edge-on spiral galaxies using high-resolution JHKs-band images and 3D radiative transfer models. To explore how mass and environment shape spiral disks, we selected galaxies with rotational velocities between 69 150 km/sec) galaxies, only NGC 4013 has the super-thin+thin+thick nested disk structure seen in NGC 891 and the Milky Way, albeit with decreased oblateness, while NGC 1055, a disturbed massive spiral galaxy, contains disks with hz $\\lesssim$ 200 pc. NGC 4565, another fast-rotator, contains a prominent ring at a radius ~5 kpc but no super-thin disk. Despite these differences, all fast-rotating galaxies in our sample have inner truncations in at least one of their disks. These truncations lead to Freeman Type II profiles when projected face-on. Slow-rotating galaxies are less complex, lacking inner disk truncations and requiring fewer disk components to reproduce their light distributions. Super-thin disk components in undisturbed disks contribute...

  10. A New Large Super-Fast Rotator: (335433) 2005 UW163

    CERN Document Server

    Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen; Prince, Thomas A; Kulkarni, Shrinivas R; Laher, Russ; Surace, Jason

    2014-01-01

    Asteroids of size larger than 150 m generally do not have rotation periods smaller than 2.2 hours. This spin cutoff is believed to be due to the gravitationally bound rubble-pile structures of the asteroids. Rotation with periods exceeding this critical value will cause asteroid breakup. Up until now, only one object, 2001 OE84, has been found to be an exception to this spin cutoff. We report the discovery of a new super-fast rotator, (335433) 2005 UW163, spinning with a period of 1.290 hours and a lightcurve variation of $r'\\sim0.8$ mag from the observations made at the P48 telescope and the P200 telescope of the Palomar Observatory. Its $H_{r'} = 17.69 \\pm 0.27$ mag and multi-band colors (i.e., $g'-r' = 0.68\\pm0.03$ mag, $r'-i' = 0.19\\pm0.02$ mag and SDSS $i-z = -0.45$ mag) show it is a V-type asteroid with a diameter of $0.6 +0.3/-0.2$ km. This indicates (335433) 2005 UW163 is a super-fast rotator beyond the regime of the small monolithic asteroid.

  11. Evolution induced by dry minor mergers on to Fast Rotator S0 galaxies

    CERN Document Server

    Tapia, Trinidad; Querejeta, Miguel; Balcells, Marc; González-Garc'\\ia, A César; Prieto, Mercedes; Aguerri, J Alfonso L; Gallego, Jesús; Zamorano, Jaime; Rodríguez-Pérez, Cristina; Borlaff, Alejandro; .,

    2014-01-01

    We have analysed collisionless N-body simulations of intermediate and minor dry mergers on to S0s to test whether these mergers can generate S0 galaxies with intermediate kinematics between Fast and Slow Rotators. We find that minor mergers induce a lower decrease of the global rotational support than encounters of lower mass ratios, giving rise to S0s with intermediate properties between Fast and Slow Rotators. The resulting remnants are intrinsically more triaxial, less flattened, and span the whole range of apparent ellipticities up to $\\epsilon_\\mathrm{e} \\sim 0.8$. They do not show lower apparent ellipticities in random projections than initially; on the contrary, the formation of oval distortions and the disc thickening raise the percentage of projections at $0.4 0.9$), but exhibit a wide range of triaxialities ($0.20 < T < 1.00$). In the plane of global anisotropy of velocities ($\\delta$) vs. intrinsic ellipticity ($\\epsilon_\\mathrm{e,intr}$), some of our models extend the linear trend found in ...

  12. Searching for color variation on fast rotating asteroids with simultaneous V-J observations

    CERN Document Server

    Polishook, David

    2015-01-01

    Boulders, rocks and regolith on fast rotating asteroids (<2.5 hours) are modeled to slide towards the equator due to a strong centrifugal force and a low cohesion force. As a result, regions of fresh subsurface material can be exposed. Therefore, we searched for color variation on small and fast rotating asteroids. We describe a novel technique in which the asteroid is simultaneously observed in the visible and near-IR wavelength range. In this technique, brightness changes due to atmospheric extinction effects can be calibrated across the visible and near-IR images. We use V- and J-band filters since the distinction in color between weathered and unweathered surfaces on ordinary chondrite-like bodies is most prominent at these wavelengths and can reach ~25%. To test our method, we observed 3 asteroids with Cerro Tololo's 1.3 m telescope. We find ~5% variation of the mean V-J color, but do not find any clearly repeating color signature through multiple rotations. This suggests that no landslides occurred w...

  13. An algorithm for computing the 2D structure of fast rotating stars

    CERN Document Server

    Rieutord, M; Putigny, B

    2016-01-01

    Stars may be understood as self-gravitating masses of a compressible fluid whose radiative cooling is compensated by nuclear reactions or gravitational contraction. The understanding of their time evolution requires the use of detailed models that account for a complex microphysics including that of opacities, equation of state and nuclear reactions. The present stellar models are essentially one-dimensional, namely spherically symmetric. However, the interpretation of recent data like the surface abundances of elements or the distribution of internal rotation have reached the limits of validity of one-dimensional models because of their very simplified representation of large-scale fluid flows. In this article, we describe the ESTER code, which is the first code able to compute in a consistent way a two-dimensional model of a fast rotating star including its large-scale flows. Compared to classical 1D stellar evolution codes, many numerical innovations have been introduced to deal with this complex problem. ...

  14. A rotating directional probe for the measurements of fast ion losses and plasma rotation at Tokamak Experiment for Technology Oriented Research.

    Science.gov (United States)

    Rack, M; Liang, Y; Jaegers, H; Assmann, J; Satheeswaran, G; Xu, Y; Pearson, J; Yang, Y; Denner, P; Zeng, L

    2013-08-01

    This work discusses a new directional probe designed for measurements of fast ion losses and the plasma rotation with a high angular resolution in magnetically confined plasmas. Directional and especially Mach probes are commonly used diagnostics for plasma flow measurements, and their applicability for the fast ion losses detection has been demonstrated. A limitation of static Mach probes is their low angular resolution. At the Tokamak Experiment for Technology Oriented Research, the angular resolution is strongly restricted by the finite number of available measurement channels. In a dynamic plasma, where instabilities can lead to local changes of the field line pitch-angle, plasma flow, or fast ion losses, a low angular resolution makes a precise data analysis difficult and reduces the quality of the measured data. The new probe design, the rotating directional probe, combines the features of early directional probes and Mach probes. It consists of two radially aligned arrays of nine Langmuir probe pins with each array facing opposite directions. During the measurement the probe head rotates along its axis to measure the ion saturation current from all directions. As a result, the rotating directional probe simultaneously provides an angular dependent plasma flow and fast ion losses measurement at different radial positions. Based on the angular dependent data, a precise determination of the current density is made. In addition, the simultaneous measurement of the ion saturation current at different radial positions allows for resolving radially varying field line pitch-angles and identifying the radial dynamic of processes like fast ion losses.

  15. Theoretical gravity darkening as a function of optical depth. A first approach to fast rotating stars

    Science.gov (United States)

    Claret, A.

    2016-04-01

    Aims: Recent observations of very fast rotating stars show systematic deviations from the von Zeipel theorem and pose a challenge to the theory of gravity-darkening exponents (β1). In this paper, we present a new insight into the problem of temperature distribution over distorted stellar surfaces to try to reduce these discrepancies. Methods: We use a variant of the numerical method based on the triangles strategy, which we previously introduced, to evaluate the gravity-darkening exponents. The novelty of the present method is that the theoretical β1 is now computed as a function of the optical depth, that is, β1 ≡ β1(τ). The stellar evolutionary models, which are necessary to obtain the physical conditions of the stellar envelopes/atmospheres inherent to the numerical method, are computed via the code GRANADA. Results: When the resulting theoretical β1(τ) are compared with the best accurate data of very fast rotators, a good agreement for the six systems is simultaneously achieved. In addition, we derive an equation that relates the locus of constant convective efficiency in the Hertzsprung-Russell (HR) diagram with gravity-darkening exponents.

  16. Imprints of fast-rotating massive stars in the Galactic Bulge.

    Science.gov (United States)

    Chiappini, Cristina; Frischknecht, Urs; Meynet, Georges; Hirschi, Raphael; Barbuy, Beatriz; Pignatari, Marco; Decressin, Thibaut; Maeder, André

    2011-04-28

    The first stars that formed after the Big Bang were probably massive, and they provided the Universe with the first elements heavier than helium ('metals'), which were incorporated into low-mass stars that have survived to the present. Eight stars in the oldest globular cluster in the Galaxy, NGC 6522, were found to have surface abundances consistent with the gas from which they formed being enriched by massive stars (that is, with higher α-element/Fe and Eu/Fe ratios than those of the Sun). However, the same stars have anomalously high abundances of Ba and La with respect to Fe, which usually arises through nucleosynthesis in low-mass stars (via the slow-neutron-capture process, or s-process). Recent theory suggests that metal-poor fast-rotating massive stars are able to boost the s-process yields by up to four orders of magnitude, which might provide a solution to this contradiction. Here we report a reanalysis of the earlier spectra, which reveals that Y and Sr are also overabundant with respect to Fe, showing a large scatter similar to that observed in extremely metal-poor stars, whereas C abundances are not enhanced. This pattern is best explained as originating in metal-poor fast-rotating massive stars, which might point to a common property of the first stellar generations and even of the 'first stars'.

  17. Fast spinning neutron stars: unified equations of state, crust effects, maximum rotating configurations

    CERN Document Server

    Li, A; Qi, B; Burgio, G F

    2016-01-01

    We study the crust effects on fast-rotating configurations of neutron stars (NSs). For this aim, we employ four unified equations of state (EoS) for both the cores and crusts, namely BCPM, BSk20, BSk21, Shen-TM1, as well as two non-unified EoS widely used in the literature, i.e. APR and GM1 EoS. All the core EoSs satisfy the recent observational constraints of the two massive pulsars whose masses are precisely measured. We show that the NS mass-equatorial radius relations are slightly affected by the smoothness at the core-crust matching interface. However, the uncertainties in the crust EoS and the matching interface bring insignificant changes, even at maximally rotating (Keplerian) configurations. For all four unified EoS, rotations can increase the star's gravitational mass up to $18\\%-19\\%$ and the equatorial radius by $29\\%-36\\%$. For stars as heavy as 1.4 M$_{\\odot}$, the radius increase is more pronounced, reaching $41\\%-43\\%$, i.e. 5 - 6 km. Moreover, by comparing the present calculations with recent...

  18. The origin and evolution of fast and slow rotators in the Illustris simulation

    Science.gov (United States)

    Penoyre, Zephyr; Moster, Benjamin P.; Sijacki, Debora; Genel, Shy

    2017-07-01

    Using the Illustris simulation, we follow thousands of elliptical galaxies back in time to identify how the dichotomy between fast- and slow-rotating ellipticals (FRs and SRs) develops. Comparing to the ATLAS3D survey, we show that Illustris reproduces similar elliptical galaxy rotation properties, quantified by the degree of ordered rotation, λR. There is a clear segregation between low-mass (M* 1011.5 M⊙), which are mostly SRs, in agreement with observations. We find that SRs are very gas poor, metal rich and red in colour, while FRs are generally more gas rich and still star forming. We suggest that ellipticals begin naturally as FRs and, as they grow in mass, lose their spin and become SRs. While at z = 1, the progenitors of SRs and FRs are nearly indistinguishable, their merger and star formation histories differ thereafter. We find that major mergers tend to disrupt galaxy spin, though in rare cases can lead to a spin-up. No major difference is found between the effects of gas-rich and gas-poor mergers, and the number of minor mergers seems to have little correlation with galaxy spin. In between major mergers, lower mass ellipticals, which are mostly gas rich, tend to recover their spin by accreting gas and stars. For galaxies with M* above ˜1011 M⊙, this trend reverses; galaxies only retain or steadily lose their spin. More frequent mergers, accompanied by an inability to regain spin, lead massive ellipticals to lose most of ordered rotation and transition from FRs to SRs.

  19. Development of inflatable seals for the rotatable plugs of sodium cooled fast breeder reactors. A review. Pt. I. Key areas

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Nilay K. [Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamilnadu (India). Dept. of Atomic Energy (DAE); Raj, Baldev [P.S. Govindaswamy Naidu (PSG) Institutions, Coimbatore, Tamilnadu (India)

    2013-11-15

    Identification of development areas and their implementation for rotatable plug (RP) inflatable seals of Na cooled, 500 Mw (e) Prototype Fast Breeder Reactor (PFBR) and 40 MW (t) Fast Breeder Test Reactor (FBTR) are described, largely based on a late 1990s survey of cover gas seal development (1950s - early 1990s) which defined a set of shortlisted design options and developmental strategy to minimize effort, cost and time. Comparative studies of top shield sealing and evolving FBR designs suggest suitability of inflatable seal as primary barrier in RPs. International experience identified choice and qualification of seal elastomer under synergistic degrading environment of reactor as the prime element of development. The low pressure, non-reinforced, unbeaded, PFBR inflatable seal (made of 50/50 blend of Viton {sup registered} GBL 200S/600S) developed for 10 y life provides a unification scheme for nuclear elastomeric sealing based on 5 peroxide cured fluoroelastomer blend formulations, 1 finite element analysis approach, 1 Teflon-like plasma coating technique and 2 manufacturing processes promising significant gains in standardization, economy and safety. Uniqueness was ab initio development in the absence of established industry or ready-made supply. Part I addresses key areas of design shortlisting, strategy, development and unification with a backdrop of international evolution. (orig.)

  20. The subdwarf B star SB 290 - A fast rotator on the extreme horizontal branch

    CERN Document Server

    Geier, S; Heuser, C; Classen, L; O'Toole, S J; Edelmann, H

    2013-01-01

    Hot subdwarf B stars (sdBs) are evolved core helium-burning stars with very thin hydrogen envelopes. In order to form an sdB, the progenitor has to lose almost all of its hydrogen envelope right at the tip of the red giant branch. In close binary systems, mass transfer to the companion provides the extraordinary mass loss required for their formation. However, apparently single sdBs exist as well and their formation is unclear since decades. The merger of helium white dwarfs leading to an ignition of core helium-burning or the merger of a helium core and a low mass star during the common envelope phase have been proposed. Here we report the discovery of SB 290 as the first apparently single fast rotating sdB star located on the extreme horizontal branch indicating that those stars may form from mergers.

  1. CdS thin films growth by fast evaporation with substrate rotation

    Energy Technology Data Exchange (ETDEWEB)

    Castro-Rodriguez, R., E-mail: romano@mda.cinvestav.mx [Applied Physics Department, CINVESTAV-IPN Merida, C.P. 97310, Merida, Yucatan (Mexico); Mendez-Gamboa, J.; Perez-Quintana, I.; Medina-Ezquivel, R. [Yucatan Autonomous University, Faculty of Engineering. AP 150 Cordemex, 97310, Merida, Yucatan (Mexico)

    2011-09-01

    CdS thin films were grown by fast evaporation technique combined with substrate rotation. The source evaporation temperature was maintained at 600 deg. C and the substrate temperature at 350 deg. C with background pressure of 1.0 m Torr. The substrates were corning glass 2947 with dimension of 1 in. x 1 in. rotate at 500 rpm during the growth. In order to verify the quality of the CdS films, the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical measurements. The films shown a flat uniformity thickness with growth rate of {approx}3.5 nm/s, the orientation was in the cubic-(1 1 1) and hexagonal-(0 0 2) plane in dependence of the growth time, grain size {approx}5 nm, roughness uniformity {approx}2.7 nm, transmittance in the visible region spectrum {approx}80%, energy band gap between 2.39 and 2.42 eV and short circuit photocurrent density (J{sub SC}) losses in the CdS films of 4.7 mA/cm{sup 2}.

  2. Fast instantaneous center of rotation estimation algorithm for a skied-steered robot

    Science.gov (United States)

    Kniaz, V. V.

    2015-05-01

    Skid-steered robots are widely used as mobile platforms for machine vision systems. However it is hard to achieve a stable motion of such robots along desired trajectory due to an unpredictable wheel slip. It is possible to compensate the unpredictable wheel slip and stabilize the motion of the robot using visual odometry. This paper presents a fast optical flow based algorithm for estimation of instantaneous center of rotation, angular and longitudinal speed of the robot. The proposed algorithm is based on Horn-Schunck variational optical flow estimation method. The instantaneous center of rotation and motion of the robot is estimated by back projection of optical flow field to the ground surface. The developed algorithm was tested using skid-steered mobile robot. The robot is based on a mobile platform that includes two pairs of differential driven motors and a motor controller. Monocular visual odometry system consisting of a singleboard computer and a low cost webcam is mounted on the mobile platform. A state-space model of the robot was derived using standard black-box system identification. The input (commands) and the output (motion) were recorded using a dedicated external motion capture system. The obtained model was used to control the robot without visual odometry data. The paper is concluded with the algorithm quality estimation by comparison of the trajectories estimated by the algorithm with the data from motion capture system.

  3. Dynamics of local isolated magnetic flux tubes in a fast-rotating stellar atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Chou, W.; Tajima, C.T. [Univ. of Texas, Austin, TX (United States). Dept. of Physics; Matsumoto, R. [Chiba Univ. (Japan)]|[ASRC, JAERI, Naka (Japan); Shibata, K. [National Astronomical Observatory, Mitaka (Japan)

    1998-01-01

    Dynamics of magnetic flux tubes in the fast rotating stellar atmosphere is studied. We focus on the effects and signatures of the instability of the flux tube emergence influenced by the Coriolis force. We present the result from a linear stability analysis and discuss its possible signatures in the course of the evolution of G-type and M-type stars. We present a three dimensional magnetohydrodynamical simulation of local isolated magnetic flux tubes under a magnetic buoyancy instability in co-rotating Cartesian coordinates. We find that the combination of the buoyancy instability and the Coriolis effect gives rise to a mechanism, to twist the emerging magnetic flux tube into a helical structure. The tilt angle, east-west asymmetry and magnetic helicity of the Twisted flux tubes in the simulations are studied in detail. The linear and nonlinear analyses provide hints as to what kind of pattern of large spots in young M-type main-sequence stars might be observed. We find that young and old G-type stars may have different distributions of spots while M-type stars may always have low latitudes spots. The size of stellar spots may decrease when a star becomes older, due to the decreasing of magnetic field. A qualitative comparison with solar observations is also presented.

  4. Optimal and fast rotational alignment of volumes with missing data in Fourier space.

    Science.gov (United States)

    Shatsky, Maxim; Arbelaez, Pablo; Glaeser, Robert M; Brenner, Steven E

    2013-11-01

    Electron tomography of intact cells has the potential to reveal the entire cellular content at a resolution corresponding to individual macromolecular complexes. Characterization of macromolecular complexes in tomograms is nevertheless an extremely challenging task due to the high level of noise, and due to the limited tilt angle that results in missing data in Fourier space. By identifying particles of the same type and averaging their 3D volumes, it is possible to obtain a structure at a more useful resolution for biological interpretation. Currently, classification and averaging of sub-tomograms is limited by the speed of computational methods that optimize alignment between two sub-tomographic volumes. The alignment optimization is hampered by the fact that the missing data in Fourier space has to be taken into account during the rotational search. A similar problem appears in single particle electron microscopy where the random conical tilt procedure may require averaging of volumes with a missing cone in Fourier space. We present a fast implementation of a method guaranteed to find an optimal rotational alignment that maximizes the constrained cross-correlation function (cCCF) computed over the actual overlap of data in Fourier space.

  5. Fast MR arthrography using VIBE sequences to evaluate the rotator cuff

    Energy Technology Data Exchange (ETDEWEB)

    Vandevenne, Jan E. [Ziekenhuizen Oost-Limburg, Department of Radiology, Genk (Belgium); Universitair Ziekenhuis Antwerpen, University of Antwerp, Department of Radiology, Edegem (Belgium); Vanhoenacker, Filip; Parizel, Paul M. [Universitair Ziekenhuis Antwerpen, University of Antwerp, Department of Radiology, Edegem (Belgium); Mahachie John, Jestinah M. [University of Hasselt, Centre for Statistics, Diepenbeek (Belgium); Gelin, Geert [Ziekenhuizen Oost-Limburg, Department of Radiology, Genk (Belgium)

    2009-07-15

    The purpose of this paper was to evaluate if short volumetric interpolated breath-hold examination (VIBE) sequences can be used as a substitute for T1-weighted with fat saturation (T1-FS) sequences when performing magnetic resonance (MR) arthrography to diagnose rotator cuff tears. Eighty-two patients underwent direct MR arthrography of the shoulder joint using VIBE (acquisition time of 13 s) and T1-FS (acquisition time of 5 min) sequences in the axial and paracoronal plane on a 1.0-T MR unit. Two radiologists scored rotator cuff tendons on VIBE and T1-FS images separately as normal, small/large partial thickness and full thickness tears with or without geyser sign. T1-FS sequences were considered the gold standard. Surgical correlation was available in a small sample. Sensitivity, specificity, and positive and negative predictive values of VIBE were greater than 92% for large articular-sided partial thickness and full thickness tears. For detecting fraying and articular-sided small partial thickness tears, these parameters were 55%, 94%, 94%, and 57%, respectively. The simple kappa value was 0.76, and the weighted kappa value was 0.86 for agreement between T1-FS and VIBE scores. All large partial and full thickness tears at surgery were correctly diagnosed using VIBE or T1-FS MR images. Fast MR arthrography of the shoulder joint using VIBE sequences showed good concordance with the classically used T1-FS sequences for the appearance of the rotator cuff, in particular for large articular-sided partial thickness tears and for full thickness tears. Due to its very short acquisition time, VIBE may be especially useful when performing MR arthrography in claustrophobic patients or patients with a painful shoulder. (orig.)

  6. Fast MR arthrography using VIBE sequences to evaluate the rotator cuff.

    Science.gov (United States)

    Vandevenne, Jan E; Vanhoenacker, Filip; Mahachie John, Jestinah M; Gelin, Geert; Parizel, Paul M

    2009-07-01

    The purpose of this paper was to evaluate if short volumetric interpolated breath-hold examination (VIBE) sequences can be used as a substitute for T1-weighted with fat saturation (T1-FS) sequences when performing magnetic resonance (MR) arthrography to diagnose rotator cuff tears. Eighty-two patients underwent direct MR arthrography of the shoulder joint using VIBE (acquisition time of 13 s) and T1-FS (acquisition time of 5 min) sequences in the axial and paracoronal plane on a 1.0-T MR unit. Two radiologists scored rotator cuff tendons on VIBE and T1-FS images separately as normal, small/large partial thickness and full thickness tears with or without geyser sign. T1-FS sequences were considered the gold standard. Surgical correlation was available in a small sample. Sensitivity, specificity, and positive and negative predictive values of VIBE were greater than 92% for large articular-sided partial thickness and full thickness tears. For detecting fraying and articular-sided small partial thickness tears, these parameters were 55%, 94%, 94%, and 57%, respectively. The simple kappa value was 0.76, and the weighted kappa value was 0.86 for agreement between T1-FS and VIBE scores. All large partial and full thickness tears at surgery were correctly diagnosed using VIBE or T1-FS MR images. Fast MR arthrography of the shoulder joint using VIBE sequences showed good concordance with the classically used T1-FS sequences for the appearance of the rotator cuff, in particular for large articular-sided partial thickness tears and for full thickness tears. Due to its very short acquisition time, VIBE may be especially useful when performing MR arthrography in claustrophobic patients or patients with a painful shoulder.

  7. The Geiger discharge revisited Part IV. The fast component

    CERN Document Server

    Wilkinson, D H

    1999-01-01

    The mechanism of the self-quenching Geiger counter has been understood, in general terms, for over half a century. However, quantitatively, one aspect of the discharge has not been satisfactorily accounted for. This is the fraction of the signal that is 'fast' in the sense of being contemporaneous with the avalanches that propagate the discharge, as opposed to the 'slow' fraction that is due to the drift of the positive ions, produced in the avalanches, towards the cathode. The standard theory suggests that the fast fraction is of the percentage order whereas experimentally, as has also been known for half a century, it is of a few tens of percent. The resolution of the problem lies in consideration of the space-charge effects within individual avalanches following which the fast component is satisfactorily accounted for. (author)

  8. Discovery of XO-6b: A Hot Jupiter Transiting a Fast Rotating F5 Star on an Oblique Orbit

    Science.gov (United States)

    Crouzet, N.; McCullough, P. R.; Long, D.; Montanes Rodriguez, P.; Lecavelier des Etangs, A.; Ribas, I.; Bourrier, V.; Hébrard, G.; Vilardell, F.; Deleuil, M.; Herrero, E.; Garcia-Melendo, E.; Akhenak, L.; Foote, J.; Gary, B.; Benni, P.; Guillot, T.; Conjat, M.; Mékarnia, D.; Garlitz, J.; Burke, C. J.; Courcol, B.; Demangeon, O.

    2017-03-01

    Only a few hot Jupiters are known to orbit around fast rotating stars. These exoplanets are harder to detect and characterize and may be less common than around slow rotators. Here, we report the discovery of the transiting hot Jupiter XO-6b, which orbits a bright, hot, and fast rotating star: V = 10.25, T eff⋆ = 6720 ± 100 K, v sin i ⋆ = 48 ± 3 km s‑1. We detected the planet from its transits using the XO instruments and conducted a follow-up campaign. Because of the fast stellar rotation, radial velocities taken along the orbit do not yield the planet’s mass with a high confidence level, but we secure a 3σ upper limit M p orbit with a sky-projected obliquity {\\boldsymbol{λ }}=-20\\buildrel{\\circ}\\over{.} 7+/- 2\\buildrel{\\circ}\\over{.} 3. The rotation period of the star is shorter than the orbital period of the planet: P rot P orb = 3.77 days. Thus, this system stands in a largely unexplored regime of dynamical interactions between close-in giant planets and their host stars.

  9. Powder metallurgy Rene 95 rotating turbine engine parts, volume 2

    Science.gov (United States)

    Wilbers, L. G.; Redden, T. K.

    1981-01-01

    A Rene 95 alloy as-HIP high pressure turbine aft shaft in the CF6-50 engine and a HIP plus forged Rene 95 compressor disk in the CFM56 engine were tested. The CF6-50 engine test was conducted for 1000 C cycles and the CFM56 test for 2000 C cycles. Post test evaluation and analysis of the CF6-50 shaft and the CFM56 compressor disk included visual, fluorescent penetrant, and dimensional inspections. No defects or otherwise discrepant conditions were found. These parts were judged to have performed satisfactorily.

  10. A Prototype of CAPP System for Rotational Parts

    Institute of Scientific and Technical Information of China (English)

    AHMED; Hassan

    2002-01-01

    Noticing in recent years that the world is running out of mineral resources, the price of engineering materials will continually rise in the future, the percentage of the cost of manufactured part that is due to the cost of materials is also rising. The amount of material must be removed away to produce the final product should be minimized, excess stock will increase not only the material cost, but also processing cost, fixture cost, tooling cost, and increases machine cycle times. This paper proposed a va...

  11. Internal x-ray plateau in short GRBs: Signature of supramassive fast-rotating quark stars?

    Science.gov (United States)

    Li, Ang; Zhang, Bing; Zhang, Nai-Bo; Gao, He; Qi, Bin; Liu, Tong

    2016-10-01

    A supramassive, strongly magnetized millisecond neutron star (NS) has been proposed to be the candidate central engine of at least some short gamma-ray bursts (SGRBs), based on the "internal plateau" commonly observed in the early x-ray afterglow. While a previous analysis shows a qualitative consistency between this suggestion and the Swift SGRB data, the distribution of observed break time tb is much narrower than the distribution of the collapse time of supramassive NSs for the several NS equations-of-state (EoSs) investigated. In this paper, we study four recently constructed "unified" NS EoSs (BCPM, BSk20, BSk21, and Shen) as well as three developed strange quark star (QS) EoSs within the new confinement density-dependent mass (CDDM) model, labelled as CIDDM, CDDM1, and CDDM2. All the EoSs chosen here satisfy the recent observational constraints of the two massive pulsars of which the masses are precisely measured. We construct sequences of rigidly rotating NS/QS configurations with increasing spinning frequency f , from nonrotating (f =0 ) to the Keplerian frequency (f =fK), and provide convenient analytical parametrizations of the results. Assuming that the cosmological NS-NS merger systems have the same mass distribution as the Galactic NS-NS systems, we demonstrate that all except the BCPM NS EoS can reproduce the current 22% supramassive NS/QS fraction constraint as derived from the SGRB data. We simultaneously simulate the observed quantities (the break time tb, the break time luminosity Lb, and the total energy in the electromagnetic channel Etotal) of SGRBs and find that, while equally well reproducing other observational constraints, QS EoSs predict a much narrower tb distribution than that of the NS EoSs, better matching the data. We therefore suggest that the postmerger product of NS-NS mergers might be fast-rotating supramassive QSs rather than NSs.

  12. An algorithm for computing the 2D structure of fast rotating stars

    Energy Technology Data Exchange (ETDEWEB)

    Rieutord, Michel, E-mail: mrieutord@irap.omp.eu [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); CNRS, IRAP, 14, avenue Edouard Belin, F-31400 Toulouse (France); Espinosa Lara, Francisco; Putigny, Bertrand [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); CNRS, IRAP, 14, avenue Edouard Belin, F-31400 Toulouse (France)

    2016-08-01

    Stars may be understood as self-gravitating masses of a compressible fluid whose radiative cooling is compensated by nuclear reactions or gravitational contraction. The understanding of their time evolution requires the use of detailed models that account for a complex microphysics including that of opacities, equation of state and nuclear reactions. The present stellar models are essentially one-dimensional, namely spherically symmetric. However, the interpretation of recent data like the surface abundances of elements or the distribution of internal rotation have reached the limits of validity of one-dimensional models because of their very simplified representation of large-scale fluid flows. In this article, we describe the ESTER code, which is the first code able to compute in a consistent way a two-dimensional model of a fast rotating star including its large-scale flows. Compared to classical 1D stellar evolution codes, many numerical innovations have been introduced to deal with this complex problem. First, the spectral discretization based on spherical harmonics and Chebyshev polynomials is used to represent the 2D axisymmetric fields. A nonlinear mapping maps the spheroidal star and allows a smooth spectral representation of the fields. The properties of Picard and Newton iterations for solving the nonlinear partial differential equations of the problem are discussed. It turns out that the Picard scheme is efficient on the computation of the simple polytropic stars, but Newton algorithm is unsurpassed when stellar models include complex microphysics. Finally, we discuss the numerical efficiency of our solver of Newton iterations. This linear solver combines the iterative Conjugate Gradient Squared algorithm together with an LU-factorization serving as a preconditioner of the Jacobian matrix.

  13. The Atlas3D project - XXVI. HI discs in real and simulated fast and slow rotators

    CERN Document Server

    Serra, Paolo; Krajnovic, Davor; Naab, Thorsten; Oosterloo, Tom; Morganti, Raffaella; Cappellari, Michele; Emsellem, Eric; Young, Lisa M; Blitz, Leo; Davis, Timothy A; Duc, Pierre-Alain; Hirschmann, Michaela; Weijmans, Anne-Marie; Alatalo, Katherine; Bayet, Estelle; Bois, Maxime; Bournaud, Frederic; Bureau, Martin; Davies, Roger L; de Zeeuw, P T; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M; Sarzi, Marc; Scott, Nicholas

    2014-01-01

    One quarter of all nearby early-type galaxies (ETGs) outside Virgo host a disc/ring of HI with size from a few to tens of kpc and mass up to ~1e+9 solar masses. Here we investigate whether this HI is related to the presence of a stellar disc within the host making use of the classification of ETGs in fast and slow rotators (FR/SR). We find a large diversity of HI masses and morphologies within both families. Surprisingly, SRs are detected as often, host as much HI and have a similar rate of HI discs/rings as FRs. Accretion of HI is therefore not always linked to the growth of an inner stellar disc. The weak relation between HI and stellar disc is confirmed by their frequent kinematical misalignment in FRs, including cases of polar and counterrotating gas. In SRs the HI is usually polar. This complex picture highlights a diversity of ETG formation histories which may be lost in the relative simplicity of their inner structure and emerges when studying their outer regions. We find that LCDM hydrodynamical simul...

  14. Surface Nanocrystallization of Steel 20 Induced by Fast Multiple Rotation Rolling

    Institute of Scientific and Technical Information of China (English)

    Xingdong Yuan; Bin Xu; Yucheng Cai

    2015-01-01

    In order to expand the application of steel 20 in precision device, fast multiple rotation rolling ( FMRR) is applied to fabricate a nanostructured layer on the surface of steel 20. The FMRR samples are then Cr⁃Rare earth⁃boronized under low⁃temperature. The microstructure of the top surface layer is characterized by transmission electron microscopy ( TEM ) . Microhardness of the top surface is measured by a Vickers microhardness tester. The boride layer is characterized by using scanning electron microscopy ( SEM ) . Experimental results show that a nanostructured layer with their grain size range from 200 to 400 nm is obtained in the top surface layer. The microhardness of FMRR sample changes gradiently along the depth from about 274HV in the top surface layer to about 159HV in the matrix, which is nearly 1.7 times harder than that of the original sample. The penetrating rate is enhanced significantly when the FMRR samples are Cr⁃Rare earth⁃boronized at 600 ℃ for 6 h. Thickness of the boride layer increases to around 20 μm, which is nearly twice thicker than that of the original sample.

  15. The fate of ultrahigh energy nuclei in the immediate environment of young fast-rotating pulsars

    CERN Document Server

    Kotera, Kumiko; Blasi, Pasquale

    2015-01-01

    Young, fast-rotating neutron stars are promising candidate sources for the production of ultrahigh energy cosmic rays (UHECRs). The interest in this model has recently been boosted by the latest chemical composition measurements of cosmic rays, that seem to show the presence of a heavy nuclear component at the highest energies. Neutrons stars, with their metal-rich surfaces, are potentially interesting sources of such nuclei, but some open issues remain: 1) is it possible to extract these nuclei from the star's surface? 2) Do the nuclei survive the severe conditions present in the magnetosphere of the neutron star? 3) What happens to the surviving nuclei once they enter the wind that is launched outside the light cylinder? In this paper we address these issues in a quantitative way, proving that for the most reasonable range of neutron star surface temperatures ($T<10^7\\,$K), a large fraction of heavy nuclei survive photo-disintegration losses. These processes, together with curvature losses and accelerati...

  16. The Transition to a Giant Vortex Phase in a Fast Rotating Bose-Einstein Condensate

    CERN Document Server

    Correggi, M; Yngvason, J

    2010-01-01

    We study the Gross-Pitaevskii (GP) energy functional for a fast rotating Bose-Einstein condensate on the unit disc in two dimensions. Writing the coupling parameter as $1/\\eps^2$ we consider the asymptotic regime $\\eps\\to 0$ with the angular velocity $\\Omega$ proportional to $(\\eps^2|\\log\\eps|)^{-1}$. We prove that if $\\Omega=\\Omega_0 (\\eps^2|\\log\\eps|)^{-1}$ and $\\Omega_0>(3\\pi)^{-1}$ then a minimizer of the GP energy functional has no zeros in an annulus at the boundary of the disc that contains the bulk of the mass. The vorticity resides in a complementary `hole' around the center where the density is vanishingly small. Moreover, we prove a lower bound to the ground state energy that matches, up to small errors, the upper bound obtained from an optimal giant vortex trial function, and also that the winding number of a GP minimizer around the disc is in accord with the phase of this trial function.

  17. Fast calculation method of computer generated hologram animation for viewpoint parallel shift and rotation using Fourier transform optical system.

    Science.gov (United States)

    Watanabe, Ryosuke; Yamaguchi, Kazuhiro; Sakamoto, Yuji

    2016-01-20

    Computer generated hologram (CGH) animations can be made by switching many CGHs on an electronic display. Some fast calculation methods for CGH animations have been proposed, but one for viewpoint movement has not been proposed. Therefore, we designed a fast calculation method of CGH animations for viewpoint parallel shifts and rotation. A Fourier transform optical system was adopted to expand the viewing angle. The results of experiments were that the calculation time of our method was over 6 times faster than that of the conventional method. Furthermore, the degradation in CGH animation quality was found to be sufficiently small.

  18. The Four-Color Broadband Photometry for Physical Characterization of Fast Rotator NEOs

    Science.gov (United States)

    Kikwaya Eluo, Jean-Baptiste; Gilmour, Cosette M.; Fedorets, Grigori

    2016-10-01

    Fast rotator NEOs, having size in the range of several meters in diameter (H > 22), turn to be very faint. In order to study their physical characterization using photometry, it is required to use a system of filters that covers for each of them a large bandwidth of at least 0.8 micrometers. Traditional and inexpensive Johnson-Cousins broadband filters (B, V, R, I) work efficiently well.11 NEOs were observed at the Vatican Advanced Technology Telescope (VATT) from 2014 to 2016. Their absolute magnitudes range from 21.9 to 28.2. We found that their spin rates vary from 0.172+/- 0.003 to 2.300 +/- 0.003 hours. 6 of them (2014 AY28, 2015 TB25, 2015 VM64, 2015 VT64, 2015 XZ1, and 2016 GW221) are clearly of C-type and dominate our sample, while one (2014 KS40) belongs to X-type. One NEO (2016 EW1) falls between C-type and S-type asteroids on the plot (B-V) versus (V-R) while on the plot (V-I) versus (V-R), it is among C-type asteroids. We rule it to be C-type asteroid. NEO 2014 WF201 stays between C-type and S-type on both plots.NEO 2014 EC appears to us of very special interest as its V-R color index is close to zero. Its relative reflectance normalized to R-filter shows that it belongs to B-type asteroid. Would it be an indication of fresh interior material excavated by a recent impact?

  19. Granular flow in a rotating cone partly submerged in a fluidized bed

    NARCIS (Netherlands)

    Janse, Arthur M.C.; Biesheuvel, P. Maarten; Prins, Wolter; Swaaij, van Wim P.M.

    2000-01-01

    When a rotating cone with supply openings near the bottom is partly inserted into a fluidized bed, solid particles are taken up and conveyed spirally over the inner surface. This principle for particle transport was used in a novel reactor for the flash pyrolysis of biomass with several distinct adv

  20. A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates

    OpenAIRE

    Danaila, Ionut; Hecht, Frédéric

    2009-01-01

    to appear in J. Computational Physics; Numerical computations of stationary states of fast-rotating Bose-Einstein condensates require high spatial resolution due to the presence of a large number of quantized vortices. In this paper we propose a low-order finite element method with mesh adaptivity by metric control, as an alternative approach to the commonly used high order (finite difference or spectral) approximation methods. The mesh adaptivity is used with two different numerical algorith...

  1. A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates

    OpenAIRE

    Danaila, Ionut; Hecht, Frédéric

    2010-01-01

    Numerical computations of stationary states of fast-rotating Bose-Einstein condensates re- quire high spatial resolution due to the presence of a large number of quantized vortices. In this paper we propose a low-order finite element method with mesh adaptivity by metric con- trol, as an alternative approach to the commonly used high order (finite difference or spectral) approximation methods. The mesh adaptivity is used with two different numerical algorithms to compute stationary vortex sta...

  2. A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates

    OpenAIRE

    Danaila, Ionut; Hecht, Frédéric

    2010-01-01

    to appear in J. Computational Physics; Numerical computations of stationary states of fast-rotating Bose-Einstein condensates require high spatial resolution due to the presence of a large number of quantized vortices. In this paper we propose a low-order finite element method with mesh adaptivity by metric control, as an alternative approach to the commonly used high order (finite difference or spectral) approximation methods. The mesh adaptivity is used with two different numerical algorith...

  3. Bona-fide, strong-variable galactic Luminous Blue Variable stars are fast rotators: detection of a high rotational velocity in HR Carinae

    CERN Document Server

    Groh, Jose H; Hillier, D John; Barba, Rodolfo; Fernandez-Lajus, Eduardo; Gamen, Roberto C; Moises, Alessandro; Solivella, Gladys; Teodoro, Mairan

    2009-01-01

    We report optical observations of the Luminous Blue Variable (LBV) HR Carinae which show that the star has reached a visual minimum phase in 2009. More importantly, we detected absorptions due to Si IV 4088-4116 Angstroms. To match their observed line profiles from 2009 May, a high rotational velocity of vrot=150 +- 20 km/s is needed (assuming an inclination angle of 30 degrees), implying that HR Car rotates at ~0.88 +- 0.2 of its critical velocity for break-up (vcrit). Our results suggest that fast rotation is typical in all strong-variable, bona-fide galactic LBVs, which present S Dor-type variability. Strong-variable LBVs are located in a well-defined region of the HR diagram during visual minimum (the "LBV minimum instability strip"). We suggest this region corresponds to where vcrit is reached. To the left of this strip, a forbidden zone with vrot/vcrit>1 is present, explaining why no LBVs are detected in this zone. Since dormant/ex LBVs like P Cygni and HD 168625 have low vrot, we propose that LBVs can ...

  4. Are the stars of a new class of variability detected in NGC 3766 fast rotating SPB stars?

    Science.gov (United States)

    Salmon, S. J. A. J.; Montalbán, J.; Reese, D. R.; Dupret, M.-A.; Eggenberger, P.

    2015-01-01

    A recent photometric survey in the NGC 3766 cluster led to the detection of stars presenting an unexpected variability. They lie in a region of the Hertzsprung-Russell (HR) diagram where no pulsation are theoretically expected, in between the δ Scuti and slowly pulsating B (SPB) star instability domains. Their variability periods, between ~0.1-0.7 d, are outside the expected domains of these well-known pulsators. The NCG 3766 cluster is known to host fast rotating stars. Rotation can significantly affect the pulsation properties of stars and alter their apparent luminosity through gravity darkening. Therefore we inspect if the new variable stars could correspond to fast rotating SPB stars. We carry out instability and visibility analysis of SPB pulsation modes within the frame of the traditional approximation. The effects of gravity darkening on typical SPB models are next studied. We find that at the red border of the SPB instability strip, prograde sectoral (PS) modes are preferentially excited, with periods shifted in the 0.2-0.5 d range due to the Coriolis effect. These modes are best seen when the star is seen equator-on. For such inclinations, low-mass SPB models can appear fainter due to gravity darkening and as if they were located between the δ Scuti and SPB instability strips.

  5. Are the stars of a new class of variability detected in NGC~3766 fast rotating SPB stars?

    CERN Document Server

    Salmon, S J A J; Reese, D R; Dupret, M -A; Eggenberger, P

    2014-01-01

    A recent photometric survey in the NGC~3766 cluster led to the detection of stars presenting an unexpected variability. They lie in a region of the Hertzsprung-Russell (HR) diagram where no pulsation are theoretically expected, in between the $\\delta$ Scuti and slowly pulsating B (SPB) star instability domains. Their variability periods, between $\\sim$0.1--0.7~d, are outside the expected domains of these well-known pulsators. The NCG~3766 cluster is known to host fast rotating stars. Rotation can significantly affect the pulsation properties of stars and alter their apparent luminosity through gravity darkening. Therefore we inspect if the new variable stars could correspond to fast rotating SPB stars. We carry out instability and visibility analysis of SPB pulsation modes within the frame of the traditional approximation. The effects of gravity darkening on typical SPB models are next studied. We find that at the red border of the SPB instability strip, prograde sectoral (PS) modes are preferentially excited...

  6. A Chemical Signature from Fast-rotating Low-metallicity Massive Stars: ROA 276 in ω Centauri

    Science.gov (United States)

    Yong, David; Norris, John E.; Da Costa, Gary S.; Stanford, Laura M.; Karakas, Amanda I.; Shingles, Luke J.; Hirschi, Raphael; Pignatari, Marco

    2017-03-01

    We present a chemical abundance analysis of a metal-poor star, ROA 276, in the stellar system ω Centauri. We confirm that this star has an unusually high [Sr/Ba] abundance ratio. Additionally, ROA 276 exhibits remarkably high abundance ratios, [X/Fe], for all elements from Cu to Mo along with normal abundance ratios for the elements from Ba to Pb. The chemical abundance pattern of ROA 276, relative to a primordial ω Cen star ROA 46, is best fit by a fast-rotating low-metallicity massive stellar model of 20 {M}⊙ , [Fe/H] = -1.8, and an initial rotation 0.4 times the critical value; no other nucleosynthetic source can match the neutron-capture element distribution. ROA 276 arguably offers the most definitive proof to date that fast-rotating massive stars contributed to the production of heavy elements in the early universe. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  7. Analysis of dashpot performance for rotating control drums of a lithium cooled fast reactor concept

    Science.gov (United States)

    Wenzler, C. J.

    1972-01-01

    A dashpot was incorporated in the design of the drive train of the rotating control drum to prevent shock damage to the control drum and drive train at the termination of a scram action. A rotating vane dashpot using reactor coolant lithium as a damping fluid appears to be the best candidate of the various damping devices explored. A performance analysis, results and discussion of vane type dashpots are presented.

  8. Choice of rotatable plug seals for prototype fast breeder reactor: Review of historical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, N.K., E-mail: nksinha@igcar.gov.in; Raj, Baldev, E-mail: baldev.dr@gmail.com

    2015-09-15

    Highlights: • Choice and arrangement of elastomeric inflatable and backup seals as primary and secondary barriers. • With survey (mid-1930s onwards) of reactor, sealing, R&D and rubber technology. • Load, reliability, safety, life and economy of seals and reactors are key factors. • PFBR blends concepts and experience of MOX fuelled FBRs with original solutions. • R&D indicates inflatable seal advanced fluoroelastomer pivotal in unifying nuclear sealing. - Abstract: Choice and arrangement of elastomeric primary inflatable and secondary backup seals for the rotatable plugs (RPs) of 500 MW (e), sodium cooled, pool type, 2-loop, mixed oxide (MOX) fuelled Prototype Fast Breeder Reactor (PFBR) is depicted with review of various historical perspectives. Static and dynamic operation, largest diameters (PFBR: ∼6.4 m, ∼4.2 m), widest gaps and variations (5 ± 2 mm) and demanding operating requirements make RP openings on top shield (TS) the most difficult to seal which necessitated extensive development from 1950s to early 1990s. Liquid metal freeze seals with life equivalent to reactor prevailed as primary barrier (France, Japan, U.S.S.R.) during pre-1980s in spite of bulk, cost and complexity due to the abilities to meet zero leakage and resist core disruptive accident (CDA). Redefinition of CDA as beyond design basis accident, tolerable leakage and enhanced economisation drive during post-1980s established elastomeric inflatable seal as primary barrier excepting in U.S.S.R. (MOX fuel, freeze seal) and U.S.A. (metallic fuel). Choice of inflatable seal for PFBR RPs considers these perspectives, inherent advantages of elastomers and those of inflatable seals which maximise seal life. Choice of elastomeric backup seal as secondary barrier was governed by reliability and minimisation as well as distribution of load (temperature, radiation, mist) to maximise seal life. The compact sealing combination brings the hanging RPs at about the same elevation to reduce

  9. MOUNTABILITY PARTS OF MACHINE WITH ROTATING SURFACE, FITTED WITH POSITIVE CLEARANCE

    Directory of Open Access Journals (Sweden)

    Zbigniew BUDNIAK

    2014-06-01

    Full Text Available In this paper demonstrates the conditions of automatic assembly the parts of machines with rotating surfaces, fitted with positive clearance. Determination of the general condition of asseblability allowed for designation of the acceptable relative displacement and torsion axle, combined parts on the mounting position. The designation of depending allowed for assess the technological capacity of the installation equipment. On the basis of this mathematical model was developed a computer program that allows to determine the effect of geometric, strength and dynamic parameters of the assembly process. The examples of results of numerical calculations are shown in the graphs

  10. PROCESS UNIFICATION AND FRAME PREPARATION OF MACHINING PARAMETRES FOR ROTATIONAL PARTS

    Directory of Open Access Journals (Sweden)

    Ersan ASLAN

    2005-01-01

    Full Text Available Any traditional or computerized metal removal process needs a prototype, a technical drawing and a database for production of a part. Design, process planning and manufacturing problems such as modeling, the necessity data extraction from standard data exchange formats, and part programme preparation for machine tools can be solved by the operators or experts as soon as possible while they occurred in the traditonal approach. In circumstances of the production efforts spent by the computer, all experiences of expert can be saved in a database for foresight of the possible problems. This data can be used at any stage in the product cycle. In this paper, it is presented the results of research efforts which aimed to extract information from the defacto industry standard DXF files to determine features existing on rotational parts to be machined on horizontal machining centers. After process extraction and definition, process unifications and frame preparation for machining parameters of the part are introduced.

  11. Rotational path partial denture design: a 10-year clinical follow-up--Part II.

    Science.gov (United States)

    Jacobson, T E

    1994-03-01

    A review of the rotational path removable partial denture design concept has been presented. The rigid direct retainers used in these designs satisfy the basic requirements of clasp designs. The reported results of a survey of the members of The Academy of Prosthodontics may provide insight into the reasons for reluctance on the part of some practitioners to use the concept more often when indicated. Possible reasons include the following: lack of sufficient understanding of the concept, difficulty in obtaining knowledgeable laboratory support, absence of documented evidence of long-term clinical success, and a general lack of confidence in the efficacy of the procedure as described in the literature. This article presents references that are available to improve the understanding of technicians and dentists with regard to the rotational path concept. In addition, several patients followed up for 10 or more years demonstrated long-term clinical success.

  12. Development of inflatable seals for the rotatable plugs of sodium cooled fast breeder reactors. Pt. II. R and D necessities and development across the world. A review

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Nilay K. [Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamilnadu (India). Dept. of Atomic Energy (DAE); Raj, Baldev [P.S. Govindaswamy Naidu (PSG) Institutions Coimbatore, Tamilnadu (India)

    2013-12-15

    Identification of development areas and their implementation for rotatable plug (RP) inflatable seals of Na cooled, 500 Mw (e) Prototype Fast Breeder Reactor (PFBR) and 40 MW (t) Fast Breeder Test Reactor (FBTR) are described, largely based on a late 1990s survey of cover gas seal development (1950s - early 1990s) which defined a set of shortlisted design options and developmental strategy to minimize effort, cost and time. Comparative study of top shield sealing and evolving FBR designs suggest suitability of inflatable seal as primary barrier in RPs. International experience identified choice and qualification of seal elastomer under synergistic degrading environment of reactor as the prime element of development. The low pressure, non-reinforced, unbeaded, PFBR inflatable seal (made of 50/50 blend of Viton {sup registered} GBL 200S/600S) developed for 10 y life provides a unification scheme for nuclear elastomeric sealing based on 5 peroxide cured fluoroelastomer blend formulations, 1 finite element analysis approach, 1 Teflon-like plasma coating technique and 2 manufacturing processes promising significant gains in standardization, economy and safety. Uniqueness was ab initio development in the absence of established industry or readymade supply. R and D necessities for inflatable seals and their development across the world are given closer look in Part II of the review in continuation of Part I. (orig.)

  13. The spatial rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan; Hahn, Ute; Larsen, Jytte Overgaard

    2013-01-01

    to identify the specific tissue region under study. In order to use the spatial rotator in practice, however, it is necessary to be able to identify intersection points between cell boundaries and test rays in a series of parallel focal planes, also at the peripheral parts of the cell boundaries. In cases......This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making...... the spatial rotator fast to use. Since a 3D probe is involved, it is expected that the spatial rotator will be more efficient than the the nucleator and the planar rotator, which are based on measurements in a single plane. An extensive simulation study shows that the spatial rotator may be more efficient...

  14. Jitter reduction using native fiducials in rotating mirror ultra-fast microphotography.

    Science.gov (United States)

    Goh, B H T; Khoo, B C; Mclean, W H I; Campbell, P A

    2014-06-30

    Rotating mirror cameras represent a workhorse technology for high speed imaging in the MHz framing regime. The technique requires that the target image be swept across a series of juxtaposed CCD sensors, via reflection from a rapidly rotating mirror. Employing multiple sensors in this fashion can lead to spatial jitter in the resultant video file, due to component misalignments along the individual optical paths to each CCD. Here, we highlight that static and dynamic fiducials can be exploited as an effective software-borne countermeasure to jitter, suppressing the standard deviation of the corrected file relative to the raw data by up to 88.5% maximally, and 66.5% on average over the available range of framing rates. Direct comparison with industry-standard algorithms demonstrated that our fiducial-based strategy is as effective at jitter reduction, but typically also leads to an aesthetically superior final form in the post-processed video files.

  15. A Fast Stble Marching Scheme for Calculating Mixed Convection in a Vertical Rotating Annulus

    Institute of Scientific and Technical Information of China (English)

    Chao-MinZhang; Zeng-YuanGuo

    1993-01-01

    An iterative simultanous solution method is developed to efficiently solve the Newton-Raphson linear equation set for velocity in three dimensions,pressure and temperature,The proposed method is demonstrated for several cases of the thermal drive in a vertical rotating annulus,and is shown to be insensitive to dimensionless time step,requiring significantly less computational effort to converge to the desired accuracy than SIMPLEC,even for low Prandtl number fluid flows.

  16. M-Dwarf Fast Rotators and the Detection of Relatively Young Multiple M-Star Systems

    CERN Document Server

    Rappaport, S; Levine, A; Joss, M; Sanchis-Ojeda, R; Barclay, T; Still, M; Handler, G; Oláh, K; Muirhead, P S; Huber, D; Vida, K

    2014-01-01

    We have searched the Kepler light curves of ~3900 M-star targets for evidence of periodicities that indicate, by means of the effects of starspots, rapid stellar rotation. Several analysis techniques, including Fourier transforms, inspection of folded light curves, 'sonograms', and phase tracking of individual modulation cycles, were applied in order to distinguish the periodicities due to rapid rotation from those due to stellar pulsations, eclipsing binaries, or transiting planets. We find 178 Kepler M-star targets with rotation periods, P_rot, of < 2 days, and 110 with P_rot < 1 day. Some 30 of the 178 systems exhibit two or more independent short periods within the same Kepler photometric aperture, while several have three or more short periods. Adaptive optics imaging and modeling of the Kepler pixel response function for a subset of our sample support the conclusion that the targets with multiple periods are highly likely to be relatively young physical binary, triple, and even quadruple M star sy...

  17. Spectral and Spin Measurement of Two Small and Fast-Rotating Near-Earth Asteroids

    CERN Document Server

    Polishook, D; Lockhart, M; DeMeo, F E; Golisch, W; Bus, S J; Gulbis, A A S

    2012-01-01

    In May 2012 two asteroids made near-miss "grazing" passes at distances of a few Earth-radii: 2012 KP24 passed at nine Earth-radii and 2012 KT42 at only three Earth-radii. The latter passed inside the orbital distance of geosynchronous satellites. From spectral and imaging measurements using NASA's 3-m Infrared Telescope Facility (IRTF), we deduce taxonomic, rotational, and physical properties. Their spectral characteristics are somewhat atypical among near-Earth asteroids: C-complex for 2012 KP24 and B-type for 2012 KT42, from which we interpret the albedos of both asteroids to be between 0.10 and 0.15 and effective diameters of 20+-2 and 6+-1 meters, respectively. Among B-type asteroids, the spectrum of 2012 KT42 is most similar to 3200 Phaethon and 4015 Wilson-Harrington. Not only are these among the smallest asteroids spectrally measured, we also find they are among the fastest-spinning: 2012 KP24 completes a rotation in 2.5008+-0.0006 minutes and 2012 KT42 rotates in 3.634+-0.001 minutes.

  18. Internal X-ray plateau in short GRBs: Signature of supramassive fast-rotating quark stars?

    CERN Document Server

    Li, Ang; Zhang, Nai Bo; Gao, He; Qi, Bin; Liu, Tong

    2016-01-01

    A supramassive, strongly-magnetized millisecond neutron star (NS) has been proposed to be the candidate central engine of at least some short gamma-ray bursts (SGRBs), based on the "internal plateau" commonly observed in the early X-ray afterglow. While a previous analysis shows a qualitative consistency between this suggestion and the Swift SGRB data, the distribution of observed break time $t_b$ is much narrower than the distribution of the collapse time of supramassive NSs for the several NS equations-of-state (EoSs) investigated. In this paper, we study four recently-constructed "unified" NS EoSs, as well as three developed strange quark star (QS) EoSs within the new confinement density-dependent mass model. All the EoSs chosen here satisfy the recent observational constraints of the two massive pulsars whose masses are precisely measured. We construct sequences of rigidly rotating NS/QS configurations with increasing spinning frequency $f$, from non-rotating ($f = 0$) to the Keplerian frequency ($f = f_{...

  19. Fast radio bursts as giant pulses from young rapidly rotating pulsars

    CERN Document Server

    Lyutikov, Maxim; Popov, Sergei B

    2016-01-01

    We discuss possible association of fast radio bursts (FRBs) with supergiant pulses emitted by young pulsars (ages $\\sim$ tens to hundreds of years) born with regular magnetic field but very short -- few milliseconds -- spin periods. FRBs are extra-Galactic events coming from distances $d \\lesssim 100$ Mpc. Most of the dispersion measure (DM) comes from the material in the freshly ejected SNR shell; for a given burst the DM should decrease with time. FRBs are not expected to be seen below $\\sim 300 $ MHz due to free-free absorption in the expanding ejecta. A supernova might have been detected years before the burst; FRBs are mostly associated with star forming galaxies. The model requires that some pulsars are born with very fast spins, of the order of few milliseconds. The observed distribution of spin-down powers $\\dot{E}$ in young energetic pulsars is consistent with equal birth rate per decade of $\\dot{E}$. Accepting this injection spectrum and scaling the intrinsic brightness of FRBs with $\\dot{E}$, we pr...

  20. Fast radio bursts as giant pulses from young rapidly rotating pulsars

    Science.gov (United States)

    Lyutikov, Maxim; Burzawa, Lukasz; Popov, Sergei B.

    2016-10-01

    We discuss possible association of fast radio bursts (FRBs) with supergiant pulses emitted by young pulsars (ages ˜ tens to hundreds of years) born with regular magnetic field but very short - few milliseconds - spin periods. We assume that FRBs are extra-Galactic events coming from distances d ≲ 100 Mpc and that most of the dispersion measure (DM) comes from the material in the freshly ejected SNR shell. We then predict that for a given burst the DM should decrease with time and that FRBs are not expected to be seen below ˜300 MHz due to free-free absorption in the expanding ejecta. A supernova might have been detected years before the burst; FRBs are mostly associated with star-forming galaxies. The model requires that some pulsars are born with very fast spins, of the order of few milliseconds. The observed distribution of spin-down powers dot{E} in young energetic pulsars is consistent with equal birth rate per decade of dot{E}. Accepting this injection distribution and scaling the intrinsic brightness of FRBs with dot{E}, we predict the following properties of a large sample of FRBs: (i) the brightest observed events come from a broad distribution in distances; (ii) for repeating bursts brightness either remains nearly constant (if the spin-down time is longer than the age of the pulsar) or decreases with time otherwise; in the latter case DM ∝ dot{E}.

  1. NuSTAR and swift observations of the fast rotating magnetized white dwarf AE Aquarii

    DEFF Research Database (Denmark)

    Kitaguchi, Takao; An, Hongjun; Beloborodov, Andrei M.;

    2014-01-01

    AE Aquarii is a cataclysmic variable with the fastest known rotating magnetized white dwarf (P-spin = 33.08 s). Compared to many intermediate polars, AE Aquarii shows a soft X-ray spectrum with a very low luminosity (L-X similar to 10(31) erg s(-1)). We have analyzed overlapping observations...... of this system with the NuSTAR and the Swift X-ray observatories in 2012 September. We find the 0.5-30 keV spectra to be well fitted by either an optically thin thermal plasma model with three temperatures of 0.75(-0.45)(+0.18), 2.29(-0.82)(+0.96), and 9.33(-2.18)(+6.07) keV, or an optically thin thermal plasma...

  2. The Atlas3D project - XIX. The hot-gas content of early-type galaxies: fast versus slow rotators

    CERN Document Server

    Sarzi, Marc; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, M; Cappellari, Michele; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2013-01-01

    For early-type galaxies, the ability to sustain a corona of hot, X-ray emitting gas could have played a key role in quenching their star-formation history. Yet, it is still unclear what drives the precise amount of hot gas around these galaxies. By combining photometric and spectroscopic measurements for the early-type galaxies observed during the Atlas3D integral-field survey with measurements of their X-ray luminosity based on X-ray data of both low and high spatial resolution we conclude that the hot-gas content of early-type galaxies can depend on their dynamical structure. Specifically, whereas slow rotators generally have X-ray halos with luminosity L_X,gas and temperature T values that are in line with what is expected if the hot-gas emission is sustained by the thermalisaton of the kinetic energy carried by the stellar-mass loss material, fast rotators tend to display L_X,gas values that fall consistently below the prediction of this model, with similar T values that do not scale with the stellar kine...

  3. Single-shot pressure-sensitive paint lifetime measurements on fast rotating blades using an optimized double-shutter technique

    Science.gov (United States)

    Weiss, Armin; Geisler, Reinhard; Schwermer, Till; Yorita, Daisuke; Henne, Ulrich; Klein, Christian; Raffel, Markus

    2017-09-01

    A pressure-sensitive paint (PSP) system is presented to measure global surface pressures on fast rotating blades. It is dedicated to solve the problem of blurred image data employing the single-shot lifetime method. The efficient blur reduction capability of an optimized double-shutter imaging technique is demonstrated omitting error-prone post-processing or laborious de-rotation setups. The system is applied on Mach-scaled DSA-9A helicopter blades in climb at various collective pitch settings and blade tip Mach and chord Reynolds numbers (M_{ {tip}} = 0.29-0.57; Re_{ {tip}} = 4.63-9.26 × 10^5). Temperature effects in the PSP are corrected by a theoretical approximation validated against measured temperatures using temperature-sensitive paint (TSP) on a separate blade. Ensemble-averaged PSP results are comparable to pressure-tap data on the same blade to within 250 Pa. Resulting pressure maps on the blade suction side reveal spatially high resolved flow features such as the leading edge suction peak, footprints of blade-tip vortices and evidence of laminar-turbulent boundary-layer (BL) transition. The findings are validated by a separately conducted BL transition measurement by means of TSP and numerical simulations using a 2D coupled Euler/boundary-layer code. Moreover, the principal ability of the single-shot technique to capture unsteady flow phenomena is stressed revealing three-dimensional pressure fluctuations at stall.

  4. Indications of stellar prominence oscillations on fast rotating stars: the cases of HK Aqr and PZ Tel

    CERN Document Server

    Leitzinger, M; Zaqarashvili, T V; Greimel, R; Hanslmeier, A; Lammer, H

    2016-01-01

    We present the analysis of six nights of spectroscopic monitoring of two young and fast rotating late-type stars, namely the dMe star HK Aqr and the dG/dK star PZ Tel. On both stars we detect absorption features reminiscent of signatures of co-rotating cool clouds or prominences visible in H$\\alpha$. Several prominences on HK Aqr show periodic variability in the prominence tracks which follow a sinusoidal motion (indication of prominence oscillations). On PZ Tel we could not find any periodic variability in the prominence tracks. By fitting sinusoidal functions to the prominence tracks we derive amplitudes and periods which are similar to those of large amplitude oscillations seen in solar prominences. In one specific event we also derive a periodic variation of the prominence track in the H$\\beta$ spectral line which shows an anti-phase variation with the one derived for the H$\\alpha$ spectral line. Using these parameters and estimated mass density of a prominence on HK Aqr we derive a minimum magnetic field...

  5. Fast Rotation-Free Feature-Based Image Registration Using Improved N-SIFT and GMM-Based Parallel Optimization.

    Science.gov (United States)

    Yu, Dongdong; Yang, Feng; Yang, Caiyun; Leng, Chengcai; Cao, Jian; Wang, Yining; Tian, Jie

    2016-08-01

    Image registration is a key problem in a variety of applications, such as computer vision, medical image processing, pattern recognition, etc., while the application of registration is limited by time consumption and the accuracy in the case of large pose differences. Aimed at these two kinds of problems, we propose a fast rotation-free feature-based rigid registration method based on our proposed accelerated-NSIFT and GMM registration-based parallel optimization (PO-GMMREG). Our method is accelerated by using the GPU/CUDA programming and preserving only the location information without constructing the descriptor of each interest point, while its robustness to missing correspondences and outliers is improved by converting the interest point matching to Gaussian mixture model alignment. The accuracy in the case of large pose differences is settled by our proposed PO-GMMREG algorithm by constructing a set of initial transformations. Experimental results demonstrate that our proposed algorithm can fast rigidly register 3-D medical images and is reliable for aligning 3-D scans even when they exhibit a poor initialization.

  6. The s process in massive stars at low metallicity. Effect of primary N14 from fast rotating stars

    CERN Document Server

    Pignatari, M; Meynet, G; Hirschi, R; Herwig, F; Wiescher, M

    2008-01-01

    The goal of this paper is to analyze the impact of a primary neutron source on the s-process nucleosynthesis in massive stars at halo metallicity. Recent stellar models including rotation at very low metallicity predict a strong production of primary N14. Part of the nitrogen produced in the H-burning shell diffuses by rotational mixing into the He core where it is converted to Ne22 providing additional neutrons for the s process. We present nucleosynthesis calculations for a 25 Msun star at [Fe/H] = -3, -4, where in the convective core He-burning about 0.8 % in mass is made of primary Ne22. The usual weak s-process shape is changed by the additional neutron source with a peak between Sr and Ba, where the s-process yields increase by orders of magnitude with respect to the yields obtained without rotation. Iron seeds are fully consumed and the maximum production of Sr, Y and Zr is reached. On the other hand, the s-process efficiency beyond Sr and the ratio Sr/Ba are strongly affected by the amount of Ne22 and...

  7. NuSTAR AND SWIFT Observations of the Fast Rotating Magnetized White Dwarf AE Aquarii

    Science.gov (United States)

    Kitaguchi, Takao; An, Hongjun; Beloborodov, Andrei M.; Gotthelf, Eric V.; Hayashi, Takayuki; Kaspi, Victoria M.; Rana, Vikram R.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Stern, Daniel; Zhang, Will W.

    2014-01-01

    AE Aquarii is a cataclysmic variable with the fastest known rotating magnetized white dwarf (P(sub spin) = 33.08 s). Compared to many intermediate polars, AE Aquarii shows a soft X-ray spectrum with a very low luminosity (LX (is) approximately 10(exp 31) erg per second). We have analyzed overlapping observations of this system with the NuSTAR and the Swift X-ray observatories in 2012 September. We find the 0.5-30 keV spectra to be well fitted by either an optically thin thermal plasma model with three temperatures of 0.75(+0.18 / -0.45), 2.29(+0.96 / -0.82), and 9.33 (+6.07 / -2.18) keV, or an optically thin thermal plasma model with two temperatures of 1.00 (+0.34 / -0.23) and 4.64 (+1.58 / -0.84) keV plus a power-law component with photon index of 2.50 (+0.17 / -0.23). The pulse profile in the 3-20 keV band is broad and approximately sinusoidal, with a pulsed fraction of 16.6% +/- 2.3%. We do not find any evidence for a previously reported sharp feature in the pulse profile.

  8. Fast and Slow Rotators in the Densest Environments: a SWIFT IFS study of the Coma Cluster

    CERN Document Server

    Houghton, R C W; D'Eugenio, F; Scott, N; Thatte, N; Clarke, F; Tecza, M; Salter, G S; Fogarty, L M R; Goodsall, T

    2013-01-01

    We present integral-field spectroscopy of 27 galaxies in the Coma cluster observed with the Oxford SWIFT spectrograph, exploring the kinematic morphology-density relationship in a cluster environment richer and denser than any in the ATLAS3D survey. Our new data enables comparison of the kinematic morphology relation in three very different clusters (Virgo, Coma and Abell 1689) as well as to the field/group environment. The Coma sample was selected to match the parent luminosity and ellipticity distributions of the early-type population within a radius 15' (0.43 Mpc) of the cluster centre, and is limited to r' = 16 mag (equivalent to M_K = -21.5 mag), sampling one third of that population. From analysis of the lambda-ellipticity diagram, we find 15+-6% of early-type galaxies are slow rotators; this is identical to the fraction found in the field and the average fraction in the Virgo cluster, based on the ATLAS3D data. It is also identical to the average fraction found recently in Abell 1689 by D'Eugenio et al...

  9. Fast control of semiconductor qubits beyond the rotating-wave approximation

    Science.gov (United States)

    Song, Yang; Kestner, J. P.; Wang, Xin; Das Sarma, S.

    2016-07-01

    We present a theoretical study of single-qubit operations by oscillatory fields on various semiconductor platforms. We explicitly show how to perform faster gate operations by going beyond the universally used rotating-wave approximation (RWA) regime, while using only two sinusoidal pulses. We first show for specific published experiments how much error is currently incurred by implementing pulses designed using standard RWA. We then show that an even modest increase in gate speed would cause problems in using RWA for gate design in the singlet-triplet (ST) and resonant-exchange (RX) qubits. We discuss the extent to which analytically keeping higher orders in the perturbation theory would address the problem. More strikingly, we give a new prescription for gating with strong coupling far beyond the RWA regime. We perform numerical calculations for the phases and the durations of two consecutive pulses to realize the key Hadamard and π/8 gates with coupling strengths up to several times the qubit splitting. Working in this manifestly non-RWA regime, the gate operation speeds up by two to three orders of magnitude and nears the quantum speed limit without requiring complicated pulse shaping or optimal control sequences.

  10. Program Design of Graphic Realism Displaying System Based on DXF Lathe Turning Rotational Parts

    Institute of Scientific and Technical Information of China (English)

    SHI Xin

    2014-01-01

    For virtually realizing the graphic realism display of DXF machine parts, in AutoCAD2007 graphic drawing environment, an interactive experimental method was taken to realize the display of graphic in DXF, which was taken as the data-exchanged interface and source. Based on depth analysis of DXF data structure, take one drawing of DXF lathe turning rotational part asthe test piece. By VC++6.0 programming, part’s geometry information could be obtained. Through data processing, 3D data of the test piece could be generated, which is based on 2D data of DXF test piece. Then, OpenGL graphic processing technologies (light, material, texture, map, et al.) were applied on the 3D display of test piece from DXF files or program modules. Finally based on the test report, results of the system functions were shared to prove the realization of system design, and the feasibility of algorithms used. In the developed software, Machine Designers could get a full view of machine parts, and do some proper modifications. The study content and results of our work have some theory and practical significance on the application of program design in the practical projects.

  11. FAST

    DEFF Research Database (Denmark)

    Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.

    2012-01-01

    ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with aqu......ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections...... with aqueous food extracts may be effective but has proven to be accompanied by too many anaphylactic side-effects. FAST aims to develop a safe alternative by replacing food extracts with hypoallergenic recombinant major allergens as the active ingredients of SIT. Both severe fish and peach allergy are caused...... in depth serological and cellular immune analyses will be performed, allowing identification of novel biomarkers for monitoring treatment efficacy. FAST aims at improving the quality of life of food allergic patients by providing a safe and effective treatment that will significantly lower their threshold...

  12. Effect of fast mold surface temperature evolution on iPP part morphology gradients

    Energy Technology Data Exchange (ETDEWEB)

    Liparoti, Sara [Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (Italy); Sorrentino, Andrea [Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), P. Enrico Fermi 1, 80055 Portici (Italy); Guzman, Gustavo; Cakmak, Mukerrem; Titomanlio, Giuseppe, E-mail: gtitomanlio@unisa.it [Department of Polymer Engineering, The University of Akron, Akron, OH 44325 (United States)

    2016-03-09

    The control of mold surface temperature is an important factor that affects the sample surface morphology as well as the structural gradients (orientation crystal size, and type) as well as cooling stresses. The frozen layer thickness formed during the filling stage also has a very significant effect on the flow resistance and thus on the resulting pressure drop and flow length in thin wall parts. The possibility to have a hot mold during filling and a quick cooling soon afterward is a significant process enhancement particularly for specialized applications such as micro injection molding and for the reproduction of micro structured surfaces. Up to now, several methods (electromagnetic, infrared, hot vapor fleshing etc,) were tried to achieve fast temperature evolution of the mold. Unfortunately, all these methods require a complex balance between thermal and mechanical problems, equipment cost, energy consumption, safety, molding cycle time and part quality achievable. In this work, a thin electrical resistance was designed and used to generate a fast and confined temperature variation on mold surface (by joule effect). Since the whole temperature evolution can take place in a few seconds, one can couple the advantages of a high surface temperature during filling with the advantages of a low mold temperature, fast cooling and low heating dissipation. Some experiments were performed with a commercial iPP resin. The effects of the surface temperature and of the heating time (under constant electric power) on surface finishing and on the final morphology (thickness and structure of the different layers) are explored and discussed.

  13. The ATLAS(3D) project : VIII. Modelling the formation and evolution of fast and slow rotator early-type galaxies within lambda CDM

    NARCIS (Netherlands)

    Khochfar, Sadegh; Emsellem, Eric; Serra, Paolo; Bois, Maxime; Alatalo, Katherine; Bacon, R.; Blitz, Leo; Bournaud, Frederic; Bureau, M.; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Krajnovic, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M.

    2011-01-01

    We propose a simple model for the origin of fast and slow rotator early-type galaxies (ETG) within the hierarchical Lambda cold dark matter (Lambda CDM) scenario, that is based on the assumption that the mass fraction of stellar discs in ETGs is a proxy for the specific angular momentum expressed vi

  14. The ATLAS3D project - VIII. Modelling the formation and evolution of fast and slow rotator early-type galaxies within ΛCDM

    NARCIS (Netherlands)

    Khochfar, Sadegh; Emsellem, Eric; Serra, Paolo; Bois, Maxime; Alatalo, Katherine; Bacon, R.; Blitz, Leo; Bournaud, Frédéric; Bureau, M.; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M.

    2011-01-01

    We propose a simple model for the origin of fast and slow rotator early-type galaxies (ETG) within the hierarchical Λcold dark matter (ΛCDM) scenario, that is based on the assumption that the mass fraction of stellar discs in ETGs is a proxy for the specific angular momentum expressed via λR. Within

  15. The ATLAS3D project - VIII. Modelling the formation and evolution of fast and slow rotator early-type galaxies within ΛCDM

    NARCIS (Netherlands)

    Khochfar, Sadegh; Emsellem, Eric; Serra, Paolo; Bois, Maxime; Alatalo, Katherine; Bacon, R.; Blitz, Leo; Bournaud, Frédéric; Bureau, M.; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M.

    2011-01-01

    We propose a simple model for the origin of fast and slow rotator early-type galaxies (ETG) within the hierarchical Λcold dark matter (ΛCDM) scenario, that is based on the assumption that the mass fraction of stellar discs in ETGs is a proxy for the specific angular momentum expressed via λR. Within

  16. Rotor-rotor interaction for counter-rotating fans. Part 1: Three-dimensional flowfield measurements

    Science.gov (United States)

    Shin, Hyoun-Woo; Whitfield, Charlotte E.; Wisler, David C.

    1994-11-01

    The rotor wake/vortex flowfield generated in a scale model simulator of General Electric's counter-rotating unducted fan (UDF) engine was investigated using three-dimensional hot-wire anemometry. The purpose was to obtain a set of benchmark experimental aerodynamic data defining the rotor wake and vortex structure, particularly in the tip region, and to relate this observed flow structure to its acoustic signature. The tests were conducted in a large, freejet anechoic chamber. Measurements of the three components of velocity were made at axial stations upstream and downstream of each rotor for conditions that simulate takeoff, cutback, and approach power. Two different forward blade designs were evaluated. The tip vortices, the axial velocity defect in the vortex core, and differences in the interaction of the wakes and vortices generated by the forward and aft rotor are used to explain differences in noise generated by the two different rotor designs. Part 1 presents the three-dimensional flowfield measurements. Part 2 (aeroacoustic prediction and analysis), which will be presented later, will give an acoustic prediction using the measured data.

  17. Fast-light Enhanced Brillouin Laser Based Active Fiber Optics Sensor for Simultaneous Measurement of Rotation and Acceleration

    CERN Document Server

    Zhou, Minchuan; Fouda, Mohamed; Condon, Nicholas; Scheuer, Jacob; Shahriar, Selim M

    2016-01-01

    We have developed a conceptual design for an Active Fast Light Fiber Optic Sensor (AFLIFOS) that can perform simultaneously or separately as a gyroscope (differential mode effect) and a sensor for acceleration, strain, and other common mode effects. Two Brillouin lasers in opposite directions and separated in frequency by several free spectral ranges are used for this sensor. By coupling two auxiliary resonators to the primary fiber resonator, we produce superluminal effects for two laser modes. We develop a detailed theoretical model for optimizing the design of the AFLIFOS, and show that the enhancement factor of the sensitivity is $\\sim{187}$ and $\\sim{-187}$, respectively for the two Brillouin lasers under the optimized condition, when the effective change in perimeter of the primary fiber resonator is 0.1nm, corresponding to a rotation rate of 0.4 deg/sec for a ring resonator with radius 1m. It may be possible to get much higher enhancement by adjusting the parameters such as the perimeters and the coupl...

  18. Indications of stellar prominence oscillations on fast rotating stars: the cases of HK Aqr and PZ Tel

    Science.gov (United States)

    Leitzinger, M.; Odert, P.; Zaqarashvili, T. V.; Greimel, R.; Hanslmeier, A.; Lammer, H.

    2016-11-01

    We present the analysis of six nights of spectroscopic monitoring of two young and fast rotating late-type stars, namely the dMe star HK Aqr and the dG/dK star PZ Tel. On both stars, we detect absorption features reminiscent of signatures of corotating cool clouds or prominences visible in Hα. Several prominences on HK Aqr show periodic variability in the prominence tracks which follow a sinusoidal motion (indication of prominence oscillations). On PZ Tel, we could not find any periodic variability in the prominence tracks. By fitting sinusoidal functions to the prominence tracks, we derive amplitudes and periods which are similar to those of large-amplitude oscillations seen in solar prominences. In one specific event, we also derive a periodic variation of the prominence track in the Hβ spectral line which shows an anti-phase variation with the one derived for the Hα spectral line. Using these parameters and estimated mass density of a prominence on HK Aqr, we derive a minimum magnetic field strength of ˜2 G. The relatively low strength of the magnetic field is explained by the large height of this stellar prominence (≥ 0.67 stellar radii above the surface).

  19. Multiwavelength study of the fast rotating supergiant high-mass X-ray binary IGR J16465-4507

    CERN Document Server

    Chaty, Sylvain; Negueruela, Ignacio; Coleiro, Alexis; Castro, Norberto; Simon-Diaz, Sergio; Heras, Juan Antonio Zurita; Goldoni, Paolo; Goldwurm, Andrea

    2016-01-01

    Since its launch, the X-ray and gamma-ray observatory INTEGRAL satellite has revealed a new class of high-mass X-ray binaries (HMXB) displaying fast flares and hosting supergiant companion stars. Optical and infrared (OIR) observations in a multi-wavelength context are essential to understand the nature and evolution of these newly discovered celestial objects. The goal of this multiwavelength study (from ultraviolet to infrared) is to characterise the properties of IGR J16465-4507, to confirm its HMXB nature and that it hosts a supergiant star. We analysed all OIR, photometric and spectroscopic observations taken on this source, carried out at ESO facilities. Using spectroscopic data, we constrained the spectral type of the companion star between B0.5 and B1 Ib, settling the debate on the true nature of this source. We measured a high rotation velocity of v = 320 +/- 8 km/s from fitting absorption and emission lines in a stellar spectral model. We then built a spectral energy distribution from photometric ob...

  20. Evaluation of eddy-current probe signals due to cracks in ferromagnetic parts of fast reactor

    Science.gov (United States)

    Wu, Tao; Bowler, John R.

    2017-02-01

    Eddy current testing to evaluate the condition of metallic parts in a sodium cooled fast reactor under standby conditions is challenging due to the presence of liquid sodium at 250 °C. The eddy current test system should be sensitive enough to capture small signal changes and hence an advanced inspection systems is needed. We have developed new hardware and improved numerical models to predict the eddy current probe signal due to cracks in metallic fast reactor parts by using volume integral equation method. The analytical expressions are derived for the quasi-static time-harmonic electromagnetic fields of a circular eddy current coil which interacts with conductive plate. Naturally, the method of moment is used to approximate the integral equation and obtain the discrete approximation of the field in the crack domain. A simple and accurate analytical method for dealing with the hyper-singularity element evaluation is also provided. An accurate controlled experiment is carried out on the ferromagnetic stainless steel plate with precision made notch to obtain reference impedance changes for comparison with the theoretical model predictions. Good agreement between predictions and experiment is obtained.

  1. Fast pedestrian detection using deformable part model and pyramid layer location

    Science.gov (United States)

    Geng, Lei; Liu, Yang; Xiao, Zhitao; Li, Yuelong; Zhang, Fang

    2017-05-01

    The majority of pedestrian detection approaches use multiscale detection and the sliding window search scheme with high computing complexity. We present a fast pedestrian detection method using the deformable part model and pyramid layer location (PLL). First, the object proposal method is used rather than the traditional sliding window to obtain pedestrian proposal regions. Then, a PLL method is proposed to select the optimal root level in the feature pyramid for each candidate window. On this basis, a single-point calculation scheme is designed to calculate the scores of candidate windows efficiently. Finally, pedestrians can be located from the images. The Institut national de recherche en informatique et en automatique dataset for human detection is used to evaluate the performance of the proposed method. The experimental results demonstrate that the proposed method can reduce the number of feature maps and windows requiring calculation in the detection process. Consequently, the computing cost is significantly reduced, with fewer false positives.

  2. Theory of symmetry and of exact solution properties for fast rotating nuclei; Theorie de la symetrie et des proprietes de solutions exactes pour les noyaux en rotation rapide

    Energy Technology Data Exchange (ETDEWEB)

    Heydon, B.

    1995-07-19

    We propose a study of rotating multi-fermionic systems. The method we developed is based on unitary group theory. The formalism of Gel`fand-Tsetlin is is simplified to binary calculations. With the help of operator of Casimir and physical interpretations using dichotomic symmetries (signature, parity), we show rotating Hamiltonians obey to a new quantum symmetry called P. The study of short range two-body interaction breaking weakly this symmetry, is made by using single j-shell. Nuclear interactions coupling two j-shell are introduced. This study allows us to compare ours results to experimental data for three isotopes of Zirconium. (author). 155 refs.

  3. Turbulent Compressible Convection with Rotation. Part 1; Flow Structure and Evolution

    Science.gov (United States)

    Brummell, Nicholas H.; Hurlburt, Neal E.; Toomre, Juri

    1996-01-01

    The effects of Coriolis forces on compressible convection are studied using three-dimensional numerical simulations carried out within a local modified f-plane model. The physics is simplified by considering a perfect gas occupying a rectilinear domain placed tangentially to a rotating sphere at various latitudes, through which a destabilizing heat flux is driven. The resulting convection is considered for a range of Rayleigh, Taylor, and Prandtl (and thus Rossby) numbers, evaluating conditions where the influence of rotation is both weak and strong. Given the computational demands of these high-resolution simulations, the parameter space is explored sparsely to ascertain the differences between laminar and turbulent rotating convection. The first paper in this series examines the effects of rotation on the flow structure within the convection, its evolution, and some consequences for mixing. Subsequent papers consider the large-scale mean shear flows that are generated by the convection, and the effects of rotation on the convective energetics and transport properties. It is found here that the structure of rotating turbulent convection is similar to earlier nonrotating studies, with a laminar, cellular surface network disguising a fully turbulent interior punctuated by vertically coherent structures. However, the temporal signature of the surface flows is modified by inertial motions to yield new cellular evolution patterns and an overall increase in the mobility of the network. The turbulent convection contains vortex tubes of many scales, including large-scale coherent structures spanning the full vertical extent of the domain involving multiple density scale heights. Remarkably, such structures align with the rotation vector via the influence of Coriolis forces on turbulent motions, in contrast with the zonal tilting of streamlines found in laminar flows. Such novel turbulent mechanisms alter the correlations which drive mean shearing flows and affect the

  4. Decomposition of molecular motions into translational, rotational, and intramolecular parts by a projection operator technique

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.

    2009-01-01

    The motion of the atoms in a molecule may be described as a superposition of translational motion of the molecular center-of-mass, rotational motion about the principal molecular axes, and an intramolecular motion that may be associated with vibrations and librations as well as molecular conforma......The motion of the atoms in a molecule may be described as a superposition of translational motion of the molecular center-of-mass, rotational motion about the principal molecular axes, and an intramolecular motion that may be associated with vibrations and librations as well as molecular...... conformational changes. We have constructed projection operators that use the atomic coordinates and velocities at any two times, t=0 and a later time t, to determine the molecular center-of-mass, rotational, and intramolecular motions in a molecular dynamics simulation. This model-independent technique...

  5. Clasping system with rotational path of insertion Part 3. Clinical application.

    Science.gov (United States)

    Yamaga, T; Nokubi, T

    1994-12-01

    This study investigated the retentive forces of rotational path clasping systems. Twelve rotational path removable partial dentures were applied in the clinical field and the retentive forces of the dentures were measured. The following results were obtained; 1. Retentive forces of the 12 dentures were varied from 187g to 1,380g. 2. As distances between abutment teeth increased from 10.9 mm to 27.7 mm, the retentive forces decreased accordingly (r = -0.56; p dentures showed movement while eating. From these results, it became clear that the distance between abutment teeth and the inclination of the proximal surfaces greatly influenced the retention of the rotational path clasping system in the clinical field.

  6. Rotational path partial denture design: a 10-year clinical follow-up--Part I.

    Science.gov (United States)

    Jacobson, T E

    1994-03-01

    A conventional removable partial denture that uses a straight path of placement requires that all rests and clasps be seated simultaneously. The incorporation of a dual, curved, or rotational path of placement permits one portion of the framework to be seated first, followed by the remainder of the framework. This procedure usually permits a reduction in the number of clasps in the framework without compromising the biomechanical properties of the prosthesis. Rotational path designs that eliminate clasps reduce tooth coverage by components and often enhance esthetics, thereby contributing to improved patient acceptance.

  7. Fast ion motion in the plasma part of a stellarator-mirror fission-fusion hybrid

    Science.gov (United States)

    Moiseenko, V. E.; Nemov, V. V.; Ågren, O.; Kasilov, S. V.; Garkusha, I. E.

    2016-06-01

    Recent developments of a stellarator-mirror (SM) fission-fusion hybrid concept are reviewed. The hybrid consists of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, a stellarator-type system with an embedded magnetic mirror is used. The stellarator confines deuterium plasma with moderate temperature, 1-2 keV. In the magnetic mirror, a hot component of sloshing tritium ions is trapped. There, the fusion neutrons are generated. A candidate for a combined SM system is a DRACON magnetic trap. A basic idea behind an SM device is to maintain local neutron production in a mirror part, but at the same time eliminate the end losses by using a toroidal device. A possible drawback is that the stellarator part can introduce collision-free radial drift losses, which is the main topic for this study. For high energy ions of tritium with an energy of 70 keV, comparative computations of collisionless losses in the rectilinear part of a specific design of the DRACON type trap are carried out. Two versions of the trap are considered with different lengths of the rectilinear sections. Also the total number of current-carrying rings in the magnetic system is varied. The results predict that high energy ions from neutral beam injection can be satisfactorily confined in the mirror part during 0.1-1 s. The Uragan-2M experimental device is used to check key points of the SM concept. The magnetic configuration of a stellarator with an embedded magnetic mirror is arranged in this device by switching off one toroidal coil. The motion of particles magnetically trapped in the embedded mirror is analyzed numerically with use of motional invariants. It is found that without radial electric field particles quickly drift out of the SM, even if the particles initially are located on a nested magnetic surface. We will show that a weak radial electric field, which

  8. Stellar variability in open clusters . II. Discovery of a new period-luminosity relation in a class of fast-rotating pulsating stars in NGC 3766

    Science.gov (United States)

    Mowlavi, N.; Saesen, S.; Semaan, T.; Eggenberger, P.; Barblan, F.; Eyer, L.; Ekström, S.; Georgy, C.

    2016-10-01

    Context. Pulsating stars are windows to the physics of stars enabling us to see glimpses of their interior. Not all stars pulsate, however. On the main sequence, pulsating stars form an almost continuous sequence in brightness, except for a magnitude range between δ Scuti and slowly pulsating B stars. Against all expectations, 36 periodic variables were discovered in 2013 in this luminosity range in the open cluster NGC 3766, the origins of which was a mystery. Aims: We investigate the properties of those new variability class candidates in relation to their stellar rotation rates and stellar multiplicity. Methods: We took multi-epoch spectra over three consecutive nights using ESO's Very Large Telescope. Results: We find that the majority of the new variability class candidates are fast-rotating pulsators that obey a new period-luminosity relation. We argue that the new relation discovered here has a different physical origin to the period-luminosity relations observed for Cepheids. Conclusions: We anticipate that our discovery will boost the relatively new field of stellar pulsation in fast-rotating stars, will open new doors for asteroseismology, and will potentially offer a new tool to estimate stellar ages or cosmic distances. Based on observations made with the FLAMES instruments on the VLT/UT2 telescope at the Paranal Observatory, Chile, under the program ID 69.A-0123(A).

  9. Fast Bayesian approach for modal identification using free vibration data, Part I - Most probable value

    Science.gov (United States)

    Zhang, Feng-Liang; Ni, Yan-Chun; Au, Siu-Kui; Lam, Heung-Fai

    2016-03-01

    , are addressed. Fast computational algorithms for determining the MPV are proposed so that the method can be practically implemented. In the companion paper (Part II), analytical formulae are derived for the posterior covariance matrix so that it can be evaluated without resorting to finite difference method. The proposed method is verified using synthetic data. It is also applied to modal identification of full-scale field structures.

  10. Mantises exchange angular momentum between three rotating body parts to jump precisely to targets.

    Science.gov (United States)

    Burrows, Malcolm; Cullen, Darron A; Dorosenko, Marina; Sutton, Gregory P

    2015-03-16

    Flightless animals have evolved diverse mechanisms to control their movements in air, whether falling with gravity or propelling against it. Many insects jump as a primary mode of locomotion and must therefore precisely control the large torques generated during takeoff. For example, to minimize spin (angular momentum of the body) at takeoff, plant-sucking bugs apply large equal and opposite torques from two propulsive legs [1]. Interacting gear wheels have evolved in some to give precise synchronization of these legs [2, 3]. Once airborne, as a result of either jumping or falling, further adjustments may be needed to control trajectory and orient the body for landing. Tails are used by geckos to control pitch [4, 5] and by Anolis lizards to alter direction [6, 7]. When falling, cats rotate their body [8], while aphids [9] and ants [10, 11] manipulate wind resistance against their legs and thorax. Falling is always downward, but targeted jumping must achieve many possible desired trajectories. We show that when making targeted jumps, juvenile wingless mantises first rotated their abdomen about the thorax to adjust the center of mass and thus regulate spin at takeoff. Once airborne, they then smoothly and sequentially transferred angular momentum in four stages between the jointed abdomen, the two raptorial front legs, and the two propulsive hind legs to produce a controlled jump with a precise landing. Experimentally impairing abdominal movements reduced the overall rotation so that the mantis either failed to grasp the target or crashed into it head first.

  11. Stellar variability in open clusters. II. Discovery of a new period-luminosity relation in a class of fast-rotating pulsating stars in NGC 3766

    CERN Document Server

    Mowlavi, N; Semaan, T; Eggenberger, P; Barblan, F; Eyer, L; Ekström, S; Georgy, C

    2016-01-01

    $Context.$ Pulsating stars are windows to the physics of stars enabling us to see glimpses of their interior. Not all stars pulsate, however. On the main sequence, pulsating stars form an almost continuous sequence in brightness, except for a magnitude range between $\\delta$ Scuti and slowly pulsating B stars. Against all expectations, 36 periodic variables were discovered in 2013 in this luminosity range in the open cluster NGC 3766, the origins of which was a mystery. $Aims.$ We investigate the properties of those new variability class candidates in relation to their stellar rotation rates and stellar multiplicity. $Methods.$ We took multi-epoch spectra over three consecutive nights using ESO's Very Large Telescope. $Results.$ We find that the majority of the new variability class candidates are fast-rotating pulsators that obey a new period-luminosity relation. We argue that the new relation discovered here has a different physical origin to the period-luminosity relations observed for Cepheids. $Conclusio...

  12. Techno-economic assessment of fast pyrolysis for the valorization of short rotation coppice cultivated for phytoextraction

    OpenAIRE

    Kuppens, Tom; VAN DAEL, Miet; Vanreppelen, Kenny; Thewys, Theo; Yperman, Jan; Carleer, Robert; SCHREURS, Sonja; Van Passel, Steven

    2014-01-01

    The main barrier in the commercialization of phytoextraction as a sustainable alternative for remediating metal contaminated soils is its long time period, which can be countered by biomass valorization. From an environmental point of view, fast pyrolysis of the biomass is promising because its lower process temperature prevents metal volatilization. The remaining question is whether fast pyrolysis is also preferred from an economic point of view. Therefore, a techno-economic ass...

  13. Numerical Study of Transonic Axial Flow Rotating Cascade Aerodynamics – Part 1: 2D Case

    Directory of Open Access Journals (Sweden)

    Irina Carmen ANDREI

    2014-06-01

    Full Text Available The purpose of this paper is to present a 2D study regarding the numerical simulation of flow within a transonic highly-loaded rotating cascade from an axial compressor. In order to describe an intricate flow pattern of a complex geometry and given specific conditions of cascade’s loading and operation, an appropriate accurate flow model is a must. For such purpose, the Navier-Stokes equations system was used as flow model; from the computational point of view, the mathematical support is completed by a turbulence model. A numerical comparison has been performed for different turbulence models (e.g. KE, KO, Reynolds Stress and Spallart-Allmaras models. The convergence history was monitored in order to focus on the numerical accuracy. The force vector has been reported in order to express the aerodynamics of flow within the rotating cascade at the running regime, in terms of Lift and Drag. The numerical results, expressed by plots of the most relevant flow parameters, have been compared. It comes out that the selecting of complex flow models and appropriate turbulence models, in conjunction with CFD techniques, allows to obtain the best computational accuracy of the numerical results. This paper aims to carry on a 2D study and a prospective 3D will be intended for the same architecture.

  14. Fault Detection in Gear Drives with Non-Stationary Rotational Speed-Part i: the Time-Frequency Approach

    Science.gov (United States)

    Meltzer, G.; Ivanov, Yu Ye

    2003-09-01

    This paper deals with the recognition of faults in toothing during non-stationary start-up and run-down of gear drives. In the first part, this task will be solved by means of the time-frequency analysis. As a practical case study, we investigated a planetary gear for passenger cars. New exponental smoothing kernels which respect to the known-in-advance angular acceleration of gear drive were created. These kernels must be adapted in the case of an in-advance-unknown course of rotational speed.

  15. The ATLA$^{\\rm{3D}}$ project - XXV: Two-dimensional kinematic analysis of simulated galaxies and the cosmological origin of fast and slow rotators

    CERN Document Server

    Naab, T; Emsellem, E; Cappellari, M; Krajnovic, D; McDermid, R M; Alatalo, K; Bayet, E; Blitz, L; Bois, M; Bournaud, F; Bureau, M; Crocker, A; Davies, R L; Davis, T A; de Zeeuw, P T; Duc, P -A; Hirschmann, M; Johansson, P H; Khochfar, S; Kuntschner, H; Morganti, R; Oosterloo, T; Sarzi, M; Scott, N; Serra, P; van de Ven, G; Weijmans, A; Young, L M

    2013-01-01

    We present a detailed two-dimensional stellar dynamical analysis of a sample of 44 cosmological hydrodynamical simulations of individual central galaxies and their satellites. Kinematic maps of the stellar line-of-sight velocity, velocity dispersion, and higher-order Gauss-Hermite moments $h_3$ and $h_4$ are constructed for each central galaxy and for the most massive satellites. The amount of rotation is quantified using the $\\lambda_{\\mathrm{R}}$-parameter. The velocity, velocity dispersion, $h_3$, and $h_4$ fields of the simulated galaxies show a diversity similar to observed kinematic maps of early-type galaxies in the ATLAS$^{\\rm{3D}}$ survey. This includes fast (regular), slow, and misaligned rotation, hot spheroids with embedded cold disk components as well as galaxies with counter-rotating cores or central depressions in the velocity dispersion. We link the present day kinematic properties to the individual cosmological formation histories of the galaxies. In general, major galaxy mergers have a signi...

  16. Stepwise Isothermal Fast Pyrolysis (SIFP of Biomass. Part III. SIFP of Olive Oil Industry Wastes

    Directory of Open Access Journals (Sweden)

    Nadia S. Luna

    2013-11-01

    Full Text Available Pyrolysis of olive oil industry wastes was carried out using stepwise isothermal fast pyrolysis (SIFP. SIFP consists of a succession of isothermal fast pyrolysis reactions in which the solid products obtained from the previous isothermal fast pyrolysis reaction become the substrates for subsequent reactions at higher temperatures. This article reports the results obtained from the SIFP of olive oil residue carried out between the temperatures of 300 and 500 °C using 100 °C intervals under reduced pressure (200 mm Hg. The maximum yield of liquid products occurred at 300 °C and consisted of around 35% bio-oil, which contained mainly phenols, furans, and fatty acid methyl esters (FAME. At 400 and 500 °C, FAME, which is derived from residual olive oil, was the major product.

  17. In-flight measurements of aircraft propeller deformation by means of an autarkic fast rotating imaging system

    Science.gov (United States)

    Stasicki, Boleslaw; Boden, Fritz

    2015-03-01

    The non-intrusive in-flight measurement of the deformation and pitch of the aircraft propeller is a demanding task. The idea of an imaging system integrated and rotating with the aircraft propeller has been presented on the 30th International Congress on High-Speed Imaging and Photonics (ICHSIP30) in 2012. Since then this system has been constructed and tested in the laboratory as well as on the real aircraft. In this paper we outline the principle of Image Pattern Correlation Technique (IPCT) based on Digital Image Correlation (DIC) and describe the construction of a dedicated autarkic 3D camera system placed on the investigated propeller and rotating at its full speed. Furthermore, the results of the first ground and in-flight tests are shown and discussed. This development has been found by the European Commission within the 7th frame project AIM2 (contract no. 266107).

  18. Is Eta Carinae a fast rotator, and how much does the companion influence the inner wind structure?

    CERN Document Server

    Groh, Jose H; Owocki, Stanley P; Hillier, D John; Weigelt, Gerd

    2010-01-01

    We analyze interferometric measurements of the Luminous Blue Variable Eta Carinae with the goal of constraining the rotational velocity of the primary star and probing the influence of the companion. Using 2-D radiative transfer models of latitude-dependent stellar winds, we find that prolate wind models with a ratio of the rotational velocity (vrot) to the critical velocity (vcrit) of W=0.77-0.92, inclination angle of i=60-90 degrees, and position angle PA=108-142 degrees reproduce simultaneously K-band continuum visibilities from VLTI/VINCI and closure phase measurements from VLTI/AMBER. Interestingly, oblate models with W=0.73-0.90 and i=80-90 degrees produce similar fits to the interferometric data, but require PA=210-230 degrees. Therefore, both prolate and oblate models suggest that the rotation axis of the primary star is not aligned with the Homunculus polar axis. We also compute radiative transfer models of the primary star allowing for the presence of a cavity and dense wind-wind interaction region ...

  19. STEPWISE ISOTHERMAL FAST PYROLYSIS (SIFP OF BIOMASS PART I. SIFP OF PINE SAWDUST

    Directory of Open Access Journals (Sweden)

    Patricia López Rivilli

    2011-05-01

    Full Text Available Pyrolysis of pine wood sawdust was carried out using stepwise isothermal fast pyrolysis (SIFP, focusing on the search of reaction conditions to obtain chemicals in good yields from biomass. SIFP consists of successive isothermal fast pyrolysis reactions, where solid products obtained in the previous isothermal fast pyrolysis become the substrate of the subsequent reaction at a higher temperature. This article reports results obtained by SIFP of pine sawdust between 200 and 600°C using 100°C intervals under vacuum (0.2 mm, using nitrogen as carrier gas. Both sets of reactions made it possible to obtain most of the compounds that have been previously described in conventional fast pyrolysis experiments; however this system produces a smaller number of chemical compounds in each isothermal FP, making it easier to obtain determined chemicals with industrial or research value. Maximum yield of liquid products occurred at 300°C, giving around 30% of bio-oil, which contained mainly phenols and furan derivatives. Liquid-Liquid extraction led to a rich mixture of phenol derivatives. Results showed that SIFP is an interesting technique to obtain enriched fractions of products derived from biomass pyrolysis.

  20. Eclipsing binaries and fast rotators in the Kepler sample. Characterization via radial velocity analysis from Calar Alto

    CERN Document Server

    Lillo-Box, J; Mancini, L; Henning, Th; Figueira, P; Ciceri, S; Santos, N

    2015-01-01

    The Kepler mission has provided high-accurate photometric data in a long time span for more than two hundred thousands stars, looking for planetary transits. Among the detected candidates, the planetary nature of around 15% has been established or validated by different techniques. But additional data is needed to characterize the rest of the candidates and reject other possible configurations. We started a follow-up program to validate, confirm, and characterize some of the planet candidates. In this paper we present the radial velocity analysis (RV) of those presenting large variations, compatible with being eclipsing binaries. We also study those showing large rotational velocities, which prevents us from obtaining the necessary precision to detect planetary-like objects. We present new RV results for 13 Kepler objects of interest (KOIs) obtained with the CAFE spectrograph at the Calar Alto Observatory, and analyze their high-spatial resolution images and the Kepler light curves of some interesting cases. ...

  1. Hardware schemes for fast Fourier transform, part 7.4A

    Science.gov (United States)

    Stitt, G. R.; Bowhill, S. A.

    1984-01-01

    Real-time fast fourier transformer (FFT) processing of a MST radar data and cost-effective approaches to hardware FFT generation were studied. Previously devised hardware FFT configurations are described including the estimated number of chips used and the time required to perform a 1024-point FFT. The remaining entries in the table correspond to original designs, which presuppose the availability of a microcomputer and a modestly complicated hardware peripheral. These original designs, all of which implement a radix-4 FFT with twiddle factors, are assigned model numbers to make them easier to refer to.

  2. Stress and sleep in nurses employed in "3 × 8" and "2 × 12" fast rotating shift schedules.

    Science.gov (United States)

    Costa, Giovanni; Anelli, Matteo M; Castellini, Giovanna; Fustinoni, Silvia; Neri, Luca

    2014-12-01

    We compared two "3 × 8" shift rotas with backward rotation and quick return (morning and night shift in the same day) in a 5- or 6-day shift cycle, and a "2 × 12" shift rota with forward rotation in a 5-d shift cycle. A total of 294 nurses (72.6% women, mean age 33.8) were examined in a survey on work-related stress, including the Standard Shiftwork Index. Ten nurses per each shift roster recorded their activity and rest periods by actigraphy, rated sleepiness and sleep quality, and collected salivary cortisol throughout the whole shift cycle. Nurses engaged in the "2 × 12" rota showed lower levels of sleep disturbances and, according to actigraphy, sleep duration was more balanced and less fragmented than in the "3 × 8" rosters. The counter-clockwise shift rotation and quick return of "3 × 8" schedules reduce possibility of sleep and recovery. The insertion of a morning shift before the day with quick return increases night sleep by about 1 h. Nurses who take a nap during the night shift require 40% less sleep in the morning after. The "2 × 12" clockwise roster, in spite of 50% increased length of shift, allows a better recovery and more satisfying leisure times, thanks to longer intervals between work periods. Sleepiness increased more during the night than day shifts in all rosters, but without significant difference between 8-h and 12-h rosters. However, the significantly higher level at the start of the night shift in the "3 × 8" rotas points out that the fast backward rotation with quick return puts the subjects in less efficient operational conditions. Some personal characteristics, such as morningness, lability to overcome drowsiness, flexibility of sleeping habits and age were significantly associated to sleep disturbances in nurses engaged in the "3 × 8" rotas, but not in the "2 × 12" schedule.

  3. The 183-WSL Fast Rain Rate Retrieval Algorithm. Part II: Validation Using Ground Radar Measurements

    Science.gov (United States)

    Laviola, Sante; Levizzani, Vincenzo

    2014-01-01

    The Water vapour Strong Lines at 183 GHz (183-WSL) algorithm is a method for the retrieval of rain rates and precipitation type classification (convectivestratiform), that makes use of the water vapor absorption lines centered at 183.31 GHz of the Advanced Microwave Sounding Unit module B (AMSU-B) and of the Microwave Humidity Sounder (MHS) flying on NOAA-15-18 and NOAA-19Metop-A satellite series, respectively. The characteristics of this algorithm were described in Part I of this paper together with comparisons against analogous precipitation products. The focus of Part II is the analysis of the performance of the 183-WSL technique based on surface radar measurements. The ground truth dataset consists of 2.5 years of rainfall intensity fields from the NIMROD European radar network which covers North-Western Europe. The investigation of the 183-WSL retrieval performance is based on a twofold approach: 1) the dichotomous statistic is used to evaluate the capabilities of the method to identify rain and no-rain clouds; 2) the accuracy statistic is applied to quantify the errors in the estimation of rain rates.The results reveal that the 183-WSL technique shows good skills in the detection of rainno-rain areas and in the quantification of rain rate intensities. The categorical analysis shows annual values of the POD, FAR and HK indices varying in the range 0.80-0.82, 0.330.36 and 0.39-0.46, respectively. The RMSE value is 2.8 millimeters per hour for the whole period despite an overestimation in the retrieved rain rates. Of note is the distribution of the 183-WSL monthly mean rain rate with respect to radar: the seasonal fluctuations of the average rainfalls measured by radar are reproduced by the 183-WSL. However, the retrieval method appears to suffer for the winter seasonal conditions especially when the soil is partially frozen and the surface emissivity drastically changes. This fact is verified observing the discrepancy distribution diagrams where2the 183-WSL

  4. Fast pyrolysis of biomass: A review of relevant aspects. Part I : Parametric study

    Directory of Open Access Journals (Sweden)

    Jorge Iván Montoya

    2015-01-01

    Full Text Available Existe gran interés en el desa rrollo de biocombustibles a parti r de biomasa mediante procesos t ermoquímicos, que ha ido crecie ndo en los últimos años como alternativa promisoria para satisfacer parcialmente e l consumo creciente de energía. Sin embargo, el proceso de piro lisis rápida es complejo, e involucra cambios de fase y fenómenos de transferen cia de masa, energía, cantidad de movimiento, fuertemente acopl ados con las tasas de reacción. A pesar de numerosos estudios realizados en el áre a, no hay consenso respecto a mecanismos de reacción, ni se han propuesto modelos fenomenológicos detallados para describir los procesos físicos y químicos que ocurren dentro de una partícula de biomasa, esto ha traído dificultades en el diseño y operación de re actores a escala piloto e industr ial, dando lugar a la popularizaci ón de la tecnología. Este tra bajo presenta un estudio de diferentes líneas de investigació n, para ayudar a los investiga dores a obtener una mej or comprensión del tema.

  5. Alternative business models for establishing fast-charging stations - Part 2; Alternative forretningsmodeller for etablering av hurtigladestasjoner - Del 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    This section of the report describes and evaluates potential business models for fast-charging stations. Business models are developed on the basis of market development for electric vehicles and electric vehicle usage patterns analyzed in Part 1 of the project. This report describes a series of models in both the early and maturity stage, where we have distinguished between different user segments and payment models. With the estimated trends in the car fleet and charger use, the prerequisites for profitable quick charging in the downtown area are good, while, due to high construction contribution, you must have a relatively high proportion of subscriptions and a high charge rate to obtain adequate finances in the corridor points.(auth)

  6. Fast and Careless or Careful and Slow? Apparent Holistic Processing in Mental Rotation Is Explained by Speed-Accuracy Trade-Offs

    Science.gov (United States)

    Liesefeld, Heinrich René; Fu, Xiaolan; Zimmer, Hubert D.

    2015-01-01

    A major debate in the mental-rotation literature concerns the question of whether objects are represented holistically during rotation. Effects of object complexity on rotational speed are considered strong evidence against such holistic representations. In Experiment 1, such an effect of object complexity was markedly present. A closer look on…

  7. Motion of the shoulder complex in individuals with isolated acromioclavicular osteoarthritis and associated with rotator cuff dysfunction: part 1 - Three-dimensional shoulder kinematics.

    Science.gov (United States)

    Sousa, Catarina de Oliveira; Camargo, Paula Rezende; Ribeiro, Ivana Leão; Reiff, Rodrigo Bezerra de Menezes; Michener, Lori Ann; Salvini, Tania Fátima

    2014-08-01

    This study described the three-dimensional shoulder motion during the arm elevation in individuals with isolated acromioclavicular osteoarthritis (ACO) and ACO associated with rotator cuff disease (RCD), as compared to controls. Seventy-four participants (ACO=23, ACO+RCD=25, Controls=26) took part of this study. Disability was assessed with the DASH, three-dimensional kinematics were collected during arm elevation in the sagittal and scapular planes, and pain was assessed with the 11-point numeric pain rating scale. For each kinematic variable and demographic variables, separate linear mixed-model 2-way ANOVAs were performed to compare groups. Both ACO groups had higher DASH and pain scores. At the scapulothoracic joint, the isolated ACO group had greater internal rotation than control, and the ACO+RCD group had greater upward rotation than both other groups. At the sternoclavicular joint, both groups with ACO had less retraction, and the isolated ACO group had less elevation and posterior rotation. At the acromioclavicular joint, the isolated ACO group had greater upward rotation, and both ACO groups had greater posterior tilting. Patients with ACO had altered shoulder kinematics, which may represent compensatory responses to reduce pain and facilitate arm motion during arm elevation and lowering.

  8. Visible part of the multiline electronic-vibro-rotational emission spectrum of the $D_2$ molecule measured with moderate resolution. I. Experimental technique and data processing

    CERN Document Server

    Lavrov, B P

    2013-01-01

    The visible part ($\\approx 419 \\div 696$ nm) of the multiline electronic-vibro-rotational emission spectrum of the $D_2$ molecule was recorded with moderate resolution mainly limited by Doppler broadening of spectral lines (line widths $FWHM \\approx 0.013$ nm). After numerical deconvolution of the recorded intensity distributions and proper calibration of the spectrometer the new set of wavenumber values was obtained.

  9. Fast Tacking System of the Die Shear Analog Part%模式飞剪提高快速跟随性能的方案分析

    Institute of Scientific and Technical Information of China (English)

    潘宗秋; 张艳

    2001-01-01

    The Die Shear Servo System is composed of analog and digital parts. Th e analog part is very important to the fast tacking of the system. This paper su mmarizes the measure of fast tracking in analog part, which satisfies the desire of the whole system as a part of the position control system.%模式飞剪位置跟随系统由数字与模拟两部分组成。模拟部分作为整个位置控制系统的一个环节,从提高系统的跟随性能出发,重点讨论模拟部分快速跟随的方案和措施。

  10. Regular Mechanical Transformation of Rotations Into Translations: Part 1. Kinematic Analysis and Definition of the Basic Characteristics

    Science.gov (United States)

    Abadjieva, Emilia; Abadjiev, Valentin

    2017-06-01

    The science that study the processes of motions transformation upon a preliminary defined law between non-coplanar axes (in general case) axes of rotations or axis of rotation and direction of rectilinear translation by three-link mechanisms, equipped with high kinematic joints, can be treated as an independent branch of Applied Mechanics. It deals with mechanical behaviour of these multibody systems in relation to the kinematic and geometric characteristics of the elements of the high kinematic joints, which form them. The object of study here is the process of regular transformation of rotation into translation. The developed mathematical model is subjected to the defined task for studying the sliding velocity vector function at the contact point from the surfaces elements of arbitrary high kinematic joints. The main kinematic characteristics of the studied type motions transformation (kinematic cylinders on level, kinematic relative helices (helical conoids) and kinematic pitch configurations) are defined on the bases of the realized analysis. These features expand the theoretical knowledge, which is the objective of the gearing theory. They also complement the system of kinematic and geometric primitives, that form the mathematical model for synthesis of spatial rack mechanisms.

  11. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    Science.gov (United States)

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. A new concept for the control of a slow-extracted beam in a line with rotational optics: Part II

    CERN Document Server

    Benedikt, Michael; Pullia, M

    1999-01-01

    The current trend in hadrontherapy is towards high-precision, conformal scanning of tumours with a 'pencil' beam of light ions or protons, delivered by a synchrotron using slow extraction. The particular shape of the slow-extracted beam segment in phase space and the need to vary the beam size in a lattice with rotating optical elements create a special problem for the design of the extraction transfer line and gantry. The design concept presented in this report is based on telescope modules with integer-pi phase advances in both transverse planes. The beam size in the plane of the extraction is controlled by altering the phase advance and hence the rotation of the extracted beam segment in phase space. The vertical beam size is controlled by stepping the vertical betatron amplitude function over a range of values and passing the changed beam size from 'hand-to-hand' through the telescope modules to the various treatment rooms. In the example given, a combined phase shifter and 'stepper', at a point close to ...

  13. 高寒地区旋转式布料机混凝土快速浇筑技术%Fast Pouring Technology of Concrete with Rotating Spreader in Cold Region

    Institute of Scientific and Technical Information of China (English)

    吴小峰

    2014-01-01

    介绍施工单位在施工过程中,通过采取合理的布料机布置、混凝土防分离措施、保温防风措施、布料方法及设备管理措施,实现了高寒地区布料机混凝土快速浇筑,也为高寒地区应用布料机进行混凝土浇筑提供了有益的借鉴。%The fast pouring technology of concrete with rotating spreader in cold region is introduced .In the construction process, the fast pouring of concrete can be achieved by reasonable distribution of the spreader , measurements against concrete separation , heat preservation and wind protection , and the rational equipment management , which could be useful experience for concrete pouring with spreader in cold region .

  14. Fault Detection in Gear Drives with Non-Stationary Rotational Speed - Part II: the Time-Quefrency Approach

    Science.gov (United States)

    Meltzer, G.; Ivanov, Yu. Ye.

    2003-03-01

    This paper deals with the recognition of faults in toothing during non-stationary start up and run down of gear drives. In the first part, this task was solved by means of the time-frequency analysis. A planetary gear was used as a case study. Part II contains a new approach using the time-quefrency analysis. The same example was successfully subjected in this procedure.

  15. How can one detect the rotation of the Earth "around the Moon"? Part 1: With a Foucault pendulum

    CERN Document Server

    Roehner, Bertrand M

    2011-01-01

    It will be shown that the rotation of the Earth in the Earth-Moon system can be detected by comparing the deflection of a Foucault pendulum at noon on the one hand and at midnight on the other hand. More precisely, on 21 June the midnight experiment would give a deflection about 4% larger than at noon. In other words, with a Foucault pendulum having an accuracy of the order of 1% one should be able to identify this effect through a single measurement. Moreover, if the experiment is repeated on N successive days, the division of the error bar by the square-root of N which comes with the averaging process will allow identification of the Moon effect even with a pendulum of poorer accuracy, say of the order of a few percent. In spite of the fact that this effect appears fairly easy to detect, it does not seem that its observation has attracted much attention so far. We hope that this paper will encourage some new observations.

  16. How can one detect the rotation of the Earth "around the Moon"? Part 2: Ultra-slow fall

    CERN Document Server

    Roehner, Bertrand M

    2011-01-01

    The paper proposes an alternative to the Foucault pendulum for detecting various movements of rotation of the Earth. Calculations suggest that if the duration of a "free" fall becomes longer the eastward deflection will be amplified in proportion with the increased duration. Instead of 20 micrometers for a one-meter fall, one can expect deflections more than 1,000 times larger when the fall lasts a few minutes. The method proposed in this paper consists in using the buoyancy of a (non viscous) liquid in order to work in reduced gravity. Not surprisingly, as in many astronomical observations, the main challenge is to minimize the level of "noise". Possible sources of noise are discussed and remedies are proposed. In principle, the experiment should be done in superfluid helium. However, a preliminary experiment done in water gave encouraging results in spite of a fairly high level of noise. In forthcoming experiments the main objective will be to identify and eliminate the main sources of noise. This experimen...

  17. Four-colour photometry of EY Dra: a study of an ultra-fast rotating active dM1-2e star

    CERN Document Server

    Vida, K; Kővári, Zs; Jurcsik, J; Sódor, Á; Váradi, M; Belucz, B; Dékány, I; Hurta, Zs; Nagy, I; Posztobányi, K

    2010-01-01

    We present more than 1000-day long photometry of EY Draconis in BV(RI)C passbands. The changes in the light curve are caused by the spottedness of the rotating surface. Modelling of the spotted surface shows that there are two large active regions present on the star on the opposite hemispheres. The evolution of the surface patterns suggests a flip-flop phenomenon. Using Fourier analysis, we detect a rotation period of P_rot=0.45875d, and an activity cycle with P~350d, similar to the 11-year long cycle of the Sun. This cycle with its year-long period is the shortest one ever detected on active stars. Two bright flares are also detected and analysed.

  18. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya; Maksimyak, P. P.

    2012-01-01

    The internal energy flow in a light beam can be divided into the "orbital" and "spin" parts, associated with the spatial and polarization degrees of freedom of light. In contrast to the orbital one, experimental observation of the spin flow seems problematic because it is converted into an orbital...... particles within a field where the transverse energy circulation is associated exclusively with the spin flow. This result can be treated as the first demonstration of mechanical action of the spin flow of a light field....

  19. Atlas and wavenumber tables for the visible part of the electronic-vibro-rotational D2 spectrum emitted by low-temperature plasma

    Science.gov (United States)

    Lavrov, Boris P.; Umrikhin, Ivan S.

    2016-10-01

    The visible part (≈ 419-696 nm) of the multiline electronic-vibro-rotational (rovibronic) emission spectrum of the D2 molecule was recorded with a moderate resolution mainly determined by Doppler broadening of spectral lines (the observed line widths are equal to 0.0122(4) nm throughout the wavelength range under study). After the numerical deconvolution of the recorded intensity distributions and proper spectrometer calibrations, the new set of wavenumber values for rovibronic spectral lines has been obtained. It is shown that these new data are significantly more precise than experimental wavenumber values currently published for the visible part of the D2 spectrum, except for the fragmentary results of our high-resolution experiments (Phys. Rev. A, 2012). The assignments of the triplet rovibronic lines are verified by means of the optimizational technique based on two general principles: Rydberg-Ritz and maximum likelihood (J. Phys. B, 2008). Final results (reported in the on-line supplement material) include an atlas and accompanying tables. The atlas is divided into 158 sections (each section covers about 1.5 nm) containing images of the focal plane of the spectrometer and intensity distributions in linear and logarithmic scales. The tables contain wavenumber and relative intensity values for 11 941 spectral lines together with the available and new line assignments for the D2 and HD molecules.

  20. Motion of the shoulder complex in individuals with isolated acromioclavicular osteoarthritis and associated with rotator cuff dysfunction: part 2 - muscle activity.

    Science.gov (United States)

    Sousa, Catarina de Oliveira; Michener, Lori Ann; Ribeiro, Ivana Leão; Reiff, Rodrigo Bezerra de Menezes; Camargo, Paula Rezende; Salvini, Tania Fátima

    2015-02-01

    This study aimed to compare muscle activity in individuals with isolated acromioclavicular osteoarthritis (ACO), ACO associated with rotator cuff disease (ACO+RCD), and controls. Seventy-four participants (23 isolated ACO, 25 ACO+RCD, 26 controls) took part in this study. Disability was assessed with the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire. Muscle activity of the upper trapezius (UT), lower trapezius (LT), serratus anterior (SA), and anterior deltoid (AD) was collected during arm elevation in the sagittal and scapular planes. Pain during motion was assessed with the numerical pain rating scale. Analysis of the DASH, pain and kinematics were reported in part 1 of this study. For each muscle, separate 2-way linear mixed-model ANOVAs were performed to compare groups. ACO+RCD group had more UT and AD activity than the the isolated ACO and control other groups, more AD activity than the isolated ACO group during the ascending phase, and more AD activity than the ACO and control groups during the descending phase in both planes. Isolated ACO group had less SA activity than the control group only in the sagittal plane. Alterations in shoulder muscle activity are present in individuals with isolated ACO and with ACO+RCD and should be considered in rehabilitation.

  1. Compact rotating cup anemometer

    Science.gov (United States)

    Wellman, J. B.

    1968-01-01

    Compact, collapsible rotating cup anemometer is used in remote locations where portability and durability are factors in the choice of equipment. This lightweight instrument has a low wind-velocity threshold, is capable of withstanding large mechanical shocks while in its stowed configuration, and has fast response to wind fluctuations.

  2. Chemical Stabilisation of Sand Part IX: Orthophthalate type Unsaturated Polyester Resin for Inducing Fast setting Behaviour and High Strength

    Directory of Open Access Journals (Sweden)

    B. P. Gupta

    1994-01-01

    Full Text Available Polymer concrete composites have been made from orthophthalate-type unsaturated polyester resin, methyl ethyl ketone peroxide as initiator, cobalt naphthenate as accelerator and desert sand as filler. Composites preferred using resin (10-25 per cent, initiator (4 per cent and accelerator (2 per cent with representative desert sand samples of different particle sizes (0.2-0.02 mm, 2-0.2 mm and 4-2 mm as filler recorded unconfined compression strength ranging from 4 to 442 kg/cm/sup 2/ after curing at 50 degree centigrade in an oven for 0.5-24 h. Using coarse and fine sand samples with 10 and 15 per cent resin systems the maximum strength of 391 and 326 kg/cm/sup 2/ respectively was attained after 2 h of curing at 50 degree centigrade. The fast setting resin system with strength in this range is quite adequate for the construction of chemically stabilised surfaces, which withstand trafficability of vehicles, operation of helicopters and aircraft's requiring a maximum strength up to 275 kg/cm/sup 2/. These composites may prove useful for rapid repair of roads, helipads and runways damaged during operational activities. A mathematical model has been developed for predicting resin percentage needed for obtaining composite material of requisite strength. The observed and model predicted values have been found to show close agreement.

  3. Omni rotational driving and steering wheel

    DEFF Research Database (Denmark)

    2008-01-01

    Abstract of WO 2008138346  (A1) There is disclosed a driving and steering wheel (112) module (102) with an omni rotational part (106), the module comprising a flange part (104) fixable on a robot, and the omni rotational part (106) comprises an upper omni rotational part (105) and a driving...... and steering wheel part (108), where the omni rotational part (106) is provided for infinite rotation relative to the flange part (104) by both a drive motor (110) and a steering motor (114) being positionable on the flange part (104), and the driving and steering wheel part (108) is suspended from the upper...... omni rotational part (105) with a suspension (116) such that wheel part (108) can move relatively to the upper omni rotational part (105) in a suspension direction (118), and a reduction gear (120) for gearing the drive torque is provided in the wheel part (108) in order e.g. to assure traction...

  4. Fast self-alignment method for single-axial rotation SINS on disturbing base%一种单轴旋转捷联惯导系统抗晃动快速自对准方法

    Institute of Scientific and Technical Information of China (English)

    周章华; 邱宏波; 练涛; 徐海刚; 裴玉锋

    2011-01-01

    为满足对惯导系统的快速反应和高精度要求,针对单轴旋转捷联惯导系统,提出了一种抗晃动快速自对准方法.在捷联惯导单轴往复旋转的基础上,首先采用一种抗晃动基座粗对准方法完成初始航姿的计算,然后在粗对准的基础上,采用一种惯性系下速度为观测量的闭环Ka1man滤波方法完成精对准.实际车载试验验证表明,在总对准时间不大于300 s的情况下,该方法下系统航向对准精度优于1’/cosφ (RMS),水平对准精度优于0.2’(RMS).该方法算法简单,计算量小,应用于单轴旋转捷联惯导系统时对准速度快,精度高,具有很好的工程应用价值.%To satisfy the requirement for rapid response and high precision of SINS, a fast self-alignment method for single-axial rotation SINS on disturbing base is presented. Based on the single-axial rotation SINS, a coarse alignment method on disturbing base are presented. A closed loop Kalman filter with velocity in inertial frame used as observed quantity is applied to the fine alignment based on the coarse alignment. The self-alignment test result in vehicle using a single-axial rotation laser gyro SINS show that the azimuth alignment accuracy is superior to 1 '/cos φ (RMS) and the level alignment accuracy is superior to 0.2'(RMS) when the whole alignment time is less than 300 s. The self-alignment method is not only simple in arithmetic, but also little in amount of calculation. By using this method, the single-axial rotation SINS can acquire rapid alignment-speed and high accuracy. All this characteristics prove that the method is valuable in engineering application.

  5. Core Angular Momentum and the IERS Sub-Centers Activity for Monitoring Global Geophysical Fluids. Part 1; Core Angular Momentum and Earth Rotation

    Science.gov (United States)

    Song, Xia-Dong; Chao, Benjamin (Technical Monitor)

    1999-01-01

    The part of the grant was to use recordings of seismic waves travelling through the earth's core (PKP waves) to study the inner core rotation and constraints on possible density anomalies in the fluid core. The shapes and relative arrival times of such waves associated with a common source were used to reduce the uncertainties in source location and excitation and the effect of unknown mantle structure. The major effort of the project is to assemble historical seismograms with long observing base lines. We have found original paper records of SSI earthquakes at COL between 1951 and 1966 in a warehouse of the U.S. Geological Survey office in Golden, Colorado, extending the previous measurements at COL by Song and Richards [1996] further back 15 years. Also in Alaska, the University of Alaska, Fairbanks Geophysical Institute (UAFGI) has been operating the Alaskan Seismic Network with over 100 stations since the late 1960s. Virtually complete archives of seismograms are still available at UAFGI. Unfortunately, most of the archives are in microchip form (develocorders), for which the use of waveforms is impossible. Paper seismograms (helicorders) are available for a limited number of stations, and digital recordings of analog signals started around 1989. Of the paper records obtained, stations at Gilmore Dome (GLM, very close to COL), Yukon (FYU), McKinley (MCK), and Sheep Creek Mountain (SCM) have the most complete continuous recordings.

  6. Code assessment and modelling for Design Basis Accident Analysis of the European sodium fast reactor design. Part I: System description, modelling and benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Lázaro, A., E-mail: aurelio.lazaro-chueca@ec.europa.eu [JRC-IET European Commission—Westerduinweg 3, PO Box-2, 1755 ZG Petten (Netherlands); UPV—Universidad Politecnica de Valencia, Cami de vera s/n-46002, Valencia (Spain); Ammirabile, L. [JRC-IET European Commission—Westerduinweg 3, PO Box-2, 1755 ZG Petten (Netherlands); Bandini, G. [ENEA, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Darmet, G.; Massara, S. [EDF, 1 avenue du Général de Gaulle, 92141 Clamart (France); Dufour, Ph.; Tosello, A. [CEA, St Paul lez Durance, 13108 Cadarache (France); Gallego, E.; Jimenez, G. [UPM, José Gutiérrez Abascal, 2-28006 Madrid (Spain); Mikityuk, K. [PSI—Paul Scherrer Institut, 5232 Villigen Switzerland (Switzerland); Schikorr, M.; Bubelis, E.; Ponomarev, A.; Kruessmann, R. [KIT—Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany (Germany); Stempniewicz, M. [NRG, Utrechtseweg 310, PO Box 9034 6800 ES, Arnhem (Netherlands)

    2014-01-15

    Highlights: • Ten system-code models of the ESFR were developed in the frame of the CP-ESFR project. • Eight different thermohydraulic system codes adapted to sodium fast reactor's technology. • Benchmarking exercise settled to check the consistency of the calculations. • Upgraded system codes able to simulate the reactivity feedback and key safety parameters. -- Abstract: The new reactor concepts proposed in the Generation IV International Forum (GIF) are conceived to improve the use of natural resources, reduce the amount of high-level radioactive waste and excel in their reliability and safe operation. Among these novel designs sodium fast reactors (SFRs) stand out due to their technological feasibility as demonstrated in several countries during the last decades. As part of the contribution of EURATOM to GIF the CP-ESFR is a collaborative project with the objective, among others, to perform extensive analysis on safety issues involving renewed SFR demonstrator designs. The verification of computational tools able to simulate the plant behaviour under postulated accidental conditions by code-to-code comparison was identified as a key point to ensure reactor safety. In this line, several organizations employed coupled neutronic and thermal-hydraulic system codes able to simulate complex and specific phenomena involving multi-physics studies adapted to this particular fast reactor technology. In the “Introduction” of this paper the framework of this study is discussed, the second section describes the envisaged plant design and the commonly agreed upon modelling guidelines. The third section presents a comparative analysis of the calculations performed by each organisation applying their models and codes to a common agreed transient with the objective to harmonize the models as well as validating the implementation of all relevant physical phenomena in the different system codes.

  7. Pseudo-rotation mechanism for fast olefin exchange and substitution processes at orthometalated C,N-complexes of platinum(II).

    Science.gov (United States)

    Otto, Stefanus; Samuleev, Pavel V; Polyakov, Vladimir A; Ryabov, Alexander D; Elding, Lars I

    2004-11-07

    Bridge splitting in chloroform of the orthometalated chloro-bridged complex [Pt(micro-Cl)(2-Me(2)NCH(2)C(6)H(4))](2)(1), with ethene, cyclooctene, allyl alcohol and phosphine according to 1+ 2L --> 2[PtCl(2-Me(2)NCH(2)C(6)H(4))(L)], where L = C(2)H(4)(3a), C(8)H(14), (3b), CH(2)CHCH(2)OH (3c), and PPh(3)(4a and 4b) gives monomeric species with L coordinated trans or cis to aryl. With olefins the thermodynamically stable isomer with L coordinated cis to aryl is formed directly without an observable intermediate. With phosphine and pyridine, the kinetically controlled trans-product isomerizes slowly to the more stable cis-isomer. Bridge splitting by olefins is slow and first-order in 1 and L, with largely negative DeltaS(++). Substitution of ethene cis to aryl by cyclooctene and allyl alcohol to form 3b and 3c, and substitution of cot from 3b by allyl alcohol to form 3c are first order in olefin and complex, ca. six orders of magnitude faster than bridge cleavage due to a large decrease in DeltaH(++), and with largely negative DeltaS(++). Cyclooctene exchange at 3b is first-order with respect to free cyclooctene and platinum complex. All experimental data for olefin substitution and exchange are compatible with a concerted substitution/isomerization process via a turnstile twist pseudo-rotation in a short-lived labile five-coordinated intermediate, involving initial attack on the labile coordination position trans to the sigma-bonded aryl. Bridge-cleavage reactions of the analogous bridged complexes occur similarly, but are much slower because of their ground-state stabilization and steric hindrance.

  8. Assessment of a fast generated analytical matrix for rotating slat collimation iterative reconstruction: a possible method to optimize the collimation profile

    Science.gov (United States)

    Boisson, F.; Bekaert, V.; Reilhac, A.; Wurtz, J.; Brasse, D.

    2015-03-01

    In SPECT imaging, improvement or deterioration of performance is mostly due to collimator design. Classical SPECT systems mainly use parallel hole or pinhole collimators. Rotating slat collimators (RSC) can be an interesting alternative to optimize the tradeoff between detection efficiency and spatial resolution. The present study was conducted using a RSC system for small animal imaging called CLiR. The CLiR system was used in planar mode only. In a previous study, planar 2D projections were reconstructed using the well-known filtered backprojection algorithm (FBP). In this paper, we investigated the use of the statistical reconstruction algorithm maximum likelihood expectation maximization (MLEM) to reconstruct 2D images with the CLiR system using a probability matrix calculated using an analytic approach. The primary objective was to propose a method to quickly generate a light system matrix, which facilitates its handling and storage, while providing accurate and reliable performance. Two other matrices were calculated using GATE Monte Carlo simulations to investigate the performance obtained using the matrix calculated analytically. The first matrix calculated using GATE took all the physics processes into account, where the second did not consider for the scattering, as the analytical matrix did not take this physics process into account either. 2D images were reconstructed using FBP and MLEM with the three different probability matrices. Both simulated and experimental data were used. A comparative study of these images was conducted using different metrics: the modulation transfert function, the signal-to-noise ratio and quantification measurement. All the results demonstrated the suitability of using a probability matrix calculated analytically. It provided similar results in terms of spatial resolution (about 0.6 mm with differences image.

  9. Catalyst Residence Time Distributions in Riser Reactors for Catalytic Fast Pyrolysis. Part 2: Pilot-Scale Simulations and Operational Parameter Study

    Energy Technology Data Exchange (ETDEWEB)

    Foust, Thomas D.; Ziegler, Jack L.; Pannala, Sreekanth; Ciesielski, Peter; Nimlos, Mark R.; Robichaud, David J.

    2017-02-21

    Using the validated simulation model developed in part one of this study for biomass catalytic fast pyrolysis (CFP), we assess the functional utility of using this validated model to assist in the development of CFP processes in fluidized catalytic cracking (FCC) reactors to a commercially viable state. Specifically, we examine the effects of mass flow rates, boundary conditions (BCs), pyrolysis vapor molecular weight variation, and the impact of the chemical cracking kinetics on the catalyst residence times. The factors that had the largest impact on the catalyst residence time included the feed stock molecular weight and the degree of chemical cracking as controlled by the catalyst activity. Because FCC reactors have primarily been developed and utilized for petroleum cracking, we perform a comparison analysis of CFP with petroleum and show the operating regimes are fundamentally different.

  10. Soft initial-rotation and HΦ robust constant rotational speed control for rotational MEMS gyro

    Institute of Scientific and Technical Information of China (English)

    Ma Gaoyin; Chen Wenyuan; Cui Feng; Zhang Weiping; Wang Liqi

    2009-01-01

    A novel soft initial-rotation control system and an Hoo robust constant rotational speed controller (RCRSC) for a rotational MEMS (micro-electro-mechanical system) gyro are presented. The soft initial-rotation control system can prevent the possible tumbling down of the suspended rotor and ensure a smooth and fast initial-rotation process. After the initial-rotation process, in order to maintain the rotational speed accurately constant, the RCRSC is acquired through the mixed sensitivity design approach. Simulation results show that the actuation voltage disturbances from the internal carrier waves in the gyro is reduced by more than 15.3 dB, and the speed fluctuations due to typical external vibrations ranging from 10 Hz to 200 Hz can also be restricted to 10-3 rad/s order.

  11. Fast ions and momentum transport in JET tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Salmi, A.

    2012-07-01

    Fast ions are an inseparable part of fusion plasmas. They can be generated using electromagnetic waves or injected into plasmas as neutrals to heat the bulk plasma and to drive toroidal rotation and current. In future power plants fusion born fast ions deliver the main heating into the plasma. Understanding and controlling the fast ions is of crucial importance for the operation of a power plant. Furthermore, fast ions provide ways to probe the properties of the thermal plasma and get insight of its confinement properties. In this thesis, numerical code packages are used and developed to simulate JET experiments for a range of physics issues related to fast ions. Namely, the clamping fast ion distribution at high energies with RF heating, fast ion ripple torque generation and the toroidal momentum transport properties using NBI modulation technique are investigated. Through a comparison of numerical simulations and the JET experimental data it is shown that the finite Larmor radius effects in ion cyclotron resonance heating are important and that they can prevent fast ion tail formation beyond certain energy. The identified mechanism could be used for tailoring the fast ion distribution in future experiments. Secondly, ASCOT simulations of NBI ions in a ripple field showed that most of the reduction of the toroidal rotation that has been observed in the JET enhanced ripple experiments could be attributed to fast ion ripple torque. Finally, fast ion torque calculations together with momentum transport analysis have led to the conclusion that momentum transport in not purely diffusive but that a convective component, which increases monotonically in radius, exists in a wide range of JET plasmas. Using parameter scans, the convective transport has been shown to be insensitive to collisionality and q-profile but to increase strongly against density gradient. (orig.)

  12. Earth rotation and geodynamics

    OpenAIRE

    Bogusz Janusz; Brzezinski Aleksander; Kosek Wieslaw; Nastula Jolanta

    2015-01-01

    This paper presents the summary of research activities carried out in Poland in 2011-2014 in the field of Earth rotation and geodynamics by several Polish research institutions. It contains a summary of works on Earth rotation, including evaluation and prediction of its parameters and analysis of the related excitation data as well as research on associated geodynamic phenomena such as geocentre motion, global sea level change and hydrological processes. The second part of the paper deals wit...

  13. Biologic Treatments for Sports Injuries II Think Tank-Current Concepts, Future Research, and Barriers to Advancement, Part 2: Rotator Cuff.

    Science.gov (United States)

    Murray, Iain R; LaPrade, Robert F; Musahl, Volker; Geeslin, Andrew G; Zlotnicki, Jason P; Mann, Barton J; Petrigliano, Frank A

    2016-03-01

    Rotator cuff tears are common and result in considerable morbidity. Tears within the tendon substance or at its insertion into the humeral head represent a considerable clinical challenge because of the hostile local environment that precludes healing. Tears often progress without intervention, and current surgical treatments are inadequate. Although surgical implants, instrumentation, and techniques have improved, healing rates have not improved, and a high failure rate remains for large and massive rotator cuff tears. The use of biologic adjuvants that contribute to a regenerative microenvironment have great potential for improving healing rates and function after surgery. This article presents a review of current and emerging biologic approaches to augment rotator cuff tendon and muscle regeneration focusing on the scientific rationale, preclinical, and clinical evidence for efficacy, areas for future research, and current barriers to advancement and implementation.

  14. Rotating flow

    CERN Document Server

    Childs, Peter R N

    2010-01-01

    Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics

  15. The rotation of brown dwarfs

    CERN Document Server

    Scholz, Aleks

    2016-01-01

    One of the characteristic features of low-mass stars is their propensity to shed large amounts of angular momentum throughout their evolution. This distinguishs them from brown dwarfs which remain fast rotators over timescales of gigayears. Brown dwarfs with rotation periods longer than a couple of days have only been found in star forming regions and young clusters. This is a useful constraint on the mass dependency of mechanisms for angular momentum regular in stars. Rotational braking by disks and winds become highly inefficient in the substellar regime. In this short review I discuss the observational evidence for the fast rotation in brown dwarfs, the implications, and the link to the spin-mass relation in planets.

  16. Spin rotation and birefringence effect for a particle in a high energy storage ring and measurement of the real part of the coherent elastic zero-angle scattering amplitude, electric and magnetic polarizabilities

    CERN Document Server

    Baryshevsky, V G

    2005-01-01

    In the present paper the equations for the spin evolution of a particle in a storage ring are analyzed considering contributions from the tensor electric and magnetic polarizabilities of the particle. Study of spin rotation and birefringence effect for a particle in a high energy storage ring provides for measurement as the real part of the coherent elastic zero-angle scattering amplitude as well as tensor electric and magnetic polarizabilities. We proposed the method for measurement the real part of the elastic coherent zero-angle scattering amplitude of particles and nuclei in a storage ring by the paramagnetic resonance in the periodical in time nuclear pseudoelectric and pseudomagnetic fields.

  17. Rotating Wavepackets

    Science.gov (United States)

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  18. Rotational elasticity

    Science.gov (United States)

    Vassiliev, Dmitri

    2017-04-01

    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833

  19. Efficient Analysis of Structures with Rotatable Elements Using Model Order Reduction

    Directory of Open Access Journals (Sweden)

    G. Fotyga

    2016-04-01

    Full Text Available This paper presents a novel full-wave technique which allows for a fast 3D finite element analysis of waveguide structures containing rotatable tuning elements of arbitrary shapes. Rotation of these elements changes the resonant frequencies of the structure, which can be used in the tuning process to obtain the S-characteristics desired for the device. For fast commutations of the response as the tuning elements are rotated, the 3D finite element method is supported by multilevel model-order reduction, orthogonal projection at the boundaries of macromodels and the operation called macromodels cloning. All the time-consuming steps are performed only once in the preparatory stage. In the tuning stage, only small parts of the domain are updated, by means of a special meshing technique. In effect, the tuning process is performed extremely rapidly. The results of the numerical experiments confirm the efficiency and validity of the proposed method.

  20. FAST joins Breakthrough programme

    Science.gov (United States)

    Banks, Michael

    2016-11-01

    The 180m Five-hundred-meter Aperture Spherical radio Telescope (FAST) - the world's largest single-aperture radio receiver - has become part of the Breakthrough Listen programme, which launched in July 2015 to look for intelligent life beyond Earth.

  1. Omni rotational driving and steering wheel

    DEFF Research Database (Denmark)

    2008-01-01

    omni rotational part (105) with a suspension (116) such that wheel part (108) can move relatively to the upper omni rotational part (105) in a suspension direction (118), and a reduction gear (120) for gearing the drive torque is provided in the wheel part (108) in order e.g. to assure traction...

  2. Rotator cuff tendon connections with the rotator cable.

    Science.gov (United States)

    Rahu, Madis; Kolts, Ivo; Põldoja, Elle; Kask, Kristo

    2017-07-01

    The literature currently contains no descriptions of the rotator cuff tendons, which also describes in relation to the presence and characteristics of the rotator cable (anatomically known as the ligamentum semicirculare humeri). The aim of the current study was to elucidate the detailed anatomy of the rotator cuff tendons in association with the rotator cable. Anatomic dissection was performed on 21 fresh-frozen shoulder specimens with an average age of 68 years. The rotator cuff tendons were dissected from each other and from the glenohumeral joint capsule, and the superior glenohumeral, coracohumeral, coracoglenoidal and semicircular (rotator cable) ligaments were dissected. Dissection was performed layer by layer and from the bursal side to the joint. All ligaments and tendons were dissected in fine detail. The rotator cable was found in all specimens. It was tightly connected to the supraspinatus (SSP) tendon, which was partly covered by the infraspinatus (ISP) tendon. The posterior insertion area of the rotator cable was located in the region between the middle and inferior facets of the greater tubercle of the humerus insertion areas for the teres minor (TM), and ISP tendons were also present and fibres from the SSP extended through the rotator cable to those areas. The connection between the rotator cable and rotator cuff tendons is tight and confirms the suspension bridge theory for rotator cuff tears in most areas between the SSP tendons and rotator cable. In its posterior insertion area, the rotator cable is a connecting structure between the TM, ISP and SSP tendons. These findings might explain why some patients with relatively large rotator cuff tears can maintain seamless shoulder function.

  3. An Efficient Way of Calculating Rotated Template Set Operators for Parallel Image Processing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a novel method of calculating the rotated template set operators. Having defined a rotated ring model, the author proposes an efficient way of executing the rotated template set operators, which uses the rotated ring model and a fast cyclic convolution algorithm from the Number Theoretic Transform. The author showns that a class of rotated templates can be modelled as rotated rings and computed efficiently by the fast algorithm with much fewer multiplies than the normal approach in the worse cases.

  4. Rotationally Actuated Prosthetic Hand

    Science.gov (United States)

    Norton, William E.; Belcher, Jewell G., Jr.; Carden, James R.; Vest, Thomas W.

    1991-01-01

    Prosthetic hand attached to end of remaining part of forearm and to upper arm just above elbow. Pincerlike fingers pushed apart to degree depending on rotation of forearm. Simpler in design, simpler to operate, weighs less, and takes up less space.

  5. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  6. Fast Radio Bursts

    Indian Academy of Sciences (India)

    Akshaya Rane; Duncan Lorimer

    2017-09-01

    We summarize our current state of knowledge of fast radio bursts (FRBs) which were first discovered a decade ago. Following an introduction to radio transients in general, including pulsars and rotating radio transients, we discuss the discovery of FRBs. We then discuss FRB follow-up observations in the context of repeat bursts before moving on to review propagation effects on FRB signals, FRB progenitor models and an outlook on FRBs as potential cosmological tools.

  7. Injection Mold Design with Thread Rotating Demoulding Mechanism of Plastic Part with Internal Thread%螺纹旋转脱模内螺纹塑件注塑模设计

    Institute of Scientific and Technical Information of China (English)

    王成

    2013-01-01

    The injection mold with thread rotating demoulding mechanism was designed by taking acrylonitrile-butadiene -styrene plastic bottle cap as example. Without external unscrewing power plant attached to the mold, the plastic part can be automatically rotating demoulded by using opening force of the injection molding machine, so the problems of time-consuming being long and plastic part thread being scuffed when thread was demoulded were solved and the quality of the plastic part was ensured. The gating system, small rod limitting structure and thread rotating demoulding mechanism were designed and analyzed, the overall structure, working process of the mold and demoulding step exploded view were introduced also. The mold has the advantages of simple, compact structure and small size, is suitable for large-scale production.%以ABS塑料瓶盖为例,设计了螺纹旋转脱模内螺纹塑件注塑模.该模具无需外接脱螺纹动力装置,利用注塑机的开模力实现塑件自动旋转脱模顶出,保证了内螺纹塑件的质量,解决了现有技术中螺纹脱模耗时、易拉伤塑件螺纹的问题.对浇注系统、小拉杆限位结构、螺纹旋转脱模结构等进行了设计分析,介绍了模具的整体结构和开、合模工作过程及脱模步骤分解图.该模具结构简单、紧凑、体积小,适用于大批量生产.

  8. Confirmation of bistable stellar differential rotation profiles

    CERN Document Server

    Käpylä, P J; Brandenburg, A

    2014-01-01

    (abridged) Context: Solar-like differential rotation is characterized by a rapidly rotating equator and slower poles. However, theoretical models and numerical simulations can also result in a slower equator and faster poles when the overall rotation is slow. Aims: We study the critical rotational influence under which differential rotation flips from solar-like (fast equator, slow poles) to an anti-solar one (slow equator, fast poles). We also estimate the non-diffusive ($\\Lambda$-effect) and diffusive (turbulent viscosity) contributions to the Reynolds stress. Methods: We perform three-dimensional numerical simulations of mildly turbulent convection in spherical wedge geometry. We regulate the convective velocities by varying the amount of heat transported by thermal conduction, turbulent diffusion, and resolved convection. Results: Increasing the efficiency of resolved convection leads to a reduction of the rotational influence on the flow and a sharp transition from solar-like to anti-solar differential r...

  9. Rotational splittings for slow to moderate rotators: Latitudinal dependency or higher order effects in \\Omega?

    CERN Document Server

    Ouazzani, R-M

    2012-01-01

    Information about the rotation rate is contained in the low frequency part of power spectra, where signatures of nonuniform surface rotation are expected, as well as in the frequency splittings induced by the internal rotation rate. We wish to figure out whether the differences between the seismic rotation period as determined by a mean rotational splitting, and the rotation period measured from the low frequency peak in the Fourier spectrum (observed for some of CoRoT's targets) can provide constraints on the rotation profile. For uniform moderate rotators,perturbative corrections to second and third order in terms of the rotation angular velocity \\Omega, may mimic differential rotation. We apply our perturbation method to evaluate mode frequencies accurate up to \\Omega^3 for uniform rotation. Effects of latitudinal dependence are calculated in the linear approximation. In \\beta Cephei pulsators models, third order effects become comparable to that of a horizontal shear similar to the solar one at rotation r...

  10. Experimental and numerical investigations of internal heat transfer in an innovative trailing edge blade cooling system: stationary and rotation effects, part 1—experimental results

    Science.gov (United States)

    Beniaiche, Ahmed; Ghenaiet, Adel; Facchini, Bruno

    2017-02-01

    The aero-thermal behavior of the flow field inside 30:1 scaled model reproducing an innovative smooth trailing edge of shaped wedge discharge duct with one row of enlarged pedestals have been investigated in order to determine the effect of rotation, inlet velocity and blowing conditions effects, for Re = 20,000 and 40,000 and Ro = 0-0.23. Two configurations are presented: with and without open tip configurations. Thermo-chromic liquid crystals technique is used to ensure a local measurement of the heat transfer coefficient on the blade suction side under stationary and rotation conditions. Results are reported in terms of detailed 2D HTC maps on the suction side surface as well as the averaged Nusselt number inside the pedestal ducts. Two correlations are proposed, for both closed and open tip configurations, based on the Re, Pr, Ro and a new non-dimensional parameter based on the position along the radial distance, to assess a reliable estimation of the averaged Nusselt number at the inter-pedestal region. A good agreement is found between prediction and experimental data with about ±10 to ±12 % of uncertainty, for the simple form correlation, and about ±16 % using a complex form. The obtained results help to predict the flow field visualization and the evaluation of the aero-thermal performance of the studied blade cooling system during the design step.

  11. Experimental and numerical investigations of internal heat transfer in an innovative trailing edge blade cooling system: stationary and rotation effects, part 2: numerical results

    Science.gov (United States)

    Beniaiche, Ahmed; Ghenaiet, Adel; Carcasci, Carlo; Facchini, Bruno

    2017-02-01

    This paper presents a numerical validation of the aero-thermal study of a 30:1 scaled model reproducing an innovative trailing edge with one row of enlarged pedestals under stationary and rotating conditions. A CFD analysis was performed by means of commercial ANSYS-Fluent modeling the isothermal air flow and using k- ω SST turbulence model and an isothermal air flow for both static and rotating conditions (Ro up to 0.23). The used numerical model is validated first by comparing the numerical velocity profiles distribution results to those obtained experimentally by means of PIV technique for Re = 20,000 and Ro = 0-0.23. The second validation is based on the comparison of the numerical results of the 2D HTC maps over the heated plate to those of TLC experimental data, for a smooth surface for a Reynolds number = 20,000 and 40,000 and Ro = 0-0.23. Two-tip conditions were considered: open tip and closed tip conditions. Results of the average Nusselt number inside the pedestal ducts region are presented too. The obtained results help to predict the flow field visualization and the evaluation of the aero-thermal performance of the studied blade cooling system during the design step.

  12. Observations of rotation in JET plasmas with electron heating by ion cyclotron resonance heating

    DEFF Research Database (Denmark)

    Hellsten, T.; Johnson, T. J.; Van Eester, D.

    2012-01-01

    The rotation of L-mode plasmas in the JET tokamak heated by waves in the ion cyclotron range of frequencies (ICRF) damped on electrons, is reported. The plasma in the core is found to rotate in the counter-current direction with a high shear and in the outer part of the plasma with an almost...... constant angular rotation. The core rotation is stronger in magnitude than observed for scenarios with dominating ion cyclotron absorption. Two scenarios are considered: the inverted mode conversion scenarios and heating at the second harmonic He-3 cyclotron resonance in H plasmas. In the latter case......, electron absorption of the fast magnetosonic wave by transit time magnetic pumping and electron Landau damping (TTMP/ELD) is the dominating absorption mechanism. Inverted mode conversion is done in (He-3)-H plasmas where the mode converted waves are essentially absorbed by electron Landau damping. Similar...

  13. Papel de Fast ("Fas-activated serine threonine phosphoprotein") en la fagocitosis de las bacterias por parte de los macrófagos

    OpenAIRE

    Freitas, Lisbeth Gonçalves de

    2016-01-01

    Esta Tesis Doctoral estudia los efectos de la ausencia de FAST (Fas-activated serine threonine phosphoprotein) en la capacidad fagocítica de los macrófagos en ratones y humanos. Nuestros resultados muestran que los macrófagos deficientes en FAST (knockout, KO) tienen una capacidad aumentada de fagocitar bacterias Escherichia coli en ensayos in vitro e in vivo. Los macrófagos KO también presentaron un ligero aumento de la fagocitosis de Staphylococcus aureus pero no resultó ser significativo. ...

  14. Automated suppression of errors in LTP-II slope measurements of x-ray optics. Part 2: Specification for automated rotating/flipping/aligning system

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Zulfiqar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yashchuk, Valeriy V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-07-11

    Systematic error and instrumental drift are the major limiting factors of sub-microradian slope metrology with state-of-the-art x-ray optics. Significant suppression of the errors can be achieved by using an optimal measurement strategy suggested in [Rev. Sci. Instrum. 80, 115101 (2009)]. With this series of LSBL Notes, we report on development of an automated, kinematic, rotational system that provides fully controlled flipping, tilting, and shifting of a surface under test. The system is integrated into the Advanced Light Source long trace profiler, LTP-II, allowing for complete realization of the advantages of the optimal measurement strategy method. We provide details of the system?s design, operational control and data acquisition. The high performance of the system is demonstrated via the results of high precision measurements with a spherical test mirror.

  15. Poređenje snage za jednu i dve kontrarotirajuće hidro turbine u Venturijevoj cevi - II deo / Comparison of power for one and two contra-rotating hydro turbines in a Venturi tube: Part II

    Directory of Open Access Journals (Sweden)

    Mirko S. Kozić

    2009-10-01

    Full Text Available U prvom delu rada izloženi su rezultati istraživanja koja daju priraštaj snage dobijen sa dve kontrarotirajuće hidroturbine u poređenju sa snagom jedne turbine, smeštene u Venturijevoj cevi, a koje se obrću sa n = 50 o/min. Izvršena su istraživanja koja je trebalo da daju odgovor na pitanje da li se može dobiti veći priraštaj snage sa povećanjem broja obrtaja. U drugom delu rada prikazani su rezultati za jednu i dve kontrarotirajuće turbine pri najvećem broju obrtaja pri kojem se ne javlja kavitacija na lopaticama. Rezultati su dobijeni numeričkim simulacijama uz korišćenje softvera koji rešava usrednjene Navije-Stoksove jednačine. / In the first part of the paper, the results of the research are presented, giving the increment of the power obtained with two contra-rotating hydro turbines, compared to one turbine, placed in a Venturi tube and rotating at 50 rpm. Since a small increment of power is obtained, research was carried out in order to give an answer to the question whether a larger increment of power could be obtained by increasing a number of revolutions per minute. In the second part of the paper, the results are shown for one and two contra-rotating turbines at the highest revolution at which no cavitation appears on the blades. The results are obtained with numerical simulations using software for solving Navier-Stokes equations.

  16. Reduction of Sample Rotation in Electrostatic Levitation

    Science.gov (United States)

    Hyers, R. W; Johnson, W. L.; Savage, L.; Rogers, J. R.

    2000-01-01

    In many containerless processing systems, control of sample rotation is an important issue. Sample rotation is even more important for microgravity containerless processing systems, where the centrifugal acceleration can approach 1 g for even a small rotation rate. Prior work on rotation control by Rhim focused on driving the sample rotation at a controlled rate for droplet dynamics experiments and measurement of electrical conductivity. His technique allows controlled, fast rotation, but for many microgravity experiments the goal is zero rotation. To minimize sample rotation, two approaches are apparent: first, to identify and balance or eliminate the driving forces for undesired sample rotation, or second, implement a feedback-based rotation control loop in parallel with the position control loop. In this work, we have taken the first approach. To minimize sample rotation, the simplest approach is to identify and balance or eliminate the driving forces for undesired sample rotation. Our experiments show that the dominant driving force for rotation of machined Zr spheres in the MSFC ESL is photon pressure from the heating laser. Experimental results showing the correlation between heating power and torque are compared to theoretical predictions, and a strategy for minimizing the torque due to photon pressure is presented.

  17. Motor processes in mental rotation

    OpenAIRE

    Wexler, Mark; Kosslyn, Stephen; Berthoz, Alain

    1997-01-01

    Much indirect evidence supports the hypothesis that transformations of mental images are at least in part guided by motor processes, even in the case of images of abstract objects rather than of body parts. For example, rotation may be guided by processes that also prime one to see results of a specific motor action. We directly test the hypothesis by means of a dual-task paradigm in which subjects perform the Cooper-Shepard mental rotation task while executing an unseen motor rotation in a g...

  18. Mercury: its iron and sulfur enrichment has roots in mechanical concentration of dense particles in the inner part of rotating primordial gas-dust cloud

    Science.gov (United States)

    Kochemasov, G. G.

    2013-09-01

    After MESSENGER explorations one could crystallize an idea of nature of this innermost planet of the Solar system. It has on the whole dull low albedo surface with small variations in compositions of Mg-rich Fe-poor large tectonic units. Only widespread small hollows and their groups with darker and brighter haloes brighten this dull landscape. The relief variations are small (maximum 10 km, but normally within 3-5 km), much less than on other rocky planets. The large iron core making the planet's density high leaves a modest place for mantle. Atmosphere is practically absent notwithstanding strong degassing, and this is due to strong cleaning by the solar wind. All mentioned peculiarities could be explained by the Mercury's position in the innermost zone. This was done even before the first orbital explorations just on a basis of the wave planetology connecting planets' properties with their orbital characteristics [ 1, 2]. Surprising many planetologists the high sulfur presence in Mercury, not justified by its position in the hot inner zone was, however, practically predicted by a new model of primordial matter differentiation in a rotating gas-dust cloud [ 3, 4]. This cloud consisting of gas and mixture of solids with various densities under rotation produces concentration of heavy particles in the inner zone. This process is well known for prospectors making heavy concentrations (schlich) with use of a spiral separator. There separation of heavies is made by descending and rotating in a spiral water-sand mixture. This model for differentiation of a planetary system was presented at LPSC [3, 4]. At that time nobody could imagine volatile sulfur in the inner hot zone. In [1] is written "It is suggested that primary accretion minerals in some meteorites and probably also in the larger bodies of the Solar system are united by nearness of their densities rather than by temperatures of their condensation out of the protoplanet gas (for example, common association of

  19. Weighting Test for Rotated Part of A Bridge Crossing Datong-Qinhuangdao Railway and Related Counterweight Study%跨大秦铁路大桥转体称重试验及配重研究

    Institute of Scientific and Technical Information of China (English)

    宋满荣; 柳炳康; 杨玉龙; 冯然

    2015-01-01

    新建张唐铁路跨大秦铁路大桥上跨繁忙电气化大秦铁路,同时与铁路左右线相交,交角为45°58′。转体跨度64 m ,转体高度13~20 m ,转体重量达11000 t。为确保转体过程安全、顺利地进行,利用有限元建模分析,在转体前对转动桥梁进行了针对性称重试验,并根据试验结果进行合理配重。研究结果及工程实践表明:称重试验中,在拆除支架的过程中同时读取砂箱里土压力盒的数值,可以定量分析不平衡荷载;多点埋设的竖向位移传感器和水平向位移传感器实测数值为判断转动临界点提供了依据。配重计算中考虑正式转体时可能遭遇的风荷载,能有效防止转动失稳;试转后的二次配重能更好地确保转体过程的平稳、安全。%A newly‐built bridge on Zhangjiakou‐Tangshan Railway that crosses the Datong‐Qinhuangdao Railway overpasses the busy electrified Datong‐Qinhuangdao Railway ,concurrently intersecting with the left and right railway lines at an angle of 45°58′.The rotated part spans 64 m ,with a height of 13~20 m and a weight up to 11 000 t .To ensure the safety and smooth opera‐tion of the rotating process ,the finite element model was established for analysis ,and the special‐ized weighting test was carried out for the bridge before the rotating operation ,and rational coun‐terweights were set according to the testing results .The results of the study and engineering prac‐tice indicate that in the weighting test ,to read the data of the soil compression box in the sand box during the demolition of the scaffolding can quantitatively analyze the unbalanced loads .T he data from the vertical and horizontal displacement sensors buried in multiple points provide reference for identifying the critical rotating point .In the counterweight calculation ,taking into account of the wind load that would encounter during the formal rotation can effectively prevent

  20. Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach: part 2: Optimization of hydrodynamic conditions for a crossflow ultrafiltration module with rotating part.

    Science.gov (United States)

    Cojocaru, Corneliu; Zakrzewska-Trznadel, Grazyna; Miskiewicz, Agnieszka

    2009-09-30

    Application of shear-enhanced crossflow ultrafiltration for separation of cobalt ions from synthetic wastewaters by prior complexation with polyethyleneimine has been investigated via experimental design approach. The hydrodynamic conditions in the module with tubular metallic membrane have been planned according to full factorial design in order to figure out the main and interaction effects of process factors upon permeate flux and cumulative flux decline. It has been noticed that the turbulent flow induced by rotation of inner cylinder in the module conducts to growth of permeate flux, normalized flux and membrane permeability as well as to decreasing of permeate flux decline. In addition, the rotation has led to self-cleaning effect as a result of the reduction of estimated polymer layer thickness on the membrane surface. The optimal hydrodynamic conditions in the module have been figured out by response surface methodology and overlap contour plot, being as follows: DeltaP=70 kPa, Q(R)=108 L/h and W=2800 rpm. In such conditions the maximal permeate flux and the minimal flux decline has been observed.

  1. Motor Processes in Children's Mental Rotation

    Science.gov (United States)

    Frick, Andrea; Daum, Moritz M.; Walser, Simone; Mast, Fred W.

    2009-01-01

    Previous studies with adult human participants revealed that motor activities can influence mental rotation of body parts and abstract shapes. In this study, we investigated the influence of a rotational hand movement on mental rotation performance from a developmental perspective. Children at the age of 5, 8, and 11 years and adults performed a…

  2. Stellar rotation effects in polarimetric microlensing

    CERN Document Server

    Sajadian, Sedighe

    2016-01-01

    It is well known that the polarization signal in microlensing events of hot stars is larger than that of main-sequence stars. Most hot stars rapidly rotate around their stellar axes. The stellar rotation makes ellipticity and gravity-darkening effects which break the spherical symmetry of the source shape and the circular symmetry of the source surface brightness respectively. Hence, it causes a net polarization signal for the source star. This polarization signal should be considered in polarimetry microlensing of fast rotating stars. For moderate rotating stars, lensing can magnify or even characterize small polarization signals due to the stellar rotation through polarimetry observations. The gravity-darkening effect due to a rotating source star makes asymmetric perturbations in polarimetry and photometry microlensing curves whose maximum happens when the lens trajectory crosses the projected position of the rotation pole on the sky plane. The stellar ellipticity makes a time shift (i) in the position of ...

  3. Structure of molecules and internal rotation

    CERN Document Server

    Mizushima, San-Ichiro

    1954-01-01

    Structure of Molecules and Internal Rotation reviews early studies on dihalogenoethanes. This book is organized into two parts encompassing 8 chapters that evaluate the Raman effect in ethane derivatives, the energy difference between rotational isomers, and the infrared absorption of ethane derivatives. Some of the topics covered in the book are the potential barrier to internal rotation; nature of the hindering potential; entropy difference between the rotational isomers; internal rotation in butane, pentane, and hexane; and internal rotation in long chain n-paraffins. Other chapters deal wi

  4. Fast method for multielemental analysis of plants and discrimination according to the anatomical part by total reflection X-ray fluorescence spectrometry.

    Science.gov (United States)

    De la Calle, Inmaculada; Costas, Marta; Cabaleiro, Noelia; Lavilla, Isela; Bendicho, Carlos

    2013-05-01

    Fast and reliable analytical methodologies are required for quality control of plants in order to assure human health. Ultrasound-assisted extraction in combination with total reflection X-ray fluorescence is proposed as a fast and simple method for multielemental analysis of plants on a routine basis. For this purpose, five certified reference materials have been analysed for the determination of P, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn and Pb. Different extractant media (acids and oxidants) were tried. A mixture of diluted HNO(3)+HCl+HF, was selected as the best option for the achievement of complete extractions. Accurate and precise results can be reached in most cases along with a high sample throughput. Different plants (i.e., herbs, spices and medicinal plants) were analysed. Linear discriminant analysis together with the elemental concentrations allowed the differentiation of commercial preparations corresponding to flower, fruit and leaf.

  5. Regular Mechanical Transformation of Rotations Into Translations: Part 2. Kinematic Synthesis of the Elements of High Kinematic Joints, Realizing the Process of Motions Transformation

    Science.gov (United States)

    Abadjieva, Emilia; Abadjiev, Valentin

    2017-09-01

    This work is developed on the basis of the illustrated main parts of the kinematic theory (theory of gearing) of the spatial rack drives in Part 1 of this study. The applied theoretical approach to their synthesis, based on the T. Olivier's second principle is defined. A study of the geometric nature of the surface of action (mesh region, respectively) of these class transmissions is shown. Research software programs for synthesis and visualization of these transmissions and their specific elements are elaborated, on the basis of the given algorithms to the synthesis of the elements of high kinematic joints (active tooth surfaces), with which the movable links of the studied gear systems are equipped.

  6. Rotary fast tool servo system and methods

    Science.gov (United States)

    Montesanti, Richard C.; Trumper, David L.

    2007-10-02

    A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. A pair of position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.

  7. Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)

    2016-10-19

    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  8. Fast plunges into Kerr black holes

    OpenAIRE

    Hadar, Shahar; Porfyriadis, Achilleas; Strominger, Andrew E.

    2015-01-01

    Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. For rapidly rotating black holes such fast plunges may be studied in the context of the Kerr/CFT correspondence because they occur in the near-horizon region where dynamics are governed by the infinite dimensional conformal symmetry. In this paper we use conformal transformations to analytically solve for the radiation emitted from fast plunges i...

  9. 脊柱侧凸顶椎椎体及附件旋转角测量及其临床意义%Axial rotation evaluation of different parts of apical vertebrae in idiopathic scoliosis and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    黄紫房; 杨军林; 谢红波; 李佛保; 王丽琴; 谢超凡

    2012-01-01

    [目的]评估特发性脊柱侧凸患者术前椎体、椎板、棘突旋转角及椎体相对棘突偏移的距离,为指导术中轴状面去旋转及冠状面侧凸矫形提供影像学基础.[方法]选取本院脊柱外科2008年1月~2010年1月收治的30例特发性脊柱侧凸患者,男11例,女19例;平均年龄17.0岁,Cobb角51.9°,术前皆行平卧位顶椎区域CT平扫.测量顶椎椎体、椎板及棘突的旋转角度,然后将椎体、椎板及棘突的旋转角度利用SPSS13.0进行三组定量资料的两两比较,分析三者间的旋转角差异.同时测量椎体相对椎板的偏移距离,计算出其平均值.[结果]顶椎旋转角:椎体平均为17.3°±8.67°,椎板平均为17.6°±11.14°,棘突平均为11.3°±10.51°.经统计分析椎体、椎板与棘突间的旋转角差异具有统计学意义(P=0.017,P=0.013),而椎体与椎板间的旋转角度无明显统计学差异(P =0.906).椎体相对椎板偏移的距离平均为(0.19 ±0.12) cm.[结论]测量脊柱侧凸患者术前CT顶椎椎体、椎板及棘突的旋转度和椎体相对棘突的偏移距离,对术中指导脊柱侧凸的轴状面和冠状面矫形具有一定临床意义.%[Objective] To compare rotational angle versus vertebral body, laminar and spinal processes, and measure the distance between vertebral axis and spinal process axis. [ Methods ] A restrospective study was performed on 30 patients with idiopathic scoliosis (11 boys, 19 girls) , with mean age of 17.0 years (range 10-29 years) . Mean Cobb angle of coronal curve before operation was 51. 9°. All patients took CT scaning of apical region before operation was done from January 2008 to January 2010. According to different parts of the apical vertebrae, rotational angel was divided into three groups; vertebral column group, laminar group and spinal process group. [ Results] The average rotation angle was 17. 3° ± 8. 67°for apical vertebral column group, 17. 6° ±11. 14°for laminar group, and 11. 3

  10. Earth rotation and geodynamics

    Science.gov (United States)

    Bogusz, Janusz; Brzezinski, Aleksander; Kosek, Wieslaw; Nastula, Jolanta

    2015-12-01

    This paper presents the summary of research activities carried out in Poland in 2011-2014 in the field of Earth rotation and geodynamics by several Polish research institutions. It contains a summary of works on Earth rotation, including evaluation and prediction of its parameters and analysis of the related excitation data as well as research on associated geodynamic phenomena such as geocentre motion, global sea level change and hydrological processes. The second part of the paper deals with monitoring of geodynamic phenomena. It contains analysis of geodynamic networks of local, and regional scale using space (GNSS and SLR) techniques, Earth tides monitoring with gravimeters and water-tube hydrostatic clinometer, and the determination of secular variation of the Earth' magnetic field.

  11. IMPROVEMENT OF WEAR-RESISTANCE AND SERVICE LIFE OF MULTI-DISK BRAKE MECHANISMS OF «BELARUS» TRACTOR BY LASER THERMAL HARDENING OF FAST WEARING PARTS

    Directory of Open Access Journals (Sweden)

    O. S. Kobjakov

    2008-01-01

    Full Text Available Problems concerning wear resistance improvement of «Belarus» tractor brake mechanism parts are considered in the paper. Properties of ВЧ-50-pig iron are investigated as a result of laser thermal hardening by various technological methods.

  12. Fast Passenger Tracks Network

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    China’s fast passenger tracks network consists of four parts:express rail- way with speeds between 300km/h and 350 kin/h,passenger rail lines with speeds between 200 km/h and 250 km/h,intercity high-speed railways that run

  13. Large Core Code Evaluation Working Group Benchmark Problem Four: neutronics and burnup analysis of a large heterogeneous fast reactor. Part 1. Analysis of benchmark results. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, C.L.; Protsik, R.; Lewellen, J.W. (eds.)

    1984-01-01

    The Large Core Code Evaluation Working Group Benchmark Problem Four was specified to provide a stringent test of the current methods which are used in the nuclear design and analyses process. The benchmark specifications provided a base for performing detailed burnup calculations over the first two irradiation cycles for a large heterogeneous fast reactor. Particular emphasis was placed on the techniques for modeling the three-dimensional benchmark geometry, and sensitivity studies were carried out to determine the performance parameter sensitivities to changes in the neutronics and burnup specifications. The results of the Benchmark Four calculations indicated that a linked RZ-XY (Hex) two-dimensional representation of the benchmark model geometry can be used to predict mass balance data, power distributions, regionwise fuel exposure data and burnup reactivities with good accuracy when compared with the results of direct three-dimensional computations. Most of the small differences in the results of the benchmark analyses by the different participants were attributed to ambiguities in carrying out the regionwise flux renormalization calculations throughout the burnup step.

  14. Micro-Doppler Effect of Target with Rotating Part in Bistatic SAR%双站SAR雷达目标旋转部件的微多普勒效应

    Institute of Scientific and Technical Information of China (English)

    张伟; 童创明; 张群

    2011-01-01

    Based on the configuration of Bistatic side-looking SAR with parallel track, the signal model of radar target with rotating part was provided, and then the mathematical expressions of micro-Doppler and its chirp-rate induced by target rotation were derived. The analysis indicates that the micro-Doppler effect is not only related to the parameters of micm-motion and carrier wavelength, but also the aystem geometrical configuration. So the micro-motion target indication ability can be improved by changing the geometrical configuration, while preserving relatively high viability of the system on the war-field. Finally, the theoretical analysis is verified by the simulation results.%基于双站SAR收发系统分置的特点,建立了平飞正侧视模式下雷达目标旋转部件的回波信号模型,推导了由目标旋转引入的微多普勒频移和微多普勒调频率的参数化表达式.在该模式下,由目标转动激励的微多普勒调制不仅与其微动参数、载波波长有关,而且与收发系统的几何参数相关,从而有望在保持双站SAR较高战场生存能力等优势的情况下,通过改变系统几何配置来提高对微动目标的检测能力.最后,结合时频分析技术由数值仿真验证了理论分析的正确性.

  15. Brake Stops Both Rotation And Translation

    Science.gov (United States)

    Allred, Johnny W.; Fleck, Vincent J., Jr.

    1995-01-01

    Combination of braking and positioning mechanisms allows both rotation and translation before brake engaged. Designed for use in positioning model airplane in wind tunnel. Modified version used to position camera on tripod. Brake fast and convenient to use; contains single actuator energizing braking actions against both rotation and translation. Braking actuator electric, but pneumatic actuator could be used instead. Compact and lightweight, applies locking forces close to load, and presents minimal cross section to airflow.

  16. Molecular line study of the very young protostar IRAM 04191 in Taurus Infall, rotation, and outflow

    CERN Document Server

    Belloche, A; Despois, D; Blinder, S M

    2002-01-01

    We present a detailed millimeter line study of the circumstellar environment of the low-luminosity Class 0 protostar IRAM 04191+1522 in the Taurus molecular cloud. New line observations demonstrate that the ~14000 AU radius protostellar envelope is undergoing both extended infall and fast, differential rotation. Radiative transfer modeling of multitransition CS and C34S maps indicate an infall velocity v_inf ~ 0.15 km/s at r ~ 1500 AU and v_inf ~ 0.1 km/s up to r ~ 11000 AU, as well as a rotational angular velocity Omega ~ 3.9 x 10^{-13} rad/s, strongly decreasing with radius beyond 3500 AU down to a value Omega ~ 1.5-3 x 10^{-14} rad/s at ~ 11000 AU. Two distinct regions, which differ in both their infall and their rotation properties, therefore seem to stand out: the inner part of the envelope (r ~< 2000-4000 AU) is rapidly collapsing and rotating, while the outer part undergoes only moderate infall/contraction and slower rotation. These contrasted features suggest that angular momentum is conserved in t...

  17. Code assessment and modelling for Design Basis Accident analysis of the European Sodium Fast Reactor design. Part II: Optimised core and representative transients analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, A., E-mail: aulach@iqn.upv.es [JRC-IET European Commission, Westerduinweg 3, PO BOX 2, 1755 ZG Petten (Netherlands); Schikorr, M. [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mikityuk, K. [PSI, Paul Scherrer Institut, 5232 Villigen (Switzerland); Ammirabile, L. [JRC-IET European Commission, Westerduinweg 3, PO BOX 2, 1755 ZG Petten (Netherlands); Bandini, G. [ENEA, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Darmet, G.; Schmitt, D. [EDF, 1 Avenue du Général de Gaulle, 92141 Clamart (France); Dufour, Ph.; Tosello, A. [CEA, St. Paul lez Durance, 13108 Cadarache (France); Gallego, E.; Jimenez, G. [UPM, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Bubelis, E.; Ponomarev, A.; Kruessmann, R.; Struwe, D. [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Stempniewicz, M. [NRG, Utrechtseweg 310, P.O. Box-9034, 6800 ES Arnhem (Netherlands)

    2014-10-01

    Highlights: • Benchmarked models have been applied for the analysis of DBA transients of the ESFR design. • Two system codes are able to simulate the behavior of the system beyond sodium boiling. • The optimization of the core design and its influence in the transients’ evolution is described. • The analysis has identified peak values and grace times for the protection system design. - Abstract: The new reactor concepts proposed in the Generation IV International Forum require the development and validation of computational tools able to assess their safety performance. In the first part of this paper the models of the ESFR design developed by several organisations in the framework of the CP-ESFR project were presented and their reliability validated via a benchmarking exercise. This second part of the paper includes the application of those tools for the analysis of design basis accident (DBC) scenarios of the reference design. Further, this paper also introduces the main features of the core optimisation process carried out within the project with the objective to enhance the core safety performance through the reduction of the positive coolant density reactivity effect. The influence of this optimised core design on the reactor safety performance during the previously analysed transients is also discussed. The conclusion provides an overview of the work performed by the partners involved in the project towards the development and enhancement of computational tools specifically tailored to the evaluation of the safety performance of the Generation IV innovative nuclear reactor designs.

  18. Still on the Fast Track

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    North China’s Inner Mongolia Autonomous Region’s development is progressing comparatively fast,though there is still a long way to go until it catches up with advances being made in other parts of China, officials said.

  19. Rotating gravitational lenses: a kinematic approach

    CERN Document Server

    Walters, Steve

    2014-01-01

    This paper uses the Kerr geodesic equations for massless particles to derive an acceleration vector in both Boyer-Lindquist and Cartesian coordinates. As a special case, the Schwarzschild acceleration due to a non-rotating mass has a particularly simple and elegant form in Cartesian coordinates. Using forward integration, these equations are used to plot the caustic pattern due to a system consisting of a rotating point mass with a smaller non-rotating planet. Additionally, first and second order approximations to the paths are identified, which allows for fast approximations of paths, deflection angles and travel-time delays.

  20. Broadband Rotational Spectroscopy

    Science.gov (United States)

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  1. Rotator cuff exercises

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000357.htm Rotator cuff exercises To use the sharing features on this ... gov/pubmed/25560729 . Read More Frozen shoulder Rotator cuff problems Rotator cuff repair Shoulder arthroscopy Shoulder CT scan Shoulder ...

  2. 用废弃生物质快速生产生物燃油新工艺及转锥式裂解装置设计%Study on Fast Producting Bio-fuel-oil New Technology and Designon ZKR500 Rotating Cone Reactor for Flash Pyrolysis/Liquefaction of Biomass

    Institute of Scientific and Technical Information of China (English)

    王述洋; 谭文英; 陈爱军

    2000-01-01

    研究探讨了一种能够将废弃生物质快速液化转换成生物质液化燃油的新技术方法,并研究设计出适用于该工艺的关键设备"ZKR-500型转锥式废弃生物质快速裂解液化反应器"·%A new process for fast producing bio-fuel-oil by solid biomass and design of the key equipment of the process ZKR500 Rotating Cone Reactor for Flash Pyrolysis Liquefaction of Biomass were studied in the paper.

  3. Dynamics of Rotating, Magnetized Neutron Stars

    OpenAIRE

    Liebling, Steven L.

    2010-01-01

    Using a fully general relativistic implementation of ideal magnetohydrodynamics with no assumed symmetries in three spatial dimensions, the dynamics of magnetized, rigidly rotating neutron stars are studied. Beginning with fully consistent initial data constructed with Magstar, part of the Lorene project, we study the dynamics and stability of rotating, magnetized polytropic stars as models of neutron stars. Evolutions suggest that some of these rotating, magnetized stars may be minimally uns...

  4. Fast Light Optical Gyroscopes

    Science.gov (United States)

    Smith, David D.

    2015-01-01

    Next-generation space missions are currently constrained by existing spacecraft navigation systems which are not fully autonomous. These systems suffer from accumulated dead-reckoning errors and must therefore rely on periodic corrections provided by supplementary technologies that depend on line-of-sight signals from Earth, satellites, or other celestial bodies for absolute attitude and position determination, which can be spoofed, incorrectly identified, occluded, obscured, attenuated, or insufficiently available. These dead-reckoning errors originate in the ring laser gyros themselves, which constitute inertial measurement units. Increasing the time for standalone spacecraft navigation therefore requires fundamental improvements in gyroscope technologies. One promising solution to enhance gyro sensitivity is to place an anomalous dispersion or fast light material inside the gyro cavity. The fast light essentially provides a positive feedback to the gyro response, resulting in a larger measured beat frequency for a given rotation rate as shown in figure 1. Game Changing Development has been investing in this idea through the Fast Light Optical Gyros (FLOG) project, a collaborative effort which began in FY 2013 between NASA Marshall Space Flight Center (MSFC), the U.S. Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC), and Northwestern University. MSFC and AMRDEC are working on the development of a passive FLOG (PFLOG), while Northwestern is developing an active FLOG (AFLOG). The project has demonstrated new benchmarks in the state of the art for scale factor sensitivity enhancement. Recent results show cavity scale factor enhancements of approx.100 for passive cavities.

  5. Rotating Cavitation Supression Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT proposes development of a rotating cavitation (RC) suppressor for liquid rocket engine turbopump inducers. Cavitation instabilities, such as rotating...

  6. Modeling Rotating Turbulent Flows with the Body Force Potential Model.

    Science.gov (United States)

    Bhattacharya, Amitabh; Perot, Blair

    2000-11-01

    Like a Reynolds Stress Transport equation model, the turbulent potential model has an explicit Coriolis acceleration term that appears in the model that accounts for rotation effects. In this work the additional secondary effects that system rotation has on the dissipation rate, return-to-isotropy, and fast pressure strain terms are also included in the model. The resulting model is tested in the context of rotating isotropic turbulence, rotating homogeneous shear flow, rotating channel flow, and swirling pipe flow. Many of the model changes are applicable to Reynolds stress transport equation models. All model modifications are frame indifferent.

  7. Islamic fasting and multiple sclerosis

    Science.gov (United States)

    2014-01-01

    Background Month-long daytime Ramadan fasting pose s major challenges to multiple sclerosis (MS) patients in Muslim countries. Physicians should have practical knowledge on the implications of fasting on MS. We present a summary of database searches (Cochrane Database of Systematic Reviews, PubMed) and a mini-symposium on Ramadan fasting and MS. In this symposium, we aimed to review the effect of fasting on MS and suggest practical guidelines on management. Discussion In general, fasting is possible for most stable patients. Appropriate amendment of drug regimens, careful monitoring of symptoms, as well as providing patients with available evidence on fasting and MS are important parts of management. Evidence from experimental studies suggests that calorie restriction before disease induction reduces inflammation and subsequent demyelination and attenuates disease severity. Fasting does not appear to have unfavorable effects on disease course in patients with mild disability (Expanded Disability Status Scale (EDSS) score ≤3). Most experts believed that during fasting (especially in summer), some MS symptoms (fatigue, fatigue perception, dizziness, spasticity, cognitive problems, weakness, vision, balance, gait) might worsen but return to normal levels during feasting. There was a general consensus that fasting is not safe for patients: on high doses of anti-convulsants, anti-spastics, and corticosteroids; with coagulopathy or active disease; during attacks; with EDSS score ≥7. Summary These data suggest that MS patients should have tailored care. Fasting in MS patients is a challenge that is directly associated with the spiritual belief of the patient. PMID:24655543

  8. A Fast Vision System for Soccer Robot

    Directory of Open Access Journals (Sweden)

    Tianwu Yang

    2012-01-01

    Full Text Available This paper proposes a fast colour-based object recognition and localization for soccer robots. The traditional HSL colour model is modified for better colour segmentation and edge detection in a colour coded environment. The object recognition is based on only the edge pixels to speed up the computation. The edge pixels are detected by intelligently scanning a small part of whole image pixels which is distributed over the image. A fast method for line and circle centre detection is also discussed. For object localization, 26 key points are defined on the soccer field. While two or more key points can be seen from the robot camera view, the three rotation angles are adjusted to achieve a precise localization of robots and other objects. If no key point is detected, the robot position is estimated according to the history of robot movement and the feedback from the motors and sensors. The experiments on NAO and RoboErectus teen-size humanoid robots show that the proposed vision system is robust and accurate under different lighting conditions and can effectively and precisely locate robots and other objects.

  9. Partially locally rotationally symmetric perfect fluid cosmologies

    CERN Document Server

    Mustapha, N; Van Elst, H; Marklund, M; Mustapha, Nazeem; Ellis, George F R; Elst, Henk van; Marklund, Mattias

    2000-01-01

    We show that there are no new consistent perfect fluid cosmologies with the kinematic variables and the electric and magnetic parts of the Weyl curvature all rotationally symmetric about a common axis in an open neighbourhood ${\\cal U}$ of an event. The consistent solutions of this kind are either locally rotationally symmetric, or are subcases of the Szekeres model.

  10. Calculation of pediatric femoral fracture rotation from direct roentgenograms.

    Science.gov (United States)

    Ozel, M S; Ketenci, I E; Kaya, E; Tuna, S; Saygi, B

    2013-12-01

    Radiologic determination of pediatric femoral fracture rotation has been debated. Measuring the antetorsion angle of the fractured femur by computed tomography and comparing it with the opposite side has been the method of choice for this purpose. However, no simple method for direct measurement of femoral fracture rotation exists in the literature. In this study, our aim was to test a mathematical method of measuring the axial plane malrotation from direct roentgenograms. A pediatric femoral shaft fracture model was produced. The bone was secured to a wooden frame that allowed the distal part of the fracture to rotate around an axis. Radiographs were taken at known intervals of rotation ranging from the neutral position to 60° external rotation and to 60° internal rotation in 5° increments of rotation. Five independent, blinded observers measured the radiographs and calculated the fracture rotation according to a standard formula. Calculated rotation values were compared with known rotation values. Calculated rotation values were close to actual rotation values throughout the arc of rotation. The mean absolute error of five observers for all measurements of external and internal rotation was 3.97° (±0.83). The correlation coefficient between calculated and actual rotation values was 0.9927. The interobserver intraclass correlation coefficient for calculated rotation was 0.997. Absolute error and correlation coefficient values indicate that this method is accurate and reliable in determining the fracture rotation.

  11. Generalization of stochastic visuomotor rotations.

    Directory of Open Access Journals (Sweden)

    Hugo L Fernandes

    Full Text Available Generalization studies examine the influence of perturbations imposed on one movement onto other movements. The strength of generalization is traditionally interpreted as a reflection of the similarity of the underlying neural representations. Uncertainty fundamentally affects both sensory integration and learning and is at the heart of many theories of neural representation. However, little is known about how uncertainty, resulting from variability in the environment, affects generalization curves. Here we extend standard movement generalization experiments to ask how uncertainty affects the generalization of visuomotor rotations. We find that although uncertainty affects how fast subjects learn, the perturbation generalizes independently of uncertainty.

  12. High Accuracy and Fast Alignment Method for Single-axial Rotation SINS%一种单轴旋转捷联惯导系统高精度快速对准方法

    Institute of Scientific and Technical Information of China (English)

    刘永红; 刘明雍; 谢波

    2015-01-01

    It needs prolonging the coarse alignment time to improve the accuracy of the coarse alignment under the rocking condition.Otherwise,it can’t control the azimuth error in the small range,then the fine alignment will converge slowly.To solve this problem,a high accuracy and fast alignment method which uses reverse navigation technology is put forward for rotary SINS.This method prolongs the coarse alignment time mostly,then saves the data of SINS to carry on fine alignment.It use the data of alignmet sufficiently and improve the alignment accuracy mostly in certain alignment time.The result of test indicated this method is not only reduce amount of calculation,but also simplify the algorithm ,it can also achieve fast alignment of rotary SINS and can acquire high accuracy.All this characteristics prove that the method is valuable in engineering application.%在晃动条件下,需要延长粗对准时间来提高粗对准精度。否则,无法把方位误差控制在小角度范围内,从而导致后续的精对准无法快速收敛。针对这个问题,提出了一种利用逆向导航技术的单轴旋转捷联惯导系统高精度快速对准方法,最大限度地延长粗对准时间,并把采样数据存储下来,进行逆向精对准。这种算法充分地利用了对准数据,在固定对准时间内极大程度的提高了对准精度。试验证明,这种算法计算量小,算法简单,能实现单轴旋转捷联惯导系统高精度快速对准,且对准精度高,具有一定的工程应用价值。

  13. Halpha rotation curves the soft core question

    CERN Document Server

    Marchesini, D; Chincarini, G L; Firmani, C; Conconi, P; Molinari, E; Zacchei, A

    2002-01-01

    We present good resolution Halpha rotation curves of 6 galaxies: late-type dwarf and low surface brightness galaxies (LSB) for which accurate HI rotation curves are available from the literature. Observations are carried out at Telescopio Nazionale Galileo (TNG). For LSB F583-1 an innovative dispersing element was used, the Volume Phase Holographic (VPH) with a dispersion of about 0.35 A pxl^{-1}. From our analysis we find good agreement between the Halpha data and the HI observations concluding that the HI data for these galaxies suffer very little from beam smearing. We show that the optical rotation curves of these dark matter dominated galaxies are best fitted by the Burkert profile. In the center of galaxies, where the N-body simulations predict cusp cores and fast rising rotation curves, our data seem to be in better agreement with the presence of soft cores.

  14. Fast Detection of Ciprofloxacin Resistance, Part I

    Science.gov (United States)

    2005-10-01

    Walker’s method. Segment Temperature Hold time (sec) Slope (°C/sec) Acquisition number Target (°C) mode Program: Denaturation Cycles:1 1 95 300 20...according to Lindler’s method are described in Table 3. Table 3 Program paramelers used for Lindler’s method. Segment Temperature Hold time (sec) Slope...Defensie en Veiligheid, Directie Directeur Markt , G.D. Klein Baitink I ex. TNO Detensie en Veiligheid, vestiging Den Haag, Manager

  15. Fast Detection of Ciprofloxacin Resistance - Part II

    Science.gov (United States)

    2006-02-01

    Molecular Cloning , A Laboratory Manual (2nd ed.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA. Walsh, C. (2003), Antibiotics: Actions...used according to Sambrook et al (1989). Electrophoresis was performed during 45 minutes at 100 mA. Gels were visualized using EtBr. Molecular weight...as another topic for future research. TNO report I TNO-DV2 2005 A222 24/26 6 References Books Sambrook. J., Fritsch, E.F. and Maniatis T (1989

  16. Rotational spectroscopy of interstellar PAHs

    CERN Document Server

    Ali-Haïmoud, Yacine

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) have long been part of the standard model of the interstellar medium, and are believed to play important roles in its physics and chemistry. Yet, up to now it has not been possible to identify any specific molecule among them. In this paper, a new observational avenue is suggested to detect individual PAHs, using their rotational line emission at radio frequencies. Previous PAH searches based on rotational spectroscopy have only targeted the bowl-shaped corannulene molecule, with the underlying assumption that other polar PAHs are triaxial and as a consequence their rotational emission is diluted over a very large number of lines and unusable for detection purposes. In this paper the rotational spectrum of quasi-symmetric PAHs is computed analytically, as a function of the level of triaxiality. It is shown that the asymmetry of planar, nitrogen-substituted symmetric PAHs is small enough that their rotational spectrum, when observed with a resolution of about a MHz, has ...

  17. Rotator cuff repair - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100229.htm Rotator cuff repair - series—Normal anatomy To use the sharing ... to slide 4 out of 4 Overview The rotator cuff is a group of muscles and tendons that ...

  18. Differential rotation of main-sequence dwarfs and its dynamo-efficiency

    CERN Document Server

    Kitchatinov, L L

    2010-01-01

    A new version of a numerical model of stellar differential rotation based on mean-field hydrodynamics is presented and tested by computing the differential rotation of the Sun. The model is then applied to four individual stars including two moderate and two fast rotators to reproduce their observed differential rotation quite closely. A series of models for rapidly rotating ($P_{rot} = 1$~day) stars of different masses and compositions is generated. The effective temperature is found convenient to parameterize the differential rotation: variations with metallicity, that are quite pronounced when the differential rotation is considered as a function of the stellar mass, almost disappear in the dependence of differential rotation on temperature. The differential rotation increases steadily with surface temperature to exceed the largest differential rotation observed to date for the hottest F-stars we considered. This strong differential rotation is, however, found not to be efficient for dynamos when the effic...

  19. Fast plunges into Kerr black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hadar, Shahar [Racah Institute of Physics, Hebrew University,Jerusalem 91904 (Israel); Porfyriadis, Achilleas P.; Strominger, Andrew [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States)

    2015-07-15

    Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. For rapidly rotating black holes such fast plunges may be studied in the context of the Kerr/CFT correspondence because they occur in the near-horizon region where dynamics are governed by the infinite dimensional conformal symmetry. In this paper we use conformal transformations to analytically solve for the radiation emitted from fast plunges into near-extreme Kerr black holes. We find perfect agreement between the gravity and CFT computations.

  20. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    1999-01-01

    In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion...

  1. Rotations with Rodrigues' Vector

    Science.gov (United States)

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  2. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    2001-01-01

    In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

  3. Gravitational Faraday Rotation of the Earth and Its Possible Test

    Institute of Scientific and Technical Information of China (English)

    LIU Lin-Xia; SHAO Cheng-Gang; LUO Jun

    2005-01-01

    @@ It is shown that the rotation of the polarization plane of rays induced by a rotating body can be accumulated by means of a long baseline optical cavity. Theoretical analysis shows that the presently proposal experimental scheme is possible to test this gravitational Faraday rotation effect on the Earth, especially including how to effectively suppress the dominant part of the Sagnac effect due to the rotation of the Earth with a reasonable experimental configuration.

  4. Modelling binary rotating stars by new population synthesis code BONNFIRES

    CERN Document Server

    Lau, Herbert H B; Schneider, Fabian R N

    2013-01-01

    BONNFIRES, a new generation of population synthesis code, can calculate nuclear reaction, various mixing processes and binary interaction in a timely fashion. We use this new population synthesis code to study the interplay between binary mass transfer and rotation. We aim to compare theoretical models with observations, in particular the surface nitrogen abundance and rotational velocity. Preliminary results show binary interactions may explain the formation of nitrogen-rich slow rotators and nitrogen-poor fast rotators, but more work needs to be done to estimate whether the observed frequencies of those stars can be matched.

  5. Predictors of human rotation.

    Science.gov (United States)

    Stochl, Jan; Croudace, Tim

    2013-01-01

    Why some humans prefer to rotate clockwise rather than anticlockwise is not well understood. This study aims to identify the predictors of the preferred rotation direction in humans. The variables hypothesised to influence rotation preference include handedness, footedness, sex, brain hemisphere lateralisation, and the Coriolis effect (which results from geospatial location on the Earth). An online questionnaire allowed us to analyse data from 1526 respondents in 97 countries. Factor analysis showed that the direction of rotation should be studied separately for local and global movements. Handedness, footedness, and the item hypothesised to measure brain hemisphere lateralisation are predictors of rotation direction for both global and local movements. Sex is a predictor of the direction of global rotation movements but not local ones, and both sexes tend to rotate clockwise. Geospatial location does not predict the preferred direction of rotation. Our study confirms previous findings concerning the influence of handedness, footedness, and sex on human rotation; our study also provides new insight into the underlying structure of human rotation movements and excludes the Coriolis effect as a predictor of rotation.

  6. Ultrafast Faraday Rotation of Slow Light

    Science.gov (United States)

    Musorin, A. I.; Sharipova, M. I.; Dolgova, T. V.; Inoue, M.; Fedyanin, A. A.

    2016-08-01

    The active control of optical signals in the time domain is what science and technology demand in fast all-optical information processing. Nanostructured materials can modify the group velocity and slow the light down, as the artificial light dispersion emerges. We observe the ultrafast temporal behavior of the Faraday rotation within a single femtosecond laser pulse under conditions of slow light in a one-dimensional magnetophotonic crystal. The Faraday effect changes by 20% over the time of 150 fs. This might be applicable to the fast control of light in high-capacity photonic devices.

  7. Synchronous states of slowly rotating pendula

    Energy Technology Data Exchange (ETDEWEB)

    Kapitaniak, Marcin [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland); Centre for Applied Dynamics Research, School of Engineering, University of Aberdeen, AB24 3UE Aberdeen, Scotland (United Kingdom); Czolczynski, Krzysztof; Perlikowski, Przemysław; Stefanski, Andrzej [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland); Kapitaniak, Tomasz, E-mail: tomasz.kapitaniak@p.lodz.pl [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland)

    2014-08-01

    Coupled systems that contain rotating elements are typical in physical, biological and engineering applications and for years have been the subject of intensive studies. One problem of scientific interest, which among others occurs in such systems is the phenomenon of synchronization of different rotating parts. Despite different initial conditions, after a sufficiently long transient, the rotating parts move in the same way — complete synchronization, or a permanent constant shift is established between their displacements, i.e., the angles of rotation — phase synchronization. Synchronization occurs due to dependence of the periods of rotating elements motion and the displacement of the base on which these elements are mounted. We review the studies on the synchronization of rotating pendula and compare them with the results obtained for oscillating pendula. As an example we consider the dynamics of the system consisting of n pendula mounted on the movable beam. The pendula are excited by the external torques which are inversely proportional to the angular velocities of the pendula. As the result of such excitation each pendulum rotates around its axis of rotation. It has been assumed that all pendula rotate in the same direction or in the opposite directions. We consider the case of slowly rotating pendula and estimate the influence of the gravity on their motion. We classify the synchronous states of the identical pendula and observe how the parameters mismatch can influence them. We give evidence that synchronous states are robust as they exist in the wide range of system parameters and can be observed in a simple experiment.

  8. Pattern formation in rotating fluids

    Science.gov (United States)

    Bühler, Karl

    2009-06-01

    Flows in nature and technology are often associated with specific structures and pattern. This paper deals with the development and behaviour of such flow pattern. Flow structures are important for the mass, momentum and energy transport. The behaviour of different flow pattern is used by engineers to obtain an efficient mass and energy consumption. Mechanical power is transmitted via the momentum of rotating machine parts. Therefore the physical and mathematical knowledge of these basic concepts is important. Theoretical and experimental investigations of principle experiments are described in the following. We start with the classical problem of the flow between two concentric cylinders where the inner cylinder rotates. Periodic instabilities occur which are called Taylor vortices. The analogy between the cylindrical gap flow, the heat transfer in a horizontal fluid layer exposed to the gravity field and the boundary layer flow along concave boundaries concerning their stability behaviour is addressed. The vortex breakdown phenomenon in a cylinder with rotating cover is also described. A generalization to spherical sectors leads then to investigations with different boundary conditions. The spherical gap flow exhibits interesting phenomena concerning the nonlinear character of the Navier-Stokes equations. Multiple solutions in the nonlinear regime give rise to different routes during the laminar-turbulent transition. The interaction of two rotating spheres results in flow structures with separation and stagnation lines. Experimental results are confirmed by numerical simulations.

  9. Cultivation of fast-growing hardwoods

    Energy Technology Data Exchange (ETDEWEB)

    White, E.H.; Abrahamson, L.P. (State Univ. of New York, Syracuse, NY (United States). Coll. of Environmental Science and Forestry)

    1991-10-01

    The intensive culture of hybrid poplar has received in-depth study as part of the Fast-Growing Hardwood Program. Research has concentrated on short-rotation intensive culture systems. Specific studies and operations included establishing and maintaining a nursery/cutting orchard, installing clone-site trials in central and southern New York State and initiating studies of no-till site preparation, nutrient utilization efficiency, wood quality and soil solution chemistry. The nursery/cutting orchard was used to provide material for various research plantings and as a genotype repository. Clone- site trials results showed that hybrid poplar growth potential was affected by clone type and was related to inherent soil-site conditions. No-till techniques were shown to be successful in establishing hybrid poplar in terms of survival and growth when compared to conventional clean tillage and/or no competition control, and can be considered for use on sites that are particularly prone to erosion. Nutrient use efficiency was significantly affected by clone type, and should be a consideration when selecting clones for operational planting if fertilization is to be effectively and efficiently used. Wood quality differed among clones with site condition and tree age inferred as important factors. Soil solution chemistry was minimally affected by intensive cultural practices with no measured adverse effect on soil water quality. Generally, results of these studies showed that appropriate hybrid poplar clones grown in short-rotation intensively cultured systems can be used successfully in New York State if proper site conditions exist and appropriate establishment and maintenance techniques are used. 37 refs., 4 figs., 22 tabs.

  10. Rotator cuff tear: A detailed update

    Directory of Open Access Journals (Sweden)

    Vivek Pandey

    2015-01-01

    Full Text Available Rotator cuff tear has been a known entity for orthopaedic surgeons for more than two hundred years. Although the exact pathogenesis is controversial, a combination of intrinsic factors proposed by Codman and extrinsic factors theorized by Neer is likely responsible for most rotator cuff tears. Magnetic resonance imaging remains the gold standard for the diagnosis of rotator cuff tears, but the emergence of ultrasound has revolutionized the diagnostic capability. Even though mini-open rotator cuff repair is still commonly performed, and results are comparable to arthroscopic repair, all-arthroscopic repair of rotator cuff tear is now fast becoming a standard care for rotator cuff repair. Appropriate knowledge of pathology and healing pattern of cuff, strong and biological repair techniques, better suture anchors, and gradual rehabilitation of postcuff repair have led to good to excellent outcome after repair. As the healing of degenerative cuff tear remains unpredictable, the role of biological agents such as platelet-rich plasma and stem cells for postcuff repair augmentation is still under evaluation. The role of scaffolds in massive cuff tear is also being probed.

  11. Galaxy cluster's rotation

    CERN Document Server

    Manolopoulou, Maria

    2016-01-01

    We study the possible rotation of cluster galaxies, developing, testing and applying a novel algorithm which identifies rotation, if such does exits, as well as its rotational centre, its axis orientation, rotational velocity amplitude and, finally, the clockwise or counterclockwise direction of rotation on the plane of the sky. To validate our algorithms we construct realistic Monte-Carlo mock rotating clusters and confirm that our method provides robust indications of rotation. We then apply our methodology on a sample of Abell clusters with z<~0.1 with member galaxies selected from the SDSS DR10 spectroscopic database. We find that ~35% of our clusters are rotating when using a set of strict criteria, while loosening the criteria we find this fraction increasing to ~48%. We correlate our rotation indicators with the cluster dynamical state, provided either by their Bautz-Morgan type or by their X-ray isophotal shape and find for those clusters showing rotation that the significance and strength of their...

  12. Rotationally Vibrating Electric-Field Mill

    Science.gov (United States)

    Kirkham, Harold

    2008-01-01

    A proposed instrument for measuring a static electric field would be based partly on a conventional rotating-split-cylinder or rotating-split-sphere electric-field mill. However, the design of the proposed instrument would overcome the difficulty, encountered in conventional rotational field mills, of transferring measurement signals and power via either electrical or fiber-optic rotary couplings that must be aligned and installed in conjunction with rotary bearings. Instead of being made to rotate in one direction at a steady speed as in a conventional rotational field mill, a split-cylinder or split-sphere electrode assembly in the proposed instrument would be set into rotational vibration like that of a metronome. The rotational vibration, synchronized with appropriate rapid electronic switching of electrical connections between electric-current-measuring circuitry and the split-cylinder or split-sphere electrodes, would result in an electrical measurement effect equivalent to that of a conventional rotational field mill. A version of the proposed instrument is described.

  13. Rotation in the Pleiades with K2: II. Multi-Period Stars

    CERN Document Server

    Rebull, L M; Bouvier, J; Cody, A M; Hillenbrand, L A; Soderblom, D R; Valenti, J; Barrado, D; Bouy, H; Ciardi, D; Pinsonneault, M; Stassun, K; Micela, G; Aigrain, S; Vrba, F; Somers, G; Gillen, E; Cameron, A Collier

    2016-01-01

    We use K2 to continue the exploration of the distribution of rotation periods in Pleiades that we began in Paper I. We have discovered complicated multi-period behavior in Pleiades stars using these K2 data, and we have grouped them into categories, which are the focal part of this paper. About 24% of the sample has multiple, real frequencies in the periodogram, sometimes manifesting as obvious beating in the light curves. Those having complex and/or structured periodogram peaks, unresolved multiple periods, and resolved close multiple periods are likely due to spot/spot group evolution and/or latitudinal differential rotation; these largely compose the slowly rotating sequence in $P$ vs.~$(V-K_{\\rm s})_0$ identified in Paper I. The fast sequence in $P$ vs.~$(V-K_{\\rm s})_0$ is dominated by single-period stars; these are likely to be rotating as solid bodies. Paper III continues the discussion, speculating about the origin and evolution of the period distribution in the Pleiades.

  14. The Activity and Rotation Limit in the Hyades

    Science.gov (United States)

    Seemann, U.; Reiners, A.; Seifahrt, A.; Kürster, M.

    2011-12-01

    We conduct a study of K to M type stars to investigate the activity and the rotation limit in the Hyades. We use a sample of 40 stars in this intermediate-age cluster (≍625 Myr) to probe stellar rotation in the threshold region where stellar activity becomes prevalent. Here we present projected equatorial velocities (vrotsin i) and chromospheric activity measurements (Hα) that indicate the existence of fast rotators in the Hyades at spectral types where also the fraction of stars with Hα emission shows a rapid increase ("Hα limit"). The locus of enhanced rotation (and activity) thus seems to be shifted to earlier types in contrast to what is seen as the rotation limit in field stars. The relation between activity and rotation appears to be similar to the one observed in field stars.

  15. The activity and rotation limit in the Hyades

    CERN Document Server

    Seemann, U; Seifahrt, A; Kürster, M

    2010-01-01

    We conduct a study of K to M type stars to investigate the activity and the rotation limit in the Hyades. We use a sample of 40 stars in this intermediate-age cluster (~625 Myr) to probe stellar rotation in the threshold region where stellar activity becomes prevalent. Here we present projected equatorial velocities (vsin i) and chromospheric activity measurements (H{\\alpha}) that indicate the existence of fast rotators in the Hyades at spectral types where also the fraction of stars with H{\\alpha} emission shows a rapid increase ("H{\\alpha} limit"). The locus of enhanced rotation (and activity) thus seems to be shifted to earlier types in contrast to what is seen as the rotation limit in field stars. The relation between activity and rotation appears to be similar to the one observed in fields stars.

  16. Relativistic Rotating Vector Model

    CERN Document Server

    Lyutikov, Maxim

    2016-01-01

    The direction of polarization produced by a moving source rotates with the respect to the rest frame. We show that this effect, induced by pulsar rotation, leads to an important correction to polarization swings within the framework of rotating vector model (RVM); this effect has been missed by previous works. We construct relativistic RVM taking into account finite heights of the emission region that lead to aberration, time-of-travel effects and relativistic rotation of polarization. Polarizations swings at different frequencies can be used, within the assumption of the radius-to-frequency mapping, to infer emission radii and geometry of pulsars.

  17. Exocyclic push-pull conjugated compounds. Part 3. An experimental NMR and theoretical MO ab initio study of the structure, the electronic properties and barriers to rotation about the exocyclic partial double bond in 2- exo-methylene- and 2-cyanoimino-quinazolines and -benzodiazepines

    Science.gov (United States)

    Benassi, R.; Bertarini, C.; Hilfert, L.; Kempter, G.; Kleinpeter, E.; Spindler, J.; Taddei, F.; Thomas, S.

    2000-03-01

    The structure of a number of 2- exo-methylene substituted quinazolines and benzodiazepines, respectively, 1, 3a, b, 4( X=-CN, -COOEt ) and their 2-cyanoimino substituted analogues 2, 3c, d( X=-CN, -SO 2C 6H 4-Me (p) was completely assigned by the whole arsenal of 1D and 2D NMR spectroscopic methods. The E/ Z isomerism at the exo-cyclic double bond was determined by both NMR spectroscopy and confirmed by ab initio quantum chemical calculations; the Z isomer is the preferred one, its amount proved dependent on steric hindrance. Due to the push-pull effect in this part of the molecules the restricted rotation about the partial C 2,C 11 and C 2,N 11 double bonds, could also be studied and the barrier to rotation measured by dynamic NMR spectroscopy. The free energies of activation of this dynamic process proved very similar along the compounds studied but being dependent on the polarity of the solvent. Quantum chemical calculations at the ab initio level were employed to prove the stereochemistry at the exo-cyclic partial double bonds of 1- 4, to calculate the barriers to rotation but also to discuss in detail both the ground and the transition state of the latter dynamic process in order to better understand electronic, inter- and intramolecular effects on the barrier to rotation which could be determined experimentally. In the cyanoimino substituted compounds 2, 3c, d, the MO ab initio calculations evidence the isomer interconversion to be better described by the internal rotation process than by the lateral shift mechanism.

  18. FAST: FAST Analysis of Sequences Toolbox.

    Science.gov (United States)

    Lawrence, Travis J; Kauffman, Kyle T; Amrine, Katherine C H; Carper, Dana L; Lee, Raymond S; Becich, Peter J; Canales, Claudia J; Ardell, David H

    2015-01-01

    FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU's Not Unix) Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics make FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.

  19. FAST: FAST Analysis of Sequences Toolbox

    Directory of Open Access Journals (Sweden)

    Travis J. Lawrence

    2015-05-01

    Full Text Available FAST (FAST Analysis of Sequences Toolbox provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU’s Not Unix Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics makes FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format. Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.

  20. The effects of rotation on a double-diffusive layer in a rotating spherical shell

    CERN Document Server

    Blies, Patrick; Zaussinger, Florian; Hollerbach, Rainer

    2014-01-01

    So far, numerical studies of double-diffusive layering in turbulent convective flows have neglected the effects of rotation. We undertake a first step into that direction by investigating how Coriolis forces affect a double-diffusive layer inside a rotating spherical shell. For this purpose we have run simulations in a parameter regime where these layers are expected to form and successively increased the rate of rotation with the result that fast rotation is found to have a similar stabilising effect on the overall convective flux as an increase of the stability ratio $R_{\\rho}$ has in a non-rotating setup. We have also studied to what extent the regimes of rotational constraints suggested by King, Stellmach, and Buffett (2013) for rotation in the case of Rayleigh-B\\'enard convection are influenced by double-diffusive convection: their classification could also be applicable to the case of double-diffusive convection in a spherical shell if it is extended to be also a function of the stability ratio $R_{\\rho...

  1. Rotating Magnetohydrodynamic and Trapped Hot-Ion Induced Internal Kinks.

    Science.gov (United States)

    Varadarajan, V.

    1993-01-01

    As a new and significant contribution to the tokamak literature, the linear internal MHD kink modes in finite aspect-ratio axisymmetric toroidally rotating tokamak equilibria and their kinetic modifications owing to the presence of hot ions are computationally studied herein using a bilinear form derived using a Lagrangian perturbation procedure. As a practical application, the rotating MHD and kinetic internal kinks are calculated in finite aspect-ratio TFTR- and ITER -like geometries. The MHD and kinetic modes of the rotating tokamak plasmas are found to be significantly destabilized by the centrifugal effects at rotation speeds in the range of 10^4-10^5 rad/s at normal discharge densities. The kinetic instability model provides a unified description of several features of the 'fishbone'-like oscillations such as the slow mode rotating at the plasma rotation frequency, the fast mode with high rotation frequency, and variation of the slow as well as fast mode frequencies with plasma rotation. The slow kinetic modes rotate close to mean plasma rotation speeds, and the fast kinetic modes rotate at about 10 ^5 rad/s. The fast mode rotation frequencies are in the range of the magnetic-precession frequencies of the deeply trapped ions. Also, the kinetic kink modes are found to be excitable in ITER-like ignited tokamak configurations owing to hot fusion products such as alphas. Also, a feasibility study of adaptive distributed parameter control of thermokinetics is demonstrated. Fast transport simulation and control are explored using a nonlinear Galerkin procedure, and a MIMO self-tuning control algorithm. It is found that only the density control can achieve reasonable power set-point follow-up, and that more popular control schemes such as auxiliary power control are not adequate to provide real-world power swings greater than 50-100 MW around the set point. The several computational modules developed for this thesis are as follows. The equilibrium calculations are

  2. Mechanical effects in a vortex device with a rotating core

    Science.gov (United States)

    Samokhvalov, V. N.

    2017-05-01

    The process of the appearance of forced rotation of an axial core mounted in a modified vortex tube in the direction opposite to the rotation of the air vortex and the precession of its axis have been studied. It has been established that dynamical bending of a metal axial core arises in the process of rotation which causes mechanical wear of its end part and fracture in the fastening area of the bearing without residual curvature of the core axis. The excitation of rotation and observed force effects are not related to the mechanical action of rotating air flow on the axial core.

  3. Magnetorotational instability in decretion disks of critically rotating stars and the outer structure of Be and Be/X-ray disks

    CERN Document Server

    Krticka, Jiri; Krtickova, Iva

    2014-01-01

    Evolutionary models of fast-rotating stars show that the stellar rotational velocity may approach the critical speed. Critically rotating stars cannot spin up more, therefore they lose their excess angular momentum through an equatorial outflowing disk. The radial extension of such disks is unknown, partly because we lack information about the radial variations of the viscosity. We study the magnetorotational instability, which is considered to be the origin of anomalous viscosity in outflowing disks. We used analytic calculations to study the stability of outflowing disks submerged in the magnetic field. The magnetorotational instability develops close to the star if the plasma parameter is large enough. At large radii the instability disappears in the region where the disk orbital velocity is roughly equal to the sound speed. The magnetorotational instability is a plausible source of anomalous viscosity in outflowing disks. This is also true in the region where the disk radial velocity approaches the sound ...

  4. Fast-steering Mirror with Self-aligning ball bearing Supporting Structure

    Science.gov (United States)

    Xu, Xinhang; Wang, Bing; Han, Xudong

    2012-10-01

    A fast-steering mirror (FSM) with self-aligning ball bearing supporting structure was designed to accurately control the transmission direction of high-octane laser. First, linear voice coil actuators were selected and SiC mirror, rigid supporting structure, precise grating sensors for measuring mirror position were designed respectively on the basis of the fast-steering mirror working conditions and performing requirements. After finishing accurately manufacturing and assembling of mechanism parts, the servo control system was constituted, and then the designed FSM system was tested by experiments. The results showed that the FSM with self-aligning ball bearing supporting structure has not only great carrying capacity and resonance frequency, but it also has excellent angle stability (the stable precision of mirror is more than 2″). Furthermore, the FSM system has great adaptability to vibrancy, impact and rotation. Therefore, the designed FSM can satisfy application requirements of precise beam control system.

  5. Reciprocally-Rotating Velocity Obstacles

    KAUST Repository

    Giese, Andrew

    2014-05-01

    © 2014 IEEE. Modern multi-agent systems frequently use highlevel planners to extract basic paths for agents, and then rely on local collision avoidance to ensure that the agents reach their destinations without colliding with one another or dynamic obstacles. One state-of-the-art local collision avoidance technique is Optimal Reciprocal Collision Avoidance (ORCA). Despite being fast and efficient for circular-shaped agents, ORCA may deadlock when polygonal shapes are used. To address this shortcoming, we introduce Reciprocally-Rotating Velocity Obstacles (RRVO). RRVO generalizes ORCA by introducing a notion of rotation for polygonally-shaped agents. This generalization permits more realistic motion than ORCA and does not suffer from as much deadlock. In this paper, we present the theory of RRVO and show empirically that it does not suffer from the deadlock issue ORCA has, permits agents to reach goals faster, and has a comparable collision rate at the cost of performance overhead quadratic in the (typically small) user-defined parameter δ.

  6. Coherent spin-rotational dynamics of oxygen super rotors

    CERN Document Server

    Milner, Alexander A; Milner, Valery

    2014-01-01

    We use state- and time-resolved coherent Raman spectroscopy to study the rotational dynamics of oxygen molecules in ultra-high rotational states. While it is possible to reach rotational quantum numbers up to $N \\approx 50$ by increasing the gas temperature to 1500 K, low population levels and gas densities result in correspondingly weak optical response. By spinning O$_2$ molecules with an optical centrifuge, we efficiently excite extreme rotational states with $N\\leqslant 109$ in high-density room temperature ensembles. Fast molecular rotation results in the enhanced robustness of the created rotational wave packets against collisions, enabling us to observe the effects of weak spin-rotation coupling in the coherent rotational dynamics of oxygen. The decay rate of spin-rotation coherence due to collisions is measured as a function of the molecular angular momentum and explained in terms of the general scaling law. We find that at high values of $N$, the rotational decoherence of oxygen is much faster than t...

  7. Deconstructing Mental Rotation

    DEFF Research Database (Denmark)

    Larsen, Axel

    2014-01-01

    A random walk model of the classical mental rotation task is explored in two experiments. By assuming that a mental rotation is repeated until sufficient evidence for a match/mismatch is obtained, the model accounts for the approximately linearly increasing reaction times (RTs) on positive trials...... alignment take place during fixations at very high speed....

  8. Short-rotation plantations

    Science.gov (United States)

    Philip E. Pope; Jeffery O. Dawson

    1989-01-01

    Short-rotation plantations offer several advantages over longer, more traditional rotations. They enhance the natural productivity of better sites and of tree species with rapid juvenile growth. Returns on investment are realized in a shorter period and the risk of loss is reduced compared with long term investments. Production of wood and fiber can be maximized by...

  9. Faraday rotation measure synthesis

    NARCIS (Netherlands)

    Brentjens, MA; de Bruyn, AG

    2005-01-01

    We extend the rotation measure work of Burn ( 1966, MNRAS, 133, 67) to the cases of limited sampling of lambda(2) space and non-constant emission spectra. We introduce the rotation measure transfer function (RMTF), which is an excellent predictor of n pi ambiguity problems with the lambda(2) coverag

  10. SMAP Faraday Rotation

    Science.gov (United States)

    Le Vine, David

    2016-01-01

    Faraday rotation is a change in the polarization as signal propagates through the ionosphere. At L-band it is necessary to correct for this change and measurements are made on the spacecraft of the rotation angle. These figures show that there is good agreement between the SMAP measurements (blue) and predictions based on models (red).

  11. Conception of the technology of wood production from short rotation coppice. Pt. 2; Konzept fuer ein Gesamtverfahren der Energieholzproduktion aus Kurzumtriebsplantagen. T. 2

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Mirko; Firus, Siegfried; Grosa, Andre; Herlitzius, Thomas [Technische Univ. Dresden (Germany). Lehrstuhl Agrarsystemtechnik

    2011-07-01

    Short rotation coppices (SRC) of fast-growing tree species are becoming more and more important in Germany. Already in the issue 1.2011 of Landtechnik a part of the current research and development projects in the field of SRC at the professorship of agricultural machines of the Technische Universitaet Dresden were presented. In this second part the importance of harvesting, drying and storage of wood chips will be shown in detail, as they have significant influence on the chip quality. Possible solutions, studies and required developments will be highlighted to existing problems. (orig.)

  12. A Singular Limit Problem for Rotating Capillary Fluids with Variable Rotation Axis

    Science.gov (United States)

    Fanelli, Francesco

    2016-04-01

    In the present paper we study a singular perturbation problem for a Navier-Stokes-Korteweg model with Coriolis force. Namely, we perform the incompressible and fast rotation asymptotics simultaneously, while we keep the capillarity coefficient constant in order to capture surface tension effects in the limit. We consider here the case of variable rotation axis: we prove the convergence to a linear parabolic-type equation with variable coefficients. The proof of the result relies on compensated compactness arguments. Besides, we look for minimal regularity assumptions on the variations of the axis.

  13. A Singular Limit Problem for Rotating Capillary Fluids with Variable Rotation Axis

    Science.gov (United States)

    Fanelli, Francesco

    2016-12-01

    In the present paper we study a singular perturbation problem for a Navier-Stokes-Korteweg model with Coriolis force. Namely, we perform the incompressible and fast rotation asymptotics simultaneously, while we keep the capillarity coefficient constant in order to capture surface tension effects in the limit. We consider here the case of variable rotation axis: we prove the convergence to a linear parabolic-type equation with variable coefficients. The proof of the result relies on compensated compactness arguments. Besides, we look for minimal regularity assumptions on the variations of the axis.

  14. A Rotating Quantum Vacuum

    CERN Document Server

    De Lorenci, V A

    1996-01-01

    We investigate which mapping we have to use to compare measurements made in a rotating frame to those made in an inertial frame. Using a "Lorentz-like" coordinate transformation we obtain that creation-anihilation operators of a massless scalar field in the rotating frame are not the same as those of an inertial observer. This leads to a new vacuum state (a rotating vacuum) which is a superposition of positive and negative frequency Minkowski particles. After this, introducing an apparatus device coupled linearly with the field we obtain that there is a strong correlation between number of rotating particles (in a given state) obtained via canonical quantization and via response function of the rotating detector. Finally, we analyse polarization effects in circular accelerators in the proper frame of the electron making a connection with the inertial frame point of view.

  15. Uniformly rotating neutron stars

    CERN Document Server

    Boshkayev, Kuantay

    2016-01-01

    In this chapter we review the recent results on the equilibrium configurations of static and uniformly rotating neutron stars within the Hartle formalism. We start from the Einstein-Maxwell-Thomas-Fermi equations formulated and extended by Belvedere et al. (2012, 2014). We demonstrate how to conduct numerical integration of these equations for different central densities ${\\it \\rho}_c$ and angular velocities $\\Omega$ and compute the static $M^{stat}$ and rotating $M^{rot}$ masses, polar $R_p$ and equatorial $R_{\\rm eq}$ radii, eccentricity $\\epsilon$, moment of inertia $I$, angular momentum $J$, as well as the quadrupole moment $Q$ of the rotating configurations. In order to fulfill the stability criteria of rotating neutron stars we take into considerations the Keplerian mass-shedding limit and the axisymmetric secular instability. Furthermore, we construct the novel mass-radius relations, calculate the maximum mass and minimum rotation periods (maximum frequencies) of neutron stars. Eventually, we compare a...

  16. Inwardly rotating spirals in nonuniform excitable media.

    Science.gov (United States)

    Gao, Xiang; Feng, Xia; Cai, Mei-chun; Li, Bing-wei; Ying, He-ping; Zhang, Hong

    2012-01-01

    Inwardly rotating spirals (IRSs) have attracted great attention since their observation in an oscillatory reaction-diffusion system. However, IRSs have not yet been reported in planar excitable media. In the present work we investigate rotating waves in a nonuniform excitable medium, consisting of an inner disk part surrounded by an outer ring part with different excitabilities, by numerical simulations of a simple FitzHugh-Nagumo model. Depending on the excitability of the medium as well as the inhomogeneity, we find the occurrence of IRSs, of which the excitation propagates inwardly to the geometrical spiral tip.

  17. Rotational properties of Maria asteroid family

    CERN Document Server

    Kim, Myung-Jin; Moon, Hong-Kyu; Byun, Yong-Ik; Brosch, Noah; Kaplan, Murat; Kaynar, Suleyman; Uysal, Omer; Guzel, Eda; Behrend, Raoul; Yoon, Joh-Na; Mottola, Stefano; Hellmich, Stephan; Hinse, Tobias C; Eker, Zeki; Park, Jang-Hyun

    2013-01-01

    Maria family is regarded as an old-type (~3 +/- 1 Gyr) asteroid family which has experienced substantial collisional and dynamical evolution in the Main-belt. It is located nearby the 3:1 Jupter mean motion resonance area that supplies Near-Earth asteroids (NEAs) to the inner Solar System. We carried out observations of Maria family asteroids during 134 nights from 2008 July to 2013 May, and derived synodic rotational periods for 51 objects, including newly obtained periods of 34 asteroids. We found that there is a significant excess of fast and slow rotators in observed rotation rate distribution. The two-sample Kolmogorov-Smirnov test confirms that the spin rate distribution is not consistent with a Maxwellian at a 92% confidence level. From correlations among rotational periods, amplitudes of lightcurves, and sizes, we conclude that the rotational properties of Maria family asteroids have been changed considerably by non-gravitational forces such as the YORP effect. Using a lightcurve inversion method (Kaa...

  18. Communication: Creation of molecular vibrational motions via the rotation-vibration coupling

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Chuan-Cun [Department of Chemistry, Technical University of Denmark, Building 207, DK-2800 Kongens Lyngby (Denmark); School of Engineering and Information Technology, University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600 (Australia); Henriksen, Niels E., E-mail: neh@kemi.dtu.dk [Department of Chemistry, Technical University of Denmark, Building 207, DK-2800 Kongens Lyngby (Denmark)

    2015-06-14

    Building on recent advances in the rotational excitation of molecules, we show how the effect of rotation-vibration coupling can be switched on in a controlled manner and how this coupling unfolds in real time after a pure rotational excitation. We present the first examination of the vibrational motions which can be induced via the rotation-vibration coupling after a pulsed rotational excitation. A time-dependent quantum wave packet calculation for the HF molecule shows how a slow (compared to the vibrational period) rotational excitation leads to a smooth increase in the average bond length whereas a fast rotational excitation leads to a non-stationary vibrational motion. As a result, under field-free postpulse conditions, either a stretched stationary bond or a vibrating bond can be created due to the coupling between the rotational and vibrational degrees of freedom. The latter corresponds to a laser-induced breakdown of the adiabatic approximation for rotation-vibration coupling.

  19. On obliquely magnetized and differentially rotating stars

    CERN Document Server

    Wei, Xing

    2015-01-01

    We investigate the interaction of differential rotation and a misaligned magnetic field. The incompressible magnetohydrodynamic equations are solved numerically for a free-decay problem. In the kinematic limit, differential rotation annihilates the non-axisymmetric field on a timescale proportional to the cube root of magnetic Reynolds number ($Rm$), as predicted by R\\"adler. Nonlinearly, the outcome depends upon the initial energy in the non-axisymmetric part of the field. Sufficiently weak fields approach axisymmetry as in the kinematic limit; some differential rotation survives across magnetic surfaces, at least on intermediate timescales. Stronger fields enforce uniform rotation and remain non-axisymmetric. The initial field strength that divides these two regimes does not follow the scaling $Rm^{-1/3}$ predicted by quasi-kinematic arguments, perhaps because our $Rm$ is never sufficiently large or because of reconnection. We discuss the possible relevance of these results to tidal synchronization and tida...

  20. Poređenje snage za jednu i dve kontrarotirajuće hidro turbine u Venturijevoj cevi - I deo / Comparison of power in one and two contra-rotating hydro turbines in a Venturi tube: Part I

    Directory of Open Access Journals (Sweden)

    Mirko Kozić

    2009-04-01

    Full Text Available U radu su prikazani rezultati istraživanja koje je obuhvatilo poređenje snage koju daju jedna i dve kontrarotirajuće hidro turbine u Venturijevoj cevi, za zadati broj obrtaja i brzinu vode na ulazu u cev. Rezultati su dobijeni komercijalnim softverom za numeričku dinamiku fluida. Numeričke simulacije za dve turbine koje se obrću u suprotnim smerovima sa jednakim ugaonim brzinama pokazale su da se javlja znatan pad snage na prednjoj turbini, dok je ukupna snaga nešto veća nego za jednu turbinu. / This paper presents the results of research into the comparison of power obtained with one and two contra-rotating hydro turbines in a Venturi tube for the given number of revolutions per minute and the given water velocity at the tube entry. The results were obtained with commercial software for numerical fluid dynamics. The numerical simulations for two turbines rotating in opposite directions with equal angular velocities showed that a considerable power drop occurred in the front turbine, whereas the total power is somewhat larger than that for one turbine.

  1. Instabilities in Coaxial Rotating Jets

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The aim of this study is the characterization of the cylindrical mixing layer resulting layer resulting from the interaction of two coaxial swirling jets.The experimental part of this study was performed in a cylindrical water tunnel,permitting an independent rotation of two coaxial jets.The rotations are generated by means of 2×36 blades localized in two swirling chambers.As expected,the evolution of the main instabiltiy modes presents certain differences compared to the plane-mixing-layer case ,Experimental results obtained by tomography showed the existence of vortex rings and streamwise vortex paris in the near field region.This method also permitted the observation of the evolution and interaction of different modes.PIV velocity measurements realized in the meridian plans and the plans perpendicular to the jet axis show that rotation distrots the typical top-hat axial velocity profile.The transition of the the axial velocity profile from jet-like into wake-like is also observed.

  2. Fasting: Molecular Mechanisms and Clinical Applications

    Science.gov (United States)

    Longo, Valter D.; Mattson, Mark P.

    2014-01-01

    Fasting has been practiced for millennia, but only recently studies have shed light on its role in adaptive cellular responses that reduce oxidative damage and inflammation, optimize energy metabolism and bolster cellular protection. In lower eukaryotes, chronic fasting extends longevity in part by reprogramming metabolic and stress resistance pathways. In rodents intermittent or periodic fasting protects against diabetes, cancers, heart disease and neurodegeneration, while in humans it helps reduce obesity, hypertension, asthma and rheumatoid arthritis. Thus, fasting has the potential to delay aging and help prevent and treat diseases while minimizing the side effects caused by chronic dietary interventions. PMID:24440038

  3. Fast SCR Thyratron Driver

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, M.N.; /SLAC

    2007-06-18

    As part of an improvement project on the linear accelerator at SLAC, it was necessary to replace the original thyratron trigger generator, which consisted of two chassis, two vacuum tubes, and a small thyratron. All solid-state, fast rise, and high voltage thyratron drivers, therefore, have been developed and built for the 244 klystron modulators. The rack mounted, single chassis driver employs a unique way to control and generate pulses through the use of an asymmetric SCR, a PFN, a fast pulse transformer, and a saturable reactor. The resulting output pulse is 2 kV peak into 50 {Omega} load with pulse duration of 1.5 {mu}s FWHM at 180 Hz. The pulse risetime is less than 40 ns with less than 1 ns jitter. Various techniques are used to protect the SCR from being damaged by high voltage and current transients due to thyratron breakdowns. The end-of-line clipper (EOLC) detection circuit is also integrated into this chassis to interrupt the modulator triggering in the event a high percentage of line reflections occurred.

  4. Research of optical rotation measurement system based on centroid algorithm

    Science.gov (United States)

    Cao, Junjie; Jia, Hongzhi; Shen, Xinrong; Jiang, Shixin

    2016-09-01

    An optical rotation measurement system based on digital signal processor, modulated laser, and step motor rotating stage is established. Centroid algorithm featured fast and simple calculation is introduced to process light signals with or without sample to obtain the optical rotating angle through the step difference between two centroids. The system performance is proved experimentally with standard quartz tubes and glucose solutions. After various measurements, the relative error and precision of the system are determined to 0.4% and 0.004°, which demonstrates the reliable repeatability and high accuracy of whole measurement system.

  5. Chaotic rotation of Hyperion?

    Science.gov (United States)

    Binzel, R. P.; Green, J. R.; Opal, C. B.

    1986-01-01

    Thomas et al. (1984) analyzed 14 Voyager 2 images of Saturn's satellite Hyperion and interpreted them to be consistent with a coherent (nonchaotic) rotation period of 13.1 days. This interpretation was criticized by Peale and Wisdom (1984), who argued that the low sampling frequency of Voyager data does not allow chaotic or nonchaotic rotation to be distinguished. New observations obtained with a higher sampling frequency are reported here which conclusively show that the 13.1 day period found by Thomas et al. was not due to coherent rotation.

  6. A rotating quantum vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Lorenci, V.A. de; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-11-01

    It was investigated which mapping has to be used to compare measurements made in a rotating frame to those made in an inertial frame. Using a non-Galilean coordinate transformation, the creation-annihilation operators of a massive scalar field in the rotating frame are not the same as those of an inertial observer. This leads to a new vacuum state(a rotating vacuum) which is a superposition of positive and negative frequency Minkowski particles. Polarization effects in circular accelerators in the proper frame of the electron making a connection with the inertial frame point of view were analysed. 65 refs.

  7. Theory of Fast Electron Transport for Fast Ignition

    CERN Document Server

    Robinson, A P L; Davies, J R; Gremillet, L; Honrubia, J J; Johzaki, T; Kingham, R J; Sherlock, M; Solodov, A A

    2013-01-01

    Fast Ignition Inertial Confinement Fusion is a variant of inertial fusion in which DT fuel is first compressed to high density and then ignited by a relativistic electron beam generated by a fast (< 20 ps) ultra-intense laser pulse, which is usually brought in to the dense plasma via the inclusion of a re-entrant cone. The transport of this beam from the cone apex into the dense fuel is a critical part of this scheme, as it can strongly influence the overall energetics. Here we review progress in the theory and numerical simulation of fast electron transport in the context of Fast Ignition. Important aspects of the basic plasma physics, descriptions of the numerical methods used, a review of ignition-scale simulations, and a survey of schemes for controlling the propagation of fast electrons are included. Considerable progress has taken place in this area, but the development of a robust, high-gain FI `point design' is still an ongoing challenge.

  8. Differential Rotation and Magnetism in Simulations of Fully Convective Stars

    CERN Document Server

    Browning, Matthew

    2010-01-01

    Stars of sufficiently low mass are convective throughout their interiors, and so do not possess an internal boundary layer akin to the solar tachocline. Because that interface figures so prominently in many theories of the solar magnetic dynamo, a widespread expectation had been that fully convective stars would exhibit surface magnetic behavior very different from that realized in more massive stars. Here I describe how recent observations and theoretical models of dynamo action in low-mass stars are partly confirming, and partly confounding, this basic expectation. In particular, I present the results of 3--D MHD simulations of dynamo action by convection in rotating spherical shells that approximate the interiors of 0.3 solar-mass stars at a range of rotation rates. The simulated stars can establish latitudinal differential rotation at their surfaces which is solar-like at ``rapid'' rotation rates (defined within) and anti-solar at slower rotation rates; the differential rotation is greatly reduced by feed...

  9. Rotational spin Hall effect in a uniaxial crystal

    Science.gov (United States)

    Fadeyeva, Tatyana A.; Alexeyev, Constantine N.; Rubass, Alexander F.; Ivanov, Maksym O.; Zinov'ev, Alexey O.; Konovalenko, Victor L.; Volyar, Alexander V.

    2012-04-01

    We have considered the propagation process of the phase-matched array of singular beams through a uniaxial crystal. We have revealed that local beams in the array are rotated when propagating. However the right and left rotations are unequal. There are at least two processes responsible for the array rotation: the interference of local beams and the spatial depolarization. The interference takes place in the vortex birth and annihilation events forming the symmetrical part of the rotation. The depolarization process contributes to the asymmetry of the rotation that is called the rotational spin Hall effect. It can be brought to light due to the difference between the envelopes of the dependences of the angular displacement on the inclination angle of the local beams or the crystal length reaching the value some angular degree. The direction of the additional array rotation is exclusively defined by the handedness of the circular polarization in the initial beam array.

  10. Turbulent rotating plane Couette flow: Reynolds and rotation number dependency of flow structure and momentum transport

    Science.gov (United States)

    Kawata, Takuya; Alfredsson, P. Henrik

    2016-07-01

    Plane Couette flow under spanwise, anticyclonic system rotation [rotating plane Couette flow (RPCF)] is studied experimentally using stereoscopic particle image velocimetry for different Reynolds and rotation numbers in the fully turbulent regime. Similar to the laminar regime, the turbulent flow in RPCF is characterized by roll cells, however both instantaneous snapshots of the velocity field and space correlations show that the roll cell structure varies with the rotation number. All three velocity components are measured and both the mean flow and all four nonzero Reynolds stresses are obtained across the central parts of the channel. This also allows us to determine the wall shear stress from the viscous stress and the Reynolds stress in the center of the channel, and for low rotation rates the wall shear stress increases with increasing rotation rate as expected. The results show that zero absolute vorticity is established in the central parts of the channel of turbulent RPCF for high enough rotation rates, but also that the mean velocity profile for certain parameter ranges shows an S shape giving rise to a negative velocity gradient in the center of the channel. We find that from an analysis of the Reynolds stress transport equation using the present data there is a transport of the Reynolds shear stress towards the center of the channel, which may then result in a negative mean velocity gradient there.

  11. Rotator Cuff Injuries

    Science.gov (United States)

    ... cuff are common. They include tendinitis, bursitis, and injuries such as tears. Rotator cuff tendons can become ... cuff depends on age, health, how severe the injury is, and how long you've had the ...

  12. Fractal Aggregation Under Rotation

    Institute of Scientific and Technical Information of China (English)

    WU Feng-Min; WU Li-Li; LU Hang-Jun; LI Qiao-Wen; YE Gao-Xiang

    2004-01-01

    By means of the Monte Carlo simulation, a fractal growth model is introduced to describe diffusion-limited aggregation (DLA) under rotation. Patterns which are different from the classical DLA model are observed and the fractal dimension of such clusters is calculated. It is found that the pattern of the clusters and their fractal dimension depend strongly on the rotation velocity of the diffusing particle. Our results indicate the transition from fractal to non-fractal behavior of growing cluster with increasing rotation velocity, i.e. for small enough angular velocity ω the fractal dimension decreases with increasing ω, but then, with increasing rotation velocity, the fractal dimension increases and the cluster becomes compact and tends to non-fractal.

  13. Fractal Aggregation Under Rotation

    Institute of Scientific and Technical Information of China (English)

    WUFeng-Min; WULi-Li; LUHang-Jun; LIQiao-Wen; YEGao-Xiang

    2004-01-01

    By means of the Monte Carlo simulation, a fractal growth model is introduced to describe diffusion-limited aggregation (DLA) under rotation. Patterns which are different from the classical DLA model are observed and the fractal dimension of such clusters is calculated. It is found that the pattern of the clusters and their fractal dimension depend strongly on the rotation velocity of the diffusing particle. Our results indicate the transition from fractal to non-fractal behavior of growing cluster with increasing rotation velocity, i.e. for small enough angular velocity ω; thefractal dimension decreases with increasing ω;, but then, with increasing rotation velocity, the fractal dimension increases and the cluster becomes compact and tends to non-fractal.

  14. Solar rotation gravitational moments

    Directory of Open Access Journals (Sweden)

    A. Ajabshirizadeh

    2005-09-01

    Full Text Available   Gravitational multipole moments of the Sun are still poorly known. Theoretically, the difficulty is mainly due to the differential rotation for which the velocity rate varies both on the surface and with the depth. From an observational point of view, the multipole moments cannot be directly measured. However, recent progresses have been made proving the existence of a strong radial differential rotation in a thin layer near the solar surface (the leptocline. Applying the theory of rotating stars, we will first compute values of J2 and J4 taking into account the radial gradient of rotation, then we will compare these values with the existing ones, giving a more complete review. We will explain some astrophysical outcomes, mainly on the relativistic Post Newtonian parameters. Finally we will conclude by indicating how space experiments (balloon SDS flights, Golf NG, Beppi-Colombo, Gaia... will be essential to unambiguously determine these parameters.

  15. Free Biceps Tendon Autograft to Augment Arthroscopic Rotator Cuff Repair

    OpenAIRE

    Obma, Padraic R.

    2013-01-01

    Arthroscopic rotator cuff repairs have become the standard of treatment for all sizes of tears over the past several years. Current healing rates reported in the literature are quite good, but improving the healing potential of rotator cuff repairs remains a challenging problem. There has been an increase recently in the use of augmentation of rotator cuff repairs with xenografts or synthetics for large and massive tears. Biceps tenodesis is often indicated as part of the treatment plan while...

  16. Electromagnetic rotational actuation.

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  17. Rotational spectrum of phenylglycinol

    Science.gov (United States)

    Simão, Alcides; Peña, Isabel; Cabezas, Carlos; Alonso, José L.

    2014-11-01

    Solid samples of phenylglycinol were vaporized by laser ablation and investigated through rotational spectroscopy in a supersonic expansion using two different techniques: chirped pulse Fourier transform microwave spectroscopy and narrow band molecular beam Fourier transform microwave spectroscopy. One conformer, bearing an O-H···N and an N-H···π intramolecular hydrogen bonds, could be successfully identified by comparison of the experimental rotational and 14N nuclear quadruple coupling constants with those predicted theoretically.

  18. Primary system thermal hydraulics of future Indian fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Velusamy, K., E-mail: kvelu@igcar.gov.in [Thermal Hydraulics Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Natesan, K.; Maity, Ram Kumar; Asokkumar, M.; Baskar, R. Arul; Rajendrakumar, M.; Sarathy, U. Partha; Selvaraj, P.; Chellapandi, P. [Thermal Hydraulics Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Kumar, G. Senthil; Jebaraj, C. [AU-FRG Centre for CAD/CAM, Anna University, Chennai 600 025 (India)

    2015-12-01

    Highlights: • We present innovative design options proposed for future Indian fast reactor. • These options have been validated by extensive CFD simulations. • Hotspot factors in fuel subassembly are predicted by parallel CFD simulations. • Significant safety improvement in the thermal hydraulic design is quantified. - Abstract: As a follow-up to PFBR (Indian prototype fast breeder reactor), many FBRs of 500 MWe capacity are planned. The focus of these future FBRs is improved economy and enhanced safety. They are envisaged to have a twin-unit concept. Design and construction experiences gained from PFBR project have provided motivation to achieve an optimized design for future FBRs with significant design changes for many critical components. Some of the design changes include, (i) provision of four primary pipes per primary sodium pump, (ii) inner vessel with single torus lower part, (iii) dome shape roof slab supported on reactor vault, (iv) machined thick plate rotating plugs, (v) reduced main vessel diameter with narrow-gap cooling baffles and (vi) safety vessel integrated with reactor vault. This paper covers thermal hydraulic design validation of the chosen options with respect to hot and cold pool thermal hydraulics, flow requirement for main vessel cooling, inner vessel temperature distribution, safety analysis of primary pipe rupture event, adequacy of decay heat removal capacity by natural convection cooling, cold pool transient thermal loads and thermal management of top shield and reactor vault.

  19. A strong viscous–inviscid interaction model for rotating airfoils

    DEFF Research Database (Denmark)

    Ramos García, Néstor; Sørensen, Jens Nørkær; Shen, Wen Zhong

    2014-01-01

    version, a parametric study on rotational effects induced by the Coriolis and centrifugal forces in the boundary-layer equations shows that the effects of rotation are to decrease the growth of the boundary-layer and delay the onset of separation, hence increasing the lift coefficient slightly while...... the viscous and inviscid parts. The inviscid part is modeled by a 2D panel method, and the viscous part is modeled by solving the integral form of the laminar and turbulent boundary-layer equations with extension for 3D rotational effects. Laminar-to-turbulent transition is either forced by employing...

  20. Fasts, feasts and festivals in diabetes-1: Glycemic management during Hindu fasts

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2015-01-01

    Full Text Available This communication is the first of a series on South Asian fasts, festivals, and diabetes, designed to spread awareness and stimulate research on this aspect of diabetes and metabolic care. It describes the various fasts observed as part of Hindu religion and offers a classification scheme for them, labeling them as infrequent and frequent. The infrequent fasts are further sub-classified as brief and prolonged, to facilitate a scientific approach to glycemic management during these fasts. Pre-fast counseling, non-pharmacological therapy, pharmacological modification, and post-fast debriefing are discussed in detail. All available drug classes and molecules are covered in this article, which provides guidance about necessary changes in dosage and timing of administration. While in no way exhaustive, the brief review offers a basic framework which diabetes care professionals can use to counsel and manage persons in their care who wish to observe various Hindu fasts.

  1. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    Science.gov (United States)

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  2. Rotational Seismology: AGU Session, Working Group, and Website

    Science.gov (United States)

    Lee, William H.K.; Igel, Heiner; Todorovska, Maria I.; Evans, John R.

    2007-01-01

    Introduction Although effects of rotational motions due to earthquakes have long been observed (e. g., Mallet, 1862), nevertheless Richter (1958, p. 213) stated that: 'Perfectly general motion would also involve rotations about three perpendicular axes, and three more instruments for these. Theory indicates, and observation confirms, that such rotations are negligible.' However, Richter provided no references for this claim. Seismology is based primarily on the observation and modeling of three-component translational ground motions. Nevertheless, theoretical seismologists (e.g., Aki and Richards, 1980, 2002) have argued for decades that the rotational part of ground motions should also be recorded. It is well known that standard seismometers are quite sensitive to rotations and therefore subject to rotation-induced errors. The paucity of observations of rotational motions is mainly the result of a lack, until recently, of affordable rotational sensors of sufficient resolution. Nevertheless, in the past decade, a number of authors have reported direct observations of rotational motions and rotations inferred from rigid-body rotations in short baseline accelerometer arrays, creating a burgeoning library of rotational data. For example, ring laser gyros in Germany and New Zealand have led to the first significant and consistent observations of rotational motions from distant earthquakes (Igel et al., 2005, 2007). A monograph on Earthquake Source Asymmetry, Structural Media and Rotation Effects was published recently as well by Teisseyre et al. (2006). Measurement of rotational motions has implications for: (1) recovering the complete ground-displacement history from seismometer recordings; (2) further constraining earthquake rupture properties; (3) extracting information about subsurface properties; and (4) providing additional ground motion information to earthquake engineers for seismic design. A special session on Rotational Motions in Seismology was convened by H

  3. Rotational Seismology: AGU Session, Working Group, and Website

    Science.gov (United States)

    Lee, William H.K.; Igel, Heiner; Todorovska, Maria I.; Evans, John R.

    2007-01-01

    Introduction Although effects of rotational motions due to earthquakes have long been observed (e. g., Mallet, 1862), nevertheless Richter (1958, p. 213) stated that: 'Perfectly general motion would also involve rotations about three perpendicular axes, and three more instruments for these. Theory indicates, and observation confirms, that such rotations are negligible.' However, Richter provided no references for this claim. Seismology is based primarily on the observation and modeling of three-component translational ground motions. Nevertheless, theoretical seismologists (e.g., Aki and Richards, 1980, 2002) have argued for decades that the rotational part of ground motions should also be recorded. It is well known that standard seismometers are quite sensitive to rotations and therefore subject to rotation-induced errors. The paucity of observations of rotational motions is mainly the result of a lack, until recently, of affordable rotational sensors of sufficient resolution. Nevertheless, in the past decade, a number of authors have reported direct observations of rotational motions and rotations inferred from rigid-body rotations in short baseline accelerometer arrays, creating a burgeoning library of rotational data. For example, ring laser gyros in Germany and New Zealand have led to the first significant and consistent observations of rotational motions from distant earthquakes (Igel et al., 2005, 2007). A monograph on Earthquake Source Asymmetry, Structural Media and Rotation Effects was published recently as well by Teisseyre et al. (2006). Measurement of rotational motions has implications for: (1) recovering the complete ground-displacement history from seismometer recordings; (2) further constraining earthquake rupture properties; (3) extracting information about subsurface properties; and (4) providing additional ground motion information to earthquake engineers for seismic design. A special session on Rotational Motions in Seismology was convened by H

  4. Tibiofemoral conformity and kinematics of rotating-bearing knee prostheses.

    Science.gov (United States)

    D'Lima, D D; Trice, M; Urquhart, A G; Colwell, C W

    2001-05-01

    Increasing tibiofemoral articular conformity theoretically increases articular contact area and reduces contact stresses in total knee arthroplasty. Fixed-bearing knee designs possess relatively low tibiofemoral conformity, in part to allow tibiofemoral rotation without generating excessive stresses at the articulation or the implant-bone interface. This study analyzed knee kinematics of mobile-bearing designs in a closed chain dynamic knee extension model in posterior cruciate-retaining design with high- and low tibiofemoral conformity and posterior cruciate-substituting designs with and without rotational constraint. Overall, for all conditions, the mobile-bearing insert rotated with the femur in the presence of tibiofemoral axial rotation. In addition, the correlation of bearing rotation with femoral rotation was stronger for the high-conformity and rotationally-constrained designs than for the low-conformity designs and strongest for the posterior cruciate-retaining high-conformity condition. Changes in conformity or rotational constraint did not appear to affect femoral roll back, tibiofemoral axial rotation, or varus-valgus angulation. The results suggest that mobile-bearing inserts rotate with the femur and increasing conformity or rotational constraint in mobile-bearing design knee prostheses does not affect knee kinematics adversely, at least under closed chain knee extension conditions in vitro.

  5. Rotational properties of the Maria asteroid family

    Science.gov (United States)

    Kim, M.; Choi, Y.; Moon, H.; Byun, Y.; Brosch, N.; Kaplan, M.; Kaynar, S.; Uysal, O.; Guzel, E.; Behrend, R.; Yoon, J.; Mottola, S.; Hellmich, S.; Hinse, T.; Eker, Z.; Park, J.

    2014-07-01

    Introduction: The Maria family is regarded as an old-type (˜3 ± 1 Gyr) [1] asteroid family which has experienced substantial collisional and dynamical evolution in the main belt. It is located near the 3:1 Jupiter mean-motion resonance area that supplies near-Earth asteroids (NEAs) to the inner Solar System. Observations: We carried out observations of Maria family asteroids in 134 nights from July 2008 to May 2013 using 0.5-m to 2-m class telescopes at seven observatories in the northern hemisphere, and derived synodic rotational periods for 51 objects, including new periods for 34 asteroids [2]. Results: We found that there is a significant excess of fast and slow rotators in the observed rotation-rate distribution. From the correlations among rotational periods, the amplitudes of lightcurves, and the sizes, we conclude that the rotational properties of the Maria family asteroids have been changed considerably by non-gravitational forces such as the YORP effect. Using the lightcurve inversion method [3,4], we successfully determined pole orientations for 13 Maria members, and found an excess of prograde spins over retrograde spins with a ratio (N_p/N_r) of 3. This implies that the retrograde rotators could have been ejected by the 3:1 resonance into the inner Solar System since the formation of the Maria family. We estimate that approximately 37 to 75 Maria family asteroids larger than 1 km have entered the near-Earth space as per 100 Myr [2].

  6. Inferring information about rotation from stellar oscillations

    CERN Document Server

    Goupil, M J; Lochard, J; Dziembowski, W A; Pamyatnykh, A A

    2003-01-01

    The first part of this paper aims at illustrating the intense scientific activity in the field of stellar rotation although, for sake of shortness, we cannot be exhaustive nor give any details. The second part is devoted to the rotation as a pertubation effect upon oscillation frequencies. The discussion focuses on one specific example: the p-modes frequency small separation which provides information about properties of the stellar inner layers. It is shown that the small separation can be affected by rotation at the level of 0.1-0.2 microHz for a 1.4 Mo model rotating with an equatorial velocity of 20 km/s at the surface. This is of the same order of magnitude as the expected precision on frequencies with a 3 months observation and must therefore be taken into account. We show however that it is possible to recover the small separation free of these contaminating effects of rotation, provided enough high quality data are available as will be with space seismic missions such as Eddington.

  7. HCUP Fast Stats

    Data.gov (United States)

    U.S. Department of Health & Human Services — HCUP Fast Stats provides easy access to the latest HCUP-based statistics for health information topics. HCUP Fast Stats uses visual statistical displays in...

  8. Fast food (image)

    Science.gov (United States)

    Fast foods are quick, reasonably priced, and readily available alternatives to home cooking. While convenient and economical for a busy lifestyle, fast foods are typically high in calories, fat, saturated ...

  9. Fast food tips (image)

    Science.gov (United States)

    ... challenge to eat healthy when going to a fast food place. In general, avoiding items that are deep ... challenge to eat healthy when going to a fast food place. In general, avoiding items that are deep ...

  10. Communication: creation of molecular vibrational motions via the rotation-vibration coupling

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Henriksen, Niels Engholm

    2015-01-01

    Building on recent advances in the rotational excitation of molecules, we show how the effect of rotation-vibration coupling can be switched on in a controlled manner and how this coupling unfolds in real time after a pure rotational excitation. We present the first examination of the vibrational...... motions which can be induced via the rotation-vibration coupling after a pulsed rotational excitation. A time-dependent quantum wave packet calculation for the HF molecule shows how a slow (compared to the vibrational period) rotational excitation leads to a smooth increase in the average bond length...... whereas a fast rotational excitation leads to a non-stationary vibrational motion. As a result, under field-free postpulse conditions, either a stretched stationary bond or a vibrating bond can be created due to the coupling between the rotational and vibrational degrees of freedom. The latter corresponds...

  11. Wall mode stabilization at slow plasma rotation

    Science.gov (United States)

    Hu, Bo; Betti, Riccardo; Reimerdes, Holger; Garofalo, Andrea; Manickam, Janardhan

    2007-11-01

    Unstable pressure-driven external kink modes, which become slowly growing resistive wall modes (RWMs) in the presence of a resistive wall, can lead to tokamak plasma disruptions at high beta. It has been shown that RWMs are stabilized by fast plasma rotation (about 1-2% of the Alfv'en frequency) in experiments. Conventional theories attribute the RWM suppression to the dissipation induced by the resonances between plasma rotation and ion bounce/transit or shear Alfv'en frequencies [1]. In those theories, the kinetic effects associated with the plasma diamagnetic frequencies and trapped-particle precession drift frequencies are neglected. It has been observed in recent experiments [2,3] that the RWM suppression also occurs at very slow plasma rotation (about 0.3% of the Alfv'en frequency), where the conventional dissipation is too small to fully suppress the RWMs. Here it is shown, that the trapped-particle kinetic contribution associated with the precession motion [4] is large enough to stabilize the RWM in DIII-D at low rotation. Work supported by the US-DoE OFES. [1] A. Bondeson and M. S. Chu, Physics of Plasmas, 3,3013 (1996). [2] H. Reimerdes et al., Physical Review Letters, 98,055001 (2007). [3] M. Takechi et al., Physical Review Letters, 98,055002 (2007). [4] B. Hu and R. Betti, Physical Review Letters, 93,105002 (2004).

  12. Note: A portable rotating waveplate polarimeter

    Science.gov (United States)

    Bobach, Søren; Hidic, Adnan; Arlt, Jan J.; Hilliard, Andrew J.

    2017-03-01

    We describe the construction and performance of a polarimeter based on a quarter-wave plate rotated by a model airplane motor. The motor rotates at a high angular frequency of ω ˜2 π ×160 Hz, which enables the polarimeter to monitor the polarization state of an incident beam of light in real-time. We show that a simple analysis of the polarimeter signal using the fast Fourier transform on a standard digital oscilloscope provides an excellent measure of the polarization state for many laboratory applications. The polarimeter is straightforward to construct, portable, and features a high-dynamic range, facilitating a wide range of optics laboratory tasks that require free-space or fiber-based polarization analysis.

  13. Is fast food addictive?

    Science.gov (United States)

    Garber, Andrea K; Lustig, Robert H

    2011-09-01

    Studies of food addiction have focused on highly palatable foods. While fast food falls squarely into that category, it has several other attributes that may increase its salience. This review examines whether the nutrients present in fast food, the characteristics of fast food consumers or the presentation and packaging of fast food may encourage substance dependence, as defined by the American Psychiatric Association. The majority of fast food meals are accompanied by a soda, which increases the sugar content 10-fold. Sugar addiction, including tolerance and withdrawal, has been demonstrated in rodents but not humans. Caffeine is a "model" substance of dependence; coffee drinks are driving the recent increase in fast food sales. Limited evidence suggests that the high fat and salt content of fast food may increase addictive potential. Fast food restaurants cluster in poorer neighborhoods and obese adults eat more fast food than those who are normal weight. Obesity is characterized by resistance to insulin, leptin and other hormonal signals that would normally control appetite and limit reward. Neuroimaging studies in obese subjects provide evidence of altered reward and tolerance. Once obese, many individuals meet criteria for psychological dependence. Stress and dieting may sensitize an individual to reward. Finally, fast food advertisements, restaurants and menus all provide environmental cues that may trigger addictive overeating. While the concept of fast food addiction remains to be proven, these findings support the role of fast food as a potentially addictive substance that is most likely to create dependence in vulnerable populations.

  14. Fast Steerable Principal Component Analysis.

    Science.gov (United States)

    Zhao, Zhizhen; Shkolnisky, Yoel; Singer, Amit

    2016-03-01

    Cryo-electron microscopy nowadays often requires the analysis of hundreds of thousands of 2-D images as large as a few hundred pixels in each direction. Here, we introduce an algorithm that efficiently and accurately performs principal component analysis (PCA) for a large set of 2-D images, and, for each image, the set of its uniform rotations in the plane and their reflections. For a dataset consisting of n images of size L × L pixels, the computational complexity of our algorithm is O(nL(3) + L(4)), while existing algorithms take O(nL(4)). The new algorithm computes the expansion coefficients of the images in a Fourier-Bessel basis efficiently using the nonuniform fast Fourier transform. We compare the accuracy and efficiency of the new algorithm with traditional PCA and existing algorithms for steerable PCA.

  15. Rapidly rotating red giants

    CERN Document Server

    Gehan, Charlotte; Michel, Eric

    2016-01-01

    Stellar oscillations give seismic information on the internal properties of stars. Red giants are targets of interest since they present mixed modes, which behave as pressure modes in the convective envelope and as gravity modes in the radiative core. Mixed modes thus directly probe red giant cores, and allow in particular the study of their mean core rotation. The high-quality data obtained by CoRoT and Kepler satellites represent an unprecedented perspective to obtain thousands of measurements of red giant core rotation, in order to improve our understanding of stellar physics in deep stellar interiors. We developed an automated method to obtain such core rotation measurements and validated it for stars on the red giant branch. In this work, we particularly focus on the specific application of this method to red giants having a rapid core rotation. They show complex spectra where it is tricky to disentangle rotational splittings from mixed-mode period spacings. We demonstrate that the method based on the id...

  16. A novel sampling theorem on the rotation group

    CERN Document Server

    McEwen, J D; Leistedt, B; Peiris, H V; Wiaux, Y

    2015-01-01

    We develop a novel sampling theorem for functions defined on the three-dimensional rotation group SO(3) by associating the rotation group with the three-torus through a periodic extension. Our sampling theorem requires $4L^3$ samples to capture all of the information content of a signal band-limited at $L$, reducing the number of required samples by a factor of two compared to other equiangular sampling theorems. We present fast algorithms to compute the associated Fourier transform on the rotation group, the so-called Wigner transform, which scale as $O(L^4)$, compared to the naive scaling of $O(L^6)$. For the common case of a low directional band-limit $N$, complexity is reduced to $O(N L^3)$. Our fast algorithms will be of direct use in speeding up the computation of directional wavelet transforms on the sphere. We make our SO3 code implementing these algorithms publicly available.

  17. Pairing correlations in the superdeformed rotational bands: The frequency-deformation scaling

    Energy Technology Data Exchange (ETDEWEB)

    Nazarewicz, W.; Szymanski, Z.; Dudek, J.

    1987-10-15

    Microscopic calculations overestimate the amount of angular momentum carried by the superdeformed rotational band in /sup 152/Dy. This discrepancy between experiment and theory can be accounted for by the dynamic pairing correlations. Reasons for the particular importance of these correlations in fast rotating and strongly deformed nuclei are discussed.

  18. Pairing correlations in the superdeformed rotational bands: The frequency-deformation scaling

    Science.gov (United States)

    Nazarewicz, W.; Szymański, Z.; Dudek, J.

    1987-10-01

    Microscopic calculations overestimate the amount of angular momentum carried by the superdeformed rotational band in 152Dy. This discrepancy between experiment and theory can be accounted for by the dynamic pairing correlations. Reasons for the particular importance of these correlations in fast rotating and strongly deformed nuclei are discussed.

  19. INTELLIGENT INTEGRATION CONTROL OF ROTATING DISK VIBRATION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The rotating disk is a basic machine part that is u sed widely in industry. The motion equation is transformed into the dynamic equa tion in real modal space. The personating intelligent integration is introduced to improve the existing control method. These modes that affect the transverse v ibration mainly are included to simulate the vibration of rotating disk, and two methods are applied separately on condition that the sensor and the ac tuator are collocated and non-collocated. The results obtained by all-sided si mulations show that the new method can obtain better control effect, especially when the sensor and the actuator are non-collocated.

  20. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  1. Chiral Rotational Spectroscopy

    CERN Document Server

    Cameron, Robert P; Barnett, Stephen M

    2015-01-01

    We introduce chiral rotational spectroscopy: a new technique that enables the determination of the individual optical activity polarisability components $G_{XX}'$, $G_{YY}'$, $G_{ZZ}'$, $A_{X,YZ}$, $A_{Y,ZX}$ and $A_{Z,XY}$ of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample whilst yielding an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral by virtue of their isotopic constitution and molecules with multiple chiral centres. The principles that underpin chiral rotational spectroscopy can also be exploited in the search for molecular chirality in space, which, if found, may add weight to hypotheses that biological homochirality and indeed life itself are of cosmic origin.

  2. Chiral rotational spectroscopy

    Science.gov (United States)

    Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.

    2016-09-01

    We introduce chiral rotational spectroscopy, a technique that enables the determination of the orientated optical activity pseudotensor components BX X, BY Y, and BZ Z of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample and provides an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral solely by virtue of their isotopic constitution and molecules with multiple chiral centers. A basic design for a chiral rotational spectrometer together with a model of its functionality is given. Our proposed technique offers the more familiar polarizability components αX X, αY Y, and αZ Z as by-products, which could see it find use even for achiral molecules.

  3. Rotating ice blocks

    Science.gov (United States)

    Dorbolo, Stephane; Adami, Nicolas; Grasp Team

    2014-11-01

    The motion of ice discs released at the surface of a thermalized bath was investigated. As observed in some rare events in the Nature, the discs start spinning spontaneously. The motor of this motion is the cooling of the water close to the ice disc. As the density of water is maximum at 4°C, a downwards flow is generated from the surface of the ice block to the bottom. This flow generates the rotation of the disc. The speed of rotation depends on the mass of the ice disc and on the temperature of the bath. A model has been constructed to study the influence of the temperature of the bath. Finally, ice discs were put on a metallic plate. Again, a spontaneous rotation was observed. FNRS is thanked for financial support.

  4. The optical rotator

    DEFF Research Database (Denmark)

    Tandrup, T; Gundersen, Hans Jørgen Gottlieb; Jensen, Eva B. Vedel

    1997-01-01

    The optical rotator is an unbiased, local stereological principle for estimation of cell volume and cell surface area in thick, transparent slabs, The underlying principle was first described in 1993 by Kieu Jensen (T. Microsc. 170, 45-51) who also derived an estimator of length, In this study we...... further discuss the methods derived from this principle and present two new local volume estimators. The optical rotator benefits from information obtained in all three dimensions in thick sections but avoids over-/ underprojection problems at the extremes of the cell. Using computer-assisted microscopes...... the extra measurements demand minimal extra effort and make this estimator even more efficient when it comes to estimation of individual cell size than many of the previous local estimators, We demonstrate the principle of the optical rotator in an example (the cells in the dorsal root ganglion of the rat...

  5. Rotation of cometary meteoroids

    CERN Document Server

    Capek, David

    2014-01-01

    The aim of this study is to estimate the rotational characteristics of meteoroids after their release from a comet during normal activity. The results can serve as initial conditions for further analyses of subsequent evolution of rotation in the interplanetary space. A sophisticated numerical model was applied to meteoroids ejected from 2P/Encke comet. The meteoroid shapes were approximated by polyhedrons with several thousands of surface elements, which have been determined by 3D laser scanning method of 36 terrestrial rock samples. These samples came from three distinct sets with different origin and shape characteristics. Two types of gas-meteoroid interactions (diffuse and specular reflection of gas molecules from the surface of meteoroid) and three gas ejection models (leading to very different ejection velocities) were assumed. The rotational characteristics of ejected meteoroid population were obtained by numerical integration of equations of motion with random initial conditions and random shape sele...

  6. Ramadan, fasting and pregnancy

    DEFF Research Database (Denmark)

    Ahmed, Urfan Zahoor; Lykke, Jacob Alexander

    2014-01-01

    In Islam, the month of Ramadan is a period of fasting lasting 29 or 30 days. Epidemiological studies among Muslims in Denmark have not been conducted, but studies show, that fasting among pregnant Muslim women is common. Fasting does not increase the risk of growth restriction or preterm delivery......, but there are reports of decreased foetal movements. Furthermore, the fasting may have long-term health consequences for the offspring, especially when they reach their middle age. According to Islam and the interpretation, pregnant and breast-feeding women are allowed to postpone the fasting of the month of Ramadan...

  7. Integrative Physiology of Fasting.

    Science.gov (United States)

    Secor, Stephen M; Carey, Hannah V

    2016-03-15

    Extended bouts of fasting are ingrained in the ecology of many organisms, characterizing aspects of reproduction, development, hibernation, estivation, migration, and infrequent feeding habits. The challenge of long fasting episodes is the need to maintain physiological homeostasis while relying solely on endogenous resources. To meet that challenge, animals utilize an integrated repertoire of behavioral, physiological, and biochemical responses that reduce metabolic rates, maintain tissue structure and function, and thus enhance survival. We have synthesized in this review the integrative physiological, morphological, and biochemical responses, and their stages, that characterize natural fasting bouts. Underlying the capacity to survive extended fasts are behaviors and mechanisms that reduce metabolic expenditure and shift the dependency to lipid utilization. Hormonal regulation and immune capacity are altered by fasting; hormones that trigger digestion, elevate metabolism, and support immune performance become depressed, whereas hormones that enhance the utilization of endogenous substrates are elevated. The negative energy budget that accompanies fasting leads to the loss of body mass as fat stores are depleted and tissues undergo atrophy (i.e., loss of mass). Absolute rates of body mass loss scale allometrically among vertebrates. Tissues and organs vary in the degree of atrophy and downregulation of function, depending on the degree to which they are used during the fast. Fasting affects the population dynamics and activities of the gut microbiota, an interplay that impacts the host's fasting biology. Fasting-induced gene expression programs underlie the broad spectrum of integrated physiological mechanisms responsible for an animal's ability to survive long episodes of natural fasting.

  8. FAST User Guide

    Science.gov (United States)

    Walatka, Pamela P.; Clucas, Jean; McCabe, R. Kevin; Plessel, Todd; Potter, R.; Cooper, D. M. (Technical Monitor)

    1994-01-01

    The Flow Analysis Software Toolkit, FAST, is a software environment for visualizing data. FAST is a collection of separate programs (modules) that run simultaneously and allow the user to examine the results of numerical and experimental simulations. The user can load data files, perform calculations on the data, visualize the results of these calculations, construct scenes of 3D graphical objects, and plot, animate and record the scenes. Computational Fluid Dynamics (CFD) visualization is the primary intended use of FAST, but FAST can also assist in the analysis of other types of data. FAST combines the capabilities of such programs as PLOT3D, RIP, SURF, and GAS into one environment with modules that share data. Sharing data between modules eliminates the drudgery of transferring data between programs. All the modules in the FAST environment have a consistent, highly interactive graphical user interface. Most commands are entered by pointing and'clicking. The modular construction of FAST makes it flexible and extensible. The environment can be custom configured and new modules can be developed and added as needed. The following modules have been developed for FAST: VIEWER, FILE IO, CALCULATOR, SURFER, TOPOLOGY, PLOTTER, TITLER, TRACER, ARCGRAPH, GQ, SURFERU, SHOTET, and ISOLEVU. A utility is also included to make the inclusion of user defined modules in the FAST environment easy. The VIEWER module is the central control for the FAST environment. From VIEWER, the user can-change object attributes, interactively position objects in three-dimensional space, define and save scenes, create animations, spawn new FAST modules, add additional view windows, and save and execute command scripts. The FAST User Guide uses text and FAST MAPS (graphical representations of the entire user interface) to guide the user through the use of FAST. Chapters include: Maps, Overview, Tips, Getting Started Tutorial, a separate chapter for each module, file formats, and system

  9. Effect of rotation on a rotating hot-wire sensor

    Science.gov (United States)

    Hah, C.; Lakshminarayana, B.

    1978-01-01

    An investigation was conducted to discern the effects of centrifugal and Coriolis forces on a rotating hot-wire. The probe was calibrated in a wind tunnel as well as in a rotating mode. The effect of rotation was found to be negligibly small. A small change in cold resistance (1.5%) was observed in the rotating wire. The rotation seems to have a negligible effect on the fluid mechanics, heat transfer and material characteristics of the wire. This is a significant conclusion in view of the potential application of the hot-wire probe in a rotating passage (such as turbomachinery).

  10. Low temperature fiber optic pyrometer for fast time resolved temperature measurements

    Science.gov (United States)

    Willsch, M.; Bosselmann, T.; Gaenshirt, D.; Kaiser, J.; Villnow, M.; Banda, M.

    2016-05-01

    Low temperature Pyrometry at temperatures beyond 150°C is limited in the measurement speed due to slow pyroelectric detectors. To detect the circumferential temperature distribution of fast rotating machines a novel Fiber Optical Pyrometer Type is presented here.

  11. Did GW150914 produce a rotating gravastar?

    CERN Document Server

    Chirenti, Cecilia

    2016-01-01

    The interferometric LIGO detectors have recently measured the first direct gravitational-wave signal from what has been interpreted as the inspiral, merger and ringdown of a binary system of black holes. The signal-to-noise ratio of the measured signal is large enough to leave little doubt that it does refer to the inspiral of two massive and ultracompact objects, whose merger yields a rotating black hole. Yet, room is left for alternative interpretations that do not involve black holes, but other objects that, within classical general relativity, can be equally massive and compact, namely, gravastars. We here consider the hypothesis that the merging objects were indeed gravastars and explore whether the merged object could therefore be not a black hole but a rotating gravastar. After comparing the real and imaginary parts of the ringdown signal of GW150914 with the corresponding quantities for a variety of gravastars, and notwithstanding the very limited knowledge of the perturbative response of rotating gra...

  12. Friction boosted by spontaneous epitaxial rotations

    Science.gov (United States)

    Mandelli, Davide; Vanossi, Andrea; Manini, Nicola; Tosatti, Erio

    2015-03-01

    It is well known in surface science that incommensurate adsorbed monolayers undergo a spontaneous, energy-lowering epitaxial rotation from aligned to misaligned relative to a periodic substrate. We show first of all that a model 2D colloidal monolayer in an optical lattice, of recent importance as a frictional model, also develops in full equilibrium a small rotation angle, easy to detect in the Moiré pattern. The colloidal monolayer misalignment is then shown by extensive sliding simulations to increase the dynamic friction by a considerable factor over the aligned case. More generally, this example suggests that spontaneous rotations are rather ubiquitous and should not be ignored in all tribological phenomena between mismatched lattices. This work was mainly supported by the ERC Advanced Grant No. 320796-MODPHYSFRICT, and partly by SINERGIA contract CRSII2 136287, by PRIN/COFIN Contract 2010LLKJBX 004, by COST Action MP1303.

  13. Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    C. Lievens; J. Yperman; J. Vangronsveld; R. Carleer [Hasselt University, Diepenbeek (Belgium). Laboratory of Applied Chemistry

    2008-08-15

    Presently, little or no information of implementing fast pyrolysis for looking into the potential valorisation of heavy metal contaminated biomass is available. Fast pyrolysis of heavy metal contaminated biomass (birch and sunflower), containing high amounts of Cd, Cu, Pb and Zn, resulting from phytoremediation, is investigated. The effect of the pyrolysis temperature (623, 673, 773 and 873 K) and the type of solid heat carrier (sand and fumed silica) on the distribution of the heavy metals in birch and sunflower pyrolysis fractions are studied. The goal of the set-up is 'concentrating' heavy metals in the ash/char fraction after thermal treatment, preventing them to be released in the condensable and/or volatile fractions. The knowledge of the behaviour of heavy metals affects directly future applications and valorisation of the pyrolysis products and thus contaminated biomass. They are indispensable for making and selecting the proper thermal conditions for their maximum recovery. In view of the future valorisation of these biomasses, the amounts of the pyrolysis fractions and the calorific values of the obtained liquid pyrolysis products, as a function of the pyrolysis temperature, are determined. 46 refs., 8 figs., 4 tabs.

  14. The Spatiale Rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan

    2009-01-01

    The inherent demand for unbiasedness for some stereological estimators imposes a demand of not only positional uniform randomness but also isotropic randomness, i.e. directional uniform randomness. In order to comply with isotropy, one must perform a random rotation of the object of interest befo...

  15. Rotator Cuff Injuries.

    Science.gov (United States)

    Connors, G. Patrick

    Many baseball players suffer from shoulder injuries related to the rotator cuff muscles. These injuries may be classified as muscular strain, tendonitis or tenosynovitis, and impingement syndrome. Treatment varies from simple rest to surgery, so it is important to be seen by a physician as soon as possible. In order to prevent these injuries, the…

  16. Rotator Cuff Injuries.

    Science.gov (United States)

    Connors, G. Patrick

    Many baseball players suffer from shoulder injuries related to the rotator cuff muscles. These injuries may be classified as muscular strain, tendonitis or tenosynovitis, and impingement syndrome. Treatment varies from simple rest to surgery, so it is important to be seen by a physician as soon as possible. In order to prevent these injuries, the…

  17. The rotating quantum vacuum

    CERN Document Server

    Davies, Paul Charles William; Manogue, C A; Davies, Paul C W; Dray, Tevian; Manogue, Corinne A

    1996-01-01

    We derive conditions for rotating particle detectors to respond in a variety of bounded spacetimes and compare the results with the folklore that particle detectors do not respond in the vacuum state appropriate to their motion. Applications involving possible violations of the second law of thermodynamics are briefly addressed.

  18. Construction and laboratory test of the fiber optic rotational seismograph FOSREM for rotational seismology area of interest

    Science.gov (United States)

    Kurzych, Anna; Jaroszewicz, Leszek R.; Kowalski, Jerzy K.

    2017-05-01

    A relatively young field of study named Rotational Seismology caused a highly interest in an investigation of rotational movements generated by earthquakes, explosions, and ambient vibrations. It includes a wide range of scientific branches. However, this field needs to apply appropriate rotational sensors which should fulfill restrict technical requirements. The presented in this work system FOSREM (Fibre-Optic System for Rotational Events and Phenomena Monitoring) seems to be a promising rotational sensor for such investigation. FOSREM works by measuring the Sagnac effect and generally consists of two basic elements: optical sensor and electronic part. Regarding to its theoretical sensitivity equals 2·10-8 rad/s/Hz1/2, it enables to measure rotation in a wide range of signal amplitude (10-8 rad/s ÷ 10 rad/s) and frequency (DC ÷ 328.12 Hz). Moreover, FOSREM is mobile and remotely controlled via Internet using a special designed software.

  19. The Facility and Process Technics of Polyethylene Rotational Molding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ 1. Introduction Rotational molding is the process by which hollow plastic parts are formed. It mainly processes the product which Injection molding and Blow molding can not process medium-sized, large-sized and super large-sized plastic parts. The technics may turn out a tub, dustbin, stock tank, sailboat. The research institute of Lanzhou introduces a suit of RS-16 Rotational Molding Machine from Germany Reinhadt Co. on 1990. It mainly put up experiment and smallscale production. RS-16 rotational molding machine is a single arm and di-axial equipment. It is consisting of a gas heated sintering oven, cooling chamber, mouldcarrying carriage and a controlling unit.

  20. Natures of Rotating Stall Cell in a Diagonal Flow Fan

    Institute of Scientific and Technical Information of China (English)

    N. SHIOMI; K. KANEKO; T. SETOGUCHI

    2005-01-01

    In order to clarify the natures of a rotating stall cell, the experimental investigation was carried out in a high specific-speed diagonal flow fan. The pressure field on the casing wall and the velocity fields at the rotor inlet and outlet were measured under rotating stall condition with a fast response pressure transducer and a single slant hot-wire probe, respectively. The data were processed using the "Double Phase-Locked Averaging (DPLA)"technique, which enabled to obtain the unsteady flow field with a rotating stall cell in the relative co-ordinate system fixed to the rotor. As a result, the structure and behavior of the rotating stall cell in a high specific-speed diagonal flow fan were shown.

  1. Flue gas desulfurization by rotating beds

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, N.; Keyvani, M.; Coskundeniz, A.

    1992-01-01

    The operating and mass transfer characteristics of rotating foam metal beds were studied to determine the potential for flue gas desulfurization. This is a final technical report on the work supported by DOE [number sign]FG22-87-PC79924. The report is divided into two sections, Part 1 deals primarily with the operating characteristics of rotating beds, and Part 2 covers the mass transfer characteristics of S0[sub 2] absorption in water-lime slurries. Rotating foam metal beds are in essence packed towers operated in high gravitational fields. The foam metal bed is in the form of a cylindrical donut, or torus, and is rotated to produced the high centrifugal forces. The liquid phase enters the bed at the inner surface of the torus and is pulled by the field through the bed. Gas flows countercurrent to the liquid. The bed packing can have a very large specific surface areas and not flood. Possible benefits include much smaller height of a transfer unit resulting in smaller equipment and supporting structures, reduced solvent inventory, faster response with improved process control, reduced pressure drop, and shorter startup and shut-down times. This work is concerned broadly with the operating characteristics of rotating beds, the objectives being to (1) determine the pressure drop through the rotating bed; (2) determine the power required to operate the beds, (3) investigate the residence time distribution of the liquid phase in the beds; and (4) determine the mass transfer coefficients of S0[sub 2] absorption. Three packings of differing specific surface areas were studied, with areas ranging from 656 to 2952 m[sub 2]/m[sub 3]. Liquid flow rates to 36 kg/s*m[sub 2], gas flow rate to 2.2 kg/s*m[sub 2], and gravitational fields to 300 g were covered in this study.

  2. Formulation of the rotational transformation of wave fields and their application to digital holography.

    Science.gov (United States)

    Matsushima, Kyoji

    2008-07-01

    Rotational transformation based on coordinate rotation in Fourier space is a useful technique for simulating wave field propagation between nonparallel planes. This technique is characterized by fast computation because the transformation only requires executing a fast Fourier transform twice and a single interpolation. It is proved that the formula of the rotational transformation mathematically satisfies the Helmholtz equation. Moreover, to verify the formulation and its usefulness in wave optics, it is also demonstrated that the transformation makes it possible to reconstruct an image on arbitrarily tilted planes from a wave field captured experimentally by using digital holography.

  3. Frame Dragging Effect on Properties of Rotating Neutron Stars with Strong Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    GUO Yu-Wu; WEN De-Hua; HU Jian-Xun

    2008-01-01

    The general relativistic frame dragging effect on the properties, such as the moments of inertia and the radii of gyration of fast rotating neutron stars with a uniform strong magnetic field, is calculated accurate to the first order in the uniform angular velocity. The results show that compared with the corresponding non-rotating static spherical symmetric neutron star with a weaker magnetic field, a fast rotating neutron star (millisecond pulsar) with a stronger magnetic field has a relative smaller moment of inertia and radius of gyration.

  4. A Fast Fractal Image Compression Coding Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fast algorithms for reducing encoding complexity of fractal image coding have recently been an important research topic. Search of the best matched domain block is the most computation intensive part of the fractal encoding process. In this paper, a fast fractal approximation coding scheme implemented on a personal computer based on matching in range block's neighbours is presented. Experimental results show that the proposed algorithm is very simple in implementation, fast in encoding time and high in compression ratio while PSNR is almost the same as compared with Barnsley's fractal block coding .

  5. Rotational inhomogeneities from pre-big bang?

    CERN Document Server

    Giovannini, Massimo

    2005-01-01

    The evolution of the rotational inhomogeneities is investigated in the specific framework of four-dimensional pre-big bang models. While minimal (dilaton-driven) scenarios do not lead to rotational fluctuations, in the case of non-minimal (string-driven) models, fluid sources are present in the pre-big bang phase. The rotational modes of the geometry, coupled to the divergenceless part of the velocity field, can then be amplified depending upon the value of the barotropic index of the perfect fluids. In the light of a possible production of rotational inhomogeneities, solutions describing the coupled evolution of the dilaton field and of the fluid sources are scrutinized in both the string and Einstein frames. In semi-realistic scenarios, where the curvature divergences are regularized by means of a non-local dilaton potential, the rotational inhomogeneities are amplified during the pre-big bang phase but they decay later on. Similar analyses can also be performed when a contraction occurs directly in the str...

  6. On Differential Rotation and Overshooting in Solar-like Stars

    Science.gov (United States)

    Brun, Allan Sacha; Strugarek, Antoine; Varela, Jacobo; Matt, Sean P.; Augustson, Kyle C.; Emeriau, Constance; DoCao, Olivier Long; Brown, Benjamin; Toomre, Juri

    2017-02-01

    We seek to characterize how the change of global rotation rate influences the overall dynamics and large-scale flows arising in the convective envelopes of stars covering stellar spectral types from early G to late K. We do so through numerical simulations with the ASH code, where we consider stellar convective envelopes coupled to a radiative interior with various global properties. As solar-like stars spin down over the course of their main sequence evolution, such a change must have a direct impact on their dynamics and rotation state. We indeed find that three main states of rotation may exist for a given star: anti-solar-like (fast poles, slow equator), solar-like (fast equator, slow poles), or a cylindrical rotation profile. Under increasingly strict rotational constraints, the last profile can further evolve into a Jupiter-like profile, with alternating prograde and retrograde zonal jets. We have further assessed how far the convection and meridional flows overshoot into the radiative zone and investigated the morphology of the established tachocline. Using simple mixing length arguments, we are able to construct a scaling of the fluid Rossby number {R}{of}=\\tilde{ω }/2{{{Ω }}}* ∼ \\tilde{v}/2{{{Ω }}}* {R}* , which we calibrate based on our 3D ASH simulations. We can use this scaling to map the behavior of differential rotation versus the global parameters of stellar mass and rotation rate. Finally, we isolate a region on this map (R of ≳ 1.5–2) where we posit that stars with an anti-solar differential rotation may exist in order to encourage observers to hunt for such targets.

  7. Wave-driven Rotation in Supersonically Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  8. ATLAS FTK: The Fast Tracker

    CERN Document Server

    T, Iizawa; The ATLAS collaboration

    2014-01-01

    The Fast TracKer (FTK) will perform global track reconstruction after each Level-1 trigger accept to enable the software-based High Level Trigger to have early access to tracking information. FTK is a dedicated processor based on a mixture of advanced technologies. Modern, powerful Field Programmable Gate Arrays (FPGAs) form an important part of the system architecture, and the large level of computing power required for pattern recognition is provided by incorporating standard-cell ASICs named Associative Memory (AM). FTK provides global track reconstruction in the full inner silicon detector in approximately 100 microseconds with resolution comparable to the offline algorithms. It allows a fast and precise detection of the primary and secondary vertex information. The track and vertex information is then used by the High Level Trigger algorithms, allowing highly improved trigger performance for the important signatures such as b-jets. In this paper, the architecture and the hardware development status of FT...

  9. Discussion of material rotation and stress rate

    Energy Technology Data Exchange (ETDEWEB)

    Dienes, J.K.

    1985-10-01

    Characterization of material behavior can be divided into two parts, the analysis of deformation and the underlying physics, though these are intimately related. A significant advance in the analysis of deformation was made when the polar decomposition theorem was introduced, making it possible to separate large deformations into a stretch and a rotation. Consequences of the theorem affect the way rate processes should be characterized. In particular, rate of material rotation is different from vorticity, and the stress rate for finite strains is different from the usual stress rate of Zaremba, Jaumann, and Noll. It is convenient to define a strain rate that is different from the stretching that is the symmetric part of the velocity gradient. These concepts are described in detail in a 1979 paper. Various criticisms of that paper have appeared in the Journal of Applied Mechanics, which are discussed herein. To illustrate the distinction, it is shown that the rate of rotation in a classical vortex does not vanish, though the vorticity is zero. It is also shown that the rate of material rotation recently computed by Nemat-Nasser, which involves an eigenvalue expansion, is equivalent to the one given in the 1979 paper, which makes use of matrix inversion, and it asseverated that the matrix inversion approach is computationally more efficient. 17 refs.

  10. The rotation-activity relation in M dwarfs

    Science.gov (United States)

    Newton, Elisabeth R.; Irwin, Jonathan; Charbonneau, David; Berlind, Perry L.; Calkins, Michael L.; Mink, Jessica D.

    2017-01-01

    Main sequence stars with masses below approximately 0.35 solar masses are fully-convective, and are expected to have a different type of magnetic dynamo than solar-type stars. Observationally, the dynamo mechanism can be probed through the relationship between rotation and magnetic activity, and the evolution of these properties. Though M dwarfs are the most common type of star in the galaxy, a lack of observational constraints at ages beyond 1 Gyr has hampered studies of the rotation-activity relation. To address this, we have made new measurements of rotation and magnetic activity in nearby, field-age M dwarfs. Combining our 386 rotation period measurements and 247 new optical spectra with data from the literature, we are able to probe the rotation-activity in M dwarfs with masses from 0.1 to 0.6 solar masses. We observe a threshold in the mass--period plane that separates active and inactive M dwarfs. The threshold coincides with the fast-period edge of the slowly rotating population, at approximately the rotation period at which an era of rapid rotational evolution appears to cease. We confirm that the activity of rapidly rotating M dwarfs maintains a saturated value. We have measured rotation periods as long as 140 days, allowing us to probe the unsaturated regime in detail. Our data show a clear power-law decay in relative H-alpha luminosity as a function Rossby number. We discuss implications for the magnetic dynamo mechanism.We acknowledge funding from the National Science Foundation, the David and Lucile Packard Foundation Fellowship for Science and Engineering, and the John Templeton Foundation. E.R.N. acknowledges support from the NSF through a Graduate Research Fellowship and an Astronomy and Astrophysics Postdoctoral Fellowship.

  11. Rotating models of young solar-type stars : Exploring braking laws and angular momentum transport processes

    CERN Document Server

    Amard, Louis; Charbonnel, Corinne; Gallet, Florian; Bouvier, Jérôme

    2016-01-01

    We study the predicted rotational evolution of solar-type stars from the pre-main sequence to the solar age with 1D rotating evolutionary models including physical ingredients. We computed rotating evolution models of solar-type stars including an external stellar wind torque and internal transport of angular momentum following the method of Maeder and Zahn with the code STAREVOL. We explored different formalisms and prescriptions available from the literature. We tested the predictions of the models against recent rotational period data from extensive photometric surveys, lithium abundances of solar-mass stars in young clusters, and the helioseismic rotation profile of the Sun. We find a best-matching combination of prescriptions for both internal transport and surface extraction of angular momentum. This combination provides a very good fit to the observed evolution of rotational periods for solar-type stars from early evolution to the age of the Sun. Additionally, we show that fast rotators experience a st...

  12. Rapid Rotation Above and Below the Substellar Boundary

    Science.gov (United States)

    Basri, G.

    1999-05-01

    I present the results of a multiyear survey of very low mass stars and brown dwarfs, at high spectral resolution. The echelle spectra were gathered with the HIRES spectrometer at the Keck Observatory. One primary purpose was to determine rotational velocities for many objects of the late M and L spectral classes. Some of these objects are confirmed brown dwarfs, others are stars near the bottom of the main sequence, and some might be either. I show that the initial indication provided by BRI 0021, that such objects tend to be rapidly rotating and display little H-alpha emission, proves to be a common characteristic. There is a general trend to higher rotation velocities as one looks to objects of lower luminosity; the fastest rotator found so far is the brown dwarf Kelu-1 at 80 km/s (which implies a rotation period of about 90 minutes!). The most active object, PC 0025 (which may well be a brown dwarf), is a relatively slow rotator and probably very young. I discuss a possible explanation for these results: the dynamos for these objects are fully turbulent, driven by convection (and therefore indirectly by the object's luminosity), and quenched when the rotational velocities become too fast in comparison to the convective velocities. I thank the NSF for its support through grant AST96-18439.

  13. Rotator Cuff Injuries - Multiple Languages

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Rotator Cuff Injuries URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Rotator Cuff Injuries - Multiple Languages To use the sharing features ...

  14. Speed Rotating Components

    Directory of Open Access Journals (Sweden)

    S. Wittig

    1998-01-01

    Full Text Available Cooling of high speed rotating components is a typical situation found in turbomachinery as well as in automobile engines. Accurate knowledge of discharge coefficients and heat transfer of related components is essential for the high performance of the whole engine. This can be achieved by minimized cooling air flows and avoidance of hot spots. In high speed rotating clutches for example aerodynamic investigations improving heat transfer have not been considered in the past. Advanced concepts of modern plate design try to reduce thermal loads by convective cooling methods. Therefore, secondary cooling air flows have to be enhanced by an appropriate design of the rotor stator system with orifices. CFD modelling is used to improve the basic understanding of the flow field in typical geometries used in these systems.

  15. The Spatiale Rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan

    2009-01-01

    is obeyed by randomizing the orientation of the virtual probe itself within the thick section. Overall, the benefit is that positional information is kept for any block and section of the specimen. As the Spatial Rotator is a 3D probe, data must be gathered from sections thicker than 25 micro meters to form......The inherent demand for unbiasedness for some stereological estimators imposes a demand of not only positional uniform randomness but also isotropic randomness, i.e. directional uniform randomness. In order to comply with isotropy, one must perform a random rotation of the object of interest before...... it is embedded and sectioned. This has the unfortunate side effect that all information about positioning within the object is lost for blocks and sections. For complex tissue, like the mammalian brain, this information is of utmost importance to ensure measurements are performed in the correct region...

  16. Rotational spectrum of tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, M. Eugenia, E-mail: maria.sanz@kcl.ac.uk; Cabezas, Carlos, E-mail: ccabezas@qf.uva.es; Mata, Santiago, E-mail: santiago.mata@uva.es; Alonso, Josè L., E-mail: jlalonso@qf.uva.es [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Parque Científico Uva, Universidad de Valladolid, 47011 Valladolid (Spain)

    2014-05-28

    The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.

  17. Rotational Spectrum of Tryptophan

    Science.gov (United States)

    Sanz, M. Eugenia; Cabezas, Carlos; Mata, Santiago; Alonso, José L.

    2014-06-01

    The rotational spectrum of the natural amino acid tryptophan has been observed using a recently constructed LA-MB-FTMW spectrometer, specifically designed to optimize the detection of heavier molecules at a lower frequency range. Independent analyses of the rotational spectra of individual conformers have conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The experimental values of the 14N nuclear quadrupole coupling constants have been found capital in the discrimination of the conformers. Both observed conformers are stabilized by a O-H\\cdotsN hydrogen bond in the side chain and a N-H\\cdotsπ interaction forming a chain that reinforces the strength of hydrogen bonds through cooperative effects.

  18. A Translational Polarization Rotator

    CERN Document Server

    Chuss, David T; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah

    2012-01-01

    We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident linear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.

  19. The Thomas rotation

    CERN Document Server

    Costella, J P; Rawlinson, A A; Costella, John P.; Kellar, Bruce H. J. Mc; Rawlinson, Andrew A.

    2001-01-01

    We review why the Thomas rotation is a crucial facet of special relativity, that is just as fundamental, and just as "unintuitive" and "paradoxical", as such traditional effects as length contraction, time dilation, and the ambiguity of simultaneity. We show how this phenomenon can be quite naturally introduced and investigated in the context of a typical introductory course on special relativity, in a way that is appropriate for, and completely accessible to, undergraduate students. We also demonstrate, in a more advanced section aimed at the graduate student studying the Dirac equation and relativistic quantum field theory, that careful consideration of the Thomas rotation will become vital as modern experiments in particle physics continue to move from unpolarized to polarized cross-sections.

  20. Properties of Rotating Neutron Star

    Directory of Open Access Journals (Sweden)

    Shailesh K. Singh

    2015-08-01

    Full Text Available Using the nuclear equation of states for a large variety of relativistic and non-relativistic force parameters, we calculate the static and rotating masses and radii of neutron stars. From these equation of states, we evaluate the properties of rotating neutron stars, such as rotational frequencies, moment of inertia, quadrupole deformation parameter, rotational ellipticity and gravitational wave strain amplitude. The estimated gravitational wave strain amplitude of the star is found to be~sim 10-23.

  1. Rotating housing turbine

    Energy Technology Data Exchange (ETDEWEB)

    Allouche, Erez; Jaganathan, Arun P.

    2016-10-11

    The invention is a new turbine structure having a housing that rotates. The housing has a sidewall, and turbine blades are attached to a sidewall portion. The turbine may be completely open in the center, allowing space for solids and debris to be directed out of the turbine without jamming the spinning blades/sidewall. The turbine may be placed in a generator for generation of electrical current.

  2. Rotating Machinery Predictive Maintenance Through Expert System

    Directory of Open Access Journals (Sweden)

    M. Sarath Kumar

    2000-01-01

    Full Text Available Modern rotating machines such as turbomachines, either produce or absorb huge amount of power. Some of the common applications are: steam turbine-generator and gas turbine-compressor-generator trains produce power and machines, such as pumps, centrifugal compressors, motors, generators, machine tool spindles, etc., are being used in industrial applications. Condition-based maintenance of rotating machinery is a common practice where the machine's condition is monitored constantly, so that timely maintenance can be done. Since modern machines are complex and the amount of data to be interpreted is huge, we need precise and fast methods in order to arrive at the best recommendations to prevent catastrophic failure and to prolong the life of the equipment. In the present work using vibration characteristics of a rotor-bearing system, the condition of a rotating machinery (electrical rotor is predicted using an off-line expert system. The analysis of the problem is carried out in an Object Oriented Programming (OOP framework using the finite element method. The expert system which is also developed in an OOP paradigm gives the type of the malfunctions, suggestions and recommendations. The system is implemented in C++.

  3. The direction of shift-work rotation impacts metabolic risk independent of chronotype and social jetlag--an exploratory pilot study

    NARCIS (Netherlands)

    Kantermann, Thomas; Duboutay, Françoise; Haubruge, Damien; Hampton, Shelagh; Darling, Andrea L; Berry, Jacqueline L; Kerkhofs, Myriam; Boudjeltia, Karim Zouaoui; Skene, Debra J

    2014-01-01

    The aim of this pilot study was to explore the risk of metabolic abnormalities in steel workers employed in different shift-work rotations. Male workers in a steel factory [16 employed in a fast clockwise rotation (CW), 18 in slow counterclockwise rotation (CC), 9 day workers (DW); mean age 43.3 ± S

  4. Modeling Rotational Evolution of Young T Tauri Stars

    Science.gov (United States)

    Aidle Esin, Ann; Baxter, E.; Corrales, L.

    2007-12-01

    Measurements of rotational periods of pre-main sequence stars in several young open clusters reveal a uniform trend. Stars with masses below 0.25 solar show a bimodal period distribution with fast and slow rotators clustered around 2 day and 8 day periods, respectively, while the period distribution of low-mass stars lacks the slow rotating component. In one popular interpretation of this observational result the slow rotators are identified with the "disk locked'' stars whose periods are fixed to the orbital periods at the inner edge of the accretion disk; the fast rotators are then assumed to have lost their connection to the disk. We argue that this scenario can account for observations only if the mass accretion rate in the disk declines with time. We construct a simple model for the period evolution in T Tauri stars that includes realistic prescriptions for the mass accretion rate, radius evolution and a better treatment of the transition between strong and weak accretion disk coupling. Using this model to simulate period distribution for a young cluster, we can qualitatively reproduce the observed results, but only if the accretion is allowed to continue after the disk and the star are no longer locked. This work was supported by the grant from the Research Corporation.

  5. Chaotic Rotation of Nereid

    Science.gov (United States)

    Dobrovolskis, Anthony R.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    The shape and spin of Neptune's outermost satellite Nereid are still unknown. Ground-based photometry indicates large brightness variations, but different observers report very different lightcurve amplitudes and periods. On the contrary, Voyager 2 images spanning 12 days show no evidence of variations greater than 0.1 mag. The latter suggest either that Nereid is nearly spherical, or that it is rotating slowly. We propose that tides have already despun Nereid's rotation to a period of a few weeks, during the time before the capture of Triton when Nereid was closer to Neptune. Since Nereid reached its present orbit, tides have further despun Nereid to a period on the order of a month. For Nereid's orbital eccentricity of 0.75, tidal evolution ceases when the spin period is still approximately 1/8 of the orbital period. Furthermore, the synchronous resonance becomes quite weak for such high eccentricities, along with other low-order spin orbit commensurabilities. In contrast, high-order resonances become very strong particularly the 6:1, 6.5:1, 7:1, 7.5:1, and 8:1 spin states. If Nereid departs by more than approximately 1% from a sphere, however, these resonances overlap, generating chaos. Our simulations show that Nereid is likely to be in chaotic rotation for any spin period longer than about 2 weeks.

  6. Snakes and spin rotators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.

    1990-06-18

    The generalized snake configuration offers advantages of either shorter total snake length and smaller orbit displacement in the compact configuration or the multi-functions in the split configuration. We found that the compact configuration can save about 10% of the total length of a snake. On other hand, the spilt snake configuration can be used both as a snake and as a spin rotator for the helicity state. Using the orbit compensation dipoles, the spilt snake configuration can be located at any distance on both sides of the interaction point of a collider provided that there is no net dipole rotation between two halves of the snake. The generalized configuration is then applied to the partial snake excitation. Simple formula have been obtained to understand the behavior of the partial snake. Similar principle can also be applied to the spin rotators. We also estimate the possible snake imperfections are due to various construction errors of the dipole magnets. Accuracy of field error of better than 10{sup {minus}4} will be significant. 2 refs., 5 figs.

  7. Bioreactor rotating wall vessel

    Science.gov (United States)

    2001-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.

  8. Rotating regular black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo, E-mail: bambi@fudan.edu.cn; Modesto, Leonardo, E-mail: lmodesto@fudan.edu.cn

    2013-04-25

    The formation of spacetime singularities is a quite common phenomenon in General Relativity and it is regulated by specific theorems. It is widely believed that spacetime singularities do not exist in Nature, but that they represent a limitation of the classical theory. While we do not yet have any solid theory of quantum gravity, toy models of black hole solutions without singularities have been proposed. So far, there are only non-rotating regular black holes in the literature. These metrics can be hardly tested by astrophysical observations, as the black hole spin plays a fundamental role in any astrophysical process. In this Letter, we apply the Newman–Janis algorithm to the Hayward and to the Bardeen black hole metrics. In both cases, we obtain a family of rotating solutions. Every solution corresponds to a different matter configuration. Each family has one solution with special properties, which can be written in Kerr-like form in Boyer–Lindquist coordinates. These special solutions are of Petrov type D, they are singularity free, but they violate the weak energy condition for a non-vanishing spin and their curvature invariants have different values at r=0 depending on the way one approaches the origin. We propose a natural prescription to have rotating solutions with a minimal violation of the weak energy condition and without the questionable property of the curvature invariants at the origin.

  9. Bioreactor rotating wall vessel

    Science.gov (United States)

    2001-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.

  10. Differential rotation of the unstable nonlinear r -modes

    Science.gov (United States)

    Friedman, John L.; Lindblom, Lee; Lockitch, Keith H.

    2016-01-01

    At second order in perturbation theory, the r -modes of uniformly rotating stars include an axisymmetric part that can be identified with differential rotation of the background star. If one does not include radiation reaction, the differential rotation is constant in time and has been computed by Sá. It has a gauge dependence associated with the family of time-independent perturbations that add differential rotation to the unperturbed equilibrium star: For stars with a barotropic equation of state, one can add to the time-independent second-order solution arbitrary differential rotation that is stratified on cylinders (that is a function of distance ϖ to the axis of rotation). We show here that the gravitational radiation-reaction force that drives the r -mode instability removes this gauge freedom; the exponentially growing differential rotation of the unstable second-order r -mode is unique. We derive a general expression for this rotation law for Newtonian models and evaluate it explicitly for slowly rotating models with polytropic equations of state.

  11. Coordinate-Free Rotation Operator.

    Science.gov (United States)

    Leubner, C.

    1979-01-01

    Suggests the use of a coordinate-free rotation operator for the teaching of rotations in Euclidean three space because of its twofold didactic advantage. Illustrates the potentialities of the coordinate-free rotation operator approach by a number of examples. (Author/GA)

  12. On the Product of Rotations

    Science.gov (United States)

    Trenkler, G.; Trenkler, D.

    2008-01-01

    Using the elementary tools of matrix theory, we show that the product of two rotations in the three-dimensional Euclidean space is a rotation again. For this purpose, three types of rotation matrices are identified which are of simple structure. One of them is the identity matrix, and each of the other two types can be uniquely characterized by…

  13. Coupling Onset of Cyclone Upward and Rotation Flows in a Little Bottle

    CERN Document Server

    Kawata, Shigeo

    2012-01-01

    A coupling onset of the cyclone upward and rotation flows is experimentally demonstrated in a little bottle. The rotating flow provides a pressure increase in the outer part of the rotating flow by its centrifugal force. When a gradient of the fluid rotation appears along the rotation axis, the higher-pressure area is localized and pushes the fluid in a low pressure. Then the fluid staying in the central area of the rotation is pushed up along the rotation axis, and the upward wind is enhanced. In this coupling mechanism the rotation gradient is the key; the coupling of the rotation and the upward fluid flow is essentially important for a cyclone buildup, and is well explained experimentally and theoretically.

  14. Differentially Rotating White Dwarfs I: Regimes of Internal Rotation

    Science.gov (United States)

    Ghosh, Pranab; Wheeler, J. Craig

    2017-01-01

    Most viable models of Type Ia supernovae (SNe Ia) require the thermonuclear explosion of a carbon/oxygen white dwarf that has evolved in a binary system. Rotation could be an important aspect of any model for SNe Ia, whether single or double degenerate, with the white dwarf mass at, below, or above the Chandrasekhar limit. Differential rotation is specifically invoked in attempts to account for the apparent excess mass in the super-Chandrasekhar events. Some earlier work has suggested that only uniform rotation is consistent with the expected mechanisms of angular momentum transport in white dwarfs, while others have found pronounced differential rotation. We show that if the baroclinic instability is active in degenerate matter and the effects of magnetic fields are neglected, both nearly uniform rotation and strongly differential rotation are possible. We classify rotation regimes in terms of the Richardson number, Ri. At small values of Ri ≤slant 0.1, we find both the low-viscosity Zahn regime with a nonmonotonic angular velocity profile and a new differential rotation regime for which the viscosity is high and scales linearly with the shear, σ. Employment of Kelvin–Helmholtz viscosity alone yields differential rotation. Large values of Ri ≫ 1 produce a regime of nearly uniform rotation for which the baroclinic viscosity is of intermediate value and scales as {σ }3. We discuss the gap in understanding of the behavior at intermediate values of Ri and how observations may constrain the rotation regimes attained by nature.

  15. Fast growth in control

    NARCIS (Netherlands)

    Z. Rico (Zulay)

    2009-01-01

    textabstractThe focus of this paper is on the influence of the fast growth of organizations on the design process of management control systems. What are the management accounting and control problems that a fast growth organization encounters that can be ascribed to this growth. What are the circum

  16. Fast protein folding kinetics

    Science.gov (United States)

    Gelman, Hannah; Gruebele, Martin

    2014-01-01

    Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816

  17. Ramadan, faste og graviditet

    DEFF Research Database (Denmark)

    Ahmed, Urfan Zahoor; Lykke, Jacob Alexander

    2014-01-01

    , but there are reports of decreased foetal movements. Furthermore, the fasting may have long-term health consequences for the offspring, especially when they reach their middle age. According to Islam and the interpretation, pregnant and breast-feeding women are allowed to postpone the fasting of the month of Ramadan...

  18. Fast protein folding kinetics.

    Science.gov (United States)

    Gelman, Hannah; Gruebele, Martin

    2014-05-01

    Fast-folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast-folding proteins has provided insight into the mechanisms, which allow some proteins to find their native conformation well fast folders also informs our understanding of even 'slow' folding processes: fast folders are small; relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast-folding proteins and provides an overview of the major findings of fast-folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general, as well as some work that is left to do.

  19. Rotation of cometary meteoroids

    Science.gov (United States)

    Čapek, D.

    2014-08-01

    Aims: The rotation of meteoroids caused by gas drag during the ejection from a cometary nucleus has not been studied yet. The aim of this study is to estimate the rotational characteristics of meteoroids after their release from a comet during normal activity. Methods: The basic dependence of spin rate on ejection velocity and meteoroid size is determined analytically. A sophisticated numerical model is then applied to meteoroids ejected from the 2P/Encke comet. The meteoroid shapes are approximated by polyhedrons, which have been determined by a 3D laser scanning method of 36 terrestrial rock samples. These samples come from three distinct sets with different origins and characteristics, such as surface roughness or angularity. Two types of gas-meteoroid interactions and three gas ejection models are assumed. The rotational characteristics of ejected meteoroid population are obtained by numerical integration of equations of motion with random initial conditions and random shape selection. Results: It is proved that the results do not depend on a specific set of shape models and that they are applicable to the (unknown) shapes of real meteoroids. A simple relationship between the median of meteoroid spin frequencies bar{f} (Hz), ejection velocities vej (m s-1), and sizes D (m) is determined. For diffuse reflection of gas molecules from meteoroid's surface it reads as bar{f≃ 2× 10-3 v_ej D-0.88}, and for specular reflection of gas molecules from meteoroid's surface it is bar{f≃ 5× 10-3 v_ej D-0.88}. The distribution of spin frequencies is roughly normal on log scale, and it is relatively wide: a 2σ-interval can be described as (0.1, 10)× bar{f}. Most of the meteoroids are non-principal axis rotators. The median angle between angular momentum vector and spin vector is 12°. About 60% of meteoroids rotate in long-axis mode. The distribution of angular momentum vectors is not random. They are concentrated in the perpendicular direction with respect to the gas

  20. Hydromagnetic quasi-geostrophic modes in rapidly rotating planetary cores

    DEFF Research Database (Denmark)

    Canet, E.; Finlay, Chris; Fournier, A.

    2014-01-01

    The core of a terrestrial-type planet consists of a spherical shell of rapidly rotating, electrically conducting, fluid. Such a body supports two distinct classes of quasi-geostrophic (QG) eigenmodes: fast, primarily hydrodynamic, inertial modes with period related to the rotation time scale......, or shorter than, their oscillation time scale.Based on our analysis, we expect Mercury to be in a regime where the slow magnetic modes are of quasi-free decay type. Earth and possibly Ganymede, with their larger Elsasser numbers, may possess slow modes that are in the transition regime of weak diffusion...

  1. Fast ejendom III

    DEFF Research Database (Denmark)

    Munk-Hansen, Carsten

    Bogen er det tredje bind af tre planlagte bind om fast ejendom: I Overdragelsen, II Bolighandlen og III Ejerbeføjelsen. Fremstillingens giver et grundigt overblik over centrale områder af en omfattende regulering af fast ejendom, med angivelse af litteratur, hvor læseren kan søge yderligere...... oplysning. En ejer af fast ejendom er på særdeles mange områder begrænset i sin råden sammenlignet med ejeren af et formuegode i almindelighed. Fremstillingen tager udgangspunkt i ejerens perspektiv (fremfor samfundets eller myndighedernes). Både den privatretlige og offentligretlige regulering behandles......, eksempelvis ejendomsdannelsen, servitutter, naboretten, hævd, zoneinddelingen, den fysiske planlægning, beskyttelse af natur, beskyttelse af kultur, forurening fra fast ejendom, erstatning for forurening, jordforurening, ekspropriation, byggeri og adgang til fast ejendom....

  2. Islamic Fasting and Diabetes

    Directory of Open Access Journals (Sweden)

    Fereidoun Azizi

    2013-07-01

    Full Text Available The aim of this article is to review health-related aspects of Ramadan fasting in normal individuals and diabetics. During fasting days of Ramadan, glucose homeostasis is maintained by meal taken bepore dawn and by liver glycogen stores. Changes in serum lipids are variable and defend on the quality and quantity of food consumption and changes in weight. Compliant, well controlled type 2 diabetics may observe Ramadan fasting; but fasting is not recommended for type 1, non complaint, poorly controlled and pregnant diabetics. Although Ramadan fasting is safe for all healthy individuals and well controlled diabetics, those with uncontrolled diabetics and diabetics with complications should consult physicians and follow scientific recommendations.

  3. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  4. 26 CFR 1.7701(l)-3 - Recharacterizing financing arrangements involving fast-pay stock.

    Science.gov (United States)

    2010-04-01

    ... involving fast-pay stock. 1.7701(l)-3 Section 1.7701(l)-3 Internal Revenue INTERNAL REVENUE SERVICE....7701(l)-3 Recharacterizing financing arrangements involving fast-pay stock. (a) Purpose and scope. This... corporation has fast-pay stock outstanding for any part of its taxable year. (2) Fast-pay stock—(i)...

  5. Fast, efficient lossless data compression

    Science.gov (United States)

    Ross, Douglas

    1991-01-01

    This paper presents lossless data compression and decompression algorithms which can be easily implemented in software. The algorithms can be partitioned into their fundamental parts which can be implemented at various stages within a data acquisition system. This allows for efficient integration of these functions into systems at the stage where they are most applicable. The algorithms were coded in Forth to run on a Silicon Composers Single Board Computer (SBC) using the Harris RTX2000 Forth processor. The algorithms require very few system resources and operate very fast. The performance of the algorithms with the RTX enables real time data compression and decompression to be implemented for a wide range of applications.

  6. ATLAS FTK Fast Track Trigger

    CERN Document Server

    Iizawa, T; The ATLAS collaboration

    2014-01-01

    The Fast TracKer (FTK) will perform global track reconstruction after each Level-1 trigger accept signal to enable the software-based higher level trigger to have early access to tracking information. FTK is a dedicated processor based on a mixture of advanced technologies. Modern, powerful Field Programmable Gate Arrays (FPGAs) form an important part of the system architecture, and the large level of computing power required for pattern recognition is provided by incorporating standard-cell ASICs named Associative Memory (AM). Motivation and the architecture of the FTK system will be presented, and the status of hardware and simulation will be following.

  7. Association between proximity to and coverage of traditional fast-food restaurants and non-traditional fast-food outlets and fast-food consumption among rural adults.

    Science.gov (United States)

    Sharkey, Joseph R; Johnson, Cassandra M; Dean, Wesley R; Horel, Scott A

    2011-05-20

    The objective of this study is to examine the relationship between residential exposure to fast-food entrées, using two measures of potential spatial access: proximity (distance to the nearest location) and coverage (number of different locations), and weekly consumption of fast-food meals. Traditional fast-food restaurants and non-traditional fast-food outlets, such as convenience stores, supermarkets, and grocery stores, from the 2006 Brazos Valley Food Environment Project were linked with individual participants (n = 1409) who completed the nutrition module in the 2006 Brazos Valley Community Health Assessment. Increased age, poverty, increased distance to the nearest fast food, and increased number of different traditional fast-food restaurants, non-traditional fast-food outlets, or fast-food opportunities were associated with less frequent weekly consumption of fast-food meals. The interaction of gender and proximity (distance) or coverage (number) indicated that the association of proximity to or coverage of fast-food locations on fast-food consumption was greater among women and opposite of independent effects. Results provide impetus for identifying and understanding the complex relationship between access to all fast-food opportunities, rather than to traditional fast-food restaurants alone, and fast-food consumption. The results indicate the importance of further examining the complex interaction of gender and distance in rural areas and particularly in fast-food consumption. Furthermore, this study emphasizes the need for health promotion and policy efforts to consider all sources of fast-food as part of promoting healthful food choices.

  8. Association between proximity to and coverage of traditional fast-food restaurants and non-traditional fast-food outlets and fast-food consumption among rural adults

    Science.gov (United States)

    2011-01-01

    Objective The objective of this study is to examine the relationship between residential exposure to fast-food entrées, using two measures of potential spatial access: proximity (distance to the nearest location) and coverage (number of different locations), and weekly consumption of fast-food meals. Methods Traditional fast-food restaurants and non-traditional fast-food outlets, such as convenience stores, supermarkets, and grocery stores, from the 2006 Brazos Valley Food Environment Project were linked with individual participants (n = 1409) who completed the nutrition module in the 2006 Brazos Valley Community Health Assessment. Results Increased age, poverty, increased distance to the nearest fast food, and increased number of different traditional fast-food restaurants, non-traditional fast-food outlets, or fast-food opportunities were associated with less frequent weekly consumption of fast-food meals. The interaction of gender and proximity (distance) or coverage (number) indicated that the association of proximity to or coverage of fast-food locations on fast-food consumption was greater among women and opposite of independent effects. Conclusions Results provide impetus for identifying and understanding the complex relationship between access to all fast-food opportunities, rather than to traditional fast-food restaurants alone, and fast-food consumption. The results indicate the importance of further examining the complex interaction of gender and distance in rural areas and particularly in fast-food consumption. Furthermore, this study emphasizes the need for health promotion and policy efforts to consider all sources of fast-food as part of promoting healthful food choices. PMID:21599955

  9. Association between proximity to and coverage of traditional fast-food restaurants and non-traditional fast-food outlets and fast-food consumption among rural adults

    Directory of Open Access Journals (Sweden)

    Horel Scott A

    2011-05-01

    Full Text Available Abstract Objective The objective of this study is to examine the relationship between residential exposure to fast-food entrées, using two measures of potential spatial access: proximity (distance to the nearest location and coverage (number of different locations, and weekly consumption of fast-food meals. Methods Traditional fast-food restaurants and non-traditional fast-food outlets, such as convenience stores, supermarkets, and grocery stores, from the 2006 Brazos Valley Food Environment Project were linked with individual participants (n = 1409 who completed the nutrition module in the 2006 Brazos Valley Community Health Assessment. Results Increased age, poverty, increased distance to the nearest fast food, and increased number of different traditional fast-food restaurants, non-traditional fast-food outlets, or fast-food opportunities were associated with less frequent weekly consumption of fast-food meals. The interaction of gender and proximity (distance or coverage (number indicated that the association of proximity to or coverage of fast-food locations on fast-food consumption was greater among women and opposite of independent effects. Conclusions Results provide impetus for identifying and understanding the complex relationship between access to all fast-food opportunities, rather than to traditional fast-food restaurants alone, and fast-food consumption. The results indicate the importance of further examining the complex interaction of gender and distance in rural areas and particularly in fast-food consumption. Furthermore, this study emphasizes the need for health promotion and policy efforts to consider all sources of fast-food as part of promoting healthful food choices.

  10. An approach for online evaluations of dose consequences caused by small rotational setup errors in intracranial stereotactic radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lu Bo; Li, Jonathan; Kahler, Darren; Yan Guanghua; Mittauer, Kathryn; Shi Wenyin; Okunieff, Paul; Liu, Chihray [Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida 32607 (United States)

    2011-11-15

    Purpose: The purpose of this work is to investigate the impact of small rotational errors on the magnitudes and distributions of spatial dose variations for intracranial stereotactic radiotherapy (SRT) treatment setups, and to assess the feasibility of using the original dose map overlaid with rotated contours (ODMORC) method as a fast, online evaluation tool to estimate dose changes (using DVHs) to clinical target volumes (CTVs) and organs-at-risks (OARs) caused by small rotational setup errors. Methods: Fifteen intracranial SRT cases treated with either three-dimensional conformal radiation therapy (3DCRT) or intensity-modulated radiation therapy (IMRT) techniques were chosen for the study. Selected cases have a variety of anatomical dimensions and pathologies. Angles of {+-}3 deg. and {+-}5 deg. in all directions were selected to simulate the rotational errors. Dose variations in different regions of the brain, CTVs, and OARs were evaluated to illustrate the various spatial effects of dose differences before and after rotations. DVHs accounting for rotations that were recomputed by the treatment planning system (TPS) and those generated by the ODMORC method were compared. A framework of a fast algorithm for multicontour rotation implemented by ODMORC is introduced as well. Results: The average values of relative dose variations between original dose and recomputed dose accounting for rotations were greater than 4.0% and 10.0% in absolute mean and in standard deviation, respectively, at the skull and adjacent regions for all cases. They were less than 1.0% and 2.5% in absolute mean and in standard deviation, respectively, for dose points 3 mm away from the skull. The results indicated that spatial dose to any part of the brain organs or tumors separated from the skull or head surface would be relatively stable before and after rotations. Statistical data of CTVs and OARs indicate the lens and cochleas have the large dose variations before and after rotations

  11. CISM Course on Rotating Fluids

    CERN Document Server

    1992-01-01

    The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.

  12. Counter-Rotating Accretion Discs

    OpenAIRE

    Dyda, Sergei; Lovelace, Richard V. E.; Ustyugova, Galina V.; Romanova, Marina M.; Koldoba, Alexander V.

    2014-01-01

    Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud onto the surface of an existing co-rotating disc or from the counter-rotating gas moving radially inward to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc center. We discuss high-resolution axisymmetric hydrodynamic simulations of a viscous counter-rotating disc for cases where the tw...

  13. Elliptical Galaxies: Rotationally Distorted, After All

    Directory of Open Access Journals (Sweden)

    Caimmi, R.

    2009-12-01

    .15$, and low rotationparameters $(0lechi_v^2<0.15$, while fastrotators show large ellipticities $(0.2lehat{e}<0.65$, large anisotropy parameters$(0.15ledelta<0.35$, and large rotationparameters $(0.15lechi_v^2<0.5$. Analternative kinematic classification withrespect to earlier attempts (Emsellem etal. 2007 requires larger samples for providingadditional support to the above mentionedresults. A possible interpretation of slowrotators as nonrotating at all and elongated due to negative anisotropy parameters,instead of flattened due to positiveanisotropy parameters, is exploited.Finally, the elliptical side of the Hubblemorphological sequence is interpreted as asequence of equilibrium (adjoint configurations where the ellipticity is an increasing functionof the rotation parameter, slow rotators correspond to early classes (E0-E2 in the oblate limit and E2-E0 in the prolate limitand fast rotators to late classes (E3-E6.In this view, boundaries are rotationally distorted regardless of angular momentumand stress tensor, where rotation has tobe intended as due to additional kinetic energy of tangential equatorial velocity components,with respect to spherical configurations with isotropic stress tensor.

  14. Effects of symmetrically alternative rotating flow on flocculation

    Institute of Scientific and Technical Information of China (English)

    徐继润; 张育新; 邢军; 孙永正; 徐海燕; 刘正宁; 康勇

    2003-01-01

    A symmetrically alternative rotating flow pattern was designed for flocculation process in order to produce large and dense flocs. The special effects of a symmetrically alternative rotating flow on the diameter and density of flocs were investigated. The results show that under the new fluid conditions, the primary particles on the outer part of the formed flocs may be cut down and the flocs contract at the end of the original rotating direction; then fluid changes its rotating direction, an opposite shearing is imposed to the flocs and makes some primary particles slide along the floc surface, leading to a denser floc; meanwhile, the broken and unflocculated particles on the trajectory may have opportunities to penetrate into or cohere to the flocs. Compared with the conventional rotating flow, the new-designed flow pattern can not only keep the floc size (even enlarge the floc diameter if a suitable flow is chosen) but also increase the floc density effectively.

  15. Centrifugal force induced by relativistically rotating spheroids and cylinders

    CERN Document Server

    Katz, Joseph; Bicak, Jiri; 10.1088/0264-9381/28/6/065004

    2011-01-01

    Starting from the gravitational potential of a Newtonian spheroidal shell we discuss electrically charged rotating prolate spheroidal shells in the Maxwell theory. In particular we consider two confocal charged shells which rotate oppositely in such a way that there is no magnetic field outside the outer shell. In the Einstein theory we solve the Ernst equations in the region where the long prolate spheroids are almost cylindrical; in equatorial regions the exact Lewis "rotating cylindrical" solution is so derived by a limiting procedure from a spatially bound system. In the second part we analyze two cylindrical shells rotating in opposite directions in such a way that the static Levi-Civita metric is produced outside and no angular momentum flux escapes to infinity. The rotation of the local inertial frames in flat space inside the inner cylinder is thus exhibited without any approximation or interpretational difficulties within this model. A test particle within the inner cylinder kept at rest with respect...

  16. Waves from Propulsion Systems of Fast Ferries

    DEFF Research Database (Denmark)

    Taatø, Søren Haugsted; Aage, Christian; Arnskov, Michael M.

    1998-01-01

    Waves from fast ferries have become an environmental problem of growing concern to the public. Fast ferries produce not only higher waves than conventional ships but also fundamentally different wave systems when they sail at supercritical speeds. Hitherto, ship waves have been considered as being...... generated by the ship hulls alone. Whereas this assumption may be reasonable for conventional ships with large hulls and limited propulsive power, the situation is different for fast ferries with their smaller hulls and very large installed power. A simple theoretical model and a series of model tests...... on a monohull fast ferry seem to indicate that a substantial part of the wave-making can be directly attributed to the propulsion system itself. Thus, two wave systems are created with different phases, but with similar frequency contents, which means that they merge into one system behind the ship, very...

  17. Rotating electrical machines

    CERN Document Server

    Le Doeuff, René

    2013-01-01

    In this book a general matrix-based approach to modeling electrical machines is promulgated. The model uses instantaneous quantities for key variables and enables the user to easily take into account associations between rotating machines and static converters (such as in variable speed drives).   General equations of electromechanical energy conversion are established early in the treatment of the topic and then applied to synchronous, induction and DC machines. The primary characteristics of these machines are established for steady state behavior as well as for variable speed scenarios. I

  18. Optical fiber rotation sensing

    CERN Document Server

    Burns, William K; Kelley, Paul

    1993-01-01

    Optical Fiber Rotation Sensing is the first book devoted to Interferometric Fiber Optic Gyros (IFOG). This book provides a complete overview of IFOGs, beginning with a historical review of IFOG development and including a fundamental exposition of basic principles, a discussion of devices and components, and concluding with industry reports on state-of-the-art activity. With several chapters contributed by principal developers of this solid-state device, the result is an authoritative work which will serve as the resource for researchers, students, and users of IFOGs.* * State-of-t

  19. Graphs as rotations

    CERN Document Server

    Zeps, Dainis

    2009-01-01

    Using a notation of corner between edges when graph has a fixed rotation, i.e. cyclical order of edges around vertices, we define combinatorial objects - combinatorial maps as pairs of permutations, one for vertices and one for faces. Further, we define multiplication of these objects, that coincides with the multiplication of permutations. We consider closed under multiplication classes of combinatorial maps that consist of closed classes of combinatorial maps with fixed edges where each such class is defined by a knot. One class among them is special, containing selfconjugate maps.

  20. Catastrophic rotational braking among Sun-like stars. A model of the Sun's rotation evolution

    Science.gov (United States)

    Gondoin, P.

    2017-03-01

    Context. Observations of young open clusters show a bimodal distribution of stellar rotation. In those clusters, Sun-like stars group into two main populations of fast and slow rotators. Beyond an age of approximately 600 Myr, the two populations converge towards a single sequence of slow rotators. Aims: The present study addresses the origin of this bimodal distribution and the cause of its observed evolution. Methods: New prescriptions of mass-loss rate and Alfven radius dependences on Rossby number suggested by observations are implemented in a phenomenological model of angular-momentum loss and redistribution. The obtained model is used to calculate the time evolution of a rotation-period distribution of solar-mass stars similar to that observed in the 5 Myr-old NGC 2362 open cluster. The simulated distributions at subsequent ages are compared with those of h Per, the Pleiades, M 50, M 35, and M 37. Results: The model is able to reproduce the appearance and disappearance of a bimodal rotation-period distribution in open clusters providing that a brief episode of large-angular-momentum loss is included in the early evolution of Sun-like stars. Conclusions: I argue that a transitory episode of large-angular-momentum loss occurs on Sun-like stars with Rossby numbers between 0.13 and 0.3. This phenomenon of enhanced magnetic braking by stellar wind would be mainly driven by a rapid increase of mass loss at a critical rotation rate. This scenario accounts for the bimodal distribution of stellar rotation in open clusters with ages between 20-30 Myr and approximately 600 Myr. The mass-loss rate increase could account for a significant fraction of the X-ray luminosity decay of Sun-like stars in the 0.13-0.3 Rossby number range where a transition from the saturated to the non-saturated regime of X-ray emission is observed. Observed correlations between Li abundance and rotation sequences in the Pleiades and M 34 clusters support this scenario.

  1. FAST Construction Progress

    Science.gov (United States)

    Nan, R. D.; Zhang, H. Y.; Zhang, Y.; Yang, L.; Cai, W. J.; Liu, N.; Xie, J. T.; Zhang, S. X.

    2016-11-01

    The Five-hundred-meter Aperture Spherical radio Telescope (FAST) is a Chinese mega-science project to build the largest single dish radio telescope in the world. A unique karst depression in Guizhou province has been selected as the site to build an active reflector radio telescope with a diameter of 500 m and three outstanding aspects, which enables FAST to have a large sky coverage and the ability of observing astronomical targets with a high precision. Chinese Academy of Sciences and Guizhou province are in charge of FAST construction. The first light of the telescope was expected on September 25, 2016.

  2. Gas cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1972-06-01

    Although most of the development work on fast breeder reactors has been devoted to the use of liquid metal cooling, interest has been expressed for a number of years in alternative breeder concepts using other coolants. One of a number of concepts in which interest has been retained is the Gas-Cooled Fast Reactor (GCFR). As presently envisioned, it would operate on the uranium-plutonium mixed oxide fuel cycle, similar to that used in the Liquid Metal Fast Breeder Reactor (LMFBR), and would use helium gas as the coolant.

  3. On Obliquely Magnetized and Differentially Rotating Stars

    Science.gov (United States)

    Wei, Xing; Goodman, Jeremy

    2015-06-01

    We investigate the interaction of differential rotation and a misaligned magnetic field. The incompressible magnetohydrodynamic equations are solved numerically for a free-decay problem. In the kinematic limit, differential rotation annihilates the non-axisymmetric field on a timescale proportional to the cube root of magnetic Reynolds number (Rm), as predicted by Rädler. Nonlinearly, the outcome depends upon the initial energy in the non-axisymmetric part of the field. Sufficiently weak fields approach axisymmetry as in the kinematic limit; some differential rotation survives across magnetic surfaces, at least on intermediate timescales. Stronger fields enforce uniform rotation and remain non-axisymmetric. The initial field strength that divides these two regimes does not follow the scaling R{{m}-1/3} predicted by quasi-kinematic arguments, perhaps because our Rm is never sufficiently large or because of reconnection. We discuss the possible relevance of these results to tidal synchronization and tidal heating of close binary stars, particularly double white dwarfs.

  4. Streaming potential near a rotating porous disk.

    Science.gov (United States)

    Prieve, Dennis C; Sides, Paul J

    2014-09-23

    Theory and experimental results for the streaming potential measured in the vicinity of a rotating porous disk-shaped sample are described. Rotation of the sample on its axis draws liquid into its face and casts it from the periphery. Advection within the sample engenders streaming current and streaming potential that are proportional to the zeta potential and the disk's major dimensions. When Darcy's law applies, the streaming potential is proportional to the square of the rotation at low rate but becomes invariant with rotation at high rate. The streaming potential is invariant with the sample's permeability at low rate and is proportional to the inverse square of the permeability at high rate. These predictions were tested by determining the zeta potential and permeability of the loop side of Velcro, a sample otherwise difficult to characterize; reasonable values of -56 mV for zeta and 8.7 × 10(-9) m(2) for the permeability were obtained. This approach offers the ability to determine both the zeta potential and the permeability of materials having open structures. Compressing them into a porous plug is unnecessary. As part of the development of the theory, a convenient formula for a flow-weighted volume-averaged space-charge density of the porous medium, -εζ/k, was obtained, where ε is the permittivity, ζ is the zeta potential, and k is the Darcy permeability. The formula is correct when Smoluchowski's equation and Darcy's law are both valid.

  5. Fast Registration Method for Point Clouds Using the Image Information

    Directory of Open Access Journals (Sweden)

    WANG Ruiyan

    2016-01-01

    Full Text Available On the existing laser scanners, there usually is a coaxial camera, which could capture images in the scanning site. For the laser scanners with a coaxial camera, we propose a fast registration method using the image information. Unlike the traditional registration methods that computing the rotation and translation simultaneously, our method calculates them individually. The rotation transformation between the point clouds is obtained by the knowledge of the vision geometry and the image information, while their translation is acquired by our improved ICP algorithm. In the improved ICP algorithm, only the translation vector is updated iteratively, whose input is the point clouds that removing the rotation transformation. Experimental results show that the rotation matrix obtained by the images has a high accuracy. In addition, compared with the traditional ICP algorithm, our algorithm converges faster and is easier to fall into the global optimum.

  6. Experimental observations of driven and intrinsic rotation in tokamak plasmas

    Science.gov (United States)

    Rice, J. E.

    2016-08-01

    Experimental observations of driven and intrinsic rotation in tokamak plasmas are reviewed. For momentum sources, there is direct drive from neutral beam injection, lower hybrid and ion cyclotron range of frequencies waves (including mode conversion flow drive), as well as indirect \\mathbf{j}× \\mathbf{B} forces from fast ion and electron orbit shifts, and toroidal magnetic field ripple loss. Counteracting rotation drive are sinks, such as from neutral drag and toroidal viscosity. Many of these observations are in agreement with the predictions of neo-classical theory while others are not, and some cases of intrinsic rotation remain puzzling. In contrast to particle and heat fluxes which depend on the relevant diffusivity and convection, there is an additional term in the momentum flux, the residual stress, which can act as the momentum source for intrinsic rotation. This term is independent of the velocity or its gradient, and its divergence constitutes an intrinsic torque. The residual stress, which ultimately responds to the underlying turbulence, depends on the confinement regime and is a complicated function of collisionality, plasma shape, and profiles of density, temperature, pressure and current density. This leads to the rich intrinsic rotation phenomenology. Future areas of study include integration of these many effects, advancement of quantitative explanations for intrinsic rotation and development of strategies for velocity profile control.

  7. Rotating Wheel Wake

    Science.gov (United States)

    Lombard, Jean-Eloi; Xu, Hui; Moxey, Dave; Sherwin, Spencer

    2016-11-01

    For open wheel race-cars, such as Formula One, or IndyCar, the wheels are responsible for 40 % of the total drag. For road cars, drag associated to the wheels and under-carriage can represent 20 - 60 % of total drag at highway cruise speeds. Experimental observations have reported two, three or more pairs of counter rotating vortices, the relative strength of which still remains an open question. The near wake of an unsteady rotating wheel. The numerical investigation by means of direct numerical simulation at ReD =400-1000 is presented here to further the understanding of bifurcations the flow undergoes as the Reynolds number is increased. Direct numerical simulation is performed using Nektar++, the results of which are compared to those of Pirozzoli et al. (2012). Both proper orthogonal decomposition and dynamic mode decomposition, as well as spectral analysis are leveraged to gain unprecedented insight into the bifurcations and subsequent topological differences of the wake as the Reynolds number is increased.

  8. Rotating regular black holes

    CERN Document Server

    Bambi, Cosimo

    2013-01-01

    The formation of spacetime singularities is a quite common phenomenon in General Relativity and it is regulated by specific theorems. It is widely believed that spacetime singularities do not exist in Nature, but that they represent a limitation of the classical theory. While we do not yet have any solid theory of quantum gravity, toy models of black hole solutions without singularities have been proposed. So far, there are only non-rotating regular black holes in the literature. These metrics can be hardly tested by astrophysical observations, as the black hole spin plays a fundamental role in any astrophysical process. In this letter, we apply the Newman-Janis algorithm to the Hayward and to the Bardeen black hole metrics. In both cases, we obtain a family of rotating solutions. Every solution corresponds to a different matter configuration. Each family has one solution with special properties, which can be written in Kerr-like form in Boyer-Lindquist coordinates. These special solutions are of Petrov type ...

  9. Rotating black hole hair

    CERN Document Server

    Gregory, Ruth; Wills, Danielle

    2013-01-01

    A Kerr black hole sporting cosmic string hair is studied in the context of the abelian Higgs model vortex. It is shown that a such a system displays much richer phenomenology than its static Schwarzschild or Reissner--Nordstrom cousins, for example, the rotation generates a near horizon `electric' field. In the case of an extremal rotating black hole, two phases of the Higgs hair are possible: Large black holes exhibit standard hair, with the vortex piercing the event horizon. Small black holes on the other hand, exhibit a flux-expelled solution, with the gauge and scalar field remaining identically in their false vacuum state on the event horizon. This solution however is extremely sensitive to confirm numerically, and we conjecture that it is unstable due to a supperradiant mechanism similar to the Kerr-adS instability. Finally, we compute the gravitational back reaction of the vortex, which turns out to be far more nuanced than a simple conical deficit. While the string produces a conical effect, it is con...

  10. Optical rotation sensors

    Science.gov (United States)

    Rotge, J. R.; Simmons, B. J.; Kroncke, G. T.; Stech, D. J.

    1986-05-01

    Research efforts were concentrated on passive ring laser rotation sensor technology. Initial efforts were performed on supportive projects, e.g., laser stabilization, followed by a 0.62 sq m passive resonant ring laser gyro (PRRLG), leading to the development of a 60 sq m system mounted on the pneumatically supported isolation test platform (Iso-Pad) at FJSRL. Numerous sub-system tasks and a feasibility 0.62 sq m PRRLG were completed, supporting projections of very high resolution performance by a large 60 sq m PRRLG. The expected performance of the large PRRLG, on the order of 10 to the minus 10th power ERU (earth rate units), would provide an accurate error model applicable to Air Force operational ring laser gyros, a new source of geophysical data, e.g., earth wobble and variations in earth rotation, a proven design concept applicable to Air Force sensor needs as reference to MX instruments tests, and relativity experiments. This report documents the many accomplishments leading to, and the status of the large PRRLG at the date of the PRRLG stop order, November 1985.

  11. Rotation of Giant Stars

    CERN Document Server

    Kissin, Yevgeni

    2015-01-01

    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5 and $5\\,M_\\odot$, taking into account mass loss on the giant branches and the partitioning of angular momentum between the outer and inner envelope. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag as well as the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles $\\Omega(r)$ is considered in the deep convective envelope, ranging from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force on the inward pumping of angular momentum, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core ro...

  12. Rotational Spectrum of Saccharine

    Science.gov (United States)

    Alonso, Elena R.; Mata, Santiago; Alonso, José L.

    2017-06-01

    A significant step forward in the structure-activity relationships of sweeteners was the assignment of the AH-B moiety in sweeteners by Shallenberger and Acree. They proposed that all sweeteners contain an AH-B moiety, known as glucophore, in which A and B are electronegative atoms separated by a distance between 2.5 to 4 Å. H is a hydrogen atom attached to one of the electronegative atom by a covalent bond. For saccharine, one of the oldest artificial sweeteners widely used in food and drinks, two possible B moieties exist ,the carbonyl oxygen atom and the sulfoxide oxygen atom although there is a consensus of opinion among scientists over the assignment of AH-B moieties to HN-SO. In the present work, the solid of saccharine (m.p. 220°C) has been vaporized by laser ablation (LA) and its rotational spectrum has been analyzed by broadband CP-FTMW and narrowband MB-FTMW Fourier transform microwave techniques. The detailed structural information extracted from the rotational constants and ^{14}N nuclear quadrupole coupling constants provided enough information to ascribe the glucophore's AH and B sites of saccharine. R. S. Shallenberger, T. E. Acree. Nature 216, 480-482 Nov 1967. R. S. Shallenberger. Taste Chemistry; Blackie Academic & Professional, London, (1993).

  13. Pure Nano-Rotation Scanner

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-01-01

    Full Text Available We developed and tested a novel rotation scanner for nano resolution and accurate rotary motion about the rotation center. The scanner consists of circular hinges and leaf springs so that the parasitic error at the center of the scanner in the X and Y directions is minimized, and rotation performance is optimized. Each sector of the scanner's system was devised to have nano resolution by minimizing the parasitic errors of the rotation center that arise due to displacements other than rotation. The analytic optimal design results of the proposed scanner were verified using finite element analyses. The piezoelectric actuators were used to attain nano-resolution performances, and a capacitive sensor was used to measure displacement. A feedback controller was used to minimize the rotation errors in the rotation scanner system under practical conditions. Finally, the performance evaluation test results showed that the resonance frequency was 542 Hz, the resolution was 0.09 μrad, and the rotation displacement was 497.2 μrad. Our test results revealed that the rotation scanner exhibited accurate rotation about the center of the scanner and had good nano precision.

  14. CMS Fast Facts

    Data.gov (United States)

    U.S. Department of Health & Human Services — CMS has developed a new quick reference statistical summary on annual CMS program and financial data. CMS Fast Facts includes summary information on total program...

  15. Renormalization Group Analysis of Weakly Rotating Turbulent Flows

    Institute of Scientific and Technical Information of China (English)

    王晓宏; 周全

    2011-01-01

    Dynamic renormalization group (RNG) analysis is applied to the investigation of the behavior of the infrared limits of weakly rotating turbulence. For turbulent How subject to weak rotation, the anisotropic part in the renormalized propagation is considered to be a perturbation of the isotropic part. Then, with a low-order approximation, the coarsening procedure of RNG transformation is performed. After implementing the coarsening and rescaling procedures, the RNG analysis suggests that the spherically averaged energy spectrum has the scaling behavior E(k) ∝ k11/5 for weakly rotating turbulence. It is also shown that the Coriolis force will disturb the stability of the Kolmogorov -5/3 energy spectrum and will change the scaling behavior even in the case of weak rotation.%Dynamic renormalization group(RNG)analysis is applied to the investigation of the behavior of the infrared limits of weakly rotating turbulence.For turbulent flow subject to weak rotation,the anisotropic part in the renormalized propagation is considered to be a perturbation of the isotropic part.Then,with a low-order approximation,the coarsening procedure of RNG transformation is performed.After implementing the coarsening and rescaling procedures,the RNG analysis suggests that the spherically averaged energy spectrum has the scaling behavior E(k)∝ k-11/5 for weakly rotating turbulence.It is also shown that the Coriolis force will disturb the stability of the Kolmogorov-5/3 energy spectrum and will change the scaling behavior even in the case of weak rotation.

  16. ROTATION CURVES IN (E+S ISOLATED GALAXY PAIRS

    Directory of Open Access Journals (Sweden)

    E. M. Huerta

    2009-01-01

    Full Text Available As part of a broad investigation to quantify the effects of interaction in the evolution of disk galaxies, we measured rotation curves of 102 spirals in mixed morphology pairs (E+S, drawn from the Karachantsev catalogue of isolated pairs of galaxies. In this summary we simply present characteristic rotation curves of spirals in isolated (E+S pairs, in preparation for a future comparison with isolated spirals in a Tully-Fisher diagram.

  17. FAST - FREEDOM ASSEMBLY SEQUENCING TOOL PROTOTYPE

    Science.gov (United States)

    Borden, C. S.

    1994-01-01

    FAST is a project management tool designed to optimize the assembly sequence of Space Station Freedom. An appropriate assembly sequence coordinates engineering, design, utilization, transportation availability, and operations requirements. Since complex designs tend to change frequently, FAST assesses the system level effects of detailed changes and produces output metrics that identify preferred assembly sequences. FAST incorporates Space Shuttle integration, Space Station hardware, on-orbit operations, and programmatic drivers as either precedence relations or numerical data. Hardware sequencing information can either be input directly and evaluated via the "specified" mode of operation or evaluated from the input precedence relations in the "flexible" mode. In the specified mode, FAST takes as its input a list of the cargo elements assigned to each flight. The program determines positions for the cargo elements that maximize the center of gravity (c.g.) margin. These positions are restricted by the geometry of the cargo elements and the location of attachment fittings both in the orbiter and on the cargo elements. FAST calculates every permutation of cargo element location according to its height, trunnion fitting locations, and required intercargo element spacing. Each cargo element is tested in both its normal and reversed orientation (rotated 180 degrees). The best solution is that which maximizes the c.g. margin for each flight. In the flexible mode, FAST begins with the first flight and determines all feasible combinations of cargo elements according to mass, volume, EVA, and precedence relation constraints. The program generates an assembly sequence that meets mass, volume, position, EVA, and precedence constraints while minimizing the total number of Shuttle flights required. Issues associated with ground operations, spacecraft performance, logistics requirements and user requirements will be addressed in future versions of the model. FAST is written in C

  18. Mental rotation and working memory in musicians' dystonia.

    Science.gov (United States)

    Erro, Roberto; Hirschbichler, Stephanie T; Ricciardi, Lucia; Ryterska, Agata; Antelmi, Elena; Ganos, Christos; Cordivari, Carla; Tinazzi, Michele; Edwards, Mark J; Bhatia, Kailash P

    2016-11-01

    Mental rotation of body parts engages cortical-subcortical areas that are actually involved in the execution of a movement. Musicians' dystonia is a type of focal hand dystonia that is grouped together with writer's cramp under the rubric of "occupational dystonia", but it is unclear to which extent these two disorders share common pathophysiological mechanisms. Previous research has demonstrated patients with writer's cramp to have deficits in mental rotation of body parts. It is unknown whether patients with musicians' dystonia would display similar deficits, reinforcing the concept of shared pathophysiology. Eight patients with musicians' dystonia and eight healthy musicians matched for age, gender and musical education, performed a number of tasks assessing mental rotation of body parts and objects as well as verbal and spatial working memories abilities. There were no differences between patients and healthy musicians as to accuracy and reaction times in any of the tasks. Patients with musicians' dystonia have intact abilities in mentally rotating body parts, suggesting that this disorder relies on a highly selective disruption of movement planning and execution that manifests only upon playing a specific instrument. We further demonstrated that mental rotation of body parts and objects engages, at least partially, different cognitive networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Bifurcations of rotating waves in rotating spherical shell convection.

    Science.gov (United States)

    Feudel, F; Tuckerman, L S; Gellert, M; Seehafer, N

    2015-11-01

    The dynamics and bifurcations of convective waves in rotating and buoyancy-driven spherical Rayleigh-Bénard convection are investigated numerically. The solution branches that arise as rotating waves (RWs) are traced by means of path-following methods, by varying the Rayleigh number as a control parameter for different rotation rates. The dependence of the azimuthal drift frequency of the RWs on the Ekman and Rayleigh numbers is determined and discussed. The influence of the rotation rate on the generation and stability of secondary branches is demonstrated. Multistability is typical in the parameter range considered.

  20. Visualizing rotations and composition of rotations with the Rodrigues vector

    Science.gov (United States)

    Valdenebro, Angel G.

    2016-11-01

    The purpose of this paper is to show that the mathematical treatment of three-dimensional rotations can be simplified, and its geometrical understanding improved, using the Rodrigues vector representation. We present a novel geometrical interpretation of the Rodrigues vector. Based on this interpretation and simple geometrical considerations, we derive the Euler-Rodrigues formula, Cayley’s rotation formula and the composition law for finite rotations. The level of this discussion should be suitable for undergraduate physics or engineering courses where rotations are discussed.

  1. Rotator cuff repair using cell sheets derived from human rotator cuff in a rat model.

    Science.gov (United States)

    Harada, Yoshifumi; Mifune, Yutaka; Inui, Atsuyuki; Sakata, Ryosuke; Muto, Tomoyuki; Takase, Fumiaki; Ueda, Yasuhiro; Kataoka, Takeshi; Kokubu, Takeshi; Kuroda, Ryosuke; Kurosaka, Masahiro

    2017-02-01

    To achieve biological regeneration of tendon-bone junctions, cell sheets of human rotator-cuff derived cells were used in a rat rotator cuff injury model. Human rotator-cuff derived cells were isolated, and cell sheets were made using temperature-responsive culture plates. Infraspinatus tendons in immunodeficient rats were resected bilaterally at the enthesis. In right shoulders, infraspinatus tendons were repaired by the transosseous method and covered with the cell sheet (sheet group), whereas the left infraspinatus tendons were repaired in the same way without the cell sheet (control group). Histological examinations (safranin-O and fast green staining, isolectin B4, type II collagen, and human-specific CD31) and mRNA expression (vascular endothelial growth factor; VEGF, type II collagen; Col2, and tenomodulin; TeM) were analyzed 4 weeks after surgery. Biomechanical tests were performed at 8 weeks. In the sheet group, proteoglycan at the enthesis with more type II collagen and isolectin B4 positive cells were seen compared with in the control group. Human specific CD31-positive cells were detected only in the sheet group. VEGF and Col2 gene expressions were higher and TeM gene expression was lower in the sheet group than in the control group. In mechanical testing, the sheet group showed a significantly higher ultimate failure load than the control group at 8 weeks. Our results indicated that the rotator-cuff derived cell sheet could promote cartilage regeneration and angiogenesis at the enthesis, with superior mechanical strength compared with the control. Treatment for rotator cuff injury using cell sheets could be a promising strategy for enthesis of tendon tissue engineering. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:289-296, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Modelling of convective heat and mass transfer in rotating flows

    CERN Document Server

    Shevchuk, Igor V

    2016-01-01

     This monograph presents results of the analytical and numerical modeling of convective heat and mass transfer in different rotating flows caused by (i) system rotation, (ii) swirl flows due to swirl generators, and (iii) surface curvature in turns and bends. Volume forces (i.e. centrifugal and Coriolis forces), which influence the flow pattern, emerge in all of these rotating flows. The main part of this work deals with rotating flows caused by system rotation, which includes several rotating-disk configurations and straight pipes rotating about a parallel axis. Swirl flows are studied in some of the configurations mentioned above. Curvilinear flows are investigated in different geometries of two-pass ribbed and smooth channels with 180° bends. The author demonstrates that the complex phenomena of fluid flow and convective heat transfer in rotating flows can be successfully simulated using not only the universal CFD methodology, but in certain cases by means of the integral methods, self-similar and analyt...

  3. Differential rotation of the unstable nonlinear r-modes

    CERN Document Server

    Friedman, John L; Lockitch, Keith H

    2016-01-01

    At second order in perturbation theory, the $r$-modes of uniformly rotating stars include an axisymmetric part that can be identified with differential rotation of the background star. If one does not include radiation-reaction, the differential rotation is constant in time and has been computed by S\\'a. It has a gauge dependence associated with the family of time-independent perturbations that add differential rotation to the unperturbed equilibrium star: For stars with a barotropic equation of state, one can add to the time-independent second-order solution arbitrary differential rotation that is stratified on cylinders (that is a function of distance $\\varpi$ to the axis of rotation). We show here that the gravitational radiation-reaction force that drives the $r$-mode instability removes this gauge freedom: The expontially growing differential rotation of the unstable second-order $r$-mode is unique. We derive a general expression for this rotation law for Newtonian models and evaluate it explicitly for s...

  4. Rotating Magnetocaloric Effect in an Anisotropic Molecular Dimer.

    Science.gov (United States)

    Lorusso, Giulia; Roubeau, Olivier; Evangelisti, Marco

    2016-03-01

    In contrast to the mainstream research on molecular refrigerants that seeks magnetically isotropic molecules, we show that the magnetic anisotropy of dysprosium acetate tetrahydrate, [{Dy(OAc)3 (H2 O)2}2]⋅4 H2O (1), can be efficiently used for cooling below liquid-helium temperature. This is attained by rotating aligned single-crystal samples in a constant applied magnetic field. The envisioned advantages are fast cooling cycles and potentially compact refrigerators.

  5. FAST Maser Surveys

    Indian Academy of Sciences (India)

    J. S. Zhang

    2014-09-01

    FAST, the Five-hundred meter Aperture Spherical radio Telescope, will become the largest operating single-dish telescope in the coming years. It has many advantages: much better sensitivity for its largest collecting area; large sky coverage due to its innovative design of the active primary surface; extremely radio quiet from its unique location, etc. In this work, I will highlight the future capabilities of FAST to discover and observe both galactic and extragalactic masers.

  6. The Concentric Maclaurin Spheroid method with tides and a rotational enhancement of Saturn's tidal response

    Science.gov (United States)

    Wahl, Sean M.; Hubbard, William B.; Militzer, Burkhard

    2017-01-01

    We extend to three dimensions the Concentric Maclaurin Spheroid method for obtaining the self-consistent shape and gravitational field of a rotating liquid planet, to include a tidal potential from a satellite. We exhibit, for the first time, an important effect of the planetary rotation rate on tidal response of gas giants, whose shape is dominated by the centrifugal potential from rapid rotation. Simulations of planets with fast rotation rates like those of Jupiter and Saturn, exhibit significant changes in calculated tidal love numbers knm when compared with non-rotating bodies. A test model of Saturn fitted to observed zonal gravitational multipole harmonics yields k2 = 0.413 , consistent with a recent observational determination from Cassini astrometry data (Lainey et al., 2016.). The calculated love number is robust under reasonable assumptions of interior rotation rate, satellite parameters, and details of Saturn's interior structure. The method is benchmarked against several published test cases.

  7. Fasting and Urinary Stones

    Directory of Open Access Journals (Sweden)

    Ali Shamsa

    2013-11-01

    Full Text Available Introduction: Fasting is considered as one of the most important practices of Islam, and according to Prophet Mohammad, fasting is obligatory upon Muslims. The aim of this study is to evaluate the effects of fasting on urinary stones. Materials and Methods: Very few studies have been carried out on urinary stones and the effect of Ramadan fasting. The sources of the present study are Medline and articles presented by local and Muslim researchers. Meanwhile, since we are acquainted with three well-known researchers in the field of urology, we contacted them via email and asked for their professional opinions. Results: The results of studies about the relationship of urinary stones and their incidence in Ramadan are not alike, and are even sometimes contradictory. Some believe that increased incidence of urinary stones in Ramadan is related not to fasting, but to the rise of weather temperature in hot months, and an increase in humidity. Conclusion: Numerous biological and behavioral changes occur in people who fast in Ramadan and some researchers believe that urinary stone increases during this month.

  8. Fasting and urinary stones

    Directory of Open Access Journals (Sweden)

    Ali Shamsa

    2013-12-01

    Full Text Available Introduction: Fasting is considered as one of the most important practices of Islam, and according to Prophet Mohammad, fasting is obligatory upon Muslims. The aim of this study is to evaluate the effects of fasting on urinary stones. Materials and Methods:Very few studies have been carried out on urinary stones and the effect of Ramadan fasting. The sources of the present study are Medline and articles presented by local and Muslim researchers. Meanwhile, since we are acquainted with three well-known researchers in the field  of urology, we contacted them via email and asked for their professional opinions. Results:The results of studies about the relationship of urinary stones and their incidence in Ramadan are not alike, and are even sometimes contradictory. Some believe that increased incidence of urinary stones in Ramadan is related not to fasting, but to the rise of weather temperature in hot months, and an increase in humidity. Conclusion: Numerous biological and behavioral changes occur in people who fast in Ramadan and some researchers believe that urinary stone increases during this month.

  9. Fast-growing trees. Sub-project: Applicability of aspen and testing of aspen hybrids for biomass production in short-rotation plantations. Final report; Schnellwachsende Baumarten. Teilvorhaben: Eignung der Baumart Aspe und Pruefung von Aspenhybriden fuer die Biomasseerzeugung in Kurzumtriebsplantagen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Muhs, H.J.; Liesebach, M.; Wuehlisch, G. von; Mulsow, H.; Korsch, M.; Duehring, C.; Rose, A.; Mecke, R.

    1997-06-01

    The suitability of aspen for short-rotation plantations on former agricultural surfaces was investigated according to the following criteria: Growth rate of young trees - biomass production - regeneration after harvesting - competitive strength - resistance to biotic and abiotic damage. The investigations were to find out the extent of variation between the selected varieties and the effects of site conditions. The results were to provide information on selection criteria for aspen in short-rotation plantations. For this purpose, 17 aspen varieties (offspring from crossing and tissue culture cloning) were planted in 4 sites with a total area of about 6.7 ha. Two willow clones and offspring of a Japanese beech were investigated as well. Annual reasurements are to provide information on growth as a function of site conditions, plant neighbourhoods and rotation time. The investigations were supplemented by the result obtained in earlier experimental aspen stands. Information on birds and invertebrate fauna on a short-rotation plantation is to be obtained as well. [Deutsch] Ziel der Versuche ist die Pruefung der Eignung der Aspe fuer die Produktionsform Kurzumtrieb auf zuvor landwirtschaftlich genutzten Flaechen. Geprueft wurden folgende Merkmale: - Jugendwachstum, - Biomasseproduktion, - Regeneration nach einer Beerntung, - Konkurrenzvertraeglichkeit, - Resistenz gegen biotische und abiotische Schaedigungen. Hierbei sollte festgestellt werden, wie gross die Variation zwischen den selektierten Sorten in relevanten Merkmalen ist und wie stark diese durch den Standort beeinflusst werden. Die Ergebnisse sollten Hinweise fuer Selektionskriterien fuer die in der Kurzumtriebswirtschaft einzusetzenden Aspen geben. Dazu wurden 17 Aspennachkommenschaften aus Kreuzungen und Klone aus Gewebekultur geprueft, die an 4 Standorten auf insgesamt rund 6,7 ha angebaut wurden. Weiterhin wurden 2 Weidenklone und Nachkommenschaften einer japanischen Birkenart hinsichtlich ihrer Eignung im

  10. Development of high pressure deuterium gas targets for the generation of intense mono-energetic fast neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Guzek, J. E-mail: jguzek@debeers.co.za; Richardson, K.; Franklyn, C.B.; Waites, A.; McMurray, W.R.; Watterson, J.I.W.; Tapper, U.A.S

    1999-06-01

    Two different technical solutions to the problem of generation of mono-energetic fast neutron beams on the gaseous targets are presented here. A simple and cost-effective design of a cooled windowed gas target system is described in the first part of this paper. It utilises a thin metallic foil window and circulating deuterium gas cooled down to 100 K. The ultimate beam handling capability of such target is determined by the properties of the window. Reliable performance of this gas target system was achieved at 1 bar of deuterium gas, when exposed to a 45 {mu}A beam of 5 MeV deuterons, for periods in excess of 6 h. Cooling of the target gas resulted in increased fast neutron output and improved neutron to gamma-ray ratio. The second part of this paper discusses the design of a high pressure, windowless gas target for use with pulsed, low duty cycle accelerators. A rotating seal concept was applied to reduce the gas load in a differentially pumped system. This allows operation at 1.23 bar of deuterium gas pressure in the gas cell region. Such a gas target system is free from the limitations of the windowed target but special attention has to be paid to the heat dissipation capability of the beam dump, due to the use of a thin target. The rotating seal concept is particularly suitable for use with accelerators such as radio-frequency quadrupole (RFQ) linacs that operate with a very high peak current at low duty cycle. The performance of both target systems was comprehensively characterized using the time-of-flight (TOF) technique. This demonstrated that very good quality mono-energetic fast neutron beams were produced with the slow neutron and gamma-ray component below 10% of the total target output.

  11. Differential rotation on the young solar analogue V889 Herculis

    CERN Document Server

    Koari, Zsolt; Biazzo, Katia; Vida, Krisztian; Marilli, Ettore; Cakirli, Omur

    2010-01-01

    V889 Herculis is one of the brightest single early-G type stars, a young Sun, that is rotating fast enough (P_rot =1.337 days) for mapping its surface by Doppler Imaging. The 10 FOCES spectra collected between 13-16 Aug 2006 at Calar Alto Observatory allowed us to reconstruct one single Doppler image for two mapping lines. The FeI-6411 and CaI-6439 maps, in a good agreement, revealed an asymmetric polar cap and several weaker features at lower latitudes. Applying the sheared-image method with our Doppler reconstruction we perform an investigation to detect surface differential rotation (DR). The resulting DR parameter, deltaOmega/Omega~0.009 of solar type, is compared to previous studies which reported either much stronger shear or comparably weak DR, or just preferred rigid rotation. Theoretical aspects are also considered and discussed.

  12. 313 new asteroid rotation periods from Palomar Transient Factory observations

    CERN Document Server

    Chang, Chan-Kao; Lin, Hsing-Wen; Cheng, Yu-Chi; Ngeow, Chow-Choong; Yang, Ting-Chang; Waszczak, Adam; Kulkarni, Shrinivas R; Levitan, David; Sesar, Branimir; Laher, Russ; Surace, Jason; Prince, Thomas A

    2014-01-01

    A new asteroid rotation period survey have been carried out by using the Palomar Transient Factory (PTF). Twelve consecutive PTF fields, which covered an area of 87 deg$^2$ in the ecliptic plane, were observed in $R$ band with a cadence of $\\sim$20 min during February 15--18, 2013. We detected 2500 known asteroids with a diameter range of 0.5 km $\\leq D \\leq$ 200 km. Of these, 313 objects had highly reliable rotation periods and exhibited the "spin barrier" at $\\sim2$ hours. In contrast to the flat spin rate distribution of the asteroids with 3 km $\\leq D \\leq$ 15 km shown by Pravec et al. (2008), our results deviated somewhat from a Maxwellian distribution and showed a decrease at the spin rate greater than 5 rev/day. One super-fast-rotator candidate and two possible binary asteroids were also found in this work.

  13. On the experimental prediction of the stability threshold speed caused by rotating damping

    Science.gov (United States)

    Vervisch, B.; Derammelaere, S.; Stockman, K.; De Baets, P.; Loccufier, M.

    2016-08-01

    An ever increasing demand for lighter rotating machinery and higher operating speeds results in a raised probability of instabilities. Rotating damping is one of the reasons, instability occurs. Rotating damping, or rotor internal damping, is the damping related to all rotating parts while non-rotating damping appearing in the non-rotating parts. The present study describes a rotating setup, designed to investigate rotating damping experimentally. An efficient experimental procedure is presented to predict the stability threshold of a rotating machine. The setup consists of a long thin shaft with a disk in the middle and clamped boundary conditions. The goal is to extract the system poles as a function of the rotating speed. The real parts of these poles are used to construct the decay rate plot, which is an indication for the stability. The efficiency of the experimental procedure relies on the model chosen for the rotating shaft. It is shown that the shaft behavior can be approximated by a single degree of freedom model that incorporates a speed dependent damping. As such low measurement effort and only one randomly chosen measurement location are needed to construct the decay rate plot. As an excitation, an automated impact hammer is used and the response is measured by eddy current probes. The proposed method yields a reliable prediction of the stability threshold speed which is validated through measurements.

  14. A new methodology for recognizing features in rotational parts using ...

    African Journals Online (AJOL)

    user

    1*Department of Mechanical Engineering, Gandhi Institute of Engineering and ... The integration of Computer Aided Design (CAD) and Computer Aided .... Development of geometric data extraction algorithm to extract geometry and ..... includes Computer Integrated Manufacturing, Scheduling, Optimization and Simulation.

  15. Triaxial rotation in atomic nuclei

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-Shou; GAO Zao-Chun

    2009-01-01

    The Projected Shell Model has been developed to include the spontaneously broken axial symmetry so that the rapidly rotating triaxial nuclei can be described microscopically. The theory provides an useful tool to gain an insight into how a triaxial nucleus rotates, a fundamental question in nuclear structure. We shall address some current interests that are strongly associated with the triaxial rotation. A feasible method to explore the problem has been suggested.

  16. Manganese ferrite thin films Part II: Properties

    NARCIS (Netherlands)

    Hulscher, W.S.

    1972-01-01

    Some properties of evaporated manganese ferrite thin films are investigated, e.g. resistivity, magnetization reversal, Curie temperature, Faraday rotation and optical absorption. The properties are partly related to the partial oxygen pressure present during a preceding annealing process.

  17. Fast Regulation of Vertical Squat Jump during push-off in skilled jumpers

    Directory of Open Access Journals (Sweden)

    Patrick FARGIER

    2016-07-01

    Full Text Available The height of a maximum Vertical Squat Jump (VSJ reflects the useful power produced by a jumper during the push-off phase. In turn this partly depends on the coordination of the jumper's segmental rotations at each instant. The physical system constituted by the jumper has been shown to be very sensitive to perturbations and furthermore the movement is realised in a very short time (ca. 300ms, compared to the timing of known feedback loops. However, the dynamics of the segmental coordination and its efficiency in relation to energetics at each instant of the push-off phase still remained to be clarified. Their study was the main purpose of the present research.Eight young adult volunteers (males performed maximal VSJ. They were skilled in jumping according to their sport activities (track and field or volleyball. A video analysis on the kinematics of the jump determined the influence of the jumpers’ segments rotation on the vertical velocity and acceleration of the body mass center (MC. The efficiency in the production of useful power at the jumpers’ MC level, by the rotation of the segments, was measured in consequence. The results showed a great variability in the segmental movements of the eight jumpers, but homogeneity in the overall evolution of these movements with three consecutive types of coordination in the second part of the push-off (lasting roughly 0.16 s.Further analyses gave insights on the regulation of the push-off, suggesting that very fast regulation(s of the VSJ may be supported by: (a the adaptation of the motor cerebral programming to the jumper’s physical characteristics; (b the control of the initial posture; and (c the jumper’s perception of the position of his MC relative to the ground reaction force during push-off to reduce energetic losses.

  18. Fast Regulation of Vertical Squat Jump during Push-Off in Skilled Jumpers

    Science.gov (United States)

    Fargier, Patrick; Massarelli, Raphael; Rabahi, Tahar; Gemignani, Angelo; Fargier, Emile

    2016-01-01

    The height of a maximum Vertical Squat Jump (VSJ) reflects the useful power produced by a jumper during the push-off phase. In turn this partly depends on the coordination of the jumper's segmental rotations at each instant. The physical system constituted by the jumper has been shown to be very sensitive to perturbations and furthermore the movement is realized in a very short time (ca. 300 ms), compared to the timing of known feedback loops. However, the dynamics of the segmental coordination and its efficiency in relation to energetics at each instant of the push-off phase still remained to be clarified. Their study was the main purpose of the present research. Eight young adult volunteers (males) performed maximal VSJ. They were skilled in jumping according to their sport activities (track and field or volleyball). A video analysis on the kinematics of the jump determined the influence of the jumpers' segments rotation on the vertical velocity and acceleration of the body mass center (MC). The efficiency in the production of useful power at the jumpers' MC level, by the rotation of the segments, was measured in consequence. The results showed a great variability in the segmental movements of the eight jumpers, but homogeneity in the overall evolution of these movements with three consecutive types of coordination in the second part of the push-off (lasting roughly 0.16 s). Further analyses gave insights on the regulation of the push-off, suggesting that very fast regulation(s) of the VSJ may be supported by: (a) the adaptation of the motor cerebral programming to the jumper's physical characteristics; (b) the control of the initial posture; and (c) the jumper's perception of the position of his MC relative to the ground reaction force, during push-off, to reduce energetic losses. PMID:27486404

  19. Rotations, quaternions, and double groups

    CERN Document Server

    Altmann, Simon L

    2005-01-01

    This self-contained text presents a consistent description of the geometric and quaternionic treatment of rotation operators, employing methods that lead to a rigorous formulation and offering complete solutions to many illustrative problems.Geared toward upper-level undergraduates and graduate students, the book begins with chapters covering the fundamentals of symmetries, matrices, and groups, and it presents a primer on rotations and rotation matrices. Subsequent chapters explore rotations and angular momentum, tensor bases, the bilinear transformation, projective representations, and the g

  20. Electronic Control Of Slow Rotations

    Science.gov (United States)

    Howard, David E.; Smith, Dennis A.

    1992-01-01

    Digital/analog circuit controls both angular position and speed of rotation of motor shaft with high precision. Locks angular position of motor to phase of rotation-command clock signal at binary submultiple of master clock signal. Circuit or modified version used to control precisely position and velocity of robotic manipulator, to control translation mechanism of crystal-growing furnace, to position hands of mechanical clock, or to control angular position and rate of rotation in any of large variety of rotating mechanisms.

  1. The Rapidly Rotating Sun

    Science.gov (United States)

    Hanasoge, Shravan M.; Duvall, Thomas L., Jr.; Sreenivasan, Katepalli R.

    2012-01-01

    Convection in the solar interior is thought to comprise structures at a continuum of scales, from large to small. This conclusion emerges from phenomenological studies and numerical simulations though neither covers the proper range of dynamical parameters of solar convection. In the present work, imaging techniques of time-distance helioseismology applied to observational data reveal no long-range order in the convective motion. We conservatively bound the associated velocity magnitudes, as a function of depth and the spherical-harmonic degree l to be 20-100 times weaker than prevailing estimates within the wavenumber band l ux of a solar luminosity outwards? The Sun is seemingly a much faster rotator than previously thought, with advection dominated by Coriolis forces at scales l < 60.

  2. PLT rotating pumped limiter

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, S.A.; Budny, R.V.; Corso, V.; Boychuck, J.; Grisham, L.; Heifetz, D.; Hosea, J.; Luyber, S.; Loprest, P.; Manos, D.

    1984-07-01

    A limiter with a specially contoured front face and the ability to rotate during tokamak discharges has been installed in a PLT pump duct. These features have been selected to handle the unique particle removal and heat load requirements of ICRF heating and lower-hybrid current-drive experiments. The limiter has been conditioned and commissioned in an ion-beam test stand by irradiation with 1 MW power, 200 ms duration beams of 40 keV hydrogen ions. Operation in PLT during ohmic discharges has proven the ability of the limiter to reduce localized heating caused by energetic electron bombardment and to remove about 2% of the ions lost to the PLT walls and limiters.

  3. Rotational Baroclinic Adjustment

    DEFF Research Database (Denmark)

    Holtegård Nielsen, Steen Morten

    In stratified waters like those around Denmark there is a close correlation between the biology of the water masses and their structure and currents; this is known as dynamic biologicaloceanography. The currents are particularly strong near the fronts, which can be seen in several places throughout...... the reciprocal of the socalled Coriolis parameter, and the length scale, which is known as the Rossby radius. Also, because of their limited width currents influenced by rotation are quite persistent. The flow which results from the introduction of a surface level discontinuity across a wide channel is discussed...... of the numerical model a mechanism for the generation of along-frontal instabilities and eddies is suggested. Also, the effect of an irregular bathymetry is studied.Together with observations of wind and water levels some of the oceanographical observations from the old lightvessels are used to study...

  4. Sporcularda rotator cuff problemleri

    OpenAIRE

    Guven, Osman; Guven, Zeynep; Gundes, Hakan; Yalcin, Selim

    2004-01-01

    Rotator cuff tendinitinin etyolojisinde genellikle birden çok faktörün kombinasyonu görülür. Yüzme, raket sporları ve fırlatma sporlarının özellikle gelişmiş ülkelerde giderek yaygınlaşması bu konuya olan ilginin artmasına sebep olmuştur. Eski konseptlerde aktif bir sporcuda tedavinin başarısı genellikle eski atletik seviyesine dönmesi ile ölçülürdü. Son zamanlarda atletik tekniklerin analizi, atroskopik evaluasyon gibi yeni bir Iükse sahip olmamız ve Iiteratürün yeniden gözden geçirilmesi il...

  5. Relativistic superfluid models for rotating neutron stars

    CERN Document Server

    Carter, B

    2001-01-01

    This article starts by providing an introductory overview of the theoretical mechanics of rotating neutron stars as developped to account for the frequency variations, and particularly the discontinuous glitches, observed in pulsars. The theory suggests, and the observations seem to confirm, that an essential role is played by the interaction between the solid crust and inner layers whose superfluid nature allows them to rotate independently. However many significant details remain to be clarified, even in much studied cases such as the Crab and Vela. The second part of this article is more technical, concentrating on just one of the many physical aspects that needs further development, namely the provision of a satisfactorily relativistic (local but not microscopic) treatment of the effects of the neutron superfluidity that is involved.

  6. The digital backend of FAST

    Science.gov (United States)

    Yu, Xinying; Zhang, Xia; Duan, Ran; li, di; Hao, Jie

    2015-08-01

    The receiver system is an important part of FAST (Five-hundred-meter Aperture Spherical Radio Telescope) and plays a key role in determining the performance of the telescope.This research covers three major aspects: establishment of system synchronization and timestamps, field-programmable gate array (FPGA)-based data transmission and analysis, and the rear receiver monitoring system. We intend to combine the use of GPS and a frequency standard instrument with network access to Unix timestamps to form actual timestamps. The data are stored with timestamps that contain integer and fractional seconds to be precise and headers, which are primarily intended to distinguish the data from each other.The data analysis procedures includes converting the timestamp information to real-time information, and merging the 8 channels’ data conversion results into frequency and energy data using corresponding conversion formulae. We must develop tailored monitoring software for the FAST receiver to customize the data format and perform data transmission. Signals on the front-end and back-end of the receiver can be monitored and controlled by adjusting the parameters on the software to increase the flexibility of the receiver.Most operations are performed on FPGA board, which can be shown from the figure, including the analog-to-digital conversion (ADC), fast Fourier transform (FFT), and pulse per second (1PPS) and Unix timestamp access operations.When analog data arrive, we initialize two ADCs at a sampling rate of 3Gsps, following by 8-channel FFT parallel processing.In collaboration with the Institute of Automation, we have developed a custom FPGA board which we call "FDB"("FAST Digital Backend"). The board is integrated with two Virtex-6 and one Virtex-5 high-speed Xilinx chips. The main function of the two Virtex-6 devices is to run the FFT and PFB programs, whereas the main function of Virtex-5 is configuration of the board.This research is indispensable for realizing the

  7. Assessing Rotation-Invariant Feature Classification for Automated Wildebeest Population Counts.

    Directory of Open Access Journals (Sweden)

    Colin J Torney

    Full Text Available Accurate and on-demand animal population counts are the holy grail for wildlife conservation organizations throughout the world because they enable fast and responsive adaptive management policies. While the collection of image data from camera traps, satellites, and manned or unmanned aircraft has advanced significantly, the detection and identification of animals within images remains a major bottleneck since counting is primarily conducted by dedicated enumerators or citizen scientists. Recent developments in the field of computer vision suggest a potential resolution to this issue through the use of rotation-invariant object descriptors combined with machine learning algorithms. Here we implement an algorithm to detect and count wildebeest from aerial images collected in the Serengeti National Park in 2009 as part of the biennial wildebeest count. We find that the per image error rates are greater than, but comparable to, two separate human counts. For the total count, the algorithm is more accurate than both manual counts, suggesting that human counters have a tendency to systematically over or under count images. While the accuracy of the algorithm is not yet at an acceptable level for fully automatic counts, our results show this method is a promising avenue for further research and we highlight specific areas where future research should focus in order to develop fast and accurate enumeration of aerial count data. If combined with a bespoke image collection protocol, this approach may yield a fully automated wildebeest count in the near future.

  8. Fast magnetohydrodynamic density waves in spiral galaxies

    Science.gov (United States)

    Lou, Yu-Qing; Han, J. L.; Fan, Zuhui

    1999-09-01

    The newly observed large-scale structures of a southern grand-design spiral galaxy NGC 2997 in total and polarized radio-continuum emission together with their overall correlations with the known optical spiral structure are physically interpreted in terms of fast magnetohydrodynamic (MHD) density waves in contrast to slow MHD density waves in NGC 6946. The global spiral pattern of such fast MHD density waves extends from the very centre, where the disc rotates almost rigidly within ~0.5arcmin, all the way to the outer disc with a more or less flat rotation curve. To strengthen the case, several known features of spiral galaxies M51 and IC 342 are referred to and their pattern identifications discussed. It is emphasized that the nature of a magnetized spiral galaxy would be much better appreciated by examining large-scale structures in optical, atomic hydrogen Hi, total and polarized radio-continuum and infrared emission together. As various star-formation processes occur concurrently and/or sequentially in spiral arms of high gas concentration, relatively broad and fuzzy Hi arms, roughly coincident with optical arms in the inner disc, are expected to extend from the extremities of fading optical arms further into the outer gas disc. We predict that the south-east `magnetic arm', apparently isolated from any optical features, in total and polarized radio-continuum intensity maps of NGC 2997 should be associated with an Hi gas arm yet to be detected in 21-cm line emission.

  9. Modeling rigid magnetically rotated microswimmers: rotation axes, bistability, and controllability.

    Science.gov (United States)

    Meshkati, Farshad; Fu, Henry Chien

    2014-12-01

    Magnetically actuated microswimmers have recently attracted attention due to many possible biomedical applications. In this study we investigate the dynamics of rigid magnetically rotated microswimmers with permanent magnetic dipoles. Our approach uses a boundary element method to calculate a mobility matrix, accurate for arbitrary geometries, which is then used to identify the steady periodically rotating orbits in a co-rotating body-fixed frame. We evaluate the stability of each of these orbits. We map the magnetoviscous behavior as a function of dimensionless Mason number and as a function of the angle that the magnetic field makes with its rotation axis. We describe the wobbling motion of these swimmers by investigating how the rotation axis changes as a function of experimental parameters. We show that for a given magnetic field strength and rotation frequency, swimmers can have more than one stable periodic orbit with different rotation axes. Finally, we demonstrate that one can improve the controllability of these types of microswimmers by adjusting the relative angle between the magnetic field and its axis of rotation.

  10. Regimes of Internal Rotation in Differentially Rotating White Dwarfs

    Science.gov (United States)

    Wheeler, J. Craig; Ghosh, Pranab

    2017-01-01

    Most viable models of Type Ia supernovae (SN Ia) require the thermonuclear explosion of a carbon/oxygen white dwarf that has evolved in a binary system. Rotation could be an important aspect of any model for SN Ia, whether single or double degenerate, with the white dwarf mass at, below, or above the Chandrasekhar limit. Differential rotation is specifically invoked in attempts to account for the apparent excess mass in the super--Chandrasekhar events. Some earlier work has suggested that only uniform rotation is consistent with the expected mechanisms of angular momentum transport in white dwarfs, while others have found pronounced differential rotation. We show that if the baroclinic instability is active in degenerate matter and the effects of magnetic fields are neglected, both nearly-uniform and strongly-differential rotation are possible. We classify rotation regimes in terms of the Richardson number, Ri. At small values of Ri > 1 produce a regime of nearly-uniform rotation for which the baroclinic viscosity is of intermediate value and scales as σ3. We discuss the gap in understanding of the behavior at intermediate values of Ri and how observations may constrain the rotation regimes attained by nature.

  11. Unidirectional Rotation of Molecules Measured by the Rotational Doppler Effect

    Directory of Open Access Journals (Sweden)

    Prior Yehiam

    2013-03-01

    Full Text Available A pair of linearly polarized pump pulses induce field-free unidirectional molecular rotation, which is detected by a delayed circularly polarized probe. The polarization and spectrum of the probe are modified by the interaction with the molecules, in accordance with the Rotational Doppler Effect.

  12. Cause Analysis and Treatment on Overswing of Rotating Part of No. 2 Unit in Liujia Hydropower Station%六甲水电站2号机组转动部分摆度超标原因分析及处理

    Institute of Scientific and Technical Information of China (English)

    苏家敏; 陈颖海; 梁桂泉

    2015-01-01

    No.2 unit of Liujia hydropower station of Jinchengjiang hydropower plant was reconstructed in October 2009. Since it was put into operation, the water guide bearing pad deformed, the chrome steel gaskets for upper and lower guide bearing pads are damaged and the stator scrapped the rotor, which were resulting from increased force on guide bearing pads caused by overswing of rotating part. To solve these problems, the engineers analyze the fault causes and present some treatment measures, which obtain good results.%金城江水力发电厂六甲水电站2号机组2009年10月进行增容改造,自投产以来,机组转动部分摆度超标的问题一直没有解决,由于摆度超标,机组的振动区增大,导致机组导瓦受力增加,出现了水导瓦变形、上下导瓦铬钢垫损坏、水轮机“扫膛”等问题,针对这一问题电厂技术人员对转动部分摆度超标原因进行分析处理,取得了明显效果。

  13. Rotational molding of bio-polymers

    Science.gov (United States)

    Greco, Antonio; Maffezzoli, Alfonso; Forleo, Stefania

    2014-05-01

    This paper is aimed to study the suitability of bio-polymers, including poly-lactic acid (PLLA) and Mater-Bi, for the production of hollow components by rotational molding. In order to reduce the brittleness of PLLA, the material was mixed with two different plasticizers, bis-ethyl-hexyl-phthalate (DEHP) and poly-ethylene-glycol (PEG). The materials were characterized in terms of sinterability. To this purpose, thermomechanical (TMA) analysis was performed at different heating rates, in order to identify the endset temperatures of densification and the onset temperatures of degradation. Results obtained indicated that the materials are characterized by a very fast sintering process, occurring just above the melting temperature, and an adequately high onset of degradation. The difference between the onset of degradation and the endset of sintering, defined as the processing window of the polymer, is sufficiently wide, indicating that the polymers can be efficiently processed by rotational molding. Therefore, a laboratory scale apparatus was used for the production of PLLA and Mater-Bi prototypes. The materials were processed using very similar conditions to those used for LLDPE. The production of void-free samples of uniform wall thickness was considered as an indication of the potentiality of the process for the production of biodegradable containers.

  14. NEW ALGORITHM FOR FAST INTEGER AMBIGUITY RESOLUTION

    Institute of Scientific and Technical Information of China (English)

    HEXiao-feng; HUXiao-ping

    2005-01-01

    Fast integer ambiguity resolution is referred as a key part in precision relative positioning of the GPS carrier phase. A new algorithm for fast integer ambiguity resolution based on LAMBDA and FASF methods is proposed. This algorithm integrates the LAMBDA method and the FASF method, thus improving the efficiency of the ambiguity resolution. Firstly, the ambiguity search space transformation in the LAMBDA method is used,and then the FASF method is used to search ambiguities. Experiments in the relative positioning of about 1 km static baseline demonstrate that the error is less than 1 cm.

  15. Sodium fast reactors with closed fuel cycle

    CERN Document Server

    Raj, Baldev; Vasudeva Rao, PR 0

    2015-01-01

    Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, safety analysis, validations, engineering, construction, and commissioning aspectsFeatures a special chapter on allied sciences to highlight advanced reactor core materials, specialized manufacturing technologies, chemical sensors, in-service inspecti

  16. The fast code

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, L.N.; Wilson, R.E. [Oregon State Univ., Dept. of Mechanical Engineering, Corvallis, OR (United States)

    1996-09-01

    The FAST Code which is capable of determining structural loads on a flexible, teetering, horizontal axis wind turbine is described and comparisons of calculated loads with test data are given at two wind speeds for the ESI-80. The FAST Code models a two-bladed HAWT with degrees of freedom for blade bending, teeter, drive train flexibility, yaw, and windwise and crosswind tower motion. The code allows blade dimensions, stiffnesses, and weights to differ and models tower shadow, wind shear, and turbulence. Additionally, dynamic stall is included as are delta-3 and an underslung rotor. Load comparisons are made with ESI-80 test data in the form of power spectral density, rainflow counting, occurrence histograms, and azimuth averaged bin plots. It is concluded that agreement between the FAST Code and test results is good. (au)

  17. A fast friend

    Institute of Scientific and Technical Information of China (English)

    高怡

    2010-01-01

    我们都知道fast food的意思是“快餐”。那fast friend能解释为“快速或速成的朋友”吗?也许你会说:“什么是速成朋友呀?It doesn’t make sense.”没错,交朋友怎么会有速成的呢?原来;fast还有一个意思是“忠实的、牢固的”,所以a fast friend的真正意思是“可靠、忠实的朋友”。

  18. Fast Distributed Gradient Methods

    CERN Document Server

    Jakovetic, Dusan; Moura, Jose M F

    2011-01-01

    The paper proposes new fast distributed optimization gradient methods and proves convergence to the exact solution at rate O(\\log k/k), much faster than existing distributed optimization (sub)gradient methods with convergence O(1/\\sqrt{k}), while incurring practically no additional communication nor computation cost overhead per iteration. We achieve this for convex (with at least one strongly convex,) coercive, three times differentiable and with Lipschitz continuous first derivative (private) cost functions. Our work recovers for distributed optimization similar convergence rate gains obtained by centralized Nesterov gradient and fast iterative shrinkage-thresholding algorithm (FISTA) methods over ordinary centralized gradient methods. We also present a constant step size distributed fast gradient algorithm for composite non-differentiable costs. A simulation illustrates the effectiveness of our distributed methods.

  19. Quasilocal rotating conformal Killing horizons

    CERN Document Server

    Chatterjee, Ayan

    2015-01-01

    The formulation of quasi-local conformal Killling horizons(CKH) is extended to include rotation. This necessitates that the horizon be foliated by 2-spheres which may be distorted. Matter degrees of freedom which fall through the horizon is taken to be a real scalar field. We show that these rotating CKHs also admit a first law in differential form.

  20. Rotation of the planet mercury.

    Science.gov (United States)

    Jefferys, W H

    1966-04-08

    The equations of motion for the rotation of Mercury are solved for the general case by an asymptotic expansion. The findings of Liu and O'Keefe, obtained by numerical integration of a special case, that it is possible for Mercury's rotation to be locked into a 2:3 resonance with its revolution, are confirmed in detail. The general solution has further applications.

  1. KEPLER RAPIDLY ROTATING GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.; Paz-Chinchón, F.; Chagas, M. L. das; Leão, I. C.; Oliveira, G. Pereira de; Silva, R. Rodrigues da; Roque, S.; Oliveira, L. L. A. de; Silva, D. Freire da; De Medeiros, J. R., E-mail: renan@dfte.ufrn.br [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal RN (Brazil)

    2015-07-10

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surface rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.

  2. Kepler rapidly rotating giant stars

    CERN Document Server

    Costa, A D; Bravo, J P; Paz-Chinchón, F; Chagas, M L das; Leão, I C; de Oliveira, G Pereira; da Silva, R Rodrigues; Roque, S; de Oliveira, L L A; da Silva, D Freire; De Medeiros, J R

    2015-01-01

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of sub-stellar companions by their hosting stars. In the present letter we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting very short rotation period with values ranging from 13 to 55 days. This finding points for remarkable surface rotation rates, up to 18 times the Sun rotation. These giants are combined with 6 other recently listed in the literature for mid-IR diagnostic based on WISE information, from which a trend for an infrared excess is revealed for at least a half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.

  3. Fast ejendom II

    DEFF Research Database (Denmark)

    Munk-Hansen, Carsten

    Fremstillingen påviser, at lov om forbrugerbeskyttelse ved erhvervelse af fast ejendom mv. lider af en række svagheder og at ankenævnspraksis bevæger sig væk fra retspraksis på en række områder.......Fremstillingen påviser, at lov om forbrugerbeskyttelse ved erhvervelse af fast ejendom mv. lider af en række svagheder og at ankenævnspraksis bevæger sig væk fra retspraksis på en række områder....

  4. Moms og fast ejendom

    DEFF Research Database (Denmark)

    Edlund, Hans Henrik

    1999-01-01

    I artiklen gives et overblik over, hvorledes fast ejendom behandles momsmæssigt. Derfor findes en kort skitsering af reglerne for moms på byggearbejder, afgrænsningen mellem momspligtig og momsfri udlejning, muligheden for frivillig registrering af udlejning samt opgørelse af reguleringsforpligte......I artiklen gives et overblik over, hvorledes fast ejendom behandles momsmæssigt. Derfor findes en kort skitsering af reglerne for moms på byggearbejder, afgrænsningen mellem momspligtig og momsfri udlejning, muligheden for frivillig registrering af udlejning samt opgørelse af...

  5. Fast Josephson vortex

    Energy Technology Data Exchange (ETDEWEB)

    Malishevskii, A.S.; Silin, V.P.; Uryupin, S.A

    2002-12-30

    For the magnetically coupled waveguide and long Josephson junction we gave the analytic description of two separate velocity domains where the free motion of traveling vortex (2{pi}-kink) exists. The role of the mutual influence of waveguide and long Josephson junction is discussed. It is shown the possibility of the fast vortex motion with the velocity much larger than Swihart velocity of Josephson junction and close to the speed of light in the waveguide. The excitation of motion of such fast Josephson vortex is described.

  6. ATLAS fast physics monitoring

    Indian Academy of Sciences (India)

    Karsten Köneke; on behalf of the ATLAS Collaboration

    2012-11-01

    The ATLAS experiment at the Large Hadron Collider is recording data from proton–proton collisions at a centre-of-mass energy of 7 TeV since the spring of 2010. The integrated luminosity has grown nearly exponentially since then and continues to rise fast. The ATLAS Collaboration has set up a framework to automatically process the rapidly growing dataset and produce performance and physics plots for the most interesting analyses. The system is designed to give fast feedback. The histograms are produced within hours of data reconstruction (2–3 days after data taking). Hints of potentially interesting physics signals obtained this way are followed up by physics groups.

  7. Slowly rotating homogeneous masses revisited

    CERN Document Server

    Reina, Borja

    2015-01-01

    Hartle's model for slowly rotating stars has been extensively used to compute equilibrium configurations of slowly rotating stars to second order in perturbation theory in General Relativity, given a barotropic equation of state (EOS). A recent study based on the modern theory of perturbed matchings show that the model must be amended to accommodate EOS's in which the energy density does not vanish at the surface of the non rotating star. In particular, the expression for the change in mass given in the original model, i.e. a contribution to the mass that arises when the perturbations are chosen so that the pressure of the rotating and non rotating configurations agree, must be modified with an additional term. In this paper, the amended change in mass is calculated for the case of constant density stars.

  8. Bidirectional optical rotation of cells

    Directory of Open Access Journals (Sweden)

    Jiyi Wu

    2017-08-01

    Full Text Available Precise and controlled rotation manipulation of cells is extremely important in biological applications and biomedical studies. Particularly, bidirectional rotation manipulation of a single or multiple cells is a challenge for cell tomography and analysis. In this paper, we report an optical method that is capable of bidirectional rotation manipulation of a single or multiple cells. By launching a laser beam at 980 nm into dual-beam tapered fibers, a single or multiple cells in solutions can be trapped and rotated bidirectionally under the action of optical forces. Moreover, the rotational behavior can be controlled by altering the relative distance between the two fibers and the input optical power. Experimental results were interpreted by numerical simulations.

  9. Bidirectional optical rotation of cells

    Science.gov (United States)

    Wu, Jiyi; Zhang, Weina; Li, Juan

    2017-08-01

    Precise and controlled rotation manipulation of cells is extremely important in biological applications and biomedical studies. Particularly, bidirectional rotation manipulation of a single or multiple cells is a challenge for cell tomography and analysis. In this paper, we report an optical method that is capable of bidirectional rotation manipulation of a single or multiple cells. By launching a laser beam at 980 nm into dual-beam tapered fibers, a single or multiple cells in solutions can be trapped and rotated bidirectionally under the action of optical forces. Moreover, the rotational behavior can be controlled by altering the relative distance between the two fibers and the input optical power. Experimental results were interpreted by numerical simulations.

  10. Optomechanics for absolute rotation detection

    Science.gov (United States)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  11. Rotational superradiance in fluid laboratories

    CERN Document Server

    Cardoso, Vitor; Richartz, Mauricio; Weinfurtner, Silke

    2016-01-01

    Rotational superradiance has been predicted theoretically decades ago, and is the chief responsible for a number of important effects and phenomenology in black hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behaviour of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. By confining the superradiant modes near the rotating cylinder, an instability sets in. Our findings are experimentally testable in existing fluid laboratories and hence offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.

  12. Rotational evolution of slow-rotators sequence stars

    CERN Document Server

    Lanzafame, Alessandro C

    2015-01-01

    The observed mass-age-rotation relationship in open clusters shows the progressive development of a slow-rotators sequence at masses lower than 1.2 $M_{\\odot}$. After 0.6 Gyr, almost all stars have settled on this sequence. The observed clustering on this sequence suggests that it corresponds to some equilibrium or asymptotic condition that still lacks a complete theoretical interpretation, crucial to our understanding of the stellar angular momentum evolution. We couple a rotational evolution model that takes into account internal differential rotation with classical and new proposals for the wind braking law, and fit models to the data using a Monte Carlo Markov Chain method tailored to the case at hand. We explore the extent to which these models are able to reproduce the mass and time dependence of the stellar rotational evolution on the slow-rotators sequence. The description of the early evolution (0.1-0.6 Gyr) of the slow-rotators sequence requires taking into account the transfer of angular momentum f...

  13. Nanoparticles in dilute solution : A numerical study of rotational diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Evensen, Tom Richard

    2008-06-15

    This thesis is dedicated to Brownian dynamics simulations of rotational diffusion. A rotation dynamics engine has been implemented and tested. This engine will in the future be integrated as a part of a complete Brownian dynamics simulation tool. The special case, when translational motion can be ignored, has thoroughly been studied. Two choices of generalized coordinates describing angular orientation of the particles are used. The Euler angles, which constitute the classical choice, and the Cartesian components of the rotation vector, which was recently introduced as an alternative, are being compared with regards to computational efficiency. Results from both equilibrium and non-equilibrium simulations are presented. The consistency of two new algorithms is demonstrated on systems of free rigid particles with arbitrary surface topographies. The algorithms make use of only the principal values of the rotational mobility tensor, assuming the corresponding principal axes coincide with the body-fixed coordinate system. These three scalars contain all information about the particle surface topography relevant for rotational diffusion. The calculation of the mobility tensor can be performed in a pre-calculation step, which makes the algorithm itself highly efficient. Both choices of generalized coordinates correctly reproduce theoretical predictions, but we have found that the algorithm using the Cartesian components of the rotation vector as generalized coordinates outperform its counterpart using the Euler angles by up to a factor 1000 in extreme cases. The reason for this improvement is that the algorithm using the Cartesian components of the rotation vector is free of singularities. (Author). refs. figs

  14. Controlled Rotation and Manipulation of Individual Molecular Motors

    Science.gov (United States)

    Kersell, Heath; Perera, U. G. E.; Ample, F.; Zhang, Y.; Vives, G.; Echeverria, J.; Grisolia, M.; Rapenne, G.; Joachim, C.; Hla, S.-W.

    2015-03-01

    The design of artificial molecular machines often takes inspiration from macroscopic machines, but the parallels between the two are frequently only superficial because many molecular machines are governed by quantum processes. Previously, chemically and light driven rotary molecular motors have been developed. For electrically driven motors, tunneling electrons from the tip of a scanning tunneling microscope (STM) have been used to drive rotation in a simple rotor into a single direction and to move a wheeled molecule across a surface. Here, we show that a single standalone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or counterclockwise direction [1] by selective inelastic electron tunneling through different sub-units of the motor. Our motor is composed of a tripodal stator for vertical positioning, a five-arm rotator for controlled rotations, and a Ru atomic ball bearing connecting the static and rotational parts. The directional rotation originates from saw-tooth-like rotational potentials, which are determined by the internal molecular structure and are independent of the surface adsorption site. This project is supported by the US DOE, BES grant: DE-FG02-02ER46012.

  15. Magnetostrophic Rotating Magnetoconvection

    Science.gov (United States)

    King, Eric; Aurnou, Jonathan

    2016-11-01

    Planetary magnetic fields are generated by turbulent convection within their vast interior liquid metal cores. Although direct observation is not possible, this liquid metal circulation is thought to be dominated by the controlling influences of Coriolis and Lorentz forces. Theory famously predicts that local-scale convection naturally settles into the so-called magnetostrophic state, where the Coriolis and Lorentz forces partially cancel, and convection is optimally efficient. To date, no laboratory experiments have reached the magnetostrophic regime in turbulent liquid metal convection. Furthermore, computational dynamo simulations have as yet failed to produce a globally magnetostrophic dynamo, which has led some to question the existence of the magnetostrophic state. Here, we present results from the first turbulent magnetostrophic rotating magnetoconvection experiments using the liquid metal gallium. We find that turbulent convection in the magnetostrophic regime is, in fact, maximally efficient. The experimental results clarify these previously disparate results, suggesting that the fluid dynamics saturate in magnetostrophic balance within turbulent liquid metal, planetary cores. The authors thank the NSF Geophysics Program for financial support.

  16. Stochastic Circumplanetary Dynamics of Rotating Non-Spherical Dust Particles

    Science.gov (United States)

    Makuch, Martin; Brilliantov, N. V.; Sremcevic, M.; Spahn, F.; Krivov, A. V.

    2006-12-01

    Influence of stochastically fluctuating radiation pressure on the dynamics of dust grains on circumplanetary orbits was studied. Stochasticity stems from the permanent change of the particle cross-section due to rotation of nonspherical grains, exposed to the solar radiation. We found that stochasticity depends on the characteristic angular velocity of particles which, according to our estimates, spins very fast on the time scale of the orbital motion. According to this we modelled the stochastic part of the radiation pressure by a Gaussian white noise. Gauss perturbation equations with the radiation pressure being a sum of the deterministic and stochastic component have been used. We observed monotonous increasing standard deviation of the orbital elements, that is, the diffusive-like behaviour of the ensemble, which results in a spatial spreading of initially confined set of particles. By linear approximation we obtained expression for the effective diffusion coefficients and estimate their dependence on the geometrical characteristics of particles and their spin. Teoretical results were compared with numerical simulations performed for the putative dust tori of Mars. Our theory agrees fairly well with simulations for the initial period of the system evolution. The agreement however deteriorates with increasing time where impact of the non-linear terms of the perturbation equations becomes important. Analysis shows that the theoretical results may estimate the low boundary of the time-dependent standard deviation of the orbital elements. In the case of dust ejected from Martian moon Deimos we observed a change of orbital elements up to 10% of their initial values during the first 1000 years of orbital evolution. Our results indicate that the stochastic modulation of the radiation pressure can play an important role in the circumplanetary dynamics of dust and may, together with further noise sources (shadow, planetary bowshock, charge fluctuations, etc

  17. Rotation of the Universe at different cosmological epochs

    Science.gov (United States)

    Chechin, L. M.

    2016-06-01

    A step-by-step foundation for the differential character of the Universe's rotation is presented. First, invoking the concept of spacetime foam with spin, it is reasonable to assume that the very early Universe can be described by the Dirac equation. Second, it is shown using the Ehrenfest theorem that, from a classical point of view, the early Universe can be described by the Papapetrou equations. Third, it is stressed that our Universe can perform only rotational motion. It is shown based on the spin part of the Papapetrou equations that the Universe's rotation depends appreciably on the physical properties of a specific cosmological epoch. The rotational angular velocity is calculated for three basic cosmological epochs: the matter-dominated epoch, the transition period (from domination of matter to domination of vacuum), and the vacuum-dominated epoch.

  18. Advances in Molecular Rotational Spectroscopy for Applied Science

    Science.gov (United States)

    Harris, Brent; Fields, Shelby S.; Pulliam, Robin; Muckle, Matt; Neill, Justin L.

    2017-06-01

    Advances in chemical sensitivity and robust, solid-state designs for microwave/millimeter-wave instrumentation compel the expansion of molecular rotational spectroscopy as research tool into applied science. It is familiar to consider molecular rotational spectroscopy for air analysis. Those techniques for molecular rotational spectroscopy are included in our presentation of a more broad application space for materials analysis using Fourier Transform Molecular Rotational Resonance (FT-MRR) spectrometers. There are potentially transformative advantages for direct gas analysis of complex mixtures, determination of unknown evolved gases with parts per trillion detection limits in solid materials, and unambiguous chiral determination. The introduction of FT-MRR as an alternative detection principle for analytical chemistry has created a ripe research space for the development of new analytical methods and sampling equipment to fully enable FT-MRR. We present the current state of purpose-built FT-MRR instrumentation and the latest application measurements that make use of new sampling methods.

  19. Finite Element Computational Dynamics of Rotating Systems

    Directory of Open Access Journals (Sweden)

    Jaroslav Mackerle

    1999-01-01

    Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element analysis of rotor dynamics problems that were published in 1994–1998. It contains 319 citations. Also included, as separate subsections, are finite element analyses of rotor elements – discs, shafts, spindles, and blades. Topics dealing with fracture mechanics, contact and stability problems of rotating machinery are also considered in specific sections. The last part of the bibliography presents papers dealing with specific industrial applications.

  20. A Fast Measuring Method for the Inner Diameter of Coaxial Holes

    Science.gov (United States)

    Wang, Lei; Yang, Fangyun; Fu, Luhua; Wang, Zhong; Yang, Tongyu; Liu, Changjie

    2017-01-01

    A new method for fast diameter measurement of coaxial holes is studied. The paper describes a multi-layer measuring rod that installs a single laser displacement sensor (LDS) on each layer. This method is easy to implement by rotating the measuring rod, and immune from detecting the measuring rod’s rotation angles, so all diameters of coaxial holes can be calculated by sensors’ values. While revolving, the changing angles of each sensor’s laser beams are approximately equal in the rod’s radial direction so that the over-determined nonlinear equations of multi-layer holes for fitting circles can be established. The mathematical model of the measuring rod is established, all parameters that affect the accuracy of measurement are analyzed and simulated. In the experiment, the validity of the method is verified, the inner diameter measuring precision of 28 μm is achieved by 20 μm linearity LDS. The measuring rod has advantages of convenient operation and easy manufacture, according to the actual diameters of coaxial holes, and also the varying number of holes, LDS’s mounting location can be adjusted for different parts. It is convenient for rapid diameter measurement in industrial use. PMID:28327499

  1. Handel med fast ejendom

    DEFF Research Database (Denmark)

    Edlund, Hans Henrik

    Bogen tilstræber at give et overblik over nogle af de vigtigste generelle problemområder på markedet for ejendomshandel, der jo bliver mere og mere kompliceret. Værket er opdelt i følgende hovedafsnit: Ejendomsbegrebet. Indgåelse af aftale om salg af fast ejendom. Begrænsninger i adgangen til...

  2. Not so fast

    DEFF Research Database (Denmark)

    Marras, Stefano; Noda, Takuji; Steffensen, John Fleng

    2015-01-01

    , it is an open question whether such supposedly very fast swimmers do use high-speed bursts when feeding on evasive prey, in addition to using their bill for slashing prey. Here, we measured the swimming behavior of sailfish by using high-frequency accelerometry and high-speed video observations during predator...

  3. Integral Fast Reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path.

  4. Fast Air Temperature Sensors

    DEFF Research Database (Denmark)

    Hendricks, Elbert

    1998-01-01

    The note documents briefly work done on a newly developed sensor for making fast temperature measurements on the air flow in the intake ports of an SI engine and in the EGR input line. The work reviewed has been carried out in close cooperation with Civ. Ing. Michael Føns, the author (IAU...

  5. Parallel Fast Legendre Transform

    NARCIS (Netherlands)

    Alves de Inda, M.; Bisseling, R.H.; Maslen, D.K.

    2001-01-01

    We discuss a parallel implementation of a fast algorithm for the discrete polynomial Legendre transform We give an introduction to the DriscollHealy algorithm using polynomial arithmetic and present experimental results on the eciency and accuracy of our implementation The algorithms were implemente

  6. Foinaven fast track flowlines

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.H.; Mair, J.

    1996-12-31

    The decision by British Petroleum to develop offshore fields west of the Shetlands in water depths exceeding 500 meters within three and a half years of discovery posed a unique submarine pipeline installation challenge. This paper summarizes the salient features of a fast track program to install a diverless subsea pipeline system using rigid reeled pipe technology in an offshore frontier area.

  7. Fast food tips

    Science.gov (United States)

    ... Order smaller servings when you can. Split some fast-food items to reduce calories and fat. Ask for a "doggy bag." You can also leave the extra food on your plate. Your food choices can teach your children how to eat healthy, too. Choosing a variety ...

  8. Fast Fourier Orthogonalization

    NARCIS (Netherlands)

    Ducas, L.; Prest, T.; Abramov, S.A.; Zima, E.V.; Gao, X-S.

    2016-01-01

    The classical fast Fourier transform (FFT) allows to compute in quasi-linear time the product of two polynomials, in the {\\em circular convolution ring} R[x]/(x^d−1) --- a task that naively requires quadratic time. Equivalently, it allows to accelerate matrix-vector products when the matrix is *circ

  9. Tachycardia | Fast Heart Rate

    Science.gov (United States)

    ... SA) node --- the heart's natural pacemaker - sends out electrical signals faster than usual. The heart rate is fast, but the heart beats properly. Causes of sinus tachycardia A rapid heartbeat may be your body's response to common conditions such as: Fever Anxiety ...

  10. Rotational stability of different hip revision systems

    Directory of Open Access Journals (Sweden)

    M. Thomsen

    2014-01-01

    Full Text Available The authors present an experimental investigation that compares the primary rotational fixation of 4 revision stems. Methods: Each stem was implanted into 4 synthetic femora. Micromotion of stem and bone was measured at defined sites under torque application. Femoral neck osteotomy and AAOS type I and III defects were simulated by reproducible saw lines. Results: Up to a type I defect, all implants are capable of bridging the substance loss in a rotationally stable manner. The relative movements show a dependence both on the bone defect and on implant design. Even within the basic design types clear differences (p < 0.0001 are partially observable. Major differences were seen in type III defects. Whereas the conical stem designs had the ability to bridge the extensive defect the cylindric shapes showed no rotationally stability. Conclusion: As the major fixation area the femoral isthmus plays a decisive role for all tested stems. Due to enormous and partly selective load transmission of the conical stems the cylindrical designs is good for type I defects. In case of an extensive substance loss the decision should be a conical implant.

  11. Rotations et moments angulaires enmécanique quantique

    Science.gov (United States)

    van de Wiele, J.

    Rotations and angular moments in quantum mechanics As in classical mechanics, rotation in quantum mechanics is a transformation which deals with angular momentum. The difference with classical mechanics comes from the fact that angular momentum is a vector operator and not a usual vector and its components do not commute. As for any transformation in quantum mechanics, to each rotation we can associate an operator which acts in state space. The expression of this operator depends on whether the rotation is passive, that is we do a rotation of the coordinate axes and the physical system is left unchanged, or active, in which case the coordinate axes are unchanged and the rotation is performed on the physical system. In the first part (Chaps. 1 and 2) of this book, details concerning both aspects are given. Following the definition of the geometrical transformation associated with the most general rotation, we give the expression of the rotation operator for specific cases. Transformation laws for scalar fields, vector fields and spinor fields are given as well as transformation laws for scalar operators, vector operators and more generally, for operators of any rank. The second part (Chaps. 3 and 4) deals with angular momentum algebra. We define the coupling coefficients of 2, 3 and 4 angular momenta as well as the recoupling coefficients. The definition of the irreductible tensor operator, which is a generalisation of scalar and vector operators, is given as well as the Wigner-Eckart theorem. The application of this theorem to more complex cases is studied. Comme en mécanique classique, la rotation en mécanique quantique est une transformation qui fait intervenir le moment cinétique. La différence avec la mécanique classique vient du fait que le moment cinétique est un opérateur vectoriel et non pas un vecteur ordinaire, et que ses composantes ne commutent pas deux-à-deux. Comme pour toute transformation en mécanique quantique, à chaque rotation est

  12. Statistical and dynamical aspects in fission process: The rotational degrees of freedom

    Indian Academy of Sciences (India)

    Bency John

    2015-08-01

    In the final phases of fission process, there are fast collective rotational degrees of freedom, which can exert a force on the slower tilting rotational degree. Experimental observations that lead to this realization and theoretical studies that account for dynamics of the processes are discussed briefly. Supported by these studies, and by assuming a conditional equilibrium of the collective rotational modes at a pre-scission point, a new statistical model for fission fragment angular and spin distributions has been developed. This model gives a consistent description of the fragment angular and spin distributions for a wide variety of heavy- and light-ion-induced fission reactions.

  13. Non-classical continuum theory for solids incorporating internal rotations and rotations of Cosserat theories

    Science.gov (United States)

    Surana, K. S.; Joy, A. D.; Reddy, J. N.

    2017-03-01

    This paper presents a non-classical continuum theory in Lagrangian description for solids in which the conservation and the balance laws are derived by incorporating both the internal rotations arising from the Jacobian of deformation and the rotations of Cosserat theories at a material point. In particular, in this non-classical continuum theory, we have (i) the usual displacements ( ±b \\varvec{u}) and (ii) three internal rotations ({}_i ±b \\varvec{Θ}) about the axes of a triad whose axes are parallel to the x-frame arising from the Jacobian of deformation (which are completely defined by the skew-symmetric part of the Jacobian of deformation), and (iii) three additional rotations ({}_e ±b \\varvec{Θ}) about the axes of the same triad located at each material point as additional three degrees of freedom referred to as Cosserat rotations. This gives rise to ±b \\varvec{u} and {}_e ±b \\varvec{{Θ} as six degrees of freedom at a material point. The internal rotations ({}_i ±b \\varvec{Θ}), often neglected in classical continuum mechanics, exist in all deforming solid continua as these are due to Jacobian of deformation. When the internal rotations {}_i ±b \\varvec{Θ} are resisted by the deforming matter, conjugate moment tensor arises that together with {}_i ±b \\varvec{Θ} may result in energy storage and/or dissipation, which must be accounted for in the conservation and the balance laws. The Cosserat rotations {}_e ±b \\varvec{Θ} also result in conjugate moment tensor which, together with {}_e ±b \\varvec{Θ}, may also result in energy storage and/or dissipation. The main focus of the paper is a consistent derivation of conservation and balance laws that incorporate aforementioned physics and associated constitutive theories for thermoelastic solids. The mathematical model derived here has closure, and the constitutive theories derived using two alternate approaches are in agreement with each other as well as with the condition resulting from the

  14. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF WARM AND HOT JUPITERS: EFFECTS OF ORBITAL DISTANCE, ROTATION PERIOD, AND NONSYNCHRONOUS ROTATION

    Energy Technology Data Exchange (ETDEWEB)

    Showman, Adam P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Fortney, Jonathan J., E-mail: showman@lpl.arizona.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-03-10

    Efforts to characterize extrasolar giant planet (EGP) atmospheres have so far emphasized planets within 0.05 AU of their stars. Despite this focus, known EGPs populate a continuum of orbital separations from canonical hot Jupiter values (0.03–0.05 AU) out to 1 AU and beyond. Unlike typical hot Jupiters, these more distant EGPs will not generally be synchronously rotating. In anticipation of observations of this population, we here present three-dimensional atmospheric circulation models exploring the dynamics that emerge over a broad range of rotation rates and incident stellar fluxes appropriate for warm and hot Jupiters. We find that the circulation resides in one of two basic regimes. On typical hot Jupiters, the strong day–night heating contrast leads to a broad, fast superrotating (eastward) equatorial jet and large day–night temperature differences. At faster rotation rates and lower incident fluxes, however, the day–night heating gradient becomes less important, and baroclinic instabilities emerge as a dominant player, leading to eastward jets in the midlatitudes, minimal temperature variations in longitude, and, often, weak winds at the equator. Our most rapidly rotating and least irradiated models exhibit similarities to Jupiter and Saturn, illuminating the dynamical continuum between hot Jupiters and the weakly irradiated giant planets of our own solar system. We present infrared (IR) light curves and spectra of these models, which depend significantly on incident flux and rotation rate. This provides a way to identify the regime transition in future observations. In some cases, IR light curves can provide constraints on the rotation rate of nonsynchronously rotating planets.

  15. On regular rotating black holes

    Science.gov (United States)

    Torres, R.; Fayos, F.

    2017-01-01

    Different proposals for regular rotating black hole spacetimes have appeared recently in the literature. However, a rigorous analysis and proof of the regularity of this kind of spacetimes is still lacking. In this note we analyze rotating Kerr-like black hole spacetimes and find the necessary and sufficient conditions for the regularity of all their second order scalar invariants polynomial in the Riemann tensor. We also show that the regularity is linked to a violation of the weak energy conditions around the core of the rotating black hole.

  16. On regular rotating black holes

    CERN Document Server

    Torres, Ramon

    2016-01-01

    Different proposals for regular rotating black hole spacetimes have appeared recently in the literature. However, a rigorous analysis and proof of the regularity of this kind of spacetimes is still lacking. In this note we analyze rotating Kerr-like black hole spacetimes and find the necessary and sufficient conditions for the regularity of all their second order scalar invariants polynomial in the Riemann tensor. We also show that the regularity is linked to a violation of the weak energy conditions around the core of the rotating black hole.

  17. Cooling system for rotating machine

    Science.gov (United States)

    Gerstler, William Dwight; El-Refaie, Ayman Mohamed Fawzi; Lokhandwalla, Murtuza; Alexander, James Pellegrino; Quirion, Owen Scott; Palafox, Pepe; Shen, Xiaochun; Salasoo, Lembit

    2011-08-09

    An electrical machine comprising a rotor is presented. The electrical machine includes the rotor disposed on a rotatable shaft and defining a plurality of radial protrusions extending from the shaft up to a periphery of the rotor. The radial protrusions having cavities define a fluid path. A stationary shaft is disposed concentrically within the rotatable shaft wherein an annular space is formed between the stationary and rotatable shaft. A plurality of magnetic segments is disposed on the radial protrusions and the fluid path from within the stationary shaft into the annular space and extending through the cavities within the radial protrusions.

  18. Rotational spectra and molecular structure

    CERN Document Server

    Wollrab, James E

    1967-01-01

    Physical Chemistry, A Series of Monographs: Rotational Spectra and Molecular Structure covers the energy levels and rotational transitions. This book is divided into nine chapters that evaluate the rigid asymmetric top molecules and the nuclear spin statistics for asymmetric tops. Some of the topics covered in the book are the asymmetric rotor functions; rotational transition intensities; classes of molecules; nuclear spin statistics for linear molecules and symmetric tops; and classical appearance of centrifugal and coriolis forces. Other chapters deal with the energy levels and effects of ce

  19. Rotated and Scaled Alamouti Coding

    CERN Document Server

    Willems, Frans M J

    2008-01-01

    Repetition-based retransmission is used in Alamouti-modulation [1998] for $2\\times 2$ MIMO systems. We propose to use instead of ordinary repetition so-called "scaled repetition" together with rotation. It is shown that the rotated and scaled Alamouti code has a hard-decision performance which is only slightly worse than that of the Golden code [2005], the best known $2\\times 2$ space-time code. Decoding the Golden code requires an exhaustive search over all codewords, while our rotated and scaled Alamouti code can be decoded with an acceptable complexity however.

  20. WSES: HIGH SECURED DATA ENCRYPTION AND AUTHENTICATION USING WEAVING, ROTATION AND FLIPPING

    Directory of Open Access Journals (Sweden)

    A. Yesu Raj

    2015-12-01

    Full Text Available Data security is the very important part in the network data communication. Avoidance of the information hacking and steeling are very challenging part for network data communication. Now-a-days people are using many encryption and decryption techniques for data security. But all encryption and decryption techniques are having more time occupation or less security for the process. This paper proposed high level security approach to encryption and decryption for data security. Two levels of securities are used in this proposed method. First one is data encryption and the second one is hash value generation. The proposed Weaving based Superior Encryption Standard (WSES uses a novel weaving based approach. The weaving array generation is done by Elementary Number Theory Notation (ENTN method. The weaving array has multiple private keys for XOR encryption. After encryption the error value is extracted from the encrypted array and weaving array. This error value is sent to the other side. The novel approach for hash value generation uses the encrypted array. After encryption, the encrypted array is rotated into four degrees and each degree data are converted to vector format and arranged on by one under the vector. Finally a 2D Rotational Encryption Matrix (REM is obtained. After this process a REM copy is converted to mirror flip and it is need as Flipped Matrix (FM. The FM is concatenated under the REM and converted to vector using the zigzag operation. Finally this process gives two bytes hash value from the vector. This proposed method executes very fast and provide high security. This method is much reliable to small size applications and also used for any type of data security.