WorldWideScience

Sample records for fast reactor cores

  1. Fast reactor core monitoring device

    International Nuclear Information System (INIS)

    Sanda, Toshio; Inoue, Kotaro; Azekura, Kazuo.

    1982-01-01

    Purpose: To enable the rapid and accurate on-line identification of the state of a fast reactor core by effectively utilizing the measured data on the temperature and flow rate of the coolant. Constitution: The spacial power distribution and average assembly power are quickly calculated using an approximate calculating method, the measured values and the calculated values of the inlet and outlet temperature difference, flow rate and coolant physical values of an assembly are combined and are individually obtained, the most definite respective values and their errors are obtained by a least square method utilizing a formula of the relation between these values, and the power distribution and the temperature distribution of a reactor core are estimated in this manner. Accordingly, even when the measuring accuracy and the calculating accuracy are equal as in a fast reactor, the power distribution and the temperature distribution can be accurately estimated on-line at a high speed in a nuclear reactor, information required for the operator is provided, and the reactor can thus be safely and efficiently operated. (Yoshihara, H.)

  2. Intrinsically secure fast reactors with dense cores

    International Nuclear Information System (INIS)

    Slessarev, Igor

    2007-01-01

    Secure safety, resistance to weapons material proliferation and problems of long-lived wastes remain the most important 'painful points' of nuclear power. Many innovative reactor concepts have been developed aimed at a radical enhancement of safety. The promising potential of innovative nuclear reactors allows for shifting accents in current reactor safety 'strategy' to reveal this worth. Such strategy is elaborated focusing on the priority for intrinsically secure safety features as well as on sure protection being provided by the first barrier of defence. Concerning the potential of fast reactors (i.e. sodium cooled, lead-cooled, etc.), there are no doubts that they are able to possess many favourable intrinsically secure safety features and to lay the proper foundation for a new reactor generation. However, some of their neutronic characteristics have to be radically improved. Among intrinsically secure safety properties, the following core parameters are significantly important: reactivity margin values, reactivity feed-back and coolant void effects. Ways of designing intrinsically secure safety features in fast reactors (titled hereafter as Intrinsically Secure Fast Reactors - ISFR) can be found in the frame of current reactor technologies by radical enhancement of core neutron economy and by optimization of core compositions. Simultaneously, respecting resistance to proliferation, by using non-enriched fuel feed as well as a core breeding gain close to zero, are considered as the important features (long-lived waste problems will be considered in a separate paper). This implies using the following reactor design options as well as closed fuel cycles with natural U as the reactor feed: ·Ultra-plate 'dense cores' of the ordinary (monolithic) type with negative total coolant void effects. ·Modular type cores. Multiple dense modules can be embedded in the common reflector for achieving the desired NPP total power. The modules can be used also independently (as

  3. Core of a fast neutron nuclear reactor

    International Nuclear Information System (INIS)

    Giacometti, Christian; Mougniot, J.-C.; Ravier, Jean.

    1974-01-01

    The fast neutron nuclear reactor described includes an internal area in fissile material completely enclosed in an area of fertile material forming the outside blanket. The internal fissile area is provided with housings exclusively filled with fertile material forming one or more inside blankets. In this core the internal blankets are shaped like rings vertically separating superimposed rings of fissile material. The blanket of material nearest to the periphery is circumscribed externally by a contour having an indented shape on its straight section so as to increase the contact area between this blanket and the external blanket [fr

  4. Thermo-hydraulic simulations of the experimental fast reactor core

    International Nuclear Information System (INIS)

    Silveira Luz, M. da; Braz Filho, F.A.; Borges, E.M.

    1985-01-01

    A study of the core and performance of metallic fuel of the experimental fast reactor, from the thermal-hydraulic point of view, was carried out employing the COBRA IV-I code. The good safety characteristics of this reactor and the feasibility of using metallic fuel in experimental fast reactor were demonstrated. (Author) [pt

  5. The seismic assessment of fast reactor cores in the UK

    International Nuclear Information System (INIS)

    Duthie, J.C.; Dostal, M.

    1988-01-01

    The design of the UK Commercial Demonstration Fast Reactor (CDFR) has evolved over a number of years. The design has to meet two seismic requirements: (i) the reactor must cause no hazard to the public during or after the Safe Shutdown Earthquake (SSE); (ii) there must be no sudden reduction in safety for an earthquake exceeding the SSE. The core is a complicated component in the whole reactor. It is usually represented in a very simplified manner in the seismic assessment of the whole reactor station. From this calculation, a time history or response spectrum can be generated for the diagrid, which supports the core, and for the above core structure, which supports the main absorber rods. These data may then be used to perform a detailed assessment of the reactor core. A new simplified model of the core response may then be made and used in a further calculation of the whole reactor. The calculation of the core response only, is considered in the remainder of this paper. One important feature of the fast reactor core, compared with other reactors, is that the components are relatively thin and flexible to promote neutron economy and heat transfer. A further important feature is that there are very small gaps between the wrapper tubes. This leads to very strong fluid-coupling effects. These effects are likely to be beneficial, but adequate techniques to calculate them are only just being developed. 9 refs, figs

  6. Development of high performance core for large fast breeder reactors

    International Nuclear Information System (INIS)

    Inoue, Kotaro; Kawashima, Katsuyuki; Watari, Yoshio.

    1982-01-01

    Subsequently to the fast breeder prototype reactor ''Monju'', the construction of a demonstration reactor with 1000 MWe output is planned. This research aims at the establishment of the concept of a large core with excellent fuel breeding property and safety for a demonstration and commercial reactors. For the purpose, the optimum specification of fuel design as a large core was clarified, and the new construction of a core was examined, in which a disk-shaped blanket with thin peripheral edge is introduced at the center of a core. As the result, such prospect was obtained that the time for fuel doubling would be 1/2, and the energy generated in a core collapse accident would be about 1/5 as compared with a large core using the same fuel as ''Monju''. Generally, as a core is enlarged, the rate of breeding lowers. If a worst core collapse accident occurs, the scale of accident will be very large in the case of a ''Monju'' type large core. In an unhomogeneous core, an internal blanket is provided in the core for the purpose of improving the breeding property and safety. Hitachi Ltd. developed the concept of a large core unhomogeneous in axial direction and proposed it. The research on the fuel design for a large core, an unhomogeneous core and its core collapse accident is reported. (Kako, I.)

  7. Vessel core seismic interaction for a fast reactor

    International Nuclear Information System (INIS)

    Martelli, A.; Maresca, G.

    1984-01-01

    This report deals with the analysis carried out in collaboration between ENEA and NIRA for optimizing the iterative procedure applied for the evaluation of the effects of the vessel core dynamic interaction for a fast reactor in the case of a earthquake. In fact, as shown in a previous report the convergence of such procedure was very slow for the design solution adopted for the PEC reactor, i.e. with a core restraint plate located close to the top of the core elements. This study, although performed making use of preliminary data (the same of the cited previous report) demonstrates that the convergence is fast if a suitable linear core model is applied in the first iteration linear calculations carried out by NIRA, with an intermediate stiffness with respect to those corresponding to the two limit models previously assumed and increased damping coefficients. Thus, the optimized iterative procedures is now applied in the PEC reactor block seismic verification analysis

  8. Fast reactor core concepts to improve transmutation efficiency

    International Nuclear Information System (INIS)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi

    2015-01-01

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate

  9. Characteristics of fast reactor core designs and closed fuel cycle

    International Nuclear Information System (INIS)

    Poplavsky, V.M.; Eliseev, V.A.; Matveev, V.I.; Khomyakov, Y.S.; Tsyboulya, A.M.; Tsykunov, A.G.; Chebeskov, A.N.

    2007-01-01

    On the basis of the results of recent studies, preliminary basic requirements related to characteristics of fast reactor core and nuclear fuel cycle were elaborated. Decreasing reactivity margin due to approaching breeding ratio to 1, requirements to support non-proliferation of nuclear weapons, and requirements to decrease amount of radioactive waste are under consideration. Several designs of the BN-800 reactor core have been studied. In the case of MOX fuel it is possible to reach a breeding ratio about 1 due to the use of larger size of fuel elements with higher fuel density. Keeping low axial fertile blanket that would be reprocessed altogether with the core, it is possible to set up closed fuel cycle with the use of own produced plutonium only. Conceptual core designs of advanced commercial reactor BN-1800 with MOX and nitride fuel are also under consideration. It has been shown that it is expedient to use single enrichment fuel core design in this reactor in order to reach sufficient flattening and stability of power rating in the core. The main feature of fast reactor fuel cycle is a possibility to utilize plutonium and minor actinides which are the main contributors to the long-living radiotoxicity in irradiated nuclear fuel. The results of comparative analytical studies on the risk of plutonium proliferation in case of open and closed fuel cycle of nuclear power are also presented in the paper. (authors)

  10. Uncertainty evaluation of fast reactor core seismic response

    International Nuclear Information System (INIS)

    Martelli, A.; Forni, M.; Amendola, A.; Lucia, A.C.; Maresca, G.

    1983-01-01

    Response Surface Methodology (RSM) has been applied to the evaluation of the uncertainties on the seismic behaviour of a fast reactor core. For this study preliminary data concerning the Italian PEC reactor test facility have been used. The structural dynamic analysis has been performed by means of the SAP IV code for the whole reactor block and CORALIE for the core. Once a certain acceleration time history at the ground has been assumed, the characteristics of the acceleration time-history at the core support grid, related to the vessel-core dynamic interaction, the reactor vessel stiffness, the frequency response, damping and impact coefficients of the core elements, and the number of core element rows assumed in the non-linear core calculations have been identified as the major contributors to the overall uncertainty. For each element type the responses calculated with CORALIE have been approximated by means of polynomial functions, whose adequacy in the variable space investigated has been tested by means of a further set of dynamic calculations. Finally the input uncertainties have been propagated by a Monte Carlo routine (MUP) under different assumptions to assess the sensitivity of the output distribution with respect to the kind of input probability distributions. The aim of this latter analysis step is the proposal of an adequate approach for verifying that the control rods succeed at a high probability to fall inside their guide-tubes in the case of an earth-quake, so that the reactor can be safely shut-down. The paper describes the details of the study and demonstrates RSM adequacy for the analysis of the input uncertainty effects on the core seismic response. It also shows that the core element frequencies and damping coefficients, as well as the vessel-core dynamic interaction parameters, are the main variables affecting such response, which therefore need a sufficiently precise definition. (orig.)

  11. Analysis of the seismic response of a fast reactor core

    International Nuclear Information System (INIS)

    Martelli, A.; Maresca, G.

    1984-01-01

    This report deals with the methods to apply for a correct evaluation of the reactor core seismic response. Reference is made to up-to-date design data concerning the PEC core, taking into account the presence of the core-restraint plate located close to the PEC core elements top and applying the optimized iterative procedure between the vessel linear calculation and the non-linear ones limited to the core, which had been described in a previous report. It is demonstrated that the convergence of this procedure is very fast, similar to what obtained in the calculations of the cited report, carried out with preliminary data, and it is shown that the cited methods allow a reliable evaluation of the excitation time histories for the experimental tests in support of the seismic verification of the shutdown system and the core of a fast reactor, as well as relevant data for the experimental, structural and functional, verification of the core elements in the case of seismic loads

  12. Study of the seismic behaviour of the fast reactor cores

    International Nuclear Information System (INIS)

    Cerqueira, E.

    1998-01-01

    This work studies the seismic behaviour of fast neutrons reactor cores. It consists in analyzing the tests made on the models Rapsodie and Symphony by using the calculation code Castem 2000. Te difficulty is in the description of connections of the system and the effects of the fluid (calculation in water). The results for the programme Rapsodie are near the experimental results. For the programme Symphony, the calculations in air have allowed to represent the behaviour of fuel assemblies in a satisfying way. It is still to analyze the tests Symphony in water. (N.C.)

  13. Reactivity changes in hybrid thermal-fast reactor systems during fast core flooding

    International Nuclear Information System (INIS)

    Pesic, M.

    1994-09-01

    A new space-dependent kinetic model in adiabatic approximation with local feedback reactivity parameters for reactivity determination in the coupled systems is proposed in this thesis. It is applied in the accident calculation of the 'HERBE' fast-thermal reactor system and compared to usual point kinetics model with core-averaged parameters. Advantages of the new model - more realistic picture of the reactor kinetics and dynamics during local large reactivity perturbation, under the same heat transfer conditions, are underlined. Calculated reactivity parameters of the new model are verified in the experiments performed at the 'HERBE' coupled core. The model has shown that the 'HERBE' safety system can shutdown reactor safely and fast even in the case of highly set power trip and even under conditions of big partial failure of the reactor safety system (author)

  14. Seismic responses of a pool-type fast reactor with different core support designs

    International Nuclear Information System (INIS)

    Wu, Ting-shu; Seidensticker, R.W.

    1989-01-01

    In designing the core support system for a pool-type fast reactor, there are many issues which must be considered in order to achieve an optimum and balanced design. These issues include safety, reliability, as well as costs. Several design options are possible to support the reactor core. Different core support options yield different frequency ranges and responses. Seismic responses of a large pool-type fast reactor incorporated with different core support designs have been investigated. 4 refs., 3 figs

  15. Fast reactor core monitoring by analysis of temperature noise

    International Nuclear Information System (INIS)

    Dubuisson, B.; Smolarz, A.

    1984-01-01

    The study shows, with the results obtained, how it is possible to approach the problem of diagnosis with a technique based on the use of algorithms for statistical pattern recognition was justifiable. The results presented here, with a view to their use for fast breeder reactor core surveillance, are very encouraging, the most important point being the data representation. For this study, it was difficult to find the most suitable parameters for characterizing the various simulated core states, however, despite this handicap, the classification algorithm provided quite acceptable results. The second point concerns the characterization of a system's evolution. The criterion defined was chosen for adaptation to our algorithm. One acertained that it was possible to characterize evolution on the basis of this criterion as long as the rejected points were not too far from the known learning sets. Under these circumstances, the advantage in characterizing evolution in that the changes in evolution occur when the rejected points have a tendency to agglomerate in a small area of space could be seen. This phenomenon thus makes it possible to forsee whether the creation of a new class is possible. Where the rejected points are far away from the known learning sets, the criterion used proved to be too sensitive and the characterization of evolution was less satisfactory

  16. An overview of the Indian program related to fast reactor core mechanical behaviour

    International Nuclear Information System (INIS)

    Govindarajan, S.; Bhoje, S.B.; Paranjpe, S.R.

    1984-01-01

    This Indian review paper presents the evolution of the fast breeder program which began with fast breeder test reactor (FBTR) commencing in 1972. The state-of-art in the field of core mechanical behaviour is reviewed

  17. Tools and applications for core design and shielding in fast reactors

    International Nuclear Information System (INIS)

    Rachamin, Reuven

    2013-01-01

    Outline: • Modeling of SFR cores using the Serpent-DYN3D code sequence; • Core shielding assessment for the design of FASTEF-MYRRHA; • Neutron shielding studies on an advanced Molten Salt Fast Reactor (MSFR) design

  18. An option for the Brazilian nuclear project: necessity of fast breeder reactors and core design for an experimental fast reactor

    International Nuclear Information System (INIS)

    Ishiguro, Y.

    1983-01-01

    In order to assure the continued utilization of fission energy, development of fast breeder reactors (FBRs) is a necessity. Binary fueled LMFBRs are proposed as the best type for future Brazilian nuclear systems. The inherent safety characteristics are superior to current FBRs and an efficient utilization of the abundant thorium is possible. A first step and a basic tool for the development of FBR technologies is the construction and operation of an experimental fast reactor (EFR). A series of core designs for a 90 MW EFR is studied and possible options and the magnitudes of principal parameters are identified. Flexible modifications of the core and sufficiently high fast fluxes for fuel and materials irradiations appear possible. (Author) [pt

  19. Shape optimization of a Sodium Fast Reactor core

    Directory of Open Access Journals (Sweden)

    Dombre Emmanuel

    2013-01-01

    Full Text Available We apply in this paper a geometrical shape optimization method for the design of the core of a SFR (Sodium-cooled Fast Reactor in order to minimize a thermal counter-reaction known as the sodium void effect. In this kind of reactors, by increasing the temperature, the core may become liable to a strong increase of reactivity, a key-parameter governing the chain-reaction at quasi-static states. We first use the one group energy diffusion model and give the generalization to the two groups energy equation. We then give some numerical results in the case of the one group energy equation. Note that the application of our method leads to some designs whose interfaces can be parametrized by very smooth curves which can stand very far from realistic designs. We don’t explain here the method that it would be possible to use for recovering an operational design but there exists several penalization methods (see [2] that could be employed to this end. On applique dans cet article une méthode d’optimisation géométrique dans le cadre de la conception d’un cœur de réacteur SFR (Sodium-cooled Fast Reactor, i.e. réacteur à neutron rapide refroidi au sodium dans le but de minimiser une contre réaction thermique connue sous le nom d’effet de vidange sodium. Lorsqu’une augmentation de température survient, ce type de réacteur peut être sujet à une forte augmentation de réactivité, un paramètre clé dans le contrôle de la réaction en chaîne en régime quasi-statique. On a recours à l’équation de diffusion à un groupe puis on donne la généralisation du modèle d’optimisation pour l’équation de la diffusion à deux groupes d’énergie. On présente ensuite quelques résultats numériques obtenus dans le cas de l’équation à un groupe d’énergie. On note que l’application de cette méthode conduit à des designs de cœur présentant des interfaces très régulières qui sont loin d’un design de cœur faisable sur le

  20. Investigation of Equilibrium Core by recycling MA and LLFP in fast reactor cycle (I)

    International Nuclear Information System (INIS)

    Mizutani, Akihiko; Shono, Akira; Ishikawa, Makoto

    1999-05-01

    Feasibility study on a self-consistent fuel cycle system is performed in the nuclear fuel recycle system with fast reactors. In this system, the self-generated MAs (Minor Actinides) and LLFPs (Long Lived Fission Products) are confined and incinerated in the fast reactor. Analyses of the nuclear properties for an 'Equilibrium Core', in which the self-generated MAs and LLFPs are confined, are investigated. A conventional sodium cooled oxide fuel fast reactor is selected as the core specifications for the 'Equilibrium Core'. This 600 MWe fast reactor does not have a radial blanket. In this study, the nuclear characteristics of the 'Equilibrium Core' are compared with those of a 'Standard Core' and '5 w/oMA Core'. The 'Standard Core' does not confine MAs and LLFPs in the core, and a 5 w/o-MA Rom LWR is loaded in the '5 w/oMA Core'. Through this comparison between 'Equilibrium Core' and the others, the specific characters of the 'Equilibrium Core' are investigated. In order to realize the 'Equilibrium Core' in the viewpoint of nuclear properties, whether the conventional design concept of fast reactors must be changed or not is also evaluated. The analyses for the nitride and metallic fuel cores are also performed because of their different nuclear characteristics compared with the oxide fuel core. Assuming the separation of REs (Rare Earth elements) from MAs and the isotope separation of LLFPs, most of the nuclear properties for the 'Equilibrium Core' are not beyond those for the '5 w/oMA Core'. It is, therefore, possible to bring the 'Equilibrium Core' into existence without any drastic modification for the design concept of the typical oxide fuel fast reactors. Although the 15.1[w/o] LLFPs are loading in the core of the oxide fuel 'Equilibrium Core', a breeding ratio is more than 1.0 and the difference in a amount of plutonium between a charging and discharging is only 0.04 [ton/year]. Without any drastic change for the design concept of the conventional oxide fuel

  1. LMFBR core design codes based on experimental fast reactor 'JOYO' experiences

    International Nuclear Information System (INIS)

    Kumaoka, Yoshio; Aoki, Katsutada; Kawashima, Masatoshi.

    1982-01-01

    In order to design the core for a 1,000-MWe-class fast breeder reactor, many kinds of computer codes as design tools are needed for analyzing the multicore components, mechanical behavior, nuclear performance and the thermal hydraulic performance of the core, and for designing the fuel. To meet these needs, Toshiba has endeavored for many years to develop highly reliable computer codes for core design, some of which are described in this article, and to continue their improvement by verifying them with actual fast reactor operation data. Above all, a series of nuclear design codes named COSMOS was successfully applied to the core design of the Japanese experimental fast breeder reactor ''JOYO'', and the excellent agreement between designed values and actual measured data has concluded that Toshiba's nuclear design codes are very useful for application to future large core design. (author)

  2. Safety and core design of large liquid-metal cooled fast breeder reactors

    Science.gov (United States)

    Qvist, Staffan Alexander

    In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B&B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B&B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B&B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.

  3. Three-dimensional Core Design of a Super Fast Reactor with a High Power Density

    International Nuclear Information System (INIS)

    Cao, Liangzhi; Oka, Yoshiaki; Ishiwatari, Yuki; Ikejiri, Satoshi; Ju, Haitao

    2010-01-01

    The SuperCritical Water-cooled Reactor (SCWR) pursues high power density to reduce its capital cost. The fast spectrum SCWR, called a super fast reactor, can be designed with a higher power density than thermal spectrum SCWR. The mechanism of increasing the average power density of the super fast reactor is studied theoretically and numerically. Some key parameters affecting the average power density, including fuel pin outer diameter, fuel pitch, power peaking factor, and the fraction of seed assemblies, are analyzed and optimized to achieve a more compact core. Based on those sensitivity analyses, a compact super fast reactor is successfully designed with an average power density of 294.8 W/cm 3 . The core characteristics are analyzed by using three-dimensional neutronics/thermal-hydraulics coupling method. Numerical results show that all of the design criteria and goals are satisfied

  4. Three-dimensional core analysis on a super fast reactor with negative local void reactivity

    International Nuclear Information System (INIS)

    Cao Liangzhi; Oka, Yoshiaki; Ishiwatari, Yuki; Ikejiri, Satoshi

    2009-01-01

    Keeping negative void reactivity throughout the cycle life is one of the most important requirements for the design of a supercritical water-cooled fast reactor (super fast reactor). Previous conceptual design has negative overall void reactivity. But the local void reactivity, which is defined as the reactivity change when the coolant of one fuel assembly disappears, also needs to be kept negative throughout the cycle life because the super fast reactor is designed with closed fuel assemblies. The mechanism of the local void reactivity is theoretically analyzed from the neutrons balance point of view. Three-dimensional neutronics/thermal-hydraulic coupling calculation is employed to analyze the characteristics of the super fast reactor including the local void reactivity. Some configurations of the core are optimized to decrease the local void reactivity. A reference core is successfully designed with keeping both overall and local void reactivity negative. The maximum local void reactivity is less than -30 pcm

  5. Core concept of fast power reactor with zero sodium void reactivity

    International Nuclear Information System (INIS)

    Matveev, V.I.; Chebeskov, A.N.; Krivitsky, I.Y.

    1991-01-01

    The paper presents a core concept of BN-800 - type fast power reactor with zero sodium void reactivity (SVR). Consideration is given to the layout-and some design features of such a core. Some considerations on the determination of the required SVR value as one of the fast reactor safety criteria in accidents with coolant boiling are presented. Some methodical considerations an the development of calculation models that give a correct description of the new core features are stated. The results of the integral SVR calculation studies are included. reactivity excursions under different scenarios of sodium boiling are estimated, some corrections into the calculated SVR value are discussed. (author)

  6. Engineering review of the core support structure of the Gas Cooled Fast Breeder Reactor

    International Nuclear Information System (INIS)

    1978-09-01

    The review of the core support structure of the gas cooled fast breeder reactor (GCFR) covered such areas as the design criteria, the design and analysis of the concepts, the development plan, and the projected manufacturing costs. Recommendations are provided to establish a basis for future work on the GCFR core support structure

  7. Engineering review of the core support structure of the Gas Cooled Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    The review of the core support structure of the gas cooled fast breeder reactor (GCFR) covered such areas as the design criteria, the design and analysis of the concepts, the development plan, and the projected manufacturing costs. Recommendations are provided to establish a basis for future work on the GCFR core support structure.

  8. On the chemical constitution of a molten oxide core of a fast breeder reactor

    International Nuclear Information System (INIS)

    Hodkin, D.J.; Potter, P.E.

    1980-01-01

    A knowledge of the chemical constitution of a molten oxide fast reactor core is of great importance in the assessment of heat transfer from a cooling molten pool of debris and in the selection of materials for the construction of sacrificial beds for core containment. In this paper we describe some thermodynamic assessments of the likely chemical constitution of a molten oxide core, and then support our assessments by experimental observations

  9. Design features affecting dynamic behaviour of fast reactor cores

    International Nuclear Information System (INIS)

    Kayser, G.; Gouriou, A.

    1981-06-01

    The study of dynamic response of an LMFBR to normal and accidental transients needs first of all a simulation code taking into account all the important effects. The DYN-1 code aims at this target. It represents with a sufficiently accurate meshing the core in a 20 geometry for the thermal and reactivity effects, while the kinetics of this core are calculated with a point model. The primary pool, secondary loops, steam generator are also represented, as well as the control and protective systems. We give a short description of this code. Simpler codes are sometimes good enough for parametric studies

  10. Impact of core design on the fuel cycle of fast neutron reactors

    International Nuclear Information System (INIS)

    Cabrillat, J.C.; Clauzon, P.; Dufour, P.

    1981-11-01

    The value of the annual flow of fissile mixed oxide passing through the plants of the fabrication-reprocessing cycle has a preponderant effect on the cost of the fuel cycle of fast reactors. This annual flow can be reduced either by increasing the performance of the fuel elements or by using new core concepts. It is this latter possibility that is examined in this paper using a steel atom displacement criterion as criterion for the end of life of fuel assemblies. The facts provided should make it possible to guide the choice of core concept of the reactors built after Super Phenix in order to improve on the cost of the fuel cycle of fast reactors [fr

  11. Transient bowing of core assemblies in advanced liquid metal fast reactors

    International Nuclear Information System (INIS)

    Kamal, S.A.; Orechwa, Y.

    1986-01-01

    Two alternative core restraint concepts are considered for a conceptual design of a 900 MWth liquid metal fast reactor core with a heterogeneous layout. The two concepts, known as limited free bowing and free flowering, are evaluated based on core bowing criteria that emphasize the enhancement of inherent reactor safety. The core reactivity change during a postulated loss of flow transient is calculated in terms of the lateral displacements and displacement-reactivity-worths of the individual assemblies. The NUBOW-3D computer code is utilized to determine the assembly deformations and interassembly forces that arise when the assemblies are subjected to temperature gradients and irradiation induced creep and swelling during the reactor operation. The assembly ducts are made of the ferritic steel HT-9 and remain in the reactor core for four-years at full power condition. Whereas both restraint systems meet the bowing criteria, a properly designed limited free bowing system appears to be more advantageous than a free flowering system from the point of view of enhancing the reactor inherent safety

  12. Specialists' meeting on design features affecting a dynamic behaviour of fast reactor cores. Summary report

    International Nuclear Information System (INIS)

    1982-01-01

    The purpose of the meeting was to review and discuss the effects induced by changes in some design characteristics on overall performances and transient behaviour of fast reactor cores. The main topics discussed in the four technical sessions were: National Review Presentations. Identification of the key issues to be considered in the following sessions; Effects of design changes on performance characteristics. Kinetics models and codes; Evaluation and interpretation of reactivity coefficients. Kinetics calculations for restrained and free-standing cores; Comparison of the dynamic behaviour of homogeneous and heterogeneous cores

  13. Numerical analysis of temperature fluctuation in core outlet region of China experimental fast reactor

    International Nuclear Information System (INIS)

    Zhu Huanjun; Xu Yijun

    2014-01-01

    The temperature fluctuation in core outlet region of China Experimental Fast Reactor (CEFR) was numerically simulated by the CFD software Star CCM+. With the core outlet temperatures, flows etc. under rated conditions given as boundary conditions, a 1/4 region model of the reactor core outlet region was established and calculated using LES method for this problem. The analysis results show that while CEFR operates under rated conditions, the temperature fluctuation in lower part of core outlet region is mainly concentrated in area over the edge components (steel components, control rod assembly), and one in upper part is remarkable in area above all the components. The largest fluctuation amplitude is 19 K and the remarkable frequency is below 5 Hz, and it belongs to typically low frequency fluctuation. The conclusion is useful for further experimental work. (authors)

  14. Consequence analysis of core meltdown accidents in liquid metal fast reactor

    International Nuclear Information System (INIS)

    Suk, S.D.; Hahn, D.

    2001-01-01

    Core disruptive accidents have been investigated at Korea Atomic Energy Research Institute(KAERI) as part of work to demonstrate the inherent and ultimate safety of the conceptual design of the Korea Advanced Liquid Metal Reactor(KALIMER), a 150 Mw pool-type sodium cooled prototype fast reactor that uses U-Pu-Zr metallic fuel. In this study, a simple method was developed using a modified Bethe-Tait method to simulate the kinetics and hydraulic behavior of a homogeneous spherical core over the period of the super-prompt critical power excursion induced by the ramp reactivity insertion. Calculations of energy release during excursions in the sodium-voided core of the KALIMER were subsequently performed using the method for various reactivity insertion rates up to 100 $/s, which has been widely considered to be the upper limit of ramp rates due to fuel compaction. Benchmark calculations were made to compare with the results of more detailed analysis for core meltdown energetics of the oxide fuelled fast reactor. A set of parametric studies was also performed to investigate the sensitivity of the results on the various thermodynamics and reactor parameters. (author)

  15. Core characteristics on a hybrid type fast reactor system combined with proton accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kowata, Yasuki; Otsubo, Akira [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-06-01

    In our study on a hybrid fast reactor system, we have investigated it from the view point of transmutation ability of trans-uranium (TRU) nuclide making the most effective use of special features (controllability, hard neutron spectrum) of the system. It is proved that a proton beam is superior in generation of neutrons compared with an electron beam. Therefore a proton accelerator using spallation reaction with a target nucleus has an advantage to transmutation of TRU than an electron one. A fast reactor is expected to primarily have a merit that the reactor can be operated for a long term without employment of highly enriched plutonium fuel by using external neutron source such as the proton accelerator. Namely, the system has a desirable characteristic of being possible to self-sustained fissile plutonium. Consequently in the present report, core characteristics of the system were roughly studied by analyses using 2D-BURN code. The possibility of self-sustained fuel was investigated from the burnup and neutronic calculation in a cylindrical core with 300w/cc of power density without considering a target material region for the accelerator. For a reference core of which the height and the radius are both 100 cm, there is a fair prospect that a long term reactor operation is possible with subsequent refueling of natural uranium, if the medium enriched (around 10wt%) uranium or plutonium fuels are fully loaded in the initial core. More precise analyses will be planed in a later fiscal year. (author)

  16. Primary Damage Characteristics in Metals Under Irradiation in the Cores of Thermal and Fast Reactors

    International Nuclear Information System (INIS)

    Pechenkin, V.A.

    2012-01-01

    For an analysis and forecasting of radiation-induced phenomena in structural materials of WWERs, PWRs and BN reactors the fast neutron fluence is usually used (for structural materials of the reactor cores and internals the fluence of neutrons with energy > 0.1 MeV, for WWER and PWRs vessel steels the fluence of neutrons with energy > 0.5 MeV in Russia and East Europe, and with energy > 1.0 MeV in USA and France). Displacements per atom (dpa) seem to be a more appropriate correlation parameter, because it allows comparing the results of materials irradiation in different neutron energy spectra or with different types of particles (neutrons, ions, fast electrons). Energy spectra of primary knocked atoms (PKA) and 'effective' dpa, which are introduced to take into account the point defect recombination during the relaxation stage of a displacement cascade, can be still better representation of the effect of irradiation on material properties. In this work the results of calculating dose rates (dpa/s, NRT-model), PKA energy spectra and PKA mean energies in metals under irradiation in the cores of Russian reactors WWER-440, WWER-1000 (both power thermal reactors) and BN-600 (power fast reactor) and BR-10 (test fast reactor) are presented. In all the reactors Fe and Zr are considered, with addition of Ti and W in BN-600. 'Effective' dose rates in these metals are calculated. Limitations and uncertainties in the standard dpa formulation (the NRT-dpa) are discussed. IPPE activities in the fields related to the TM subject are considered

  17. Sodium-cooled fast reactor core designs for transmutation of MHR spent fuel

    International Nuclear Information System (INIS)

    Hong, S. G.; Kim, Y. H.; Venneri, F.

    2010-01-01

    In this paper, the core design analyses of sodium cooled fast reactors (SFR) are performed for the effective transmutation of the DB (Deep Burn)-MHR (Modular Helium Reactor). In this concept, the spent fuels of DB-MHR are transmuted in SFRs with a closed fuel cycle after TRUs from LWR are first incinerated in a DB-MHR. We introduced two different type SFR core designs for this purpose, and evaluated their core performance parameters including the safety-related parameters. In particular, the cores are designed to have lower transmutation rate relatively to our previous work so as to make the fuel characteristics more feasible. The first type cores which consist of two enrichment regions are typical homogeneous annular cores and they rate 900 MWt power. On the other hand, the second type cores which consist of a central non-fuel region and a single enrichment fuel region rate relatively higher power of 1500 MWt. For these cores, the moderator rods (YH 1.8 ) are used to achieve less positive sodium void worth and the more negative Doppler coefficient because the loading of DB-MHR spent fuel leads to the degradation of these safety parameters. The analysis results show that these cores have low sodium void worth and negative reactivity coefficients except for the one related with the coolant expansion but the coolant expansion reactivity coefficient is within the typical range of the typical SFR cores. (authors)

  18. Comparison of Core Performance with Various Oxide fuels on Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Choi, Jin Ha; Kim, Myung Hyun

    2016-01-01

    The system is called Prototype GenIV Sodium-cooled Fast Reactor (PGSFR). Ultimate goal of PGSFR is test for capability of TRU transmutation. Purpose of this study is test for evaluation of in-core performance and TRU transmutation performance by applying various oxide fuel loaded TRU. Fuel type of reference core is changed to uranium-based oxide fuel. Oxide fuel has a lot of experience through fuel fabrication and reactor operation. This study performed by compared and analyzed a core performance of various oxide fuels. (U,Pu)O 2 and (U,TRU)O 2 which various oxide fuel types are selected as extreme case for comparison with core performance and transmutation capability of TRU isotopes. Thorium-based fuel is known that it has good performance for burner reactor due to low proliferation characteristic. To check the performance of TRU incineration for comparison with uranium-based fuel on prototype SFR, Thorium-based fuel, (Th,U)O 2 , (Th,Pu)O 2 and (Th,TRU)O 2 , is selected. Calculations of core performance for various oxide fuel are performed using the fast calculation tool, TRANSX / DANTSTS / REBUS-3. In this study, comparison of core performance and transmutation performance is conducted with various fuel types in a sodium-cooled fast reactor. Mixed oxide fuel with TRU can produce the energy with small amount of fissile material. However, the TRU fuel is confirmed to bring a potential decline of the safety parameters. In case of (Th,U)O2 fuel, the flux level in thermal neutron region becomes lower because of higher capture cross-section of Th-232 than U-238. However, Th-232 has difficulty in converting to TRU isotopes. Therefore, the TRU consumption mass is relatively high in mixed oxide fuel with thorium and TRU.

  19. Development of small, fast reactor core designs using lead-based coolant

    International Nuclear Information System (INIS)

    Cahalan, J. E.; Hill, R. N.; Khalil, H. S.; Wade, D. C.

    1999-01-01

    A variety of small (100 MWe) fast reactor core designs are developed, these include compact configurations, long-lived (15-year fuel lifetime) cores, and derated, natural circulation designs. Trade studies are described which identify key core design issues for lead-based coolant systems. Performance parameters and reactivity feedback coefficients are compared for lead-bismuth eutectic (LBE) and sodium-cooled cores of consistent design. The results of these studies indicate that the superior neutron reflection capability of lead alloys reduces the enrichment and burnup swing compared to conventional sodium-cooled systems; however, the discharge fluence is significantly increased. The size requirement for long-lived systems is constrained by reactivity loss considerations, not fuel burnup or fluence limits. The derated lead-alloy cooled natural circulation cores require a core volume roughly eight times greater than conventional compact systems. In general, reactivity coefficients important for passive safety performance are less favorable for the larger, derated configurations

  20. Review of core disruptive accident analysis for liquid-metal cooled fast reactors

    International Nuclear Information System (INIS)

    Kim, Y. C.; Na, B. C.; Hahn, D. H.

    1997-04-01

    Analysis methodologies of core disruptive accidents (CDAs) are reviewed. The role of CDAS in the overall safety evaluation of fast reactors has not always been well defined nor universally agreed upon. However, they have become a traditional issue in LMR safety, design, and licensing. The study is for the understanding of fast reactor behavior under CDA conditions to establish the consequences of such conditions and to provide a basis for evaluating consequence limiting design features for the KALIMER developments. The methods used to analyze CDAs from initiating event to complete core disruption are described. Two examples of CDA analyses for CRBRP and ALMR are given and R and D needed for better understanding of CDA phenomena are proposed. (author). 10 refs., 2 tabs., 3 figs

  1. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    Science.gov (United States)

    Verma, V.; Barbot, L.; Filliatre, P.; Hellesen, C.; Jammes, C.; Svärd, S. Jacobsson

    2017-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment.

  2. Evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    Science.gov (United States)

    Tikhomirov, Georgy; Ternovykh, Mikhail; Saldikov, Ivan; Fomichenko, Peter; Gerasimov, Alexander

    2017-09-01

    The strategy of the development of nuclear power in Russia provides for use of fast power reactors in closed nuclear fuel cycle. The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of energy. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. The closed nuclear fuel cycle concept of the PRORYV assumes self-supplied mode of operation with fuel regeneration by neutron capture reaction in non-enriched uranium, which is used as a raw material. Operating modes of reactors and its characteristics should be chosen so as to provide the self-sufficient mode by using of fissile isotopes while refueling by depleted uranium and to support this state during the entire period of reactor operation. Thus, the actual issue is modeling fuel handling processes. To solve these problems, the code REPRORYV (Recycle for PRORYV) has been developed. It simulates nuclide streams in non-reactor stages of the closed fuel cycle. At the same time various verified codes can be used to evaluate in-core characteristics of a reactor. By using this approach various options for nuclide streams and assess the impact of different plutonium content in the fuel, fuel processing conditions, losses during fuel processing, as well as the impact of initial uncertainties on neutron-physical characteristics of reactor are considered in this study.

  3. Evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    Directory of Open Access Journals (Sweden)

    Tikhomirov Georgy

    2017-01-01

    Full Text Available The strategy of the development of nuclear power in Russia provides for use of fast power reactors in closed nuclear fuel cycle. The PRORYV (i.e. «Breakthrough» in Russian project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of energy. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. The closed nuclear fuel cycle concept of the PRORYV assumes self-supplied mode of operation with fuel regeneration by neutron capture reaction in non-enriched uranium, which is used as a raw material. Operating modes of reactors and its characteristics should be chosen so as to provide the self-sufficient mode by using of fissile isotopes while refueling by depleted uranium and to support this state during the entire period of reactor operation. Thus, the actual issue is modeling fuel handling processes. To solve these problems, the code REPRORYV (Recycle for PRORYV has been developed. It simulates nuclide streams in non-reactor stages of the closed fuel cycle. At the same time various verified codes can be used to evaluate in-core characteristics of a reactor. By using this approach various options for nuclide streams and assess the impact of different plutonium content in the fuel, fuel processing conditions, losses during fuel processing, as well as the impact of initial uncertainties on neutron-physical characteristics of reactor are considered in this study.

  4. Research and development studies on plant and core seismic behaviour for a fast reactor

    International Nuclear Information System (INIS)

    Martelli, A.; Forni, M.; Castoldi, A.; Muzzi, F.

    1988-01-01

    This paper presents the main features and results of the numerical and experimental studies that were carried out by ENEA in co-operation with ANSALDO and ISMES for the seismic verification of the Italian PEC fast reactor test facility. More precisely, the paper focuses on the wide-ranging research and development programme that has been performed (and recently completed) on the reactor building, the reactor-block, the main vessel, the core and the shutdown system. The needs of these detailed studies are stressed and the feed-backs on the design, necessary to satisfy the seismic safety requirements, are recalled. The general validity of the analyses in the framework of the research and development activities for nuclear reactors is also pointed out. (orig.)

  5. Core design and fuel rod analyses of a super fast reactor with high power density

    International Nuclear Information System (INIS)

    Ju, Haitao; Cao, Liangzhi; Lu, Haoliang; Oka, Yoshiaki; Ikejiri, Satoshi; Ishiwatari, Yuki

    2009-01-01

    A Super Fast Reactor is a pressure-vessel type, fast spectrum SuperCritical Water Reactor (SCWR) that is presently researched in a Japanese project. One of the most important advantages of the Super Fast Reactor is the higher power density compared to the thermal spectrum SCWR, which reduces the capital cost. A preliminary core has an average power density of 158.8W/cc. In this paper, the principle of improving the average power density is studied and the core design is improved. After the sensitivity analyses on the fuel rod configurations, the fuel assembly configurations and the core configurations, an improved core with an average power density of 294.8W/cc is designed by 3-D neutronic/thermal-hydraulic coupled calculations. This power density is competitive with that of typical Liquid Metal Fast Breeder Reactors (LMFBR). In order to ensure the fuel rod integrity of this core design, the fuel rod behaviors on the normal operating condition are analyzed using FEMAXI-6 code. The power histories of each fuel rod are taken from the neutronics calculation results in the core design. The cladding surface temperature histories are taken from the thermal-hydraulic calculation results in the core design. Four types of the limiting fuel rods, with the Maximum Cladding Surface Temperature (MCST), Maximum Power Peak(MPP), Maximum Discharge Burnup(MDB) and Different Coolant Flow Pattern (DCFP), are chosen to cover all the fuel rods in the core. The available design range of the fuel rod design parameters, such as initial gas plenum pressure, gas plenum position, gas plenum length, grain size and gap size, are found out in order to satisfy the following design criteria: (1) Maximum fuel centerline temperature should be less than 1900degC. (2) Maximum cladding stress in circumstance direction should be less than 100MPa. (3) Pressure difference on the cladding should be less than 1/3 of buckling collapse pressure. (4) Cumulative damage faction (CDF) of the cladding should be

  6. Experimental and numerical analysis of fluid - structure interaction effects in a fast reactor core

    International Nuclear Information System (INIS)

    Martelli, A.; Forni, M.; Melloni, R.; Paoluzzi, R.; Bonacina, G.; Castoldi, A.; Zola, M.

    1990-01-01

    Dynamic experiments in air and water (simulating liquid sodium) were performed by ISMES, on behalf of ENEA, on various core element groups of the Italian PEC fast reactor. Bundles of one, seven and nineteen mock-ups reproducing fuel, reflecting and neutron shield elements in full scale were analysed on shaking tables. Tests concerned both groups of equal elements and mixed configurations which corresponded to real core parts. The effects of PEC core-restraint ring were also studied. Seismic excitations of up to 2.5 g were applied to core diagrid. Test results were analysed by use of the one-dimensional program CORALIE and the two-dimensional program CLASH. The study allowed the fluid effects in the PEC core to be evaluated; it also contributed to validation of the above mentioned programs for their general use for fast reactor core analysis. This paper presents the main features of the experimental and the numerical studies and reports comparisons between calculations and measurements. (author)

  7. Design of the core of a breed/burn fast reactor with the deterministic code KANEXT

    International Nuclear Information System (INIS)

    Lopez S, R. C.; Francois L, J. L.

    2014-10-01

    The breeding fast reactors are interesting because they generate more plutonium than they consume, however, the fuel has to be reprocessed for the generated plutonium is used in another reactor. In a breed/burn reactor (BBR) the plutonium is generated and used -in situ- inside the same reactor, reducing this way costs and the proliferation possibility. In this work, the core of a BBR was designed; cooled by sodium that consists of 210 active assemblies and 7 spaces for control rods, each assembly consists of 169 pines. The design differs from other BBR it includes a blanket in the reactor center. The above-mentioned was to take advantage of the fact by geometry that the population of fast and epithermal neutrons will be high in the area, due to the fissions in adjacent fissile areas. Favorable results were obtained, although not definitive with exchange scheme of spent fuel. Efforts should be made in the future to homogenize the power generation within the reactor and replace the spent assemblies more efficiently. (Author)

  8. Fast reactors with axial arrangement of oxide and metal fuels in the core

    International Nuclear Information System (INIS)

    Troyanov, M.F.; Ilyunin, V.G.; Matveev, V.I.; Murogov, V.M.; Proshkin, A.A.; Rudneva, V.Ya.; Shmelev, A.N.

    1980-01-01

    Problems of using metal fuel in fast reactor (FR) core are discussed Results are given of the calculation of two-dimentional (R-Z) FR version having a composed core with the combined usage of oxide and metal fuels having parameters close to optimal from the point of view of fuel breeding rate, an oxide subzone having increased enrichment and a decreased proper conversion ratio. A reactor is considered where metallic fuel elements are placed from the side of ''cold'' coolant inlet (400-480 deg C), and oxide fuel elements - in the region where the coolant has a higher temperature (500-560 deg C). It is shown that the new fuel breeding rate in such a reactor can be increased by 20-30% as compared with an oxide fuel reactor. Growth of the total conversion ratio is mainly stipulated with the increase of the inner conversion ratio of the core (CRC) which is important not only from the point of view of nuclear fuel breeding rate but also the optimization of the mode of powerful fast reactor operation with provision for the change in reactivity in the process of its continuous operation. The fact, that the core version under investigation has a CRC value slightly exceeding unit, stipulates considerably less reactivity change as compared with the oxide version in the process of the reactor operation and permits at a constant reactor control system power to significantly increase the time between reloadings and, therefore, to increase the NPP load factor which is of great importance both from the point of view of economy and the improvement of operation conditions as well as of reactor operation reliability. It is concluded on the base of the analysis of the results obtained that FRs with the combined usage of oxide and metal fuels having an increased specific load and increased conversion ratio as compared with the oxide fuel FRs provide a higher rate of development of the whole nuclear power balanced with respect to the fuel [ru

  9. Fast neutron reactor core research at the C.E.A

    International Nuclear Information System (INIS)

    Chaudat, J.-P.

    1978-05-01

    This report covers all physical studies of fast neutron reactors carried out by the C.E.A., to povide basic data (multi-group cross sections) and computer methods which may be used to calculate nuclear power plant neutron properties with the precision required by the project. The approach adopted to establish the basic data used in all core calculations is described in greated detail: choice of a reference procedure for basic mode calculations (CARNAVAL set), choice of particular experimental programs to reduce uncertainties in connection with the formula set, adjustement of cross sections on integral parameters measured on critical experiments. The development of the formula set is closely connected with the project requirements; hence the set is modified with respect to the core characteristics of the power plant studied. Following an explanation of how the CARNAVAL III and IV formula sets -used for PHENIX and SUPER-PHENIX respectively- were derived, current studies for heterogeneous cores are described [fr

  10. Fast reactors fuel cycle core physics results from the CAPRA-CADRA programme

    International Nuclear Information System (INIS)

    Vasile, A.; Rimpault, G.; Tommasi, J.; Saint Jean, C. de; Delpech, M.; Hesketh, K.; Beaumont, H.M.; Sunderland, R.E.; Newton, T.; Smith, P.; Raedt, Ch. de; Vambenepe, G.; Lefevre, J.C.; Maschek, W.; Haas, D

    2001-01-01

    This paper presents an overview of fast reactor core physics results obtained in the context of the CAPRA-CADRA European collaborative programme, whose aim is to investigate a broad range of possible options for plutonium and radioactive waste management. Different types of fast reactors have been studied to evaluate their potential capabilities with respect to the long term management of plutonium, minor actinides (MAs) and long- lived fission products (LLFPs). Among the several options aiming at reducing waste and consequently radio toxicity are: homogeneous recycling of Minor Actinides, heterogeneous recycling of Minor Actinides either without or with moderation, dedicated critical cores (fuelled mainly with Minor Actinides) and Accelerator Driven System (ADS) variants. In order to achieve a detailed understanding of the potential of the various options, advanced core physics methods have been implemented and tested and applied, for example, to improving control rod modeling and to studying safety aspects. There has also been code development and experimental work carried out to improve the understanding of fuel performance behaviors. (author)

  11. Subchannel analysis of a small ultra-long cycle fast reactor core

    International Nuclear Information System (INIS)

    Seo, Han; Kim, Ji Hyun; Bang, In Cheol

    2014-01-01

    Highlights: • The UCFR-100 is small-sized one of 60 years long-life nuclear reactors without refueling. • The design safety limits of the UCFR-100 are evaluated using MATRA-LMR. • The subchannel results are below the safety limits of general SFR design criteria. - Abstract: Thermal-hydraulic evaluation of a small ultra-long cycle fast reactor (UCFR) core is performed based on existing safety regulations. The UCFR is an innovative reactor newly designed with long-life core based on the breed-and-burn strategy and has a target electric power of 100 MWe (UCFR-100). Low enriched uranium (LEU) located at the bottom region of the core play the role of igniter to operate the UCFR for 60 years without refueling. A metallic form is selected as a burning fuel region material after the LEU location. HT-9 and sodium are used as cladding and coolant materials, respectively. In the present study, MATRA-LMR, subchannel analysis code, is used for evaluating the safety design limit of the UCFR-100 in terms of fuel, cladding, and coolant temperature distributions in the core as design criteria of a general fast reactor. The start-up period (0 year of operation), the middle of operating period (30 years of operation), and the end of operating cycle (60 years of operation) are analyzed and evaluated. The maximum cladding surface temperature (MCST) at the BOC (beginning of core life) is 498 °C on average and 551 °C when considering peaking factor, while the MCST at the MOC (middle of core life) is 498 °C on average and 548 °C in the hot channel, respectively, and the MCST at the EOC (end of core life) is 499 °C on average and 538 °C in the hot channel, respectively. The maximum cladding surface temperature over the long cycle is found at the BOC due to its high peaking factor. It is found that all results including fuel rods, cladding, and coolant exit temperature are below the safety limit of general SFR design criteria

  12. Core physics design calculation of mini-type fast reactor based on Monte Carlo method

    International Nuclear Information System (INIS)

    He Keyu; Han Weishi

    2007-01-01

    An accurate physics calculation model has been set up for the mini-type sodium-cooled fast reactor (MFR) based on MCNP-4C code, then a detailed calculation of its critical physics characteristics, neutron flux distribution, power distribution and reactivity control has been carried out. The results indicate that the basic physics characteristics of MFR can satisfy the requirement and objectives of the core design. The power density and neutron flux distribution are symmetrical and reasonable. The control system is able to make a reliable reactivity balance efficiently and meets the request for long-playing operation. (authors)

  13. Current status of restoration work for obstacle and upper core structure in reactor vessel of experimental fast reactor 'JOYO'. 2. Replacement of upper core structure

    International Nuclear Information System (INIS)

    Ushiki, Hiroshi; Ito, Hiromichi; Okuda, Eiji; Suzuki, Nobuhiro; Sasaki, Jun; Oota, Katsu; Kawahara, Hirotaka; Takamatsu, Misao; Nagai, Akinori; Okawa, Toshikatsu

    2015-01-01

    In the experimental fast reactor Joyo, it was confirmed that the top of the irradiation test sub-assembly of MARICO-2 (material testing rig with temperature control) had bent onto the in-vessel storage rack as an obstacle and had damaged the upper core structure (UCS) in 2007. As a part of the restoration work, UCS replacement was begun at March 24, 2014 and was completed at December 17. In-vessel repair (including observation) for sodium-cooled fast reactors (SFRs) is distinct from that for light water reactors and necessitates independent development. Application of developed in-vessel repair techniques to operation and maintenance of SFRs enhanced their safety and integrity. There is little UCS replacement experience in the world and this experience and insights, which were accumulated in the replacement work of in-vessel large structure (UCS) used for more than 30 years, are expected to improve the in-vessel repair techniques in SFRs. (author)

  14. Analysis of advanced sodium-cooled fast reactor core designs with improved safety characteristics

    International Nuclear Information System (INIS)

    Sun, K.

    2012-09-01

    Currently, the large majority of nuclear power plants are operated with thermal-neutron spectra and need regular fuel loading of enriched uranium. According to the identified conventional uranium resources and their current consumption rate, only about 100 years’ nuclear fuel supply is foreseen. A reactor operated with a fast-neutron spectrum, on the other hand, can induce self-sustaining, or even breeding, conditions for its inventory of fissile material, which effectively allow it, after the initial loading, to be refueled using simply natural or depleted uranium. This implies a much more efficient use of uranium resources. Moreover, minor actinides become fissionable in a fast-neutron spectrum, enabling full closure of the fuel cycle and leading to a minimization of long-lived radioactive wastes. The sodium-cooled fast reactor (SFR) is one of the most promising candidates to meet the Generation IV International Forum (GIF) declared goals. In comparison to other Generation IV systems, there is considerable design experience related to the SFR, and also more than 300 reactor years of practical operation. As a fast-neutron-spectrum system, the long-term operation of an SFR core in a closed fuel cycle will lead to an equilibrium state, where both reactivity and fuel mass flow stabilize. Although the SFR has many advantageous characteristics, it has one dominating neutronics drawback: there is generally a positive reactivity effect when sodium coolant is removed from the core. This so-called sodium void effect becomes even stronger in the equilibrium closed fuel cycle. The goal of the present doctoral research is to improve the safety characteristics of advanced SFR core designs, in particular, from the viewpoint of the positive sodium void reactivity effect. In this context, particular importance has been given to the dynamic core behavior under a hypothetical unprotected loss-of-flow (ULOF) accident scenario, in which sodium boiling occurs. The proposed

  15. Core Design Studies for TRU Transmutation in a Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong Il; Ko, W. I.; Kwon, Y. M.

    2010-01-15

    The objectives of this research project is (1) to develop the conceptual core designs for TRU transmutation covering a large variation in power level and conversion ratio and (2) to perform relevant verification and validation analyses through the analyses of fast critical experimental assemblies. An homogeneous and detailed heterogeneous models of metal fueled critical assemblies, BFS-73-1, BFS-75-1, and BFS-55-1, were produced from this study through a review of the critical experiments. Based on these models, BFS critical assemblies were analyzed by a fast reactor analysis code system (TRANSX/ TWODANT/DIF3D) with different evaluated nuclear data files including ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, JENDL-AC2008 in addition to ENDF/B-VI.6. A study of library difference on computational results by both a conventional diffusion method and a Monte-Carlo transport method has been carried out with those models. In addition to the analysis by the design code, Monte-Carlo high fidelity simulation was carried out to support the diffusion solution, mainly an effect of unit fuel cell heterogeneity. BFS and ZPPR critical assemblies were analyzed by both KAERI and ANL systems and the results of the analyses were reviewed by the other side. This improve the reliability of the results of both institutes. For the effective TRU transmutation, the conceptual core design was performed under core power ranged from 1,500MWt to 4,500MWt and found that there is no appreciable degradation in performance or reactivity coefficients for the core power level up to 1,800 MWe and confirmed the possibility of the large scaled transmutation reactor. Even at each pre-determined power level, performance parameters, reactivity coefficients and its implication on the safety analysis can be different when a target TRU conversion ratio changes. In order to address this aspect of design, a variation study of TRU conversion ratio change was covered. Three ATWS events such as UTOP, ULOF and ULOHS are

  16. Gas-cooled Fast Reactor (GFR) fuel and In-Core Fuel Management

    International Nuclear Information System (INIS)

    Weaver, K.D.; Sterbentz, J.; Meyer, M.; Lowden, R.; Hoffman, E.; Wei, T.Y.C.

    2004-01-01

    The Gas-Cooled Fast Reactor (GCFR) has been chosen as one of six candidates for development as a Generation IV nuclear reactor based on: its ability to fully utilize fuel resources; minimize or reduce its own (and other systems) actinide inventory; produce high efficiency electricity; and the possibility to utilize high temperature process heat. Current design approaches include a high temperature (2 850 C) helium cooled reactor using a direct Brayton cycle, and a moderate temperature (550 C - 650 C) helium or supercritical carbon dioxide (S-CO 2 ) cooled reactor using direct or indirect Brayton cycles. These design choices have thermal efficiencies that approach 45% to 50%, and have turbomachinery sizes that are much more compact compared to steam plants. However, there are challenges associated with the GCFR, which are the focus of current research. This includes safety system design for decay heat removal, development of high temperature/high fluence fuels and materials, and development of fuel cycle strategies. The work presented here focuses on the fuel and preliminary in-core fuel management, where advanced ceramic-ceramic (cercer) dispersion fuels are the main focus, and average burnups to 266 M Wd/kg appear achievable for the reference Si C/(U,TRU)C block/plate fuel. Solid solution (pellet) fuel in composite ceramic clad (Si C/Si C) is also being considered, but remains as a backup due to cladding fabrication challenges, and high centerline temperatures in the fuel. (Author)

  17. Instrumentation for core and coolant monitoring in liquid-metal fast breeder reactors (LMFBR)

    International Nuclear Information System (INIS)

    Hess, B.; Ruppert, E.

    1975-01-01

    The review on core and coolant instrumentation for liquid metal fast breeders aims to give a short survey of measurement methods and the variety of appropriate instrumentation developed and tested for reactor application throughout the world. The introductory part gives a general outline of instrumentation development, partly as the refinement of well-known thermal reactor instrumentation and partly as the special instrumentation demanded for LMFBR safety requirements, some aspects of which are also discussed briefly. The in-core LMFBR instrumentation is surveyed, classifying the measurement or monitoring of coolant properties such as temperature, pressure, flow and acoustic emission and the measurement of core-kinetic quantities such as neutron flux and reactivity. Without considering the fundamentals of the measurements, the state of instrument development is reviewed and, where known, future aspects are indicated. An additional review on fuel failure detection methods and the related instrumentation distinguishes between global or whole-core detection methods and those used for localization of failures. Special attention is paid to the aspect of reactor safety and its reliability as one of the major objectives of these detection methods. A summary of the protective systems and instrumentation already used or foreseen for LMFBR plants forms a transition to a very brief discussion of handling and interpretation of the multitude of data derived from the rather comprehensive LMFBR instrumentation. This state of the art review claims neither to be complete at the time published nor to be a detailed guide to special problems of instrumentation development, the solutions to which are normally part of industrial knowhow. (author)

  18. Neutronics aspects associated to irregular lattices in sodium fast reactors cores

    International Nuclear Information System (INIS)

    Gentili, Michele

    2015-01-01

    The fuel assemblies of SFR cores (sodium fast reactors) are normally arranged in hexagonal regular lattices, whose compactness is ensured in nominal operating conditions by thermal expansion of assemblies pads disposed on the six assembly wrapper faces. During the reactor operations, thermal expansion phenomena and irradiation creep phenomena occur and they cause the fuel assemblies to bow and to deform both radially and axially. The main goal of this PhD is the understanding of the neutronic aspects and phenomena occurring in case of core and lattice deformations, as much as the design and implementation of deterministic neutronic calculation schemes and methods in order to evaluate the consequences for the core design activities and the safety analysis. The first part of this work is focused on the development of an analytical model with the purpose to identify the neutronic phenomena that are the main contributors to the reactivity changes induced by lattice and core deformations. A first scheme based on the spatial mesh projection method has been conceived and implemented for the ERANOS codes (BISTRO, H3D and VARIANT) and to the SNATCH solver. The second calculation scheme propose is based on mesh deformation: the computing mesh is deformed as a function of the assembly displacement field. This methodology has been implemented for the solver SNATCH, which normally allows the Boltzmann equation to be solved for a regular mesh. Finally, an iterative method has been developed in order to fulfill an a-priori estimation of the maximal reactivity insertion as a function of the postulated mechanical energy provided to the core, as much as the deformation causing it. (author) [fr

  19. Evaluation on Calculation Accuracy of the Sodium Void Reactivity for Low Void Effect Fast Reactor Cores with Experimental Analyses

    International Nuclear Information System (INIS)

    Sugino, K.; Ishikawa, M.; Numata, K.

    2015-01-01

    Calculation accuracy of the sodium void reactivity for safety-enhanced fast reactor core concepts was evaluated with analyses of critical experiments. In these concepts, heterogeneous core configuration and sodium plenum replacement are adopted to reduce the sodium void reactivity to around zero. In the past, a variety of critical experiments for heterogeneous cores had been carried out in the ZPPR facility, some of which are compiled in the IRPhEP handbook. Further, several experiments for core with sodium plenum had been performed in the BFS-2 facility. Calculation analyses of above mentioned critical experiments have been performed by using the Japanese current reactor physics analytical system. These analyses clarified that accuracy for homogeneous and axially-heterogeneous cores was sufficient, though accuracy for the radially-heterogeneous core and/or core with sodium plenum was not satisfactory. In order to achieve satisfactory accuracy for various types of cores, investigation on several design methods was performed. (author)

  20. Core concepts for 'zero-sodium-void-worth core' in metal fuelled fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.; Hill, R.N.; Fujita, E.K.; Wade, D.C.; Kumaoka, Y.; Suzuki, M.; Kawashima, M.; Nakagawa, H.

    1991-01-01

    Core design options to reduce the sodium void worth in metal fuelled LMRs are investigated. Two core designs which achieve a zero sodium void worth are analyzed in detail. The first design is a 'pancaked' and annular core with enhanced transuranic burning capabilities; the high leakage in this design yields a low breeding ratio and small void worth. The second design is an axially multilayered annular core which is fissile self-sufficient; in this design, the upper and lower core regions are neutronically decoupled for reduced void worth while fissile self-sufficiency is achieved using internal axial blankets plus external radial and axial blanket-zones. The neutronic performance characteristics of these low void worth designs are assessed here; their passive safety properties are discussed in a companion paper. (author)

  1. Core concepts for ''zero-sodium-void-worth core'' in metal fuelled fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.; Hill, R.N.; Fujita, E.K.; Wade, D.C.; Kumaoka, Y.; Suzuki, M.; Kawashima, M.; Nakagawa, H.

    1991-01-01

    Core design options to reduce the sodium void worth in metal fueled LMRs are investigated. Two core designs which achieve a zero sodium void worth are analyzed in detail. The first design is a ''pancaked'' and annular core with enhanced transuranic burning capabilities; the high leakage in this design yields a low breeding ratio and small void worth. The second design is an axially multilayered annular core which is fissile self-sufficient; in this design, the upper and lower core regions are neutronically decoupled for reduced void worth while fissile self-sufficiency is achieved using internal axial blankets plus external radial and axial blanket zones. The neutronic performance characteristics of these low void worth designs are assessed here; their passive safety properties are discussed in a companion paper. 16 refs., 2 figs., 3 tabs

  2. Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1993-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R ampersand D

  3. Fast spectrum space reactor sizing code for calandria-type cores (CORSCO Code)

    Science.gov (United States)

    Specht, Eugene R.; Villalobos, Antonio

    1991-01-01

    The CORSCO code rapidly sizes reactor cores that have calandria-type geometry. The fuel configuration modeled is a large ceramic zone that contains numerous small cylindrical coolant channels spaced apart with a triangular pitch. A minimum reactor weight is obtained for a fixed set of constraints (peak fuel temperature, peak coolant velocity, etc.) by obtaining a unique solution to a set of five thermal/hydraulic equations, as well as a required excess reactivity which is specified by a core size dependent one-group criticality expression. Typical results are shown for a W-Re/UN cermet-fueled, lithium-cooled space reactor over a power range of 25 to 100 MWt. Reactor sensitivity coefficients are also shown for changes in reactor weight and number of coolant channels due to changes in core thermal/hydraulic constraints.

  4. Theoretical methods for neutronics calculations of core-blanket and core-reflector systems in fast reactors

    International Nuclear Information System (INIS)

    Corcuera, Roberto.

    1975-12-01

    The present work is a contribution to the neutronics calculational methods of fast neutron reactors. The first step is devoted to the analysis of the validity of the few-groups (of the order of 25) multigroup scheme, and of the transport-correction approximation for the treatment of the scattering anisotropy. This analysis includes both the reactor core, where the usual approximations are found to be satisfactory, and the reflector, where it turns out that the rapid variations of the neutron flux and of it's spectrum necessitate the improvement of the multigroup cross-sections' generation. Therefore, a zero-dimensional simple and accurate model for the average spectrum in the reflector is developed by the space-energy synthesis method. Finally using the Rayleigh-Ritz method, a model is developed in which the flux is spatially represented by an analytical function. This model is applied to the analysis of the sensitivity of reflector neutronics parameters to the variations of the cross sections [fr

  5. Fast reactor programme

    International Nuclear Information System (INIS)

    Plakman, J.C.

    1982-01-01

    This progress report summarizes the fast reactor research carried out by ECN during the period covering the year 1980. This research is mainly concerned with the cores of sodium-cooled breeders, in particular the SNR-300, and its related safety aspects. It comprises six items: A programme to determine relevant nuclear data of fission- and corrosion-products; A fuel performance programme comprising in-pile cladding failure experiments and a study of the consequences of loss-of-cooling and overpower; Basic research on fuel; Investigation of the changes in the mechanical properties of austenitic stainless steel DIN 1.4948 due to fast neutron doses, this material has been used in the manufacture of the reactor vessel and its internal components; Study of aerosols which could be formed at the time of a fast reactor accident and their progressive behaviour on leaking through cracks in the concrete containment; Studies on heat transfer in a sodium-cooled fast reactor core. As fast breeders operate at high power densities, an accurate knowledge of the heat transfer phenomena under single-phase and two-phase conditions is sought. (Auth.)

  6. Fast reactor core design studies to cope with TRU fuel composition changes in the LWR-to-FBR transition period

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Maruyama, Shuhei; Ohki, Shigeo; Mizuno, Tomoyasu

    2009-01-01

    As part of the Fast Reactor Cycle Technology Development Project (FaCT Project), sodium-cooled fast reactor core design efforts have been made to cope with the TRU fuel composition changes expected during LWR-to-FBR transition period, in which a various kind of TRU fuel compositions are available depending on the characteristics of the LWR spent fuels and a way of recycling them. A 750 MWe mixed-oxide fuel core is firstly defined as a FaCT medium-size reference core and its neutronics characteristics are determined. The core is a high internal conversion type and has an average burnup of 150 GWD/T. The reference TRU fuel composition is assumed to come from the FBR equilibrium state. Compared to the LWR-to-FBR transition period, the TRU fuels in the FBR equilibrium period are multi-recycled through fast reactors and have a different composition. An available TRU fuel composition is determined by fast reactor spent fuel multi-recycling scenarios. Then the FaCT core corresponding to the TRU fuel with different compositions is set according to the TRU fuel composition changes in LWR-to-FBR transition period, and the key core neutronics characteristics are assessed. It is shown that among the core neutronics characteristics, the burnup reactivity and the safety parameters such as sodium void reactivity and Doppler coefficient are significantly influenced by the TRU fuel composition changes. As a result, a general characteristic in the FaCT core design to cope with TRU fuel composition changes is grasped and the design envelopes are identified in terms of the burnup reactivity and the safety parameters. (author)

  7. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    Science.gov (United States)

    Afifah, Maryam; Miura, Ryosuke; Su'ud, Zaki; Takaki, Naoyuki; Sekimoto, H.

    2015-09-01

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don't need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  8. Preliminary design of a borax internal core-catcher for a gas cooled fast reactor

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Schumacher, G.

    1976-09-01

    Preliminary thermal calculations show that a core-catcher appears to be feasible, which is able to cope with the complete meltdown of the core and blankets of a 1,000 MWe GCFR. This core-catcher is based on borax (Na 2 B 4 O 7 ) as dissolving material of the oxide fuel and of the fission products occuring in oxide form. The borax is contained in steel boxes forming a 2.1 meter thick slab on the base of the reactor cavity inside the prestressed concrete reactor vessel, just underneath the reactor core. The fission products are dispersed in the pool formed by the liquid borax. The heat power density in the pool is conveniently reduced and the resulting heat fluxes at the borders of the pool can be safely carried away through the PCRV liner and its water cooling system. (orig.) [de

  9. Reactor core fuel management

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1976-01-01

    The subject is covered in chapters, entitled: concepts of reactor physics; neutron diffusion; core heat transfer; reactivity; reactor operation; variables of core management; computer code modules; alternative reactor concepts; methods of optimization; general system aspects. (U.K.)

  10. A fuel freezing model for liquid-metal fast breeder reactor hypothetical core disruptive accidents

    Energy Technology Data Exchange (ETDEWEB)

    Best, F.R.; Erdman, C.; Wayne, D.

    1985-01-01

    A proposed fuel freezing mechanism for molten UO2 fuel penetrating a steel channel was investigated in the course of liquid-metal-cooled fast breeder reactor hypothetical core disruptiv accident safety studies. The fuel crust deposited on an underlying melting steel wall was analyzed as being subjected to two stresses one due to the pressure difference between the flowing fuel and the stagnant molten steel layer, and the other resulting from the temperature variation through the crust thickness. Analyses based on the proposed freezing mechanism and comparisons with fuel freezing experiments confirmed that fuel freezing occurs in three modes. For initially low steel wall temperatures, the fuel crust was stable and grew to occlude the channel. At high steel wall temperatures (above 1070 K), instantaneous wall melting leading to steel entrainment was calculated to occur with final penetration depending on the refreezing of the entrained steel. Between these two extremes, the stress developed within the crust at the steel melting front exceeds the critical buckling value, the crust ruptures, and steel is injected into the fuel flow. Freezing is dominated by the fuel/steel mixture. The theoretical penetration distances and freezing times were in good agreement with the experimental results with no more than 20% error involved.

  11. Evolution of fast reactor core spectra in changing a heavy liquid metal coolant by molten PB-208

    Energy Technology Data Exchange (ETDEWEB)

    Blokhin, D. A.; Mitenkova, E. F. [Nuclear Safety Inst., Russian Academy of Sciences, B. Tulskaya 52, Moscow, 115119 (Russian Federation); Khorasanov, G. L.; Zemskov, E. A.; Blokhin, A. I. [State Scientific Center, Russian Federation, Inst. of Physics and Power Engineering, Bondarenko Square 1, Obninsk, 249033 (Russian Federation)

    2012-07-01

    In the paper neutron spectra of fast reactor cooled with lead-bismuth or lead-208 are given. It is shown that in changing the coolant from lead-bismuth to lead-208 the core neutron spectra of the fast reactor FR RBEC-M are hardening in whole by several percents when a little share of low energy neutrons (5 eV - 50 keV) is slightly increasing. The shift of spectra to higher energies permits to enhance the fuel fission while the increased share of low energy neutrons provides more effective conversion of uranium-238 into plutonium due to peculiarity of {sup 238}U neutron capture cross section. Good neutron and physical features of molten {sup 208}Pb permit to assume it as perspective coolant for fast reactors and accelerator driven systems. The one-group cross sections of neutron radiation capture, {sigma}(n,g), by {sup 208}Pb, {sup 238}U, {sup 99}Tc, mix of lead and bismuth, {sup nat}Pb-Bi, averaged over neutron spectra of the fast reactor RBEC-M are given. It is shown that one-group cross sections of neutron capture by material of the liquid metal coolant consisted from lead enriched with the stable lead isotope, {sup 208}Pb, are by 4-7 times smaller {sigma}(n,g) for the coolant {sup nat}Pb-Bi. The economy of neutrons in the core cooled with {sup 208}Pb can be used for reducing reactor's initial fuel load, increasing fuel breeding and transmutation of long lived fission products, for example {sup 99}Tc. Good neutron and physical features of lead enriched with {sup 208}Pb permit to consider it as a perspective low neutron absorbing coolant for fast reactors and accelerator driven systems. (authors)

  12. Nuclear reactor core assembly

    International Nuclear Information System (INIS)

    Baxi, C.B.

    1978-01-01

    The object of the present invention is to provide a fast reactor core assembly design for use with a fluid coolant such as liquid sodium or carbon monoxide incorporating a method of increasing the percentage of coolant flow though the blanket elements relative to the total coolant flow through the blanket and fuel elements during shutdown conditions without using moving parts. It is claimed that deterioration due to reactor radiation or temperature conditions is avoided and ready modification or replacement is possible. (U.K.)

  13. Sodium-cooled Fast Reactor Cores using Uranium-Free Metallic Fuels for Maximizing TRU Support Ratio

    International Nuclear Information System (INIS)

    You, WuSeung; Hong, Ser Gi

    2014-01-01

    The depleted uranium plays important roles in the SFR burner cores because it substantially contributes to the inherent safety of the core through the negative Doppler coefficient and large delayed neutron. However, the use of depleted uranium as a diluent nuclide leads to a limited value of TRU support ratio due to the generation of TRUs through the breeding. In this paper, we designed sodium cooled fast reactor (SFR) cores having uranium-free fuels 3,4 for maximization of TRU consumption rate. However, the uranium-free fuelled burner cores can be penalized by unacceptably small values of the Doppler coefficient and small delayed neutron fraction. In this work, metallic fuels of TRU-(W or Ni)-Zr are considered to improve the performances of the uranium-free cores. The objective of this work is to consistently compare the neutronic performances of uranium-free sodium cooled fast reactor cores having TRU-Zr metallic fuels added with Ni or W and also to clarify what are the problematic features to be resolved. In this paper, a consistent comparative study of 400MWe sodium cooled burner cores having uranium-based fuels and uranium-free fuels was done to analyze the relative core neutronic features. Also, we proposed a uranium-free metallic fuel based on Nickel. From the results, it is found that tungsten-based uranium-free metallic fuel gives large negative Doppler coefficient due to high resonance of tungsten isotopes but this core has large sodium void worth and small effective delayed neutron fraction while the nickel-based uranium-free metallic fuelled core has less negative Doppler coefficient but smaller sodium void worth and larger effective delayed neutron fraction than the tungsten-based one. On the other hand, the core having TRU-Zr has very high burnup reactivity swing which may be problematic in compensating it using control rods and the least negative Doppler coefficient

  14. Application of artificial intelligence to the detection and diagnosis of core faults in fast reactors

    International Nuclear Information System (INIS)

    Le Guillou, G.; Berlin, C.; Parcy, J.P.

    1983-01-01

    An automatic diagnostic system designed specially for fuel assembly accidents in fast reactors of the French type is described. It has an ''expert system'' structure and, at the present stage of the project, is operating on a laboratory scale in an experimental unit (Solar 16/65). The software aspects of the development of such systems (structure and formulation of rules, language, etc.) are presented in detail. Various simulation tests are outlined. ''Real-time'' application of the system will begin in 1983 on the Phenix reactor. (author)

  15. Fast breeder reactors

    International Nuclear Information System (INIS)

    Heinzel, V.

    1975-01-01

    The author gives a survey of 'fast breeder reactors'. In detail the process of breeding, the reasons for the development of fast breeders, the possible breeder reactors, the design criteria, fuels, cladding, coolant, and safety aspects are reported on. Design data of some experimental reactors already in operation are summarized in stabular form. 300 MWe Prototype-Reactors SNR-300 and PFR are explained in detail and data of KWU helium-cooled fast breeder reactors are given. (HR) [de

  16. Review of Transient Fuel Test Results at Sandia National Laboratories and the Potential for Future Fast Reactor Fuel Transient Testing in the Annular Core Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A.; Pickard, Paul S.; Parma, Edward J.; Vernon, Milton E.; Kelly, John; Tikare, Veena [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

    2009-06-15

    Reactor driven transient tests of fast reactor fuels may be required to support the development and certification of new fuels for Fast Reactors. The results of the transient fuel tests will likely be needed to support licensing and to provide validation data to support the safety case for a variety of proposed fast fuel types and reactors. In general reactor driven transient tests are used to identify basic phenomenology during reactor transients and to determine the fuel performance limits and margins to failure during design basis accidents such as loss of flow, loss of heat sink, and reactivity insertion accidents. This paper provides a summary description of the previous Sandia Fuel Disruption and Transient Axial Relocation tests that were performed in the Annular Core Research Reactor (ACRR) for the U.S. Nuclear Regulatory Commission almost 25 years ago. These tests consisted of a number of capsule tests and flowing gas tests that used fission heating to disrupt fresh and irradiated MOX fuel. The behavior of the fuel disruption, the generation of aerosols and the melting and relocation of fuel and cladding was recorded on high speed cinematography. This paper will present videos of the fuel disruption that was observed in these tests which reveal stark differences in fuel behavior between fresh and irradiated fuel. Even though these tests were performed over 25 years ago, their results are still relevant to today's reactor designs. These types of transient tests are again being considered by the Advanced Fuel Cycle Initiative to support the Global Nuclear Energy Partnership because of the need to perform tests on metal fuels and transuranic fuels. Because the Annular Core Research Reactor is the only transient test facility available within the US, a brief summary of Sandia's continued capability to perform these tests in the ACRR will also be provided. (authors)

  17. The fast breeder reactor

    International Nuclear Information System (INIS)

    Collier, J.

    1990-01-01

    The arguments for and against the fast breeder reactor are debated. The case for the fast reactor is that the world energy demand will increase due to increasing population over the next forty years and that the damage to the global environment from burning fossil fuels which contribute to the greenhouse effect. Nuclear fission is the only large scale energy source which can achieve a cut in the use of carbon based fuels although energy conservation and renewable sources will also be important. Fast reactors produce more energy from uranium than other types of (thermal) reactors such as AGRs and PWRs. Fast reactors would be important from about 2020 onwards especially as by then many thermal reactors will need to be replaced. Fast reactors are also safer than normal reactors. The arguments against fast reactors are largely economic. The cost, especially the capital cost is very high. The viability of the technology is also questioned. (UK)

  18. Neutronic design for a 100MW{sub th} Small modular natural circulation lead or lead-alloy cooled fast reactors core

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.; Chen, H.; Zhang, H.; Chen, Z.; Zeng, Q., E-mail: shchshch@ustc.edu.cn, E-mail: hlchen1@ustc.edu.cn, E-mail: kulah@mail.ustc.edu.cn, E-mail: zchen214@mail.ustc.edu.cn, E-mail: zengqin@ustc.edu.cn [Univ. of Science and Technology of China, School of Nuclear Science and Technology, Hefei, Anhui (China)

    2015-07-01

    Lead or lead-alloy cooled fast reactor with good fuel proliferation and nuclear waste transmutation capability, as well as high security and economy, is a great potential for the development of fourth-generation nuclear energy systems. Small natural circulation reactor is an important technical route lead cooled fast reactors industrial applications, which has been chosen as one of the three reference technical for solution lead or lead-alloy cooled fast reactors by GIF lead-cooled fast reactor steering committee. The School of Nuclear Science and Technology of USTC proposed a small 100MW{sub th} natural circulation lead cooled fast reactor concept called SNCLFR-100 based realistic technology. This article describes the SNCLFR-100 reactor of the overall technical program, core physics calculation and analysis. The results show that: SNCLFR-100 with good neutronic and safety performance and relevant design parameters meet the security requirements with feasibility. (author)

  19. Design of the core and subassemblies of a liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Chaumont, J.M.; Clauzon, Pierre; Delpeyroux, Paul; Estavoyer, M.; Ginier, R.; Marmonier, Pierre; Mougniot, J.-C.

    1975-01-01

    It is shown that the main objective in designing a power station is a minimum cost of the kW-h produced and that the choice of the main parameters of a reactor is the result of a compromise. The determination of the core architecture, the shape and size of fuel pins, the thermal and hydraulic parameters and the fuel assembly design is discussed [fr

  20. Comparative Studies of Core Thermal Hydraulic Design Methods for the Prototype Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Lim, Jae Yong; Kim, Sang Ji

    2013-01-01

    In this work, various core thermal-hydraulic design methods, which have arisen during the development of a prototype SFR, are compared to establish a proper design procedure. Comparative studies have been performed to determine the appropriate design method for the prototype SFR. The results show that the minimization method show a lower cladding midwall temperature than the fixed outlet temperature methods and superior thermal safety margin with the same coolant flow. The Korea Atomic energy Research Institute (KAERI) has performed a conceptual SFR design with the final goal of constructing a prototype plant by 2028. The main objective of the SFR prototype plant is to verify the TRU metal fuel performance, reactor operation, and transmutation ability of high-level wastes. The core thermal-hydraulic design is used to ensure the safe fuel performance during the whole plant operation. Compared to the critical heat flux in typical light water reactors, nuclear fuel damages in SFR subassemblies are arisen from a creep induced failure. The creep limit is evaluated based on both the maximum cladding temperature and the uncertainties of the design parameters. Therefore, the core thermalhydraulic design method, which eventually determines the cladding temperature, is highly important to assure a safe and reliable operation of the reactor systems

  1. Towards spatial kinetics in a low void effect sodium fast reactor: core analysis and validation of the TFM neutronic approach

    Directory of Open Access Journals (Sweden)

    Laureau Axel

    2017-01-01

    Full Text Available The studies presented in this paper are performed in the general framework of transient coupled calculations with accurate neutron kinetics models able to characterize spatial decoupling in the core. An innovative fission matrix interpolation model has been developed with a correlated sampling technique associated to the Transient Fission Matrix (TFM approach. This paper presents a validation of this Monte Carlo based kinetic approach on sodium fast reactors. An application case representative of an assembly of the low void effect sodium fast reactor ASTRID is used to study the physics of this kind of system and to illustrate the capabilities provided by this approach. To validate the interpolation model developed, different comparisons have been performed with direct Monte Carlo and ERANOS deterministic S N calculations on spatial kinetics parameters (flux redistribution, reactivity estimation, etc. together with point kinetics feedback estimations.

  2. An Advanced Sodium-Cooled Fast Reactor Core Concept Using Uranium-Free Metallic Fuels for Maximizing TRU Burning Rate

    Directory of Open Access Journals (Sweden)

    Wuseong You

    2017-12-01

    Full Text Available In this paper, we designed and analyzed advanced sodium-cooled fast reactor cores using uranium-free metallic fuels for maximizing burning rate of transuranics (TRU nuclides from PWR spent fuels. It is well known that the removal of fertile nuclides such as 238U from fuels in liquid metal cooled fast reactor leads to the degradation of important safety parameters such as the Doppler coefficient, coolant void worth, and delayed neutron fraction. To resolve the degradation of the Doppler coefficient, we considered adding resonant nuclides to the uranium-free metallic fuels. The analysis results showed that the cores using uranium-free fuels loaded with tungsten instead of uranium have a significantly lower burnup reactivity swing and more negative Doppler coefficients than the core using uranium-free fuels without resonant nuclides. In addition, we considered the use of axially central B4C absorber region and moderator rods to further improve safety parameters such as sodium void worth, burnup reactivity swing, and the Doppler coefficient. The results of the analysis showed that the final design core can consume ~353 kg per cycle and satisfies self-controllability under unprotected accidents. The fuel cycle analysis showed that the PWR–SFR coupling fuel cycle option drastically reduces the amount of waste going to repository and the SFR burner can consume the amount of TRUs discharged from 3.72 PWRs generating the same electricity.

  3. Current status of restoration work for obstacle and upper core structure in reactor vessel of experimental fast reactor 'Joyo'. 2-2

    International Nuclear Information System (INIS)

    Okuda, Eiji; Ito, Hiromichi; Yoshihara, Shizuya

    2014-01-01

    An accident occurred in experimental fast reactor 'Joyo' in 2007 which is obstruction of fuel change equipment caused by contacting rotating plug and MARICO-2. In addition, we confirmed two happenings in the reactor vessel that (1) Deformation of MARICO-2 subassembly on the in vessel storage rack together with a transfer pot, (2) Deformation of the Upper core structure of 'Joyo' caused by contacting MARICO-2 subassembly and the UCS. We do the restoration work for restoring it. This time, we describe current status of Replacement work of the UCS. (author)

  4. Effects of nuclear data library on BFS and ZPPR fast reactor core analysis results. Pt. 1. ZPPR analysis results

    International Nuclear Information System (INIS)

    Mantourov, Guennadi

    2001-05-01

    This work was fulfilled in the frame of JNC-IPPE Collaboration on Experimental Investigation of Excess of Weapon Pu Disposition in BN-600 Reactor Using BFS-2 Facility. The data processing system CONSYST/ABBN coupled with ABBN-93 nuclear data library was used in analysis of BFS and ZPPR fast reactor cores applying JNC core calculation code CITATION. FFCP cell code was used for taking into account the spatial cell heterogeneity and resonance effects based on the first flight collision probability method and subgroup approach. Especially a converting program was written to transmit the prepared effective cross sections to JNC standard PDS files. Then the CITATION code was applied for 3-D XYZ neutronics calculations of BFS and ZPPR JUPITER experiments series cores. The effects of nuclear data library have been studied by comparing the former results based on JENDL-3.2 nuclear data library. The comparison results using IPPE and JNC nuclear data libraries for k-effective parameter for ZPPR-9, ZPPR-13A and ZPPR-17A cores are presented. The calculated correction factor in all cases was less than 1.0%. So the uncertainty in C value caused by possible errors in calculation of these corrections is expected to be less than 0.3% in case of ZPPR-13A and ZPPR-17A cores, and rather less for ZPPR-9 core. The main result of this study is that the effect of applying ABBN-93 nuclear data in JNC calculation route revealed a large enough discrepancy in k-eff for ZPPR-9 (about 0.6%) and ZPPR-17A (about 0.5%) cores. For BFS-62-1 and BFS-62-2 cores such analysis is in progress. Stretch cell models for both BFS cores were formed and cell calculations using FFCP code have started. Some results of cell calculations are presented. (author)

  5. Investigation of equilibrium core by recycling MA and LLFP in fast reactor cycle. 2. Investigation of LLFP confined in Equilibrium Core with element separation

    International Nuclear Information System (INIS)

    Mizutani, Akihiko; Shono, Akira; Ishikawa, Makoto

    2000-02-01

    A feasibility study has been performed on a self-consistent fuel cycle system in the nuclear fuel recycle system with fast reactors. In this system, the self-generated MAs (Minor Actinides) and LLFPs (Long-Lived Fission Products) are confined and incinerated in the fast reactor, which is called the 'Equilibrium Core' concept. However, as the isotope separations for selected LLFPs have been assumed in this cycle system, it seems that this assumption is far from realistic one from the viewpoint of economy with respect to the fuel cycle system. In this study, the possibility for realization of the 'Equilibrium Core' concept is evaluated for three fuel types such as oxide, nitride and metallic fuels, provided that the isotopic separation of LLFPs is changed to the element one. This study provides, that is to say, how many LLFP elements can be confined in the 'Equilibrium Core' with element separation. This report examines the nuclear properties of the Equilibrium Core' for various combinations of LLFP incineration schemes from the viewpoints of the risk of geological disposal and the limit in confinable quantity of LLFPs. From the viewpoint of the risk of geological disposal estimated by the retardation factor, it is possible to confine with element separation for Tc, I and Se even in the oxide fueled core. From the standpoint of the limit of confinable amounts of LLFPs, on the other hand, Tc, I, Se, Sn and Cs can be confined with element separate only in case that the nitride fuel is chosen. (author)

  6. Recriticality, a Key Phenomenon to Investigate in Core Disruptive Accident Scenarios of Current and Future Fast Reactor Designs

    International Nuclear Information System (INIS)

    Maschek, W.; Rineiski, A.; Flad, M.; Kriventsev, V.; Gabrielli, F.; Morita, K.

    2012-01-01

    Final comments and conclusions: • Modern plants, should have performed better under Fukushima type event. • In future fast reactor systems significantly higher active and passive safety features are installed, which should cope with events like Fukushima. • One important lesson: put a focus on rare initiators, accident routes and consequences that are neither expected nor have been observed, events that are categorized under ‘black swans’. • Importance of severe accident research demonstrated - both analytically and experimentally for assessing and interpreting accident scenarios and developments. Precondition for developing preventive & mitigative safety measures. Passive safety measures are in the focus of advanced design options and must work under conditions of multiple loads and aggravating events. • Fast reactor systems behavior as the SFR under severe accident conditions: – In fast spectrum systems as the SFR the core is not in its neutronically most reactive configuration and SFRs may be loaded with MAs for waste management; – Recriticalities have a high probability because of the higher enrichment levels; – Short time scales have to be envisioned for core melt-down; – Decay heat levels might be significantly higher, if MA bearing fuel is involved. • Improve design by measures for prevention and/or mitigation of recriticalities; – High reliability of simulations required for proof; • Assessment of fuel relocated on peripheral structures; • Preventive/mitigating measures should not replace containment measures

  7. Generation IV sodium fast reactor. Feedback reactivity coefficients to optimise safe natural core behaviour during accident transients

    International Nuclear Information System (INIS)

    Zaetta, Alain; Bernardin, Bruno; Vanier, Marc; Tommasi, Jean; Varaine, Frederic

    2009-01-01

    One of the key research goals for Generation IV Sodium-cooled Fast Reactors (SFR) is to improve their safety levels, particularly by ensuring robust core behaviour during accident conditions. A dedicated approach called COCONS has been developed to reach these objectives. This paper discusses this approach which focuses on the design of naturally safe core. It can be broken down into three stages: The first stage involves defining the role of feedback reactivity coefficients applicable during accident transients, such as unprotected reactivity insertion transients (UTOP) or unprotected loss-of-cooling-flow transients (ULOF). The parametric study has revealed the impact of the Doppler effect on UTOP and sodium temperature coefficient which is directly related to the sodium void effect for ULOF. The second stage is to define optimised ranges for these reactivity coefficients to avoid any core damage by fuel meltdown or sodium boiling. Conclusions differ greatly depending on the fuel type, e.g. oxide, metal or carbide. Fuel temperature margins before fuel meltdown and average fuel temperatures play a very important role. The third stage involves recommending several core concepts that are capable of achieving these idealistic ranges. Several new oxide fuel subassembly designs are suggested in view of reducing the maximum fuel temperature and increasing margins to fuel meltdown. Ceramic carbide fuel seems to be a very promising choice from a reactor physics viewpoint. Combined with moderator material in the core or used with the new fuel 'plate' subassembly concept, ceramic carbide fuel seems capable of achieving safe natural behaviour during either a UTOP or ULOF transient. The COCONS approach appears to be a useful tool in terms of recommending new SFR core options and comparing overall performance levels with reactor safety levels. Final optimization will require more general comparisons, taking into account all the main Generation IV goals i.e. economic

  8. Fast-neutron reactor

    International Nuclear Information System (INIS)

    Iljunin, V.G.; Murogov, V.M.; Shmelev, A.N.

    1974-01-01

    A description is given of a fast-neutron reactor wherein the core and the surrounding lateral and axial blankets are made up of fuel element stacks. The walls of each stack have holes in the middle portion thereof with respect to the height of the core. Main and additional fuel elements are arranged respectively above and below the plane passing through the centers ofthe holes, inside each stack, the spacing between which fuel elements form, together with the holes, the inlet header of the coolant washing the fuel elements. The inlet header splits the coolant into two oppositely directed flows lead away by two outlet headers arranged above and below the upper and lower axial blankets

  9. Structural evaluation of fast reactor core restraint with irradiation creep-swelling opposition effects

    International Nuclear Information System (INIS)

    Kalinowski, J.E.

    1979-01-01

    Irradiation creep and swelling correlations are derived from primary loading in-reactor experiments in which irradiation creep and swelling act in the same direction. When correlation uncertainty bands are applied in core restraint evaluations, significant variability in sub-assembly behavior is predicted. For example, sub-assemblies in the outer core region where neutron flux and duct temperature gradients are significant exhibit bowing responses ranging from a creep dominated outward bow to a swelling dominated inward bow. Furthermore, solutions based on upper bound and lower bound correlation uncertainty combinations are observed to cross-over indicating that such combinations are physically unrealistic in the assessment of creep-swelling opposition effects. In order to obtain realistic upper and lower bound sub-assembly responses, judgement must be applied in the selection of creep-swelling equation uncertainty combinations. Experimental programs have been defined which will provide the needed basic as well as prototypic creep-swelling opposition data for reference and advanced sub-assembly duct alloys. The first of these is an irradiation of cylindrical capsules subjected to a through-wall temperature gradient. This test which is presently underway in the EBR-II reactor will provide the data needed to refine irradiation creep and swelling correlations and their associated uncertainties when applied to core restraint evaluations. Restrained pin and duct bowing experiments in FFTF have also been defined. These will provide the prototypic data necessary to verify irradiated duct bowing methodology. The results of this experimental program are expected to reduce creep and swelling uncertainties and permit better definition of the design window for load plane gaps. (orig.)

  10. Mechanical behavior of a fast reactor core: Application of the 3D codes to SUPER PHENIX 1

    International Nuclear Information System (INIS)

    Bernard, A.; Masoni, P.; Dorsselaere, J.P. van

    1983-01-01

    The series of the 3-dimensional mechanical codes of a fast reactor core was used for the first time within the framework of a design study of an industrial reactor: SUPER-PHENIX 1. These codes are the following ones: - ARGOH which calculates the behavior of an isolated subassembly. - HARMONIE which calculates the core mechanical equilibrium - TRACAR which yields a graphic visualization of HARMONIE results, and calculates the handling forces and support reactions - HARMOREA which calculates the reactivity variations between given equilibrium states (for instance: pads effect and diagrid effect); now at the end of its development. The calculations were performed on 1/3 of the SPX1 core. Their purpose is double: - on the one hand, to check design criteria, and provide the loadings for the subassembly mechanical design studies; on the other hand, to evaluate the reactivity effects, related to the horizontal core deformations, and useful for operation and safety studies. The results of these calculations showed that the design criteria were verified for the contractual lifetime of the subassemblies. (orig.)

  11. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  12. Efficiency of different techniques of physical flattening by fuel while selection of optimum arrangement of large fast reactor core

    International Nuclear Information System (INIS)

    Grachev, E.A.; Dejnega, N.L.; Mitin, A.M.

    1974-01-01

    Results are given of calculations for selecting the parameters of the large fast breeder reactor core (1500 Mw) operating on oxide fuel with a sodium coolant. A complex optimum criterion was selected for energy intensity, energy distribution, breeding ratio and critical load factor, run duration, burning, reactivity variations, influence of CV3, fuel overloads, and calculated fue fuel expenses. The effectivities of various methods for physical grading of fuel (enrichment and composition) were examined in accordance with the optimum criterion. Parameters of reactor cores optimum arrangements are presented. Continuous reactor operation during 0.8-1.0 yr. at energy intensity more than 400 kW was shown to be essential for attaining the optimum chosen. Accounting for the CV3 system and partial fuel overloads, the methods of balancing energy release either by enriching fuel or by changing its composition proved to be almost equally effective. All calculations were performed with the aid of a 18-4-RZ-15B program on the basis of a BNAB-26 constant system [ru

  13. Thermal hydraulic parametric investigation of decay heat removal from degraded core of a sodium cooled fast Breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Lokesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kumar Sharma, Anil, E-mail: aksharma@igcar.gov.in [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India); Velusamy, K. [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India)

    2017-03-15

    Highlights: • Decay heat removal from degraded core of a typical SFR is highlighted. • Influence of number of DHXs in operation on PAHR is analyzed. • Investigations on structural integrity of the inner vessel and core catcher. • Feasibility study for retention of a part of debris in upper pool of SFR. - Abstract: Ensuring post accident decay heat removal with high degree of reliability following a Core Disruptive Accident (CDA) is very important in the design of sodium cooled fast reactors (SFR). In the recent past, a lot of research has been done towards the design of an in-vessel core catcher below the grid plate to prevent the core debris reaching the main vessel in a pool type SFR. However, during an energetic CDA, the entire core debris is unlikely to reach the core catcher. A significant part of the debris is likely to settle in core periphery between radial shielding subassemblies and the inner vessel. Failure of inner vessel due to the decay heat can lead to core debris reaching the main vessel and threatening its integrity. On the other hand, retention of a part of debris in core periphery can reduce the load on main core catcher. Towards achieving an optimum design of SFR and safety evaluation, it is essential to quantify the amount of heat generating core debris that can be retained safely within the primary vessel. This has been performed by a mathematical simulation comprising solution of 2-D transient form of the governing equations of turbulent sodium flow and heat transfer with Boussinesq approximations. The conjugate conduction-convection model adopted for this purpose is validated against in-house experimental data. Transient evolutions of natural convection in the pools and structural temperatures in critical components have been predicted. It is found that 50% of the core debris can be safely accommodated in the gap between radial shielding subassemblies and inner vessel without exceeding structural temperature limit. It is also

  14. Design features affecting dynamic behaviour of fast reactor cores. Overview paper

    International Nuclear Information System (INIS)

    Kayser, G.; Gouriou, A.

    1982-01-01

    The study of dynamic response of a LMFBR to normal and accidental transients needs first of all a simulation code taking into account all the important effects. The DYN-1 code aims at this target. It represents with a sufficiently accurate meshing the core in a 2D geometry for the thermal and reactivity effects, while the kinetics of this core are calculated with a point model. The primary pool, secondary loops, steam generator are also represented, as well as the control and protective systems. A schematic representation of this code applied to Super Phenix 1 is shown. Simpler codes are sometimes good enough for parametric studies. The dynamic studies of this plant are related to different situations which can be classified in the following groups: normal operation, the stability of the reactor in a steady state situation, or with power or frequency regulation; the normal transients from one power level to another (startup procedures); the incidental situations, with the protective shut-down systems operative (for instance loss of electric supply power); the hypothetical accidental situations without scram. The first three groups of problems arise necessarily in the study of each plant ; the last group is related to very hypothetical situations, the probability of which can be made very low by a high reliability of the shut-down system. Also the need to study them depends on this reliability and subsequently on the philosophy which the licensing authorities adopt

  15. Nuclear reactor core catcher

    International Nuclear Information System (INIS)

    1977-01-01

    A nuclear reactor core catcher is described for containing debris resulting from an accident causing core meltdown and which incorporates a method of cooling the debris by the circulation of a liquid coolant. (U.K.)

  16. Fast Breeder Reactor studies

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts

  17. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  18. Special power supply and control system for the gas-cooled fast reactor-core flow test loop

    International Nuclear Information System (INIS)

    Hudson, T.L.

    1981-09-01

    The test bundle in the Gas-Cooled Fast Reactor-Core Flow Test Loop (GCFR-CFTL) requires a source of electrical power that can be controlled accurately and reliably over a wide range of steady-state and transient power levels and skewed power distributions to simulate GCFR operating conditions. Both ac and dc power systems were studied, and only those employing silicon-controlled rectifiers (SCRs) could meet the requirements. This report summarizes the studies, tests, evaluations, and development work leading to the selection. it also presents the design, procurement, testing, and evaluation of the first 500-kVa LMPL supply. The results show that the LMPL can control 60-Hz sine wave power from 200 W to 500 kVA

  19. The design and fabrication of an optical periscope for core viewing of fast breeder test reactor (FBTR)

    International Nuclear Information System (INIS)

    Das, N.C.; Sanjiva Kumar; Udupa, D.V.; Shukla, R.P.; Kadu, A.M.; Modi, R.K.

    2004-08-01

    A FBTR (Fast Breeder Test Reactor) periscope has been designed and fabricated indigenously for viewing and photography/ video recording the objects in the reactor core. The periscope consists of a scanning prism mechanism, zoom lens objective, a system of relay lenses and an eyepiece sub-assembly for viewing the objects. The objective of the periscope is a zoom lens system for obtaining a continuously varying magnification from 2X to 5X. Zoom lens objective system has a variable focal length from 100 mm to 250 mm with an aperture varying from 10 mm to 25 mm respectively. This covers a semi- field angle of 3 deg for the objective lens of focal length of 250 mrn and 4 deg for the objective of focal length of l00 mm. Two prisms of 45 deg -90 deg -45 deg types are used for scanning the object space in vertical direction. One prism is fixed, whereas the prism facing the object can be rotated about the horizontal axis through an angle of 110 deg. The rotation of the entire periscope assembly along the vertical axis scans the object space on the horizontal plane. The combination of these two rotations is used to scan the field of interest. It may be noted here that it is absolutely essential to introduce a Pechan prism before each eyepiece. Pechan prism is used for the rotation of the image, which is produced due to the rotation of the scanning prisms. The measured value of the linear resolution of the instrument is 0.7 mm at an object distance of 2.5 meter from the zoom lens objective system. The periscope has two arm labeled I and II. The arm I is used for visual inspection, while the arm II is used for video recording/photography. The periscope will be used as an in-service instrument for Fast Breeder Test Reactor, IGCAR, Kalpakkam. (author)

  20. Fast Reactors and Nuclear Nonproliferation

    International Nuclear Information System (INIS)

    Avrorina, E.N.; Chebeskovb, A.N.

    2013-01-01

    Conclusion remarks: 1. Fast reactor start-up with U-Pu fuel: – dependent on thermal reactors, – no needs in U enrichment, – needs in SNF reprocessing, – Pu is a little suitable for NED, – practically impossible gun-type NED, – difficulties for implosion-type NED: necessary tests, advanced technologies, etc. – Pu in blankets is similar to WPu by isotopic composition, – Use of blanket for production isotopes (e.g. 233 U), – Combined reprocessing of SNF: altogether blanket and core, – Blanket elimination: decrease in Pu production – No pure Pu separation. 2. Fast reactor start-up with U fuel: - Needs in both U enrichment and SNF reprocessing, - Independent of thermal reactors, - Good Pu bred in the core let alone blankets, - NED of simple gun-type design, - Increase of needs in SWU, - Increased demands in U supply. 3. Fast reactors for export: - Uranium shortage, - To replace thermal reactors in future, - No blankets (depends on the country, though), - Fuel supply and SNF take back, - International centers for rendering services of NFC. Time has come to remove from FRs and their NFC the label unfairly identifying them as the most dangerous installations of nuclear power from the standpoint of being a proliferation problem

  1. Reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Sasagawa, Masaru; Masuda, Hiroyuki; Mogi, Toshihiko; Kanazawa, Nobuhiro.

    1994-01-01

    In a reactor core, a fuel inventory at an outer peripheral region is made smaller than that at a central region. Fuel assemblies comprising a small number of large-diameter fuel rods are used at the central region and fuel assemblies comprising a great number of smalldiameter fuel rods are used at the outer peripheral region. Since a burning degradation rate of the fuels at the outer peripheral region can be increased, the burning degradation rate at the infinite multiplication factor of fuels at the outer region can substantially be made identical with that of the fuels in the inner region. As a result, the power distribution in the direction of the reactor core can be flattened throughout the entire period of the burning cycle. Further, it is also possible to make the degradation rate of fuels at the outer region substantially identical with that of fuels at the inner side. A power peak formed at the outer circumferential portion of the reactor core of advanced burning can be lowered to improve the fuel integrity, and also improve the reactor safety and operation efficiency. (N.H.)

  2. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Lineberry, M.J.

    1990-01-01

    Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs

  3. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1988-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab

  4. Beacon: A three-dimensional structural analysis code for bowing history of fast breeder reactor cores

    International Nuclear Information System (INIS)

    Miki, K.

    1979-01-01

    The core elements of an LMFBR are bowed due to radial gradients of both temperature and neutron flux in the core. Since all hexagonal elements are multiply supported by adjacent elements or the restraint system, restraint forces and bending stresses are induced. In turn, these forces and stresses are relaxed by irradiation enhanced creep of the material. The analysis of the core bowing behavior requires a three-dimensional consideration of the mechanical interactions among the core elements, because the core consists of different kinds of elements and of fuel assemblies with various burnup histories. A new computational code BEACON has been developed for analyzing the bowing behavior of an LMFBR's core in three dimensions. To evaluate mechanical interactions among core elements, the code uses the analytical method of the earlier SHADOW code. BEACON analyzes the mechanical interactions in three directions, which form angles of 60 0 with one another. BEACON is applied to the 60 0 sector of a typical LMFBR's core for analyzing the bowing history during one equilibrium cycle. 120 core elements are treated, assuming the boundary condition of rotational symmetry. The application confirms that the code can be an effective tool for parametric studies as well as for detailed structural analysis of LMFBR's core. (orig.)

  5. Fast breeder reactors

    International Nuclear Information System (INIS)

    Waltar, A.E.; Reynolds, A.B.

    1981-01-01

    This book describes the major design features of fast breeder reactors and the methods used for their design and analysis. The foremost objective of this book is to fulfill the need for a textbook on Fast Breeder Reactor (FBR) technology at the graduate level or the advanced undergraduate level. It is assumed that the reader has an introductory understanding of reactor theory, heat transfer, and fluid mechanics. The book is expected to be used most widely for a one-semester general course on fast breeder reactors, with the extent of material covered to vary according to the interest of the instructor. The book could also be used effectively for a two-quarter or a two-semester course. In addition, the book could serve as a text for a course on fast reactor safety since many topics other than those appearing in the safety chapters relate to FBR safety. Methodology in fast reactor design and analysis, together with physical descriptions of systems, is emphasized in this text more than numerical results. Analytical and design results continue to change with the ongoing evolution of FBR design whereas many design methods have remained fundamentally unchanged for a considerable time

  6. Neutron spectrum effects on TRU recycling in Pb-Bi cooled fast reactor core

    International Nuclear Information System (INIS)

    Kim, Yong Nam; Kim, Jong Kyung; Park, Won Seok

    2003-01-01

    This study is intended to evaluate the dependency of TRU recycling characteristics on the neutron spectrum shift in a Pb-Bi cooled core. Considering two Pb-Bi cooled cores with the soft and the hard spectrum, respectively, various characteristics of the recycled core are carefully examined and compared with each other. Assuming very simplified fuel cycle management with the homogeneous and single region fuel loading, the burnup calculations are performed until the recycled core reached to the (quasi-) equilibrium state. The mechanism of TRU recycling toward the equilibrium is analyzed in terms of burnup reactivity and the isotopic compositions of TRU fuel. In the comparative analyses, the difference in the recycling behavior between the two cores is clarified. In addition, the basic safety characteristics of the recycled core are also discussed in terms of the Doppler coefficient, the coolant loss reactivity coefficient, and the effective delayed neutron fraction

  7. Few-Group Transport Analysis of the Core-Reflector Problem in Fast Reactor Cores via Equivalent Group Condensation and Local/Global Iteration

    International Nuclear Information System (INIS)

    Won, Jong Hyuck; Cho, Nam Zin

    2011-01-01

    In deterministic neutron transport methods, a process called fine-group to few-group condensation is used to reduce the computational burden. However, recent results on the core-reflector problem in fast reactor cores show that use of a small number of energy groups has limitation to describe neutron flux around core reflector interface. Therefore, researches are still ongoing to overcome this limitation. Recently, the authors proposed I) direct application of equivalently condensed angle-dependent total cross section to discrete ordinates method to overcome the limitation of conventional multi-group approximations, and II) local/global iteration framework in which fine-group discrete ordinates calculation is used in local problems while few-group transport calculation is used in the global problem iteratively. In this paper, an analysis of the core-reflector problem is performed in few-group structure using equivalent angle-dependent total cross section with local/global iteration. Numerical results are obtained under S 12 discrete ordinates-like transport method with scattering cross section up to P1 Legendre expansion

  8. The UK commercial demonstration fast reactor design

    International Nuclear Information System (INIS)

    Holmes, J.A.G.

    1987-01-01

    The paper on the UK Commercial Demonstration Fast Reactor design was presented to the seminar on 'European Commercial Fast Reactor Programme, London 1987. The design is discussed under the topic headings:- primary circuit, intermediate heat exchangers and pumps, fuel and core, refuelling, steam generators, and nuclear island layout. (U.K.)

  9. Pre-conceptual core design of a small modular fast reactor cooled by supercritical CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Baolin; Cao, Liangzhi; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, No 28, Xianning West Road, Xi’an 710049, Shaanxi (China); Yuan, Xianbao, E-mail: ztsbaby@163.com [School of Nuclear Science and Technology, Xi’an Jiaotong University, No 28, Xianning West Road, Xi’an 710049, Shaanxi (China); College of Mechanical & Power Engineering, China Three Gorges University, No 8, Daxue Road, Yichang 443002, Hubei (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China)

    2016-04-15

    Abstracts: A Small Modular fast reactor cooled by Supercritical CO{sub 2} (SMoSC) is pre-conceptually designed through three-dimensional coupled neutronics/thermal-hydraulics analysis. The power rating of the SMoSC is designed to be 300 MW{sub th} to meet the energy demand of small electrical grids. The excellent thermal properties of supercritical CO{sub 2} (S-CO{sub 2}) are employed to obtain a high thermal efficiency of about 40% with an electric output of 120 MWe. MOX fuel is utilized in the core design to improve fuel efficiency. The tube-in-duct (TID) assembly is applied to get lower coolant volume fraction and reduce the positive coolant void reactivity. According to the coupled neutronics/thermal-hydraulics calculations, the coolant void reactivity is kept negative throughout the whole core life. With a specific power density of 9.6 kW/kg and an average discharge burnup of 70.1 GWd/tHM, the SmoSC can be operated for 20 Effective Full Power Years (EFPYs) without refueling.

  10. A simple reactivity feedback model accounting for radial core expansion effects in the liquid metal fast reactor

    International Nuclear Information System (INIS)

    Kwon, Young Min; Lee, Yong Bum; Chang, Won Pyo; Haha, Do Hee

    2002-01-01

    The radial core expansion due to the structure temperature rise is one of major negative reactivity insertion mechanisms in metallic fueled reactor. Thermal expansion is a result of both the laws of nature and the particular core design and it causes negative reactivity feedback by the combination of increased core volume captures and increased core surface leakage. The simple radial core expansion reactivity feedback model developed for the SSC-K code was evaluated by the code-to-code comparison analysis. From the comparison results, it can be stated that the radial core expansion reactivity feedback model employed into the SSC-K code may be reasonably accurate in the UTOP analysis

  11. A simple reactivity feedback model accounting for radial core expansion effects in the liquid metal fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min; Lee, Yong Bum; Chang, Won Pyo; Haha, Do Hee [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    The radial core expansion due to the structure temperature rise is one of major negative reactivity insertion mechanisms in metallic fueled reactor. Thermal expansion is a result of both the laws of nature and the particular core design and it causes negative reactivity feedback by the combination of increased core volume captures and increased core surface leakage. The simple radial core expansion reactivity feedback model developed for the SSC-K code was evaluated by the code-to-code comparison analysis. From the comparison results, it can be stated that the radial core expansion reactivity feedback model employed into the SSC-K code may be reasonably accurate in the UTOP analysis.

  12. Application of the cross section covariance data to fast reactor core design

    International Nuclear Information System (INIS)

    Sugino, Kazuteru

    2013-01-01

    In order to contribute to the validation of the cross-section covariance data, an equality was investigated between uncertainties of core characteristics evaluated by the conventional mock-up experimental approach and the current uncertainty quantification one. (author)

  13. Reactor core control device

    International Nuclear Information System (INIS)

    Sano, Hiroki

    1998-01-01

    The present invention provides a reactor core control device, in which switching from a manual operation to an automatic operation, and the control for the parameter of an automatic operation device are facilitated. Namely, the hysteresis of the control for the operation parameter by an manual operation input means is stored. The hysteresis of the control for the operation parameter is collected. The state of the reactor core simulated by an operation control to which the collected operation parameters are manually inputted is determined as an input of the reactor core state to the automatic input means. The record of operation upon manual operation is stored as a hysteresis of control for the operation parameter, but the hysteresis information is not only the result of manual operation of the operation parameter. This is results of operation conducted by a skilled operator who judge the state of the reactor core to be optimum. Accordingly, it involves information relevant to the reactor core state. Then, it is considered that the optimum automatic operation is not deviated greatly from the manual operation. (I.S.)

  14. Evolution of experimental fast reactors

    International Nuclear Information System (INIS)

    Blazquez, J.

    1983-01-01

    As Paxton points out, during the evolution of fast critical assemblies three stages could be established. In the first one, approximately 1948-1956, the volume of the core is about 1 liter; the aim is to implement very basic neutronic measurement techniques. In the second one, approximately 1956-1970, sizes are as big as 200 liters; what is wanted, is to get data in order to develop the physique of the fast reactors. In the actual third stage, sizes are about 2000 liters and the objective is to have useful data toward the design of commercial power prototypes. Along this article is also found how important are fast breeder reactors to enlarge uranium world resources. (author)

  15. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the integral fast reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics also makes possible a simplified close fuel cycle and waste process improvements. The paper describes the IFR concept, the inherent safety, tests, and status of IFR development today

  16. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two dramatic demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the Integral Fast Reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics and also makes possible a simplified closed fuel cycle and waste process improvements

  17. General remarks on fast neutron reactor physics

    International Nuclear Information System (INIS)

    Barre, J.Y.

    1980-01-01

    The main aspects of fast reactor physics, presented in these lecture notes, are restricted to LMFBR's. The emphasis is placed on the core neutronic balance and the burn-up problems. After a brief description of the power reactor main components and of the fast reactor chronology, the fundamental parameters of the one-group neutronic balance are briefly reviewed. Then the neutronic burn-up problems related to the Pu production and to the doubling time are considered

  18. Comparison between TRU burning reactors and commercial fast reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Sanda, Toshio; Ogawa, Takashi

    2001-03-01

    Research and development for stabilizing or shortening the radioactive wastes including in spent nuclear fuel are widely conducted in view point of reducing the environmental impact. Especially it is effective way to irradiate and transmute long-lived TRU by fast reactors. Two types of loading way were previously proposed. The former is loading relatively small amount of TRU in all commercial fast reactors and the latter is loading large amount of TRU in a few TRU burning reactors. This study has been intended to contribute to the feasibility studies on commercialized fast reactor cycle system. The transmutation and nuclear characteristics of TRU burning reactors were evaluated and compared with those of conventional transmutation system using commercial type fast reactor based upon the investigation of technical information about TRU burning reactors. Major results are summarized as follows. (1) Investigation of technical information about TRU burning reactors. Based on published reports and papers, technical information about TRU burning reactor concepts transmutation system using convectional commercial type fast reactors were investigated. Transmutation and nuclear characteristics or R and D issue were investigated based on these results. Homogeneously loading of about 5 wt% MAs on core fuels in the conventional commercial type fast reactor may not cause significant impact on the nuclear core characteristics. Transmutation of MAs being produced in about five fast reactors generating the same output is feasible. The helium cooled MA burning fast reactor core concept propose by JAERI attains criticality using particle type nitride fuels which contain more than 60 wt% MA. This reactor could transmute MAs being produced in more than ten 1000 MWe-LWRs. Ultra-long life core concepts attaining more than 30 years operation without refueling by utilizing MA's nuclear characteristics as burnable absorber and fertile nuclides were proposed. Those were pointed out that

  19. Integral Fast Reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path.

  20. Integral Fast Reactor concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path

  1. Survey of the thermal and fast neutron flux distribution in the core of IPR-R1 reactor

    International Nuclear Information System (INIS)

    Guimaraes, R.R.R.

    1985-01-01

    A methodology to obtain the neutron flux distribution inside the core of a reactor is presented, aiming to analyze specifications for increasing reactor power. The activation measurement technique with irradiation of steel eletrodes of 700 mm of lenght, put in acrylic rods was used. In the detection process and in the counting of activation product, a Ge (Li) detector with high resolution and a scanning mechanical system, constructed and projected in CDTN (Nuclear Technology Development Center) were used. (E.G.) [pt

  2. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1985-01-01

    During the past two years, scientists from Argonne have developed an advanced breeder reactor with a closed self contained fuel cycle. The Integral Fast Reactor (IFR) is a new reactor concept, adaptable to a variety of designs, that is based on a fuel cycle radically different from the CRBR line of breeder development. The essential features of the IFR are metal fuel, pool layout, and pyro- and electro-reprocessing in a facility integral with the reactor plant. The IFR shows promise to provide an inexhaustible, safe, economic, environmentally acceptable, and diversion resistant source of nuclear power. It shows potential for major improvement in all of the areas that have led to concern about nuclear power

  3. Generation IV nuclear energy system initiative. Large GFR core subassemblydesign for the Gas-Cooled Fast Reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E. A.; Kulak, R. F.; Therios, I. U.; Wei, T. Y. C.

    2006-07-31

    Gas-cooled fast reactor (GFR) designs are being developed to meet Gen IV goals of sustainability, economics, safety and reliability, and proliferation resistance and physical protection as part of an International Generation IV Nuclear Energy System Research Initiative effort. Different organizations are involved in the development of a variety of GFR design concepts. The current analysis has focused on the evaluation of low-pressure drop, pin-core designs with favorable passive cooling properties. Initial evaluation of the passive cooling safety case for the GFR during depressurized decay heat removal accidents with concurrent loss of electric power have resulted in requirements for a reduction of core power density to the 100 w/cc level and a low core pressure drop of 0.5 bars. Additional design constraints and the implementation of their constraints are evaluated in this study to enhance and passive cooling properties of the reactor. Passive cooling is made easier by a flat radial distribution of the decay heat. One goal of this study was to evaluate the radial power distribution and determine to what extent it can be flattened, since the decay heat is nearly proportional to the fission power at shutdown. In line with this investigation of the radial power profile, an assessment was also made of the control rod configuration. The layout provided a large number of control rod locations with a fixed area provided for control rods. The number of control rods was consistent with other fast reactor designs. The adequacy of the available control rod locations was evaluated. Future studies will be needed to optimize the control rod designs and evaluate the shutdown system. The case for low pressure drop core can be improved by the minimization of pressure drop sources such as the number of required fuel spacers in the subassembly design and by the details of the fuel pin design. The fuel pin design is determined by a number of neutronic, thermal-hydraulic (gas dynamics

  4. Fast quench reactor method

    Science.gov (United States)

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

    1999-08-10

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

  5. Fast reactors: potential for power

    International Nuclear Information System (INIS)

    1983-02-01

    The subject is discussed as follows: basic facts about conventional and fast reactors; uranium economy; plutonium and fast reactors; cooling systems; sodium coolant; safety engineering; handling and recycling plutonium; safeguards; development of fast reactors in Britain and abroad; future progress. (U.K.)

  6. Integral fast reactor safety features

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The integral fast reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: a pool-type primary system, and advanced ternary alloy metallic fuel, and an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  7. Integral fast reactor safety features

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: (1) a pool-type primary system, (2) an advanced ternary alloy metallic fuel, and (3) an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by (1) the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and (2) a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  8. Optimization method development of the core characteristics of a fast reactor in order to explore possible high performance solutions (a solution being a consistent set of fuel, core, system and safety)

    International Nuclear Information System (INIS)

    Ingremeau, J.-J.X.

    2011-01-01

    In the study of any new nuclear reactor, the design of the core is an important step. However designing and optimising a reactor core is quite complex as it involves neutronics, thermal-hydraulics and fuel thermomechanics and usually design of such a system is achieved through an iterative process, involving several different disciplines. In order to solve quickly such a multi-disciplinary system, while observing the appropriate constraints, a new approach has been developed to optimise both the core performance (in-cycle Pu inventory, fuel burn-up, etc...) and the core safety characteristics (safety estimators) of a Fast Neutron Reactor. This new approach, called FARM (Fast Reactor Methodology) uses analytical models and interpolations (Meta-models) from CEA reference codes for neutronics, thermal-hydraulics and fuel behaviour, which are coupled to automatically design a core based on several optimization variables. This global core model is then linked to a genetic algorithm and used to explore and optimise new core designs with improved performance. Consideration has also been given to which parameters can be best used to define the core performance and how safety can be taken into account.This new approach has been used to optimize the design of three concepts of Gas cooled Fast Reactor (GFR). For the first one, using a SiC/SiCf-cladded carbide-fuelled helium-bonded pin, the results demonstrate that the CEA reference core obtained with the traditional iterative method was an optimal core, but among many other possibilities (that is to say on the Pareto front). The optimization also found several other cores which exhibit some improved features at the expense of other safety or performance estimators. An evolution of this concept using a 'buffer', a new technology being developed at CEA, has hence been introduced in FARM. The FARM optimisation produced several core designs using this technology, and estimated their performance. The results obtained show that

  9. Binary breeder reactor with annular core

    International Nuclear Information System (INIS)

    Nascimento, J.A. do; Ishiguro, Y.

    1988-01-01

    Characteristics of a 1200 MWe binary breeder reactor with annular core fueled with metallic 233 U- 238 U-Zr, Pu- 238 U-Zr and Th in the blankets have been analyzed. The Doppler effect is small as expected in a metal fueled fast reactor. The sodium void reactivity is, in general, smaller than in homogeneous fast reactors fueled with metallic fuel and with 1 m core height. The worths of available control is high and there is a large shutdown margin throughout the operational cycle. There are flexibility in blankets fueling in the two cycles, uranium and thorium, with doubling times of about 20 years. (author) [pt

  10. BWR type reactor core

    International Nuclear Information System (INIS)

    Tatemichi, Shin-ichiro.

    1981-01-01

    Purpose: To eliminate the variation in the power distribution of a BWR type reactor core in the axial direction even if the flow rate is increased or decreased by providing a difference in the void coefficient between the upper part and the lower parts of the reactor core, and increasing the void coefficient at the lower part of the reactor core. Constitution: The void coefficient of the lower region from the center to the lower part along the axial direction of a nuclear fuel assembly is increased to decrease the dependence on the flow rate of the axial power distribution of the nuclear fuel assembly. That is, a water/fuel ratio is varied, the water in non-boiled region is increased or the neutron spectrum is varied so as to vary the void coefficient. In order to exemplify it, the rate of the internal pellets of the fuel rod of the nuclear fuel assembly or the shape of the channel box is varied. Accordingly, the power does not considerably vary even if the flow rate is altered since the power is varied in the power operation. (Yoshihara, H.)

  11. Sodium fast reactors with closed fuel cycle

    CERN Document Server

    Raj, Baldev; Vasudeva Rao, PR 0

    2015-01-01

    Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, safety analysis, validations, engineering, construction, and commissioning aspectsFeatures a special chapter on allied sciences to highlight advanced reactor core materials, specialized manufacturing technologies, chemical sensors, in-service inspecti

  12. Some questions and answers concerning fast reactors

    International Nuclear Information System (INIS)

    Marshall, W.

    1980-01-01

    The theme of the lecture is the place of the fast reactor in an evolving nuclear programme. The whole question of plutonium is first considered, ie its method of production and the ways in which it can be used in the fast reactor fuel cycle. Whether fast reactors are necessary is then discussed. Their safety is examined with particular attention to those design features which are most criticised ie high volumetric power density of the core, and the use of liquid sodium as coolant. Attention is then paid to environmental and safeguard aspects. (U.K.)

  13. Fuel and core design study of the sodium-cooled fast reactors. Studies on metallic fuel cores in the JFY2002

    International Nuclear Information System (INIS)

    Sugino, Kazuteru; Mizuno, Tomoyasu

    2003-06-01

    Based on the results obtained in the former feasibility study, the metallic fueled core of ordinary-type, that is, 2-region homogeneous core, has been established aiming at the improvement in the core performance, and subsequent comparison has been performed with the mixed oxide fueled core. Further, the attractive concept of the metallic fueled core of high outlet temperature has been constructed which has good nuclear features as a metallic fueled core and has identical outlet temperature to mixed oxide fuelled core. Following items have been found as a result of the investigation on the ordinary-type core. The metallic fueled core whose maximum fast neutron fluence (En>0.1MeV) is set identical (5x10 23 n/cm 2 ) to the mixed oxide fueled cores with core discharge burnup 150GWd/t has sufficient core performances as a metallic fueled core, e.g. higher breeding ratio and longer operation period compared with mixed oxide fueled cores, but the core discharge burnup is limited up to 100GWd/t. However effective discharge burnup including the contribution of the blanket region is comparative to mixed oxide cores under the same breeding ratio condition. In order to enlarge the core discharge burnup to 150GWd/t keeping the core performance identical to above mentioned core's, the irradiation deformation of structural material should be reduced to that of mixed oxide fueled cores. Further the maximum fast neutron fluence reaches to 7-8x10 23 n/cm 2 (En>0.1MeV). The investigations on the core of high outlet temperature have clarified following items. Even in the change of core regions by pin-diameter form 3-region to 2-region and in the limited maximum fuel pin diameter 8.5 mm, realization of the identical outlet/inlet temperatures to the mixed oxide cores (550/395degC) is feasible under the criteria of the maximum temperature 650degC at the inner surface of the cladding. The constructed core accommodates the targets of breeding ratio from about 1.0 to 1.2 only by adjusting

  14. Safety design of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Bhoje, S.B.; Chetal, S.C.; Singh, Om Pal

    2004-01-01

    The basic design and safety design of Prototype Fast Breeder Reactor (PFBR) is presented. Design aspects covered include safety classification, seismic categorization, design basis conditions, design safety limits, core physics, core monitoring, shutdown system, decay heat removal system, protection against sodium leaks and tube leaks in steam generator, plant layout, radiation protection, event analysis, beyond design basis accidents, integrity of primary containment, reactor containment building and design pressure resulting from core disruptive accident. The measures provided in the design represent a robust case of the safety of the reactor. (authors)

  15. Fast breeder reactors

    International Nuclear Information System (INIS)

    Ollier, J.L.

    1987-01-01

    The first industrial-scale fast breeder reactor (FBR) is the Superphenix I at Crays-Melville. It was designed and built by Novatome, a French company, and Ansaldo, an Italian company. The advantages of FBRs are summarized. The status of Superphenix and the testing schedule is given. The stages in its power escalation in 1986 are given. The article is optimistic about the future for FBRs and expects FBRs to take over from PWRs at the beginning of the 21st Century. To achieve economic viability, European financial cooperation for the research and development programme is advocated. (UK)

  16. Fast neutron detection at near-core location of a research reactor with a SiC detector

    Science.gov (United States)

    Wang, Lei; Jarrell, Josh; Xue, Sha; Tan, Chuting; Blue, Thomas; Cao, Lei R.

    2018-04-01

    The measurable charged-particle produced from the fast neutron interactions with the Si and C nucleuses can make a wide bandgap silicon carbide (SiC) sensor intrinsically sensitive to neutrons. The 4H-SiC Schottky detectors have been fabricated and tested at up to 500 °C, presenting only a slightly degraded energy resolution. The response spectrum of the SiC detectors were also obtained by exposing the detectors to external neutron beam irradiation and at a near-core location where gamma-ray field is intense. The fast neutron flux of these two locations are ∼ 4 . 8 × 104cm-2 ṡs-1 and ∼ 2 . 2 × 107cm-2 ṡs-1, respectively. At the external beam location, a Si detector was irradiated side-by-side with SiC detector to disjoin the neutron response from Si atoms. The contribution of gamma ray, neutron scattering, and charged-particles producing reactions in the SiC was discussed. The fast neutron detection efficiencies were determined to be 6 . 43 × 10-4 for the external fast neutron beam irradiation and 6 . 13 × 10-6 for the near-core fast neutron irradiation.

  17. Core Thermal-Hydraulic Design of a Sodium Cooled Fast Reactor for the U/TRU Fuel Modification

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Rock; Cho, Chung Ho; Kim, Young Gyun; Song, Hoon; Park, Won Seok; Kim, Sang Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    The Korea Atomic energy Research Institute (KAERI) has been developing an advanced SFR design technology with the final goal of constructing a demonstration plant by 2028. The main objective of the SFR demonstration plant is to verify TRU metal fuel performance, large-scale reactor operation, and transmutation ability of high-level wastes. However, in the early stage, the SFR will run on low enriched uranium fuel due to a lack of TRU fuel qualification. After sequential evaluations of the fuel performance, the fissile fuel material will transform from uranium to LTRU (LWR-TRU), and then finally to MTRU (Mixed TRU of LTRU and recycled TRU). At the same time, the core configurations will be modified to meet the nuclear design requirements. Therefore, there is also a strong need to ensure a proper cooling capability during modifications of the entire core. In this work, the core thermal-hydraulic design for U/TRU fuel modification is performed using the SLTHEN (Steady-State LMR Thermal-Hydraulic Analysis Code Based on ENERGY Model) code. As the power distribution in a reactor core is not uniform, it requires a suitable flow allocation to each assembly. There are two ways of allocating the flow rates depending on the orifice positions. The inner officering scheme locates orifice plates in the lower part of the fuel assembly. Therefore, it is possible that the flow distribution is redesigned according to the core configurations. On the other hand, the outer officering scheme fixes orifice plates within the receptacle body throughout the entire plant lifetime. This has the advantage lower of fabrication costs and operating errors but included insufficient design flexibility. This paper provides comparative studies of orifice position for the core thermal-hydraulic design

  18. An Assessment of Fission Product Scrubbing in Sodium Pools Following a Core Damage Event in a Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, M.; Farmer, M.; Grabaskas, D.

    2017-06-26

    The U.S. Nuclear Regulatory Commission has stated that mechanistic source term (MST) calculations are expected to be required as part of the advanced reactor licensing process. A recent study by Argonne National Laboratory has concluded that fission product scrubbing in sodium pools is an important aspect of an MST calculation for a sodium-cooled fast reactor (SFR). To model the phenomena associated with sodium pool scrubbing, a computational tool, developed as part of the Integral Fast Reactor (IFR) program, was utilized in an MST trial calculation. This tool was developed by applying classical theories of aerosol scrubbing to the decontamination of gases produced as a result of postulated fuel pin failures during an SFR accident scenario. The model currently considers aerosol capture by Brownian diffusion, inertial deposition, and gravitational sedimentation. The effects of sodium vapour condensation on aerosol scrubbing are also treated. This paper provides details of the individual scrubbing mechanisms utilized in the IFR code as well as results from a trial mechanistic source term assessment led by Argonne National Laboratory in 2016.

  19. Current status of restoration work for obstacle and upper core structure in reactor vessel of experimental fast reactor 'JOYO'. Recovery of MARICO-2 sample part

    International Nuclear Information System (INIS)

    Ashida, Takashi; Ito, Hideaki

    2015-01-01

    At Joyo reactor MK-III core in May 2007, due to the design deficiencies of the disconnect mechanism of the holding part and the sample part of the experimental apparatus with instrumentation lines (MARICO-2), a disconnect failure incident occurred in the sample part after irradiation test. The deformation of the sample part due to this failure incurred its interference with the lower surface of reactor core upper structure and the holddown axis body. By this, the operating range of the rotary plug was restricted, leading to the partial inhibition of the fuel exchange function that precluded the access to 1/4 of the assemblies of the reactor core. In face of restoration work, the preparation for restoration such the exchange of upper core structure, and the recovery of MARICO-2 sample part are under way. The following items are introduced here: (1) summary of restoration work and overall process of restoration work, (2) recovery operation of MARICO-2 sample part, (3) exchange of the upper core structure that was conducted this year, and (4) results of recovery of MARIKO-2 sample part. (A.O.)

  20. Nuclear reactor core flow baffling

    International Nuclear Information System (INIS)

    Berringer, R.T.

    1979-01-01

    A flow baffling arrangement is disclosed for the core of a nuclear reactor. A plurality of core formers are aligned with the grids of the core fuel assemblies such that the high pressure drop areas in the core are at the same elevations as the high pressure drop areas about the core periphery. The arrangement minimizes core bypass flow, maintains cooling of the structure surrounding the core, and allows the utilization of alternative beneficial components such as neutron reflectors positioned near the core

  1. Reactor core lower support

    International Nuclear Information System (INIS)

    1981-01-01

    This patent refers to the lower support of a nuclear reactor core, and is intended for supporting each fuel assembly of the core and for distributing the primary coolant through these assemblies. It is composed of: - A first thick plate supporting the fuel assemblies. Vertical channels are machined in this plate directly facing each assembly for the passage of the primary fluid: - A second thin plate drilled with orifices, fixed under the first plate, with no space between them, and so positioned that each orifice is directly facing one of the channels. The section of the orifices diminishes from the centre of the plate towards its periphery. The second plate can also be constituted of an assembly of juxtaposed smaller plates, each small plate being secured to the first plate independently of the neighbouring plates [fr

  2. Measurement and calculation of fast neutron and gamma spectra in well defined cores in LR-0 reactor.

    Science.gov (United States)

    Košťál, Michal; Matěj, Zdeněk; Cvachovec, František; Rypar, Vojtěch; Losa, Evžen; Rejchrt, Jiří; Mravec, Filip; Veškrna, Martin

    2017-02-01

    A well-defined neutron spectrum is essential for many types of experimental topics and is also important for both calibration and testing of spectrometric and dosimetric detectors. Provided it is well described, such a spectrum can also be employed as a reference neutron field that is suitable for validating selected cross sections. The present paper aims to compare calculations and measurements of such a well-defined spectra in geometrically similar cores of the LR-0 reactor with fuel containing slightly different enrichments (2%, 3.3% and 3.6%). The common feature to all cores is a centrally located dry channel which can be used for the insertion of studied materials. The calculation of neutron and gamma spectra was realized with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, ROSFOND-2010 and CENDL-3.1 nuclear data libraries. Only minor differences in neutron and gamma spectra were found in the comparison of the presented reactor cores with different fuel enrichments. One exception is the gamma spectrum in the higher energy region (above 8MeV), where more pronounced variations could be observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Finite element modeling of fluid/thermal/structural interaction for a gas-cooled fast reactor core

    International Nuclear Information System (INIS)

    Bennett, J.G.; Ju, F.D.

    1980-01-01

    Two nonlinear finite element formulations for application to a series of experiments in the Gas-Cooled Fast Reactor (GCFR) development program are described. An efficient beam column element for moderately large deformations is combined with a finite element developed for an engineering description of a convecting fluid. Typical results from both elements are illustrated. A combined application for a problem typical of the GCFR loss-of-coolant experiments is illustrated. These problems are not the usual fluid structural interaction problems in that the inertia coupling is negligible while the thermal coupling is very important

  4. Current status of restoration work for obstacle and upper core structure in reactor vessel of experimental fast reactor 'Joyo'. 1. MARICO-2 subassembly retrieval work

    International Nuclear Information System (INIS)

    Naito, Hiroyuki; Ashida, Takashi; Ito, Hideaki

    2014-01-01

    At Joyo reactor MK-III core in May 2007, due to the design deficiencies of the disconnect mechanism of the holding part and the sample part of the experimental apparatus with instrumentation lines (MARICO-2), a disconnect failure incident occurred in the sample part after irradiation test. The deformation of the sample part due to this failure incurred its interference with the lower surface of reactor core upper structure and the holddown axis body. By this, the operating range of the rotary plug was restricted, leading to the partial inhibition of the fuel exchange function that precluded the access to 1/4 of the assemblies of the reactor core. In face of restoration work, the preparation for restoration such the exchange of upper core structure, and the recovery of MARICO-2 sample part are under way. This paper introduces the progress of restoration work and the future work plan, with a focus on the outline of overall restoration work, the method / problems / measures for MARICO-2 sample part recovery operations, and fabrication of sample part recovery device. (A.O.)

  5. Fast reactor programme

    International Nuclear Information System (INIS)

    Hoekstra, E.K.

    1976-11-01

    Estimated reactivity effects of fission products in the SNR-300 fast breeder are given. Neutron cross sections of 127 I and 129 I are also given. Results of the in-pile canning failure experiments on fuel pins R54-F35 and F39 are discussed. Sinter experiments using mixed UC-UN powders are reported. Results of tensile tests on high-dose and low-dose irradiated specimens of 18Cr1 1Ni stainless steel (DIN 1.4948) used in the SNR-300 reactor vessel are given. It is shown that the aerosol behaviour in condensing sodium vapour can be described by the same MADCA model developed for the decay of aerosols in condensing water vapour. Results of heat transfer measurements in the electrically heated 28-rod bundle under liquid-phase and subsequently under two-phase conditions are commented on

  6. Experimental detailed power distribution in a fast spectrum thermionic reactor fuel element at the core/BeO reflector interface region

    Science.gov (United States)

    Klann, P. G.; Lantz, E.

    1973-01-01

    A zero-power critical assembly was designed, constructed, and operated for the prupose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7-cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power conversion system. The critical assembly was modified to simulate a fast spectrum advanced thermionics reactor by: (1) using BeO as a reflector in place of some of the existing molybdenum, (2) substituting Nb-1Zr tubing for some of the existing Ta tubing, and (3) inserting four full-scale mockups of thermionic type fuel elements near the core and BeO reflector boundary. These mockups were surrounded with a buffer zone having the equivalent thermionic core composition. In addition to measuring the critical mass of this thermionic configuration, a detailed power distribution in one of the thermionic element stages in the mixed spectrum region was measured. A power peak to average ratio of two was observed for this fuel stage at the midplane of the core and adjacent to the reflector. Also, the power on the outer surface adjacent to the BeO was slightly more than a factor of two larger than the power on the inside surface of a 5.08 cm (2.0 in.) high annular fuel segment with a 2.52 cm (0.993 in. ) o.d. and a 1.86 cm (0.731 in.) i.d.

  7. Study of the seismic behaviour of the fast reactor cores; Etude du comportement sismique des coeurs de reacteurs a neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Cerqueira, E

    1998-12-31

    This work studies the seismic behaviour of fast neutrons reactor cores. It consists in analyzing the tests made on the models Rapsodie and Symphony by using the calculation code Castem 2000. Te difficulty is in the description of connections of the system and the effects of the fluid (calculation in water). The results for the programme Rapsodie are near the experimental results. For the programme Symphony, the calculations in air have allowed to represent the behaviour of fuel assemblies in a satisfying way. It is still to analyze the tests Symphony in water. (N.C.)

  8. Trend of development of fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, S. (Science and Technology Agency, Tokyo (Japan). Atomic Energy Bureau)

    1982-01-01

    The development of nuclear power is indispensable as the core of the substitute energy for petroleum. It is the urgent subject for world advanced countries to develop fast breeder reactors which can utilize uranium resources efficiently, to breed nuclear fuel resources, and to secure the stable supply of energy for long term in future. In Japan, the development of fast breeder reactors has been advanced independently and efficiently as a national project mainly by the Power Reactor and Nuclear Fuel Development Corp. The experimental reactor ''Joyo'' attained the criticality in April, 1977, and has been operated at the thermal output of 75,000 kW. As for the prototype reactor ''Monju'', the application for the permission to install it was submitted in December, 1980, and now, the safety examination is in progress. The present state of the development of fast breeder reactors in USA, Great Britain, France, West Germany, USSR and Japan is explained. In order to advance fast breeder reactors to the stage of full-scale practical use, a number of the reactors of 1 million kW class including the demonstration reactor will be constructed and operated to demonstrate and learn the technology of power generation plants in practical scale, to improve the performance, and to establish the economical efficiency. The schedule of development, the organization and the sharing of roles, the research and development in the demonstration stage are described.

  9. A fundamental approach to specify thermal and pressure loadings on containment buildings of sodium cooled fast reactors during a core disruptive accident

    International Nuclear Information System (INIS)

    Velusamy, K.; Chellapandi, P.; Satpathy, K.; Verma, Neeraj; Raviprasan, G.R.; Rajendrakumar, M.; Chetal, S.C.

    2011-01-01

    Highlights: → An approach to quantify thermal and pressure loadings on RCB is presented. → Scaling laws to determine sodium release from water experiments are proposed. → Potential of in-vessel sodium fire after a CDA is assessed. → The proposed approach is applied to Indian Prototype Fast Breeder Reactor. - Abstract: Reactor Containment Building (RCB) is the ultimate barrier to the environment against activity release in any nuclear power plant. It has to be designed to withstand both positive and negative pressures that are credible. Core Disruptive Accident (CDA) is an important event that specifies the design basis for RCB in sodium cooled fast reactors. In this paper, a fundamental approach towards quantification of thermal and pressure loadings on RCB during a CDA, has been described. Mathematical models have been derived from fundamental conservation principles towards determination of sodium release during a CDA, subsequent sodium fire inside RCB, building up of positive and negative pressures inside RCB, potential of in-vessel sodium fire due to failed seals and temperature evolution in RCB walls during extended period of containment isolation. Various heating sources for RCB air and RCB wall and their potential have been identified. Scaling laws for conducting CDA experiments in small-scale water models by chemical explosives and the rule for extrapolation of water leak to quantify sodium leak in reactor are proposed. Validation of the proposed models and experimental simulation rules has been demonstrated by applying them to Indian prototype fast breeder reactor. Finally, it is demonstrated that in-vessel sodium fire potential is very weak and no special containment cooling system is essential.

  10. Fast reactor programme in India

    Indian Academy of Sciences (India)

    2015-09-04

    Sep 4, 2015 ... The FBR programme since 1985 till 2030 is highlighted focussing on the current status and future direction of fast breeder test reactor (FBTR), prototype fast breeder reactor (PFBR) and FBR-1 and 2. Design and technological challenges of PFBR and design and safety targets with means to achieve the ...

  11. Fast reactor physics at CEA: present studies and future prospects

    International Nuclear Information System (INIS)

    Hammer, P.

    1980-09-01

    This paper aims at giving a general survey of the fast reactor core physics and shielding studies wich are in progress at CEA (1979-1983) in order to solve the neutronic problems related to: - core design optimization, - reactor operation and fuel management, - safety, for the development of fast commercial breeders in France after the SUPER-PHENIX 1 construction is achieved

  12. Fast mixed spectrum reactor concept

    International Nuclear Information System (INIS)

    Kouts, H.J.C.; Fischer, G.J.; Cerbone, R.J.

    1979-04-01

    The Fast Mixed Spectrum Reactor is a highly promising concept for a fast reactor with improved features of proliferation resistance, and excellent utilization of uranium resources. In technology, it can be considered to be a branch of fast breeder development, though its operation and implications are different from those of FBR'S in important respects. Successful development programs are required in several areas to bring FMSR to reality, but the payoff from a successful program can be high

  13. Expert system for fast reactor diagnostic

    International Nuclear Information System (INIS)

    Parcy, J.P.

    1982-09-01

    A general description of expert systems is given. The operation of a fast reactor is reviewed. The expert system to the diagnosis of breakdowns limited to the reactor core. The structure of the system is described: specification of the diagnostics; structure of the data bank and evaluation of the rules; specification of the prediagnostics and evaluation; explanation of the diagnostics; time evolution of the system; comparison with other expert systems. Applications to some cases of faults are finally presented [fr

  14. Lead-Cooled Fast Reactor (LFR) Design: Safety, Neutronics, Thermal Hydraulics, Structural Mechanics, Fuel, Core, and Plant Design

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C

    2010-02-22

    The idea of developing fast spectrum reactors with molten lead (or lead alloy) as a coolant is not a new one. Although initially considered in the West in the 1950s, such technology was not pursued to completion because of anticipated difficulties associated with the corrosive nature of these coolant materials. However, in the Soviet Union, such technology was actively pursued during the same time frame (1950s through the 1980s) for the specialized role of submarine propulsion. More recently, there has been a renewal of interest in the West for such technology, both for critical systems as well as for Accelerator Driven Subcritical (ADS) systems. Meanwhile, interest in the former Soviet Union, primarily Russia, has remained strong and has expanded well beyond the original limited mission of submarine propulsion. This section reviews the past and current status of LFR development.

  15. A review of the U.K. fast reactor programme: March 1978

    International Nuclear Information System (INIS)

    Smith, R.D.

    1978-01-01

    The review of the UK fast reactor programme covers the description of Dounreay Fast Reactor shut down after seventeen years of successful operation; description of prototype fast reactor (PFR); core design parameters safety features and plant design for commercial demonstration fast reactor (CDFR). Engineering development is related to large sodium rigs, coolant circuit hydraulics and vibration, instrumentation and components. The subjects of interest are material development, sodium technology, fast reactor fuel, fuel cycle, reactor safety, reactor performance studies

  16. Design of the core of a breed/burn fast reactor with the deterministic code KANEXT; Diseno del nucleo de un reactor rapido de cria/quemado con el codigo deterministico KANEXT

    Energy Technology Data Exchange (ETDEWEB)

    Lopez S, R. C.; Francois L, J. L., E-mail: rcarlos.lope@gmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)

    2014-10-15

    The breeding fast reactors are interesting because they generate more plutonium than they consume, however, the fuel has to be reprocessed for the generated plutonium is used in another reactor. In a breed/burn reactor (BBR) the plutonium is generated and used -in situ- inside the same reactor, reducing this way costs and the proliferation possibility. In this work, the core of a BBR was designed; cooled by sodium that consists of 210 active assemblies and 7 spaces for control rods, each assembly consists of 169 pines. The design differs from other BBR it includes a blanket in the reactor center. The above-mentioned was to take advantage of the fact by geometry that the population of fast and epithermal neutrons will be high in the area, due to the fissions in adjacent fissile areas. Favorable results were obtained, although not definitive with exchange scheme of spent fuel. Efforts should be made in the future to homogenize the power generation within the reactor and replace the spent assemblies more efficiently. (Author)

  17. Upgrading program of the experimental fast reactor Joyo

    International Nuclear Information System (INIS)

    Yoshida, A.; Yogo, S.

    2001-01-01

    The experimental fast reactor Joyo finished its operation as an irradiation core in June, 2000. Throughout the operation of MK-I (breeder core) and MK-II (irradiation core), the net operation time has exceeded 60,000 hours. During these operations there were no fuel failures or serious plant problems. The MK-III modification program will improve irradiation capability to demonstrate advanced technologies for commercial Fast Breeder Reactor (FBR). When the MK-III core is started, it will support irradiation tests in feasibility studies for fast reactor and related fuel cycle research and development in Japan. (authors)

  18. The integral fast reactor concept

    International Nuclear Information System (INIS)

    Chang, Yoon I.; Marchaterre, J.F.

    1987-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) an integral fuel cycle, based on pyrometallurgical processing and injection-cast fuel fabrication, with the fuel cycle facility collocated with the reactor, if so desired. This paper gives a review of the IFR concept

  19. Fast reactor database. 2006 update

    International Nuclear Information System (INIS)

    2006-12-01

    Liquid metal cooled fast reactors (LMFRs) have been under development for about 50 years. Ten experimental fast reactors and six prototype and commercial size fast reactor plants have been constructed and operated. In many cases, the overall experience with LMFRs has been rather good, with the reactors themselves and also the various components showing remarkable performances, well in accordance with the design expectations. The fast reactor system has also been shown to have very attractive safety characteristics, resulting to a large extent from the fact that the fast reactor is a low pressure system with large thermal inertia and negative power and temperature coefficients. In addition to the LMFRs that have been constructed and operated, more than ten advanced LMFR projects have been developed, and the latest designs are now close to achieving economic competitivity with other reactor types. In the current world economic climate, the introduction of a new nuclear energy system based on the LMFR may not be considered by utilities as a near future option when compared to other potential power plants. However, there is a strong agreement between experts in the nuclear energy field that, for sustainability reasons, long term development of nuclear power as a part of the world's future energy mix will require the fast reactor technology, and that, given the decline in fast reactor development projects, data retrieval and knowledge preservation efforts in this area are of particular importance. This publication contains detailed design data and main operational data on experimental, prototype, demonstration, and commercial size LMFRs. Each LMFR plant is characterized by about 500 parameters: physics, thermohydraulics, thermomechanics, by design and technical data, and by relevant sketches. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors with complete technical information of a total of 37 LMFR

  20. Fast reactor programme in India

    Indian Academy of Sciences (India)

    2015-09-04

    economic via- bility of sodium fast reactor (SFR) for the commercial deployment in series. Further, demonstration of comprehensive closed fuel cycle technologies such as fuel fabrication, reprocessing, waste management and waste ...

  1. A review of the UK fast reactor programme, March 1979

    International Nuclear Information System (INIS)

    Smith, R.D.

    1979-01-01

    The Status report of the UK activities related to fast-breeder reactor activities includes the following: summary of the operating experience of the prototype Fast Reactor (PFR) during 1978; design studies of the commercial demonstration fast reactor (CDFR); design studies of later advanced LMFBR; engineering developments of high temperature sodium loop, steam generators and instrumentation; materials development; corrosion problems; sodium technology; fuel elements development; PFR fuel reprocessing; safety issues molten fuel-coolant interaction; core structure test; accident analysis; reactor performance studies; experimental reactor physics; fuel management and general neutronics calculation for CDFR; reactor instruments

  2. Application of a fault-tolerant microprocessor-based core-surveillance system in a German fast breeder reactor

    International Nuclear Information System (INIS)

    Voges, U.

    1986-01-01

    For the fast breeder reactor KNK II at Karlsruhe, Germany, a microprocessor-based safety shut-down system is built. Analogue to the triple modular instrumentation it consists of TMR hardware. Functionally it is split into four blocks which operate in cascade-like fashion. The main functions are mean value calculation, current limit control, trend control, and final evaluation. In order to secure correctness, several constructive and analytical methods are applied for fault avoidance, like formal specification languages, programming guidelines, software quality assurance plan, validation, verification, and testing. Since additional means for correct and safe operation are still necessary, fault-tolerance and error-detection techniques are applied. These include self-checking programs, plausibility checks, control data, information exchange and control between the redundancies, and especially diversity. This diversity refers to different teams for the different development phases as well as to different tools and environments, like different programming languages for the application software. Three separate but functional identical programs will be implemented in Iftran, Pascal and PL/M. These will not only be used during the extensive testing period, but also during final operation

  3. An ultrasonic methodology for in-service inspection of shell weld of core support structure in a sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Anish, E-mail: anish@igcar.gov.in; Rajkumar, K.V.; Sharma, Govind K.; Dhayalan, R.; Jayakumar, T.

    2015-02-15

    Highlights: • We demonstrate a novel ultrasonic methodology for in-service inspection of shell weld of core support structure in a sodium cooled fast breeder reactor. • The methodology comprises of the inspection of shell weld immersed in sodium from the outside surface of the main vessel using ultrasonic guided wave. • The formation and propagation of guided wave modes are validated by finite element simulation of the inspection methodology. • A defect down to 20% of 30 mm thick wall (∼6 mm) in the shell weld can be detected reliably using the developed methodology. - Abstract: The paper presents a novel ultrasonic methodology developed for in-service inspection (ISI) of shell weld of core support structure of main vessel of 500 MWe prototype fast breeder reactor (PFBR). The methodology comprises of the inspection of shell weld immersed in sodium from the outsider surface of the main vessel using a normal beam longitudinal wave ultrasonic transducer. Because of the presence of curvature in the knuckle region of the main vessel, the normal beam longitudinal wave enters the support shell plate at an angle and forms the guided waves by mode conversion and multiple reflections from the boundaries of the shell plate. Hence, this methodology can be used to detect defects in the shell weld of the core support structure. The successful demonstration of the methodology on a mock-up sector made of stainless steel indicated that an artificial defect down to 20% of 30 mm thick wall (∼6 mm) in the shell weld can be detected reliably.

  4. Reactor core simulations in Canada

    International Nuclear Information System (INIS)

    Roy, R.; Koclas, J.; Shen, W.; Jenkins, D. A.; Altiparmakov, D.; Rouben, B.

    2004-01-01

    This review will address the current simulation flow-chart currently used for reactor-physics simulations in the Canadian industry. The neutron behaviour in heavy-water moderated power reactors is quite different from that in other power reactors, thus the core physics approximations are somewhat different Some codes used are particular to the context of heavy-water reactors, and the paper focuses on this aspect. The paper also shows simulations involving new design features of the Advanced Candu Reactor TM (ACR TM), and provides insight into future development, expected in the coming years. (authors)

  5. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  6. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    International Nuclear Information System (INIS)

    Neil Todreas; Pavel Hejzlar

    2008-01-01

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores treated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcome the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better thermal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor

  7. Thermal baffle for fast-breeder reactor

    International Nuclear Information System (INIS)

    Rylatt, J.A.

    1977-01-01

    A liquid-metal-cooled fast-breeder reactor includes a bridge structure for separating hot outlet coolant from relatively cool inlet coolant consisting of an annular stainless steel baffle plate extending between the core barrel surrounding the core and the thermal liner associated with the reactor vessel and resting on ledges thereon, there being inner and outer circumferential webs on the lower surface of the baffle plate and radial webs extending between the circumferential webs, a stainless steel insulating plate completely covering the upper surface of the baffle plate and flex seals between the baffle plate and the ledges on which the baffle plate rests to prevent coolant from washing through the gaps therebetween. The baffle plate is keyed to the core barrel for movement therewith and floating with respect to the thermal liner and reactor vessel. 3 claims, 2 figures

  8. Fast breeder reactor safety : a perspective

    International Nuclear Information System (INIS)

    Kale, R.D.

    1992-01-01

    Taking into consideration India's limited reserves of natural and vast reserves of thorium, the fast reactor route holds a great promise for India's energy supply in future. The fast reactor fueled with 239 Pu/ 238 U (unused or depleted) produces (breeds) more fissionable fuel material 239 Pu than it consumes. Calculations show that a fast breeder reactor (FBR) increases energy potential of natural uranium by about 60 times. As the fast reactor can also convert 232 Th into 233 U which is a fissionable material, it can make India's thorium reserves a source of almost inexhaustible energy supply for a long time to come. Significant advantage of FBR plants cooled by sodium and their world-wide operating experience are reviewed. There are two main safety issues of FBR, one nuclear and the other non-nuclear. The nuclear issue concerns core disruptive accident and the non-nuclear one concerns the high chemical energy potential of sodium. These two issues are analysed and it is pointed that they are manageable by current design, construction and operational practices. Main findings of safety research during the last six to eight years in West European Countries and United States of America (US) are summarised. Three stage engineered safety provision incorporated into the design of the sodium cooled Fast Breeder Test Reactor (FBTR) commissioned at Kalpakkam are explained. The important design safety features of FBTR such as primary system containment, emergency core cooling, plant protection system, inherent safety features achieved through reactivity coefficients, and natural convection cooling are discussed. Theoretical analysis and experimental research in fast reactor safety carried out at the Indira Gandhi Centre for Atomic Research during the past some years are reviewed. (M.G.B.)

  9. Review of fast reactor activities in India

    International Nuclear Information System (INIS)

    Paranjpe, S.R.

    1982-01-01

    A review of fast reactor activities in India is introduced. One stage of construction of the Fast Breeder Test Reactor (FBTR) and design studies for 500MWe Prototype Fast Breeder Reactor (PFBR) are briefly summarized. The emphasis is on fast reactor physics, materials studies, radiochemistry, and the safety and fuel reprocessing programme

  10. Development of fast helium cooled reactors in Russia

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Glushkov, L.S.

    2003-01-01

    Nuclear energy of the 21 century will be characterized by the use in its structure of fast reactors wherein nuclear fuel breeding is accomplished along with thermal reactors. A combined use of high-temperature gas cooled reactors on thermal (HTGR) and fast (BGR) neutrons may prove to be one of good solutions to the problem of providing fuel for the future nuclear energy. The high helium temperature at the outlet of such reactors allows both electricity generation and using heat for various processes, such as hydrogen production. The paper presents results of the analysis of efforts on development of fast helium cooled reactor concepts previously undertaken in Russia. Advantages of fast helium cooled reactors (BGR) over fast liquid metal cooled reactors are demonstrated. Various BGR concepts are analyzed. One of the concepts consists in attaining the maximum breeding ratio through the use of a modular reactor with a small core containing 239 Pu without breeder material (the plutonium core reactor). In the second concept, an increase in the reactor power while maintaining the fuel breeding parameters is accomplished in a reactor with a multiplutonium core based on placement of several plutonium cores in a certain periodic structure inside a common uranium blanket. In the third concept, the reactor power is increased through an increase of the core volume using plutonium diluted with 238 U (MOX fuel). The possibility of using in BGR a single-circuit scheme of converting heat to electricity with a gas turbine along with the conventional two-circuit scheme in a steam-turbine cycle is demonstrated. Design development efforts performed in Russia allowed designing a BGR-300 pilot fast helium reactor with electric power level of 300 MW. Main parameters of this reactor are presented. A point is made of the promise offered by international cooperation in development and application of high-temperature helium cooled reactor both on thermal (HTGR) and fast (BGR) neutrons for

  11. Fast breeder reactors

    International Nuclear Information System (INIS)

    1978-01-01

    The subject of this invention is a liquid metal cooled nuclear reactor construction in which a concrete pit is lagged to protect it from the heat radiated from the reactor in normal operation but in which the efficiency of the lagging is reduced in case of emergency to allow the excess heat generated by the reactor to be dissipated throughout the pit. The lagging is in two layers, the first covering the internal surface of the pit wall is impermeable to the liquid metal, whilst the second layer over the first is permeable [fr

  12. Reactor core monitor for nuclear reactor

    International Nuclear Information System (INIS)

    Azekura, Kazuo; Kurihara, Kunitoshi.

    1992-01-01

    The device of the present invention provides a various information of a wide adaptability, such as a power distribution, to an operator by determining a reactor core performance of the reactor by a performance calculation with improved accuracy. That is, a calculation means determines a neutron flux distribution of the reactor and coolant temperature based on the neutron flux distribution. A measuring means measures a cooled temperature of a reactor core inlet and a temperature at the exit of a fuel assembly. The result of coolant temperature by the measuring means and the result of the calculation by the calculation means are compared. The result of the calculation for the neutron flux distribution obtained by the calculation means is corrected based on the result of the comparison. The calculation means introduces calculation at higher accuracy by adopting two-dimensional balance in the fuel assembly. Further, a more accurate three-dimensional neutron diffusion calculation model is introduced in an on-line computer. Then, the accuracy of the calculation for the neutron flux distribution, power distribution, temperature distribution, etc. is improved. In view of the above, adaptability of a reactor core monitor is widened. (I.S.)

  13. Nuclear reactor core stabilizing arrangement

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1976-01-01

    A nuclear reactor core stabilizing arrangement is described wherein a plurality of actuators, disposed in a pattern laterally surrounding a group of elongated fuel assemblies, press against respective contiguous fuel assemblies on the periphery of the group to reduce the clearance between adjacent fuel assemblies thereby forming a more compacted, vibration resistant core structure. 7 claims, 4 drawing figures

  14. Development of a standard database for FBR core nuclear design (XI). Analysis of the Experimental Fast Reactor 'JOYO' MK-I start-up test and operation data

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Numata, Kazuyuki

    2000-03-01

    As a recent research, Japan Nuclear Cycle Development Institute (JNC) develops a database of integral data in addition to the JUPITER experiments, aiming at further improvement for accuracy and reliability. In this report, the authors describe the evaluation of the C/E values and the sensitivity analysis for the Experimental Fast Reactor 'JOYO' MK-I core. The minimal criticality, sodium void reactivity worth, fuel assembly worth and burn-up coefficient were analyzed. The results of both the minimal criticality and the fuel assembly worth, which were calculated by the standard analytical method for JUPITER experiments, agreed well with the measured values. On the other hand, the results of the sodium void reactivity worth have a tendency to overestimate. As for the burn-up coefficient, it was seen that the C/E values had a dispersion among the operation cycles. The authors judged that further investigation for the estimation of the experimental error will increase the applicability of the integral data to the adjusted library. Furthermore, sensitivity analyses for the minimal criticality, sodium void reactivity worth and fuel assembly worth showed the characteristics of 'JOYO' MK-I core in comparison with ZPPR-9 core of JUPITER experiments. (J.P.N.)

  15. Wave propagation simulation in the upper core of sodium-cooled fast reactors using a spectral-element method for heterogeneous media

    Science.gov (United States)

    Nagaso, Masaru; Komatitsch, Dimitri; Moysan, Joseph; Lhuillier, Christian

    2018-01-01

    ASTRID project, French sodium cooled nuclear reactor of 4th generation, is under development at the moment by Alternative Energies and Atomic Energy Commission (CEA). In this project, development of monitoring techniques for a nuclear reactor during operation are identified as a measure issue for enlarging the plant safety. Use of ultrasonic measurement techniques (e.g. thermometry, visualization of internal objects) are regarded as powerful inspection tools of sodium cooled fast reactors (SFR) including ASTRID due to opacity of liquid sodium. In side of a sodium cooling circuit, heterogeneity of medium occurs because of complex flow state especially in its operation and then the effects of this heterogeneity on an acoustic propagation is not negligible. Thus, it is necessary to carry out verification experiments for developments of component technologies, while such kind of experiments using liquid sodium may be relatively large-scale experiments. This is why numerical simulation methods are essential for preceding real experiments or filling up the limited number of experimental results. Though various numerical methods have been applied for a wave propagation in liquid sodium, we still do not have a method for verifying on three-dimensional heterogeneity. Moreover, in side of a reactor core being a complex acousto-elastic coupled region, it has also been difficult to simulate such problems with conventional methods. The objective of this study is to solve these 2 points by applying three-dimensional spectral element method. In this paper, our initial results on three-dimensional simulation study on heterogeneous medium (the first point) are shown. For heterogeneity of liquid sodium to be considered, four-dimensional temperature field (three spatial and one temporal dimension) calculated by computational fluid dynamics (CFD) with Large-Eddy Simulation was applied instead of using conventional method (i.e. Gaussian Random field). This three-dimensional numerical

  16. Development of plutonium: Fast Neutrons Reactors option

    International Nuclear Information System (INIS)

    Etudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. de la Centrale Phenix)" data-affiliation=" (CEA Centre dEtudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. de la Centrale Phenix)" >Elie, X.

    1994-01-01

    Phenix reactor is shortly described with combustible assembly with some operational data. 'CAPRA'(Plutonium Enhance Consumption in Fast Reactors) is an R and D program for the development of an optimized combustible for fast reactors for burning more plutonium. Three ways are tested: a 45% Pu concentration in an oxide fuel keeping actual fabrication and reprocessing options giving a 80 kg/TWh Pu consumption, a fuel without U 238 but with a W or a Mo matrix with problems of reprocessing and core reactivity giving a 110 kg/TWh Pu consumption, and a nitride fuel with an up to 65% Pu concentration giving a 90 to 100 kg/TWh Pu consumption. (A.B.)

  17. ZPR-6 assembly 7 high {sup 240}Pu core experiments : a fast reactor core with mixed (Pu,U)-oxide fuel and a centeral high{sup 240}Pu zone.

    Energy Technology Data Exchange (ETDEWEB)

    Lell, R. M.; Morman, J. A.; Schaefer, R.W.; McKnight, R.D.; Nuclear Engineering Division

    2009-02-23

    ZPR-6 Assembly 7 (ZPR-6/7) encompasses a series of experiments performed at the ZPR-6 facility at Argonne National Laboratory in 1970 and 1971 as part of the Demonstration Reactor Benchmark Program (Reference 1). Assembly 7 simulated a large sodium-cooled LMFBR with mixed oxide fuel, depleted uranium radial and axial blankets, and a core H/D near unity. ZPR-6/7 was designed to test fast reactor physics data and methods, so configurations in the Assembly 7 program were as simple as possible in terms of geometry and composition. ZPR-6/7 had a very uniform core assembled from small plates of depleted uranium, sodium, iron oxide, U{sub 3}O{sub 8} and Pu-U-Mo alloy loaded into stainless steel drawers. The steel drawers were placed in square stainless steel tubes in the two halves of a split table machine. ZPR-6/7 had a simple, symmetric core unit cell whose neutronic characteristics were dominated by plutonium and {sup 238}U. The core was surrounded by thick radial and axial regions of depleted uranium to simulate radial and axial blankets and to isolate the core from the surrounding room. The ZPR-6/7 program encompassed 139 separate core loadings which include the initial approach to critical and all subsequent core loading changes required to perform specific experiments and measurements. In this context a loading refers to a particular configuration of fueled drawers, radial blanket drawers and experimental equipment (if present) in the matrix of steel tubes. Two principal core configurations were established. The uniform core (Loadings 1-84) had a relatively uniform core composition. The high {sup 240}Pu core (Loadings 85-139) was a variant on the uniform core. The plutonium in the Pu-U-Mo fuel plates in the uniform core contains 11% {sup 240}Pu. In the high {sup 240}Pu core, all Pu-U-Mo plates in the inner core region (central 61 matrix locations per half of the split table machine) were replaced by Pu-U-Mo plates containing 27% {sup 240}Pu in the plutonium

  18. Reactor core performance estimating device

    International Nuclear Information System (INIS)

    Tanabe, Akira; Yamamoto, Toru; Shinpuku, Kimihiro; Chuzen, Takuji; Nishide, Fusayo.

    1995-01-01

    The present invention can autonomously simplify a neural net model thereby enabling to conveniently estimate various amounts which represents reactor core performances by a simple calculation in a short period of time. Namely, a reactor core performance estimation device comprises a nerve circuit net which divides the reactor core into a large number of spacial regions, and receives various physical amounts for each region as input signals for input nerve cells and outputs estimation values of each amount representing the reactor core performances as output signals of output nerve cells. In this case, the nerve circuit net (1) has a structure of extended multi-layered model having direct coupling from an upper stream layer to each of downstream layers, (2) has a forgetting constant q in a corrected equation for a joined load value ω using an inverse error propagation method, (3) learns various amounts representing reactor core performances determined using the physical models as teacher signals, (4) determines the joined load value ω decreased as '0' when it is to less than a predetermined value upon learning described above, and (5) eliminates elements of the nerve circuit net having all of the joined load value decreased to 0. As a result, the neural net model comprises an autonomously simplifying means. (I.S.)

  19. The instrumentation of fast reactor

    International Nuclear Information System (INIS)

    Endo, Akira

    2003-03-01

    The author has been engaged in the development of fast reactors over the last 30 years with both an involvement with the early technology development on the experimental breeder reactor Joyo, and latterly continuing this work on the prototype breeder reactor, Monju. In order to pass on this experience to younger engineers this paper is produced to outline this experience in the sincere hope that the information given will be utilised in future educational training material. The paper discusses the wide diversity on the associated instrument technology which the fast breeder reactor requires. The first chapter outlines the fast reactor system, followed by discussions on reactor instrumentation, measurement principles, temperature dependencies, and verification response characteristics from various viewpoints, are discussed in chapters two and three. The important issues of failed fuel location detection, and sodium leak detection from steam generators are discussed in chapters 4 and 5 respectively. Appended to this report is an explanation on the methods of measuring response characteristics on instrumentation systems using error analysis, random signal theory and measuring method of response characteristic by AR (autoregressive) model on which it appears is becoming an indispensable problem for persons involved with this technology in the future. (author)

  20. Comparison and validation of the results of the AZNHEX v.1.0 code with the MCNP code simulating the core of a fast reactor cooled with sodium

    International Nuclear Information System (INIS)

    Galicia A, J.; Francois L, J. L.; Bastida O, G. E.; Esquivel E, J.

    2016-09-01

    The development of the AZTLAN platform for the analysis and design of nuclear reactors is led by Instituto Nacional de Investigaciones Nucleares (ININ) and divided into four working groups, which have well-defined activities to achieve significant progress in this project individually and jointly. Within these working groups is the users group, whose main task is to use the codes that make up the AZTLAN platform to provide feedback to the developers, and in this way to make the final versions of the codes are efficient and at the same time reliable and easy to understand. In this paper we present the results provided by the AZNHEX v.1.0 code when simulating the core of a fast reactor cooled with sodium at steady state. The validation of these results is a fundamental part of the platform development and responsibility of the users group, so in this research the results obtained with AZNHEX are compared and analyzed with those provided by the Monte Carlo code MCNP-5, software worldwide used and recognized. A description of the methodology used with MCNP-5 is also presented for the calculation of the interest variables and the difference that is obtained with respect to the calculated with AZNHEX. (Author)

  1. A review of the UK fast reactor programme

    International Nuclear Information System (INIS)

    Wheeler, R.C.; Bramman, J.I.

    1988-04-01

    The fast reactor programme in the United Kindom is reviewed under the following headings: Progress with PFR; Reprocessing: Commercial Design Studies; Structural Integrity; Engineering and Components; Materials; Sodium Chemistry; Core and Fuel; Safety; Plant Performance. (author)

  2. Mechanical core coupling and reactors stability

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2006-01-01

    Structural parts of nuclear reactors are complex mechanical systems, able to vibrate with a set of proper frequencies when suitably excited. Cyclical variations in the strain state of the materials, including density perturbations, are produced. This periodic changes may affect reactor reactivity. But a variation in reactivity affects reactor thermal power, thus modifying the temperature field of the abovementiones materials. If the variation in temperature fields is fast enough, thermal-mechanical coupling may produce fast variations in strain states, and this, at its turn, modifies the reactivity, and so on. This coupling between mechanical vibrations of the structure and the materials of the core, with power oscillations of the reactor, not only may not be excluded a priori, but it seems that it has been present in some stage of the incidents or accidents that happened during the development of nuclear reactor technology. The purpose of the present communication is: (a) To review and generalize some mathematical models that were proposed in order to describe thermal-mechanical coupling in nuclear reactors. (b) To discuss some conditions in which significant instabilities could arise, including large amplitude power oscillations coupled with mechanical vibrations whose amplitudes are too small to be excluded by conventional criteria of mechanical design. Enough Certain aspects of thr physical safety of nuclear power reactors, that are objected by people that opposes to the renaissance of nucleoelectric generation, are discussed in the framework of the mathematical model proposed in this paper [es

  3. An analysis of fast reactor fuel assembly performance taking into account their mechanical interaction in the core and refuelling line capabilities

    International Nuclear Information System (INIS)

    Buksha, Yu.K.; Zabudko, L.M.; Kravchenko, I.N.; Matveenko, L.V.; Meshkov, M.N.

    1984-01-01

    An approach to assessment of fast reactor fuel assembly performance has been considered. A concept of passive restraint of fuel assemblies in a reactor adopted in the USSR is described. Some methods for calculating the interassembly interactions during operation are briefly outlined, some calculated results are presented. A problem of fuel assembly performance during refuelling taking into account the refuelling line capabilities is considered. Some results from fuel assemblies operation experience in the BN-600 reactor are given. (author)

  4. Nuclear characteristic simulation device for reactor core

    International Nuclear Information System (INIS)

    Arakawa, Akio; Kobayashi, Yuji.

    1994-01-01

    In a simulation device for nuclear characteristic of a PWR type reactor, there are provided a one-dimensional reactor core dynamic characteristic model for simulating one-dimensional neutron flux distribution in the axial direction of the reactor core and average reactor power based on each of inputted signals of control rod pattern, a reactor core flow rate, reactor core pressure and reactor core inlet enthalphy, and a three-dimensional reactor core dynamic characteristic mode for simulating three-dimensional power distribution of the reactor core, and a nuclear instrumentation model for calculating read value of the nuclear instrumentation disposed in the reactor based on the average reactor core power and the reactor core three-dimensional power distribution. A one-dimensional neutron flux distribution in the axial direction of the reactor core, a reactor core average power, a reactor core three-dimensional power distribution and a nuclear instrumentation read value are calculated. As a result, the three-dimensional power distribution and the power level are continuously calculated. Further, since the transient change of the three-dimensional neutron flux distribution is calculated accurately on real time, more actual response relative to a power monitoring device of the reactor core and operation performance can be simulated. (N.H.)

  5. Integral fast reactor concept

    International Nuclear Information System (INIS)

    Chang, Y.I.; Marchaterre, J.F.; Sevy, R.H.

    1984-01-01

    Key features of the IFR consist of a pool-type plant arrangement, a metal fuel-based core design, and an integral fuel cycle with colocated fuel cycle facility. Both the basic concept and the technology base have been demonstrated through actual integral cycle operation in EBR-II. This paper discusses the inherent safety characteristics of the IFR concept

  6. Neutronic Core Performance of CAREM-25 Reactor

    International Nuclear Information System (INIS)

    Villarino, Eduardo; Hergenreder, Daniel; Matzkin, S

    2000-01-01

    The actual design state of core of CAREM-25 reactor is presented.It is shown that the core design complains with the safety and operation established requirements.It is analyzed the behavior of the reactor safety and control systems (single failure of the fast shut down system, single failure of the shut down system, single failure of the second shut down system, reactivity worth of the adjust and control system in normal operation and hot shut down, reactivity worth of the adjust and control system and the scheme of movement of the control rod during the operation cycle).It is shown the burnup profile of fuel elements with the proposed scheme of refueling and the burnup and power density distribution at different moments of the operation cycle.The power peaking factor of the equilibrium core is 2.56, the minimum DNBR is 1.90 and its average is 2.09 during the operation cycle

  7. Nuclear reactor core cooling arrangement

    International Nuclear Information System (INIS)

    Redding, A.H.

    1978-01-01

    A core cooling system for a nuclear reactor having a plurality of primary fluid flow systems is described. The reactor coolant flow from the primary systems is joined upon entering the pressure vessel. Jointure is accomplished in a common chamber causing high coolant flow velocities at low static pressures. If a pipe ruptures in one of the primary fluid flow systems, the low pressure in the common chamber minimizes leakage from the intact flow systems. This allows continuation of coolant flow through the nuclear core for a sufficient length of time to effectively eliminate the possibility of thermal damage

  8. Fast reactor research in Switzerland

    International Nuclear Information System (INIS)

    Brogli, R.; Hudina, M.; Pelloni, S.; Sigg, B.; Stanculescu, A.

    1998-01-01

    The small Swiss research program on fast reactors serves to further understanding of the role of LMFR for energy production and to convert radioactive waste to more environmentally benign forms. These activities are on the one hand the contribution to the comparison of advanced nuclear systems and bring on the other to our physical and engineers understanding. (author)

  9. Core clamping device for a nuclear reactor

    International Nuclear Information System (INIS)

    Guenther, R.W.

    1974-01-01

    The core clamping device for a fast neutron reactor includes clamps to support the fuel zone against the pressure vessel. The clamps are arranged around the circumference of the core. They consist of torsion bars arranged parallel at some distance around the core with lever arms attached to the ends whose force is directed in the opposite direction, pressing against the wall of the pressure vessel. The lever arms and pressure plates also actuated by the ends of the torsion bars transfer the stress, the pressure plates acting upon the fuel elements or fuel assemblies. Coupling between the ends of the torsion bars and the pressure plates is achieved by end carrier plates directly attached to the torsion bars and radially movable. This clamping device follows the thermal expansions of the core, allows specific elements to be disengaged in sections and saves space between the core and the neutron reflectors. (DG) [de

  10. Development of instrumentation for fast reactor plants

    International Nuclear Information System (INIS)

    Kamei, Mitsuru

    1982-01-01

    Liquid metal-cooled fast breeder reactors are suitable to the power reactors for the future because the ratio of fuel multiplication can be taken relatively large, and effort has been exerted for the development in advanced countries. In Japan, the fast experimental reactor Joyo has been in operation smoothly, and the design and the safety examination of the prototype reactor Monju are in progress. As for the instruments for LMFBRs, the experiment for practical use has been repeated, and at present, almost all equipment and system can be produced in Japan. The examples that the equipment and technology superior to those in Europe and USA have been developed in Japan are not few. The international exchange of information has been carried out actively. The features of the instrumentation for LMFBRs, the nuclear instrumentation, the process instrumentation, the core monitoring instrumentation and the instrumentation for watch and inspection are described. Hereafter, accompanying the development of a demonstration reactor and practical reactors of large capacity, the following items to be developed regarding the instrumentation remain: the improvement of the reliability and endurance of detectors and probes, the establishment of inspection and maintenance, the establishment of abnormality diagnosis system, operation aiding system and safety and protection instrumentation system, and others. (Kako, I.)

  11. Status of national programmes on fast reactors

    International Nuclear Information System (INIS)

    1994-04-01

    Based on the International Working Group on Fast reactors (IWGFR) members' request, the IAEA organized a special meeting on Fast Reactor Development and the Role of the IAEA in May 1993. The purpose of the meeting was to review and discuss the status and recent development, to present major changes in fast reactor programmes and to recommend future activities on fast reactors. The IWGFR took note that in some Member States large prototypes have been built or are under construction. However, some countries, due to their current budget constraints, have reduced the level of funding for research and development programmes on fast reactors. The IWGFR noted that in this situation the international exchange of information and cooperation on the development of fast reactors is highly desirable and stressed the importance of the IAEA's programme on fast reactors. These proceedings contain important and useful information on national programmes and new developments in sodium cooled fast reactors in Member States. Refs, figs and tabs

  12. Modeling of the reactor core

    International Nuclear Information System (INIS)

    1999-01-01

    In order to improve technical - economical parameters fuel with 2.4% enrichment and burnable absorber is started to be used at Ignalina NPP. Using code QUABOX/CUBBOX the main neutronic - physical characteristics were calculated for selected reactor core conditions

  13. Fast reactor programme

    International Nuclear Information System (INIS)

    Hoekstra, E.K.

    1978-05-01

    Fast neutron capture cross section data of natural Mo are presented; a feasibility study on integral neutron spectrum measurements in the low-energy region of large LMFBR's is discussed. The post-irradiation examination results of the fuel pin of loss-of-cooling experiment R63-L18 and the progress made with preparations for the HFR-TOP transient overpower experiments on fuel pins under irradiation in the pool-side facility of the HFR are reported on. An exact determination of the thermochemical properties of uranyl halides is discussed. Results of mechanical tests on stainless steel DIN 1.4948 specimens are given. Aerosol leakages through blocks of concrete are determined. In the field of heat transfer and hydraulics, data on fully-developed turbulent flows in rod bundles have been obtained using the code VITESSE, results of Laser Doppler Anemometer measurements performed on water flowing through a square channel are given and progress is reported on the study of local boiling occurring behind a flow blockage in a 28-rod bundle. (Auth.)

  14. Mechanical behavior of a fast reactor core application of 3D codes to SUPER-PHENIX 1 and parametric studies

    International Nuclear Information System (INIS)

    Bernard, A.; Dorsselaere, J.P. van

    1984-01-01

    This paper presents the SPX1 project calculations, performed on 1/3 core with the aid of the series of 3D codes described in Session 2. The main criteria, related to contact forces, head bowings and handling forces, are fulfilled. Some parametric studies on the mechanical equilibrium are also presented. The main parameters are: the axial pad level, the subassembly stiffness and the pad local stiffness. (author)

  15. Fast reactor programme

    International Nuclear Information System (INIS)

    Hoekstra, E.K.

    1975-04-01

    The final corrected time-of-flight oscillator spectra of the STEK cores 500, 1000, 2000, 3000 and 4000 are given. Results of post-irradiation examinations of the three fuel pins R54-F24, F30 and F34 and initial observations on the in-pile loss-of-cooling experiment R63-L12 are discussed. Further attempts to prepare UC powders of low oxygen content and with a large surface area are described. Continued research on the thermodynamic stability of cesium uranates is reported. Results of creep and low-cycle-fatigue tests on non-irradiated samples of DIN 1.4948 stainless steel are discussed. The initial results of aerosol experiments in condensing atmospheres in a 20 m 3 vessel are given. Progress regarding the experiments on integral sodium boiling in a twelve-rod bundle and local boiling in a partially blocked 28-rod bundle is reported; a study of the changes in heat transfer caused by damage to the surface roughness of a gas-cooled fuel rod is described

  16. Whole Core Thermal-Hydraulic Design of a Sodium Cooled Fast Reactor Considering the Gamma Energy Transport

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Back, Min Ho; Park, Won Seok; Kim, Sang Ji

    2012-01-01

    Since a fuel cladding failure is the most important parameter in a core thermal-hydraulic design, the conceptual design stage only involves fuel assemblies. However, although non-fuel assemblies such as control rod, reflector, and B4C generate a relatively smaller thermal power compared to fuel assemblies, they also require independent flow allocation to properly cool down each assembly. The thermal power in non-fuel assemblies is produced from both neutron and gamma energy, and thus the core thermal-hydraulic design including non-fuel assemblies should consider an energy redistribution by the gamma energy transport. To design non-fuel assemblies, the design-limiting parameters should be determined considering the thermal failure modes. While fuel assemblies set a limiting factor with cladding creep temperature to prevent a fission product ejection from the fuel rods, non-fuel assemblies restrict their outlet temperature to minimize thermally induced stress on the upper internal structure (UIS). This work employs a heat generation distribution reflecting both neutron and gamma transport. The whole core thermal-hydraulic design including fuel and non-fuel assemblies is then conducted using the SLTHEN (Steady-State LMR Thermal-Hydraulic Analysis Code Based on ENERGY Model) code. The other procedures follow from the previous conceptual design

  17. Introduction of the experimental fast reactor JOYO

    International Nuclear Information System (INIS)

    Matsuba, Ken-ichi; Kawahara, Hirotaka; Aoyama, Takafumi

    2006-01-01

    The experimental fast reactor JOYO at O-arai Engineering Center of Japan Nuclear Cycle Development Institute is the first liquid metal cooled fast reactor in Japan. This paper describes the plant outline, experiences on the fast reactor technology and test results accumulated through twenty eight years successful operation of JOYO. (author)

  18. Unusual occurrences in fast breeder test reactor

    International Nuclear Information System (INIS)

    Kapoor, R.P.; Srinivasan, G.; Ellappan, T.R.; Ramalingam, P.V.; Vasudevan, A.T.; Iyer, M.A.K.; Lee, S.M.; Bhoje, S.B.

    2000-01-01

    Fast Breeder Test Reactor (FBTR) is a 40 MWt/13.2 MWe sodium cooled mixed carbide fuelled reactor. Its main aim is to generate experience in the design, construction and operation of fast reactors including sodium systems and to serve as an irradiation facility for the development of fuel and structural materials for future fast reactors. It achieved first criticality in Oct 85 with Mark I core (70% PuC - 30% UC). Steam generator was put in service in Jan 93 and power was raised to 10.5 MWt in Dec 93. Turbine generator was synchronised to the grid in Jul 97. The indigenously developed mixed carbide fuel has achieved a burnup of 44,000 MW-d/t max at a linear heat rating of 320 W/cm max without any fuel clad failure. The commissioning and operation of sodium systems and components have been smooth and performance of major components, viz., sodium pumps, intermediate heat exchangers and once through sodium heated steam generators (SG) have been excellent. There have been three minor incidents of Na/NaK leaks during the past 14 years, which are described in the paper. There have been no incident of a tube leak in SG. However, three incidents of water leaks from water / steam headers have been detailed. The plant has encountered some unusual occurrences, which were critically analysed and remedial measures, in terms of system and procedural modifications, incorporated to prevent recurrence. This paper describes unusual occurrences of fuel handling incident of May 1987, main boiler feed pump seizure in Apr 1992, reactivity transients in Nov 1994 and Apr 1995, and malfunctioning of the core cover plate mechanism in Jul 1995. These incidents have resulted in long plant shutdowns. During the course of investigation, various theoretical and experimental studies were carried out for better understanding of the phenomena and several inspection techniques and tools were developed resulting in enriching the technology of sodium cooled reactors. FBTR has 36 neutronic and process

  19. Replacement of upper core structure in experimental fast reactor Joyo - 2) Development of cover gas recycling system with precise pressure control - 15021

    International Nuclear Information System (INIS)

    Ushiki, H.; Okuda, E.; Suzuki, N.; Ohta, K.; Kawahara, H.; Takamatsu, M.

    2015-01-01

    The upper core structure (UCS) replacement in the experimental sodium-cooled fast reactor (SFR) Joyo (thermal power: 140 MW) was initiated in May 2014. During UCS replacement, precisely controlling the cover gas pressure slightly positive was required to prevent the cover gas release and the contamination of impurities in case of a boundary failure. In previous in-vessel repair works in Joyo, the cover gas pressure was controlled by supplying and exhausting the cover gas manually. However, UCS replacement requires much manual work because of the requirement for a large supply of cooling gas for a much longer time. On the basis of this requirement, a cover gas recycling system with precise pressure control was developed. The primary objectives of this system are to provide (1) precise pressure control and (2) the recyclability of the cover gas. The performance was successfully confirmed in ex-vessel test, in-vessel test, and trial operation for one month. The good performance of the precise pressure control and the recyclability of the cover gas achieved resource savings, reduction in the operation burden, and secure boundary. This study will provide valuable insights for further improving repairs in SFRs. (authors)

  20. Fast breeder reactors an engineering introduction

    CERN Document Server

    Judd, A M

    1981-01-01

    Fast Breeder Reactors: An Engineering Introduction is an introductory text to fast breeder reactors and covers topics ranging from reactor physics and design to engineering and safety considerations. Reactor fuels, coolant circuits, steam plants, and control systems are also discussed. This book is comprised of five chapters and opens with a brief summary of the history of fast reactors, with emphasis on international and the prospect of making accessible enormous reserves of energy. The next chapter deals with the physics of fast reactors and considers calculation methods, flux distribution,

  1. IAEA Technical Meeting on Innovative Fast Reactor Designs with Enhanced Negative Reactivity Feedback Features. Presentations

    International Nuclear Information System (INIS)

    2012-01-01

    The objective of the TM is to review and discuss the safety characteristics and the performances of the core of innovative fast reactor concepts, as well as to present the ongoing R&D activities in the area of core design and advanced simulation tools and methods for fast reactor core physics analysis. The focus is on fast spectrum cores optimized for actinide utilization and transmutation and, in particular, on core designs with enhanced negative reactivity feedback effects

  2. IAEA Technical Meeting on Innovative Fast Reactor Designs with Enhanced Negative Reactivity Feedback Features. Working Material

    International Nuclear Information System (INIS)

    2012-01-01

    The objective of the TM was to review and discuss the safety characteristics and the performances of the core of innovative fast reactor concepts, as well as to present the ongoing R&D activities in the area of core design and advanced simulation tools and methods for fast reactor core physics analysis. The focus was on fast spectrum cores optimized for actinide utilization and transmutation and, in particular, on core designs with enhanced negative reactivity feedback effects

  3. In-core instrumentation and reactor assessment

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Information on the conditions in the reactor core is essential for the safe and economic operation of nuclear reactors. This book reviews the important aspects of measurement and interpretation of reactor core parameters. Contributions of industry and research laboratories on the state of the art cover measurement methods, core performance evaluation, and operating experience

  4. Core catchers for nuclear reactors

    International Nuclear Information System (INIS)

    McIntyre, Micheal; Gardner, I.P.

    1991-01-01

    A core catcher for containing nuclear core debris in the event of a breach in the reactor pressure vessel caused by a core meltdown is described. It has a multilayer sandwich construction comprising a middle layer of interlocking tongue-and-groove jointed refractory (e.g. zirconia) tiles or bricks sandwiched between inner and outer steel plates in the form of domes. The refractory bricks are fixed against movement relative to each other and the inner and outer steel plates by means of refractory cement. The inner steel plate is sacrificial in the event that it comes into contact with molten nuclear material but gives the sandwich construction greater shock resistance during normal operational service. The outer steel plate provides the main structural support for the core catcher. (author)

  5. Stationary Liquid Fuel Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Grandy, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Boroski, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Krajtl, Lubomir [Argonne National Lab. (ANL), Argonne, IL (United States); Johnson, Terry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  6. Fuel requirements for experimental devices in MTR reactors. A perturbation model for reactor core analysis

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1991-01-01

    Irradiation in neutron absorbing devices, requiring high fast neutron fluxes in the core or high thermal fluxes in the reflector and flux traps, lead to higher density fuel and larger core dimensions. A perturbation model of the reactor core helps to estimate the fuel requirements. (orig.)

  7. Emergency reactor core cooling facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro; Iwata, Yasutaka

    1996-11-01

    The present invention provides an emergency reactor core cooling device for a BWR type nuclear power plant. Namely, D/S pit (gas/water separator storage pool) water is used as a water source for the emergency reactor core cooling facility upon occurrence of loss of coolant accidents (LOCA) by introducing the D/S pit water to the emergency reactor core cooling (ECCS) pump. As a result, the function as the ECCS facility can be eliminated from the function of the condensate storage tank which has been used as the ECCS facility. If the function is unnecessary, the level of quality control and that of earthquake resistance of the condensate storage tank can be lowered to a level of ordinary facilities to provide an effect of reducing the cost. On the other hand, since the D/S pit as the alternative water source is usually a facility at high quality control level and earthquake resistant level, there is no problem. The quality of the water in the D/S pit can be maintained constant by elevating pressure of the D/S pit water by a suppression pool cleanup (SPCU) pump to pass it through a filtration desalter thereby purifying the D/S pit water during the plant operation. (I.S.)

  8. Integral test of JENDL-3.3 for fast reactors

    International Nuclear Information System (INIS)

    Chiba, Gou

    2003-01-01

    An integral test of JENDL-3.3 was performed for fast reactors. Various types of fast reactors were analyzed. Calculation values of the nuclear characteristics were greatly especially affected by the revisions of the cross sections of U-235 capture and elastic scattering reactions. The C/E values were improved for ZPPR cross where plutonium is mainly fueled, but not for BFS cores where uranium is mainly fueled. (author)

  9. Nuclear reactor core servicing apparatus

    International Nuclear Information System (INIS)

    Andrea, C.

    1977-01-01

    Disclosed is an improved core servicing apparatus for a nuclear reactor of the type having a reactor vessel, a vessel head having a head penetration therethrough, a removable plug adapted to fit in the head penetration, and a core of the type having an array of elongated assemblies. The improved core servicing apparatus comprises a plurality of support columns suspended from the removable plug and extending downward toward the nuclear core, rigid support means carried by each of the support columns, and a plurality of servicing means for each of the support columns for servicing a plurality of assemblies. Each of the plurality of servicing means for each of the support columns is fixedly supported in a fixed array from the rigid support means. Means are provided for rotating the rigid support means and servicing means between condensed and expanded positions. When in the condensed position, the rigid support means and servicing means lie completely within the coextensive boundaries of the plug, and when in the expanded position, some of the rigid support means and servicing means lie without the coextensive boundaries of the plug

  10. Advances by the Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Pedersen, D.R.; Walters, L.C.; Cahalan, J.E.

    1991-01-01

    The advances by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, improved passive safety, and the development of a prototype fuel cycle facility. 14 refs

  11. Axial heterogeneous core concept applied for super phoenix reactor

    International Nuclear Information System (INIS)

    Batista, J.L.; Renke, C.A.C.; Waintraub, M.; Santos Bastos, W. dos; Brito Aghina, L.O. de.

    1991-11-01

    Always maintaining the current design rules, this paper presents a parametric study on the type of axial heterogeneous core concept (CHA), utilizing a core of fast reactor Super Phenix type, reaching a maximum thermal burnup rate of 150000 M W d/t and being managed in single batch. (author)

  12. Actinide behavior in the integral fast reactor

    International Nuclear Information System (INIS)

    Courtney, J.C.

    1993-05-01

    Goal of this project is to determine the consumption of Np-237, Pu-240, Am-241, and Am-243 in the Integral Fast Reactor (IFR) fuel cycle. These four actinides set the long term waste management criteria for spent nuclear fuel; if it can be demonstrated that they can be efficiently consumed in the IFR, then requirements for nuclear waste repositories can be much less demanding. Irradiations in the Experimental Breeder Reactor II (EBR-II) at Argonne National Laboratory's site near Idaho Falls, Idaho, will be conducted to determine fission and transmutation rates for the four nuclides. The experimental effort involves target package design, fabrication, quality assurance, and irradiation. Post irradiation analyses are required to determine the fission rates and neutron spectra in the EBR-II core

  13. Research Program of a Super Fast Reactor

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie; Terai, Takayuki; Nagasaki, Shinya; Muroya, Yusa; Abe, Hiroaki; Mori, Hideo; Akiba, Masato; Akimoto, Hajime; Okumura, Keisuke; Akasaka, Naoaki; GOTO, Shoji

    2006-01-01

    Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is not breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)

  14. Fast reactor fuel reprocessing. An Indian perspective

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2005-01-01

    The Department of Atomic Energy (DAE) envisioned the introduction of Plutonium fuelled fast reactors as the intermediate stage, between Pressurized Heavy Water Reactors and Thorium-Uranium-233 based reactors for the Indian Nuclear Power Programme. This necessitated the closing of the fast reactor fuel cycle with Plutonium rich fuel. Aiming to develop a Fast Reactor Fuel Reprocessing (FRFR) technology with low out of pile inventory, the DAE, with over four decades of operating experience in Thermal Reactor Fuel Reprocessing (TRFR), had set up at the India Gandhi Center for Atomic Research (IGCAR), Kalpakkam, R and D facilities for fast reactor fuel reprocessing. After two decades of R and D in all the facets, a Pilot Plant for demonstrating FRFR had been set up for reprocessing the FBTR (Fast Breeder Test Reactor) spent mixed carbide fuel. Recently in this plant, mixed carbide fuel with 100 GWd/t burnup fuel with short cooling period had been successfully reprocessed for the first time in the world. All the challenging problems encountered had been successfully overcome. This experience helped in fine tuning the designs of various equipments and processes for the future plants which are under construction and design, namely, the DFRP (Demonstration Fast reactor fuel Reprocessing Plant) and the FRP (Fast reactor fuel Reprocessing Plant). In this paper, a comprehensive review of the experiences in reprocessing the fast reactor fuel of different burnup is presented. Also a brief account of the various developmental activities and strategies for the DFRP and FRP are given. (author)

  15. A review of the UK fast reactor programme. March 1977

    International Nuclear Information System (INIS)

    Smith, R.D.

    1977-01-01

    This paper reports on the Fast Reactor Programme of United Kingdom. These are the main lines: Dounreay Fast Reactor; Prototype Fast Reactor; Commercial Fast Reactor; engineering development; materials development; chemical engineering/sodium technology; fast reactor fuel; fuel cycle; safety; reactor performance study

  16. International Experience with Fast Reactor Operation & Testing

    International Nuclear Information System (INIS)

    Sackett, John I.; Grandy, C.

    2013-01-01

    Conclusion: • Worldwide experience with fast reactors has demonstrated the robustness of the technology and it stands ready for worldwide deployment. • The lessons learned are many and there is danger that what has been learned will be forgotten given that there is little activity in fast reactor development at the present time. • For this reason it is essential that knowledge of fast reactor technology be preserved, an activity supported in the U.S. as well as other countries

  17. Advanced Safeguards Approaches for New Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  18. Fast reactors fuel Cycle: State in Europe

    International Nuclear Information System (INIS)

    1991-01-01

    In this SFEN day we treat all aspects (economics-reactor cores, reprocessing, experience return) of the LMFBR fuel cycle in Europe and we discuss about the development of this type of reactor (EFR project) [fr

  19. An introduction to the engineering of fast nuclear reactors

    CERN Document Server

    Judd, Anthony M

    2014-01-01

    An invaluable resource for both graduate-level engineering students and practising nuclear engineers who want to expand their knowledge of fast nuclear reactors, the reactors of the future! This book is a concise yet comprehensive introduction to all aspects of fast reactor engineering. It covers topics including neutron physics; neutron flux spectra; flux distribution; Doppler and coolant temperature coefficients; the performance of ceramic and metal fuels under irradiation, structural changes, and fission-product migration; the effects of irradiation and corrosion on structural materials, irradiation swelling; heat transfer in the reactor core and its effect on core design; coolants including sodium and lead-bismuth alloy; coolant circuits; pumps; heat exchangers and steam generators; and plant control. The book includes new discussions on lead-alloy and gas coolants, metal fuel, the use of reactors to consume radioactive waste, and accelerator-driven subcritical systems.

  20. Current status of restoration work for obstacle and upper core structure in reactor vessel of experimental fast reactor 'Joyo'

    International Nuclear Information System (INIS)

    Ito, Hideaki; Ashida, Takashi; Takamatsu, Misao

    2013-01-01

    Regarding the recovery of fuel exchange capability of 'Joyo', the replacement of Upper Core Structure (UCS) and the retrieval of the sample part of Material Testing Rig With Temperature Control (MARICO-2) are being planned for the fiscal years 2015 and 2016. In the recovery operation, sample part was planned to be removed through the hole created by removing USC because the size of existing rotation plug through-hole is smaller than the size of curved sample part. The procedure outline for this recovery operation was: (1) jack-up UCS, (2) pull out UCS and store in a cask, (3) retrieve sample part, and (4) install a new UCS. In this report, the status of UCS replacement, retrieval of sample part, as well as search and retrieval of loose parts are described. Regarding the replacement of UCS, the topics covered are: (1) removal of adhered sodium, (2) interference of UCS and small rotation plug, (3) the weight of cask for UCS storage, as well as (4) UCS jack-up jig and its functional test. Regarding the retrieval of sample part, the topics are: (1) gripping method selection, (2) pull-up method selection, and (3) safety measures and emergency correspondence. (S.K.)

  1. Research on plasma core reactors

    International Nuclear Information System (INIS)

    Jarvis, G.A.; Barton, D.M.; Helmick, H.H.; Bernard, W.; White, R.H.

    1976-01-01

    Experiments and theoretical studies are being conducted for NASA on critical assemblies with one-meter diameter by one-meter long low-density cores surrounded by a thick beryllium reflector. These assemblies make extensive use of existing nuclear propulsion reactor components, facilities, and instrumentation. Due to excessive porosity in the reflector, the initial critical mass was 19 kg U(93.2). Addition of a 17-cm-thick by 89-cm-diameter beryllium flux trap in the cavity reduced the critical mass to 7 kg when all the uranium was in the zone just outside the flux trap. A mockup aluminum UF 6 container was placed inside the flux trap and fueled with uranium-graphite elements. Fission distributions and reactivity worths of fuel and structural materials were measured. Finally, an 85,000 cm 3 aluminum canister in the central region was fueled with UF 6 gas and fission density distributions determined. These results will be used to guide the design of a prototype plasma core reactor which will test energy removal by optical radiation

  2. Gas Cooled Fast Reactors: Recent advances and prospects

    International Nuclear Information System (INIS)

    Poette, C.; Guedeney, P.; Stainsby, R.; Mikityuk, K.; Knol, S.

    2013-01-01

    Gas Cooled Fast Reactors: Conclusion - GFR: an attractive longer term option allowing to combine Fast spectrum & Helium coolant benefits; • Innovative SiC fuel cladding solutions were found; • A first design confirming the encouraging potential of the reactor system Design improvements are nevertheless recommended and interesting tracks have been identified (core & system design, DHR system); • The GFR requires large R&D needs to confirm its potential (fuel & core materials, specific Helium technology); • ALLEGRO prototype studies are the first step and are drawing the R&D priorities

  3. Vibration tests on some models of PEC reactor core elements

    International Nuclear Information System (INIS)

    Bonacina, G.; Castoldi, A.; Zola, M.; Cecchini, F.; Martelli, A.; Vincenzi, D.

    1982-01-01

    This paper describes the aims of the experimental tests carried out at ISMES, within an agreement with the Department of Fast Reactors of ENEA, on some models of the elements of PEC Fast Nuclear Reactor Core in the frame of the activities for the seismic verification of the PEC core. The seismic verification is briefly described with particular attention to the problems arising from the shocks among the various elements during an earthquake, as well as the computer code used, the purpose and the techniques used to perform tests, some results and the first comparison between the theory and the experimental data

  4. Holography for fast reactor inspection

    International Nuclear Information System (INIS)

    Tozer, B.A.

    1980-01-01

    Holography, an optical process whereby an image of the original subject can be reconstructed in three dimensions, is being developed for use as an optical inspection tool. With a potential information storage density of 10 16 bits/m 2 , the ability to reconstruct in 3 dimensions, a depth of field of up to 8 metres, extremely wide angle of view, and potentially diffraction limited resolution, holography should be invaluable for the optical recording of fast reactors during construction, and the inspection of optically accessible regions during operation, or maintenance down-times. The photographic emulsions used for high resolution holography are fine-grained and fog only very slowly when subjected to γ-radiation, so that inspection of highly radio-active regions and components can be effected satisfactorily. Some of the practical limitations affecting holography are described and ways of overcoming them discussed. Some preliminary results are presented. (author)

  5. Philosophy of safety evaluation on fast breeder reactor

    International Nuclear Information System (INIS)

    1981-01-01

    This is the report submitted from the special subcommittee on reactor safety standard to the Nuclear Safety Commission on October 14, 1980, and it was decided to temporarily apply this concept to the safety examination on fast breeder reactors. The examination and discussion of this report were performed by taking the prototype reactor ''Monju'' into consideration, which is to be the present target, referring to the philosophy of the safety evaluation on fast breeder reactors in foreign countries and based on the experiences in the fast experimental reactor ''Joyo''. The items applicable to the safety evaluation for liquid metal-cooled fast breeder reactors (LMFBR) as they are among the existing safety examination guidelines are applied. In addition to the existing guidelines, the report describes the matters to be considered specifically for core, fuel, sodium, sodium void, reactor shut-down system, reactor coolant boundary, cover gas boundary and others, intermediate cooling system, removal of decay heat, containment vessels, high temperature structures, and aseismatic property in the safety design of LMFBR's. For the safety evaluation for LMFBR's, the abnormal transient changes in operation and the phenomena to be evaluated as accidents are enumerated. In order to judge the propriety of the criteria of locating LMFBR facilities, the serious and hypothetical accidents are decided to be evaluated in accordance with the guideline for reactor location investigation. (Wakatsuki, Y.)

  6. Seismic research on graphite reactor core

    International Nuclear Information System (INIS)

    Lai Shigang; Sun Libin; Zhang Zhengming

    2013-01-01

    Background: Reactors with graphite core structure include production reactor, water-cooled graphite reactor, gas-cooled reactor, high-temperature gas-cooled reactor and so on. Multi-body graphite core structure has nonlinear response under seismic excitation, which is different from the response of general civil structure, metal connection structure or bolted structure. Purpose: In order to provide references for the designing and construction of HTR-PM. This paper reviews the history of reactor seismic research evaluation from certain countries, and summarizes the research methods and research results. Methods: By comparing the methods adopted in different gas-cooled reactor cores, inspiration for our own HTR seismic research was achieved. Results and Conclusions: In this paper, the research ideas of graphite core seismic during the process of designing, constructing and operating HTR-10 are expounded. Also the project progress of HTR-PM and the research on side reflection with the theory of similarity is introduced. (authors)

  7. Restraint system for core elements of a reactor core

    International Nuclear Information System (INIS)

    Class, G.

    1975-01-01

    In a nuclear reactor, a core element bundle formed of a plurality of side-by-side arranged core elements is surrounded by restraining elements that exert a radially inwardly directed restraining force generating friction forces between the core elements in a restraining plane that is transverse to the core element axes. The adjoining core elements are in rolling contact with one another in the restraining plane by virtue of rolling-type bearing elements supported in the core elements

  8. Aspects of the fast reactors fuel cycle

    International Nuclear Information System (INIS)

    Zouain, D.M.

    1982-06-01

    The fuel cycle for fast reactors, is analysed, regarding the technical aspects of the developing of the reprocessing stages and the fuel fabrication. The environmental impact of LMFBRs and the waste management of this cycle are studied. The economic aspects of the fuel cycle, are studied too. Some coments about the Brazilian fast reactors programs are done. (E.G.) [pt

  9. The safety basis of the integral fast reactor program

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Seidel, B.R.

    1990-01-01

    The Integral Fast Reactor (IFR) and metallic fuel have emerged as the US Department of Energy reference reactor concept and fuel system for the development of an advanced liquid-metal reactor. This article addresses the basic elements of the IFR reactor concept and focuses on the safety advances achieved by the IFR Program in the areas of (1) fuel performance, (2) superior local faults tolerance, (3) transient fuel performance, (4) fuel-failure mechanisms, (5) performance in anticipated transients without scram, (6) core-melt mitigation, and (7) actinide recycle

  10. Euratom contributions in Fast Reactor research programmes

    International Nuclear Information System (INIS)

    Fanghänel, Th.; Somers, J.

    2013-01-01

    The Sustainable Nuclear Initiative: • demonstrate long-term sustainability of nuclear energy; • demonstration reactors of Gen IV: •more efficient use of resources; • closed fuel cycle; • reduced proliferation risks; • enhanced safety features. • Systems pursued in Europe: • Sodium-cooled fast reactor SFR; • Lead-cooled fast reactor LFR; • Gas-cooled fast reactor GFR. Sustainable Nuclear Energy Technology Platform SNE-TP promotes research, development and demonstration of the nuclear fission technologies necessary to achieve the SET-Plan goals

  11. Plant experience of experimental fast reactor 'Joyo'

    International Nuclear Information System (INIS)

    1982-01-01

    The experimental fast reactor ''JOYO'' installed in Power Reactor and Nuclear Fuel Development Corp. (PNC) of Japan completed its operation using the first core (called MK-I core) in December, 1981, and the works to transfer to MK-2 core have been performed since January, 1982. In this report, the experiences obtained through the construction, test and operation of ''JOYO'' over 12 years from the start of erection in 1970 to the termination of operation in 1981 are described. The contents of the report are divided into design, construction, the outline of facilities, testing, operating and maintenance experiences, and the topics on MK-I operation. As for the construction, the design changes performed before the start of manufacture or construction and the improvement and trouble restoring works implemented at the start of overall functional tests are reported. As for testing, overall functional tests, criticality test, low power test and power increasing test are described in detail. The number of test items of overall functional testing reached 266. The rated output operation of the reactor at 75 MW was performed six times in 1980 and 1981 until the termination of operation. No fuel failure was detected in MK-I operation, and the stable operation performance of the FBR was proved through MK-I operation. The topics on the MK-I operation includes natural circulation test, the measurement of total leakage rate for the containment vessel, and wear-marks which are the trace of wear due to the contact of fuel pins with the wires wound around the adjacent fuel pins, found in the post irradiation examination of fuel. (Wakatsuki, Y.)

  12. Status of fast reactor activities in Russia

    International Nuclear Information System (INIS)

    Poplavski, V.M.; Ashurko, Yu.M.; Zverev, K.V.

    1998-01-01

    This paper outlines state-of-the-art of the Russian nuclear power as of 1997 and its prospects for the nearest future. Results of the BR-10, BOR-60 and BN-600 reactors operation are described, as well as activity of the Russian institutions on scientific and technological support of the BN-350 reactor. Analysis of current status of the BN-800 reactor South-Urals NPP and Beloyarskaya NPP designs is given in brief, as well as prospects of their construction and possible ways of fast reactor technology improvement. Studies on fast reactors now under way in Russia are described. (author)

  13. Economic Issues of Fast Reactor in China

    International Nuclear Information System (INIS)

    Yang Hongyi

    2013-01-01

    Conclusions: 1. More and more fast reactors could be appearing in the world currently and near future. 2. China gets little experience and practice about the economics issues of sodium cooled fast reactors. 3. The economic issues become more and more important for the deplot of fast reactors. Suggestions: 1. An authoritative economic evaluation solution for fast reactor and related fuel cycles facilities is necessary. The solution may be developed by the interested country in order to share the few data, experience and methodology. 2. A new initiative to help to share the economic information for fast reactor and related fuel cycle facilities is necessary. A meeting like TM-44899 organized by the IAEA is very beneficial for this topic and hopefully will continue

  14. Fast reactor fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.H.; Williams, J.; Buck, C.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the U.K. since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium based fast reactor system and the importance of establishing at an early stage fast reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high burn-up thermal reactor oxide fuel. In consequence, the U.K. has decided to reprocess irradiated fuel from the 250 MW(E) Prototype Fast Reactor as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small scale fully active demonstration plant have been carried out over the past 5 years and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant a parallel development programme has been initiated to provide the basis for the design of a large scale fast reactor fuel reprocessing plant to come into operation in the late 1980s to support the projected U.K. fast reactor installation programme. The paper identifies the important differences between fast reactor and thermal reactor fuel reprocessing technologies and describes some of the development work carried out in these areas for the small scale P.F.R. fuel reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast reactor fuel reprocessing plant is outlined and the current design philosophy is discussed

  15. Integral physics data for fast-reactor design

    International Nuclear Information System (INIS)

    Loewenstein, W.B.; Meneghetti, D.

    1962-01-01

    Integral physics data for fast-reactor design. The recent compilation of the section on fast-reactor physics for the forthcoming second edition of 'Reactor Physics Constants' has necessitated a survey of the available experimental integral data. The choice of fast-reactor-physics integral data to be included in the compilation was based upon two criteria besides availability: (a) the data arise from relatively simple systems which lend themselves to simple theoretical analyses; and (b) complicated systems representing prototypes or mock-ups having general interest in terms of fast-power reactors. The first criterion was decided upon so as to list integral data for those systems of most general utility for the verification of cross-section parameters and calculational procedures. The second criterion is based upon presentation of current data on actual fast power breeder reactor systems. These are too complicated for simple theoretical analysis. They demonstrate the complexity of the actual reactor versus the more idealized and easily analysed critical experiment. Integral physics data for reactor design refer to measurements on reactor systems, critical or otherwise, of the various reactor physics quantities of practical and/or theoretical importance. These characterize and lead to an understanding of the system. The measurements are represented by critical mass, core shape factor, detector ratios, neutron spectra, material replacement experiments, reflector savings, neutron lifetime, Rossi-α, and similar quantities. These data are reviewed and the range of applicability is described. Limitations of experimental and analytical results are shown to exist in certain spectral and criticality analyses. Experimental and analytical investigations are suggested for future work. These will tend to narrow the gap between theory and experiment on 'known' systems. They also include investigations to 'firm up' the physics of large conceptual, fast power-breeder reactor

  16. Core Design Studies for a 600 MWe Demonstration TRU Burner Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Park, Won Seok; Kim, Sang Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    The conceptual core design of the demonstration sodium cooled fast reactor (SFR) for TRU burning is being developed by the Korea Atomic Energy Research Institute (KAERI). The main objective of demonstration reactor for the construction and operation is to test and demonstrate the TRU fuel, the operation of the large sized (1500 MWth) sodium fast reactor and the TRU burning capability of commercial burner reactor. In this paper, a 600 MWe demonstration burner core design is presented. It is scheduled to use the uranium fuel for start core due to the uncertainty of the demonstration of TRU fuel, and to change core fuel to the LTRU core fuel from LWR spent fuel and core fuel to the MTRU core which consists of the LMR spent fuel and the self recycled fuel progressively so that total 4 cores having the different function, which consists of uranium core, LTRU core, MTRU core and Mod.MTRU core, were designed

  17. A resting bottom sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Costes, D.

    2012-01-01

    This follows ICAPP 2011 paper 11059 'Fast Reactor with a Cold Bottom Vessel', on sodium cooled reactor vessels in thermal gradient, resting on soil. Sodium is frozen on vessel bottom plate, temperature increasing to the top. The vault cover rests on the safety vessel, the core diagrid welded to a toric collector forms a slab, supported by skirts resting on the bottom plate. Intermediate exchangers and pumps, fixed on the cover, plunge on the collector. At the vessel top, a skirt hanging from the cover plunges into sodium, leaving a thin circular slit partially filled by sodium covered by argon, providing leak-tightness and allowing vessel dilatation, as well as a radial relative holding due to sodium inertia. No 'air conditioning' at 400 deg. C is needed as for hanging vessels, and this allows a large economy. The sodium volume below the slab contains isolating refractory elements, stopping a hypothetical corium flow. The small gas volume around the vessel limits any LOCA. The liner cooling system of the concrete safety vessel may contribute to reactor cooling. The cold resting bottom vessel, proposed by the author for many years, could avoid the complete visual inspection required for hanging vessels. However, a double vessel, containing support skirts, would allow introduction of inspecting devices. Stress limiting thermal gradient is obtained by filling secondary sodium in the intermediate space. (authors)

  18. Development of fast-breeder reactors with high conversion ratios

    International Nuclear Information System (INIS)

    Bobrov, S.B.; Danilychev, A.V.; Eliseev, V.A.

    1983-01-01

    Fast power reactors (breeders) burning oxide fuel have moderate breeding characteristics. The highest conversion ratios can be obtained in breeders using metallic fuel, but unfortunately these are inferior to oxide breeders in such important characteristics as thermal load and burnup. An effective method of building fast reactors with good breeding characteristics is the use of heterogeneous oxide-metal cores. The paper reports on parametric studies of various models of heterogeneous cores. A number of physical aspects of such reactors are analysed: breeding gain, specific doubling time; and safety parameters: sodium vacuum and Doppler effects of reactivity. The paper quotes dependences of these quantities on various parameters which will make it possible to identify the optimum design of an oxide-metal heterogeneous core

  19. Safety-Related Optimization and Analyses of an Innovative Fast Reactor Concept

    OpenAIRE

    Vezzoni, Barbara; Gabrielli, Fabrizio; Rineiski, Andrei; Marchetti, Marco; Chen, Xue-Nong; Flad, Michael; Maschek, Werner; Boccaccini, Claudia Matzerath; Zhang, Dalin

    2012-01-01

    Since a fast reactor core with uranium-plutonium fuel is not in its most reactive configuration under operating conditions, redistribution of the core materials (fuel, steel, sodium) during a core disruptive accident (CDA) may lead to recriticalities and as a consequence to severe nuclear power excursions. The prevention, or at least the mitigation, of core disruption is therefore of the utmost importance. In the current paper, we analyze an innovative fast reactor concept developed within th...

  20. Fission energy: The integral fast reactor

    International Nuclear Information System (INIS)

    Chang, Yoon I.

    1989-01-01

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed at Argonne National Laboratory as a such next- generation reactor concept. The IFR concept has a number of specific technical advantages that collectively address the potential difficulties facing the expansion of nuclear power deployment. In particular, the IFR concept can meet all three fundamental requirements needed in a next-generation reactor as discussed below. This document discusses these requirements

  1. Fission energy: The integral fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoon I.

    1989-01-01

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed at Argonne National Laboratory as a such next- generation reactor concept. The IFR concept has a number of specific technical advantages that collectively address the potential difficulties facing the expansion of nuclear power deployment. In particular, the IFR concept can meet all three fundamental requirements needed in a next-generation reactor as discussed below. This document discusses these requirements.

  2. Waste management in IFR [Integral Fast Reactor] fuel cycle

    International Nuclear Information System (INIS)

    Johnson, T.R.; Battles, J.E.

    1991-01-01

    The fuel cycle of the Integral Fast Reactor (IFR) has important potential advantage for the management of high-level wastes. This sodium-cooled, fast reactor will use metal fuels that are reprocessed by pyrochemical methods to recover uranium, plutonium, and the minor actinides from spent core and blanket fuel. More than 99% of all transuranic (TRU) elements will be recovered and returned to the reactor, where they are efficiently burned. The pyrochemical processes being developed to treat the high-level process wastes are capable of producing waste forms with low TRU contents, which should be easier to dispose of. However, the IFR waste forms present new licensing issues because they will contain chloride salts and metal alloys rather than glass or ceramic. These fuel processing and waste treatment methods can also handle TRU-rich materials recovered from light-water reactors and offer the possibility of efficiently and productively consuming these fuel materials in future power reactors

  3. Safeguards challenges of Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Ko, H. S.

    2010-01-01

    Although the safeguards system of Sodium Fast Reactor (SFR) seems similar to that of Light Water Reactor (LWR), it was raised safeguards challenges of SFR that resulted from the visual opacity of liquid sodium, chemical reactivity of sodium and other characteristics of fast reactor. As it is the basic concept stage of the safeguards of SFR in Korea, this study tried to analyze the latest similar study of safeguards issues of the Fast Breeder Reactor (FBR) at Joyo and Monju in Japan. For this reason, this study is to introduce some potential safeguards challenges of Fast Breeder Reactor. With this analysis, future study could be to address the safeguards challenges of SFR in Korea

  4. Fast reactor fuel design and development

    International Nuclear Information System (INIS)

    Bishop, J.F.W.; Chamberlain, A.; Holmes, J.A.G.

    1977-01-01

    Fuel design parameters for oxide and carbide fast reactor fuels are reviewed in the context of minimising the total uranium demands for a combined thermal and fast reactor system. The major physical phenomena conditioning fast reactor fuel design, with a target of high burn-up, good breeding and reliable operation, are characterised. These include neutron induced void swelling, irradiation creep, pin failure modes, sub-assembly structural behaviour, behaviour of defect fuel, behaviour of alternative fuel forms. The salient considerations in the commercial scale fabrication and reprocessing of the fuels are reviewed, leading to the delineation of possible routes for the manufacture and reprocessing of Commercial Reactor fuel. From the desiderata and restraints arising from Surveys, Performance and Manufacture, the problems posed to the Designer are considered, and a narrow range of design alternatives is proposed. The paper concludes with a consideration of the development areas and the conceptual problems for fast reactors associated with those areas

  5. Integral Fast Reactor Program annual progress report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R&D.

  6. Integral Fast Reactor Program annual progress report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R D.

  7. Integral Fast Reactor Program. Annual progress report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1993-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R&D.

  8. Integral Fast Reactor Program. Annual progress report, FY 1993

    International Nuclear Information System (INIS)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1994-10-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1993. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R and D

  9. Integral Fast Reactor Program annual progress report, FY 1991

    International Nuclear Information System (INIS)

    1992-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R ampersand D

  10. Integral Fast Reactor Program annual progress report, FY 1994

    International Nuclear Information System (INIS)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, J.J.

    1994-12-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1994. Technical accomplishments are presented in the following areas of the IFR technology development activities: metal fuel performance; pyroprocess development; safety experiments and analyses; core design development; fuel cycle demonstration; and LMR technology R ampersand D

  11. Project and characteristics of a 5MW experimental fast reactor

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Nascimento, J.A. do.

    1986-05-01

    Characteristics of a 5 MW experimental fast reactor are reported. The reactor is designed with emphasis on fuel and materials irradiation and uses fuel assemblies of a standard structure. The reference core consist of 37 fuel assemblies, each of which contains 19 pins of metallic Pu/Zr fuel. With a core height of 17.6 cm the core volume is 11.4 liter and the central fast (E >=100 KeV) flux is 0.9 x 10 15 n/cm 2 sec. In addition to twelve control rod assemblies with a total reactivity worth of 5.5% Δk, 42 assemblies for reactivity compensation are placed in the two rings outside the core. Replacing these assemblies with driver, blanket, or refletor-shield assemblies, large reactivities can be added to make the central assembly position available for test irradiations and to assure high levels of burnup of driver assemblies. (Author) [pt

  12. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Durston, J.G.

    1976-01-01

    It is stated that in a liquid metal cooled fast breeder reactor wherein the core, intermediate heat exchangers and liquid metal pumps are immersed in a pool of coolant such as Na, the intermediate heat exchangers are suspended from the roof, and ducting is provided in the form of a core tank or shroud interconnected with 'pods' housing the intermediate exchangers for directing coolant from the core over the heat exchanger tubes and thence back to the main pool of liquid metal. Seals are provided between the intermediate heat exchanger shells and the walls of their 'pods' to prevent liquid metal flow by-passing the heat exchanger tube bundles. As the heat exchangers must be withdrawable for servicing, and because linear differential thermal expansion of the heat exchanger and its 'pod' must be accommodated the seals hitherto have been of the sliding kind, generally known as 'piston ring type seals'. These present several disadvantages; for example sealing is not absolute, and the metal to metal seal gives rise to wear and fretting by rubbing and vibration. This could lead to seizure or jamming by the deposition of impurities in the coolant. Another difficulty arises in the need to accommodate lateral thermal expansion of the ducting, including the core tank and 'pods'. Hitherto some expansion has been allowed for by the use of expansible bellow pairs in the interconnections, or alternatively by allowing local deformations of the core tank 'pods'. Such bellows must be very flexible and hence constitute a weak section of the ducting, and local deformations give rise to high stress levels that could lead to premature failure. The arrangement described seeks to overcome these difficulties by use of a gas pocket trapping means to effect a seal against vertical liquid flow between the heat exchanger shell and the wall of the heat exchanger housing. Full details of the arrangement are described. (U.K.)

  13. Investigation of the three-dimensional thermoelastic deformation of the core structure of a fast breeder reactor under stationary working conditions

    International Nuclear Information System (INIS)

    Yong-Su, Hoang.

    1976-12-01

    In this study a method is described which has been developed in order to calculate three-dimensional deformation of the reactor core, taking into account thermal expansion. Two problem areas are of particular importance: 1) The spatial deflection of subassemblies in specified flexible supports and with specified clearances; 2) The investigation of the equilibrium configurations of the subassemblies in the planes of clamping (problem of clamping plane). - The elementary theory of beam deflection has been used to calculate the deformation of subassemblies. However, particular problems have been encountered as a result of flexibly designed support configurations having some spatial clearances. The problem has essentially been solved in two steps: a) Uniqueness analysis of the beam-support configuration; b) Calculation of the support loads and bending line for the unique beam-support configuration. - Basic difficulties currently prevent the problem of clamping plane being solved in a satisfactory manner. Therefore, a simplified clamping model was used for supports without spatial clearance and a parametric study was performed for supports having spatial clearance. The computation method developed is applied to the MARK I core of SNR 300. Core deformations are calculated under different support conditions for the subassemblies in the grid plate and in the upper clamping plane. (orig./HR) [de

  14. Reactor core design aiding system

    International Nuclear Information System (INIS)

    Kanazawa, Nobuhiro; Hamaguchi, Yukio; Nakao, Takashi; Kondo, Yasuhide

    1995-01-01

    A two-dimensional radial power distribution and an axial one-dimensional power distribution are determined based on a distribution of a three-dimensional infinite multiplication factor, to obtain estimated power distribution estimation values. The estimation values are synthesized to obtain estimated three-dimensional power distribution values. In addition, the distribution of a two-dimensional radial multiplication factor and the distribution of an one-dimensional axial multiplication factor are determined based on the three-dimensional power distribution, to obtain estimated values for the multiplication factor distribution. The estimated values are synthesized to form estimated values for the three-dimensional multiplication factor distribution. Further, estimated fuel loading pattern value is determined based on the three-dimensional power distribution or the two-dimensional radial power distribution. Since the processes for determining the estimated values comprise only additive and multiplying operations, processing time can be remarkably saved compared with calculation based on a detailed physical models. Since the estimation is performed on every fuel assemblies, a nervous circuit network not depending on the reactor core system can be constituted. (N.H.)

  15. The energy gap and the fast reactor

    International Nuclear Information System (INIS)

    Hill, J.

    1977-01-01

    The background to the development of fast reactors is summarized. In Britain, the results of the many experiments performed, the operation of the Dounreay Fast Reactor for the past 18 years and the first year's operation of the larger Prototype Fast Reactor have all been very encouraging, in that they demonstrated that the performance corresponded well with predictions, breeding is possible, and the system is exceptionally stable in operation. The next step in fast reactor engineering is to build a full-scale fast reactor power station. There would seem to be little reason to expect more trouble than could reasonably be expected in constructing any large project of this general nature. However, from an engineering point of view continuity of experience is required. If a decision to build a commercial fast reactor were taken today there would be a 14-year gap between strating this and the start of the Prototype Fast Reactor. This is already much too long. From an environmental standpoint we have to demonstrate that we can manufacture and reprocess fast reacctor fuel for a substantial programme in a way that does not lead to pollution of the environment, and that plutonium-containing fuel can be transported in the quantities required in safety and in a way that does not attract terrorists or require a private army to ensure its security. Finally, we have to find a way to allow many countries to obtain the energy they need from fast reactors, without leading to the proliferation of nuclear weapons or weapons capability. (author)

  16. The fast reactor and energy supply

    International Nuclear Information System (INIS)

    1979-01-01

    The progress made with fast reactor development in many countries is summarised showing that the aim is to provide to the nation concerned an ability to instal fast reactor power stations at the end of this century or early in the next one. Accepting the importance of fast reactors as a potential independent source of energy, problems concerning economics, industrial capability, technical factors, public acceptibility and in particular plutonium management, are discussed. It is concluded that although fast reactors have reached a comparatively advanced stage of development, a number of factors make it likely that their introduction for electricity generation will be a gradual process. Nevertheless it is necessary to complete demonstration and development phases in good time. (U.K.)

  17. Analysis of a small Fast Sodium Reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Gilberti, Mauricio, E-mail: mgilber@eletronuclear.gov.br [Eletrobrás Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil); Velasquez, Carlos E.; Vargas, Matheus L.; Martins, Felipe; Costa, Antonella L.; Veloso, Maria Auxiliadora F.; Pereira, Claubia, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    This paper presents the analyses and initial results of a Small Fast Sodium Reactor (SFSR) simulated using MCNPX. The goal is to build a nuclear model and determine the main core neutronic parameters over the cycle. Neutronics parameters such as burnup neutronic behavior, depletion fuel composition, absorbing elements, core reactivity control and reactivity coefficients that affect the reactor cooled by sodium along its operation cycle have been analyzed. The parameters are evaluated in terms of the reactivity coefficients at different cycle stages. The results present a comparison and discussion of the differences found between the model developed and some information available in the literature for a similar project. (author)

  18. Advanced liquid metal fast breeder reactor designs

    International Nuclear Information System (INIS)

    Sayles, C.W.

    1978-01-01

    Fast Breeder reactor power plants in the 1000-1200 MW(e) range are being built overseas and are being designed in this country. While these reactors have many characteristics in common, a variety of different approaches have been adopted for some of the major features. Some of those alternatives are discussed

  19. A glossary of terms for fast reactors

    International Nuclear Information System (INIS)

    Wheeler, R.C.

    1979-04-01

    The glossary aims to provide definitions of technical terms likely to be used in a fast reactor enquiry and to encourage the use of the same set of consistent terms in any documents intended for such an inquiry. In some cases definitions are formulated in the limited context of LMFBRS rather than applying to all types of reactors. A brief guide is presented to the different reactor types. (author)

  20. The fast breeder reactor Rapsodie (1962)

    International Nuclear Information System (INIS)

    Vautrey, L.; Zaleski, C.P.

    1962-01-01

    In this report, the authors describe the Rapsodie project, the French fast breeder reactor, as it stands at construction actual start-up. The paper provides informations about: the principal neutronic and thermal characteristics, the reactor and its cooling circuits, the main handling devices of radioactive or contaminated assemblies, the principles and means governing reactor operation, the purposes and locations of miscellaneous buildings. Rapsodie is expected to be critical by 1964. (authors) [fr

  1. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    International Nuclear Information System (INIS)

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm 2 , 1000 0 C cladding temperature, and (2) 40 h at 40 W/cm 2 , 1200 0 C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370 0 C

  2. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

  3. Core monitoring at the WNP-2 reactor

    International Nuclear Information System (INIS)

    Skeen, D.R.; Torres, R.H.; Burke, W.J.; Jenkins, I.; Jones, S.W.

    1992-01-01

    The WNP-2 reactor is a 3,323-MW(thermal) boiling water reactor (BWR) that is operated by the Washington Public Power Supply System. The WNP-2 reactor began commercial operation in 1984 and is currently in its eighth cycle. The core monitoring system used for the first cycle of operation was supplied by the reactor vendor. Cycles 2 through 6 were monitored with the POWERPLEX Core Monitoring Software System (CMSS) using the XTGBWR simulation code. In 1991, the supply system upgraded the core monitoring system by installing the POWERPLEX 2 CMSS prior to the seventh cycle of operation for WNP-2. The POWERPLEX 2 CMSS was developed by Siemens Power Corporation (SPC) and is based on SPC's advanced state-of-the-art reactor simulator code MICROBURN-B. The improvements in the POWERPLEX 2 system are possible as a result of advances in minicomputer hardware

  4. A Simplified Supercritical Fast Reactor with Thorium Fuel

    OpenAIRE

    Peng Zhang; Kan Wang; Ganglin Yu

    2014-01-01

    Super-Critical water-cooled Fast Reactor (SCFR) is a feasible option for the Gen-IV SCWR designs, in which much less moderator and thus coolant are needed for transferring the fission heat from the core compared with the traditional LWRs. The fast spectrum of SCFR is useful for fuel breeding and thorium utilization, which is then beneficial for enhancing the sustainability of the nuclear fuel cycle. A SCFR core is constructed in this work, with the aim of simplifying the mechanical structure ...

  5. Technical feasibility of an Integral Fast Reactor (IFR) as a future option for fast reactor cycles. Integrate a small metal-fueled fast reactor and pyroprocessing facilities

    International Nuclear Information System (INIS)

    Tanaka, Nobuo

    2017-01-01

    Integral Fast Reactor that integrated fast reactor and pyrorocessing facilities developed by Argonne National Laboratory in the U.S. is an excellent nuclear fuel cycle system for passive safety, nuclear non-proliferation, and reduction in radioactive waste. In addition, this system can be considered as a technology applicable to the treatment of the fuel debris caused by the Fukushima Daiichi Nuclear Power Station accident. This study assessed the time required for debris processing, safety of the facilities, and construction cost when using this technology, and examined technological possibility including future technological issues. In a small metal-fueled reactor, it is important to design the core that achieves both of reduction in combustion reactivity and reduction in coolant reactivity. In system design, calorimetric analysis, structure soundness assessment, seismic feasibility establishment study, etc. are important. Regarding safety, research and testing are necessary on the capabilities of passive reactor shutdown and reactor core cooling as well as measures for avoiding re-criticality, even when emergency stop has failed. In dry reprocessing system, studies on electrolytic reduction and electrolytic refining process for treating the debris with compositions different from those of normal fuel are necessary. (A.O.)

  6. Sensors for use in nuclear reactor cores

    International Nuclear Information System (INIS)

    Brown, W.L.; Geronime, R.L.

    1978-01-01

    Sensors including radiation detectors and the like for use within the core of nuclear reactors and which are constructed in a manner to provide optimum reliability of the sensor during use are described

  7. Lateral restraint assembly for reactor core

    Science.gov (United States)

    Gorholt, Wilhelm; Luci, Raymond K.

    1986-01-01

    A restraint assembly for use in restraining lateral movement of a reactor core relative to a reactor vessel wherein a plurality of restraint assemblies are interposed between the reactor core and the reactor vessel in circumferentially spaced relation about the core. Each lateral restraint assembly includes a face plate urged against the outer periphery of the core by a plurality of compression springs which enable radial preloading of outer reflector blocks about the core and resist low-level lateral motion of the core. A fixed radial key member cooperates with each face plate in a manner enabling vertical movement of the face plate relative to the key member but restraining movement of the face plate transverse to the key member in a plane transverse to the center axis of the core. In this manner, the key members which have their axes transverse to or subtending acute angles with the direction of a high energy force tending to move the core laterally relative to the reactor vessel restrain such lateral movement.

  8. The dismantling of fast reactors: sodium processing

    International Nuclear Information System (INIS)

    Rodriguez, G.; Berte, M.; Serpante, J.P.

    1999-01-01

    Fast reactors require a coolant that does not slow down neutrons so water can not be used. Metallic sodium has been chosen because of its outstanding neutronic and thermal properties but sodium reacts easily with air and water and this implies that sodium-smeary components can not be considered as usual nuclear wastes. A stage of sodium neutralizing is necessary in the processing of wastes from fast reactors. Metallic sodium is turned into a chemically stable compound: soda, carbonates or sodium salts. This article presents several methods used by Framatome in an industrial way when dismantling sodium-cooled reactors. (A.C.)

  9. Review of Fast Reactor Activities, March 1980

    International Nuclear Information System (INIS)

    Balz, W.

    1980-01-01

    As in previous years, a short outline of the major achievements made since the last IWGFR meeting is given in the following. On 18 February 1980 the Council of Ministers has approved a resolution in which they recognise the strategic importance of fast breeder reactors and the need to continue the efforts towards maintaining an effective fast breeder option in the Member States

  10. Strategies for minority actinides transmutation in fast reactors

    International Nuclear Information System (INIS)

    Perez-Martin, S.; Martin-Fuertes, F.; Alvarez-Velarde, F.

    2010-01-01

    Presentation of the strategies that can be followed in fast reactors designed for the fourth generation to reduce the inventory of minority actinides generated in current light water reactors, as the actinides generation in fast reactor.

  11. Core Design Studies for a 600 MWe TRU Burner Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Sang Ji; Kim, Yeong Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    The conceptual core design for a 600-MWe sodium cooled fast reactor(SFR) for TRU burning is being developed by the Korea Atomic Energy Research Institute(KAERI) under the frame of the Gen-IV SFR development program. The KALIMER-600 has been adopted as a reference SFR system by the Gen-IV International Forum. Therefore, the development of the core design concept for a 600-MWe SFR for TRU burning has been implemented based on the design feature of the KALIMER-600. In this paper, a new core design concept for use of a single-enrichment fuel is described for a reference core. In this concept, power flattering is achieved by using the core region-wise cladding thickness. After the reference core design, a progressive design change of 600 MWe for TRU burning is performed for optimization. The core performance, including the reactivity coefficients, are analyzed and inter-compared.

  12. Shape optimization of a sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Schmitt, D.; Allaire, G.; Pantz, O.; Pozin, N.

    2013-01-01

    Traditional designs of sodium cooled fast reactors have a positive sodium expansion feedback. During a loss of flow transient without scram, sodium heating and boiling thus insert a positive reactivity and prevents the power from decreasing. Recent studies led at CEA, AREVA and EDF show that cores with complex geometries can feature a very low or even a negative sodium void worth. Usual optimization methods for core conception are based on a parametric description of a given core design. New core concepts and shapes can then only be found by hand. Shape optimization methods have proven very efficient in the conception of optimal structures under thermal or mechanical constraints. First studies show that these methods could be applied to sodium cooled core conception. In this paper, a shape optimization method is applied to the conception of a sodium cooled fast reactor core with low sodium void worth. An objective function to be minimized is defined. It includes the reactivity change induced by a 1% sodium density decrease. The optimization variable is a displacement field changing the core geometry from one shape to another. Additionally, a parametric optimization of the plutonium content distribution of the core is made, so as to ensure that the core is kept critical, and that the power shape is flat enough. The final shape obtained must then be adjusted to a given realistic core layout. Its characteristics can be checked with reference neutronic codes such as ERANOS. Thanks to this method, new shapes of reactor cores could be inferred, and lead to new design ideas. (authors)

  13. Fast breeder reactor-block antiseismic design and verification

    International Nuclear Information System (INIS)

    Martelli, A.; Forni, M.

    1988-02-01

    The Specialists' Meeting on ''Fast Breeder Reactor-Block Antiseismic Design and Verification'' was organized by the ENEA Fast Reactor Department in co-operation with the International Working Group (IWGFR) of the International Atomic Energy Agency (IAEA), according to the recommendations of the 19th IAEA/IWGFR Meeting. It was held in Bologna, at the Headquarters of the ENEA Fast Reactor Department, on October 12-15, 1987, in the framework of the Celebrations for the Ninth Centenary of the Bologna University. The proceedings of the meeting consists of three parts. Part 1 contains the introduction and general comments, the agenda of the meeting, session summaries, conclusions and recommendations and the list of participants. Part 2 contains 8 status reports of Member States participating in the Working Group. Contributed papers were published in Part 3 and were further subdivided into 5 sessions as follows: whole reactor-block analysis (4 papers); whole reactor-block analysis (sloshing and buckling, seismic isolation effects) (8 papers); detailed core analysis (6 papers); shutdown systems and core structural and functional verifications (6 papers); component and piping analysis (7 papers). A separate abstract was prepared for each of the 8 status reports and 31 contributed papers. Refs, figs and tabs

  14. Core catcher for nuclear reactor core meltdown containment

    International Nuclear Information System (INIS)

    Driscoll, M.J.; Bowman, F.L.

    1978-01-01

    A bed of graphite particles is placed beneath a nuclear reactor core outside the pressure vessel but within the containment building to catch the core debris in the event of failure of the emergency core cooling system. Spray cooling of the debris and graphite particles together with draining and flooding of coolant fluid of the graphite bed is provided to prevent debris slump-through to the bottom of the bed

  15. Longer life cores for SLOWPOKE-2 reactors

    International Nuclear Information System (INIS)

    Irish, J.D.; Hilborn, J.W.

    1985-06-01

    A method has been devised to increase the lifetime of SLOWPOKE-2 cores by increasing the initial fuel loading by about 7 percent. The method was implemented during the commissioning of the SLOWPOKE-2 (Kanata) reactor. Calculations indicate that the core lifetime will be doubled

  16. Prototype fast breeder reactor main options

    International Nuclear Information System (INIS)

    Bhoje, S.B.; Chellapandi, P.

    1996-01-01

    Fast reactor programme gets importance in the Indian energy market because of continuous growing demand of electricity and resources limited to only coal and FBR. India started its fast reactor programme with the construction of 40 MWt Fast Breeder Test Reactor (FBTR). The reactor attained its first criticality in October 1985. The reactor power will be raised to 40 MWt in near future. As a logical follow-up of FBTR, it was decided to build a prototype fast breeder reactor, PFBR. Considering significant effects of capital cost and construction period on economy, systematic efforts are made to reduce the same. The number of primary and secondary sodium loops and components have been reduced. Sodium coolant, pool type concept, oxide fuel, 20% CW D9, SS 316 LN and modified 9Cr-1Mo steel (T91) materials have been selected for PFBR. Based on the operating experience, the integrity of the high temperature components including fuel and cost optimization aspects, the plant temperatures are recommended. Steam temperature of 763 K at 16.6 MPa and a single TG of 500 MWe gross output have been decided. PFBR will be located at Kalpakkam site on the coast of Bay of Bengal. The plant life is designed for 30 y and 75% load factor. In this paper the justifications for the main options chosen are given in brief. (author). 2 figs, 2 tabs

  17. Progress and status of the integral fast reactor (IFR) development program

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1992-01-01

    This paper discusses the Integral Fast Reactor (IFR) development program, in which the entire reactor system - reactor, fuel cycle, and waste process is being developed and optimized at the same time as a single integral entity. Detailed discussions on the present status of the IFR technology development activities in the areas of fuels, pyroprocessing, safety, core design, and fuel cycle demonstration are also presented

  18. A carbon dioxide partial condensation direct cycle for advanced gas cooled fast and thermal reactors

    International Nuclear Information System (INIS)

    Yasuyoshi, Kato; Takeshi, NItawaki; Yoshio, Yoshizawa

    2001-01-01

    A carbon dioxide partial condensation direct cycle concept has been proposed for gas cooled fast and thermal reactors. The fast reactor with the concept are evaluated to be a potential alternative option to liquid metal cooled fast reactors, providing comparable cycle efficiency at the same core outlet temperature, eliminating the safety problems, simplifying the heat transport system and making easier plant maintenance. The thermal reactor with the concept is expected to be an alternative solution to current high temperature gas cooled reactors (HTGRs) with helium gas turbines, allowing comparable cycle efficiency at the moderate temperature of 650 C instead of 800 C in HTGRs. (author)

  19. Device for protecting deformations of reactor cores

    International Nuclear Information System (INIS)

    Kato, Yasuyoshi; Urushihara, Hiroshi.

    1975-01-01

    Object: To provide a fluid pressure cylinder, which is operated according to change in temperature of coolant for a reactor to restrain or release a core, to simply and effectively protect deformation of the core. Structure: A closed fluid pressure cylinder interiorly filled with suitable fluid is disposed in peripherally equally spaced relation in an annular space between a core barrel of a reactor and a reactor vessel. A piston is mounted in fluid-tight fashion in a plurality of piston openings made in the cylinder, the piston being slidably moved according to expansion and contraction of the fluid filled in the cylinder. The piston has a movable frame mounted at the foremost end thereof, the movable frame being moved integral with the piston, and the surface opposite the mount thereof biasing the outermost peripheral surface of the core. (Kamimura, M.)

  20. Overview of the fast reactors fuels program

    International Nuclear Information System (INIS)

    Evans, E.A.; Cox, C.M.; Hayward, B.R.; Rice, L.H.; Yoshikawa, H.H.

    1980-04-01

    Each nation involved in LMFBR development has its unique energy strategies which consider energy growth projections, uranium resources, capital costs, and plant operational requirements. Common to all of these strategies is a history of fast reactor experience which dates back to the days of the Manhatten Project and includes the CLEMENTINE Reactor, which generated a few watts, LAMPRE, EBR-I, EBR-II, FERMI, SEFOR, FFTF, BR-1, -2, -5, -10, BOR-60, BN-350, BN-600, JOYO, RAPSODIE, Phenix, KNK-II, DFR, and PFR. Fast reactors under design or construction include PEC, CRBR, SuperPhenix, SNR-300, MONJU, and Madras (India). The parallel fuels and materials evolution has fully supported this reactor development. It has involved cermets, molten plutonium alloy, plutonium oxide, uranium metal or alloy, uranium oxide, and mixed uranium-plutonium oxides and carbides

  1. Review of fast reactor activities in India (1983-84)

    International Nuclear Information System (INIS)

    Paranjpe, S.R.

    1984-01-01

    The last year was very significant for the Indian Nuclear Energy Programme as the first indigeneously built heavy water moderated natural uranium reactor called Madras Atomic Power Plant Unit-I was made operational and connected to the grid. The power level has been gradually increased and the reactor has been operating at a power level of 200 MWe (temporarily limited by Plutonium build up during approach to equilibrium core loading). The 'plutonium peak' will be crossed shortly clearing the way for raising the reactor to the full power of 235 MWe gross. The second unit of MAPP, is well advanced and barring unforeseen difficulties, is expected to become operational during this financial year. This has been a big morale booster for the programme in general and the Fast Reactor Programme in particular as plutonium produced in these reactors is expected to be the inventory for Prototype Fast Breeder Reactors. It may be recalled that in the last report to this group, a reference was made to initiation of some preliminary design studies for such a reactor

  2. A review of the UK fast reactor programme

    International Nuclear Information System (INIS)

    Smith, R.D.

    1982-01-01

    A review of the United Kingdom Fast Reactor Programme is introduced. Operational experience with the Prototype Fast Reactor (PFR) is briefly summarized. The design concept of the Commercial Demonstration Fast Reactor (CDFR) is given in some detail. The emphasis is on materials development, chemical engineering/sodium technology, fuel reprocessing and fuel cycle, engineering component development and reactor safety

  3. Evaluation of the breed/burn fast reactor concept

    International Nuclear Information System (INIS)

    Atefi, B.; Driscoll, M.J.; Lanning, D.D.

    1979-12-01

    A core design concept and fuel management strategy, designated breed/burn, has been evaluated for heterogeneous fast breeder reactors. In this concept internal blanket assemblies after fissile material is bred in over several incore cycles, are shuffled into a moderated radial blanket and/or central island. The most promising materials combination identified used thorium in the internal blankets (due to the superior performance of epithermal Th-U233 systems) and zirconium hydride (ZrH 16 ) as the moderator

  4. The zero-power basis of fast reactor dosimetry

    International Nuclear Information System (INIS)

    Sanders, J.E.

    1978-06-01

    Predictions of reaction rates, atomic displacements, and gamma-ray energy deposition in the Prototype Fast Reactor are based on cross-section data and calculation methods validated against the results of zero-power experiments. The paper reviews work in Zebra relevant to this dosimetry, including neutron spectrometry, power mapping, foil activations within core heterogeneities, and measurements with thermoluminescent detectors. Comparisons of experiment and calculation are discussed in relation to the accuracies required to meet materials testing objectives. (author)

  5. The zero-power basis of fast reactor dosimetry

    International Nuclear Information System (INIS)

    Sanders, J.E.

    1978-06-01

    Predictions of reaction rates, atomic displacements, and gamma-ray energy deposition in the Prototype Fast Reactor are based on cross-section data and calculation methods validated against the results of zero-power experiments. The paper reviews work in Zebra relevant to this dosimetry, including neutron spectrometry, power mapping, foil activations within core heterogeneities, and measurements with thermoluminescent detectors. Comparisons of experiment and calculation are discussed in relation to the accuracies required to meet material testing objectives. (author)

  6. Concept and designs of new-generation fast reactors

    International Nuclear Information System (INIS)

    Mitenkov, F.M.

    1993-01-01

    This article discusses the general safety requirements and characteristics for future nuclear power plants. It examines various designs - loop, block, and integrated layouts for reactors. Specifically, the article focuses an integrated design for sodium-cooled fast reactors noting that the BN-600 reactor has operated accident-free over the past 12 years. An obvious advantage of this scheme is that the coolant of the primary loop is localized in one volume (in a vessel), there are no short connections and large-diameter pipes, which of course sharply reduces the probability in coolant leaks. With an integrated scheme the problem of embrittlement of the reactor vessel by neutron irradiation is obviated. The neutron fluence for the vessels of the AST-500 and VPBER-600 reactors, built with an integrated scheme, is less than 10 17 cm -2 . Such a fluence does not cause any appreciable change in the mechanical properties of the vessel steel. The integrated layout of the reactor makes it possible to build a containment vessel. In this case it is possible to eliminate the danger of the reactor core drying out and thus cooling of the reactor in emergency situations can be simplified substantially. In an integrated layout, however, access is more difficult to the equipment inside the reactor, thus limiting or complicating maintenance work. The integrated layout, therefore, requires the use of highly reliable equipment built according to designs that have been proven in operation and have been passed representative service-life tests under laboratory conditions. The integrated layout considerably increases the mass and size characteristics of the reactor. New solutions thus are needed for the organization of work on reactor fabrication and assembly. In the case of the BN-600 and Superphenix reactors the welding of the reactor vessels and the assembly work were done on the building site

  7. Slow clean-up for fast reactor

    Science.gov (United States)

    Banks, Michael

    2008-05-01

    The year 2300 is so distant that one may be forgiven for thinking of it only in terms of science fiction. But this is the year that workers at the Dounreay power station in Northern Scotland - the UK's only centre for research into "fast" nuclear reactors - term as the "end point" by which time the site will be completely clear of radioactive material. More than 180 facilities - including the iconic dome that housed the Dounreay Fast Reactor (DFR) - were built at at the site since it opened in 1959, with almost 50 having been used to handle radioactive material.

  8. Fast Reactor Knowledge Management at IGCAR, India

    International Nuclear Information System (INIS)

    Kuriakose, K.K.

    2013-01-01

    The Process Architecture: → Acquire: Solicitation; Voluntary submission; Mandatory requirements; Interview/Observation; → Quality Control: Review/Editing; Certification; Quality index; → Disseminate: Publish through the Technology architecture; Formal/Informal Meetings; COPs; → Utilize: Projects; Day-to-day activities; → Maintenance; → Retirement. Mission: To conduct a broad based multidisciplinary programme of scientific research and advanced engineering development, directed towards the establishment of the technology of Sodium Cooled Fast Breeder Reactors (FBR) and associated fuel cycle facilities in the Country. The mission includes the development and applications of new and improved materials, techniques, equipment and systems for FBRs, pursue basic research to achieve breakthroughs in Fast Reactor technology

  9. Discharges from a fast reactor reprocessing plant

    International Nuclear Information System (INIS)

    Barnes, D.S.

    1987-01-01

    The purpose of this paper is to assess the environmental impact of the calculated routine discharges from a fast reactor fuel reprocessing plant. These assessments have been carried out during the early stages of an evolving in-depth study which culminated in the design for a European demonstration reprocessing plant (EDRP). This plant would be capable of reprocessing irradiated fuel from a series of European fast reactors. Cost-benefit analysis has then been used to assess whether further reductions in the currently predicted routine discharges would be economically justified

  10. A review of the United Kingdom fast reactor programme: March 1987

    International Nuclear Information System (INIS)

    Bramman, J.I.; Wheeler, R.C.

    1987-03-01

    The UK fast reactor programme is reviewed under the following headings: Progress with PFR; Reprocessing; Commercial Design Studies: Structural Integrity; Engineering and Components; Materials; Sodium Chemistry; Core and Fuel; Safety; Plant Performance Studies. (U.K.)

  11. Progress report on fast breeder reactor development in Japan

    International Nuclear Information System (INIS)

    1978-11-01

    As for the experimental fast reactor ''Joyo'', the power increase test has been carried out since April, and the power output was raised stepwise up to 40 MW. The power output, core behavior, plant characteristics as well as shielding integrity were measured at each power level. The examination for licensing the power increase to 75 and 100 MW is still continued by the Committee No. 130. The preparation of various codes required for the core characteristic analysis is in progress. As for the development of the prototype fast reactor ''Monju'', the Construction Preliminary Design (1) was evaluated, and the studies on the specifications of the Construction Preliminary Design (2) are carried out. In respect to the analysis for the Safety Licensing, the analysis of decay heat, the development of an analytical code regarding the rupture propagation in heat transfer tubes for steam generators and others are under way. Technological investigation is carried out to obtain the overseas informations on the safety standards for FBRs and LMFBR technologies. The technical specifications for the preliminary design of the demonstration fast reactor are being prepared. The researches and developments of reactor physics, the structural components of ''Joyo'' and ''monju'', instrumentation and control, sodium technology, fuel materials, structural materials, safety and steam generators are reported, respectively. (Kako, I.)

  12. The Integral Fast Reactor (IFR) concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1989-01-01

    In addition to maintaining the viability of its present commercial nuclear technology, a principal challenge in the US in the 1990s and beyond will be to regain and maintain a position among the world leadership in advanced reactor research and development. In this paper we'll discuss factors which we believe should today provide the rationale and focus for advanced reactor R and D, and we will then review the status of the major US effort, the Integral Fast Reactor (IFR) program

  13. Integral Fast Reactor concept inherent safety features

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: (1) a liquid metal (sodium) coolant, (2) a pool-type reactor primary system configuration, (3) an advanced ternary alloy metallic fuel, and (4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS)

  14. A review of the fast reactor programme in Japan

    International Nuclear Information System (INIS)

    Matsuno, Y.

    1989-01-01

    The FBR programme in Japan has shown a steady progress, Reactor Joyo commenced the 17th duty cycle operation with MK-III core. Monju construction was 63.5% complete as of the end of February 1989, including design, manufacturing and construction at the site. Overall site work is now 89% complete. In 1988 JAPC evaluated the Demonstration Fast Breeder Reactor (DFBR) plant maintainability on both pool design and Loop Design. In 1989 JAPC is expected to start the conceptual design for the demonstration of FBR. (author). Figs, 1 tab

  15. Reactor Structure Materials: Corrosion of Reactor Core Internals

    International Nuclear Information System (INIS)

    Van Dyck, S.

    2000-01-01

    The objectives of SCK-CEN's R and D programme on the corrosion of reactor core internals are: (1) to gain mechanistic insight into the Irradition Assisted Stress Corrosion Cracking (IASCC) phenomenon by studying the influence of separate parameters in well controlled experiments; (2) to develop and validate a predictive capability on IASCC by model description and (3) to define and validate countermeasures and monitoring techniques for application in reactors. Progress and achievements in 1999 are described

  16. Status of fast breeder reactor development in Germany

    International Nuclear Information System (INIS)

    Hueber, R.; Kathol, W.; Kempken, M.

    1991-01-01

    The KNK, the sodium cooled compact reactor is an experimental nuclear power plant of 20 MW electric power. Since 1977, it has been operated with fast reactor cores as KNK II. The KNK II/3 core was designed. The core fabrication has been largely completed. In 1990, the KNK II plant achieved a time availability of 56%. On January 8, 1991 KNK II was shut down for inspection. Since pre-nuclear commissioning was completed the Kalkar Nuclear Power Station SNR 300 has been operated in a mode similar to that of a power station. In March 1991 the financing partners decided not to prolong the standby phase because they do not think that the last construction permit and the operation permit will be issued within a definite period of time. The partners were convinced that the lack of progress in the licensing procedure was not caused by basic safety deficiencies of the project but by the way the licensing procedure was executed. The German fast breeder programme is now concentrated on contributions to the European Fast Reactor. (author)

  17. Safety characteristics of the integral fast reactor concept

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Cahalan, J.E.; Sevy, R.H.; Wright, A.E.

    1985-01-01

    The Integral Fast Reactor (IFR) concept is an innovative approach to liquid metal reactor design which is being studied by Argonne National Laboratory. Two of the key features of the IFR design are a metal fuel core design, based on the fuel technology developed at EBR-II, and an integral fuel cycle with a colocated fuel cycle facility based on the compact and simplified process steps made possible by the use of metal fuel. The paper presents the safety characteristics of the IFR concept which derive from the use of metal fuel. Liquid metal reactors, because of the low pressure coolant operating far below its boiling point, the natural circulation capability, and high system heat capacities, possess a high degree of inherent safety. The use of metallic fuel allows the reactor designer to further enhance the system capability for passive accommodation of postulated accidents

  18. A review of fast reactor program in Japan - April 1984

    International Nuclear Information System (INIS)

    Matsuno, Y.

    1984-01-01

    The fast breeder reactor development project in PNC has been in progress steadily in these eighteen years. Concerning the experimental fast reactor, JOYO, the MK-II core attained criticality on November 22, 1982 with 51 fuel assemblies, and received the ''Certificate of Inspection before Operation'' from Government Authority on March 31, 1983, after 100 hours operation with the rated output of 100 MW. Since then, the core has been utilized to implement irradiation bed characteristics test, and to irradiate fuels and structural materials especially for the prototype reactor MONJU. With respect to the prototype reactor MONJU, the installation permit was issued on May 27, 1983, from the prime minister, and the contracts of the first stage between PNC and fabricators were made recently. At the same time, almost all the licenses of preparatory construction works were issued by March 1983, and preparatory construction works were started in April 1983. On the other hand, conceptual design of a demonstration reactor is now under way in a close cooperation with concerned authorities and utilities, as well as investigations of the way of conducting necessary research and development

  19. Universal Fast Breeder Reactor Subassembly Counter manual

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, H.O.; Eccleston, G.W.; Swansen, J.E.; Goris, P.; Abedin-Zadeh, R.; Ramalho, A.

    1984-08-01

    A neutron coincidence counter has been designed for the measurement of fast breeder reactor fuel assemblies. This assay system can accommodate the full range of geometries and masses found in fast breeder subassemblies under IAEA safeguards. The system's high-performance capability accommodates high plutonium loadings of up to 16 kg. This manual describes the system and its operation and gives performance and calibration parameters for typical applications.

  20. Universal Fast Breeder Reactor Subassembly Counter manual

    International Nuclear Information System (INIS)

    Menlove, H.O.; Eccleston, G.W.; Swansen, J.E.; Goris, P.; Abedin-Zadeh, R.; Ramalho, A.

    1984-08-01

    A neutron coincidence counter has been designed for the measurement of fast breeder reactor fuel assemblies. This assay system can accommodate the full range of geometries and masses found in fast breeder subassemblies under IAEA safeguards. The system's high-performance capability accommodates high plutonium loadings of up to 16 kg. This manual describes the system and its operation and gives performance and calibration parameters for typical applications

  1. The behaviour of materials in fast reactors

    International Nuclear Information System (INIS)

    Matthews, J.R.

    1977-01-01

    Fast neutron damage in fast reactors can limit the life of structural components through the growth voids. The main features of the current theory of point defect production and condensation are surveyed. The role of metallurgical structures and radiation produced extended defects is outlined and used to demonstrate the development of volume swelling and radiation hardening. Mechanisms of radiation creep are described in the context of the preceding treatment of point defect behaviour. Finally, future trends in the field are briefly explored. (author)

  2. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Seed, G.

    1980-01-01

    In a liquid metal cooled nuclear reactor in which the reactor core is submerged in a pool of liquid metal coolant in a primary vessel housed in a concrete vault the core is surrounded by an impermeable barrier bounding an inner or hot region of the pool and an outer or cool region of the pool. The object of the present invention is the provision of a construction in which the complexity of design and manufacture of the barrier for bounding the inner and outer pools of coolant is reduced. (UK)

  3. Reactor core design of Gas Turbine High Temperature Reactor 300

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Katanishi, Shoji; Takada, Shoji; Yan Xing; Tsuji, Nobumasa

    2004-01-01

    Japan Atomic Energy Research Institute (JAERI) has been designing Japan's original gas turbine high temperature reactor, Gas Turbine High Temperature Reactor 300 (GTHTR300). The greatly simplified design based on salient features of the High Temperature Gas-cooled Reactor (HTGR) with a closed helium gas turbine enables the GTHTR300 a highly efficient and economically competitive reactor to be deployed in early 2010s. Also, the GTHTR300 fully taking advantage of various experiences accumulated in design, construction and operation of the High Temperature Engineering Test Reactor (HTTR) and existing fossil fired gas turbine systems reduces technological development concerning a reactor system and electric generation system. Original design features of this system are the reactor core design based on a newly proposed refueling scheme named sandwich shuffling, conventional steel material usage for a reactor pressure vessel (RPV), an innovative coolant flow scheme and a horizontally installed gas turbine unit. The GTHTR300 can be continuously operated without the refueling for 2 years. Due to these salient features, the capital cost of the GTHTR300 is less than a target cost of 200,000 yen (1667 US$)/kW e, and the electric generation cost is close to a target cost of 4 yen (3.3 US cents)/kW h. This paper describes the original design features focusing on the reactor core design and the in-core structure design, including the innovative coolant flow scheme for cooling the RPV. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan

  4. Validation of reactor core protection system

    International Nuclear Information System (INIS)

    Lee, Sang-Hoon; Bae, Jong-Sik; Baeg, Seung-Yeob; Cho, Chang-Ho; Kim, Chang-Ho; Kim, Sung-Ho; Kim, Hang-Bae; In, Wang-Kee; Park, Young-Ho

    2008-01-01

    Reactor COre Protection System (RCOPS), an advanced core protection calculator system, is a digitized one which provides core protection function based on two reactor core operation parameters, Departure from Nucleate Boiling Ratio (DNBR) and Local Power Density (LPD). It generates a reactor trip signal when the core condition exceeds the DNBR or LPD design limit. It consists of four independent channels adapted a two-out-of-four trip logic. System configuration, hardware platform and an improved algorithm of the newly designed core protection calculator system are described in this paper. One channel of RCOPS was implemented as a single channel facility for this R and D project where we performed final integration software testing. To implement custom function blocks, pSET is used. Software test is performed by two methods. The first method is a 'Software Module Test' and the second method is a 'Software Unit Test'. New features include improvement of core thermal margin through a revised on-line DNBR algorithm, resolution of the latching problem of control element assembly signal and addition of the pre-trip alarm generation. The change of the on-line DNBR calculation algorithm is considered to improve the DNBR net margin by 2.5%-3.3%. (author)

  5. Core baffle for nuclear reactors

    International Nuclear Information System (INIS)

    Machado, O.J.; Berringer, R.T.

    1977-01-01

    The invention concerns the design of the core of a LWR with a large number of fuel assemblies formed by fuel rods and kept in position by spacer grids. According to the invention, at the level of the spacer grids match plates are mounted with openings so the flow of coolant directed upwards will not be obstructed and a parallel bypass will be obtained in the space between the core barrel and the baffle plates. In case of an accident, this configuration reduces or avoids damage from overpressure reactions. (HP) [de

  6. RAPID-L Highly Automated Fast Reactor Concept Without Any Control Rods (1) Reactor concept and plant dynamics analyses

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Iwamura, Takamichi

    2002-01-01

    The 200 kWe uranium-nitride fueled lithium cooled fast reactor concept 'RAPID-L' to achieve highly automated reactor operation has been demonstrated. RAPID-L is designed for Lunar base power system. It is one of the variants of RAPID (Refueling by All Pins Integrated Design), fast reactor concept, which enable quick and simplified refueling. The essential feature of RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small size reactor core, 2700 fuel pins are integrated altogether and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 years. Unique challenges in reactivity control systems design have been attempted in RAPID-L concept. The reactor has no control rod, but involves the following innovative reactivity control systems: Lithium Expansion Modules (LEM) for inherent reactivity feedback, Lithium Injection Modules (LIM) for inherent ultimate shutdown, and Lithium Release Modules (LRM) for automated reactor startup. All these systems adopt lithium-6 as a liquid poison instead of B 4 C rods. In combination with LEMs, LIMs and LRMs, RAPID-L can be operated without operator. This is the first reactor concept ever established in the world. This reactor concept is also applicable to the terrestrial fast reactors. In this paper, RAPID-L reactor concept and its transient characteristics are presented. (authors)

  7. Method of evaluating the reactor core performance

    International Nuclear Information System (INIS)

    Eguchi, Yumiko.

    1987-01-01

    Purpose: To enable exact evaluation for the core performance in a short period. Constitution: A reactor core is equally divided into 2, 4 or 8 sections considering the structure of the symmetricalness and calculation for the evaluation the core performance is carried out to at least one region of the divided core. However, the reactor core can not be said to be completely symmetrical and there is a difference more or less, because if identical type fuels are loaded the way of burning is different depending on the positions, thereby causing difference in the total heat calorie generated. Accordingly, the performance evaluation is conducted for the entire core at a predetermined time interval, the compensation value for each of the fuels is calculated based on the result of the calculation for the entire core and the corresponding result of the calculation in each of the divided cores and the compensated values are added to the calculation result for the divided cores to compensate the calculated evaluation value. This enables to shorten the calculation time and improve the calculation accuracy. (Yoshino, Y.)

  8. Charging machine for a fast production reactor

    International Nuclear Information System (INIS)

    Artem'ev, L.N.; Kurilkin, V.V.

    1971-01-01

    Charging machine for a fast production reactor is described. The machine contains charging mechanism, mechanism for positioning fresh fuel and spent fuel assemtlies, storage drums with sockets for control rod assemtlies and collet tongs for control rods. Recharging is conducted by means of ramp channel

  9. Irradiation behavior of metallic fast reactor fuels

    International Nuclear Information System (INIS)

    Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

    1991-01-01

    Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985

  10. Status of fast reactor activities in Brazil

    International Nuclear Information System (INIS)

    Menezes, Artur

    1996-01-01

    This text describes the present status of fast reactor activities in Brazil, emphasizing the strategies being used to preserve this reactor concept as a viable alternative for future electricity generation in the country. The program is mostly research-oriented and has the objective of establishing a consistent knowledge basis which can serve as a support for the transition to the activities more directly related to design, construction and operation of an experimental fast reactor. Due to the present economic difficulties, the program is still modest but it is gradually growing. A report which has been finalized in December, 1995 and submitted to the authorities indicates the existence of the grounds for enlarging and consolidating the program. (author)

  11. The development of fast reactors in France

    International Nuclear Information System (INIS)

    Vautrey, L.

    1982-01-01

    Only minor changes were introduced in the French nuclear programme by the new government in 1981. The operating conditions of Rapsodie were very satisfactory up to January 1982. After a leak in the double primary jacket (nitrogen circuit) the reactor was shut down for investigations. Phenix is continuing to operate smoothly. Construction of Super Phenix (Creys Malville power plant) is proceeding normally though with some delay. The studies for the future (after Creys Malville) are following their way both for the Project 1500 (Super Phenix 2) and for the specific plants of the fuel cycle. Research and development are largely directed toward Super Phenix 1 needs and the prospects of Super Phenix 2. International cooperation remains very intensive. The financial resources devoted to the development of fast reactors are globally stable. Including fuel cycle and safety (but excluding the Phenix operation) about 1300 millions of francs will be devoted to fast reactors by the C.E.A. in 1982. (author)

  12. Analytical modeling of core hydraulics and flow management in breeder reactors

    International Nuclear Information System (INIS)

    Carelli, M.D.; Willis, J.M.

    1979-01-01

    An analytical model representing the hydraulic behavior of the primary system of fast breeder nuclear reactors is discussed. A computer code capable of detailing the core flow distribution and characterizing the flow and pressure drop in each reactor component is presented. Application of this method to the reactor core thermal-hydraulic design has allowed optimization of the flow management with consequent upgrading in performance, reduction of unnecessary conservatism and very substantial cost savings. Typical quantitative examples are presented

  13. Pressurized core shroud for aligning a nuclear reactor core

    International Nuclear Information System (INIS)

    Burger, J.M.

    1983-01-01

    A core shroud is disclosed including flexible panels sealingly attached to the inner surface of the shroud at an elevation opposite the fuel assembly grids nearest the core midplane. Each panel forms the outer wall of a deformable chamber which is pressurized through a conduit carried by the shroud. One end of the conduit is in fluid communication with the reactor coolant at a high pressure location remote from the panels, producing a pressure differential across the panel which urges the panel against the adjacent grid to prevent core bowing

  14. Fast breeder reactor electromagnetic pump

    International Nuclear Information System (INIS)

    Araseki, Hideo; Murakami, Takahiro

    2008-01-01

    Main pumps circulating sodium in the FBR type reactor have been mechanical types, not electromagnetic pumps. Electromagnetic pump of 1-2 m 3 /min has been used as an auxiliary pump. Large sized electromagnetic pumps such as several hundred m 3 /min have not been commercialized due to technical difficulties with electromagnetic instability and pressure pulsations. This article explained electromagnetic and fluid equations and magnetic Reynolds number related with electromagnetic pumps and numerical analysis of instability characteristics and pressure pulsations and then described applications of the results to FBR system. Magnetic Reynolds number must be chosen less than one with appropriate operating frequency and optimum slip of 0.2-0.4. (T. Tanaka)

  15. A review of fast reactor program in Japan - April 1983

    International Nuclear Information System (INIS)

    Matsuno, Y.

    1983-01-01

    The fast breeder reactor development project in Japan has been in progress during the past twelve months and will be continued in the next fiscal year, from April 1983 through March 1984, at a similar scale of effort both in budget and personnel to those of the fiscal year of 1982. Concerning the experimental fast reactor, JOYO, all the scheduled testings and operations were completed by the end of 1981 and from the beginning of 1982 the change-out work from Mark-I core to Mark-II core has been continued for 11 months. The initial criticality on the Mark-II core was achieved on 22 Nov. 1982 and after 3 months low power physics tests the reactor power was raised up to 100% (100 MWt) in the middle of March 1983. With respect to the prototype reactor MONJU, progress toward construction has been made and the licensing of the second step will be completed in the first half of 1983. Preliminary design studies of large LMFBR are being made by PNC and also by utilities. A design study being conducted by PNC is on a 1000 MWe plant of loop type by extrapolating the technology to be developed by the time of commissioning of MONJU. A group of utilities is conducting a similar study, but covering somewhat wider range of parameters and options of design. Close contact between the group and PNC has been kept. In the future, those design efforts will be combined as a single design effort, when a major effort for developing a large demonstration reactor will be initiated at around the commencement of construction of the prototype reactor MONJU

  16. Scenario for commercialization of fast breeder reactors

    International Nuclear Information System (INIS)

    Kumaoka, Yoshio; Sato, Morihiko

    1989-01-01

    To realize the commercialization of fast breeder reactors (FBRs), it is essential to reduce construction costs to the same level as those for the current light water reactors. For this target to be attained, a highly important factor is to reduce to the lowest-levels possible the quantities of materials and volume of the buildings required for the primary and secondary sodium loops of the FBR. In this direction, an innovative compact FBR plant concept which holds promise for commercialization has been developed by introducing the pooltype reactor concept with the shortest possible secondary sodium loops, realized by coupling electromagnetic pumps with the steam generators. In comparison with the French Super Phenix reactor, for example, the construction of this 1,300-MWe FBR plant could be achieved with half the material quantities and plant volume required by the former type. (author)

  17. Tests for validation of fast neutron reactors safety

    International Nuclear Information System (INIS)

    Nagata, T.; Yamashita, H.

    2001-01-01

    Japanese scientific research and design enterprises in cooperation with industrial and power generating corporations implement a project on creating a fast neutron reactor of the ultimate safety. One of the basic expected results from such a development is creation of a reactor core structure that is able to eliminate recriticality occurrence in the course of reactor accident involving fuel melting. One of the possible ways to solve this problem is to include pipes (meant for specifying directed (controlled) molten fuel relocation) into fuel assembly structure. In the course of conduction and subsequent implementation of such a design the basic issue is to experimentally confirm the operating capacity of FA having such a structure and that is called FAIDUS. Within EAGLE Project on experimental basis of IAE NNC RK an activity has been started on preparation and conduction of out-of-pile and in-pile tests. During tests a sodium coolant will be used. Studies are conducted by NNC RK in cooperation with the Japanese corporations JAPC and JNC. Basic objective of out-of-pile tests was to obtain preliminary information on fuel relocation behavior under conditions simulating accident involving melting of core consisting of FAIDUS FA, which will help to clarify simulation criteria and to develop the most optimum structure of the experimental channel for reactor experiments conduction. The basic objective of in-pile tests was the experimental confirmation of operating capacity of FAIDUS FA model under reactor conditions. According to the program two tests are planned to be performed at IGR reactor: tests for validation of fast neutron reactor safety, and out-of-pile tests at EAGLE experimental facility without sodium coolant

  18. Fast Spectrum Molten Salt Reactor Options

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  19. Unconventional liquid metal cooled fast reactors

    International Nuclear Information System (INIS)

    Spinrad, B.I.; Rohach, A.F.; Razzaque, M.M.

    1989-06-01

    This report describes the rationale for, design of and analytical studies on an unconventional sodium-cooled power reactor, called the Trench Reactor. It derives its name from the long, narrow sodium pool in which the reactor is placed. Unconventional features include: pool shape; reactor shape (also long and narrow); reflector control; low power density; hot-leg primary pumping; absence of a cold sodium pool; large core boxes rather than a large number of subassemblies; large diameter metal fuel; vessel suspension from cables; and vessel cooling by natural circulation of building atmosphere (nitrogen) at all times. These features all seem feasible. They result in a system that is capable of at least a ten year reload interval and shows good safety through direct physical response to loss-of-heat-sink, loss-of-flow and limited-reactivity nuclear transients. 43 figs., 43 tabs

  20. Reactor core flow rate control system

    International Nuclear Information System (INIS)

    Sakuma, Hitoshi; Tanikawa, Naoshi; Takahashi, Toshiyuki; Miyakawa, Tetsuya.

    1996-01-01

    When an internal pump is started by a variable frequency power source device, if magnetic fields of an AC generator are introduced after the rated speed is reached, neutron flux high scram occurs by abrupt increase of a reactor core flow rate. Then, in the present invention, magnetic fields for the AC generator are introduced at a speed previously set at which the fluctuation range of the reactor core flow rate (neutron flux) by the start up of the internal pump is within an allowable value. Since increase of the speed of the internal pump upon its start up is suppressed to determine the change of the reactor core flow rate within an allowable range, increase of neutron fluxes is suppressed to enable stable start up. Then, since transition boiling of fuels caused by abrupt decrease of the reactor core flow rate upon occurrence of abnormality in an external electric power system is prevented, and the magnetic fields for the AC generator are introduced in such a manner to put the speed increase fluctuation range of the internal pump upon start up within an allowable value, neutron flux high scram is not caused to enable stable start-up. (N.H.)

  1. Gas core reactors for coal gasification

    International Nuclear Information System (INIS)

    Weinstein, H.

    1976-01-01

    The concept of using a gas core reactor to produce hydrogen directly from coal and water is presented. It is shown that the chemical equilibrium of the process is strongly in favor of the production of H 2 and CO in the reactor cavity, indicating a 98 percent conversion of water and coal at only 1500 0 K. At lower temperatures in the moderator-reflector cooling channels the equilibrium strongly favors the conversion of CO and additional H 2 O to CO 2 and H 2 . Furthermore, it is shown the H 2 obtained per pound of carbon has 23 percent greater heating value than the carbon so that some nuclear energy is also fixed. Finally, a gas core reactor plant floating in the ocean is conceptualized which produces H 2 , fresh water and sea salts from coal

  2. Core construction for nuclear reactors

    International Nuclear Information System (INIS)

    Pettinger, D.S.

    1977-01-01

    HTR core construction with prismatic graphite blocks piled into columns. The front of the blocks is concavely curved. The lines of contact of two blocks are always not vertical, i.e. the blocks of one column are supported by the blocks of neighbouring columns so that ducts are formed. Groups of three or four of these columns may additionally be arranged around a central column which has recesses in order to lock the blocks of one group together. With this arrangement, dimensional changes of the graphite blocks under operating conditions can be taken up. (DG) [de

  3. Core Design Studies for a 300 MWe TRU Burner Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Sang Ji; Kim, Yeong Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    KAERI has been developing the KALIMER-600 core design with a breakeven fissile conversion ratio. The core is loaded with a ternary metallic fuel (TRU-U-10Zr), and the breakeven characteristics are achieved without any blanket assembly. As an alternative plan, a KALIMER-600 burner core design has also been performed. In the early days of a fast reactor, the main purpose was an economical use of a uranium resource, but nowadays, in addition to the maximum utilization of a uranium resource, the burning of high level radioactive waste is taken as an additional interest for the harmony with the environment. In this paper, a 300 MWe burner core design is presented to demonstrate reactor performance for the reference KALIMER-600 burner. As a means to flatten the power distribution, instead of a single fuel enrichment scheme adapted in the design of the KALIMER-600 burner, the two enrichment zoning approach was adapted. Considering that the TRU fuel may not be qualified due to limited database, the uranium core was designed to permit the TRU core operation to cover after the uranium core is operated at an early stage.

  4. Low-power lead-cooled fast reactor loaded with MOX-fuel

    Science.gov (United States)

    Sitdikov, E. R.; Terekhova, A. M.

    2017-01-01

    Fast reactor for the purpose of implementation of research, education of undergraduate and doctoral students in handling innovative fast reactors and training specialists for atomic research centers and nuclear power plants (BRUTs) was considered. Hard neutron spectrum achieved in the fast reactor with compact core and lead coolant. Possibility of prompt neutron runaway of the reactor is excluded due to the low reactivity margin which is less than the effective fraction of delayed neutrons. The possibility of using MOX fuel in the BRUTs reactor was examined. The effect of Keff growth connected with replacement of natural lead coolant to 208Pb coolant was evaluated. The calculations and reactor core model were performed using the Serpent Monte Carlo code.

  5. EDF research on fast neutron reactors

    International Nuclear Information System (INIS)

    In order to make possible the calculation of the temperatures of the sodium, of the sheath and of the fuel in fast reactor assemblies, taking into account the mixing phenomena induced by the helicoidal wires, two design codes have been developed. Those codes have then been adapted for their integration in the Superalcyon system. This system shall constitute the reference tool for the development of those codes that shall manage Phenix, and other reactors of the family. Cooling accidents, thermohydraulic studies, and steam generator studies are also in progress

  6. What is the future for fast reactor technology?

    Energy Technology Data Exchange (ETDEWEB)

    Kraev, Kamen [NucNet, Brussels (Belgium). The Independent Global Nuclear News Agency

    2017-08-15

    NucNet spoke to Vladimir Kriventsev, team leader for fast reactor technology development at the International Atomic Energy Agency (IAEA), about the possibilities and challenges of technology development in the fast reactor sector. Today, the field of fast reactors is vibrant and full of fascinating developments, some which will have an impact in the nearer term and others in the longer term.

  7. A review of the UK fast reactor programme

    International Nuclear Information System (INIS)

    Picker, C.; Ainsworth, K.F.

    1996-01-01

    The general position with regard to nuclear power and fast reactors in UK during 1995 is described. The status of fast reactor studies made in UK is outlined and a description and statement regarding the conclusions of the programme of studies associated with the closure of the Prototype Fast Reactor is included. (author)

  8. FAST: An advanced code system for fast reactor transient analysis

    International Nuclear Information System (INIS)

    Mikityuk, Konstantin; Pelloni, Sandro; Coddington, Paul; Bubelis, Evaldas; Chawla, Rakesh

    2005-01-01

    One of the main goals of the FAST project at PSI is to establish a unique analytical code capability for the core and safety analysis of advanced critical (and sub-critical) fast-spectrum systems for a wide range of different coolants. Both static and transient core physics, as well as the behaviour and safety of the power plant as a whole, are studied. The paper discusses the structure of the code system, including the organisation of the interfaces and data exchange. Examples of validation and application of the individual programs, as well as of the complete code system, are provided using studies carried out within the context of designs for experimental accelerator-driven, fast-spectrum systems

  9. Nuclear reactor core modelling in multifunctional simulators

    Energy Technology Data Exchange (ETDEWEB)

    Puska, E.K. [VTT Energy, Nuclear Energy, Espoo (Finland)

    1999-06-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  10. Sodium fast reactor power monitoring using gamma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, R.; Normand, S.; Barbot, L.; Domenech, T.; Kondrasovs, V.; Corre, G.; Frelin, A.M. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, CEA - Saclay DRT/LIST/DETECS/SSTM, Batiment 516 - P.C. no 72, Gif sur Yvette, F-91191 (France); Montagu, T.; Dautremer, T.; Barat, E. [CEA, LIST, Laboratoire Processus Stochastiques et Spectres (France); Ban, G. [ENSICAEN (France)

    2009-06-15

    This work deals with the use of high flux gamma spectrometry to monitor the fourth generation of sodium fast reactor (SFR) power. The simulation study part of this work has shown that power monitoring in a short time response and with a good accuracy is possible. An experimental test is under preparation at the French SFR Phenix experimental reactor to validate simulation studies. First, physical calculations have been done to correlate gamma activity to the released thermal power. Gamma emitter production rate in the reactor core was calculated with technical and nuclear data as the sodium velocity, the atomic densities, Phenix neutron spectrum and incident neutron cross-sections of reactions producing gamma emitters. A thermal hydraulic transfer function was used for modeling primary sodium flow in our calculations. For the power monitoring problematic, use of a short decay period gamma emitter will allow to have a very fast response system without cumulative effect. We have determined that the best tagging agent is 20F which emits 1634 keV energy photons with a decay period of 11 s. The gamma spectrum was determined by flux point and a pulse high tally MCNP5.1.40 simulation and shown the possibility to measure the signal of this radionuclide. The experiment will be set during the reactor 'end life testing'. The Delayed Neutron Detection (DND) room has been chosen as the best available location on Phenix reactor to measure this kind of radionuclide due to a short transit time from reactor core to measurement sample. This location is optimum for global power measurement because homogenized sampling in the reactor hot pool. The main spectrometer is composed of a coaxial high purity germanium diode (HPGe) coupled with a transistor reset preamplifier. The HPGe diode signal will be processed by the Adonis digital signal processing due to high flux and fast activity measurement. Post-processing softwares will be used to limit statistical problems of the

  11. Control rod studies in small and medium sized fast reactors

    International Nuclear Information System (INIS)

    John, T.M.; Mohanakrishnan, P.; Mahalakshmi, B.; Singh, R.S.

    1988-01-01

    Control rods are the primary safety mechanism in the operation of fast reactors. Neutronic parameters associated with the control rods have to be evaluated precisely for studying the behaviour of the reactor under various operating conditions. Control rods are strong neutron absorbers discretely distributed in the reactor core. Accurate estimation of control rod parameters demand, in principle transport theory solutions in exact geometry. But computer codes for such evaluations usually consume exorbitantly large computer time and memory for even a single parameter evaluation. During the design of reactors, evaluation of these parameters will be required for many configurations of control rods. In this paper, the method used at Indira Gandhi Centre for Atomic Research for estimating the parameters associated with control rods is presented. Diffusion theory solutions were used for computations. A scheme using three dimensional geometry represented by triangular meshes and diffusion theory solutions in few energy groups for control rod parameter evaluation is presented. This scheme was employed in estimating the control rod parameters in a 500 Mw(e) fast reactor. Error due to group collapsing is estimated by comparing with 25 group calculations in three dimensions for typical cases. (author). 5 refs, 4 figs, 3 tabs

  12. Nuclear instrumentation systems in prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Vijayakumaran, P.M.; Nagaraj, C.P.; Paramasivan-Pillai, C.; Ramakrishnan, R.; Sivaramakrishna, M.

    2004-01-01

    The nuclear instrumentation systems of the Prototype Fast Breeder Reactor (PFBR) primarily comprise of global Neutron Flux Monitoring, Failed Fuel Detection and Location, Radiation Monitoring and Post-Accident Monitoring. High temperature fission chambers are provided at in-vessel locations for monitoring neutron flux. Failed fuel detection and location is by monitoring the cover gas for fission gases and primary sodium for delayed neutrons. Signals of the core monitoring detectors are used to initiate SCRAM (safety action) to protect the reactor from various postulated initiating events. Radiation levels in all potentially radioactive areas are monitored to act as an early warning system to keep the release of radioactivity to the environment and exposure to personnel well below the permissible limits. Fission Chambers and Gamma Ionisation Chambers are located in the reactor vault concrete for monitoring the neutron flux and gamma radiation levels during and after an accident. (authors)

  13. On the neutronics of European lead-cooled fast reactor

    International Nuclear Information System (INIS)

    Cetnar, J.; Domanska, G.; Oettingen, M.

    2010-01-01

    The perspective of nuclear energy development in the near future imposes a new challenge on a number of sciences over the world. For years, the European Commission (EC) has sponsored scientific activities through the framework programmes (FP). The lead-cooled fast reactor (LFR) development in the European Union (EU) has been carried out within European lead-cooled system (ELSY) project of the 6 th FP of EURATOM. This paper concerns the reactor core neutronic and burn-up design studies. We discuss two different core configurations of ELSY reactor; one loaded with the reference - mixed oxide fuel (MOX), whereas the second one with an advanced fuel - uranium-plutonium nitride. Both fuels consist of reactor grade plutonium, depleted uranium and additionally, a fraction of minor actinides (MA). The fuel burn-up and the time evolution of the reactor characteristics has been assessed using a Monte Carlo burn-up code (MCB). One of the important findings concerns the importance of power profile evolution with burn-up as a limiting factor of the refuelling interval. (authors)

  14. The integral fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1990-01-01

    The liquid-metal reactor (LMR) has the potential to extend the uranium resource by a factor of 50 to 100 over current commercial light water reactors (LWRs). In the integral fast reactor (IFR) development program, the entire reactor system - reactor, fuel cycle, and waste process - is being developed and optimized at the same time as a single integral entity. A key feature of the IFR concept is the metallic fuel. The lead irradiation tests on the new U-Pu-Zr metallic fuel in the Experimental Breeder Reactor II have surpassed 185000 MWd/t burnup, and its high burnup capability has now been fully demonstrated. The metallic fuel also allows a radically improved fuel cycle technology. Pyroprocessing, which utilizes high temperatures and molten salt and molten metal solvents, can be advantageously utilized for processing metal fuels because the product is metal suitable for fabrication into new fuel elements. Direct production of a metal product avoids expensive and cumbersome chemical conversion steps that would result from use of the conventional Purex solvent extraction process. The key step in the IFR process is electrorefining, which provides for recovery of the valuable fuel constituents, uranium and plutonium, and for removal of fission products. A notable feature of the IFR process is that the actinide elements accompany plutonium through the process. This results in a major advantage in the high-level waste management

  15. Multi-megawatt pin core space reactor

    International Nuclear Information System (INIS)

    Hornung, R.J.; Normand, E.; Stevens, A.; Teare, K.R.

    1989-01-01

    Boeing has assembled an experienced team to perform a concept definition study of a multi-megawatt (MMW) nuclear power system designed to provide burst power for a space based platform. The design uses the hydrogen needed for platform cooling as the working fluid in an open thermodynamic cycle. The hydrogen is heated by a pin-fuel, fast spectrum reactor and generates power through a pair of counter-rotating turbines which drive four wound rotor alternators. This paper gives an overview of the system, concentrating on features of the reactor design and operation

  16. Integral test of JENDL-3.3 on fast reactors

    International Nuclear Information System (INIS)

    Chiba, Gou; Hazama, Taira

    2003-05-01

    An integral test has been carried out to evaluate a performance of evaluated nuclear data library JENDL-3.3, which was newly released, in a view of applying neutronics analyses of fast reactors. Japan Nuclear Cycle Development Institute has a large amount of data of critical assembly experiments (ZPPR, BFS, MOZART and FCA) and power reactor tests (JOYO). The database was utilized in this test. In plutonium loaded cores, an improvement was observed about 0.3% ε k in criticality and 5% in the non-leakage term of sodium void reactivity by a revision form JENDL-3.2 to -3.3. These results shoed that the revision is valid in plutonium loaded cores. In uranium loaded cores, dependence of C/E values on control rod position became smaller in control rod worth in ZPPR cores. On the other hand, C/E values became worse both in criticality (0.6%εk) and in sodium void reactivity (30%) in BFS cores. The main cause was a revision of uranium-235 capture cross section, and it could not be concluded whether the revision is valid or not in uranium loaded cores. It is necessary to carry out a validation test at other independent critical experiments in which uranium fuel is used. (author)

  17. A Simplified Supercritical Fast Reactor with Thorium Fuel

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-01-01

    Full Text Available Super-Critical water-cooled Fast Reactor (SCFR is a feasible option for the Gen-IV SCWR designs, in which much less moderator and thus coolant are needed for transferring the fission heat from the core compared with the traditional LWRs. The fast spectrum of SCFR is useful for fuel breeding and thorium utilization, which is then beneficial for enhancing the sustainability of the nuclear fuel cycle. A SCFR core is constructed in this work, with the aim of simplifying the mechanical structure and keeping negative coolant void reactivity during the whole core life. A core burnup simulation scheme based on Monte Carlo lattice homogenization is adopted in this study, and the reactor physics analysis has been performed with DU-MOX and Th-MOX fuel. The main issues discussed include the fuel conversion ratio and the coolant void reactivity. The analysis shows that thorium-based fuel can provide inherent safety for SCFR without use of blanket, which is favorable for the mechanical design of SCFR.

  18. Research and development of a super fast reactor (12). Considerations for the reactor characteristics

    International Nuclear Information System (INIS)

    Goto, Shoji; Ishiwatari, Yuki; Oka, Yoshiaki

    2008-01-01

    A research program aimed at developing the Super Fast Reactor (Super FR) has been entrusted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan since December 2005. It includes the following three projects. (A) Development of the Super Fast Reactor concept. (B)Thermal-hydraulic experiments. (C) Materials development. Tokyo Electric Power Company (TEPCO) has joined this program and works on part (A) together with the University of Tokyo. From the utility's viewpoint, it is important to consider the most desirable characteristics for Super FR to have. Four issues were identified in project (A), (1) Fuel design, (2) Reactor core design, (3) Safety, and (4) Plant characteristics of Super FR. This report describes the desired characteristics of Super FR with respect to item (1) fuel design and item (2) Reactor core design, as compared with a boiling water reactor (BWR) plant. The other two issues will be discussed in this project, and will also be considered in the design process of Super FR. (author)

  19. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Thatcher, G.; Mitchell, A.J.

    1981-01-01

    Fuel sub-assemblies for liquid metal-cooled fast breeder reactors are described which each incorporate a fluid flow control valve for regulating the rate of flow through the sub-assembly. These small electro-magnetic valves seek to maintain the outlet coolant temperature of at least some of the breeder sub-assemblies substantially constant throughout the life of the fuel assembly without severely pressurising the sub-assembly. (U.K.)

  20. Non-electric Applications of Fast Reactors

    International Nuclear Information System (INIS)

    Safa, Henri; Borgard, Jean-Marc

    2013-01-01

    Conclusions: → Most of industrial applications (80%) require low temperature heat below 540°C; → Fast Reactors are technically suitable to provide industrial steam at temperatures not accessible by standard LWRs; → As an illustrative example, the application at an oil refinery site has been studied showing the economic benefits; → Nuclear Cogeneration enhances the overall energy efficiency of the power plant; • Nuclear Cogeneration allows massive cut in CO 2 emissions

  1. Control rod homogenization in heterogeneous sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Andersson, Mikael

    2016-01-01

    The sodium-cooled fast reactor is one of the candidates for a sustainable nuclear reactor system. In particular, the French ASTRID project employs an axially heterogeneous design, proposed in the so-called CFV (low sodium effect) core, to enhance the inherent safety features of the reactor. This thesis focuses on the accurate modeling of the control rods, through the homogenization method. The control rods in a sodium-cooled fast reactor are used for reactivity compensation during the cycle, power shaping, and to shutdown the reactor. In previous control rod homogenization procedures, only a radial description of the geometry was implemented, hence the axially heterogeneous features of the CFV core could not be taken into account. This thesis investigates the different axial variations the control rod experiences in a CFV core, to determine the impact that these axial environments have on the control rod modeling. The methodology used in this work is based on previous homogenization procedures, the so-called equivalence procedure. The procedure was newly implemented in the PARIS code system in order to be able to use 3D geometries, and thereby be take axial effects into account. The thesis is divided into three parts. The first part investigates the impact of different neutron spectra on the homogeneous control-rod cross sections. The second part investigates the cases where the traditional radial control-rod homogenization procedure is no longer applicable in the CFV core, which was found to be 5-10 cm away from any material interface. In the third part, based on the results from the second part, a 3D model of the control rod is used to calculate homogenized control-rod cross sections. In a full core model, a study is made to investigate the impact these axial effects have on control rod-related core parameters, such as the control rod worth, the capture rates in the control rod, and the power in the adjacent fuel assemblies. All results were compared to a Monte

  2. IAEA Technical Meeting on Innovative Heat Exchanger and Steam Generator Designs for Fast Reactors. Presentations

    International Nuclear Information System (INIS)

    2011-01-01

    The fast reactor, which can generate electricity and breed additional fissile material for future fuel stocks, is a resource that will be needed when economic uranium supplies for the thermal reactors diminish. Further, the fast-fission fuel cycle in which material is recycled (a basic requirement to meet sustainability criteria) offers the flexibility needed to contribute decisively towards solving the problem of growing “spent” fuel inventories by greatly reducing the volume, the heat load and the radiotoxic inventory of high-level wastes that must be disposed of in long-term geological repositories. This is a waste management option that will play an increasingly important role in the future, and help to ensure that nuclear energy remains a sustainable long-term option in the world’s overall energy mix. In recognition of the fast reactor’s importance for the sustainability of the nuclear option, currently there is worldwide renewed interest in fast reactor technology development, as indicated, e.g., by the outcome of the Generation IV International Forum (GIF) technology review, which concluded with 3 out of 6 innovative systems to be fast reactors (gas cooled fast reactor, sodium cooled fast reactor, and heavy liquid metal cooled fast reactor), plus a potential fast core for a 4th concept, the super-critical water reactor. Currently, fast reactor construction projects are ongoing in India (PFBR) and Russian Federation (BN-800), whilst in China the first experimental fast reactor (CEFR) is in the commissioning phase. Fast reactor programs are also carried out in Europe (in particular in France), Japan, Republic of Korea and the USA. The most important challenges for fast reactors are in the areas of cost competitiveness with respect to LWRs and other energy sources, enhanced safety, non-proliferation, and public acceptance. With the exception of this latter, these translate into technology development challenges, i.e. the development of advanced reactor

  3. Benchmark tests for fast and thermal reactor applications

    International Nuclear Information System (INIS)

    Seki, Yuji

    1984-01-01

    Integral tests of JENDL-2 library for fast and thermal reactor applications are reviewed including relevant analyses of JUPITER experiments. Criticality and core center characteristics were tested with one-dimensional models for a total of 27 fast critical assemblies. More sofisticated problems such as reaction rate distributions, control rod worths and sodium void reactivities were tested using two-dimensional models for MOZART and ZPPR-3 assemblies. Main observations from the fast core benchmark tests are as follows. 1) The criticality is well predicted; the average C/E value is 0.999+-0.008 for uranium cores and 0.997+-0.005 for plutonium cores. 2) The calculation underpredicts the reaction rate ratio 239 Pusub(fis)/ 235 Usub(fis) by 3% and overpredicts 238 Usub(cap)/ 239 Pusub(fis) by 6%. The results are consistent with those of JUPITER analyses. 3) The reaction rate distributions in the cores of prototype size are well predicted within +-3%. In larger JUPITER cores, however, the C/E value increases with the radial distance from the core center up to 6% at the outer core edge. 4) The prediction of control rod worths is satisfactory; C/E values are within the range from 0.92 to 0.97 with no apparent dependence on 10 B enrichment and the number of control rods inserted. Spatial dependence of C/E is also observed in the JUPITER cores. 5) The sodium void reactivity is overpredicted by 30% to 50% to the positive side. 1) The criticality is well predicted, as is the same in the fast core tests; the average C/E is 0.997+-0.003. 2) The calculation overpredicts 238 Usub(fis)/ 235 Usub(fis) by 3% to 6%, which shows the same tendency as in the small and medium size fast assemblies. The 238 Usub(cap)/ 235 Usub(fis) ratio is well predicted in the thermal cores. The calculated reaction rate ratios of 232 Th deviate from the measurements by 10% to 15%. (author)

  4. Heterogeneous Recycle of Transuranics Fuels in Fast Reactors

    International Nuclear Information System (INIS)

    Hoffman, Edward; Taiwo, Temitope; Hill, Robert

    2008-01-01

    A preliminary physics evaluation of the impacts of heterogeneous recycle using Pu+Np driver and minor actinide target fuel assemblies in fast reactor cores has been performed by comparing results to those obtained for a reference homogeneous recycle core using driver assemblies containing grouped transuranic (TRU) fuel. Parametric studies are performed on the reference heterogeneous recycle core to evaluate the impacts of variations in the pre- and post-separation cooling times, target material type (uranium and non-uranium based), target amount and location, and other parameters on the system performance. This study focused on startup, single-pass cores for the purpose of quantifying impacts and also included comparisons to the option of simply storing the LWR spent nuclear fuel over a 50-year period. An evaluation of homogeneous recycle cores with elevated minor actinide contents is presented to illustrate the impact of using progressively higher TRU content on the core and transmutation performance, as a means of starting with known fuel technology with the aim of ultimately employing grouped TRU fuel in such cores. Reactivity coefficients and safety parameters are presented to indicate that the cores evaluated appear workable from a safety perspective, though more detailed safety and systems evaluations are required. (authors)

  5. Reactor core control device for FBR type reactor

    International Nuclear Information System (INIS)

    Iida, Norihiko

    1991-01-01

    The device of the present invention comprises a control line having a control pump and a control tank for injecting liquids for neutron reflectors to an annular tank disposed in a reactor container, a supply line having a supply pump and a supply tank for supplying the liquids for the reflectors to the control tank, a drain line having a control valve, a drain valve and a drain tank disposed to the annular tank and a make-up line for supplying the liquids for the reflectors from the drain tank to the control tank. Liquids such as water or oil for the neutron reflectors are injected in the annular tank disposed at the periphery of the reactor core to raise the level of the liquids in the tank and conduct burning in the reactor core. The liquid level may be controlled by an appropriate ON/OFF operation of a pump with no requirement for a motor or a driving device at a high accuracy and rotational portions. Periodical maintenances are not necessary. Reactor scram can be conducted only by opening the drain valve and the reflectors may be made of inexpensive materials. (N.H.)

  6. Modular core component support for nuclear reactor

    International Nuclear Information System (INIS)

    Finch, L.M.; Anthony, A.J.

    1975-01-01

    The core of a nuclear reactor is made up of a plurality of support modules for containing components such as fuel elements, reflectors and control rods. Each module includes a component support portion located above a grid plate in a low-pressure coolant zone and a coolant inlet portion disposed within a module receptacle which depends from the grid plate into a zone of high-pressure coolant. Coolant enters the module through aligned openings within the receptacle and module inlet portion and flows upward into contact with the core components. The modules are hydraulically balanced within the receptacles to prevent expulsion by the upward coolant forces. (U.S.)

  7. Risk Management for Sodium Fast Reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Denman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Groth, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cardoni, Jeffrey N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wheeler, Timothy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of self - correcting, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the syste m's design to manage the accident. While inherently and passively safe designs are laudable, extreme boundary conditions can interfere with the design attributes which facilitate inherent safety , thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a beyond design basis seismic event with the intend of exploring two issues : (1) can human intervention either improve or worsen the potential end states and (2) can a Bayes ian Network be constructed to infer the state of the reactor to inform (1). ACKNOWLEDGEMENTS The author s would like to acknowledge the U.S. Department of E nergy's Office of Nuclear Energy for funding this research through Work Package SR - 14SN100303 under the Advanced Reactor Concepts program. The authors also acknowledge the PRA teams at A rgonne N ational L aborator y , O ak R idge N ational L aborator y , and I daho N ational L aborator y for their continue d contributions to the advanced reactor PRA mission area.

  8. Liquid metal tribology in fast breeder reactors

    International Nuclear Information System (INIS)

    Wild, E.; Mack, K.J.; Gegenheimer, M.

    1984-11-01

    Liquid Metal Cooled Fast Breeder Reactors (LMFBR) require mechanisms operating in various sodium liquid and sodium vapor environments for extended periods of time up to temperatures of 900 K under different chemical properties of the fluid. The design of tribological systems in those reactors cannot be based on data and past experience of so-called conventional tribology. Although basic tribological phenomena and their scientific interpretation apply in this field, operating conditions specific to nuclear reactors and prevailing especially in the nuclear part of such facilities pose special problems. Therefore, in the framework of the R and D-program accompanying the construction phase of SNR 300 experiments were carried out to provide data and knowledge necessary for the lay-out of friction systems between mating surfaces of contacting components. Initially, screening tests isolated material pairs with good slipping properties and maximum wear resistance. Those materials were subjected to comprehensive parameter investigations. A multitude of laboratory scale tests have been performed under largely reactor specific conditions. Unusual superimpositions of parameters were analyzed and separated to find their individual influence on the friction process. The results of these experiments were made available to the reactor industry as well as to factories producing special tribo-materials. (orig.) [de

  9. Core Monitoring System for TSN EPR Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, Maxime [AREVA NP SAS, in AREVA Tower, 1 place Jean Millier, 92084 Paris La Defense, (France)

    2015-07-01

    In the context of Chinese (TSN) EPR reactors project, a new on-line support system was introduced to give information, either continuously or upon request, to the plant operators about some advanced physics parameters corresponding to the current state of the nuclear core. This document provides a description of the functions that are available and the advantages provided by using their results. For each function the Human Machine Interface (HMI) is illustrated. (authors)

  10. PC-Reactor-core transient simulation code

    International Nuclear Information System (INIS)

    Nakata, H.

    1989-10-01

    PC-REATOR, a reactor core transient simulation code has been developed for the real-time operator training on a IBM-PC microcomputer. The program presents capabilities for on-line exchange of the operating parameters during the transient simulation, by friendly keyboard instructions. The model is based on the point-kinetics approximation, with 2 delayed neutron percursors and up to 11 decay power generating groups. (author) [pt

  11. Thermal Hydraulic Tests for Reactor Core Safety

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S. K.; Baek, W. P.; Chun, S. Y. (and others)

    2007-06-15

    The main objectives of the present project are to resolve the current issues of reactor core thermal hydraulics, to develop an advanced measurement and analytical techniques, and to perform reactor core safety verification tests. 6x6 reflood experiments, various heat transfer experiments using Freon, and experiments on the spacer grids effects on the post-dryout are carried out using spacer grids developed in Korea in order to resolve the current issues of the reactor core thermal hydraulics. In order to develop a reflood heat transfer model, the detailed reflood phenomena are visualized and measured using round tube and 2x2 rod bundle. A detailed turbulent mixing phenomenon for subchannels is measured using advanced measurement techniques such as LDV and PIV. MARS and MATRA codes developed in Korea are assessed, verified and improved using the obtained experimental data. Finally, a systematic quality assurance program and experimental data generation system has been constructed in order to increase the reliability of the experimental data.

  12. The status of fast reactor technology development in China

    International Nuclear Information System (INIS)

    Xu Mi

    1998-01-01

    The paper will outline the main activities on fast reactor technology in China. In the year 1996, with the increasing of about 15 GWe installed electricity capacity, the total national electricity generation capacity has reached 225 GWe in the Country. Two nuclear power plants, Qinshan Phase 1 and Daya Bay have their rather good operation. The load factor of Qinshan Phase 1 was 84.7%. 76.1% and 64.1% for Daya Bay Unit 1 and Unit 2 respectively. During the Ninth 5-year (from 1996 to 2000) four NPPs Consisting of eight units of installed 6620MWe will be constructed. Under the framework of the High Technology Programme the Chinese Experimental Fast Reactor (CEFR) with the power 65MWth matched with 25MWe turbine-generator is still under preliminary design stage, which is sodium cooled pool type, (Pu,U)O 2 as fuel, in-core primary Went fuel storage, two mechanical pumps and four intermediate heat exchangers for primary circuit two loops for secondary circuits two independent immersed heat exchangers and air coolers with high stacks for passive residual heat removal system. Some design changes are presented in the paper. Concerning the R and D for the CEFR, besides the facilities already prepared, for demonstration of thermohydraulic characteristics of natural convection, a water simulation reactor pool facility in about one third scale is planned, in order to prepare the reactor physics experiments for its start-up, the zero power fast neutron facility with 50kg U-235 has been restored, for endurance testing of core subassemblies and getting some sodium loop operation experiences, Italian ESPRESSO and CEDI are under reconstruction in our lab. As for the engineering preparation of the project CEFR, the Feasibility Study Report was approved by Authorities on November last year. The site preparation and the design of incorporated to grid are just started. Finally, the activities of the international cooperation are presented in the paper. (author)

  13. Minor actinides transmutation performance in a fast reactor

    International Nuclear Information System (INIS)

    Takeda, Toshikazu

    2016-01-01

    Highlights: • A method for calculating MA transmutation for individual nuclides has been proposed by introducing two formulas of the MA transmutation. One corresponds to the difference of MA amounts, and the other corresponds to the sum of the fission amounts and the plutonium production amounts. • Using the method the MA transmutation was calculated for Np-237 and Am-241 in a fast reactor. The burnup period was changed from 1 year to 12 year. • For the 1 year burnup a large amount of Am-242m, Cm-242 are produced from Am-241. The total MA transmutation amount increases with burnup time, but its gradient with respect to burnup time decreases after 9 years, and the transmutation amount by overall fission increases almost linearly with burnup time. • However, after the 6 year burnup the fission contribution became large because of the large production of Pu isotopes from the original Am-241. • In addition to the homogeneous loading of the MA nuclides into the cores, a heterogeneous loading of Am-241 to the blanket region was considered. - Abstract: Results obtained in the project named “Study on Minor Actinides Transmutation using Monju Data”, which has been sponsored by the Ministry of Education, Culture, Sports, Science and Technology in Japan (MEXT) are described. In order to physically understand transmutation of individual MA nuclides in fast reactors, a new method was developed in which the MAs transmutation is interpreted by two formulas. One corresponds to the difference of individual MA nuclides amounts before and after a burnup period, and the other is the sum of amount of fission of a relevant MA nuclide and the net plutonium production from the MA nuclide during a burnup period. The method has been applied to two fast reactors with MA fuels loaded in cores homogeneously and in a blanket region heterogeneously. Numerical results of MA transmutation for the two reactors are shown.

  14. Status of Fast Reactor Research and Technology Development

    International Nuclear Information System (INIS)

    2012-01-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  15. Status of Fast Reactor Research and Technology Development

    International Nuclear Information System (INIS)

    2013-01-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  16. Analysis of fuel sodium interaction in a fast breeder reactor

    International Nuclear Information System (INIS)

    Tezuka, M.; Suzuki, K.; Sasanuma, K.; Nagasima, K.; Kawaguchi, O.

    A code ''SUGAR'' has been developed to evaluate molten Fuel Sodium Interaction (FSI) in a fast breeder reactor. This code computes thermohydrodynamic behavior by heat transfer from fuel to sodium and dynamic deformation of reactor structures simultaneously. It was applied to evaluate FSI in local fuel melting accident in a fuel assembly and in core disassembly accident for the 300MWe fast breeder reactor under development in Japan. The analytical methods of the SUGAR code are mainly shown in the following: 1) the thermal and dynamic model of FSI is mainly based on Cho-Wright's model; 2) the axial and radial expansions of surroundings of FSI region are calculated with one-dimensional and compressive hydrodynamics equation; 3) the structure response is calculated with one-dimensional and dynamic stress equation. Our studies show that mass of fuel interacted with sodium, ratio of fuel mass to sodium mass, fuel particle size, heat transfer coefficient from fuel to sodium, and structure's force have great effect on pressure amplitude and deformation of reactor structures

  17. Simplified simulation of an experimental fast reactor plant

    International Nuclear Information System (INIS)

    Fujii, Masaaki; Fujita, Minoru.

    1978-01-01

    Purposes of the simulation are to study the dynamic behavior of a liquid metal-cooled experimental fast breeder reactor plant and to design the control system of the reactor plant by modified-RAPID (Reactor and Plant Integrated Dynamics) computer program. As for the plant model, the Japan Experimental Fast Reactor ''Joyo'' was referred to approximately. This computer program is designed for the calculation of steady-state and transient temperatures in a FBR plant; which is described by a model consisting of the core, upper and lower plenums, an intermediate heat exchanger, an air dump heat exchanger, primary-secondary and tertiary coolant systems and connecting pipes. The basic equations are solved numerically by finite difference approximation. The mathematical model for an experimental FBR plant is useful for the design of the control system of FBR plants. The results of numerical simulation showed that the proportional change in the flow rates of the primary and secondary coolant loops provides good performance in relation to the stepped change in the power level. (J.P.N.)

  18. Delayed gamma power measurement for sodium-cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, R., E-mail: romain.coulon@cea.f [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Normand, S., E-mail: stephane.normand@cea.f [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Ban, G., E-mail: ban@lpccaen.in2p3.f [ENSICAEN, 6 Boulevard Marechal Juin, F-14050 Caen Cedex 4 (France); Barat, E.; Montagu, T.; Dautremer, T. [CEA, LIST, Laboratoire Modelisation Simulation et Systemes, F-91191 Gif-sur-Yvette (France); Brau, H.-P. [ICSM, Centre de Marcoule, BP 17171 F-30207 Bagnols sur Ceze (France); Dumarcher, V. [AREVA NP, SET, F-84500 Bollene (France); Michel, M.; Barbot, L.; Domenech, T.; Boudergui, K.; Bourbotte, J.-M. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Jousset, P. [CEA, LIST, Departement des Capteurs, du Signal et de l' Information, F-91191 Gif-sur-Yvette (France); Barouch, G.; Ravaux, S.; Carrel, F. [CEA, LIST, Laboratoire Modelisation Simulation et Systemes, F-91191 Gif-sur-Yvette (France); Saurel, N. [CEA, DAM, Laboratoire Mesure de Dechets et Expertise, F-21120 Is-sur-Tille (France); Frelin-Labalme, A.-M.; Hamrita, H. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France)

    2011-01-15

    Graphical abstract: Display Omitted Research highlights: {sup 20}F and {sup 23}Ne tagging agents are produced by fast neutron flux. {sup 20}F signal has been measured at the SFR Phenix prototype. A random error of only 3% for an integration time of 2 s could be achieved. {sup 20}F and {sup 23}Ne power measurement has a reduced temperature influence. Burn-up impact could be limited by simultaneous {sup 20}F and {sup 23}Ne measurement. - Abstract: Previous works on pressurized water reactors show that the nitrogen 16 activation product can be used to measure thermal power. Power monitoring using a more stable indicator than ex-core neutron measurements is required for operational sodium-cooled fast reactors, in order to improve their economic efficiency at the nominal operating point. The fluorine 20 and neon 23 produced by (n,{alpha}) and (n,p) capture in the sodium coolant have this type of convenient characteristic, suitable for power measurements with low build-up effects and a potentially limited temperature, flow rate, burn-up and breeding dependence. This method was tested for the first time during the final tests program of the French Phenix sodium-cooled fast reactor at CEA Marcoule, using the ADONIS gamma pulse analyzer. Despite a non-optimal experimental configuration for this application, the delayed gamma power measurement was pre-validated, and found to provide promising results.

  19. Simplified procedures for fast reactor fuel cycle and sensitivity analysis

    International Nuclear Information System (INIS)

    Badruzzaman, A.

    1979-01-01

    The Continuous Slowing Down-Integral Transport Theory has been extended to perform criticality calculations in a Fast Reactor Core-blanket system achieving excellent prediction of the spectrum and the eigenvalue. The integral transport parameters did not need recalculation with source iteration and were found to be relatively constant with exposure. Fuel cycle parameters were accurately predicted when these were not varied, thus reducing a principal potential penalty of the Intergal Transport approach where considerable effort may be required to calculate transport parameters in more complicated geometries. The small variation of the spectrum in the central core region, and its weak dependence on exposure for both this region, the core blanket interface and blanket region led to the extension and development of inexpensive simplified procedures to complement exact methods. These procedures gave accurate predictions of the key fuel cycle parameters such as cost and their sensitivity to variation in spectrum-averaged and multigroup cross sections. They also predicted the implications of design variation on these parameters very well. The accuracy of these procedures and their use in analyzing a wide variety of sensitivities demonstrate the potential utility of survey calculations in Fast Reactor analysis and fuel management

  20. Neutron flux shape effects in large fast reactor safety calculations

    International Nuclear Information System (INIS)

    Galati, A.; Loizzo, P.; Musco, A.

    1978-01-01

    Three classes of accidents in a large fast reactor were studied by the two-dimensional core dynamics code NADYP-2. A Modified version of the code, including a point kinetics module, allowed comparison between 2D and 0D power, reactivity and temperature histories. A strong shape effect was evidenced by these calculations in the boiling phase of LOF accidents as well as in the accident generated by control rod removal. Some future possibilities of by passing the consequences of this effect are indicated

  1. Technical feasibility study of 60 MWe fast reactor concept: RAPID

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Ueda, Nobuyuki; Uotani, Masaki

    1993-01-01

    A study has been performed on the passive safety features and technical feasibility of an inherently safe 60 MWe fast reactor concept RAPID to meet various power requirements in Japan. The system dynamic analyses on the UTOP and ULOF transients revealed that the enhanced reactivity feedback derived from an annular core configuration and the integrated fuel assembly provides a high margin of self-protection. Structural integrity of the integrated fuel assembly has also been confirmed. The following innovative key technologies have been demonstrated; Lithium Injection Modules (LIM) for ultimate shutdown, Lithium Expansion Modulus (LEM) for inherent reactivity feedback and Void Leading Channel (VLC) for the sodium void worth reduction. (author)

  2. Statistical treatment of the thermal behaviour of fast reactor fuel

    International Nuclear Information System (INIS)

    Russo, S.; Truffert, J.; Martella, T.; Marbach, G.

    1981-08-01

    In a sodium cooled fast reactor, fuel temperature is an important parameter acting on main characteristics of the project on fuel element and core behaviour. This parameter is important to define boundary conditions of fuel element utilisation. A method of statistical evaluation of temperature and of temperature increase higher than a given value is presented. This evaluation is obtained in the FIEVRE code by a combination of incertainties by means of a Monte Carlo optimized method. An application of FIEVRE code is presented in the case of Rapsodie-Fortissimo fuel at the beginning of refueling at nominal conditions without transient [fr

  3. Technical committee meeting on evaluation of radioactive materials release and sodium fires in fast reactors

    International Nuclear Information System (INIS)

    1996-01-01

    The objectives of the Technical Committee Meeting was to review the activities of research on radioactive materials release and sodium fires in fast reactors in each of the participating countries. It covered: out-of-pile experiments and analysis codes on source term; in-pile experiments on source term; core disruptive accidents; sodium leak experience in liquid metal fast reactors; evaluation of sodium fire; and aerosol behaviour

  4. A design study of high electric power for fast reactor cooled by supercritical light water

    Energy Technology Data Exchange (ETDEWEB)

    Koshizuka, Seiichi [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab

    2000-03-01

    In order to evaluate the possibility to achieve high electric power by a fast reactor with supercritical light water, the design study was carried out on a large fast reactor core with high coolant outlet temperature (SCFR-H). Since the reactor coolant circuit uses once-through direct cycle where all feedwater flows through the core to the turbine at supercritical pressure, it is possible to design much simpler and more compact reactor systems and to achieve higher thermal efficiency than those of current light water reactors. The once-through direct cycle system is employed in current fossil-fired power plants. In the present study, three types of core were designed. The first is SCFR-H with blankets cooled by ascending flow, the second is SCFR-H with blankets cooled by descending flow and the third is SCFR-H with high thermal power. Every core was designed to achieve the thermal efficiency over 43%, positive coolant density reactivity coefficient and electric power over 1600 MW. Core characteristics of SCFR-Hs were compared with those of SCLWR-H (electric power: 1212 MW), which is a thermal neutron spectrum reactor cooled and moderated by supercritical light water, with the same diameter of the reactor pressure vessel. It was shown that SCFR-H could increase the electric power about 1.7 times maximally. From the standpoint of the increase of a reactor thermal power, a fast reactor has advantages as compared with a thermal neutron reactor, because it can increase the power density by adopting tight fuel lattices and eliminating the moderator region. Thus, it was concluded that a reactor cooled by supercritical light water could further improve the cost competitiveness by using a fast neutron spectrum and achieving a higher thermal power. (author)

  5. Rapid-L Operator-Free Fast Reactor Concept Without Any Control Rods

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Iwamura, Takamichi

    2003-01-01

    The 200-kW(electric) uranium-nitride-fueled lithium-cooled fast reactor concept 'RAPID-L' to achieve highly automated reactor operation has been demonstrated. RAPID-L is designed for a lunar base power system. It is one of the variants of the RAPID (Refueling by All Pins Integrated Design) fast reactor concept, which enables quick and simplified refueling. The essential feature of the RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small-size reactor core, 2700 fuel pins are integrated and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 yr.Unique challenges in reactivity control systems design have been addressed in the RAPID-L concept. The reactor has no control rod but involves the following innovative reactivity control systems: lithium expansion modules (LEM) for inherent reactivity feedback, lithium injection modules (LIM) for inherent ultimate shutdown, and lithium release modules (LRM) for automated reactor startup. All these systems adopt 6 Li as a liquid poison instead of B 4 C rods. In combination with LEMs, LIMs, and LRMs, RAPID-L can be operated without an operator. This reactor concept is also applicable to the terrestrial fast reactors. In this paper, the RAPID-L reactor concept and its transient characteristics are presented

  6. Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the TM on “Liquid metal reactor concept: core design and structural materials” was to present and discuss innovative liquid metal fast reactor (LMFR) core designs with special focus on the choice, development, testing and qualification of advanced reactor core structural materials. Main results arising from national and international R&D programmes and projects in the field were reviewed, and new activities to be carried out under the IAEA aegis were identified on the basis of the analysis of current research and technology gaps

  7. Reactor core and control rod assembly in FBR type reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi.

    1993-01-01

    Fuel assemblies and control rod assemblies are attached respectively to reactor core support plates each in a cantilever fashion. Intermediate spacer pads are disposed to the lateral side of a wrapper tube just above the fuel rod region. Intermediate space pads are disposed to the lateral side of a control rod guide tube just above a fuel rod region. The thickness of the intermediate spacer pad for the control rod assembly is made smaller than the thickness of the intermediate spacer pad for the fuel assembly. This can prevent contact between intermediate spacer pads of the control guide tube and the fuel assembly even if the temperature of coolants is elevated to thermally expand the intermediate spacer pad, by which the radial displacement amount of the reactor core region along the direction of the height of the control guide tube is reduced substantially to zero. Accordingly, contribution of the control rod assembly to the radial expansion reactivity can be reduced to zero or negative level, by which the effect of the negative radial expansion reactivity of the reactor is increased to improve the safety upon thermal transient stage, for example, loss of coolant flow rate accident. (I.N.)

  8. Fast critical experiment data for space reactors

    International Nuclear Information System (INIS)

    Collins, P.J.; McFarlane, H.F.; Olsen, D.N.; Atkinson, C.A.; Ross, J.R.

    1987-01-01

    Data from a number of previous critical experiments exist that are relevant to the design concepts being considered for SP-100 and MMW space reactors. Although substantial improvements in experiment techniques have since made some of the measured quantities somewhat suspect, the basic criticality data are still useful in most cases. However, the old experiments require recalculation with modern computational methods and nuclear cross section data before they can be applied to today's designs. Recently, we have calculated about 20 fast benchmark critical experiments with the latest ENDF/B data and modern transport codes. These calculations were undertaken as a part of the planning process for a new series of benchmark experiments aimed at supporting preliminary designs of SP-100 and MMW space reactors

  9. Progress report on fast breeder reactor development in Japan

    International Nuclear Information System (INIS)

    1979-01-01

    The experimental fast reactor ''Joyo'' will be tested at 75 MW output, starting in April, 1980. In connection with the accident in the Three Mile Island plant, the reexamination of the plant safety and the rechecking-up of the maintenance control system were carried out, and the special inspection by the Science and Technology Agency was executed from May 21 to 23, 1979. Thereafter, the preparation for raising the power output was completed. The periodical inspection after the completion of 50 MW operation is being carried out. The state of progress of various equipments and the codes for core characteristic analysis is reported. The construction preliminary design (2) of the prototype reactor ''Monju'' is examined, and the same design (3) is prepared. The analysis of the decay heat in the prototype reactor is carried on for the safety licensing. The technological investigation of LMFBRs in foreign countries is under way. The preliminary design (4) of the demonstration reactor is under examination, and the technical specifications of the conceptual design (1) are prepared. The researches and developments of reactor physics, structural components, instrumentation and control, sodium technology, fuel materials, structures and materials, safety and steam generators are reported. (Kako, I.)

  10. Feasibility of a novel approach for fast, economical determination of radiation damage in nuclear reactor cores. Final report, November 1, 1992--October 31, 1996

    International Nuclear Information System (INIS)

    Was, G.S.

    1997-06-01

    The objective of this program was to verify that proton irradiation can be used to study neutron irradiation effects in light water reactors, and to use protons to gain a better understanding of the IASCC problem. The objective was met by studying the role of proton irradiation in three physical phenomena; radiation induced segregation (RIS), microstructure evolution and stress corrosion cracking. RIS studies showed that the diffusivities of the major alloying elements of austenitic stainless steels, Fe, Cr and Ni, are composition dependent which affects the amount of grain boundary segregation, ordering strongly affects segregation in austenitic iron- and nickel-base alloys, and the mechanism of RIS in Fe-Cr-Ni alloys is the inverse Kirkendall effect, specifically the coupling between alloying elements and the vacancy flux. The result of this work was the formulation of an improved, or modified inverse Kirkendall model which accounts for composition-dependent diffusion parameters which provides it with a significant improvement in the ability to predict grain boundary compositions in irradiated alloys. The microstructure and deformation study showed that proton irradiation results in the formation of dislocation channels upon subsequent straining at 288 degrees C. This is consistent with results for neutron irradiation. These channels concentrate slip into localized sets of slip planes. However, by themselves, they cannot induce intergranular cracking. An aggressive environment is required for IG crack formation

  11. Analysis of a sustainable gas cooled fast breeder reactor concept

    International Nuclear Information System (INIS)

    Kumar, Akansha; Chirayath, Sunil S.; Tsvetkov, Pavel V.

    2014-01-01

    Highlights: • A Thorium-GFBR breeder for actinide recycling ability, and thorium fuel feasibility. • A mixture of 232 Th and 233 U is used as fuel and LWR used fuel is used. • Detailed neutronics, fuel cycle, and thermal-hydraulics analysis has been presented. • Run this TGFBR for 20 years with breeding of 239 Pu and 233 U. • Neutronics analysis using MCNP and Brayton cycle for energy conversion are used. - Abstract: Analysis of a thorium fuelled gas cooled fast breeder reactor (TGFBR) concept has been done to demonstrate the self-sustainability, breeding capability, actinide recycling ability, and thorium fuel feasibility. Simultaneous use of 232 Th and used fuel from light water reactor in the core has been considered. Results obtained confirm the core neutron spectrum dominates in an intermediate energy range (peak at 100 keV) similar to that seen in a fast breeder reactor. The conceptual design achieves a breeding ratio of 1.034 and an average fuel burnup of 74.5 (GWd)/(MTHM) . TGFBR concept is to address the eventual shortage of 235 U and nuclear waste management issues. A mixture of thorium and uranium ( 232 Th + 233 U) is used as fuel and light water reactor used fuel is utilized as blanket, for the breeding of 239 Pu. Initial feed of 233 U has to be obtained from thorium based reactors; even though there are no thorium breeders to breed 233 U a theoretical evaluation has been used to derive the data for the source of 233 U. Reactor calculations have been performed with Monte Carlo radiation transport code, MCNP/MCNPX. It is determined that this reactor has to be fuelled once every 5 years assuming the design thermal power output as 445 MW. Detailed analysis of control rod worth has been performed and different reactivity coefficients have been evaluated as part of the safety analysis. The TGFBR concept demonstrates the sustainability of thorium, viability of 233 U as an alternate to 235 U and an alternate use for light water reactor used fuel as a

  12. Chemistry for fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Vasudeva Rao, P.R.

    2011-01-01

    The fuel cycle for the fast reactors poses several challenging chemistry issues. The use of fuels with high plutonium content, the variety of fuel matrices (oxides, carbides, metal alloys), the high burn-up to which the fuel is driven and the need to close the fuel cycle with minimum out-of-pile inventory are examples of special features of fast reactors. The need to reduce waste generation and the need to identify matrices for safe long term disposal of waste are additional issues that need a chemist's attention. As a chemist, the subject of actinide separations has been very stimulating to me, with a myriad of interesting possibilities and at the same time, demanding careful attention to the unique chemistry of the actinides including multiplicity of oxidation states. The presence of high concentrations of plutonium in the reprocessing streams introduces issues such as third phase formation, which provides an incentive for the development of candidates for solvent extraction as alternatives to tri-n-butyl phosphate, currently used for the Purex reprocessing scheme. With the advent of supercritical fluid extraction as a tool for actinide recovery from a variety of matrices, and the potential of room temperature ionic liquids to offer significant advantages in actinide processing, actinide separations is an element of fast reactor fuel cycle that is full of opportunities and challenges. The need to process metallic alloy fuels using molten salt electrorefining as the route, adds further to the challenges. The presentation will highlight some of the recent progress achieved in this area at IGCAR. (author)

  13. The Argentine-Brazilian fast reactor programme

    International Nuclear Information System (INIS)

    Gho, C.J.; Mauricio, A.

    1989-01-01

    This paper summarizes the Argentine-Brazilian Fast Reactor Programme and gives reasons for the decision of a binational venture. The work carried out by both countries is described, showing how they complement each other, with the corresponding saving of resources. The main objectives of the Programme and tentative schedules in three progressing integrating stages are given and the present nuclear know-how in each country is identified as a good starting point. The paper also gives some details regarding the economical and human resources involved. (author). 1 graph

  14. GENIUS & the Swedish Fast Reactor programme

    International Nuclear Information System (INIS)

    Wallenius, Janne

    2012-01-01

    Concluding remarks: Sweden’s growing fast reactor programme focuses on LFR technology, but we also participate in ASTRID. • An innovative facility for UN fabrication, an LBE thermal hydraulics loop and a lead corrosion facility are operational. • A plutonium fuel fabrication lab is is under installation (this week!) • The government is assessing the construction of ELECTRA-FCC, a centre for Gen IV-system R&D, at a tentative cost of ~ 140±20 M€. • Location: Oskarshamn (adjacent to intermediate repository) • Date of criticality: 2023 (best case) • Swedish participation in IAEA TWG-FR should intensify

  15. Integral Fast Reactor fuel pin processor

    International Nuclear Information System (INIS)

    Levinskas, D.

    1993-01-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves

  16. Neutronic design of a traveling wave reactor core

    International Nuclear Information System (INIS)

    Lopez S, R. C.; Francois L, J. L.

    2010-10-01

    The traveling wave reactor is an innovative kind of fast breeder reactor, capable of operate for decades without refueling and whose operation requires only a small amount of enriched fuel for the ignition. Also, one of its advantages is its versatility; it can be designed as small modules of about 100 M We or large scale units of 1000 M We. In this paper the behaviour of the traveling wave reactor core is studied in order to determine whether the traveling breeding/burning wave moves (as theoretically predicted) or not. To achieve this, we consider a two pieces cylinder, the first one, the ignition zone, containing highly enriched fuel and the second, the breeding zone, which is the larger, containing natural or depleted uranium or thorium. We consider that both zones are homogeneous mixtures of fuel, sodium as coolant and iron as structural material. We also include a reflector material outside the cylinder to reduce the neutron leakages. Simulations were run with MCNPX version 2.6 code. We observed that the wave does move as time passes as predicted by theory, and reactor remains supercritical in the time we have simulated (3000 days). Also, we found that thorium does not perform as well as uranium for breeding in this type of reactor. Further test with different reflectors are planned for both U-Pu and Th-U fuel cycles. (Author)

  17. Structural dynamics in fast reactor accident analysis

    International Nuclear Information System (INIS)

    Fistedis, S.H.

    1975-01-01

    Analyses and codes are under development combining the hydrodynamics and solid mechanics (and more recently the bubble dynamics) phenomena to gage the stresses, strains, and deformations of important primary components, as well as the overall adequacy of primary and secondary containments. An arbitrary partition of the structural components treated evolves into (1) a core mechanics effort; and (2) a primary system and containment program. The primary system and containment program treats the structural response of components beyond the core, starting with the core barrel. Combined hydrodynamics-solid mechanics codes provide transient stresses and strains and final deformations for components such as the reactor vessel, reactor cover, cover holddown bolts, as well as the pulses for which the primary piping system is to be analyzed. Both, Lagrangian and Eulerian two-dimensional codes are under development, which provide greater accuracy and longer durations for the treatment of HCDA. The codes are being augmented with bubble migration capability pertaining to the latter stages of the HCDA, after slug impact. Recent developments involve the adaptation of the 2-D Eulerian primary system code to the 2-D elastic-plastic treatment of primary piping. Pulses are provided at the vessel-primary piping interfaces of the inlet and outlet nozzles, calculation includes the elbows and pressure drops along the components of the primary piping system. Recent improvements to the primary containment codes include introduction of bending strength in materials, Langrangian mesh regularization techniques, and treatment of energy absorbing materials for the slug impact. Another development involves the combination of a 2-D finite element code for the reactor cover with the hydrodynamic containment code

  18. Particular characteristics of fast reactors: functional aspects and technological aspects

    International Nuclear Information System (INIS)

    Cazalet, M.; Marbach, M.; Debru, M.; Decuyper, M.

    1981-12-01

    From the overall studies it is possible favourably to envisage the operation of fast reactors with respect to the requirements of the network. The thermal stresses of the structures and of the fuel resulting from keeping up with network demand are, in point of fact, limited in amplitude and variation speed owing to the significant masses of sodium around the core in particular. The spatial deformations of the neutron flux do not present the difficulties found in thermal reactors, nor is there any problem linked to xenon poisoning. The uncertainties remaining on the long term effects of network follow-up operation, do, however, require research and development in greater depth on the fuel elements in particular once they have reached a high irradiation rate [fr

  19. Status of liquid metal cooled fast reactor technology

    International Nuclear Information System (INIS)

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants

  20. Examination of core components removed from CANDU reactors

    International Nuclear Information System (INIS)

    Cheadle, B.A.; Coleman, C.E.; Rodgers, D.K.; Davies, P.H.; Chow, C.K.; Griffiths, M.

    1988-11-01

    Components in the core of a nuclear reactor degrade because the environment is severe. For example, in CANDU reactors the pressure tubes must contend with the effects of hot pressurised water and damage by a flux of fast neutrons. To evaluate any deterioration of components and determine the cause of the occasional failure, we have developed a wide range of remote-handling techniques to examine radioactive materials. As well as pressure tubes, we have examined calandria tubes, garter springs, end fittings, liquid-zone control units and flux detectors. The results from these examinations have produced solutions to problems and continually provide information to help understand the processes that may limit the lifetime of a component

  1. Identification of a nuclear reactor core (VVER) using recurrent neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Boroushaki, M. E-mail: boroushaki@mehr.sharif.ac.ir; Ghofrani, M.B.; Lucas, C

    2002-07-01

    Recurrent neural networks (RNNs) in identification of complex nonlinear plants like nuclear reactor core, have difficulty in learning long-term dynamics. Therefore, in most papers in this area, the reactor core is used to identify just the short-term dynamics. In this paper we used a multi-NARX (nonlinear autoregressive with exogenous inputs) structure, including neural networks with different time steps and a heuristic compound learning method, consisting of off-line and on-line batch learnings. This multi-NARX was trained by an accurate 3-dimensional core calculation code. Network responses show that this procedure solves the difficulty in identification of complex nonlinear dynamic MIMO (multi-input multi-output) plants like nuclear reactor core, and can be used in fast prediction of nuclear reactor core dynamics behavior.

  2. In core system mapping reactor power distribution

    International Nuclear Information System (INIS)

    Yoriyaz, H.; Moreira, J.M.L.

    1989-01-01

    Based on the signals of SPND'S (Self Powered Neutron Detectors) distributed inside of a core, the spatial power distribution is obtained using the MAP program, developed in this work. The methodology applied in MAP program uses a least mean square technique to calculate expansion coefficients that depend on the SPND'S signals. The final power or neutron flux distribution is obtained by a combination of certains functions or expansion modes that are provided from diffusion calculation with the CITATION code. The MAP program is written in PASCAL language and will be used in IEA-R1 reactor for assisting its operation. (author) [pt

  3. Research activities on fast reactors in Switzerland

    International Nuclear Information System (INIS)

    Brogli, R.; Dones, R.; Hudina, M.; Pelloni, S.

    1996-01-01

    The current domestic Swiss electricity supply is primarily based on hydro power (approximately 61%) and nuclear power (about 37%). The contribution of fossil systems is, consequently, minimal (the remaining 2%). In addition, long-term (but limited in time) contracts exist, securing imports of electricity of nuclear origin from France. During the last two years, the electricity consumption has been almost stagnant, although the 80s recorded an average annual increase rate of 2.7%. The future development of the electricity demand is a complex function of several factors with possibly competing effects, like increased efficiency of applications, changes in the industrial structure of the country, increase of population, further automation of industrial processes and services. Due to decommissioning of the currently operating nuclear power plants and expiration of long-term electricity import contracts there will eventually open a gap between the postulated electricity demand and the base supply. The assumed projected demand cases, high and low, as well as the secured yearly electric energy supply are shown. The physics aspects of plutonium burning fast reactor configurations are described including first results of the CIRANO experimental program. Swiss research related to residual heat removal in fast breeder reactors is presented. It consists of experimental ana analytic investigations on the mixing between two horizontal fluid layers of different velocities and temperatures. Development of suitable computer codes for mixing layer calculation are aimed to accurately predict the flow and temperature distribution in the pools. A satisfactory codes validation based on experimental data should be done

  4. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  5. Closed Loop In-Reactor Assembly (CLIRA): a fast flux test facility test vehicle

    International Nuclear Information System (INIS)

    Oakley, D.J.

    1978-01-01

    The Closed Loop In-Reactor Assembly (CLIRA) is a test vehicle for in-core material and fuel experiments in the Fast Flux Test Facility (FFTF). The FFTF is a fast flux nuclear test reactor operated for the Department of Energy (DOE) by Westinghouse Hanford Company in Richland, Washington. The CLIRA is a removable/replaceable part of the Closed Loop System (CLS) which is a sodium coolant system providing flow and temperature control independent of the reactor coolant system. The primary purpose of the CLIRA is to provide a test vehicle which will permit testing of nuclear fuels and materials at conditions more severe than exist in the FTR core, and to isolate these materials from the reactor core

  6. Status of National Programmes on Fast Breeder Reactors. International Working Group on Fast Reactors Twenty-First Annual Meeting, Seattle, USA, 9-12 May 1988

    International Nuclear Information System (INIS)

    1988-11-01

    The following papers on the status of national programmes on fast breeder reactors are presented in this report: Fast breeder reactor development in France during 1987; Status of fast breeder reactor development in the Federal Republic of Germany, Belgium and the Netherlands; A review of the Indian fast reactor programme; A review of the Italian fast reactor programme; A review of the fast reactor programme in Japan; Status of fast reactor activities in the USSR; A review of the United Kingdom fast reactor programme; Status of liquid metal reactor development in the United States of America; Review of activities of the Commission of European Communities relating to fast reactors in 1987; European co-operation in the field of fast reactor research and development — 1987 progress report; A review of fast reactor activities in Switzerland

  7. Sloshing and fluid-structure interaction in a 400-MWe pool-type advanced fast reactor

    International Nuclear Information System (INIS)

    Ma, D.C.; Gvildys, J.; Chang, Y.W.

    1987-01-01

    This paper describes the seismic analysis of a 400-MWe advanced fast reactor under 0.3 g SSE ground excitation. Two types of analyses are performed - the sloshing analysis and the fluid-structure interaction analysis. In the sloshing analysis, the sloshing frequency and wave patterns are calculated. The maximum wave height and the sloshing forces exerted on the submerged components and the primary tank are evaluated. In the fluid-structure interaction analysis, the maximum horizontal acceleration for the reactor core and the relative displacement between the reactor core and UIS are examined. The fluid-coupling phenomena between various components are investigated. Seismic stresses at critical areas are examined. The results obtained from this study are very useful to the design of the advanced reactors. Meanwhile, the computer code FLUSTR-ANL has proved to be a useful analytical tool for assessing the complicated seismic fluid-structure interactions and sloshing in the fast reactor systems. 10 refs., 25 figs

  8. Safety instrumentation for the sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Hall, R.S.

    1975-01-01

    The particular safety problems of the fast reactor and the role of instrumented protection in relation to the overall safety design of the reactor are discussed. The importance of the accident sequence arising from a fault within one subassembly is indicated, and the physical phenomena involved are discussed with regard to the generation of detectable signals. Several possible techniques for detecting subassembly accidents are described, including those with detectors situated at the outlet of each subassembly and also those involving whole-core parameters. Reference is made to the way in which types of instruments would have to be combined to give a high degree of protection to the system, the actual protection required being dependent on the overall safety intentions. Attention is drawn to the problems of minimizing the spurious trip rate for a well-instrumented reactor, which lead to stringent requirements on instrument reliability and/or replaceability. The possible role of the computer in handling the multiplicity of complex signals is mentioned, together with the problems that have to be solved before this can be done. It is concluded that satisfactory instrument protection is available for whole-core faults, but with regard to subassembly fault detection the situation is less clear. Although some information is available for guidance on the instruments and their specifications, the justification and achievability of the latter are dependent on development work that is still proceeding. It may well be that uncertainties concerning the effects of the reactor environment will require that some of this work take the form of in-reactor experiments. (auth)

  9. Irradiation Testing Vehicles for Fast Reactors from Open Test Assemblies to Closed Loops

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, Christopher [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-15

    A review of irradiation testing vehicle approaches and designs that have been incorporated into past Sodium-Cooled Fast Reactors (SFRs) or envisioned for incorporation has been carried out. The objective is to understand the essential features of the approaches and designs so that they can inform test vehicle designs for a future U.S. Fast Test Reactor. Fast test reactor designs examined include EBR-II, FFTF, JOYO, BOR-60, PHÉNIX, JHR, and MBIR. Previous designers exhibited great ingenuity in overcoming design and operational challenges especially when the original reactor plant’s mission changed to an irradiation testing mission as in the EBRII reactor plant. The various irradiation testing vehicles can be categorized as: Uninstrumented open assemblies that fit into core locations; Instrumented open test assemblies that fit into special core locations; Self-contained closed loops; and External closed loops. A special emphasis is devoted to closed loops as they are regarded as a very desirable feature of a future U.S. Fast Test Reactor. Closed loops are an important technology for irradiation of fuels and materials in separate controlled environments. The impact of closed loops on the design of fast reactors is also discussed in this report.

  10. Model biases in high-burnup fast reactor simulations

    International Nuclear Information System (INIS)

    Touran, N.; Cheatham, J.; Petroski, R.

    2012-01-01

    A new code system called the Advanced Reactor Modeling Interface (ARMI) has been developed that loosely couples multiscale, multiphysics nuclear reactor simulations to provide rapid, user-friendly, high-fidelity full systems analysis. Incorporating neutronic, thermal-hydraulic, safety/transient, fuel performance, core mechanical, and economic analyses, ARMI provides 'one-click' assessments of many multi-disciplined performance metrics and constraints that historically require iterations between many diverse experts. The capabilities of ARMI are implemented in this study to quantify neutronic biases of various modeling approximations typically made in fast reactor analysis at an equilibrium condition, after many repetitive shuffles. Sensitivities at equilibrium that result in very high discharge burnup are considered ( and >20% FIMA), as motivated by the development of the Traveling Wave Reactor. Model approximations discussed include homogenization, neutronic and depletion mesh resolution, thermal-hydraulic coupling, explicit control rod insertion, burnup-dependent cross sections, fission product model, burn chain truncation, and dynamic fuel performance. The sensitivities of these approximations on equilibrium discharge burnup, k eff , power density, delayed neutron fraction, and coolant temperature coefficient are discussed. (authors)

  11. Core arrangement in BWR type reactors

    International Nuclear Information System (INIS)

    Asano, Masayuki.

    1981-01-01

    Purpose: To decrease the number of fuel assemblies whose locations are to be changed upon fuel exchange, as well as unify the power distribution in the core by arranging, in a chess board configuration, a plurality pattern of unit reactor lattices each containing fuel assemblies of different burnup degrees in orthogonal positions to each other. Constitution: A first pattern of unit reactor lattice is formed by disposing fuel assemblies of burnup degree 1 and fuel assemblies of burnup degree 3 at orthogonal positions to each other. A second pattern of unit reactor lattice is formed by disposing fuel assemblies of burnup degree 2 and fuel assemblies of burnup degree 1 at orthogonal positions to each other. The unit lattices each in such a dispositions are arranged in a chess board arrangement. Since, the fuel assemblies of the burnup degree 1 in the first pattern unit lattices proceed to the burnup degree 2 and the fuel assemblies of the burnup degree 2 in the second pattern unit lattices proceed to the burnup degree 3 up to the fuel exchange stage, fuel exchange and movement have only to be made, not for those fuel assemblies, but for another half of the fuel assemblies. (Kawakami, Y.)

  12. Performance of metallic fuels in liquid-metal fast reactors

    International Nuclear Information System (INIS)

    Seidel, B.R.; Walters, L.C.; Kittel, J.H.

    1984-01-01

    Interest in metallic fuels for liquid-metal fast reactors has come full circle. Metallic fuels are once again a viable alternative for fast reactors because reactor outlet temperature of interest to industry are well within the range where metallic fuels have demonstrated high burnup and reliable performance. In addition, metallic fuel is very tolerant of off-normal events of its high thermal conductivity and fuel behavior. Futhermore, metallic fuels lend themselves to compact and simplified reprocessing and refabrication technologies, a key feature in a new concept for deployment of fast reactors called the Integral Fast Reactor (IFR). The IFR concept is a metallic-fueled pool reactor(s) coupled to an integral-remote reprocessing and fabrication facility. The purpose of this paper is to review recent metallic fuel performance, much of which was tested and proven during the twenty years of EBR-II operation

  13. Direct Energy Conversion for Fast Reactors

    International Nuclear Information System (INIS)

    Brown, N.; Cooper, J.; Vogt, D.; Chapline, G.; Turchi, P.; Barbee Jr., T.; Farmer, J.

    2000-01-01

    Strategic Computing Initiative (ASCI), should improve the speed and decrease the cost of developing new TEGs. The system concept to be evaluated is shown in Figure 1. Liquid metal is used to transport heat away from the nuclear heat source and to the TEG. Air or liquid (water or a liquid metal) is used to transport heat away from the cold side of the TEG. Typical reactor coolants include sodium or eutectic mixtures of lead-bismuth. These are coolants that have been used to cool fast neutron reactors. Heat from the liquid metal coolant is rejected through the thermal electric materials, thereby producing electrical power directly. The temperature gradient could extend from as high as 1300 K to 300 K, although fast reactor structural materials (including those used to clad the fuel) currently used limit the high temperature to about 825K

  14. A contribution to the method of fast reactor thermal output calculation

    International Nuclear Information System (INIS)

    Harant, M.

    1978-01-01

    The method of stating the heat sources is discussed as being one of the factors influencing the accuracy of the thermal output calculation of fast reactors. The distribution of heat sources in the core and in other inner parts of the fast reactor is described using the least square fit method. Relations are derived of outputs of both individual components of fuel elements and of whole inner parts of the reactor. A comparison is made of various methods used for obtaining source integrals. The optimum integration method was found. (author)

  15. European lead fast reactor (ELSY and LEADER projects)

    International Nuclear Information System (INIS)

    Alemberti, Alessandro; Carlsson, Johan; Malambu, Edouard; Orden, Alfredo; Cinotti, Luciano; Struwe, Dankward; Agostini, Pietro; Monti, Stefano

    2010-01-01

    The conceptual design of the European Lead Fast Reactor is being developed starting from September 2006, in the frame of the ELSY project. The ELSY reference design is a 600 MWe pool-type reactor cooled by pure lead. The ELSY project demonstrates the possibility of designing a competitive and safe fast critical reactor using simple engineered technical features, whilst fully complying with the Generation IV goal of sustainability and minor actinide (MA) burning capability. Sustainability was a leading criterion for option selection for core design, focusing on the demonstration of the potential to be self sustaining in plutonium and to burn its own generated MAs. To this end, different core configurations have been studied. Economics was a leading criterion for primary system design and plant layout. The use of a compact and simple primary circuit with the additional objective that all internal components be removable, are among the reactor features intended to assure competitive electric energy generation and long-term investment protection. Low capital cost and construction time are pursued through simplicity and compactness of the reactor building (reduced footprint and height). The reduced plant footprint is one of the benefits coming from the elimination of the Intermediate Cooling System, the low reactor building height is the result of the design approach which foresees the adoption of short-height components and two innovative DHR systems. Among the critical issues, the impact of the large mass of lead has been carefully analyzed; it has been demonstrated that the high density of lead can be mitigated by compact solutions and adoption of seismic isolators. Safety has been one of the major focuses all over the ELSY development. In addition to the inherent safety advantages of lead coolant (high boiling point and no exothermic reactions with air or water) a high safety grade of the overall system has been reached. In fact the overall primary system has been

  16. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Barnes, S.

    1976-01-01

    Reference is made to liquid metal cooled fast breeder reactors of the 'pool' kind. In this type of reactor the irradiated fuel is lowered into a transfer rotor for removal to storage facilities, this rotor normally having provision for the temporary storage of 20 irradiated fuel assemblies, each within a stainless steel bucket. For insertion or withdrawal of a fuel assembly the rotor is rotated to bring the fuel assembly to a loading or discharging station. The irradiated fuel assembly is withdrawn from the rotor within its bucket and the total weight is approximately 1000 kg, which is lifted about 27 m. In the event of malfunction the combination falls back into the rotor with considerable force. In order to prevent damage to the rotor fracture pins are provided, and to prevent damage to the reactor vessel and other parts of the reactor structure deformable energy absorbing devices are provided. After a malfunction the fractured pins and the energy absorbing devices must be replaced by remote control means operated from outside the reactor vault - a complex operation. The object of the arrangement described is to provide improved energy absorbing means for fuel assemblies falling into a fuel transfer rotor. The fuel assemblies are supported in the rotor by elastic means during transfer to storage and a hydraulic dash pot is provided in at least one position below the rotor for absorbing the energy of a falling fuel assembly. It is preferable to provide dash pots immediately below a receiving station for irradiated fuel assemblies and immediately below a discharge station. Each bucket is carried in a container that is elastically supported in the transfer rotor on a helical coil compression spring, so that, in the event of a malfunction the container and bucket are returned to their normal operating position after the force of the falling load has been absorbed by the dash pot. The transfer rotor may also be provided with recoil springs to absorb the recoil energy

  17. Fast reactor optimization using nonlinear programming

    International Nuclear Information System (INIS)

    Jakab, J.

    1976-01-01

    A considerable number of fast reactor optimization problems may be formulated as nonlinear programming problems, which allows the automation of the optimization process by using the computer for evaluation of intermediate results and decision making. The speeds are compared of various minimizing methods in dependence on the number of variables. A programme was written in Fortran for the IBM 360/40 computer based on the gradient quasi-Newton method which belongs to the penalty function method group. Numerical experiments showed that the speed of determining the constrained extreme depended on the penalty constant and on the number of variables and constraints. An excessively low value of the penalty constant results in a procedure failure while an excessively high value causes the slowing down of the convergence. Increasing the number of variables extends the procedure while the dependence of the procedure speed on the number of constraints alone is insignificant. (Z.M.)

  18. Analysis of fast reactor steam generator performance

    International Nuclear Information System (INIS)

    Hulme, G.; Curzon, A.F.

    1992-01-01

    A computer model for the prediction of flow and temperature fields within a fast reactor steam generator unit is described. The model combines a commercially available computational fluid dynamics (CFD) solver (PHOENICS) with a steam-tube calculation and provides solutions for the fully coupled flow and temperature fields on both the shell side and the tube side. The model includes the inlet and outlet headers and the bottom end stagnant zone. It also accounts for the effects of support grids and edge-gaps. Two and three dimensional and transient calculations have been performed for both straight tube and J-tube units. Examples of the application of the model are presented. (7 figures) (Author)

  19. Advanced fuels for fast breeder reactors

    International Nuclear Information System (INIS)

    Potter, P.E.; Spear, K.E.

    1979-01-01

    In this paper we have assessed critically six ternary systems of great significance to the preparation, fabrication and performance of advanced fuels for use in fast breeder nuclear reactors. The systems which have been considered are uranium-carbon-oxygen, plutonium-carbon-oxygen, uranium-carbon-nitrogen, plutonium-carbon-nitrogen, uranium-nitrogen-oxygen and plutonium nitrogen-oxygen. All the systems are characterized by partial or complete solid solutions and a major task of this assessment has been to develop simple models for these solutions which allow consistency between the known thermodynamic and phase equilibria data of the binary systems and the known condensed and gaseous phase equilibria of the ternary systems. Either ideal or regular solution models have been employed to describe the behaviour of the various solutions. (orig.) [de

  20. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Duncombe, E.; Thatcher, G.

    1979-01-01

    The invention described relates to a liquid metal cooled fast breeder nuclear reactor in which the fuel assembly has an inner zone comprised mainly of fissile material and a surrounding outer zone comprised mainly of breeder material. According to the invention the sub-assemblies in the outer zone include electro-magnetic braking devices (magnets, pole pieces and armature) for regulating the flow of coolant through the sub-assemblies. The magnetic fields of the electro-magnetic breaking devices are temperature sensitive so that as the power output of the breeder sub-assemblies increases the electro-magnetic resistance to coolant flow is reduced thereby maintaining the temperature of the coolant outlets from the sub-assemblies substantially constant. (UK)

  1. Cross-comparison of fast reactor concepts with various coolants

    International Nuclear Information System (INIS)

    Hejzlar, Pavel; Todreas, Neil E.; Shwageraus, Eugene; Nikiforova, Anna; Petroski, Robert; Driscoll, Michael J.

    2009-01-01

    Four fast reactor concepts using lead (LFR), liquid salt, NaCl-KCl-MgCl 2 (LSFR), sodium (SFR), and supercritical CO 2 (GFR) coolants are compared. Since economy of scale and power conversion system compactness are the same by virtue of the consistent 2400 MWt rating and use of the S-CO 2 power conversion system, the achievable plant thermal efficiency, core power density and core specific powers become the dominant factors. The potential to achieve the highest efficiency among the four reactor concepts can be ranked from highest to lowest as follows: (1) GFR, (2) LFR and LSFR, and (3) SFR. Both the lead- and salt-cooled designs achieve about 30% higher power density than the gas-cooled reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor. Fuel cycle costs are favored for the sodium reactor by virtue of its high specific power of 65 kW/kgHM compared to the lead, salt and gas reactor values of 45, 35, and 21 kW/kgHM, respectively. In terms of safety, all concepts can be designed to accommodate the unprotected limiting accidents through passive means in a self-controllable manner. However, it does not seem to be a preferable option for the GFR where the active or semi-passive approach will likely result in a more economic and reliable plant. Lead coolant with its superior neutronic characteristics and the smallest coolant temperature reactivity coefficient is easiest to design for self-controllability, while the LSFR requires special reactivity devices to overcome its large positive coolant temperature coefficient. The GFR required a special core design using BeO diluent and a supercritical CO 2 reflector to achieve negative coolant void worth-one of the conditions necessary for inherent shutdown following large LOCA. Protected accidents need to be given special attention in the LSFR and LFR due to the small margin to freezing of their coolants, and to a lesser extent in the SFR.

  2. Implications of nuclear physics in the development of Fast Breeder Reactors

    International Nuclear Information System (INIS)

    Rapeanu, S.; Ilie, P.; Vasiliu, G.; Popescu, C.; Boeriu, S.; Constantinescu, D.; Mateescu, S.

    1980-08-01

    The purpose of this paper is to point out the involved aspects of nuclear physics in the calculation and design of the fast reactors. After a brief description of the advantages of using the fast reactors in the national economy, the national programs concerning this activity are presented. The structure and operation conditions of the liquid metal fast breeder reactor (LMFBR) are also reviewed. Then, the methods aimed to calculate the core, the burn-up, the reactor dynamics, the analysis of accidents, the shielding, as well as, the materials required in the fast reactor calculation, are shortly given. Further on, it deals with the nuclear data types connected to the fast reactor calculations, with accuracy requirements for nuclear data, as well as, with the present stage of nuclear data for fissile, fertile and structural materials. The requirements for new differential data measurements, new integral data and benchmark experiments are presented. Data adjustement methods are also summarized. Some aspects of the structural material behaviour in intense gamma radiation and neutron fields existing into a fast reactor are also presented in the last part of this paper. The concluding remarks are mentioned at the end of the paper. (author)

  3. Advanced sodium fast reactor accident source terms :

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Dana Auburn; Clement, Bernard; Denning, Richard; Ohno, Shuji; Zeyen, Roland

    2010-09-01

    An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic event Energetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolant Entrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached cladding Rates of radionuclide leaching from fuel by liquid sodium Surface enrichment of sodium pools by dissolved and suspended radionuclides Thermal decomposition of sodium iodide in the containment atmosphere Reactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model of radionuclide release progressed.

  4. Fabrication of cermet fuel for fast reactor

    International Nuclear Information System (INIS)

    Mishra, Sudhir; Kumar, Arun; Kutty, T.R.G.; Kamath, H.S.

    2011-01-01

    Mixed oxide (MOX) (U,Pu)O 2 , and metallic (U,Pu ,Zr) fuels are considered promising fuels for the fast reactor. The fuel cycle of MOX is well established. The advantages of the oxide fuel are its easy fabricability, good performance in the reactor and a well established reprocessing technology. However the problems lie in low thermal conductivity , low density of the fuel leading to low breeding ratio and consequently longer doubling time. The metallic fuel has the advantages of high thermal conductivity, higher metal density and higher coefficient of linear expansion. The higher coefficient of linear expansion is good from the safety consideration (negative reactivity factor). Because of higher metal density it offers highest breeding ratio and shortest doubling time. Metallic fuel disadvantages comprise large swelling at high burnup, fuel cladding interaction and lower margin between operating and melting temperature. The optimal solution may lie in cermet fuel (U, PuO 2 ), where PuO 2 is dispersed in U metal matrix and combines the favorable features of both the fuel types. The advantages of this fuel include high thermal conductivity, larger margin between melting and operating temperature, ability to retain fission product etc. The matrix being of high density metal the advantage of high breeding ratio is also maintained. In this report some results of fabrication of cermet pellet comprising of UO 2 /PuO 2 dispersed in U metal powder through classical powder metallurgy route and characterization are presented. (author)

  5. Empirical process modeling in fast breeder reactors

    International Nuclear Information System (INIS)

    Ikonomopoulos, A.; Endou, A.

    1998-01-01

    A non-linear multi-input/single output (MISO) empirical model is introduced for monitoring vital system parameters in a nuclear reactor environment. The proposed methodology employs a scheme of non-parametric smoothing that models the local dynamics of each fitting point individually, as opposed to global modeling techniques--such as multi-layer perceptrons (MLPs)--that attempt to capture the dynamics of the entire design space. The stimulation for employing local models in monitoring rises from one's desire to capture localized idiosyncrasies of the dynamic system utilizing independent estimators. This approach alleviates the effect of negative interference between old and new observations enhancing the model prediction capabilities. Modeling the behavior of any given system comes down to a trade off between variance and bias. The building blocks of the proposed approach are tailored to each data set through two separate, adaptive procedures in order to optimize the bias-variance reconciliation. Hetero-associative schemes of the technique presented exhibit insensitivity to sensor noise and provide the operator with accurate predictions of the actual process signals. A comparison between the local model and MLP prediction capabilities is performed and the results appear in favor of the first method. The data used to demonstrate the potential of local regression have been obtained during two startup periods of the Monju fast breeder reactor (FBR)

  6. Actinide burning in the integral fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1993-01-01

    During the past few years, Argonne National Laboratory has been developing the integral fast reactor (IFR), an advanced liquid-metal reactor concept. In the IFR, the inherent properties of liquid-metal cooling are combined with a new metallic fuel and a radically different refining process to allow breakthroughs in passive safety, fuel cycle economics, and waste management. A key feature of the IFR concept is its unique pyroprocessing. Pyroprocessing has the potential to radically improve long-term waste management strategies by exploiting the following attributes: 1. Minor actinides accompany plutonium product stream; therefore, actinide recycling occurs naturally. Actinides, the primary source of long-term radiological toxicity, are removed from the waste stream and returned to the reactor for in situ burning, generating useful energy. 2. High-level waste volume from pyroprocessing call be reduced substantially as compared with direct disposal of spent fuel. 3. Decay heat loading in the repository can be reduced by a large factor, especially for the long-term burden. 4. Low-level waste generation is minimal. 5. Troublesome fission products, such as 99 Tc, 129 I, and 14 C, are contained and immobilized. Singly or in combination, the foregoing attributes provide important improvements in long-term waste management in terms of the ease in meeting technical performance requirements (perhaps even the feasibility of demonstrating that technical performance requirements can be met) and perhaps also in ultimate public acceptance. Actinide recycling, if successfully developed, could well help the current repository program by providing an opportunity to enhance capacity utilization and by deferring the need for future repositories. It also represents a viable technical backup option in the event unforeseen difficulties arise in the repository licensing process

  7. Under sodium ultrasonic viewing for Fast Breeder Reactors: a review

    International Nuclear Information System (INIS)

    Tarpara, Eaglekumar G.; Patankar, V.H.; Vijayan Varier, N.

    2016-09-01

    Liquid Metal Fast Breeder Reactors (LMFBR/FBR) are of two types: Loop type and Pool type. Many countries like USA, Japan, UK, Russia, China, France, Lithuania, Belgium, Korea, and India have worked extensively on these types of FBRs. FBRs are capable of breeding more fissionable fuel than it consumes like breeding of Plutonium-239 from non-fissionable Uranium-238. In FBR, heat is released by fission process and it must be captured and transferred to the electric generator by the liquid metal coolant (i.e. Sodium). Due to continuous operation and for safety and licensing reasons, periodic inspection and maintenance is required for reactor fuel assemblies which carry nuclear fuels. For this reason, under sodium ultrasonic imaging technique is adopted as in-service inspection activity for viewing of core of FBRs. Since liquid sodium is optically opaque, ultrasonic technique is the only method which can be employed for imaging in liquid sodium. In harsh conditions like high temperature and high radiation, there is a restriction on the development of possible ultrasonic visualization systems and selection of the transducer materials which can operate in the core region of reactor at around 200 °C during shutdown of reactor. This report provides a review of works related to ultrasonic imaging in sodium, different materials used in high temperature transducer assemblies and their different coupling/bonding techniques to achieve maximum transmission efficiency in high temperature sodium environment. The report also provides the overview of different architectures and imaging methods of transducer array elements which were used in LMFBRs for inspection and visualization of the reactor core sub-assemblies. The report is focused on a review of some possible beam forming techniques which may be used for nuclear applications for high temperature environment. Published information of the different simulation models are also reviewed which can be adopted to simulate the

  8. Thermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model

    Directory of Open Access Journals (Sweden)

    Reza Akbari

    2017-08-01

    Full Text Available Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very fast model for predicting thermal hydraulics behavior of pressurized water reactor core has been developed. For verifying the results of this model, we used RELAP5 code as US nuclear regulatory approved thermal hydraulics code. The results of developed single heated channel model have been checked with RELAP5 results for WWER-1000. This comparison shows the capability of single heated channel model for predicting thermal hydraulics behavior of reactor core.

  9. Status of liquid metal cooled fast breeder reactors

    International Nuclear Information System (INIS)

    1985-01-01

    This document represents a compilation of the information on the status of fast breeder reactor development. It is intended to provide complete and authoritative information for academic, energy, industrial and planning organizations in the IAEA Member States. The Report also provides extended reference and bibliography lists. A summarized overview of the national programmes of LMFBR development is given in Chapter II. Chapter III on LMFBR experience provides a brief description and purpose of all fast reactors - experimental, demonstration and commercial size - that have been or are planned for construction and operation. Fast reactor physics is dealt with in Chapter IV. Besides the basic facts and definitions of neutronics and the compilation and measurement of nuclear data, a broad range of the calculation methods, codes, and the state of the art is described. In Chapter V, fuels and materials are described. The emphasis is on the design and development experience gained with mixed oxide fuel pins and subassemblies. Structural materials, blanket elements and absorber materials are also discussed. Chaper VI presents a broad overview of the technical and engineering aspects of LMFBR power plants. LMFBR core design is described in detail, followed by the components of the main heat transport system, the refuelling equipment, and auxiliary systems. Chapter VII on safety is a compilation of the current safety design concepts of LMFBRs and new trends in safety criteria and safety goals. The chapter concludes with risk analyses of LMFBR technology. In Chapter VIII, the systems approach has been emphasized in the consideration of the whole LMFBR fuel cycle. Special emphasis is placed on safeguards aspects and the environmental impact of the LMFBR fuel cycle. Chapter IX describes deployment considerations of LMFBRs. Special emphasis is placed on economic aspects of the LMFBR power plant and its related fuel cycle. Finally, Chapter X provides an overall summary and a

  10. Materials science research for sodium cooled fast reactors

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 3 ... Nuclear energy; fast breeder reactors; materials science; stainless steels; sodium. ... as applied research being carried out at the Indira Gandhi Centre for Atomic Research for the development of advanced materials for sodium cooled fast reactors towards ...

  11. Progress and status of the Integral Fast Reactor (IFR) development program

    International Nuclear Information System (INIS)

    Chang, Yoon I.

    1992-01-01

    In the Integral Fast Reactor (IFR) development program, the entire reactor system -- reactor, fuel cycle, and waste process is being developed and optimized at the same time as a single integral entity. The ALMR reactor plant design is being developed by an industrial team headed by General Electric and is presented in a companion paper. Detailed discussions on the present status of the IFR technology development activities in the areas of fuels, pyroprocessing, safety, core design, and fuel cycle demonstration are presented in the other two companion papers that follows this

  12. Spring unit especially intended for a nuclear reactor core

    International Nuclear Information System (INIS)

    Brown, S.J.; Gorholt, Wilhelm.

    1977-01-01

    This invention relates to a spring unit or a group of springs bearing up a sprung mass against an unsprung mass. For instance, a gas cooled high temperature nuclear reactor includes a core of relatively complex structure supported inside a casing or vessel forming a shielded cavity enclosing the reactor core. This core can be assembled from a large number of graphite blocks of different sizes and shapes joined together to form a column. The blocks of each column can be fixed together so as to form together a loose side support. Under the effect of thermal expansion and contraction, shrinkage resulting from irradiation, the effects of pressure and the contraction and creep of the reactor vessel, it is not possible to confine all the columns of the reactor core in a cylindrical rigid structure. Further, the working of the nuclear reactor requires that the reactivity monitoring components may be inserted at any time in the reactor core. A standard process consists in mounting this loosely assembled reactor core in a floating manner by keeping it away from the vessel enclosure around it by means of a number of springs fitted between the lateral surfaces of the core unit and the reactor vessel. The core may be considered as a spring supported mass whereas, relatively, the reactor vessel is a mass that is not flexibly supported [fr

  13. Emergency cooling down of fast-neutron reactors by natural convection (a review)

    Science.gov (United States)

    Zhukov, A. V.; Sorokin, A. P.; Kuzina, Yu. A.

    2013-05-01

    Various methods for emergency cooling down of fast-neutron reactors by natural convection are discussed. The effectiveness of using natural convection for these purposes is demonstrated. The operating principles of different passive decay heat removal systems intended for cooling down a reactor are explained. Experimental investigations carried out in Russia for substantiating the removal of heat in cooling down fast-neutron reactors are described. These investigations include experimental works on studying thermal hydraulics in small-scale simulation facilities containing the characteristic components of a reactor (reactor core elements, above-core structure, immersed and intermediate heat exchangers, pumps, etc.). It is pointed out that a system that uses leaks of coolant between fuel assemblies holds promise for fast-neutron reactor cooldown purposes. Foreign investigations on this problem area are considered with making special emphasis on the RAMONA and NEPTUN water models. A conclusion is drawn about the possibility of using natural convection as the main method for passively removing heat in cooling down fast-neutron reactors, which is confirmed experimentally both in Russia and abroad.

  14. Development and study of a control and reactor shutdown device for FBR-type reactors with a modified open core

    International Nuclear Information System (INIS)

    Goswami, S.

    1983-01-01

    The doctoral thesis at hand presents a newly designed control and shutdown device to be used for output control and fast shutdown of modified open core FBR-type reactors. The task was the design of a new control and shutdown device having economic and operation advantages, using reactor components time-tested under reactor conditions. This control and shutdown device was adapted to the specific needs concerning dimensions and design. The actuation is based on the magnetic-jack principle, which has been upgraded for the purpose. The principle is now combined with pneumatic acceleration. The improvements mainly concern a smaller number of piece parts and system simplification. (orig./RW) [de

  15. Physics studies of weapons plutonium disposition in the Integral Fast Reactor closed fuel cycle

    International Nuclear Information System (INIS)

    Hill, R.N.; Wade, D.C.; Liaw, J.R.; Fujita, E.K.

    1995-01-01

    The core performance impact of weapons plutonium introduction into the Integral Fast Reactor (IFR) closed fuel cycle is investigated by comparing three disposition scenarios: a power production mode, a moderate destruction mode, and a maximum destruction mode, all at a constant heat rating of 840 MW(thermal). For each scenario, two fuel cycle models are evaluated: cores using weapons material as the sole source of transuranics in a once-through mode and recycle cores using weapons material only as required for a makeup feed. In addition, the impact of alternative feeds (recycled light water reactor or liquid-metal reactor transuranics) on burner core performance is assessed. Calculated results include mass flows, detailed isotopic distributions, neutronic performance characteristics, and reactivity feedback coefficients. In general, it is shown that weapons plutonium does not have an adverse effect on IFR core performance characteristics; also, favorable performance can be maintained for a wide variety of feed materials and fuel cycle strategies

  16. Assessing the economics of the liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Farmer, A.A.

    1984-01-01

    The main purpose of this paper is to examine the economics of fast reactors but, before doing so, it describes briefly some of their characteristics and states their main attraction, namely to utilize to the maximum the available low-cost uranium resources. This particularly makes fast reactors desirable for nations without large indigenous uranium reserves. Turning to economics, the components that go to make up the cost in a fast reactor, such as capital, fuel fabrication, reprocessing, etc. are considered first. The chapter then deals with the costs of generating electricity from stations taken in isolation (i.e. single station generating costs) and identifies those factors which can help to reduce them to a minimum. Finally, the expenditure of a whole system of thermal and fast reactors is considered over an extended period, where it will be shown that an optimum fast reactor design, based on system costs may differ from one based on single station generating costs. (author)

  17. Fuel, structural material and coolant for an advanced fast micro-reactor

    International Nuclear Information System (INIS)

    Nascimento, Jamil A. do; Guimaraes, Lamartine N.F.; Ono, Shizuca

    2011-01-01

    The use of nuclear reactors in space, seabed or other Earth hostile environment in the future is a vision that some Brazilian nuclear researchers share. Currently, the USA, a leader in space exploration, has as long-term objectives the establishment of a permanent Moon base and to launch a manned mission to Mars. A nuclear micro-reactor is the power source chosen to provide energy for life support, electricity for systems, in these missions. A strategy to develop an advanced micro-reactor technologies may consider the current fast reactor technologies as back-up and the development of advanced fuel, structural and coolant materials. The next generation reactors (GEN-IV) for terrestrial applications will operate with high output temperature to allow advanced conversion cycle, such as Brayton, and hydrogen production, among others. The development of an advanced fast micro-reactor may create a synergy between the GEN-IV and space reactor technologies. Considering a set of basic requirements and materials properties this paper discusses the choice of advanced fuel, structural and coolant materials for a fast micro-reactor. The chosen candidate materials are: nitride, oxide as back-up, for fuel, lead, tin and gallium for coolant, ferritic MA-ODS and Mo alloys for core structures. The next step will be the neutronic and burnup evaluation of core concepts with this set of materials. (author)

  18. COBRA-WC model and predictions for a fast-reactor natural-circulation transient

    International Nuclear Information System (INIS)

    George, T.L.; Basehore, K.L.; Prather, W.A.

    1980-01-01

    The COBRA-WC (Whole Core) code has been used to predict the core-wide coolant and rod temperature distribution in a liquid metal fast reactor during the early part (first 220 seconds) of a natural circulation transient. Approximately one-sixth of the core was modeled including bypass flows and the pressure losses above and below the core region. Detailed temperature and flow distributions were obtained for the two test fuel assemblies. The COBRA-WC model, the approach, and predictions of core-wide transient coolant and rod temperatures during a natural circulation transient are presented in this paper

  19. Modular Lead-Bismuth Fast Reactors in Nuclear Power

    OpenAIRE

    Georgy Toshinsky; Vladimir Petrochenko

    2012-01-01

    On the basis of the unique experience of operating reactors with heavy liquid metal coolant–eutectic lead-bismuth alloy in nuclear submarines, the concept of modular small fast reactors SVBR-100 for civilian nuclear power has been developed and validated. The features of this innovative technology are as follows: a monoblock (integral) design of the reactor with fast neutron spectrum, which can operate using different types of fuel in various fuel cycles including MOX fuel in a self-providing...

  20. An Innovative Hybrid Loop-Pool Design for Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Haihua Zhao; Hongbin Zhang

    2007-01-01

    The existing sodium cooled fast reactors (SFR) have two types of designs--loop type and pool type. In the loop type design, such as JOYO (Japan) [1] and MONJU (Japan), the primary coolant is circulated through intermediate heat exchangers (IHX) external to the reactor tank. The major advantages of loop design include compactness and easy maintenance. The disadvantage is higher possibility of sodium leakage. In the pool type design such as EBR-II (USA), BN-600M(Russia), Superphenix (France) and European Fast Reactor [2], the reactor core, primary pumps, IHXs and direct reactor auxiliary cooling system (DRACS) heat exchangers (DHX) all are immersed in a pool of sodium coolant within the reactor vessel, making a loss of primary coolant extremely unlikely. However, the pool type design makes primary system large. In the latest ANL's Advanced Burner Test Reactor (ABTR) design [3], the primary system is configured in a pool-type arrangement. The hot sodium at core outlet temperature in hot pool is separated from the cold sodium at core inlet temperature in cold pool by a single integrated structure called Redan. Redan provides the exchange of the hot sodium from hot pool to cold pool through IHXs. The IHXs were chosen as the traditional tube-shell design. This type of IHXs is large in size and hence large reactor vessel is needed

  1. A review of fast reactor activities in Switzerland - March 1984

    International Nuclear Information System (INIS)

    Wydler, P.

    1984-01-01

    As a result of the noncentralized government in Switzerland there is no clear national policy for the future application of nuclear energy. This is reflected in the lack of a generally agreed nuclear energy research policy in the country. Consequently, activities related to several advanced reactor concepts are funded simultaneously at similar, but relatively low levels. The total expenditure of 5.9 million Swiss Francs (approx. 1 SFr per capita) for fast reactor activities in 1983 must be judged in the light of this situation. The funds have been allocated to an LMFBR safety programme (52%) and a fuel development programme (48%). In the field of LMFBR safety analytical work is performed on hypothetical core disruptive accidents (HCDAs) and on the integrity of components under HCDA loadings with emphasis on the dynamic behaviour of the reactor cover. A considerable effort has recently been devoted to the preparations for the SONACO natural convection experiment. Another relatively new experimental activity, involving small-scale vapour explosions with freon and water, has produced evidence of interesting physical effects which are not in accord with the assumptions of current molten fuel-coolant interaction (MFCI) models. The fuel development programme has continued with the manufacture of spherepac mixed carbide fuel pins for an irradiation experiment in FFTF. However, the time scale of the experiment has suffered a set-back due to an accident in a glove box of the production line

  2. Analysis of Dynamic Regimes at Nuclear Power Plants with Fast Reactors Using the JOKER Code

    International Nuclear Information System (INIS)

    Seleznev, E.F.; Aizatulin, A.I.; Belov, A.A.; Prianichnikov, A.V.; Fedorov, I.V.; Karpenko, A.I.; Tuchkov, A.M.; Balakhnin, E.V.

    2008-01-01

    To analyze safety of Nuclear Power Plants (NPP) with fast reactors, including studying of different NPP operational modes ranging from normal operation up to hypothetical accidents, a software complex - the JOKER Code [1] - was created simulating the behavior of parameters at BN-type fast reactor under steady-state and transient processes therein through the use of: -reactor core model; and -models of equipment and pipelines of primary, secondary and third circuits of the reactor. The core model contains: a neutron-physical model; a thermal-hydraulics model; and a core thermo-mechanics model. The neutron-physical model is based on the use of spatially distributed kinetics of the core. One-dimensional thermal-hydraulic model with regimes 'before' and 'after' the onset of coolant boiling serves as the thermal-hydraulics model. The thermo-mechanics model includes examination of the behavior of fuel and cladding for the cases of fuel burnup, cracking and melting of both cladding and fuel. The Codes GEFEST (Russia) [2] and SAS-4? (USA) [3] are the JOKER Code's analogues. The GEFEST Code is used at NPP with BN-600 fast reactors to justify safe operation of real fuel loads into reactor installations - mainly for calculations of neutron-physical parameters of the core under steady-state regime; the code has a license of the Russian Supervisory Authority and has been used over many years at Beloyarskaya NPP. The SAS-4? Code developed at ANL (USA) is well known throughout the world as a software complex for analysis of fast reactor projects. (authors)

  3. Criteria design of the CAREM 25 reactor's core: neutronic aspects

    International Nuclear Information System (INIS)

    Lecot, C.A.

    1990-01-01

    The criteria that guided the design, from the neutronic point of view, of the CAREM reactor's core were presented. The minimum set of objectives and general criteria which permitted the design of the particular systems constituting the CAREM 25 reactor's core is detailed and stated. (Author) [es

  4. LTFR-4, Library Generated for Fast Reactor Design Program from JAERI Fast-Set Multigroup Constant

    International Nuclear Information System (INIS)

    Suzuki, Tomoo

    1971-01-01

    Nature of physical problem solved: The program processes JAERI-Fast group constants sets of less than 30-group and prepares a binary library tape for efficient usage by a series of related fast reactor design calculation programmes

  5. Design of radiation shields in nuclear reactor core

    International Nuclear Information System (INIS)

    Mousavi Shirazi, A.; Daneshvar, Sh.; Aghanajafi, C.; Jahanfarnia, Gh.; Rahgoshay, M.

    2008-01-01

    This article consists of designing radiation shields in the core of nuclear reactors to control and restrain the harmful nuclear radiations in the nuclear reactor cores. The radiation shields protect the loss of energy. caused by nuclear radiation in a nuclear reactor core and consequently, they cause to increase the efficiency of the reactor and decrease the risk of being under harmful radiations for the staff. In order to design these shields, by making advantages of the O ppenheim Electrical Network m ethod, the structure of the shields are physically simulated and by obtaining a special algorithm, the amount of optimized energy caused by nuclear radiations, is calculated

  6. RAPID-L and RAPID operator free fast reactor concepts without any control rods

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Tsunoda, Hirokazu; Nakazima, Kiyoshi; Iwamura, Takamichi

    2003-01-01

    The 200 kWe uranium-nitride fueled lithium-cooled fast reactor concept RAPID-L' for lunar base power system, and the 1000 kWe U-Pu-Zr metal fueled sodium-cooled fast reactor concept 'RAPID' for terrestrial power system have been demonstrated. These reactors are characterized by RAPID (Refueling by All Pins Integrated Design) refueling concept, which enable quick and simplified refueling. The essential feature of RAPID concept is that the reactor core consists of an integrated fuel assembly (IFA) instead of conventional fuel subassemblies. In this small size reactor core, all the fuel pins are integrated altogether and encased in a fuel cartridge. Refueling is conducted by replacing an IFA. The reactor can be operated without refueling for up to 10 years. Unique challenges in reactivity control systems design have been addressed in these reactors. They have no control rod, but involve the following innovative reactivity control systems: Lithium Expansion Modules (LEM) for inherent reactivity feedback, Lithium Injection Modules (LIM) for inherent ultimate shutdown, and Lithium Release Modules (LRM) for automated reactor startup. All these systems adopt lithium-6 as a liquid poison instead of B4C rods. In combination with LEMs, LIMs and LRMs, RAPID-L and RAPID can be operated without operator. In this paper, design characteristics of RAPID-L and RAPID reactor concepts are discussed. (author)

  7. Applications of plasma core reactors to terrestrial energy systems

    Science.gov (United States)

    Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-

  8. Machine learning of the reactor core loading pattern critical parameters

    International Nuclear Information System (INIS)

    Trontl, K.; Pevec, D.; Smuc, T.

    2007-01-01

    The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employed a recently introduced machine learning technique, Support Vector Regression (SVR), which has a strong theoretical background in statistical learning theory. Superior empirical performance of the method has been reported on difficult regression problems in different fields of science and technology. SVR is a data driven, kernel based, nonlinear modelling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modelling. The starting set of experimental data for training and testing of the machine learning algorithm was obtained using a two-dimensional diffusion theory reactor physics computer code. We illustrate the performance of the solution and discuss its applicability, i.e., complexity, speed and accuracy, with a projection to a more realistic scenario involving machine learning from the results of more accurate and time consuming three-dimensional core modelling code. (author)

  9. Selection of sodium coolant for fast reactors in the US, France and Japan

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Yoshihiko, E-mail: sakamoto.yoshihiko@jaea.go.jp [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Ibaraki-ken 311-1393 (Japan); Garnier, Jean-Claude; Rouault, Jacques [CEA, DEN, DER, Centre de Cadarache, 13108 Saint Paul Lez Durance Cedex (France); Grandy, Christopher; Fanning, Thomas; Hill, Robert [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Chikazawa, Yoshitaka; Kotake, Shoji [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Ibaraki-ken 311-1393 (Japan)

    2013-01-15

    mitigation means to manage severe core degradation. The main LFR merit is the lack of chemical reactivity of the lead coolant with air and water. The main challenges are the development of corrosion resistant structural and cladding materials, the implementation of mitigation means to manage severe core degradation, the density of the lead, and the comparably large core size. The selection of a reference fast reactor concept in view of possible industrialization is made on a national base, taking into account the each countries' strategic objectives, existing technology base, the proven or expected technical performance, the R and D challenges and technical means to conduct that R and D, the possibility to share development costs and risks, etc. It is important to note that in different contexts, the U.S., French, and Japanese organizations have selected the SFR as their reference fast reactor concept.

  10. Three-dimension thermal hydraulic studies for the pool-type fast reactor of CEFR

    International Nuclear Information System (INIS)

    Xu Yijun; Liu Yizhe; Xue Xiuli; Feng Yuheng; Qiao Xuedong; Hou Zhifeng; Yu Hong; Yang Hongyi; Yang Fuchang

    2009-01-01

    With the development of the computer software and hardware, 3-dimension numerical analysis technology has become an important part of the reactor core and plenums design and research of the fast reactor, sometimes even plays an un-replacable role in the design. In this paper, the typical thermal-hydraulic phenomena in the pool-type fast reactor are analysed by using 3-dimension numerical analysis codes and programs. It can be said that it will play an important role in the thermal hydraulic design and research by using these tools. And at the same time, it will also set good examples and speed up the application of these technologies by summing up these experiences and methods in order that it can be used in the future design and analyses for the large-scaled pool-type fast reactor. (authors)

  11. Use of reactor grade plutonium in a research or experimental fast reactor

    International Nuclear Information System (INIS)

    Stefanovic, D.; Matausek, M.V.; Zavaljevski, N.

    1979-01-01

    In order to analyze the possibilities of using the reactor grade plutonium in a research oe experimental fast reactor, it was necessary to develop the algorithm and codes. The program MIMOZA calculates the change of fuel isotope composition with irradiation, as well as the changes with irradiation of the space energy neutron distribution, neutron life time and the criticality parameter of the system. Program VALJAK calculates the space energy neutron distribution and the effective multiplication factor in a cylindrical fast reactor. The results presented and discussed in this paper can serve as the starting point in elaboration of a preliminary project of a fast cylindrical experiment or a fast research reactor. (author)

  12. SUPERPHENIX: Reactor core temperatures survey by minicomputers - original aspects related to safety

    International Nuclear Information System (INIS)

    Berlin, C.; Josue, M.; Pinoteau, J.

    1986-01-01

    The system for core temperatures fast processing (TRIC) utilized in SUPERPHENIX is part of the reactor protection system. Due to the number of temperature measurements taken into account, to the specific data processing and to the rapidity required in the treatment, the use of digital computing devices is justified. The present paper describes the conception of the system in order to satisfy the special requirements for the computers used in power reactors protection systems

  13. Comparison and validation of the results of the AZNHEX v.1.0 code with the MCNP code simulating the core of a fast reactor cooled with sodium; Comparacion y validacion de los resultados del codigo AZNHEX v.1.0 con el codigo MCNP simulando el nucleo de un reactor rapido refrigerado con sodio

    Energy Technology Data Exchange (ETDEWEB)

    Galicia A, J.; Francois L, J. L.; Bastida O, G. E. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Esquivel E, J., E-mail: blink19871@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    The development of the AZTLAN platform for the analysis and design of nuclear reactors is led by Instituto Nacional de Investigaciones Nucleares (ININ) and divided into four working groups, which have well-defined activities to achieve significant progress in this project individually and jointly. Within these working groups is the users group, whose main task is to use the codes that make up the AZTLAN platform to provide feedback to the developers, and in this way to make the final versions of the codes are efficient and at the same time reliable and easy to understand. In this paper we present the results provided by the AZNHEX v.1.0 code when simulating the core of a fast reactor cooled with sodium at steady state. The validation of these results is a fundamental part of the platform development and responsibility of the users group, so in this research the results obtained with AZNHEX are compared and analyzed with those provided by the Monte Carlo code MCNP-5, software worldwide used and recognized. A description of the methodology used with MCNP-5 is also presented for the calculation of the interest variables and the difference that is obtained with respect to the calculated with AZNHEX. (Author)

  14. Development and verification of SAC-CORE code for reactor core seismic analysis

    International Nuclear Information System (INIS)

    Koo, K. H.; Lee, J. H.; Yu, B.

    1998-01-01

    The purpose of this paper is to develop the SAC-CORE code for core seismic analysis of Liquid Metal Reactor. Using the SAC-CORE code, the core seismic analysis for KALIMER reactor core is carried out to show the seismic isolation performance. For the verification of SAC-CORE code, the seismic analysis in air for RAPSODIE core mock-up is performed and the results are compared with those of the experiments. In this benchmark, SAC-CORE code gives good results

  15. Fast reactor safety and computational thermo-fluid dynamics approaches

    International Nuclear Information System (INIS)

    Ninokata, Hisashi; Shimizu, Takeshi

    1993-01-01

    This article provides a brief description of the safety principle on which liquid metal cooled fast breeder reactors (LMFBRs) is based and the roles of computations in the safety practices. A number of thermohydraulics models have been developed to date that successfully describe several of the important types of fluids and materials motion encountered in the analysis of postulated accidents in LMFBRs. Most of these models use a mixture of implicit and explicit numerical solution techniques in solving a set of conservation equations formulated in Eulerian coordinates, with special techniques included to specific situations. Typical computational thermo-fluid dynamics approaches are discussed in particular areas of analyses of the physical phenomena relevant to the fuel subassembly thermohydraulics design and that involve describing the motion of molten materials in the core over a large scale. (orig.)

  16. The 2nd reactor core of the NS Otto Hahn

    International Nuclear Information System (INIS)

    Manthey, H.J.; Kracht, H.

    1979-01-01

    Details of the design of the 2nd reactor core are given, followed by a brief report summarising the operating experience gained with this 2nd core, as well as by an evaluation of measured data and statements concerning the usefulness of the knowledge gained for the development of future reactor cores. Quite a number of these data have been used to improve the concept and thus the specifications for the fuel elements of the 3rd core of the reactor of the NS Otto Hahn. (orig./HP) [de

  17. Measurements of thermal and fast neutron fluxes at the TRIGA reactor

    International Nuclear Information System (INIS)

    Zerdin, F.; Grabovsek, Z.; Klinc, T.; Solinc, H.

    1966-01-01

    Gold foils were placed at different positions in the TRIGA reactor core and in the experimental devices. Absolute values of the thermal neutron flux at these positions were obtained by coincidence method. Preliminary fast neutron spectrum was measured by threshold detector and by 'Li 6 sandwich' detector. A short description of the applied method and obtained measurements results are included [sl

  18. Multiple recycling of fuel in prototype fast breeder reactor in a closed ...

    Indian Academy of Sciences (India)

    Keywords. Fast breeder reactors; closed fuel cycle; fuel production and depletion; Pu239 equivalence; multiple recycling; fuel reactivity effects ... With these modifications and also with PHWR Pu as external feed, the study on PFBR fuel recycling is repeated. It is observed that the core-1 initial Pu inventory increases by 3.5% ...

  19. Gas-cooled fast reactor program. Progress report, January 1, 1980-June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.

    1981-09-01

    Since the national Gas-Cooled Fast Breeder Reactor Program has been terminated, this document is the last progress report until reinstatement. It is divided into three sections: Core Flow Test Loop, GCFR shielding and physics, and GCFR pressure vessel and closure studies. (DLC)

  20. Sodium fast reactor safety and licensing research plan. Volume II.

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  1. Sodium fast reactor safety and licensing research plan - Volume II

    International Nuclear Information System (INIS)

    Ludewig, H.; Powers, D.A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A.; Phillips, J.; Zeyen, R.; Clement, B.; Garner, Frank; Walters, Leon; Wright, Steve; Ott, Larry J.; Suo-Anttila, Ahti Jorma; Denning, Richard; Ohshima, Hiroyuki; Ohno, S.; Miyhara, S.; Yacout, Abdellatif; Farmer, M.; Wade, D.; Grandy, C.; Schmidt, R.; Cahalen, J.; Olivier, Tara Jean; Budnitz, R.; Tobita, Yoshiharu; Serre, Frederic; Natesan, Ken; Carbajo, Juan J.; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Thomas, Justin; Wei, Tom; Sofu, Tanju; Flanagan, George F.; Bari, R.; Porter D.

    2012-01-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  2. Status of sodium cooled fast reactors with closed fuel cycle in India

    International Nuclear Information System (INIS)

    Raj, B.

    2007-01-01

    Fast reactors form the second stage of India's 3-stage nuclear power programme. The seed for India's fast reactor programme was sown through the construction of the Fast Breeder Test Reactor (FBTR) at IGCAR, Kalpakkam, that was commissioned in 1985. FBTR has operated with an unique, indigenously developed plutonium rich mixed carbide fuel, which has reached a burn up as high as 155 GWd/t without any fuel failure in the core. The sodium systems in the reactor have performed excellently. The availability of the reactor has been as high as 92% in the recent campaigns. The fuel discharged from FBTR up to 100 GWd/t has been reprocessed successfully. The experience gained in the construction, commissioning and operation of FBTR has provided the necessary confidence to launch a Prototype FBR of 500 MWe capacity (PFBR). This reactor will be fuelled by uranium, plutonium mixed oxide. The reactor construction started in 2003 and the reactor is scheduled to be commissioned by 2010. The design of the reactor has incorporated the worldwide operating experience from the FBRs and has addressed various safety issues reported in literature, besides introducing a number of innovative features which have reduced the unit energy cost and contributed to its enhanced safety. Simultaneous with the construction of the reactor, the fuel cycle of the reactor has been addressed in a comprehensive manner and construction of a fuel cycle facility has been initiated. Subsequent to the PFBR, 4 more reactors with identical design are proposed to be constructed. Various elements of reactor design are being carefully analysed with the aim of introducing innovative features towards further reduction in unit energy cost and enhancing safety in these reactors

  3. A study of a fast breader reactor core without box-type elements on the basis of neutron physical core design calculation and a comparative evaluation of the resultung properties

    International Nuclear Information System (INIS)

    Loer, W.

    1983-01-01

    The essential physical properties and effects of the setup without box-type elements are as follows: a reduction of parasitic neutron absorption, which does not contribute to the fission or breeding yield, an increase of the breeding capture probability in U-238 due to a higher fuel volume and a simultaneous reduction of fission material, and a shift of the neutron spectrum to lower energies due to stronger moderation. Additional improvements particularly of the sodium density reactivity effects can be expected by a reduction of the sodium content and a heterogeneous Core design. (orig./RW) [de

  4. Assessment of the dry process fuel sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Choi, Hang Bok

    2004-04-01

    The feasibility of using dry-processed oxide fuel in a Sodium-cooled Fast Reactor (SFR) was analyzed for the equilibrium fuel cycle of two reference cores: Hybrid BN-600 benchmark core with a enlarged lattice pitch and modified BN-600 core. The dry process technology assumed in this study based on the molten-salt process, which was developed by Russian scientists for recycling oxide fuels. The core calculation was performed by the REBUS-3 code and the reactor characteristics such as the transuranic enrichment, breeding ratio, peak linear power, burnup reactivity swing, etc. were calculated for the equilibrium core under a fixed fuel management scheme. The results showed that a self-sustainable breakeven core was achievable without blanket fuels when the fuel volume fraction was ∼50% and most of the fission products were removed

  5. Machine Learning of the Reactor Core Loading Pattern Critical Parameters

    Directory of Open Access Journals (Sweden)

    Krešimir Trontl

    2008-01-01

    Full Text Available The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm, and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper, we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employ a recently introduced machine learning technique, support vector regression (SVR, which is a data driven, kernel based, nonlinear modeling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modeling. We illustrate the performance of the solution and discuss its applicability, that is, complexity, speed, and accuracy.

  6. Creep buckling problems in fast reactor components

    International Nuclear Information System (INIS)

    Ramesh, R.; Damodaran, S.P.; Chellapandi, P.; Chetal, S.C.; Bhoje, S.B.

    1995-01-01

    Creep buckling analyses for two important components of 500 M We Prototype Fast Breeder Reactor (PFBR), viz. Intermediate Heat Exchanger (IHX) and Inner Vessel (IV), are reported. The INCA code of CASTEM system is used for the large displacement elasto-plastic-creep analysis of IHX shell. As a first step, INCA is validated for a typical benchmark problem dealing with the creep buckling of a tube under external pressure. Prediction of INCA is also compared with the results obtained using Hoff's theory. For IV, considering the prohibitively high computational cost for the actual analysis, a simplified analysis which involves only large displacement elastoplastic buckling analysis is performed using isochronous stress strain curve approach. From both of these analysis is performed using isochronous stress strain curve approach. From both of these analysis, it has been inferred that creep buckling failure mode is not of great concern in the design of PFBR components. It has also been concluded from the analysis that Creep Cross Over Curve given in RCC-MR is applicable for creep buckling failure mode also. (author). 8 refs., 9 figs., 1 tab

  7. Immobilization of Fast Reactor First Cycle Raffinate

    Energy Technology Data Exchange (ETDEWEB)

    Langley, K. F.; Partridge, B. A.; Wise, M.

    2003-02-26

    This paper describes the results of work to bring forward the timing for the immobilization of first cycle raffinate from reprocessing fuel from the Dounreay Prototype Fast Reactor (PFR). First cycle raffinate is the liquor which contains > 99% of the fission products separated from spent fuel during reprocessing. Approximately 203 m3 of raffinate from the reprocessing of PFR fuel is held in four tanks at the UKAEA's site at Dounreay, Scotland. Two methods of immobilization of this high level waste (HLW) have been considered: vitrification and cementation. Vitrification is the standard industry practice for the immobilization of first cycle raffinate, and many papers have been presented on this technique elsewhere. However, cementation is potentially feasible for immobilizing first cycle raffinate because the heat output is an order of magnitude lower than typical HLW from commercial reprocessing operations such as that at the Sellafield site in Cumbria, England. In fact, it falls within the upper end of the UK definition of intermediate level waste (ILW). Although the decision on which immobilization technique will be employed has yet to be made, initial development work has been undertaken to identify a suitable cementation formulation using inactive simulant of the raffinate. An approach has been made to the waste disposal company Nirex to consider the disposability of the cemented product material. The paper concentrates on the process development work that is being undertaken on cementation to inform the decision making process for selection of the immobilization method.

  8. A new safety approach in the design of fast reactors

    International Nuclear Information System (INIS)

    Neuhold, R.J.; Marchaterre, J.F.; Waltar, A.E.

    1987-01-01

    A new approach to achieving fast reactor safety goals is becoming really apparent in the US Fast Reactor Program. Whereas the ''defense is best'' philosophy still prevails, there has been a tangible shift toward emphasizing passive mechanisms to protect the reactor and provide public safety---rather than relying on add-on active, engineered safety systems. This paper reviews the technical basis for this new safety approach and provides discussion on its implementation in current US liquid metal-cooled reactor designs. 4 refs., 4 figs

  9. Accuracy of helium accumulation fluence monitor for fast reactor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Chikara; Aoyama, Takafumi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    A helium (He) accumulation fluence monitor (HAFM) has been developed for fast reactor dosimetry. In order to evaluate the measurement accuracy of neutron fluence by the HAFM method, the HAFMs of enriched boron (B) and beryllium (Be) were irradiated in the Fast Neutron Source Reactor `YAYOI`. The number of He atoms produced in the HAFMs were measured and compared with the calculated values. As a result of this study, it was confirmed that the neutron fluence could be measured within 5 % by the HAFM method, and that met the required accuracy for fast reactor dosimetry. (author)

  10. Experience in quality assurance of alloy D9 clad tubes for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Kapoor, K.; Prahlad, B.

    2012-01-01

    Stainless Steel Alloy D9 is the material for cladding in various sub-assemblies of Prototype Fast Breeder Reactor (PFBR). The fabrication, inspection, testing and supply of the clad tubes for the first core of PFBR is nearly completed. The paper also compares the specification requirements and the achieved results for some of the critical aspects which is arrived after completing supply against the first core requirement

  11. Proposal of a benchmark for core burnup calculations for a VVER-1000 reactor core

    International Nuclear Information System (INIS)

    Loetsch, T.; Khalimonchuk, V.; Kuchin, A.

    2009-01-01

    In the framework of a project supported by the German BMU the code DYN3D should be further validated and verified. During the work a lack of a benchmark on core burnup calculations for VVER-1000 reactors was noticed. Such a benchmark is useful for validating and verifying the whole package of codes and data libraries for reactor physics calculations including fuel assembly modelling, fuel assembly data preparation, few group data parametrisation and reactor core modelling. The benchmark proposed specifies the core loading patterns of burnup cycles for a VVER-1000 reactor core as well as a set of operational data such as load follow, boron concentration in the coolant, cycle length, measured reactivity coefficients and power density distributions. The reactor core characteristics chosen for comparison and the first results obtained during the work with the reactor physics code DYN3D are presented. This work presents the continuation of efforts of the projects mentioned to estimate the accuracy of calculated characteristics of VVER-1000 reactor cores. In addition, the codes used for reactor physics calculations of safety related reactor core characteristics should be validated and verified for the cases in which they are to be used. This is significant for safety related evaluations and assessments carried out in the framework of licensing and supervision procedures in the field of reactor physics. (authors)

  12. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Kim, K. Y.

    2002-03-01

    In general, small and medium-sized integral reactors adopt new technology such as passive and inherent safety concepts to minimize the necessity of power source and operator actions, and to provide the automatic measures to cope with any accidents. Specifically, such reactors are often designed with a lower core power density and with soluble boron free concept for system simplification. Those reactors require ultra long cycle operation for higher economical efficiency. This cycle length requirement is one of the important factors in the design of burnable absorbers as well as assurance of shutdown margin. Hence, both computer code system and design methodology based on the today's design technology for the current commercial reactor cores require intensive improvement for the small and medium-sized soluble boron free reactors. New database is also required for the development of this type of reactor core. Under these technical requirements, conceptual design of small integral reactor SMART has been performed since July 1997, and recently completed under the long term nuclear R and D program. Thus, the final objectives of this work is design and development of an integral reactor core and development of necessary indigenous design technology. To reach the goal of the 2nd stage R and D program for basic design of SMART, design bases and requirements adequate for ultra long cycle and soluble boron free concept are established. These bases and requirements are satisfied by the core loading pattern. Based on the core loading pattern, nuclear, and thermal and hydraulic characteristics are analyzed. Also included are fuel performance analysis and development of a core protection and monitoring system that is adequate for the soluble boron free core of an integral reactor. Core shielding design analysis is accomplished, too. Moreover, full scope interface data are produced for reactor safety and performance analyses and other design activities. Nuclear, thermal and

  13. A review of fast reactor programme in Japan

    International Nuclear Information System (INIS)

    Matsuno, Y.; Bando, S.

    1981-03-01

    The fast breeder reactor development project in Japan made progress in the past year, and will be continued in the next fiscal 1981. The scale of efforts both in budget and personnel will be similar to those in fiscal 1980. The budget for R and D works and for the construction of the fast breeder prototype reactor ''Monju'' will be approximately 20 billion yen and 27 billion yen, respectively, excluding the wage of the personnel concerned. The number of the technical personnel currently engaging in fast breeder reactor development in the Power Reactor and Nuclear Fuel Development Corp. is about 530. As for the experimental fast reactor ''Joyo'', three operational cycles at 75 MWt have been completed in August, 1980, and the fourth cycle has started in March, 1981. As for the prototype reactor ''Monju'', progress was made toward the construction, and the environmental impact statement on the reactor was approved by the authorities concerned. The studies on the preliminary design of large LMFBRs have been made by the PNC and also by power companies. The design study carried out by the PNC is concerned with a 1000 MWe plant of loop type by extrapolating the technology to be developed by the time of the commissioning of ''Monju''. The highlights and topics in the development activities for fast breeder reactors in the past twelve months are summarized in this report. (Kako, I.)

  14. Design for reactor core safety in nuclear power plants

    International Nuclear Information System (INIS)

    1986-01-01

    This Guide covers the neutronic, thermal, hydraulic, mechanical, chemical and irradiation considerations important to the safe design of a nuclear reactor core. The Guide applies to the types of thermal neutron reactor power plants that are now in common use and fuelled with oxide fuels: advanced gas cooled reactor (AGR), boiling water reactor (BWR), pressurized heavy water reactor (PHWR) (pressure tube and pressure vessel type) and pressurized water reactor (PWR). It deals with the individual components and systems that make up the core and associated equipment and with design provisions for the safe operation of the core and safe handling of the fuel and other core components. The Guide discusses the reactor vessel internals and the reactivity control and shutdown devices mounted on the vessel. Possible effects on requirements for the reactor coolant, the reactor coolant system and its pressure boundary (including the pressure vessel) are considered only as far as necessary to clarify the interface with the Safety Guide on Reactor Coolant and Associated Systems in Nuclear Power Plants (IAEA Safety Series No. 50-SG-D13) and other Guides. In relation to instrumentation and control systems the guidance is mainly limited to functional requirements

  15. Design Study of Modular Nuclear Power Plant with Small Long Life Gas Cooled Fast Reactors Utilizing MOX Fuel

    Science.gov (United States)

    Ilham, Muhammad; Su'ud, Zaki

    2017-01-01

    Growing energy needed due to increasing of the world’s population encourages development of technology and science of nuclear power plant in its safety and security. In this research, it will be explained about design study of modular fast reactor with helium gas cooling (GCFR) small long life reactor, which can be operated over 20 years. It had been conducted about neutronic design GCFR with Mixed Oxide (UO2-PuO2) fuel in range of 100-200 MWth NPPs of power and 50-60% of fuel fraction variation with cylindrical pin cell and cylindrical balance of reactor core geometry. Calculation method used SRAC-CITATION code. The obtained results are the effective multiplication factor and density value of core reactor power (with geometry optimalization) to obtain optimum design core reactor power, whereas the obtained of optimum core reactor power is 200 MWth with 55% of fuel fraction and 9-13% of percentages.

  16. Status of national programmes on fast breeder reactors. Twenty-fifth annual meeting of the International Working Group on Fast Reactors. Summary report. Working material

    International Nuclear Information System (INIS)

    1992-01-01

    At present nuclear power accounts for approximately 17% of total electricity generation worldwide. Given continuing population growth and the needs of the third world and developing countries to improve their economic performance and standard of living, energy demand is expected to continue to grow through the 21st century. The proportion of energy supplied as electricity is also expected to continue to increase. Although fossil fuelled electricity generation is the option preferred by several countries for the short term, there are rising concerns over climatic consequences caused by extended burning of fossil fuels as a result of the demands of a fast expanding world population. In this situation nuclear electricity will become more and more important and the known reserves of uranium would be consumed quite quickly by thermal reactors. It would be possible to sustain a large nuclear programme only by introducing fast reactors. One can conclude that there are strategic reasons for pursuing the development of fast breeder reactors. It will become desirable essential, to have this technology available for introduction. The experience of the various prototypes presently in operation has confirmed the operability and benign characteristics of the LMFR and has given ground for confidence in the future. Current fast reactor designs offer very large margins of safety and by virtue of redundant and diverse safety systems the potential for an energetic core disruptive accident or for fast reactor core meltdown has been essentially eliminated. Several international forums reviewed the current trends in the fast reactor development. The view was reaffirmed that fast breeder reactors still remain the most practical tool for effective utilization of uranium resources for the future energy needs. Achievement of competitiveness with LMRs is still the first priority condition for the future deployment of this type of reactor. The recycling of plutonium into LMFBRs would allow

  17. Evaluation of transmutation performance of long-lived fission products with a super fast reactor

    International Nuclear Information System (INIS)

    Lu, Haoliang; Han, Chiyoung; Oka, Yoshiaki; Ikejiri, Satoshi; Ishiwatari, Yuki

    2009-01-01

    The performance of the Super Fast Reactor for transmutation treatment of long-lived fission products (LLFPs) was evaluated. Two regions with soft neutron spectrum, which is of great benefit to the LLFPs transmutation, can be utilized in the Super Fast Reactor. First is in the blanket assembly due to the ZrH 1.7 layer which can slow down the fast neutrons. Second is in the reflector region of core like other metal-cooled fast reactors. The LLFPs selected of transmutation analysis include 99 Tc, 129 I and 135 Cs discharged from LWR. Their isotopes, such as 127 I, 133 Cs, 134 Cs and 137 Cs were also considered. By loading the isotopes ( 99 Tc or 127 I and 129 I) in the blanket assembly and the reflector region simultaneously, the transmutation rates of 5.36%/GWe·y and 2.79%/GWe.y can be obtained for 99 Tc and 129 I, respectively. The transmuted amounts of 99 Tc and 129 I are equal to the outputs from 11.8 and 6.2 1000MWe-class PWRs. Because of the very low capture cross section of 135 Cs and the effect of other cesium isotopes, 135 Cs was loaded with three rings of assemblies in the reflector region to make the transmuted amount be larger than the yields of two 1000MWe-class PWRs. Based on these results, 99 Tc and 129 I can be transmuted conveniently and higher transmutation performance can be obtained by the Super Fast Reactor. However, the transmutation of 135 Cs is very difficult and the transmuted amount is less than that produced by the Super Fast Reactor. It turns out that the 135 Cs transmutation is a challenge not only for the Super Fast Reactor but also for other commercial fast reactors. (author)

  18. Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    In recent years, engineering oriented work, rather than basic research and development (R&D), has led to significant progress in improving the economics of innovative fast reactors and associated fuel cycle facilities, while maintaining and even enhancing the safety features of these systems. Optimization of plant size and layout, more compact designs, reduction of the amount of plant materials and the building volumes, higher operating temperatures to attain higher generating efficiencies, improvement of load factor, extended core lifetimes, high fuel burnup, etc. are good examples of achievements to date that have improved the economics of fast neutron systems. The IAEA, through its Technical Working Group on Fast Reactors (TWG-FR) and Technical Working Group on Nuclear Fuel Cycle Options and Spent Fuel Management (TWG-NFCO), devotes many of its initiatives to encouraging technical cooperation and promoting common research and technology development projects among Member States with fast reactor and advanced fuel cycle development programmes, with the general aim of catalysing and accelerating technology advances in these fields. In particular the theme of fast reactor deployment, scenarios and economics has been largely debated during the recent IAEA International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios, held in Paris in March 2013. Several papers presented at this conference discussed the economics of fast reactors from different national and regional perspectives, including business cases, investment scenarios, funding mechanisms and design options that offer significant capital and energy production cost reductions. This Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics addresses Member States’ expressed need for information exchange in the field, with the aim of identifying the main open issues and launching possible initiatives to help and

  19. Core design studies for advanced burner test reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W. S.; Kim, T. K.; Hill, R. N.; Nuclear Engineering Division

    2008-01-01

    The U.S. government announced in February 2006 the Global Nuclear Energy Partnership (GNEP) to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. The advanced burner reactor (ABR) based on a fast spectrum is one of the three major technologies to be demonstrated in GNEP. In FY06, a pre-conceptual design study was performed to develop an advanced burner test reactor (ABTR) that supports development of a prototype full-scale ABR, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR were (1) to demonstrate reactor-based transmutation of transuranics (TRU) as part of an advanced fuel cycle, (2) to qualify the TRU-containing fuels and advanced structural materials needed for a full-scale ABR, (3) to support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. Based on these objectives, core design and fuel cycle studies were performed to develop ABTR core designs, which can accommodate the expected changes of the TRU feed and the conversion ratio. Various option and trade-off studies were performed to determine the appropriate power level and conversion ratio. Both ternary metal alloy (U-TRU-10Zr) and mixed oxide (UO{sub 2}-TRUO{sub 2}) fuel forms have been considered with TRU feeds from weapons-grade plutonium (WG-Pu) and TRU recovered from light water reactor spent fuel (LWR-SF). Reactor performances were evaluated in detail including equilibrium cycle core parameters, mass flow, power distribution, kinetic parameters, reactivity feedback coefficient, reactivity control requirements and shutdown margins, and spent fuel characteristics. Trade-off studies on power level suggested that about 250 MWt is a reasonable compromise to allow a low project cost, at the same time providing a reasonable prototypic irradiation environment for demonstrating

  20. Control rod calibration methods for fast breeder reactors applied to Phenix

    International Nuclear Information System (INIS)

    Lecourt, G.

    1998-01-01

    The control and the emergency shutdown of a fast breeder reactor depends essentially on control rods. For this reason, it is imperative to know exactly how much anti reactivity is introduced with the rods in the reactor core. Different methods have been compared in order to see if they are compatible with Phenix reactor. Their limits have been studied. The shadow and anti shadow effects that can the rods make one to the other and then their effective weight of the rods screen have been clarified. (N.C.)

  1. Minutes of the 2. Meeting of the WPRS / EGRPANS / Sodium Fast Reactor Task Force (SFR)

    International Nuclear Information System (INIS)

    Ivanov, Evgeny; Kereszturi, Andras; Pataki, I.; Tota, A.; Vertes, P.; Kim, Taek K.; Taiwo, T.A.; Kugo, Teruhiko; Lee, Yi Kang; Messaoudi, Nadia; Michel-Sendis, Franco; ); Pascal, Vincent; Buiron, Laurent; Varaine, Frederic; Ponomarev, Alexander

    2012-01-01

    Five organizations (SCK/CEN, KIT, KFKI, CEA, ANL) participated in the Sodium-cooled fast reactor (SFR) Benchmark calculations and all results were collected and compiled by CEA and ANL. The compiled results of the large size cores and medium size cores were presented by V. Pascal (CEA) and T. K. Kim (ANL), respectively. Separately, A. Kereszturi presented his recently updated results. It was observed that there is wide variation in core multiplication factor, kinetics parameters, and reactivity feedback coefficients. In particular, compared to the CEA results, ANL calculated smaller k-eff, Doppler constant, but higher sodium void worth and control rod worth. The core modeling issue (heterogeneous vs. homogeneous) and solution method (diffusion vs. transport) were identified as the potential reasons of these discrepancies, including the minor impacts from the depletion chains and lumped fission product modeling. All participants agreed that additional investigation was needed to identify the reasons of these discrepancies. In addition, V. Pascal presented the informative notes of the reactivity feedback calculations methodology proposed by CEA. This document brings together the 5 presentations (slides) given at this meeting: 1 - SFR Task Force : Core behavior during transient as a function of power size and fuel nature (L. Buiron, V. Pascal, F. Varaine); 2 - Sodium Fast Reactor core Feedback and Transient response (SFRFT) Expert Group: preliminary benchmark results for large cores (L. Buiron, V. Pascal, F. Varaine); 3 - Numerical Benchmark Results for 1000 MWth Sodium-cooled Fast Reactor (T.K. Kim and T.A. Taiwo); 4 - Preliminary results of the WPRS Sodium-Cooled Fast Reactor Benchmark problems (A. Kereszturi, I. Pataki, A. Tota, P. Vertes); 5 - SFR Task Force : proposal for Feedback coefficients estimation methodology (L. Buiron, V.Pascal, F. Varaine)

  2. Gas-Cooled Fast Reactor (GFR) FY04 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    K. D. Weaver; T. C. Totemeier; D. E. Clark; E. E. Feldman; E. A. Hoffman; R. B. Vilim; T. Y. C. Wei; J. Gan; M. K. Meyer; W. F. Gale; M. J. Driscoll; M. Golay; G. Apostolakis; K. Czerwinski

    2004-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection.

  3. The WINCON programme - validation of fast reactor primary containment codes

    International Nuclear Information System (INIS)

    Sidoli, J.E.A.; Kendall, K.C.

    1988-01-01

    In the United Kingdom safety studies for the Commercial Demonstration Fast Reactor (CDFR) include an assessment of the capability of the primary containment in providing an adequate containment for defence against the hazards resulting from a hypothetical Whole Core Accident (WCA). The assessment is based on calculational estimates using computer codes supported by measured evidence from small-scale experiments. The hydrodynamic containment code SEURBNUK-EURDYN is capable of representing a prescribed energy release, the sodium coolant and cover gas, and the main containment and safety related internal structures. Containment loadings estimated using SEURBNUK-EURDYN are used in the structural dynamic code EURDYN-03 for the prediction of the containment response. The experiments serve two purposes, they demonstrate the response of the CDFR containment to accident loadings and provide data for the validation of the codes. This paper summarises the recently completed WINfrith CONtainment (WINCON) experiments that studied the response of specific features of current CDFR design options to WCA loadings. The codes have been applied to some of the experiments and a satisfactory prediction of the global response of the model containment is obtained. This provides confidence in the use of the codes in reactor assessments. (author)

  4. Retrospective view of fast reactor safety: EBR-I to the present

    International Nuclear Information System (INIS)

    Hummel, H.H.

    1986-01-01

    An early concern in fast reactor safety was that the positive Doppler coefficient of fissile material was a significant effect and was responsible for the positive temperature coefficient of EBR-1, which led to meltdown of the core. Another primary concern for early, metal-fueled fast reactors was the possibility of gravity collapse of the molten core. As reactors became larger, it became apparent that this process would lead to unacceptably large energy releases, providing an incentive for more detailed modeling. As fast reactor safety developed, the importance of reactivity effects other than gravity fuel slumping became evident. For the TOP accident, fuel motion modeling as embodied in such codes as EPIC and PLUTO2 showed that if pin failure occurred at or near the top of the core, consistent with higher clad temperatures, a benign outcome was assured. As the newer codes tended to given more benign results for the initiation phase of CDA's, more attention has been focused on the transition to extensive gradual core melting. 12 refs

  5. Status of national programmes on fast breeder reactors

    International Nuclear Information System (INIS)

    1989-07-01

    The twenty-second Annual Meeting of the International Working Group on Fast Reactors took place in Vienna, 18-21 April 1989. Nineteen representatives from twelve Member States and International Organizations attended the Meeting. This publication is a collection of presentations in which the participants reported the status of their national programmes on fast breeder reactors. A separate abstract was prepared for each of the twelve papers from this collections. Refs, figs, tabs and 1 graph

  6. Safety Design Criteria of Indian Sodium Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Pillai, P.; Chellapandi, P.; Chetal, S.C.; Vasudeva Rao, P.R.

    2013-01-01

    • Important feedback has been gained through the design and safety review of PFBR. • The safety criteria document prepared by AERB and IGCAR would provide important input to prepare the dedicated document for the Sodium cooled Fast Reactors at the national and international level. • A common approach with regard to safety, among countries pursuing fast reactor program, is desirable. • Sharing knowledge and experimental facilities on collaborative basis. • Evolution of strong safety criteria – fundamental to assure safety

  7. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Laureau, A., E-mail: laureau.axel@gmail.com; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-05-15

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  8. Development of special welding processes for in-core components in nuclear reactors

    International Nuclear Information System (INIS)

    Setty, D.S.; Kalyanakrishnan, G.; Saibaba, N.

    2016-01-01

    India has designed its three-stage nuclear power program based on domestic limited resources of uranium and vast availability of thorium, where natural and enriched uranium-dioxide fuel is utilized in Pressurized Heavy Water Reactors (PHWR) and Boiling Water Reactors (BWR) respectively in the first stage. Plutonium based fuels are implemented for Fast Breeder Reactors (FBR) in the second stage and thorium based fuels are to be utilized using indigenously developed reactors in the third stage. Considering the harsh reactor operating conditions like high temperature and pressure and neutron flux, in-core components used in the above reactors are to be manufactured with different critical materials like Zirconium alloys, Special SS materials, ODS etc. Welding the best joining technique used for joining in-core components, and can perform satisfactorily in the reactors. The welding processes used in nuclear applications have to conform to stringent quality requirements to achieve zero failures rate. In view of the stringent weld quality requirements and amenable for automation various weld joint designs and welding processes were selected for fabrication of in-core components such as Resistance Welding, Tungsten Inert Gas welding and Electron Beam Welding. In this paper, overview is given for all the major welding processes used and its specific applications for fabrication of in-core components used in nuclear reactors. The welding process intricacies are explained and weld quality evaluation techniques are briefly brought out. The joint design modifications and improvements achieved with respect to welding operations over decades of reactor operating experiences are also explained, which helped in reducing fuel and in-core structural components failures for Indian nuclear reactors. (author)

  9. Reprocessing of spent fuel, Dounreay and fast breeder reactors

    International Nuclear Information System (INIS)

    Lingjaerde, R.

    1986-11-01

    In the light of the public interest in Norway in the breeder reactor fuel reprocessing plant projected in Dounreay, Scotland, the report gives a description of the research center in Dounreay and the planned joint European demonstration facility (EDRP). Certain aspects of the fast breeder reactor are also explained

  10. Materials science research for sodium cooled fast reactors

    Indian Academy of Sciences (India)

    The paper gives an insight into basic as well as applied research being carried out at the Indira Gandhi Centre for Atomic Research for the development of advanced materials for sodium cooled fast reactors towards extending the life of reactors to nearly 100 years and the burnup of fuel to 2,00,000 MWd/t with an objective ...

  11. Fast Pyrolysis of Lignin Using a Pyrolysis Centrifuge Reactor

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Sárossy, Zsuzsa

    2013-01-01

    Fast pyrolysis of lignin from an ethanol plant was investigated on a lab scale pyrolysis centrifuge reactor (PCR) with respect to pyrolysis temperature, reactor gas residence time, and feed rate. A maximal organic oil yield of 34 wt % dry basis (db) (bio-oil yield of 43 wt % db) is obtained...

  12. Design characteristics of research zero power fast reactor Lasta

    International Nuclear Information System (INIS)

    Milosevic, M.; Stefanovic, D.; Pesic, M.; Nikolic, D.; Antic, D.; Zavaljevski, N.; Popovic, D.

    1990-01-01

    LASTA is a flexible zero power reactor with uranium and plutonium fuel designed for research in the neutron physics and in the fast reactor physics. Safety considerations and experimental flexibility led to the choice of a fixed vertical assembly with two safety blocks as the main safety elements, so that safety devices would be operated by gravity. The neutron and reactor physics, the control and safety philosophy adopted in our design, are described in this paper. Developed computer programs are presented. (author)

  13. Fast breeder reactors: can we learn from experience

    International Nuclear Information System (INIS)

    Keck, O.

    1981-01-01

    An economic analysis of FBRs, in particular the long-term benefits to be expected, with reference to the experience of the West German fast breeder reactor programme suggests ways of bringing more realism into governmental decisions on the development of new reactor types. It is suggested that if reactor manufacturers and utilities financed commercial-size demonstration plants from their own funds, then the government would get more realistic advice. (U.K.)

  14. Core Design Studies for a 1000 MWth Advanced Burner Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.K.; Yang, W.S.; Grandy, C.; Hill, R.N. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2008-07-01

    This paper describes the core design and performance characteristics of 1000 MWth Advanced Burner Reactor (ABR) core concepts with a wide range of TRU conversion ratio. Using ternary metal alloy and mixed oxide fuels, reference core designs of a medium TRU conversion ratio of approx0.7 were developed by trade-off between burnup reactivity loss and TRU conversion ratio. Based on these reference core concepts, TRU burner cores with a wide range of TRU conversion ratio were developed by changing the intra-assembly design parameters and core configurations. Reactor performance characteristics were evaluated in detail, including equilibrium cycle core performances, reactivity feedback coefficients, and shutdown margins. The results showed that by employing different assembly designs, a wide range of TRU conversion ratios from approx0.2 to break-even can be achieved within the same core without introducing significant performance and safety penalties. (authors)

  15. Core of a liquid-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Wright, J.R.; McFall, A.

    1975-01-01

    The core of a liquid-cooled nuclear reactor, e.g. of a sodium-cooled fast reactor, is protected in such a way that the recoil wave resulting from loss of coolant in a cooling channel and caused by released gas is limited to a coolant inlet chamber of this cooling channel. The channels essentially consist of the coolant inlet chamber and a fuel chamber - with a fission gas storage plenum - through which the coolant flows. Between the two chambers, a locking device within a tube is provided offering a much larger flow resistance to the backflow of gas or coolant than in flow direction. The locking device may be a hydraulic countertorque control system, e.g. a valvular line. Other locking devices have got radially helical vanes running around an annular flow space. Furthermore, the locking device may consist of a number of needles running parallel to each other and forming a circular grid. Though it can be expanded by the forward flow - the needles are spreading - , it acts as a solid barrier for backflows. (TK) [de

  16. Modeling the behavior of metallic fast reactor fuels during extended transients

    International Nuclear Information System (INIS)

    Kramer, J.M.; Liu, Y.Y.; Billone, M.C.; Tsai, H.C.

    1993-01-01

    Passive safety features in metal-fueled reactors utilizing the Integral Fast Reactor (IFR) fuel system make it possible to avoid core damage for extended time periods even when automatic scram system fail to operate or heat removal systems are severely degraded. The time scale for these transients are intermediate between those that have traditionally been analyzed in fast reactor safety assessments and those of normal operation. Consequently, it has been necessary to validate models and computer codes (FPIN2 and LIFE-METAL) for application to this intermediate time regime. Results from out-of-reactor Whole Pin Furnace tests are being used for this purpose. Pretest predictions for tests FM-1 through FM-6 have been performed and calculations have been compared with the experimental measurements. (orig.)

  17. Plans for the development of the IFR [Integral Fast Reactor] fuel cycle

    International Nuclear Information System (INIS)

    Johnson, T.R.

    1986-01-01

    The Integral Fast Reactor (IFR) is a concept for a self-contained facility in which several sodium-cooled fast reactors of moderate size are located at the same site along with complete fuel-recycle and waste-treatment facilities. After the initial core loading with enriched uranium or plutonium, only natural or depleted uranium is shipped to the plant, and only wastes in final disposal forms are shipped out. The reactors have driver and blanket fuels of uranium-plutonium-zirconium alloys in stainless steel cladding. The use of metal alloy fuels is central to the IFR concept, contributing to the inherent safety of the reactor, the ease of reprocessing, and the relatively low capital and operating costs. Discharged fuels are recovered in a pyrochemical process that consists of two basic steps: an electrolytic process to separate fission products from actinides, and halide slagging to separate plutonium from uranium

  18. The International conference on fast reactors and related fuel cycles: next generation nuclear systems for sustainable development. Book of abstracts

    International Nuclear Information System (INIS)

    2017-01-01

    The materials of the International Conference on Fast Reactors and Related Fuel Cycles (June 26-29, 2017, Yekaterinburg) are presented. The forum was organized by the IAEA with the assistance of Rosatom State Corporation. The theme of the conference: “The New Generation of Nuclear Systems for Sustainable Development”. About 700 specialists from more than 30 countries took part in the conference. The state and prospects for the development of the direction of fast reactors in countries dealing with this topic were discussed. A wide range of scientific issues covered the concepts of prospective reactors, reactor cores, fuel and fuel cycles, operation and decommissioning, safety, licensing, structural materials, industrial implementation [ru

  19. Role of research in non-destructive evaluation for life management of Indian fast reactors

    International Nuclear Information System (INIS)

    Rao, B.P.C.; Jayakumar, T.; Kumar, A.; Raj, B.

    2007-01-01

    The successful design, construction and operation of fast breeder test reactor at Indira Gandhi Center for Atomic Research, demonstrating the technological viability of fast breeder reactors (FBRs) has paved the way for stepping into the commercial phase of the second stage of the Indian nuclear power programme. The important role of NDE is ensuring quality assurance of components during manufacture and in-service inspection (ISI) of installed components. In the area of NDE, several new technologies have been developed for inspection of in-core and out-of-core components and implemented in field. These include quality assurance of steam generator tubes and tube-to-tube sheet welds; ISI of welds in main vessel and safety vessel; ISI of inspection of steam generators; ISI of core support structure; inspection of concrete; detection of intergrannular corrosion; and under-sodium viewing. This paper demonstrates how these developments enable effective plant management of Indian FBRs. (orig.)

  20. Comparison of fuel assemblies in lead cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; Sanchez, H.; Aguilar, L.; Espinosa P, G., E-mail: alejandria.peval@gmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)

    2016-09-15

    This paper presents a comparison of the thermal-fluid processes in the core, fuel heat transfer, and thermal power between two fuel assemblies: square and hexagonal, in a lead-cooled fast reactor (Lfr). A multi-physics reduced order model for the analysis of Lfr single channel is developed in this work. The work focused on a coupling between process of neutron kinetic, fuel heat transfer process and thermal-fluid, in a single channel. The thermal power is obtained from neutron point kinetics model, considering a non-uniform power distribution. The analysis of the processes of thermal-fluid considers thermal expansion effects. The transient heat transfer in fuel is carried out in an annular geometry, and one-dimensional in radial direction for each axial node. The results presented in comparing these assemblies consider the temperature field in the fuel, in the thermal fluid and under steady state, and transient conditions. Transients consider flow of coolant and inlet temperature of coolant. The mathematical model of Lfr considers three main modules: the heat transfer in the annular fuel, the power generation with feedback effects on neutronic, and the thermal-fluid in the single channel. The modeling of nuclear reactors in general, the coupling is crucial by the feedback between the neutron processes with fuel heat transfer, and thermo-fluid, where is very common the numerical instabilities, after all it has to refine the model to achieve the design data. In this work is considered as a reference the ELSY reactor for the heat transfer analysis in the fuel and pure lead properties for analyzing the thermal-fluid. The results found shows that the hexagonal array has highest temperature in the fuel, respect to square array. (Author)

  1. A review of fast reactor programme in Japan

    International Nuclear Information System (INIS)

    Masuno, Y.; Bando, S.

    1981-01-01

    The fast breeder reactor development project in Japan has been in progress in the past twelve months and will be continued in the next fiscal year, from April 1981 through March 1982, at a similar scale of effort both in budget and personnel to those of the fiscal year of 1980. The 1981 year budget for P and D work and for construction of a prototype fast breeder reactor, Monju, will be approximately 20 and 27 billion Yen respectively, excluding wages of the personnel of the Power Reactor and Nuclear Fuel Development Corporation, PNC. The number of the technical people currently engaging in the fast breeder reactor development in the PNC is approximately 530, excluding those working for plutonium fuel fabrication. Concerning the experimental fast reactor, Joyo, power increase from 50 MWt to 75 MWt was made in July 1979 and three operational cycles at 75 MWt have been completed in August 1980 and the forth cycle has started in the middle of March 1981. With respect to the prototype reactor Monju, progress toward construction has been made and an environmental impact statement of the reactor was approved by the concerned authorities. Preliminary design studies of large LMFBR are being made by PNC and also by utilities. A design study being conducted by PNC is on a 1000 MW e plant of loop type by extrapolating the technology to be developed by the time of commissioning of Monju. A group of utilities is conducting a similar study, but covering somewhat wider range of parameters and options of design. Close contact between the group and PNC has been kept. In the future, those design efforts will be combined as a single design effort, when a major effort for developing a large demonstration reactor will be initiated at around the commencement of construction of the prototype reactor Monju. Highlights and topics of the fast breeder reactor development activities in the past twelve months are summarized in this report

  2. Chemical surveillance of commercial fast breeder reactors

    International Nuclear Information System (INIS)

    Stamm, H.H.; Stade, K.Ch.

    1988-01-01

    After BN-600 (USSR) and SUPERPHENIX (France) were started succesfully, the international development of LMFBRs is standing at the doorstep of commercial use. For commercial use of LMFBRs cost reductions for construction and operation are highly desirable and necessary. Several nations developing breeder reactors have joined in a common effort in order to reach this aim by standardization and harmonization. On the base of more than 20 years of operation experience of experimental reactors (EBR-II, FFTF, RAPSODIE, DFR, BR-5/BR-10, BOR-60, JOYO, KNK-II) and demonstration plants (PHENIX, PFR, BN-350), possibilities for standardization in chemical surveillance of commercial breeder reactors without any loss of availability, reliability and reactor safety will be discussed in the following chapters. Loop-type reactors will be considered as well as pool-type reactors, although all commercial plants under consideration so far (SUPERPHENIX II, BN-800, BN-1600, CFBR, SNR-2, EFR) include pool-type reactors only. Table 1 gives a comparison of the Na inventories of test reactors, prototype plants and commercial LMFBRs

  3. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ehud Greenspan

    2008-09-30

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  4. Fuel loading method to exchangeable reactor core of BWR type reactor and its core

    International Nuclear Information System (INIS)

    Koguchi, Kazushige.

    1995-01-01

    In a fuel loading method for an exchangeable reactor core of a BWR type reactor, at least two kinds of fresh fuel assemblies having different reactivities between axial upper and lower portions are preliminarily prepared, and upon taking out fuel assemblies of advanced combustion and loading the fresh fuel assemblies dispersingly, they are disposed so as to attain a predetermined axial power distribution in the reactor. At least two kinds of fresh fuel assemblies have a content of burnable poisons different between the axial upper portion and lower portions. In addition, reactivity characteristics are made different at a region higher than the central boundary and a region lower than the central boundary which is set within a range of about 6/24 to 16/24 from the lower portion of the fuel effective length. There can be attained axial power distribution as desired such as easy optimization of the axial power distribution, high flexibility, and flexible flattening of the power distribution, and it requires no special change in view of the design and has a good economical property. (N.H.)

  5. Computer measurement system of reactor period for China fast burst reactor-II

    International Nuclear Information System (INIS)

    Zhao Wuwen; Jiang Zhiguo

    1997-01-01

    The author simply introduces the hardware, principle, and software of the reactor period computer measure system for China Fast Burst Reactor-II (CFBR-II). It also gives the relation between Fission yield and Pre-reactivity of CFBR-II reactor system of bared reactor with decoupled-component and system of bared reactor with multiple light-material. The computer measure system makes the reactor period measurement into automation and intellectualization and also improves the speed and precision of period data process on-line

  6. The computerized reactor period measurement system for China fast burst reactor-II

    International Nuclear Information System (INIS)

    Zhao Wuwen; Jiang Zhiguo

    1996-01-01

    The article simply introduces the hardware, principle, and software of the computerized reactor period measurement system for China Fast Burst Reactor-II (CFBR-II). It also gives the relation between fission yield and pre-reactivity of CFBR-II reactor system of bared reactor with decoupled-component and system of bared reactor with multiple light-material. The computerized measurement system makes the reactor period measurement into automatical and intelligent and also improves the speed and precision of period data on-line process

  7. Sodium fires at fast reactors: RF status report

    International Nuclear Information System (INIS)

    Bagdasarov, Yu.E.; Buksha, Yu.K.; Drobyshev, A.V.; Zybin, V.A.; Ivanenko, V.N.; Kardash, D.Yu.; Kulikov, E.V.; Yagodkin, I.V.

    1996-01-01

    Scientific and engineering studies carried out in Russian Federation since 1992 up to 1996 in the sodium fire area and their main results are described. A review of activities on modification of the computer codes BOX and AERO developed at IPPE for calculating sodium fire consequences is given. Results of analysis of possible accidental situations at currently designed BN-800 reactor NPP with the use of these codes are presented. Sodium leaks occurring at our domestic fast reactors are briefly analyzed. Experimental work performed are described. Results of comparative analysis of common-cause and sodium fire hazards for fast reactor NPP are presented. (author)

  8. Status of national programmes on fast reactors in Korea

    International Nuclear Information System (INIS)

    Kim, Y.I.; Hahn, D.

    2002-01-01

    The role of nuclear power plants in electricity generation in Korea is expected to become more important in the years to come due to poor natural resources and green house gases. This heavy dependence on nuclear power eventually raises the issues of efficient utilization of uranium resources and of spent fuel storage. Fast reactors can resolve these issues. Korea Atomic Energy Research Institute started development of a Liquid Metal Reactor design in 1997 and completed the Conceptual Design in March of 2002. Efforts are currently directed toward the development of advanced fast reactor concepts and basic key technologies. (author)

  9. FAST FOSSIL ROTATION OF NEUTRON STAR CORES

    International Nuclear Information System (INIS)

    Melatos, A.

    2012-01-01

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed ∼10 3 yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  10. Core conversion effects on the safety analysis of research reactors

    International Nuclear Information System (INIS)

    Anoussis, J.N.; Chrysochoides, N.G.; Papastergiou, C.N.

    1982-07-01

    The safety related parameters of the 5 MW Democritus research reactor that will be affected by the scheduled core conversion to use LEU instead of HEU are considered. The analysis of the safety related items involved in such a core conversion, mainly the consequences due to MCA, DBA, etc., is of a general nature and can, therefore, be applied to other similar pool type reactors as well. (T.A.)

  11. Linear and nonlinear stability analysis, associated to experimental fast reactors

    International Nuclear Information System (INIS)

    Amorim, E.S. do; Moura Neto, C. de; Rosa, M.A.P.

    1980-07-01

    Phenomena associated to the physics of fast neutrons were analysed by linear and nonlinear Kinetics with arbitrary feedback. The theoretical foundations of linear kinetics and transfer functions aiming at the analysis of fast reactors stability, are established. These stability conditions were analitically proposed and investigated by digital and analogic programs. (E.G.) [pt

  12. Indian fast reactor technology: Current status and future programme

    Indian Academy of Sciences (India)

    The challenges and achievements in science and technology of FBRs focusing on safety are described with the particular reference to 500 MWe capacity Prototype Fast Breeder Reactor (PFBR), being commissioned at Kalpakkam. Roadmap with comprehensive R&D for the large scale deployment of Sodium Cooled Fast ...

  13. Sizing an external-fueled in-core thermionic reactor.

    Science.gov (United States)

    Nakashima, A. M.; Sawyer, C. D.

    1971-01-01

    Parametric studies on sizing of external-fueled in-core thermionic reactors are presented. Reactor physics results obtained for a variety of fuel element designs are used as a basis for nuclear criticality, power distribution, and control worth design. Thermionic performance results for a single fuel element for several sets of operating conditions are presented. An algorithm combining the electrical and reactor physics results in a form amenable to preliminary systems analysis is presented.

  14. Fast Reactor Physics Vol. I. Proceedings of a Symposium on Fast Reactor Physics and Related Safety Problems

    International Nuclear Information System (INIS)

    1968-01-01

    Proceedings of a Symposium organized by the IAEA and held in Karlsruhe, 30 October - 3 November 1967. The meeting was attended by 183 scientists from 23 countries and three international organizations. Contents: (Vol.1) Review of national programmes (5 papers); Nuclear data for fast reactors (12 papers); Experimental methods (3 papers); Zoned systems (7 papers); Kinetics (7 papers). (Vol.11) Fast critical experiments (8 papers); Heterogeneity in fast critical experiments (5 papers); Fast power reactors (13 papers); Fast pulsed reactors (3 papers); Panel discussion. Each paper is in its original language (50 English, 11 French and 3 Russian) and is preceded by an abstract in English with a second one in the original language if this is not English. Discussions are in English. (author)

  15. Nuclear waste disposal utilizing a gaseous core reactor

    Science.gov (United States)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  16. Core Physics of Pebble Bed High Temperature Nuclear Reactors

    NARCIS (Netherlands)

    Auwerda, G.J.

    2014-01-01

    To more accurately predict the temperature distribution inside the reactor core of pebble bed type high temperature reactors, in this thesis we investigated the stochastic properties of randomly stacked beds and the effects of the non-homogeneity of these beds on the neutronics and

  17. A review of the Italian fast reactor programme

    International Nuclear Information System (INIS)

    Pierantoni, F.; Tavoni, R.

    1984-01-01

    This review sums up the Italian situation in the field of the fast reactors on the eve of the fifth five year plan (1985-1989), in which the country undertakes to implement an important activity of research and development in the context of a greater European collaboration. Italian participation in the development of European nuclear power stations together with the completion of the PEC plant which will be used to develop a fuel element with the necessary economic and safety characteristics, remain the two principal goals of the Italian fast reactor programme. In 1983 the sum assigned by ENEA for fast reactors was about 220 billion lire of which 145 billion was for the PEC reactor

  18. Simulator platform for fast reactor operation and safety technology demonstration

    International Nuclear Information System (INIS)

    Vilim, R.B.; Park, Y.S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J.

    2012-01-01

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  19. Simulator platform for fast reactor operation and safety technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J. (Nuclear Engineering Division)

    2012-07-30

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  20. MCNP full-core modeling of the advanced test reactor

    International Nuclear Information System (INIS)

    Kim, S.S.; Jahshan, S.N.; Nielson, R.B.

    1993-01-01

    A full-core Monte Carlo neutron and photon (MCNP) transport model has been completed for the advanced test reactor (ATR) at Idaho National Engineering Laboratory. This new model is a complete three-dimensional model that represents fuel elements, core structures, and target regions in adequate detail. The model can be used in evaluating heating and reaction rates in various target regions of the core. This model is especially useful in physics analysis of an asymmetric experiment loading in the core. The ATR is a light-water-cooled thermal reactor with aluminum/uranium-aluminide fuel plates grouped in arcuate fuel elements that form a serpentine arrangement, as shown in Fig. 1. The core is surrounded by a beryllium reflector. Nine test loops are nestled in the lobes of the serpentine core, and numerous other irradiation holes with varying dimensions and radiation environments are located in the reflector and in the core interior