Gurau, Razvan
2017-01-01
Written by the creator of the modern theory of random tensors, this book is the first self-contained introductory text to this rapidly developing theory. Starting from notions familiar to the average researcher or PhD student in mathematical or theoretical physics, the book presents in detail the theory and its applications to physics. The recent detections of the Higgs boson at the LHC and gravitational waves at LIGO mark new milestones in Physics confirming long standing predictions of Quantum Field Theory and General Relativity. These two experimental results only reinforce today the need to find an underlying common framework of the two: the elusive theory of Quantum Gravity. Over the past thirty years, several alternatives have been proposed as theories of Quantum Gravity, chief among them String Theory. While these theories are yet to be tested experimentally, key lessons have already been learned. Whatever the theory of Quantum Gravity may be, it must incorporate random geometry in one form or another....
MATLAB tensor classes for fast algorithm prototyping.
Bader, Brett William; Kolda, Tamara Gibson (Sandia National Laboratories, Livermore, CA)
2004-10-01
Tensors (also known as mutidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to psychometrics. We describe four MATLAB classes for tensor manipulations that can be used for fast algorithm prototyping. The tensor class extends the functionality of MATLAB's multidimensional arrays by supporting additional operations such as tensor multiplication. The tensor as matrix class supports the 'matricization' of a tensor, i.e., the conversion of a tensor to a matrix (and vice versa), a commonly used operation in many algorithms. Two additional classes represent tensors stored in decomposed formats: cp tensor and tucker tensor. We descibe all of these classes and then demonstrate their use by showing how to implement several tensor algorithms that have appeared in the literature.
Random SU(2) invariant tensors
Li, Youning; Han, Muxin; Ruan, Dong; Zeng, Bei
2018-04-01
SU(2) invariant tensors are states in the (local) SU(2) tensor product representation but invariant under the global group action. They are of importance in the study of loop quantum gravity. A random tensor is an ensemble of tensor states. An average over the ensemble is carried out when computing any physical quantities. The random tensor exhibits a phenomenon known as ‘concentration of measure’, which states that for any bipartition the average value of entanglement entropy of its reduced density matrix is asymptotically the maximal possible as the local dimensions go to infinity. We show that this phenomenon is also true when the average is over the SU(2) invariant subspace instead of the entire space for rank-n tensors in general. It is shown in our earlier work Li et al (2017 New J. Phys. 19 063029) that the subleading correction of the entanglement entropy has a mild logarithmic divergence when n = 4. In this paper, we show that for n > 4 the subleading correction is not divergent but a finite number. In some special situation, the number could be even smaller than 1/2, which is the subleading correction of random state over the entire Hilbert space of tensors.
Holographic duality from random tensor networks
Hayden, Patrick; Nezami, Sepehr; Qi, Xiao-Liang; Thomas, Nathaniel; Walter, Michael; Yang, Zhao [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,382 Via Pueblo, Stanford, CA 94305 (United States)
2016-11-02
Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many of the interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of bulk operator reconstruction in the boundary theory. In this article, we explore the holographic properties of networks of random tensors. We find that our models naturally incorporate many features that are analogous to those of the AdS/CFT correspondence. When the bond dimension of the tensors is large, we show that the entanglement entropy of all boundary regions, whether connected or not, obey the Ryu-Takayanagi entropy formula, a fact closely related to known properties of the multipartite entanglement of assistance. We also discuss the behavior of Rényi entropies in our models and contrast it with AdS/CFT. Moreover, we find that each boundary region faithfully encodes the physics of the entire bulk entanglement wedge, i.e., the bulk region enclosed by the boundary region and the minimal surface. Our method is to interpret the average over random tensors as the partition function of a classical ferromagnetic Ising model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon including the analog of a bulk field, we find that our model reproduces the expected corrections to the Ryu-Takayanagi formula: the bulk minimal surface is displaced and the entropy is augmented by the entanglement of the bulk field. Increasing the entanglement of the bulk field ultimately changes the minimal surface behavior topologically, in a way similar to the effect of creating a black hole. Extrapolating bulk correlation functions to the boundary permits the calculation of the scaling dimensions of boundary operators, which exhibit a large gap between a small number of low-dimension operators and the rest. While we are primarily motivated by the AdS/CFT duality, the main
Ryu-Takayanagi formula for symmetric random tensor networks
Chirco, Goffredo; Oriti, Daniele; Zhang, Mingyi
2018-06-01
We consider the special case of random tensor networks (RTNs) endowed with gauge symmetry constraints on each tensor. We compute the Rényi entropy for such states and recover the Ryu-Takayanagi (RT) formula in the large-bond regime. The result provides first of all an interesting new extension of the existing derivations of the RT formula for RTNs. Moreover, this extension of the RTN formalism brings it in direct relation with (tensorial) group field theories (and spin networks), and thus provides new tools for realizing the tensor network/geometry duality in the context of background-independent quantum gravity, and for importing quantum gravity tools into tensor network research.
Physical states in the canonical tensor model from the perspective of random tensor networks
Narain, Gaurav [The Institute for Fundamental Study “The Tah Poe Academia Institute”,Naresuan University, Phitsanulok 65000 (Thailand); Sasakura, Naoki [Yukawa Institute for Theoretical Physics,Kyoto University, Kyoto 606-8502 (Japan); Sato, Yuki [National Institute for Theoretical Physics,School of Physics and Centre for Theoretical Physics,University of the Witwartersrand, WITS 2050 (South Africa)
2015-01-07
Tensor models, generalization of matrix models, are studied aiming for quantum gravity in dimensions larger than two. Among them, the canonical tensor model is formulated as a totally constrained system with first-class constraints, the algebra of which resembles the Dirac algebra of general relativity. When quantized, the physical states are defined to be vanished by the quantized constraints. In explicit representations, the constraint equations are a set of partial differential equations for the physical wave-functions, which do not seem straightforward to be solved due to their non-linear character. In this paper, after providing some explicit solutions for N=2,3, we show that certain scale-free integration of partition functions of statistical systems on random networks (or random tensor networks more generally) provides a series of solutions for general N. Then, by generalizing this form, we also obtain various solutions for general N. Moreover, we show that the solutions for the cases with a cosmological constant can be obtained from those with no cosmological constant for increased N. This would imply the interesting possibility that a cosmological constant can always be absorbed into the dynamics and is not an input parameter in the canonical tensor model. We also observe the possibility of symmetry enhancement in N=3, and comment on an extension of Airy function related to the solutions.
Gradients estimation from random points with volumetric tensor in turbulence
Watanabe, Tomoaki; Nagata, Koji
2017-12-01
We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.
Fast evaluation of nonlinear functionals of tensor product wavelet expansions
Schwab, C.; Stevenson, R.
2011-01-01
Abstract For a nonlinear functional f, and a function u from the span of a set of tensor product interpolets, it is shown how to compute the interpolant of f (u) from the span of this set of tensor product interpolets in linear complexity, assuming that the index set has a certain multiple tree
Tensor renormalization group with randomized singular value decomposition
Morita, Satoshi; Igarashi, Ryo; Zhao, Hui-Hai; Kawashima, Naoki
2018-03-01
An algorithm of the tensor renormalization group is proposed based on a randomized algorithm for singular value decomposition. Our algorithm is applicable to a broad range of two-dimensional classical models. In the case of a square lattice, its computational complexity and memory usage are proportional to the fifth and the third power of the bond dimension, respectively, whereas those of the conventional implementation are of the sixth and the fourth power. The oversampling parameter larger than the bond dimension is sufficient to reproduce the same result as full singular value decomposition even at the critical point of the two-dimensional Ising model.
Dolgov, Sergey; Khoromskij, Boris N.; Litvinenko, Alexander; Matthies, Hermann G.
2015-01-01
We apply the tensor train (TT) decomposition to construct the tensor product polynomial chaos expansion (PCE) of a random field, to solve the stochastic elliptic diffusion PDE with the stochastic Galerkin discretization, and to compute some
Fast and Analytical EAP Approximation from a 4th-Order Tensor
Aurobrata Ghosh
2012-01-01
Full Text Available Generalized diffusion tensor imaging (GDTI was developed to model complex apparent diffusivity coefficient (ADC using higher-order tensors (HOTs and to overcome the inherent single-peak shortcoming of DTI. However, the geometry of a complex ADC profile does not correspond to the underlying structure of fibers. This tissue geometry can be inferred from the shape of the ensemble average propagator (EAP. Though interesting methods for estimating a positive ADC using 4th-order diffusion tensors were developed, GDTI in general was overtaken by other approaches, for example, the orientation distribution function (ODF, since it is considerably difficult to recuperate the EAP from a HOT model of the ADC in GDTI. In this paper, we present a novel closed-form approximation of the EAP using Hermite polynomials from a modified HOT model of the original GDTI-ADC. Since the solution is analytical, it is fast, differentiable, and the approximation converges well to the true EAP. This method also makes the effort of computing a positive ADC worthwhile, since now both the ADC and the EAP can be used and have closed forms. We demonstrate our approach with 4th-order tensors on synthetic data and in vivo human data.
Fast and Analytical EAP Approximation from a 4th-Order Tensor.
Ghosh, Aurobrata; Deriche, Rachid
2012-01-01
Generalized diffusion tensor imaging (GDTI) was developed to model complex apparent diffusivity coefficient (ADC) using higher-order tensors (HOTs) and to overcome the inherent single-peak shortcoming of DTI. However, the geometry of a complex ADC profile does not correspond to the underlying structure of fibers. This tissue geometry can be inferred from the shape of the ensemble average propagator (EAP). Though interesting methods for estimating a positive ADC using 4th-order diffusion tensors were developed, GDTI in general was overtaken by other approaches, for example, the orientation distribution function (ODF), since it is considerably difficult to recuperate the EAP from a HOT model of the ADC in GDTI. In this paper, we present a novel closed-form approximation of the EAP using Hermite polynomials from a modified HOT model of the original GDTI-ADC. Since the solution is analytical, it is fast, differentiable, and the approximation converges well to the true EAP. This method also makes the effort of computing a positive ADC worthwhile, since now both the ADC and the EAP can be used and have closed forms. We demonstrate our approach with 4th-order tensors on synthetic data and in vivo human data.
Guan, W.; Cheng, X.; Huang, J.; Huber, G.; Li, W.; McCammon, J. A.; Zhang, B.
2018-06-01
RPYFMM is a software package for the efficient evaluation of the potential field governed by the Rotne-Prager-Yamakawa (RPY) tensor interactions in biomolecular hydrodynamics simulations. In our algorithm, the RPY tensor is decomposed as a linear combination of four Laplace interactions, each of which is evaluated using the adaptive fast multipole method (FMM) (Greengard and Rokhlin, 1997) where the exponential expansions are applied to diagonalize the multipole-to-local translation operators. RPYFMM offers a unified execution on both shared and distributed memory computers by leveraging the DASHMM library (DeBuhr et al., 2016, 2018). Preliminary numerical results show that the interactions for a molecular system of 15 million particles (beads) can be computed within one second on a Cray XC30 cluster using 12,288 cores, while achieving approximately 54% strong-scaling efficiency.
The Schwinger Dyson equations and the algebra of constraints of random tensor models at all orders
Gurau, Razvan
2012-01-01
Random tensor models for a generic complex tensor generalize matrix models in arbitrary dimensions and yield a theory of random geometries. They support a 1/N expansion dominated by graphs of spherical topology. Their Schwinger Dyson equations, generalizing the loop equations of matrix models, translate into constraints satisfied by the partition function. The constraints have been shown, in the large N limit, to close a Lie algebra indexed by colored rooted D-ary trees yielding a first generalization of the Virasoro algebra in arbitrary dimensions. In this paper we complete the Schwinger Dyson equations and the associated algebra at all orders in 1/N. The full algebra of constraints is indexed by D-colored graphs, and the leading order D-ary tree algebra is a Lie subalgebra of the full constraints algebra.
Fast image interpolation via random forests.
Huang, Jun-Jie; Siu, Wan-Chi; Liu, Tian-Rui
2015-10-01
This paper proposes a two-stage framework for fast image interpolation via random forests (FIRF). The proposed FIRF method gives high accuracy, as well as requires low computation. The underlying idea of this proposed work is to apply random forests to classify the natural image patch space into numerous subspaces and learn a linear regression model for each subspace to map the low-resolution image patch to high-resolution image patch. The FIRF framework consists of two stages. Stage 1 of the framework removes most of the ringing and aliasing artifacts in the initial bicubic interpolated image, while Stage 2 further refines the Stage 1 interpolated image. By varying the number of decision trees in the random forests and the number of stages applied, the proposed FIRF method can realize computationally scalable image interpolation. Extensive experimental results show that the proposed FIRF(3, 2) method achieves more than 0.3 dB improvement in peak signal-to-noise ratio over the state-of-the-art nonlocal autoregressive modeling (NARM) method. Moreover, the proposed FIRF(1, 1) obtains similar or better results as NARM while only takes its 0.3% computational time.
Dolgov, Sergey
2015-11-03
We apply the tensor train (TT) decomposition to construct the tensor product polynomial chaos expansion (PCE) of a random field, to solve the stochastic elliptic diffusion PDE with the stochastic Galerkin discretization, and to compute some quantities of interest (mean, variance, and exceedance probabilities). We assume that the random diffusion coefficient is given as a smooth transformation of a Gaussian random field. In this case, the PCE is delivered by a complicated formula, which lacks an analytic TT representation. To construct its TT approximation numerically, we develop the new block TT cross algorithm, a method that computes the whole TT decomposition from a few evaluations of the PCE formula. The new method is conceptually similar to the adaptive cross approximation in the TT format but is more efficient when several tensors must be stored in the same TT representation, which is the case for the PCE. In addition, we demonstrate how to assemble the stochastic Galerkin matrix and to compute the solution of the elliptic equation and its postprocessing, staying in the TT format. We compare our technique with the traditional sparse polynomial chaos and the Monte Carlo approaches. In the tensor product polynomial chaos, the polynomial degree is bounded for each random variable independently. This provides higher accuracy than the sparse polynomial set or the Monte Carlo method, but the cardinality of the tensor product set grows exponentially with the number of random variables. However, when the PCE coefficients are implicitly approximated in the TT format, the computations with the full tensor product polynomial set become possible. In the numerical experiments, we confirm that the new methodology is competitive in a wide range of parameters, especially where high accuracy and high polynomial degrees are required.
Fast integration using quasi-random numbers
Bossert, J.; Feindt, M.; Kerzel, U.
2006-01-01
Quasi-random numbers are specially constructed series of numbers optimised to evenly sample a given s-dimensional volume. Using quasi-random numbers in numerical integration converges faster with a higher accuracy compared to the case of pseudo-random numbers. The basic properties of quasi-random numbers are introduced, various generators are discussed and the achieved gain is illustrated by examples
Fast integration using quasi-random numbers
Bossert, J.; Feindt, M.; Kerzel, U.
2006-04-01
Quasi-random numbers are specially constructed series of numbers optimised to evenly sample a given s-dimensional volume. Using quasi-random numbers in numerical integration converges faster with a higher accuracy compared to the case of pseudo-random numbers. The basic properties of quasi-random numbers are introduced, various generators are discussed and the achieved gain is illustrated by examples.
All-optical fast random number generator.
Li, Pu; Wang, Yun-Cai; Zhang, Jian-Zhong
2010-09-13
We propose a scheme of all-optical random number generator (RNG), which consists of an ultra-wide bandwidth (UWB) chaotic laser, an all-optical sampler and an all-optical comparator. Free from the electric-device bandwidth, it can generate 10Gbit/s random numbers in our simulation. The high-speed bit sequences can pass standard statistical tests for randomness after all-optical exclusive-or (XOR) operation.
Fast Alternating LS Algorithms for High Order CANDECOMP/PARAFAC Tensor Factorizations
Phan, A. H.; Tichavský, Petr; Cichocki, A.
2013-01-01
Roč. 61, č. 19 (2013), s. 4834-4846 ISSN 1053-587X R&D Projects: GA ČR GA102/09/1278 Institutional support: RVO:67985556 Keywords : Canonical polyadic decomposition * tensor decomposition Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 3.198, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/tichavsky-0396774.pdf
EVOLUTION OF FAST MAGNETOACOUSTIC PULSES IN RANDOMLY STRUCTURED CORONAL PLASMAS
Yuan, D.; Li, B.; Pascoe, D. J.; Nakariakov, V. M.; Keppens, R.
2015-01-01
We investigate the evolution of fast magnetoacoustic pulses in randomly structured plasmas, in the context of large-scale propagating waves in the solar atmosphere. We perform one-dimensional numerical simulations of fast wave pulses propagating perpendicular to a constant magnetic field in a low-β plasma with a random density profile across the field. Both linear and nonlinear regimes are considered. We study how the evolution of the pulse amplitude and width depends on their initial values and the parameters of the random structuring. Acting as a dispersive medium, a randomly structured plasma causes amplitude attenuation and width broadening of the fast wave pulses. After the passage of the main pulse, secondary propagating and standing fast waves appear. Width evolution of both linear and nonlinear pulses can be well approximated by linear functions; however, narrow pulses may have zero or negative broadening. This arises because narrow pulses are prone to splitting, while broad pulses usually deviate less from their initial Gaussian shape and form ripple structures on top of the main pulse. Linear pulses decay at an almost constant rate, while nonlinear pulses decay exponentially. A pulse interacts most efficiently with a random medium with a correlation length of about half of the initial pulse width. This detailed model of fast wave pulses propagating in highly structured media substantiates the interpretation of EIT waves as fast magnetoacoustic waves. Evolution of a fast pulse provides us with a novel method to diagnose the sub-resolution filamentation of the solar atmosphere
TensorLy: Tensor Learning in Python
Kossaifi, Jean; Panagakis, Yannis; Pantic, Maja
2016-01-01
Tensor methods are gaining increasing traction in machine learning. However, there are scant to no resources available to perform tensor learning and decomposition in Python. To answer this need we developed TensorLy. TensorLy is a state of the art general purpose library for tensor learning.
Fast physical random bit generation with chaotic semiconductor lasers
Uchida, Atsushi; Amano, Kazuya; Inoue, Masaki; Hirano, Kunihito; Naito, Sunao; Someya, Hiroyuki; Oowada, Isao; Kurashige, Takayuki; Shiki, Masaru; Yoshimori, Shigeru; Yoshimura, Kazuyuki; Davis, Peter
2008-12-01
Random number generators in digital information systems make use of physical entropy sources such as electronic and photonic noise to add unpredictability to deterministically generated pseudo-random sequences. However, there is a large gap between the generation rates achieved with existing physical sources and the high data rates of many computation and communication systems; this is a fundamental weakness of these systems. Here we show that good quality random bit sequences can be generated at very fast bit rates using physical chaos in semiconductor lasers. Streams of bits that pass standard statistical tests for randomness have been generated at rates of up to 1.7 Gbps by sampling the fluctuating optical output of two chaotic lasers. This rate is an order of magnitude faster than that of previously reported devices for physical random bit generators with verified randomness. This means that the performance of random number generators can be greatly improved by using chaotic laser devices as physical entropy sources.
TensorLy: Tensor Learning in Python
Kossaifi, Jean; Panagakis, Yannis; Pantic, Maja
2016-01-01
Tensors are higher-order extensions of matrices. While matrix methods form the cornerstone of machine learning and data analysis, tensor methods have been gaining increasing traction. However, software support for tensor operations is not on the same footing. In order to bridge this gap, we have developed \\emph{TensorLy}, a high-level API for tensor methods and deep tensorized neural networks in Python. TensorLy aims to follow the same standards adopted by the main projects of the Python scie...
Hans-Peter Müller
Full Text Available INTRODUCTION: In-vivo high resolution diffusion tensor imaging (DTI of the mouse brain is often limited by the low signal to noise ratio (SNR resulting from the required small voxel sizes. Recently, cryogenically cooled resonators (CCR have demonstrated significant increase of the effective SNR. It is the objective of this study to enable fast DTI of the mouse brain. In this context, CCRs appear attractive for SNR improvement. METHODS: Three mice underwent a DTI examination at 156²×250 µm³ spatial resolution with a CCR at ultrahigh field (11.7T. Diffusion images were acquired along 30 gradient directions plus 5 references without diffusion encoding, resulting in a total acquisition time of 35 minutes. For comparison, mice additionally underwent a standardized 110 minutes acquisition protocol published earlier. Fractional anisotropy (FA and fiber tracking (FT results including quantitative tractwise fractional anisotropy statistics (TFAS were qualitatively and quantitatively compared. RESULTS: Qualitative and quantitative assessment of the calculated fractional anisotropy maps and fibre tracking results showed coinciding outcome comparing 35 minute scans to the standardized 110 minute scan. Coefficients of variation for ROI-based FA-comparison as well as for TFAS revealed comparable results for the different scanning protocols. CONCLUSION: Mouse DTI at 11.7 T was performed with an acquisition time of approximately 30 minutes, which is considered feasible for cohort studies. The rapid acquisition protocol reveals reliable and reproducible FA-values and FT reconstructions, thus allowing an experimental setup for in-vivo large scale whole brain murine DTI cohort studies.
Shenvi, Neil; Yang, Yang; Yang, Weitao; Aggelen, Helen van
2014-01-01
In recent years, interest in the random-phase approximation (RPA) has grown rapidly. At the same time, tensor hypercontraction has emerged as an intriguing method to reduce the computational cost of electronic structure algorithms. In this paper, we combine the particle-particle random phase approximation with tensor hypercontraction to produce the tensor-hypercontracted particle-particle RPA (THC-ppRPA) algorithm. Unlike previous implementations of ppRPA which scale as O(r 6 ), the THC-ppRPA algorithm scales asymptotically as only O(r 4 ), albeit with a much larger prefactor than the traditional algorithm. We apply THC-ppRPA to several model systems and show that it yields the same results as traditional ppRPA to within mH accuracy. Our method opens the door to the development of post-Kohn Sham functionals based on ppRPA without the excessive asymptotic cost of traditional ppRPA implementations
Random mask optimization for fast neutron coded aperture imaging
McMillan, Kyle [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Univ. of California, Los Angeles, CA (United States); Marleau, Peter [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Brubaker, Erik [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
2015-05-01
In coded aperture imaging, one of the most important factors determining the quality of reconstructed images is the choice of mask/aperture pattern. In many applications, uniformly redundant arrays (URAs) are widely accepted as the optimal mask pattern. Under ideal conditions, thin and highly opaque masks, URA patterns are mathematically constructed to provide artifact-free reconstruction however, the number of URAs for a chosen number of mask elements is limited and when highly penetrating particles such as fast neutrons and high-energy gamma-rays are being imaged, the optimum is seldom achieved. In this case more robust mask patterns that provide better reconstructed image quality may exist. Through the use of heuristic optimization methods and maximum likelihood expectation maximization (MLEM) image reconstruction, we show that for both point and extended neutron sources a random mask pattern can be optimized to provide better image quality than that of a URA.
Tensor surgery and tensor rank
M. Christandl (Matthias); J. Zuiddam (Jeroen)
2018-01-01
textabstractWe introduce a method for transforming low-order tensors into higher-order tensors and apply it to tensors defined by graphs and hypergraphs. The transformation proceeds according to a surgery-like procedure that splits vertices, creates and absorbs virtual edges and inserts new vertices
Tensor surgery and tensor rank
M. Christandl (Matthias); J. Zuiddam (Jeroen)
2016-01-01
textabstractWe introduce a method for transforming low-order tensors into higher-order tensors and apply it to tensors defined by graphs and hypergraphs. The transformation proceeds according to a surgery-like procedure that splits vertices, creates and absorbs virtual edges and inserts new
Gogny interactions with tensor terms
Anguiano, M.; Lallena, A.M.; Bernard, R.N. [Universidad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, Granada (Spain); Co' , G. [INFN, Lecce (Italy); De Donno, V. [Universita del Salento, Dipartimento di Matematica e Fisica ' ' E. De Giorgi' ' , Lecce (Italy); Grasso, M. [Universite Paris-Sud, Institut de Physique Nucleaire, IN2P3-CNRS, Orsay (France)
2016-07-15
We present a perturbative approach to include tensor terms in the Gogny interaction. We do not change the values of the usual parameterisations, with the only exception of the spin-orbit term, and we add tensor terms whose only free parameters are the strengths of the interactions. We identify observables sensitive to the presence of the tensor force in Hartree-Fock, Hartree-Fock-Bogoliubov and random phase approximation calculations. We show the need of including two tensor contributions, at least: a pure tensor term and a tensor-isospin term. We show results relevant for the inclusion of the tensor term for single-particle energies, charge-conserving magnetic excitations and Gamow-Teller excitations. (orig.)
Shenvi, Neil; Yang, Yang; Yang, Weitao [Department of Chemistry, Duke University, Durham, NC 27708 (United States); Aggelen, Helen van [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)
2014-07-14
In recent years, interest in the random-phase approximation (RPA) has grown rapidly. At the same time, tensor hypercontraction has emerged as an intriguing method to reduce the computational cost of electronic structure algorithms. In this paper, we combine the particle-particle random phase approximation with tensor hypercontraction to produce the tensor-hypercontracted particle-particle RPA (THC-ppRPA) algorithm. Unlike previous implementations of ppRPA which scale as O(r{sup 6}), the THC-ppRPA algorithm scales asymptotically as only O(r{sup 4}), albeit with a much larger prefactor than the traditional algorithm. We apply THC-ppRPA to several model systems and show that it yields the same results as traditional ppRPA to within mH accuracy. Our method opens the door to the development of post-Kohn Sham functionals based on ppRPA without the excessive asymptotic cost of traditional ppRPA implementations.
Fang, Xiao; Blazek, Jonathan A.; McEwen, Joseph E.; Hirata, Christopher M., E-mail: fang.307@osu.edu, E-mail: blazek@berkeley.edu, E-mail: mcewen.24@osu.edu, E-mail: hirata.10@osu.edu [Center for Cosmology and AstroParticle Physics, Department of Physics, The Ohio State University, 191 W Woodruff Ave, Columbus OH 43210 (United States)
2017-02-01
Cosmological perturbation theory is a powerful tool to predict the statistics of large-scale structure in the weakly non-linear regime, but even at 1-loop order it results in computationally expensive mode-coupling integrals. Here we present a fast algorithm for computing 1-loop power spectra of quantities that depend on the observer's orientation, thereby generalizing the FAST-PT framework (McEwen et al., 2016) that was originally developed for scalars such as the matter density. This algorithm works for an arbitrary input power spectrum and substantially reduces the time required for numerical evaluation. We apply the algorithm to four examples: intrinsic alignments of galaxies in the tidal torque model; the Ostriker-Vishniac effect; the secondary CMB polarization due to baryon flows; and the 1-loop matter power spectrum in redshift space. Code implementing this algorithm and these applications is publicly available at https://github.com/JoeMcEwen/FAST-PT.
A fast random number generator for the Intel Paragon supercomputer
Gutbrod, F.
1995-06-01
A pseudo-random number generator is presented which makes optimal use of the architecture of the i860-microprocessor and which is expected to have a very long period. It is therefore a good candidate for use on the parallel supercomputer Paragon XP. In the assembler version, it needs 6.4 cycles for a real∗4 random number. There is a FORTRAN routine which yields identical numbers up to rare and minor rounding discrepancies, and it needs 28 cycles. The FORTRAN performance on other microprocessors is somewhat better. Arguments for the quality of the generator and some numerical tests are given.
Dillon, Joshua V.; Langmore, Ian; Tran, Dustin; Brevdo, Eugene; Vasudevan, Srinivas; Moore, Dave; Patton, Brian; Alemi, Alex; Hoffman, Matt; Saurous, Rif A.
2017-01-01
The TensorFlow Distributions library implements a vision of probability theory adapted to the modern deep-learning paradigm of end-to-end differentiable computation. Building on two basic abstractions, it offers flexible building blocks for probabilistic computation. Distributions provide fast, numerically stable methods for generating samples and computing statistics, e.g., log density. Bijectors provide composable volume-tracking transformations with automatic caching. Together these enable...
Tucker Tensor analysis of Matern functions in spatial statistics
Litvinenko, Alexander; Keyes, David E.; Khoromskaia, Venera; Khoromskij, Boris N.; Matthies, Hermann G.
2018-01-01
in a low-rank tensor format. We apply the Tucker and canonical tensor decompositions to a family of Matern- and Slater-type functions with varying parameters and demonstrate numerically that their approximations exhibit exponentially fast convergence
Super fast physical-random number generation using laser diode frequency noises
Ushiki, Tetsuro; Doi, Kohei; Maehara, Shinya; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo
2011-02-01
Random numbers can be classified as either pseudo- or physical-random in character. Pseudo-random numbers' periodicity renders them inappropriate for use in cryptographic applications, but naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideally-suited to the task. The laser diode naturally produces a wideband "noise" signal that is believed to have tremendous capacity and great promise, for the rapid generation of physical-random numbers for use in cryptographic applications. We measured a laser diode's output, at a fast photo detector and generated physical-random numbers from frequency noises. We then identified and evaluated the binary-number-line's statistical properties. The result shows that physical-random number generation, at speeds as high as 40Gbps, is obtainable, using the laser diode's frequency noise characteristic.
How fast does a random walk cover a torus?
Grassberger, Peter
2017-07-01
We present high statistics simulation data for the average time that a random walk needs to cover completely a two-dimensional torus of size L ×L . They confirm the mathematical prediction that ˜(LlnL ) 2 for large L , but the prefactor seems to deviate significantly from the supposedly exact result 4 /π derived by Dembo et al. [Ann. Math. 160, 433 (2004), 10.4007/annals.2004.160.433], if the most straightforward extrapolation is used. On the other hand, we find that this scaling does hold for the time TN (t )=1(L ) at which the average number of yet unvisited sites is 1, as also predicted previously. This might suggest (wrongly) that and TN (t )=1(L ) scale differently, although the distribution of rescaled cover times becomes sharp in the limit L →∞ . But our results can be reconciled with those of Dembo et al. by a very slow and nonmonotonic convergence of /(LlnL ) 2 , as had been indeed proven by Belius et al. [Probab. Theory Relat. Fields 167, 461 (2017), 10.1007/s00440-015-0689-6] for Brownian walks, and was conjectured by them to hold also for lattice walks.
Fast random-number generation using a diode laser's frequency noise characteristic
Takamori, Hiroki; Doi, Kohei; Maehara, Shinya; Kawakami, Kohei; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo
2012-02-01
Random numbers can be classified as either pseudo- or physical-random, in character. Pseudo-random numbers are generated by definite periodicity, so, their usefulness in cryptographic applications is somewhat limited. On the other hand, naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideal for the task. Diode lasers' considerable wideband noise gives them tremendous capacity for generating physical-random numbers, at a high rate of speed. We measured a diode laser's output with a fast photo detector, and evaluated the binary-numbers from the diode laser's frequency noise characteristics. We then identified and evaluated the binary-number-line's statistical properties. We also investigate the possibility that much faster physical-random number parallel-generation is possible, using separate outputs of different optical-path length and character, which we refer to as "coherence collapse".
Corley, B T; Carroll, R W; Hall, R M; Weatherall, M; Parry-Strong, A; Krebs, J D
2018-05-01
To establish whether the risk of hypoglycaemia is greater with 2 consecutive days of very-low-calorie diet compared with 2 non-consecutive days of very-low-calorie diet in people with Type 2 diabetes. This was a non-blinded randomized parallel group interventional trial of intermittent fasting in adults. The participants had a BMI of 30-45 kg/m 2 , Type 2 diabetes treated with metformin and/or hypoglycaemic medications and an HbA 1c concentration of 50-86 mmol/mol (6.7-10%). The participants followed a 2092-2510-kJ diet on 2 days per week for 12 weeks. A total of 41 participants were randomized 1:1 to consecutive (n=19) or non-consecutive (n=22) day fasts, of whom 37 (n=18 and n=19, respectively) were included in the final analysis. The primary outcome was difference in the rate of hypoglycaemia between the two study arms. Secondary outcomes included change in diet, quality of life, weight, lipid, glucose and HbA 1c levels, and liver function. The mean hypoglycaemia rate was 1.4 events over 12 weeks. Fasting increased the rate of hypoglycaemia despite medication reduction (RR 2.05, 95% CI 1.17 to 3.52). There was no difference between fasting on consecutive days and fasting on non-consecutive days (RR 1.54, 95% CI 0.35 to 6.11). Improvements in weight, HbA 1c , fasting glucose and quality of life were experienced by participants in both arms. In individuals with Type 2 diabetes on hypoglycaemic medications, fasting of any type increased the rate of hypoglycaemia. With education and medication reduction, fewer than expected hypoglycaemic events occurred. Although it was not possible to determine whether fasting on consecutive days increased the risk of hypoglycaemia, an acceptable rate was observed in both arms. © 2018 Diabetes UK.
Algebraic classification of the Weyl tensor in higher dimensions based on its 'superenergy' tensor
Senovilla, Jose M M
2010-01-01
The algebraic classification of the Weyl tensor in the arbitrary dimension n is recovered by means of the principal directions of its 'superenergy' tensor. This point of view can be helpful in order to compute the Weyl aligned null directions explicitly, and permits one to obtain the algebraic type of the Weyl tensor by computing the principal eigenvalue of rank-2 symmetric future tensors. The algebraic types compatible with states of intrinsic gravitational radiation can then be explored. The underlying ideas are general, so that a classification of arbitrary tensors in the general dimension can be achieved. (fast track communication)
An Improved Fast Compressive Tracking Algorithm Based on Online Random Forest Classifier
Xiong Jintao
2016-01-01
Full Text Available The fast compressive tracking (FCT algorithm is a simple and efficient algorithm, which is proposed in recent years. But, it is difficult to deal with the factors such as occlusion, appearance changes, pose variation, etc in processing. The reasons are that, Firstly, even if the naive Bayes classifier is fast in training, it is not robust concerning the noise. Secondly, the parameters are required to vary with the unique environment for accurate tracking. In this paper, we propose an improved fast compressive tracking algorithm based on online random forest (FCT-ORF for robust visual tracking. Firstly, we combine ideas with the adaptive compressive sensing theory regarding the weighted random projection to exploit both local and discriminative information of the object. The second reason is the online random forest classifier for online tracking which is demonstrated with more robust to the noise adaptively and high computational efficiency. The experimental results show that the algorithm we have proposed has a better performance in the field of occlusion, appearance changes, and pose variation than the fast compressive tracking algorithm’s contribution.
Instability in time-delayed switched systems induced by fast and random switching
Guo, Yao; Lin, Wei; Chen, Yuming; Wu, Jianhong
2017-07-01
In this paper, we consider a switched system comprising finitely or infinitely many subsystems described by linear time-delayed differential equations and a rule that orchestrates the system switching randomly among these subsystems, where the switching times are also randomly chosen. We first construct a counterintuitive example where even though all the time-delayed subsystems are exponentially stable, the behaviors of the randomly switched system change from stable dynamics to unstable dynamics with a decrease of the dwell time. Then by using the theories of stochastic processes and delay differential equations, we present a general result on when this fast and random switching induced instability should occur and we extend this to the case of nonlinear time-delayed switched systems as well.
Colored Tensor Models - a Review
Razvan Gurau
2012-04-01
Full Text Available Colored tensor models have recently burst onto the scene as a promising conceptual and computational tool in the investigation of problems of random geometry in dimension three and higher. We present a snapshot of the cutting edge in this rapidly expanding research field. Colored tensor models have been shown to share many of the properties of their direct ancestor, matrix models, which encode a theory of fluctuating two-dimensional surfaces. These features include the possession of Feynman graphs encoding topological spaces, a 1/N expansion of graph amplitudes, embedded matrix models inside the tensor structure, a resumable leading order with critical behavior and a continuum large volume limit, Schwinger-Dyson equations satisfying a Lie algebra (akin to the Virasoro algebra in two dimensions, non-trivial classical solutions and so on. In this review, we give a detailed introduction of colored tensor models and pointers to current and future research directions.
Tensor Transpose and Its Properties
Pan, Ran
2014-01-01
Tensor transpose is a higher order generalization of matrix transpose. In this paper, we use permutations and symmetry group to define? the tensor transpose. Then we discuss the classification and composition of tensor transposes. Properties of tensor transpose are studied in relation to tensor multiplication, tensor eigenvalues, tensor decompositions and tensor rank.
Posnansky, Oleg P.
2018-05-01
The measuring of dynamic magnetic susceptibility by nuclear magnetic resonance is used for revealing information about the internal structure of various magnetoactive composites. The response of such material on the applied external static and time-varying magnetic fields encodes intrinsic dynamic correlations and depends on links between macroscopic effective susceptibility and structure on the microscopic scale. In the current work we carried out computational analysis of the frequency dependent dynamic magnetic susceptibility and demonstrated its dependence on the microscopic architectural elements while also considering Euclidean dimensionality. The proposed numerical method is efficient in the simulation of nuclear magnetic resonance experiments in two- and three-dimensional random magnetic media by choosing and modeling the influence of the concentration of components and internal hierarchical characteristics of physical parameters.
Lifetime, turnover time, and fast magnetic field regeneration in random flows
Tanner, S. E. M.
2007-01-01
The fast dynamo is thought to be relevant in the regeneration of magnetic fields in astrophysics where the value of the magnetic Reynolds number (Rm) is immense. The fast dynamo picture is one in which chaotic flows provide a mechanism for the stretching of magnetic field lines. Furthermore, a cascade of energy down to small scales results in intermittent regions of a small-scale, intense magnetic field. Given this scenario it is natural to invoke the use of kinematic random flows in order to understand field regeneration mechanisms better. Here a family of random flows is used to study the effects that L, the lifetime of the cell, and τ, the turnover time of the cell, may have on magnetic field regeneration. Defining the parameter Γ=L/τ, it has been varied according to Γ>1, Γ<1, Γ∼O(1). In the kinematic regime, dynamo growth rates and Lyapunov exponents are examined at varying values of Rm. The possibility of fast dynamo action is considered. In the nonlinear regime, magnetic and kinetic energies are examined. Results indicate that there does appear to be a relationship between Γ and dynamo efficiency. In particular, the most efficient dynamos seem to operate at lower values of Γ
A. Canals
2002-09-01
Full Text Available Interplanetary scintillation measurements can yield estimates of a large number of solar wind parameters, including bulk flow speed, variation in bulk velocity along the observing path through the solar wind and random variation in transverse velocity. This last parameter is of particular interest, as it can indicate the flux of low-frequency Alfvén waves, and the dissipation of these waves has been proposed as an acceleration mechanism for the fast solar wind. Analysis of IPS data is, however, a significantly unresolved problem and a variety of a priori assumptions must be made in interpreting the data. Furthermore, the results may be affected by the physical structure of the radio source and by variations in the solar wind along the scintillation ray path. We have used observations of simple point-like radio sources made with EISCAT between 1994 and 1998 to obtain estimates of random transverse velocity in the fast solar wind. The results obtained with various a priori assumptions made in the analysis are compared, and we hope thereby to be able to provide some indication of the reliability of our estimates of random transverse velocity and the variation of this parameter with distance from the Sun.Key words. Interplanetary physics (MHD waves and turbulence; solar wind plasma; instruments and techniques
A. Canals
Full Text Available Interplanetary scintillation measurements can yield estimates of a large number of solar wind parameters, including bulk flow speed, variation in bulk velocity along the observing path through the solar wind and random variation in transverse velocity. This last parameter is of particular interest, as it can indicate the flux of low-frequency Alfvén waves, and the dissipation of these waves has been proposed as an acceleration mechanism for the fast solar wind. Analysis of IPS data is, however, a significantly unresolved problem and a variety of a priori assumptions must be made in interpreting the data. Furthermore, the results may be affected by the physical structure of the radio source and by variations in the solar wind along the scintillation ray path. We have used observations of simple point-like radio sources made with EISCAT between 1994 and 1998 to obtain estimates of random transverse velocity in the fast solar wind. The results obtained with various a priori assumptions made in the analysis are compared, and we hope thereby to be able to provide some indication of the reliability of our estimates of random transverse velocity and the variation of this parameter with distance from the Sun.
Key words. Interplanetary physics (MHD waves and turbulence; solar wind plasma; instruments and techniques
Li, Da; Jiao, Yu-Ming; Wang, Liang; Lin, Fu-Xin; Wu, Jun; Tong, Xian-Zeng; Wang, Shuo; Cao, Yong
2018-03-16
OBJECTIVE Surgical management of brainstem lesions is challenging due to the highly compact, eloquent anatomy of the brainstem. This study aimed to evaluate the safety and efficacy of preoperative diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) in brainstem cavernous malformations (CMs). METHODS A prospective randomized controlled clinical trial was performed by using stratified blocked randomization. The primary eligibility criterion of the study was being a surgical candidate for brainstem CMs (with informed consent). The study enrolled 23 patients who underwent preoperative DTI/DTT and 24 patients who did not (the control group). The pre- and postoperative muscle strength of both limbs and modified Rankin Scale (mRS) scores were evaluated. Muscle strength of any limb at 12 months after surgery at the clinic visit was the primary outcome; worsened muscle strength was considered to be a poor outcome. Outcome assessors were blinded to patient management. This study reports the preliminary results of the interim analysis. RESULTS The cohort included 47 patients (22 women) with a mean age of 35.7 years. The clinical baselines between these 2 groups were not significantly different. In the DTI/DTT group, the corticospinal tract was affected in 17 patients (73.9%): it was displaced, deformed/partially interrupted, or completely interrupted in 6, 7, and 4 patients, respectively. The surgical approach and brainstem entry point were adjusted in 3 patients (13.0%) based on DTI/DTT data. The surgical morbidity of the DTI/DTT group (7/23, 30.4%) was significantly lower than that of the control group (19/24, 79.2%, p = 0.001). At 12 months, the mean mRS score (1.1, p = 0.034) and percentage of patients with worsened motor deficits (4.3%, p = 0.006) were significantly lower in the DTI/DTT group than in the control group (1.7% and 37.5%). Multivariate logistic regression identified the absence of preoperative DTI/DTT (OR 0.06, 95% CI 0.01-0.73, p = 0
Hess, Siegfried
2015-01-01
This book presents the science of tensors in a didactic way. The various types and ranks of tensors and the physical basis is presented. Cartesian Tensors are needed for the description of directional phenomena in many branches of physics and for the characterization the anisotropy of material properties. The first sections of the book provide an introduction to the vector and tensor algebra and analysis, with applications to physics, at undergraduate level. Second rank tensors, in particular their symmetries, are discussed in detail. Differentiation and integration of fields, including generalizations of the Stokes law and the Gauss theorem, are treated. The physics relevant for the applications in mechanics, quantum mechanics, electrodynamics and hydrodynamics is presented. The second part of the book is devoted to tensors of any rank, at graduate level. Special topics are irreducible, i.e. symmetric traceless tensors, isotropic tensors, multipole potential tensors, spin tensors, integration and spin-...
Randomized quasi-Monte Carlo simulation of fast-ion thermalization
Höök, L J; Johnson, T; Hellsten, T
2012-01-01
This work investigates the applicability of the randomized quasi-Monte Carlo method for simulation of fast-ion thermalization processes in fusion plasmas, e.g. for simulation of neutral beam injection and radio frequency heating. In contrast to the standard Monte Carlo method, the quasi-Monte Carlo method uses deterministic numbers instead of pseudo-random numbers and has a statistical weak convergence close to O(N -1 ), where N is the number of markers. We have compared different quasi-Monte Carlo methods for a neutral beam injection scenario, which is solved by many realizations of the associated stochastic differential equation, discretized with the Euler-Maruyama scheme. The statistical convergence of the methods is measured for time steps up to 2 14 . (paper)
Randomized quasi-Monte Carlo simulation of fast-ion thermalization
Höök, L. J.; Johnson, T.; Hellsten, T.
2012-01-01
This work investigates the applicability of the randomized quasi-Monte Carlo method for simulation of fast-ion thermalization processes in fusion plasmas, e.g. for simulation of neutral beam injection and radio frequency heating. In contrast to the standard Monte Carlo method, the quasi-Monte Carlo method uses deterministic numbers instead of pseudo-random numbers and has a statistical weak convergence close to {O}(N^{-1}) , where N is the number of markers. We have compared different quasi-Monte Carlo methods for a neutral beam injection scenario, which is solved by many realizations of the associated stochastic differential equation, discretized with the Euler-Maruyama scheme. The statistical convergence of the methods is measured for time steps up to 214.
Spectral Tensor-Train Decomposition
Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.
2016-01-01
The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT...... adaptive Smolyak approach. The method is also used to approximate the solution of an elliptic PDE with random input data. The open source software and examples presented in this work are available online (http://pypi.python.org/pypi/TensorToolbox/)....
Tensor rank is not multiplicative under the tensor product
Christandl, Matthias; Jensen, Asger Kjærulff; Zuiddam, Jeroen
2018-01-01
The tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an ℓ-tensor. The tensor product of s and t is a (k+ℓ)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the connection b...
Tensor rank is not multiplicative under the tensor product
M. Christandl (Matthias); A. K. Jensen (Asger Kjærulff); J. Zuiddam (Jeroen)
2018-01-01
textabstractThe tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an ℓ-tensor. The tensor product of s and t is a (k+ℓ)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the
Tensor rank is not multiplicative under the tensor product
M. Christandl (Matthias); A. K. Jensen (Asger Kjærulff); J. Zuiddam (Jeroen)
2017-01-01
textabstractThe tensor rank of a tensor is the smallest number r such that the tensor can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an l-tensor. The tensor product of s and t is a (k + l)-tensor (not to be confused with the "tensor Kronecker product" used in
Surface tensor estimation from linear sections
Kousholt, Astrid; Kiderlen, Markus; Hug, Daniel
From Crofton's formula for Minkowski tensors we derive stereological estimators of translation invariant surface tensors of convex bodies in the n-dimensional Euclidean space. The estimators are based on one-dimensional linear sections. In a design based setting we suggest three types of estimators....... These are based on isotropic uniform random lines, vertical sections, and non-isotropic random lines, respectively. Further, we derive estimators of the specific surface tensors associated with a stationary process of convex particles in the model based setting....
Surface tensor estimation from linear sections
Kousholt, Astrid; Kiderlen, Markus; Hug, Daniel
2015-01-01
From Crofton’s formula for Minkowski tensors we derive stereological estimators of translation invariant surface tensors of convex bodies in the n-dimensional Euclidean space. The estimators are based on one-dimensional linear sections. In a design based setting we suggest three types of estimators....... These are based on isotropic uniform random lines, vertical sections, and non-isotropic random lines, respectively. Further, we derive estimators of the specific surface tensors associated with a stationary process of convex particles in the model based setting....
Rodrigues, Thais Amanda; Goroso, Daniel Gustavo; Westgate, Philip M; Carrico, Cheryl; Batistella, Linamara R; Sawaki, Lumy
2017-10-01
Robot-assisted locomotor training on a bodyweight-supported treadmill is a rehabilitation intervention that compels repetitive practice of gait movements. Standard treadmill speed may elicit rhythmic movements generated primarily by spinal circuits. Slower-than-standard treadmill speed may elicit discrete movements, which are more complex than rhythmic movements and involve cortical areas. Compare effects of fast (i.e., rhythmic) versus slow (i.e., discrete) robot-assisted locomotor training on a bodyweight-supported treadmill in subjects with chronic, severe gait deficit after stroke. Subjects (N = 18) were randomized to receive 30 sessions (5 d/wk) of either fast or slow robot-assisted locomotor training on a bodyweight-supported treadmill in an inpatient setting. Functional ambulation category, time up and go, 6-min walk test, 10-m walk test, Berg Balance Scale, and Fugl-Meyer Assessment were administered at baseline and postintervention. The slow group had statistically significant improvement on functional ambulation category (first quartile-third quartile, P = 0.004), 6-min walk test (95% confidence interval [CI] = 1.8 to 49.0, P = 0.040), Berg Balance Scale (95% CI = 7.4 to 14.8, P locomotor training on a bodyweight-supported treadmill after severe stroke, slow training targeting discrete movement may yield greater benefit than fast training.
Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.
2012-01-01
ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with aqu...
Tensor rank is not multiplicative under the tensor product
Christandl, Matthias; Jensen, Asger Kjærulff; Zuiddam, Jeroen
2017-01-01
The tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an l-tensor. The tensor product of s and t is a (k + l)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the connection between restrictions and degenerations. A result of our study is that tensor rank is not in general multiplicative under the tensor product. This answers a question of Draisma and Saptharishi. Specif...
Fast state estimation subject to random data loss in discrete-time nonlinear stochastic systems
Mahdi Alavi, S. M.; Saif, Mehrdad
2013-12-01
This paper focuses on the design of the standard observer in discrete-time nonlinear stochastic systems subject to random data loss. By the assumption that the system response is incrementally bounded, two sufficient conditions are subsequently derived that guarantee exponential mean-square stability and fast convergence of the estimation error for the problem at hand. An efficient algorithm is also presented to obtain the observer gain. Finally, the proposed methodology is employed for monitoring the Continuous Stirred Tank Reactor (CSTR) via a wireless communication network. The effectiveness of the designed observer is extensively assessed by using an experimental tested-bed that has been fabricated for performance evaluation of the over wireless-network estimation techniques under realistic radio channel conditions.
Tensor gauge condition and tensor field decomposition
Zhu, Ben-Chao; Chen, Xiang-Song
2015-10-01
We discuss various proposals of separating a tensor field into pure-gauge and gauge-invariant components. Such tensor field decomposition is intimately related to the effort of identifying the real gravitational degrees of freedom out of the metric tensor in Einstein’s general relativity. We show that as for a vector field, the tensor field decomposition has exact correspondence to and can be derived from the gauge-fixing approach. The complication for the tensor field, however, is that there are infinitely many complete gauge conditions in contrast to the uniqueness of Coulomb gauge for a vector field. The cause of such complication, as we reveal, is the emergence of a peculiar gauge-invariant pure-gauge construction for any gauge field of spin ≥ 2. We make an extensive exploration of the complete tensor gauge conditions and their corresponding tensor field decompositions, regarding mathematical structures, equations of motion for the fields and nonlinear properties. Apparently, no single choice is superior in all aspects, due to an awkward fact that no gauge-fixing can reduce a tensor field to be purely dynamical (i.e. transverse and traceless), as can the Coulomb gauge in a vector case.
Rudolph, Heike; Quaas, Sebastian; Haim, Manuela; Preißler, Jörg; Walter, Michael H; Koch, Rainer; Luthardt, Ralph G
2013-06-01
The use of fast-setting impression materials with different viscosities for the one-stage impression technique demands precise working times when mixing. We examined the effect of varying working time on impression precision in a randomized clinical trial. Focusing on tooth 46, three impressions were made from each of 96 volunteers, using either a polyether (PE: Impregum Penta H/L DuoSoft Quick, 3 M ESPE) or an addition-curing silicone (AS: Aquasil Ultra LV, Dentsply/DeTrey), one with the manufacturer's recommended working time (used as a reference) and two with altered working times. All stages of the impression-taking were subject to randomization. The three-dimensional precision of the non-standard working time impressions was digitally analyzed compared to the reference impression. Statistical analysis was performed using multivariate models. The mean difference in the position of the lower right first molar (vs. the reference impression) ranged from ±12 μm for PE to +19 and -14 μm for AS. Significantly higher mean values (+62 to -40 μm) were found for AS compared to PE (+21 to -26 μm) in the area of the distal adjacent tooth. Fast-set impression materials offer high precision when used for single tooth restorations as part of a one-stage impression technique, even when the working time (mixing plus application of the light- and heavy-body components) diverges significantly from the manufacturer's recommended protocol. Best accuracy was achieved with machine-mixed heavy-body/light-body polyether. Both materials examined met the clinical requirements regarding precision when the teeth were completely syringed with light material.
Tensor structure for Nori motives
Barbieri-Viale, Luca; Huber, Annette; Prest, Mike
2018-01-01
We construct a tensor product on Freyd's universal abelian category attached to an additive tensor category or a tensor quiver and establish a universal property. This is used to give an alternative construction for the tensor product on Nori motives.
Maor, Moshe H; Errington, R Douglas; Caplan, Richard J; Griffin, Thomas W; Laramore, George E; Parker, Robert G; Burnison, Michele; Stetz, Joann; Zink, Sandra; Davis, Lawrence W; Peters, Lester J
1995-06-15
Purpose: To compare the efficacy of fast-neutron radiotherapy with that of conventionally fractionated photon therapy in the management of patients with locally advanced squamous cell carcinoma of the head and neck. Methods and Materials: Patients with Stage III or IV disease were randomized to receive either 20.4 Gy/12 fractions/4 weeks of neutrons or 70 Gy/35 fractions/7 weeks of photons (control). Between April 1986 and March 1991, 178 patients were entered, 169 of whom were eligible for analysis. The treatment arms were balanced for age, stage, and performance status, but not for primary site of origin. Results: Complete response occurred in 70 and 52% with neutrons and photons, respectively (p = 0.006). Local regional failure at 3 years for all patients was 63% for neutrons and 68% for photons. Actuarial overall survival curves were virtually identical in both study arms, falling to 27% at 3 years. Acute toxicity was similar in the two arms, but late grade 3-5 toxicity was 40% with neutrons compared to 18% with photons (p = 0.008). Conclusion: Although the initial response rate was higher with neutrons, permanent local control and survival were not improved, and the incidence of late normal tissue toxicity was increased. As a result, fast-neutron therapy for advanced squamous cell carcinoma of the head and neck can only be recommended for patients in whom the logistic benefit of treatment in 12 sessions over 4 weeks outweighs the increased risk of late toxicity.
Maor, Moshe H.; Errington, R. Douglas; Caplan, Richard J.; Griffin, Thomas W.; Laramore, George E.; Parker, Robert G.; Burnison, Michele; Stetz, Joann; Zink, Sandra; Davis, Lawrence W.; Peters, Lester J.
1995-01-01
Purpose: To compare the efficacy of fast-neutron radiotherapy with that of conventionally fractionated photon therapy in the management of patients with locally advanced squamous cell carcinoma of the head and neck. Methods and Materials: Patients with Stage III or IV disease were randomized to receive either 20.4 Gy/12 fractions/4 weeks of neutrons or 70 Gy/35 fractions/7 weeks of photons (control). Between April 1986 and March 1991, 178 patients were entered, 169 of whom were eligible for analysis. The treatment arms were balanced for age, stage, and performance status, but not for primary site of origin. Results: Complete response occurred in 70 and 52% with neutrons and photons, respectively (p = 0.006). Local regional failure at 3 years for all patients was 63% for neutrons and 68% for photons. Actuarial overall survival curves were virtually identical in both study arms, falling to 27% at 3 years. Acute toxicity was similar in the two arms, but late grade 3-5 toxicity was 40% with neutrons compared to 18% with photons (p = 0.008). Conclusion: Although the initial response rate was higher with neutrons, permanent local control and survival were not improved, and the incidence of late normal tissue toxicity was increased. As a result, fast-neutron therapy for advanced squamous cell carcinoma of the head and neck can only be recommended for patients in whom the logistic benefit of treatment in 12 sessions over 4 weeks outweighs the increased risk of late toxicity
Tensor eigenvalues and their applications
Qi, Liqun; Chen, Yannan
2018-01-01
This book offers an introduction to applications prompted by tensor analysis, especially by the spectral tensor theory developed in recent years. It covers applications of tensor eigenvalues in multilinear systems, exponential data fitting, tensor complementarity problems, and tensor eigenvalue complementarity problems. It also addresses higher-order diffusion tensor imaging, third-order symmetric and traceless tensors in liquid crystals, piezoelectric tensors, strong ellipticity for elasticity tensors, and higher-order tensors in quantum physics. This book is a valuable reference resource for researchers and graduate students who are interested in applications of tensor eigenvalues.
Hohmann, Manuel [Physikalisches Institut, Universitaet Tartu (Estonia)
2016-07-01
Tensor harmonics are a useful mathematical tool for finding solutions to differential equations which transform under a particular representation of the rotation group SO(3). In order to make use of this tool also in the setting of Finsler geometry, where the objects of relevance are d-tensors instead of tensors, we construct a set of d-tensor harmonics for both SO(3) and SO(4) symmetries and show how these can be used for calculations in Finsler geometry and gravity.
Sirlin, Samuel W.
1993-01-01
Eight-page report describes systems of notation used most commonly to represent tensors of various ranks, with emphasis on tensors in Cartesian coordinate systems. Serves as introductory or refresher text for scientists, engineers, and others familiar with basic concepts of coordinate systems, vectors, and partial derivatives. Indicial tensor, vector, dyadic, and matrix notations, and relationships among them described.
Helmy, Sally A; El-Bedaiwy, Heba M
2014-11-01
Piroxicam is a NSAID with analgesic and antipyretic properties, used for the treatment of rheumatoid diseases. The aim of this study was to evaluate the bioequivalence of two brands of piroxicam capsules (20 mg) in 24 Egyptian volunteers. The in vivo study was established according to a single-center, randomized, single-dose, laboratory-blinded, 2-period, 2-sequence, crossover study with a washout period of 3 weeks. Under fasting conditions, 24 healthy male volunteers were randomly selected to receive a single oral dose of one capsule (20 mg) of either test or reference product. Plasma samples were obtained over a 144-hour interval and analyzed for piroxicam by HPLC with UV detection. The pharmacokinetic parameters Cmax , tmax , AUC0-t , AUC0-∞ , Vd /F, Cl/F, and t1/2 were determined from plasma concentration-time profiles. The 90% confidence intervals for the ratio of log transformed values of Cmax , AUC0-t , and AUC0-∞ of the two treatments were within the acceptable range (0.8-1.25) for bioequivalence. From PK perspectives, the two piroxicam formulations were considered bioequivalent, based on the rate and extent of absorption. No adverse events occurred or were reported after a single 20-mg piroxicam and both formulations were well-tolerated. © 2014, The American College of Clinical Pharmacology.
Li, Xiayue; Curtis, Farren S.; Rose, Timothy; Schober, Christoph; Vazquez-Mayagoitia, Alvaro; Reuter, Karsten; Oberhofer, Harald; Marom, Noa
2018-06-01
We present Genarris, a Python package that performs configuration space screening for molecular crystals of rigid molecules by random sampling with physical constraints. For fast energy evaluations, Genarris employs a Harris approximation, whereby the total density of a molecular crystal is constructed via superposition of single molecule densities. Dispersion-inclusive density functional theory is then used for the Harris density without performing a self-consistency cycle. Genarris uses machine learning for clustering, based on a relative coordinate descriptor developed specifically for molecular crystals, which is shown to be robust in identifying packing motif similarity. In addition to random structure generation, Genarris offers three workflows based on different sequences of successive clustering and selection steps: the "Rigorous" workflow is an exhaustive exploration of the potential energy landscape, the "Energy" workflow produces a set of low energy structures, and the "Diverse" workflow produces a maximally diverse set of structures. The latter is recommended for generating initial populations for genetic algorithms. Here, the implementation of Genarris is reported and its application is demonstrated for three test cases.
Beig, Robert; Krammer, Werner
2004-01-01
For a conformally flat 3-space, we derive a family of linear second-order partial differential operators which sends vectors into trace-free, symmetric 2-tensors. These maps, which are parametrized by conformal Killing vectors on the 3-space, are such that the divergence of the resulting tensor field depends only on the divergence of the original vector field. In particular, these maps send source-free electric fields into TT tensors. Moreover, if the original vector field is the Coulomb field on R 3 {0}, the resulting tensor fields on R 3 {0} are nothing but the family of TT tensors originally written by Bowen and York
Grebenkov, Denis S
2011-02-01
A new method for computing the signal attenuation due to restricted diffusion in a linear magnetic field gradient is proposed. A fast random walk (FRW) algorithm for simulating random trajectories of diffusing spin-bearing particles is combined with gradient encoding. As random moves of a FRW are continuously adapted to local geometrical length scales, the method is efficient for simulating pulsed-gradient spin-echo experiments in hierarchical or multiscale porous media such as concrete, sandstones, sedimentary rocks and, potentially, brain or lungs. Copyright © 2010 Elsevier Inc. All rights reserved.
Garlic intake lowers fasting blood glucose: meta-analysis of randomized controlled trials.
Hou, Li-qiong; Liu, Yun-hui; Zhang, Yi-yi
2015-01-01
Garlic is a common spicy flavouring agent also used for certain therapeutic purposes. Garlic's effects on blood glucose have been the subject of many clinical and animal studies, however, studies reporting hypoglycemic effects of garlic in humans are conflicting. A comprehensive literature search was conducted to identify relevant trials of garlic or garlic extracts on markers of glycemic control [fasting blood glucose (FBG), postprandial glucose (PPG), glycosylated haemoglobin (HbA1c)]. A meta-analysis of the effect of garlic intake on human was done to assess garlic's effectiveness in lowering glucose levels. Two reviewers extracted data from each of the identified studies. Seven eligible randomized controlled trials with 513 subjects were identified. Pooled analyses showed that garlic intake results in a statistically significant lowering in FBG [SMD=-1.67; 95% CI (-2.80, -0.55), p=0.004]. Our pooled analyses did not include PPG control and HbA1c outcomes. Because only 1 study included in the meta-analysis reported PPG variables and only 2 studies reported HbA1c variables. In conclusion, the current meta-analysis showed that the administration of garlic resulted in a significant reduction in FBG concentrations. More trials are needed to investigate the effectiveness of garlic on HbA1c and PPG.
Göke, R; Eschenbach, P; Dütting, E D
2015-06-01
This study compared the efficacy of vildagliptin and sitagliptin in lowering fasting plasma glucose (FPG) as single-pill combinations (SPCs) with metformin. The randomized crossover, open-label, active-controlled study design assessed the FPG-lowering abilities of a vildagliptin/metformin (50/1000 mg twice daily) SPC compared with a sitagliptin/metformin (50/1000 mg twice daily) SPC after 2 weeks of treatment in 99 type 2 diabetes patients uncontrolled by stable metformin therapy (1000-2000 mg/day). The change in FPG from baseline to day 14 was significantly greater (P vildagliptin [-21.9 mg/dL (SD 27.0)] than with sitagliptin [-14.5 mg/dL (SD 23.0)]. After 14 days of treatment, the mean FPG was 137.8 mg/dL (SD 28.5) with vildagliptin and 140.1mg/dL (SD 26.5) with sitagliptin (P vildagliptin produced a significantly greater reduction in FPG vs baseline compared with sitagliptin, which may translate into clinical relevance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Categorical Tensor Network States
Jacob D. Biamonte
2011-12-01
Full Text Available We examine the use of string diagrams and the mathematics of category theory in the description of quantum states by tensor networks. This approach lead to a unification of several ideas, as well as several results and methods that have not previously appeared in either side of the literature. Our approach enabled the development of a tensor network framework allowing a solution to the quantum decomposition problem which has several appealing features. Specifically, given an n-body quantum state |ψ〉, we present a new and general method to factor |ψ〉 into a tensor network of clearly defined building blocks. We use the solution to expose a previously unknown and large class of quantum states which we prove can be sampled efficiently and exactly. This general framework of categorical tensor network states, where a combination of generic and algebraically defined tensors appear, enhances the theory of tensor network states.
Cartesian tensors an introduction
Temple, G
2004-01-01
This undergraduate text provides an introduction to the theory of Cartesian tensors, defining tensors as multilinear functions of direction, and simplifying many theorems in a manner that lends unity to the subject. The author notes the importance of the analysis of the structure of tensors in terms of spectral sets of projection operators as part of the very substance of quantum theory. He therefore provides an elementary discussion of the subject, in addition to a view of isotropic tensors and spinor analysis within the confines of Euclidean space. The text concludes with an examination of t
Horne, B D; Muhlestein, J B; Lappé, D L; May, H T; Carlquist, J F; Galenko, O; Brunisholz, K D; Anderson, J L
2013-11-01
Routine, periodic fasting is associated with a lower prevalence of coronary artery disease (CAD). Animal studies show that fasting may increase longevity and alter biological parameters related to longevity. We evaluated whether fasting initiates acute changes in biomarker expression in humans that may impact short- and long-term health. Apparently-healthy volunteers (N = 30) without a recent history of fasting were enrolled in a randomized cross-over trial. A one-day water-only fast was the intervention and changes in biomarkers were the study endpoints. Bonferroni correction required p ≤ 0.00167 for significance (p fasting intervention acutely increased human growth hormone (p = 1.1 × 10⁻⁴), hemoglobin (p = 4.8 × 10⁻⁷), red blood cell count (p = 2.5 × 10⁻⁶), hematocrit (p = 3.0 × 10⁻⁶), total cholesterol (p = 5.8 × 10⁻⁵), and high-density lipoprotein cholesterol (p = 0.0015), and decreased triglycerides (p = 1.3 × 10⁻⁴), bicarbonate (p = 3.9 × 10⁻⁴), and weight (p = 1.0 × 10⁻⁷), compared to a day of usual eating. For those randomized to fast the first day (n = 16), most factors including human growth hormone and cholesterol returned to baseline after the full 48 h, with the exception of weight (p = 2.5 × 10⁻⁴) and (suggestively significant) triglycerides (p = 0.028). Fasting induced acute changes in biomarkers of metabolic, cardiovascular, and general health. The long-term consequences of these short-term changes are unknown but repeated episodes of periodic short-term fasting should be evaluated as a preventive treatment with the potential to reduce metabolic disease risk. Clinical trial registration (ClinicalTrials.gov): NCT01059760 (Expression of Longevity Genes in Response to Extended Fasting [The Fasting and Expression of Longevity Genes during Food abstinence {FEELGOOD} Trial]). Copyright © 2012 Elsevier B.V. All rights reserved.
Linear Invariant Tensor Interpolation Applied to Cardiac Diffusion Tensor MRI
Gahm, Jin Kyu; Wisniewski, Nicholas; Kindlmann, Gordon; Kung, Geoffrey L.; Klug, William S.; Garfinkel, Alan; Ennis, Daniel B.
2015-01-01
Purpose Various methods exist for interpolating diffusion tensor fields, but none of them linearly interpolate tensor shape attributes. Linear interpolation is expected not to introduce spurious changes in tensor shape. Methods Herein we define a new linear invariant (LI) tensor interpolation method that linearly interpolates components of tensor shape (tensor invariants) and recapitulates the interpolated tensor from the linearly interpolated tensor invariants and the eigenvectors of a linearly interpolated tensor. The LI tensor interpolation method is compared to the Euclidean (EU), affine-invariant Riemannian (AI), log-Euclidean (LE) and geodesic-loxodrome (GL) interpolation methods using both a synthetic tensor field and three experimentally measured cardiac DT-MRI datasets. Results EU, AI, and LE introduce significant microstructural bias, which can be avoided through the use of GL or LI. Conclusion GL introduces the least microstructural bias, but LI tensor interpolation performs very similarly and at substantially reduced computational cost. PMID:23286085
Fast Inbound Top-K Query for Random Walk with Restart.
Zhang, Chao; Jiang, Shan; Chen, Yucheng; Sun, Yidan; Han, Jiawei
2015-09-01
Random walk with restart (RWR) is widely recognized as one of the most important node proximity measures for graphs, as it captures the holistic graph structure and is robust to noise in the graph. In this paper, we study a novel query based on the RWR measure, called the inbound top-k (Ink) query. Given a query node q and a number k , the Ink query aims at retrieving k nodes in the graph that have the largest weighted RWR scores to q . Ink queries can be highly useful for various applications such as traffic scheduling, disease treatment, and targeted advertising. Nevertheless, none of the existing RWR computation techniques can accurately and efficiently process the Ink query in large graphs. We propose two algorithms, namely Squeeze and Ripple, both of which can accurately answer the Ink query in a fast and incremental manner. To identify the top- k nodes, Squeeze iteratively performs matrix-vector multiplication and estimates the lower and upper bounds for all the nodes in the graph. Ripple employs a more aggressive strategy by only estimating the RWR scores for the nodes falling in the vicinity of q , the nodes outside the vicinity do not need to be evaluated because their RWR scores are propagated from the boundary of the vicinity and thus upper bounded. Ripple incrementally expands the vicinity until the top- k result set can be obtained. Our extensive experiments on real-life graph data sets show that Ink queries can retrieve interesting results, and the proposed algorithms are orders of magnitude faster than state-of-the-art method.
Wit, B. de; Rocek, M.
1982-01-01
We construct a conformally invariant theory of the N = 1 supersymmetric tensor gauge multiplet and discuss the situation in N = 2. We show that our results give rise to the recently proposed variant of Poincare supergravity, and provide the complete tensor calculus for the theory. Finally, we argue that this theory cannot be quantized sensibly. (orig.)
Time integration of tensor trains
Lubich, Christian; Oseledets, Ivan; Vandereycken, Bart
2014-01-01
A robust and efficient time integrator for dynamical tensor approximation in the tensor train or matrix product state format is presented. The method is based on splitting the projector onto the tangent space of the tensor manifold. The algorithm can be used for updating time-dependent tensors in the given data-sparse tensor train / matrix product state format and for computing an approximate solution to high-dimensional tensor differential equations within this data-sparse format. The formul...
A Randomized Field Trial of the Fast ForWord Language Computer-Based Training Program
Borman, Geoffrey D.; Benson, James G.; Overman, Laura
2009-01-01
This article describes an independent assessment of the Fast ForWord Language computer-based training program developed by Scientific Learning Corporation. Previous laboratory research involving children with language-based learning impairments showed strong effects on their abilities to recognize brief and fast sequences of nonspeech and speech…
2014-01-01
Background Current guidelines recommend measuring plasma lipids in fasting patients. Recent studies, however, suggest that variation in plasma lipid concentrations secondary to fasting time may be minimal. Objective of the present study was to investigate the impact of fasting time on plasma lipid concentrations (total cholesterol, HDL and LDL cholesterol, triglycerides). A second objective was to determine the effect of non-alcoholic fatty liver disease exerted on the above-mentioned lipid levels. Method Subjects participating in a population-based cross-sectional study (2,445 subjects; 51.7% females) were questioned at time of phlebotomy regarding duration of pre-phlebotomy fasting. Total cholesterol, LDL and HDL cholesterol, and triglycerides were determined and correlated with length of fasting. An upper abdominal ultrasonographic examination was performed and body-mass index (BMI) and waist-to-hip ratio (WHR) were calculated. Subjects were divided into three groups based on their reported fasting periods of 1–4 h, 4–8 h and > 8 h. After application of the exclusion criteria, a total of 1,195 subjects (52.4% females) were included in the study collective. The Kruskal-Wallis test was used for continuous variables and the chi-square test for categorical variables. The effects of age, BMI, WHR, alcohol consumption, fasting time and hepatic steatosis on the respective lipid variables were analyzed using multivariate logistic regression. Results At multivariate analysis, fasting time was associated with elevated triglycerides (p = 0.0047 for 1–4 h and p = 0.0147 for 4–8 h among females; p fasting period. LDL cholesterol and triglycerides exhibit highly significant variability; the greatest impact is seen with the triglycerides. Fasting time represents an independent factor for reduced LDL cholesterol and elevated triglyceride concentrations. There is a close association between elevated lipids and hepatic steatosis. PMID:24447492
Tensor spherical harmonics and tensor multipoles. II. Minkowski space
Daumens, M.; Minnaert, P.
1976-01-01
The bases of tensor spherical harmonics and of tensor multipoles discussed in the preceding paper are generalized in the Hilbert space of Minkowski tensor fields. The transformation properties of the tensor multipoles under Lorentz transformation lead to the notion of irreducible tensor multipoles. We show that the usual 4-vector multipoles are themselves irreducible, and we build the irreducible tensor multipoles of the second order. We also give their relations with the symmetric tensor multipoles defined by Zerilli for application to the gravitational radiation
Tensors and their applications
Islam, Nazrul
2006-01-01
About the Book: The book is written is in easy-to-read style with corresponding examples. The main aim of this book is to precisely explain the fundamentals of Tensors and their applications to Mechanics, Elasticity, Theory of Relativity, Electromagnetic, Riemannian Geometry and many other disciplines of science and engineering, in a lucid manner. The text has been explained section wise, every concept has been narrated in the form of definition, examples and questions related to the concept taught. The overall package of the book is highly useful and interesting for the people associated with the field. Contents: Preliminaries Tensor Algebra Metric Tensor and Riemannian Metric Christoffel`s Symbols and Covariant Differentiation Riemann-Christoffel Tensor The e-Systems and the Generalized Krönecker Deltas Geometry Analytical Mechanics Curvature of a Curve, Geodesic Parallelism of Vectors Ricci`s Coefficients of Rotation and Congruence Hyper Surfaces
Symmetric Tensor Decomposition
Brachat, Jerome; Comon, Pierre; Mourrain, Bernard
2010-01-01
We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables...... of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....
Scheunert, M.
1982-10-01
We develop a graded tensor calculus corresponding to arbitrary Abelian groups of degrees and arbitrary commutation factors. The standard basic constructions and definitions like tensor products, spaces of multilinear mappings, contractions, symmetrization, symmetric algebra, as well as the transpose, adjoint, and trace of a linear mapping, are generalized to the graded case and a multitude of canonical isomorphisms is presented. Moreover, the graded versions of the classical Lie algebras are introduced and some of their basic properties are described. (orig.)
Lazzeretti, Paolo
2018-04-01
It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.
A Closed-Form Solution to Tensor Voting: Theory and Applications
Wu, Tai-Pang; Yeung, Sai-Kit; Jia, Jiaya; Tang, Chi-Keung; Medioni, Gerard
2016-01-01
We prove a closed-form solution to tensor voting (CFTV): given a point set in any dimensions, our closed-form solution provides an exact, continuous and efficient algorithm for computing a structure-aware tensor that simultaneously achieves salient structure detection and outlier attenuation. Using CFTV, we prove the convergence of tensor voting on a Markov random field (MRF), thus termed as MRFTV, where the structure-aware tensor at each input site reaches a stationary state upon convergence...
Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode.
Abellán, C; Amaya, W; Jofre, M; Curty, M; Acín, A; Capmany, J; Pruneri, V; Mitchell, M W
2014-01-27
We demonstrate a high bit-rate quantum random number generator by interferometric detection of phase diffusion in a gain-switched DFB laser diode. Gain switching at few-GHz frequencies produces a train of bright pulses with nearly equal amplitudes and random phases. An unbalanced Mach-Zehnder interferometer is used to interfere subsequent pulses and thereby generate strong random-amplitude pulses, which are detected and digitized to produce a high-rate random bit string. Using established models of semiconductor laser field dynamics, we predict a regime of high visibility interference and nearly complete vacuum-fluctuation-induced phase diffusion between pulses. These are confirmed by measurement of pulse power statistics at the output of the interferometer. Using a 5.825 GHz excitation rate and 14-bit digitization, we observe 43 Gbps quantum randomness generation.
Veenhof, A. A. F. A.; Vlug, M. S.; van der Pas, M. H. G. M.; Sietses, C.; van der Peet, D. L.; de Lange-de Klerk, E. S. M.; Bonjer, H. J.; Bemelman, W. A.; Cuesta, M. A.
2012-01-01
Objective: To evaluate the effect of laparoscopic or open colectomy with fast track or standard perioperative care on patient's immune status and stress response after surgery. Methods: Patients with nonmetastasized colon cancer were randomized to laparoscopic or open colectomy with fast track or
A Review of Tensors and Tensor Signal Processing
Cammoun, L.; Castaño-Moraga, C. A.; Muñoz-Moreno, E.; Sosa-Cabrera, D.; Acar, B.; Rodriguez-Florido, M. A.; Brun, A.; Knutsson, H.; Thiran, J. P.
Tensors have been broadly used in mathematics and physics, since they are a generalization of scalars or vectors and allow to represent more complex properties. In this chapter we present an overview of some tensor applications, especially those focused on the image processing field. From a mathematical point of view, a lot of work has been developed about tensor calculus, which obviously is more complex than scalar or vectorial calculus. Moreover, tensors can represent the metric of a vector space, which is very useful in the field of differential geometry. In physics, tensors have been used to describe several magnitudes, such as the strain or stress of materials. In solid mechanics, tensors are used to define the generalized Hooke’s law, where a fourth order tensor relates the strain and stress tensors. In fluid dynamics, the velocity gradient tensor provides information about the vorticity and the strain of the fluids. Also an electromagnetic tensor is defined, that simplifies the notation of the Maxwell equations. But tensors are not constrained to physics and mathematics. They have been used, for instance, in medical imaging, where we can highlight two applications: the diffusion tensor image, which represents how molecules diffuse inside the tissues and is broadly used for brain imaging; and the tensorial elastography, which computes the strain and vorticity tensor to analyze the tissues properties. Tensors have also been used in computer vision to provide information about the local structure or to define anisotropic image filters.
Fast egg collection method greatly improves randomness of egg sampling in Drosophila melanogaster
Schou, Mads Fristrup
2013-01-01
When obtaining samples for population genetic studies, it is essential that the sampling is random. For Drosophila, one of the crucial steps in sampling experimental flies is the collection of eggs. Here an egg collection method is presented, which randomizes the eggs in a water column...... and diminishes environmental variance. This method was compared with a traditional egg collection method where eggs are collected directly from the medium. Within each method the observed and expected standard deviations of egg-to-adult viability were compared, whereby the difference in the randomness...... and to obtain a representative collection of genotypes, the method presented here is strongly recommended when collecting eggs from Drosophila....
Duncan, W.; Arnott, S.J.; Orr, J.A.; Kerr, G.R.; Schmitt, G.
1984-01-01
The results are presented of a multi-centre randomly controlled trial of fast neutron irradiation and mega-voltage X-rays in the treatment of patients with locally advanced squamous cell carcinoma of the head and neck region. No significant difference was observed in local tumour control rates. Salvage surgery was performed in a similar number of patients in the two groups. Late morbidity was also similar in the two treatment groups. Patients in a subgroup with cancer of the larynx treated by photons had a significantly better survival than those in the neutron treated group. (Auth.)
A fast ergodic algorithm for generating ensembles of equilateral random polygons
Varela, R.; Hinson, K.; Arsuaga, J.; Diao, Y.
2009-03-01
Knotted structures are commonly found in circular DNA and along the backbone of certain proteins. In order to properly estimate properties of these three-dimensional structures it is often necessary to generate large ensembles of simulated closed chains (i.e. polygons) of equal edge lengths (such polygons are called equilateral random polygons). However finding efficient algorithms that properly sample the space of equilateral random polygons is a difficult problem. Currently there are no proven algorithms that generate equilateral random polygons with its theoretical distribution. In this paper we propose a method that generates equilateral random polygons in a 'step-wise uniform' way. We prove that this method is ergodic in the sense that any given equilateral random polygon can be generated by this method and we show that the time needed to generate an equilateral random polygon of length n is linear in terms of n. These two properties make this algorithm a big improvement over the existing generating methods. Detailed numerical comparisons of our algorithm with other widely used algorithms are provided.
Tensor spaces and exterior algebra
Yokonuma, Takeo
1992-01-01
This book explains, as clearly as possible, tensors and such related topics as tensor products of vector spaces, tensor algebras, and exterior algebras. You will appreciate Yokonuma's lucid and methodical treatment of the subject. This book is useful in undergraduate and graduate courses in multilinear algebra. Tensor Spaces and Exterior Algebra begins with basic notions associated with tensors. To facilitate understanding of the definitions, Yokonuma often presents two or more different ways of describing one object. Next, the properties and applications of tensors are developed, including the classical definition of tensors and the description of relative tensors. Also discussed are the algebraic foundations of tensor calculus and applications of exterior algebra to determinants and to geometry. This book closes with an examination of algebraic systems with bilinear multiplication. In particular, Yokonuma discusses the theory of replicas of Chevalley and several properties of Lie algebras deduced from them.
Tensor analysis for physicists
Schouten, J A
1989-01-01
This brilliant study by a famed mathematical scholar and former professor of mathematics at the University of Amsterdam integrates a concise exposition of the mathematical basis of tensor analysis with admirably chosen physical examples of the theory. The first five chapters incisively set out the mathematical theory underlying the use of tensors. The tensor algebra in EN and RN is developed in Chapters I and II. Chapter II introduces a sub-group of the affine group, then deals with the identification of quantities in EN. The tensor analysis in XN is developed in Chapter IV. In chapters VI through IX, Professor Schouten presents applications of the theory that are both intrinsically interesting and good examples of the use and advantages of the calculus. Chapter VI, intimately connected with Chapter III, shows that the dimensions of physical quantities depend upon the choice of the underlying group, and that tensor calculus is the best instrument for dealing with the properties of anisotropic media. In Chapte...
Generalized dielectric permittivity tensor
Borzdov, G.N.; Barkovskii, L.M.; Fedorov, F.I.
1986-01-01
The authors deal with the question of what is to be done with the formalism of the electrodynamics of dispersive media based on the introduction of dielectric-permittivity tensors for purely harmonic fields when Voigt waves and waves of more general form exist. An attempt is made to broaden and generalize the formalism to take into account dispersion of waves of the given type. In dispersive media, the polarization, magnetization, and conduction current-density vectors of point and time are determined by the values of the electromagnetic field vectors in the vicinity of this point (spatial dispersion) in the preceding instants of time (time dispersion). The dielectric-permittivity tensor and other tensors of electrodynamic parameters of the medium are introduced in terms of a set of evolution operators and not the set of harmonic function. It is noted that a magnetic-permeability tensor and an elastic-modulus tensor may be introduced for an acoustic field in dispersive anisotropic media with coupling equations of general form
Wanxing Sheng
2016-05-01
Full Text Available In this paper, a reactive power optimization method based on historical data is investigated to solve the dynamic reactive power optimization problem in distribution network. In order to reflect the variation of loads, network loads are represented in a form of random matrix. Load similarity (LS is defined to measure the degree of similarity between the loads in different days and the calculation method of the load similarity of load random matrix (LRM is presented. By calculating the load similarity between the forecasting random matrix and the random matrix of historical load, the historical reactive power optimization dispatching scheme that most matches the forecasting load can be found for reactive power control usage. The differences of daily load curves between working days and weekends in different seasons are considered in the proposed method. The proposed method is tested on a standard 14 nodes distribution network with three different types of load. The computational result demonstrates that the proposed method for reactive power optimization is fast, feasible and effective in distribution network.
The Twist Tensor Nuclear Norm for Video Completion.
Hu, Wenrui; Tao, Dacheng; Zhang, Wensheng; Xie, Yuan; Yang, Yehui
2017-12-01
In this paper, we propose a new low-rank tensor model based on the circulant algebra, namely, twist tensor nuclear norm (t-TNN). The twist tensor denotes a three-way tensor representation to laterally store 2-D data slices in order. On one hand, t-TNN convexly relaxes the tensor multirank of the twist tensor in the Fourier domain, which allows an efficient computation using fast Fourier transform. On the other, t-TNN is equal to the nuclear norm of block circulant matricization of the twist tensor in the original domain, which extends the traditional matrix nuclear norm in a block circulant way. We test the t-TNN model on a video completion application that aims to fill missing values and the experiment results validate its effectiveness, especially when dealing with video recorded by a nonstationary panning camera. The block circulant matricization of the twist tensor can be transformed into a circulant block representation with nuclear norm invariance. This representation, after transformation, exploits the horizontal translation relationship between the frames in a video, and endows the t-TNN model with a more powerful ability to reconstruct panning videos than the existing state-of-the-art low-rank models.
Laramore, G. E.; Krall, J. M.; Thomas, F. J.; Russell, K. J.; Maor, M. H.; Hendrickson, F. R.; Martz, K. L.; Griffin, T. W.; Davis, L. W.
1993-01-01
Between June 1977 and April 1983 the Radiation Therapy Oncology Group (RTOG) sponsored a Phase III randomized trial investigating the use of fast neutron radiotherapy for patients with locally advanced (Stages C and D1) adenocarcinoma of the prostate gland. Patients were randomized to receive either conventional photon radiation or fast neutron radiation used in a mixed-beam (neutron/photon) treatment schedule. A total of 91 analyzable patients were entered into the study, and the two patient groups were balanced with respect to the major prognostic variables. Actuarial curves are presented for local/regional control and "overall" survival. Ten-year results for clinically assessed local control are 70% for the mixed-beam group versus 58% for the photon group (p = 0.03) and for survival are 46% for the mixed-beam group versus 29% for the photon group (p = 0.04). This study suggests that a regional method of treatment can influence both local tumor control and survival in patients with locally advanced adenocarcinoma of the prostate gland.
Killing tensors and conformal Killing tensors from conformal Killing vectors
Rani, Raffaele; Edgar, S Brian; Barnes, Alan
2003-01-01
Koutras has proposed some methods to construct reducible proper conformal Killing tensors and Killing tensors (which are, in general, irreducible) when a pair of orthogonal conformal Killing vectors exist in a given space. We give the completely general result demonstrating that this severe restriction of orthogonality is unnecessary. In addition, we correct and extend some results concerning Killing tensors constructed from a single conformal Killing vector. A number of examples demonstrate that it is possible to construct a much larger class of reducible proper conformal Killing tensors and Killing tensors than permitted by the Koutras algorithms. In particular, by showing that all conformal Killing tensors are reducible in conformally flat spaces, we have a method of constructing all conformal Killing tensors, and hence all the Killing tensors (which will in general be irreducible) of conformally flat spaces using their conformal Killing vectors
Chatzistavrakidis, Athanasios [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Khoo, Fech Scen [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany); Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Schupp, Peter [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany)
2017-03-13
The particular structure of Galileon interactions allows for higher-derivative terms while retaining second order field equations for scalar fields and Abelian p-forms. In this work we introduce an index-free formulation of these interactions in terms of two sets of Grassmannian variables. We employ this to construct Galileon interactions for mixed-symmetry tensor fields and coupled systems thereof. We argue that these tensors are the natural generalization of scalars with Galileon symmetry, similar to p-forms and scalars with a shift-symmetry. The simplest case corresponds to linearised gravity with Lovelock invariants, relating the Galileon symmetry to diffeomorphisms. Finally, we examine the coupling of a mixed-symmetry tensor to gravity, and demonstrate in an explicit example that the inclusion of appropriate counterterms retains second order field equations.
Tensors, relativity, and cosmology
Dalarsson, Mirjana
2015-01-01
Tensors, Relativity, and Cosmology, Second Edition, combines relativity, astrophysics, and cosmology in a single volume, providing a simplified introduction to each subject that is followed by detailed mathematical derivations. The book includes a section on general relativity that gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes and Penrose processes), and considers the energy-momentum tensor for various solutions. In addition, a section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects, with a final section on cosmology discussing cosmological models, observational tests, and scenarios for the early universe. This fully revised and updated second edition includes new material on relativistic effects, such as the behavior of clocks and measuring rods in m...
Muecke, E.P.; Saias, I.; Zhu, B.
1996-05-01
This paper studies the point location problem in Delaunay triangulations without preprocessing and additional storage. The proposed procedure finds the query point simply by walking through the triangulation, after selecting a good starting point by random sampling. The analysis generalizes and extends a recent result of d = 2 dimensions by proving this procedure to take expected time close to O(n{sup 1/(d+1)}) for point location in Delaunay triangulations of n random points in d = 3 dimensions. Empirical results in both two and three dimensions show that this procedure is efficient in practice.
Tensor squeezed limits and the Higuchi bound
Bordin, Lorenzo [SISSA, via Bonomea 265, 34136, Trieste (Italy); Creminelli, Paolo [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy); Mirbabayi, Mehrdad [Institute for Advanced Study, Princeton, NJ 08540 (United States); Noreña, Jorge, E-mail: lbordin@sissa.it, E-mail: creminel@ictp.it, E-mail: mehrdadm@ias.edu, E-mail: jorge.norena@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso (Chile)
2016-09-01
We point out that tensor consistency relations—i.e. the behavior of primordial correlation functions in the limit a tensor mode has a small momentum—are more universal than scalar consistency relations. They hold in the presence of multiple scalar fields and as long as anisotropies are diluted exponentially fast. When de Sitter isometries are approximately respected during inflation this is guaranteed by the Higuchi bound, which forbids the existence of light particles with spin: de Sitter space can support scalar hair but no curly hair. We discuss two indirect ways to look for the violation of tensor consistency relations in observations, as a signature of models in which inflation is not a strong isotropic attractor, such as solid inflation: (a) graviton exchange contribution to the scalar four-point function; (b) quadrupolar anisotropy of the scalar power spectrum due to super-horizon tensor modes. This anisotropy has a well-defined statistics which can be distinguished from cases in which the background has a privileged direction.
Alsing, Paul M; McDonald, Jonathan R; Miller, Warner A
2011-01-01
The Ricci tensor (Ric) is fundamental to Einstein's geometric theory of gravitation. The three-dimensional Ric of a spacelike surface vanishes at the moment of time symmetry for vacuum spacetimes. The four-dimensional Ric is the Einstein tensor for such spacetimes. More recently, the Ric was used by Hamilton to define a nonlinear, diffusive Ricci flow (RF) that was fundamental to Perelman's proof of the Poincare conjecture. Analytic applications of RF can be found in many fields including general relativity and mathematics. Numerically it has been applied broadly to communication networks, medical physics, computer design and more. In this paper, we use Regge calculus (RC) to provide the first geometric discretization of the Ric. This result is fundamental for higher dimensional generalizations of discrete RF. We construct this tensor on both the simplicial lattice and its dual and prove their equivalence. We show that the Ric is an edge-based weighted average of deficit divided by an edge-based weighted average of dual area-an expression similar to the vertex-based weighted average of the scalar curvature reported recently. We use this Ric in a third and independent geometric derivation of the RC Einstein tensor in arbitrary dimensions.
Alsing, Paul M.; McDonald, Jonathan R.; Miller, Warner A.
2011-08-01
The Ricci tensor (Ric) is fundamental to Einstein's geometric theory of gravitation. The three-dimensional Ric of a spacelike surface vanishes at the moment of time symmetry for vacuum spacetimes. The four-dimensional Ric is the Einstein tensor for such spacetimes. More recently, the Ric was used by Hamilton to define a nonlinear, diffusive Ricci flow (RF) that was fundamental to Perelman's proof of the Poincarè conjecture. Analytic applications of RF can be found in many fields including general relativity and mathematics. Numerically it has been applied broadly to communication networks, medical physics, computer design and more. In this paper, we use Regge calculus (RC) to provide the first geometric discretization of the Ric. This result is fundamental for higher dimensional generalizations of discrete RF. We construct this tensor on both the simplicial lattice and its dual and prove their equivalence. We show that the Ric is an edge-based weighted average of deficit divided by an edge-based weighted average of dual area—an expression similar to the vertex-based weighted average of the scalar curvature reported recently. We use this Ric in a third and independent geometric derivation of the RC Einstein tensor in arbitrary dimensions.
Ziegel, Johanna; Nyengaard, Jens Randel; Jensen, Eva B. Vedel
In the present paper, statistical procedures for estimating shape and orientation of arbitrary three-dimensional particles are developed. The focus of this work is on the case where the particles cannot be observed directly, but only via sections. Volume tensors are used for describing particle s...
The evolution of tensor polarization
Huang, H.; Lee, S.Y.; Ratner, L.
1993-01-01
By using the equation of motion for the vector polarization, the spin transfer matrix for spin tensor polarization, the spin transfer matrix for spin tensor polarization is derived. The evolution equation for the tensor polarization is studied in the presence of an isolate spin resonance and in the presence of a spin rotor, or snake
Tensor Calculus: Unlearning Vector Calculus
Lee, Wha-Suck; Engelbrecht, Johann; Moller, Rita
2018-01-01
Tensor calculus is critical in the study of the vector calculus of the surface of a body. Indeed, tensor calculus is a natural step-up for vector calculus. This paper presents some pitfalls of a traditional course in vector calculus in transitioning to tensor calculus. We show how a deeper emphasis on traditional topics such as the Jacobian can…
Hambre, David; Vergara, Marta; Lood, Yvonne; Bachrach-Lindström, Margareta; Lindström, Torbjörn; Nystrom, Fredrik H
2012-10-01
To prospectively evaluate the effects of resistance training combined with increased energy intake or protein-supplementation on lean body-mass, resting metabolic-rate (RMR) and cardiovascular risk factors. Twenty-four healthy males (aged 19-32 years) performed resistance exercise for 12 weeks aiming for at least 1 hour training-sessions 3 times a week. The participants were randomized to consume extra protein (33 g whey protein/day) or a meal of fast-food/day (1350 kcal, 41 g protein). Body-composition was measured with Dual-Energy X-ray Absorptiometry (DEXA) and RMR by indirect calorimetry. Fasting blood samples were drawn before and after the 3-month training period and after 12 months. The body weight increased from 75.1 ± 6.9 kg to 78.7 ± 7.2 kg (p < 0.0001), without differences between the groups. RMR increased from 1787 ± 143 kcal/24 h to 1954 ± 187 kcal/24 h (p < 0.0001, N = 24), which was more than expected from the increase in lean body-mass (increase from 59.7 ± 4.3 kg to 61.8 ± 4.1 kg p = 0.004). Fasting serum-insulin levels increased in the fast-food group compared with the extra-protein group (p = 0.03). ApoB increased from 0.691 ± 0.14 g/L to 0.768 ± 0.17 g/L, p = 0.004, in the fast-food group only. Long-term follow up after 12 months showed that RMR, body weight, total fat and lean body-masses did not differ from baseline (n = 19). Resistance training for 12 weeks increased RMR and lean body-mass similarly when based on either an increased energy-intake or protein supplement. However, the increase in RMR was higher than expected from the increase in lean body-mass. Thus resistance training could potentially decrease the risk of obesity by induction of increased RMR.
Diffusion tensor image registration using hybrid connectivity and tensor features.
Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang
2014-07-01
Most existing diffusion tensor imaging (DTI) registration methods estimate structural correspondences based on voxelwise matching of tensors. The rich connectivity information that is given by DTI, however, is often neglected. In this article, we propose to integrate complementary information given by connectivity features and tensor features for improved registration accuracy. To utilize connectivity information, we place multiple anchors representing different brain anatomies in the image space, and define the connectivity features for each voxel as the geodesic distances from all anchors to the voxel under consideration. The geodesic distance, which is computed in relation to the tensor field, encapsulates information of brain connectivity. We also extract tensor features for every voxel to reflect the local statistics of tensors in its neighborhood. We then combine both connectivity features and tensor features for registration of tensor images. From the images, landmarks are selected automatically and their correspondences are determined based on their connectivity and tensor feature vectors. The deformation field that deforms one tensor image to the other is iteratively estimated and optimized according to the landmarks and their associated correspondences. Experimental results show that, by using connectivity features and tensor features simultaneously, registration accuracy is increased substantially compared with the cases using either type of features alone. Copyright © 2013 Wiley Periodicals, Inc.
Group field theory and tensor networks: towards a Ryu–Takayanagi formula in full quantum gravity
Chirco, Goffredo; Oriti, Daniele; Zhang, Mingyi
2018-06-01
We establish a dictionary between group field theory (thus, spin networks and random tensors) states and generalized random tensor networks. Then, we use this dictionary to compute the Rényi entropy of such states and recover the Ryu–Takayanagi formula, in two different cases corresponding to two different truncations/approximations, suggested by the established correspondence.
Large-scale inverse model analyses employing fast randomized data reduction
Lin, Youzuo; Le, Ellen B.; O'Malley, Daniel; Vesselinov, Velimir V.; Bui-Thanh, Tan
2017-08-01
When the number of observations is large, it is computationally challenging to apply classical inverse modeling techniques. We have developed a new computationally efficient technique for solving inverse problems with a large number of observations (e.g., on the order of 107 or greater). Our method, which we call the randomized geostatistical approach (RGA), is built upon the principal component geostatistical approach (PCGA). We employ a data reduction technique combined with the PCGA to improve the computational efficiency and reduce the memory usage. Specifically, we employ a randomized numerical linear algebra technique based on a so-called "sketching" matrix to effectively reduce the dimension of the observations without losing the information content needed for the inverse analysis. In this way, the computational and memory costs for RGA scale with the information content rather than the size of the calibration data. Our algorithm is coded in Julia and implemented in the MADS open-source high-performance computational framework (http://mads.lanl.gov). We apply our new inverse modeling method to invert for a synthetic transmissivity field. Compared to a standard geostatistical approach (GA), our method is more efficient when the number of observations is large. Most importantly, our method is capable of solving larger inverse problems than the standard GA and PCGA approaches. Therefore, our new model inversion method is a powerful tool for solving large-scale inverse problems. The method can be applied in any field and is not limited to hydrogeological applications such as the characterization of aquifer heterogeneity.
Random Walk on a Perturbation of the Infinitely-Fast Mixing Interchange Process
Salvi, Michele; Simenhaus, François
2018-03-01
We consider a random walk in dimension d≥1 in a dynamic random environment evolving as an interchange process with rate γ >0 . We prove that, if we choose γ large enough, almost surely the empirical velocity of the walker X_t/t eventually lies in an arbitrary small ball around the annealed drift. This statement is thus a perturbation of the case γ =+∞ where the environment is refreshed between each step of the walker. We extend three-way part of the results of Huveneers and Simenhaus (Electron J Probab 20(105):42, 2015), where the environment was given by the 1-dimensional exclusion process: (i) We deal with any dimension d≥1 ; (ii) We treat the much more general interchange process, where each particle carries a transition vector chosen according to an arbitrary law μ ; (iii) We show that X_t/t is not only in the same direction of the annealed drift, but that it is also close to it.
Random-subset fitting of digital holograms for fast three-dimensional particle tracking [invited].
Dimiduk, Thomas G; Perry, Rebecca W; Fung, Jerome; Manoharan, Vinothan N
2014-09-20
Fitting scattering solutions to time series of digital holograms is a precise way to measure three-dimensional dynamics of microscale objects such as colloidal particles. However, this inverse-problem approach is computationally expensive. We show that the computational time can be reduced by an order of magnitude or more by fitting to a random subset of the pixels in a hologram. We demonstrate our algorithm on experimentally measured holograms of micrometer-scale colloidal particles, and we show that 20-fold increases in speed, relative to fitting full frames, can be attained while introducing errors in the particle positions of 10 nm or less. The method is straightforward to implement and works for any scattering model. It also enables a parallelization strategy wherein random-subset fitting is used to quickly determine initial guesses that are subsequently used to fit full frames in parallel. This approach may prove particularly useful for studying rare events, such as nucleation, that can only be captured with high frame rates over long times.
Random Walk on a Perturbation of the Infinitely-Fast Mixing Interchange Process
Salvi, Michele; Simenhaus, François
2018-05-01
We consider a random walk in dimension d≥ 1 in a dynamic random environment evolving as an interchange process with rate γ >0. We prove that, if we choose γ large enough, almost surely the empirical velocity of the walker X_t/t eventually lies in an arbitrary small ball around the annealed drift. This statement is thus a perturbation of the case γ =+∞ where the environment is refreshed between each step of the walker. We extend three-way part of the results of Huveneers and Simenhaus (Electron J Probab 20(105):42, 2015), where the environment was given by the 1-dimensional exclusion process: (i) We deal with any dimension d≥1; (ii) We treat the much more general interchange process, where each particle carries a transition vector chosen according to an arbitrary law μ ; (iii) We show that X_t/t is not only in the same direction of the annealed drift, but that it is also close to it.
Liu G
2016-06-01
Full Text Available Guozheng Liu,1 Fengguo Jian,2 Xiuqin Wang,2 Lin Chen1 1Department of General Surgery, Chinese PLA General Hospital, Beijing, People’s Republic of China; 2Second Department of General Surgery, Changyi People’s Hospital, Shandong, People’s Republic of China Aim: To study the efficacy of the fast-track surgery (FTS program combined with laparoscopic radical gastrectomy for elderly gastric cancer (GC patients.Methods: Eighty-four elderly patients diagnosed with GC between September 2014 and August 2015 were recruited to participate in this study and were divided into four groups randomly based on the random number table as follows: FTS + laparoscopic group (Group A, n=21, FTS + laparotomy group (Group B, n=21, conventional perioperative care (CC + laparoscopic group (Group C, n=21, and CC + laparotomy group (Group D, n=21. Observation indicators include intrasurgery indicators, postoperative recovery indicators, nutritional status indicators, and systemic stress response indicators.Results: Preoperative and intraoperative baseline characteristics showed no significant differences between patients in each group (P>0.05. There were no significant differences between each group in nausea and vomiting, intestinal obstruction, urinary retention, incision infection, pulmonary infection, and urinary tract infection after operation (P>0.05. Time of first flatus and postoperative hospital stay time of FTS Group A were the shortest, and total medical cost of this group was the lowest. For all groups, serum albumin, prealbumin, and transferrin significantly decreased, while CRP and interleukin 6 were significantly increased postoperative day 1. From postoperative day 4–7, all indicators of the four groups gradually recovered, but compared with other three groups, those of Group A recovered fastest.Conclusion: FTS combined with laparoscopic surgery can promote faster postoperative recovery, improve early postoperative nutritional status, and more
Review of diffusion tensor imaging and its application in children
Vorona, Gregory A. [Children' s Hospital of Richmond at Virginia Commonwealth University, Department of Radiology, Richmond, VA (United States); Berman, Jeffrey I. [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)
2015-09-15
Diffusion MRI is an imaging technique that uses the random motion of water to probe tissue microstructure. Diffusion tensor imaging (DTI) can quantitatively depict the organization and connectivity of white matter. Given the non-invasiveness of the technique, DTI has become a widely used tool for researchers and clinicians to examine the white matter of children. This review covers the basics of diffusion-weighted imaging and diffusion tensor imaging and discusses examples of their clinical application in children. (orig.)
Min, M.
2017-10-01
Context. Opacities of molecules in exoplanet atmospheres rely on increasingly detailed line-lists for these molecules. The line lists available today contain for many species up to several billions of lines. Computation of the spectral line profile created by pressure and temperature broadening, the Voigt profile, of all of these lines is becoming a computational challenge. Aims: We aim to create a method to compute the Voigt profile in a way that automatically focusses the computation time into the strongest lines, while still maintaining the continuum contribution of the high number of weaker lines. Methods: Here, we outline a statistical line sampling technique that samples the Voigt profile quickly and with high accuracy. The number of samples is adjusted to the strength of the line and the local spectral line density. This automatically provides high accuracy line shapes for strong lines or lines that are spectrally isolated. The line sampling technique automatically preserves the integrated line opacity for all lines, thereby also providing the continuum opacity created by the large number of weak lines at very low computational cost. Results: The line sampling technique is tested for accuracy when computing line spectra and correlated-k tables. Extremely fast computations ( 3.5 × 105 lines per second per core on a standard current day desktop computer) with high accuracy (≤1% almost everywhere) are obtained. A detailed recipe on how to perform the computations is given.
The geomagnetic field gradient tensor
Kotsiaros, Stavros; Olsen, Nils
2012-01-01
We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...... tensor elements. Furthermore, in current free regions the magnetic gradient tensor becomes symmetric, further reducing the number of independent elements to five. In that case B is a Laplacian potential field and the gradient tensor can be expressed in series of spherical harmonics. We present properties...... of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination...
Tensor B mode and stochastic Faraday mixing
Giovannini, Massimo
2014-01-01
This paper investigates the Faraday effect as a different source of B mode polarization. The E mode polarization is Faraday rotated provided a stochastic large-scale magnetic field is present prior to photon decoupling. In the first part of the paper we discuss the case where the tensor modes of the geometry are absent and we argue that the B mode recently detected by the Bicep2 collaboration cannot be explained by a large-scale magnetic field rotating, through the Faraday effect, the well established E mode polarization. In this case, the observed temperature autocorrelations would be excessively distorted by the magnetic field. In the second part of the paper the formation of Faraday rotation is treated as a stationary, random and Markovian process with the aim of generalizing a set of scaling laws originally derived in the absence of the tensor modes of the geometry. We show that the scalar, vector and tensor modes of the brightness perturbations can all be Faraday rotated even if the vector and tensor par...
Littlejohn, R.G.
1982-01-01
The Hamiltonian structures discovered by Morrison and Greene for various fluid equations were obtained by guessing a Hamiltonian and a suitable Poisson bracket formula, expressed in terms of noncanonical (but physical) coordinates. In general, such a procedure for obtaining a Hamiltonian system does not produce a Hamiltonian phase space in the usual sense (a symplectic manifold), but rather a family of symplectic manifolds. To state the matter in terms of a system with a finite number of degrees of freedom, the family of symplectic manifolds is parametrized by a set of Casimir functions, which are characterized by having vanishing Poisson brackets with all other functions. The number of independent Casimir functions is the corank of the Poisson tensor J/sup ij/, the components of which are the Poisson brackets of the coordinates among themselves. Thus, these Casimir functions exist only when the Poisson tensor is singular
The tensor distribution function.
Leow, A D; Zhu, S; Zhan, L; McMahon, K; de Zubicaray, G I; Meredith, M; Wright, M J; Toga, A W; Thompson, P M
2009-01-01
Diffusion weighted magnetic resonance imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of six directions, second-order tensors (represented by three-by-three positive definite matrices) can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve more complicated white matter configurations, e.g., crossing fiber tracts. Recently, a number of high-angular resolution schemes with more than six gradient directions have been employed to address this issue. In this article, we introduce the tensor distribution function (TDF), a probability function defined on the space of symmetric positive definite matrices. Using the calculus of variations, we solve the TDF that optimally describes the observed data. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function. Moreover, a tensor orientation distribution function (TOD) may also be derived from the TDF, allowing for the estimation of principal fiber directions and their corresponding eigenvalues.
Monte Carlo Volcano Seismic Moment Tensors
Waite, G. P.; Brill, K. A.; Lanza, F.
2015-12-01
Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.
Christos Asteriou
2016-01-01
Full Text Available Background: Postoperative morbidity and inhospital length of stay are considered major determinants of total health care expenditure associated with thoracic operations. The aim of this study was to prospectively evaluate the role of video-assisted thoracic surgery (VATS compared to mini-muscle-sparing thoracotomy in facilitating early recovery and hospital discharge after pulmonary sublobar wedge resections. Patients and Methods: A total number of 120 patients undergoing elective pulmonary sublobar wedge resection were randomly assigned to VATS (n = 60 or mini-muscle-sparing thoracotomy (n = 60. The primary endpoint was time to hospital discharge. Postoperative complications, cardiopulmonary morbidity and 30-day mortality served as secondary endpoints. Results: Patients' baseline demographic and clinical data did not differ among study arms as well as the number of pulmonary segments resected and the morphology of the nodular lesions. Total hospital stay was significantly shorter in patients assigned to the thoracoscopic technique as opposed to those who were operated using the mini-muscle-sparing thoracotomy approach (4 ± 0.6 versus 4.4 ± 0.6 days respectively, P = 0.006. Multivariate analysis revealed that VATS approach was inversely associated with longer inhospital stay whereas the number of resected segments was positively associated with an increased duration of hospitalization. Patients in the VATS group were less likely to develop atelectasis (≥1 lobe compared to those who underwent thoracotomy (0% versus 6.7% respectively, P = 0.042. Kaplan-Meier analysis revealed similar 30-day mortality rates in both study arms (Log-rank P = 0.560. Conclusion: VATS was associated with shorter duration of hospitalization positively affecting the patients' quality of life and satisfaction. Significant suppression of the total cost of recovery after thoracoscopic pulmonary resections is expected.
Tensor Permutation Matrices in Finite Dimensions
Christian, Rakotonirina
2005-01-01
We have generalised the properties with the tensor product, of one 4x4 matrix which is a permutation matrix, and we call a tensor commutation matrix. Tensor commutation matrices can be constructed with or without calculus. A formula allows us to construct a tensor permutation matrix, which is a generalisation of tensor commutation matrix, has been established. The expression of an element of a tensor commutation matrix has been generalised in the case of any element of a tensor permutation ma...
Tensor Factorization for Low-Rank Tensor Completion.
Zhou, Pan; Lu, Canyi; Lin, Zhouchen; Zhang, Chao
2018-03-01
Recently, a tensor nuclear norm (TNN) based method was proposed to solve the tensor completion problem, which has achieved state-of-the-art performance on image and video inpainting tasks. However, it requires computing tensor singular value decomposition (t-SVD), which costs much computation and thus cannot efficiently handle tensor data, due to its natural large scale. Motivated by TNN, we propose a novel low-rank tensor factorization method for efficiently solving the 3-way tensor completion problem. Our method preserves the low-rank structure of a tensor by factorizing it into the product of two tensors of smaller sizes. In the optimization process, our method only needs to update two smaller tensors, which can be more efficiently conducted than computing t-SVD. Furthermore, we prove that the proposed alternating minimization algorithm can converge to a Karush-Kuhn-Tucker point. Experimental results on the synthetic data recovery, image and video inpainting tasks clearly demonstrate the superior performance and efficiency of our developed method over state-of-the-arts including the TNN and matricization methods.
Li, Chenying; Sadraie, Badri; Steckhan, Nico; Kessler, Christian; Stange, Rainer; Jeitler, Michael; Michalsen, Andreas
2017-10-01
There is increasing experimental evidence for beneficial effects of calorie restriction and intermittent fasting in type 2 diabetes mellitus (T2DM). In humans, prolonged fasting is established as a health-promoting complementary treatment in Europe and claimed to improve metabolism by a complex hormetic response. We aimed to investigate effects of a one-week fasting period compared to usual care in T2DM by means of a pilot trial. Patients with manifest T2DM medically treated with oral hypoglycemic agents and/or insulin were randomly assigned to a 7-day fasting program followed by dietary advice or to usual care and dietary advice only. Fasting was performed according to the method of Buchinger with a nutritional energy intake of 300kcal/day by liquids only and stepwise re-introduction of solid food thereafter. Outcomes were assessed baseline and after 4 months. Of 46 enrolled participants, 32 (n=16 each group) completed the trial and were included for final analyses. Fasting was well accepted, there were no serious adverse events. After 4 months mean weight decreased by 3.5 kg and 2.0 kg in the fasting vs. control group (p=0.03) paralleled by greater reduction of abdominal circumference (p=0.001). Fasting led to a significant decrease of systolic/diastolic blood pressure (p=0.01; p=0.003) and increased quality-of-life (p=0.04), while for HbA 1c , insulin and HOMA-index only non-significant improvements were observed. Results of this study suggest that prolonged fasting is feasible and might have beneficial clinical effects. The effectiveness of fasting should be proved in larger confirmatory trials that include intermittent fasting in follow-ups to enable more pronounced and long-term effects. © Georg Thieme Verlag KG Stuttgart · New York.
Banić, Nikola; Lončarić, Sven
2015-11-01
Removing the influence of illumination on image colors and adjusting the brightness across the scene are important image enhancement problems. This is achieved by applying adequate color constancy and brightness adjustment methods. One of the earliest models to deal with both of these problems was the Retinex theory. Some of the Retinex implementations tend to give high-quality results by performing local operations, but they are computationally relatively slow. One of the recent Retinex implementations is light random sprays Retinex (LRSR). In this paper, a new method is proposed for brightness adjustment and color correction that overcomes the main disadvantages of LRSR. There are three main contributions of this paper. First, a concept of memory sprays is proposed to reduce the number of LRSR's per-pixel operations to a constant regardless of the parameter values, thereby enabling a fast Retinex-based local image enhancement. Second, an effective remapping of image intensities is proposed that results in significantly higher quality. Third, the problem of LRSR's halo effect is significantly reduced by using an alternative illumination processing method. The proposed method enables a fast Retinex-based image enhancement by processing Retinex paths in a constant number of steps regardless of the path size. Due to the halo effect removal and remapping of the resulting intensities, the method outperforms many of the well-known image enhancement methods in terms of resulting image quality. The results are presented and discussed. It is shown that the proposed method outperforms most of the tested methods in terms of image brightness adjustment, color correction, and computational speed.
Tensor Train Neighborhood Preserving Embedding
Wang, Wenqi; Aggarwal, Vaneet; Aeron, Shuchin
2018-05-01
In this paper, we propose a Tensor Train Neighborhood Preserving Embedding (TTNPE) to embed multi-dimensional tensor data into low dimensional tensor subspace. Novel approaches to solve the optimization problem in TTNPE are proposed. For this embedding, we evaluate novel trade-off gain among classification, computation, and dimensionality reduction (storage) for supervised learning. It is shown that compared to the state-of-the-arts tensor embedding methods, TTNPE achieves superior trade-off in classification, computation, and dimensionality reduction in MNIST handwritten digits and Weizmann face datasets.
Notes on super Killing tensors
Howe, P.S. [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Lindström, University [Department of Physics and Astronomy, Theoretical Physics, Uppsala University,SE-751 20 Uppsala (Sweden); Theoretical Physics, Imperial College London,Prince Consort Road, London SW7 2AZ (United Kingdom)
2016-03-14
The notion of a Killing tensor is generalised to a superspace setting. Conserved quantities associated with these are defined for superparticles and Poisson brackets are used to define a supersymmetric version of the even Schouten-Nijenhuis bracket. Superconformal Killing tensors in flat superspaces are studied for spacetime dimensions 3,4,5,6 and 10. These tensors are also presented in analytic superspaces and super-twistor spaces for 3,4 and 6 dimensions. Algebraic structures associated with superconformal Killing tensors are also briefly discussed.
Tensor norms and operator ideals
Defant, A; Floret, K
1992-01-01
The three chapters of this book are entitled Basic Concepts, Tensor Norms, and Special Topics. The first may serve as part of an introductory course in Functional Analysis since it shows the powerful use of the projective and injective tensor norms, as well as the basics of the theory of operator ideals. The second chapter is the main part of the book: it presents the theory of tensor norms as designed by Grothendieck in the Resumé and deals with the relation between tensor norms and operator ideals. The last chapter deals with special questions. Each section is accompanied by a series of exer
Reweighted Low-Rank Tensor Completion and its Applications in Video Recovery
M., Baburaj; George, Sudhish N.
2016-01-01
This paper focus on recovering multi-dimensional data called tensor from randomly corrupted incomplete observation. Inspired by reweighted $l_1$ norm minimization for sparsity enhancement, this paper proposes a reweighted singular value enhancement scheme to improve tensor low tubular rank in the tensor completion process. An efficient iterative decomposition scheme based on t-SVD is proposed which improves low-rank signal recovery significantly. The effectiveness of the proposed method is es...
Zhou Jiao-Jiao
2011-11-01
Full Text Available Abstract Background Laparoscopy-assisted surgery, fast-track perioperative treatment are both increasingly used in colorectal cancer treatment, for their short-time benefits of enhanced recovery and short hospital stays. However, the benefits of the integration of the Laparoscopy-assisted surgery, fast-track perioperative treatment, and even with the Xelox chemotherapy, are still unknown. In this study, the three treatments integration is defined as "Fast Track Multi-Discipline Treatment Model" for colorectal cancer and this model extends the benefits to the whole treatment process of colorectal cancer. The main purpose of the study is to explore the feasibility of "Fast Track Multi-Discipline Treatment" model in treatment of colorectal cancer. Methods The trial is a prospective randomized controlled study with 2 × 2 balanced factorial design. Patients eligible for the study will be randomized to 4 groups: (I Laparoscopic surgery with fast track perioperative treatment and Xelox chemotherapy; (II Open surgery with fast track perioperative treatment and Xelox chemotherapy; (III Laparoscopic surgery with conventional perioperative treatment and mFolfox6 chemotherapy; (IV Open surgery with conventional perioperative treatment and mFolfox6 chemotherapy. The primary endpoint of this study is the hospital stays. The secondary endpoints are the quality of life, chemotherapy related adverse events, surgical complications and hospitalization costs. Totally, 340 patients will be enrolled with 85 patients in each group. Conclusions The study initiates a new treatment model "Fast Track Multi-Discipline Treatment" for colorectal cancer, and will provide feasibility evidence on the new model "Fast Track Multi-Discipline Treatment" for patients with colorectal cancer. Trial registration ClinicalTrials.gov: NCT01080547
Bourlier, Christophe; Kubické, Gildas; Déchamps, Nicolas
2008-04-01
A fast, exact numerical method based on the method of moments (MM) is developed to calculate the scattering from an object below a randomly rough surface. Déchamps et al. [J. Opt. Soc. Am. A23, 359 (2006)] have recently developed the PILE (propagation-inside-layer expansion) method for a stack of two one-dimensional rough interfaces separating homogeneous media. From the inversion of the impedance matrix by block (in which two impedance matrices of each interface and two coupling matrices are involved), this method allows one to calculate separately and exactly the multiple-scattering contributions inside the layer in which the inverses of the impedance matrices of each interface are involved. Our purpose here is to apply this method for an object below a rough surface. In addition, to invert a matrix of large size, the forward-backward spectral acceleration (FB-SA) approach of complexity O(N) (N is the number of unknowns on the interface) proposed by Chou and Johnson [Radio Sci.33, 1277 (1998)] is applied. The new method, PILE combined with FB-SA, is tested on perfectly conducting circular and elliptic cylinders located below a dielectric rough interface obeying a Gaussian process with Gaussian and exponential height autocorrelation functions.
Cohen-Khait, Ruth; Schreiber, Gideon
2018-04-27
Protein-protein interactions mediate the vast majority of cellular processes. Though protein interactions obey basic chemical principles also within the cell, the in vivo physiological environment may not allow for equilibrium to be reached. Thus, in vitro measured thermodynamic affinity may not provide a complete picture of protein interactions in the biological context. Binding kinetics composed of the association and dissociation rate constants are relevant and important in the cell. Therefore, changes in protein-protein interaction kinetics have a significant impact on the in vivo activity of the proteins. The common protocol for the selection of tighter binders from a mutant library selects for protein complexes with slower dissociation rate constants. Here we describe a method to specifically select for variants with faster association rate constants by using pre-equilibrium selection, starting from a large random library. Toward this end, we refine the selection conditions of a TEM1-β-lactamase library against its natural nanomolar affinity binder β-lactamase inhibitor protein (BLIP). The optimal selection conditions depend on the ligand concentration and on the incubation time. In addition, we show that a second sort of the library helps to separate signal from noise, resulting in a higher percent of faster binders in the selected library. Fast associating protein variants are of particular interest for drug development and other biotechnological applications.
Catenacci, Victoria A; Pan, Zhaoxing; Ostendorf, Danielle; Brannon, Sarah; Gozansky, Wendolyn S; Mattson, Mark P; Martin, Bronwen; MacLean, Paul S; Melanson, Edward L; Troy Donahoo, William
2016-09-01
To evaluate the safety and tolerability of alternate-day fasting (ADF) and to compare changes in weight, body composition, lipids, and insulin sensitivity index (Si) with those produced by a standard weight loss diet, moderate daily caloric restriction (CR). Adults with obesity (BMI ≥30 kg/m(2) , age 18-55) were randomized to either zero-calorie ADF (n = 14) or CR (-400 kcal/day, n = 12) for 8 weeks. Outcomes were measured at the end of the 8-week intervention and after 24 weeks of unsupervised follow-up. No adverse effects were attributed to ADF, and 93% completed the 8-week ADF protocol. At 8 weeks, ADF achieved a 376 kcal/day greater energy deficit; however, there were no significant between-group differences in change in weight (mean ± SE; ADF -8.2 ± 0.9 kg, CR -7.1 ± 1.0 kg), body composition, lipids, or Si. After 24 weeks of unsupervised follow-up, there were no significant differences in weight regain; however, changes from baseline in % fat mass and lean mass were more favorable in ADF. ADF is a safe and tolerable approach to weight loss. ADF produced similar changes in weight, body composition, lipids, and Si at 8 weeks and did not appear to increase risk for weight regain 24 weeks after completing the intervention. © 2016 The Obesity Society.
Catenacci, Victoria A.; Pan, Zhaoxing; Ostendorf, Danielle; Brannon, Sarah; Gozansky, Wendolyn S.; Mattson, Mark P.; Martin, Bronwen; MacLean, Paul S.; Melanson, Edward L.; Donahoo, William Troy
2016-01-01
Objective To evaluate the safety and tolerability of alternate-day fasting (ADF) and to compare changes in weight, body composition, lipids, and insulin sensitivity index (Si) to those produced by a standard weight loss diet, moderate daily caloric restriction (CR). Methods Adults with obesity (BMI ≥30 kg/m2, age 18-55) were randomized to either zero-calorie ADF (n=14) or CR (-400 kcal/day, n=12) for 8 weeks. Outcomes were measured at the end of the 8-week intervention and after 24 weeks of unsupervised follow-up. Results No adverse effects were attributed to ADF and 93% completed the 8-week ADF protocol. At 8 weeks, ADF achieved a 376 kcal/day greater energy deficit, however there were no significant between-group differences in change in weight (mean±SE; ADF -8.2±0.9 kg, CR -7.1±1.0 kg), body composition, lipids, or Si. After 24 weeks of unsupervised follow-up, there were no significant differences in weight regain, however changes from baseline in % fat mass and lean mass were more favorable in ADF. Conclusions ADF is a safe and tolerable approach to weight loss. ADF produced similar changes in weight, body composition, lipids and Si at 8 weeks and did not appear to increase risk for weight regain 24 weeks after completing the intervention. PMID:27569118
Duncan, W.; Orr, J.A.; Arnott, S.J.; Jack, W.J.; Kerr, G.R.; Williams, J.R.
1987-01-01
A randomized trial of fast neuron therapy compared with 4MV photons for patients with head and neck cancer is reported. One hundred and sixty-eight patients were recruited between 1977 and 1984. The minimum follow-up is 2 years. Three patients were withdrawn before treatment began. Eighty-five were allocated to neutron therapy and 80 to receive photon therapy. All patients had squamous cell cancers in one of four primary sites: oral cavity, oropharynx, larynx, and hypopharynx. Local tumor control was similar in both groups: 44.7% after neutrons and 45.0% after photons. Salvage surgery was performed on 18 patients in each treatment group for residual or recurrent cancer. Acute radiation reactions of the mucous membranes were significantly more severe after photons. The number of patients with serious late reactions was greater after neutron therapy but the difference was not statistically significant. There were six deaths related to late morbidity after neutron therapy but none after photon therapy. Survival was better after photon therapy but the difference compared with the neutron group failed to reach statistical significance. When intercurrent deaths are excluded, the difference is less marked. Photon therapy was clearly better in terms of disease-free survival giving a 2-year local disease-free rate of 41.3% (s.e. 5.5%) compared with 29.4% (s.e. 4.9%) after neutrons
Lammers, Laureen A; Achterbergh, Roos; van Schaik, Ron H N; Romijn, Johannes A; Mathôt, Ron A A
2017-10-01
Short-term fasting can alter drug exposure but it is unknown whether this is an effect of altered oral bioavailability and/or systemic clearance. Therefore, the aim of our study was to assess the effect of short-term fasting on oral bioavailability and systemic clearance of different drugs. In a randomized, controlled, crossover trial, 12 healthy subjects received a single administration of a cytochrome P450 (CYP) probe cocktail, consisting of caffeine (CYP1A2), metoprolol (CYP2D6), midazolam (CYP3A4), omeprazole (CYP2C19) and warfarin (CYP2C9), on four occasions: an oral (1) and intravenous (2) administration after an overnight fast (control) and an oral (3) and intravenous (4) administration after 36 h of fasting. Pharmacokinetic parameters of the probe drugs were analyzed using the nonlinear mixed-effects modeling software NONMEM. Short-term fasting increased systemic caffeine clearance by 17% (p = 0.04) and metoprolol clearance by 13% (p < 0.01), whereas S-warfarin clearance decreased by 19% (p < 0.01). Fasting did not affect bioavailability. The study demonstrates that short-term fasting alters CYP-mediated drug metabolism in a non-uniform pattern without affecting oral bioavailability.
Typesafe Abstractions for Tensor Operations
Chen, Tongfei
2017-01-01
We propose a typesafe abstraction to tensors (i.e. multidimensional arrays) exploiting the type-level programming capabilities of Scala through heterogeneous lists (HList), and showcase typesafe abstractions of common tensor operations and various neural layers such as convolution or recurrent neural networks. This abstraction could lay the foundation of future typesafe deep learning frameworks that runs on Scala/JVM.
Indicial tensor manipulation on MACSYMA
Bogen, R.A.; Pavelle, R.
1977-01-01
A new computational tool for physical calculations is described. It is the first computer system capable of performing indicial tensor calculus (as opposed to component tensor calculus). It is now operational on the symbolic manipulation system MACSYMA. The authors outline the capabilities of the system and describe some of the physical problems considered as well as others being examined at this time. (Auth.)
Killing-Yano tensors and Nambu mechanics
Baleanu, D.
1998-01-01
Killing-Yano tensors were introduced in 1952 by Kentaro-Yano from mathematical point of view. The physical interpretation of Killing-Yano tensors of rank higher than two was unclear. We found that all Killing-Yano tensors η i 1 i 2 . .. i n with covariant derivative zero are Nambu tensors. We found that in the case of flat space case all Killing-Yano tensors are Nambu tensors. In the case of Taub-NUT and Kerr-Newmann metric Killing-Yano tensors of order two generate Nambu tensors of rank 3
A Givental-like formula and bilinear identities for tensor models
Dartois, Stéphane [LIPN, Institut Galilée, CNRS UMR 7030, Université Paris 13,F-93430, Villetaneuse (France); Laboratoire de Physique Théorique, CNRS UMR 8627, Université Paris 11,91405 Orsay Cedex (France)
2015-08-26
In this paper we express some simple random tensor models in a Givental-like fashion i.e. as differential operators acting on a product of generic 1-Hermitian matrix models. Finally we derive Hirota’s equations for these tensor models. Our decomposition is a first step towards integrability of such models.
Tensor Decompositions for Learning Latent Variable Models
2012-12-08
and eigenvectors of tensors is generally significantly more complicated than their matrix counterpart (both algebraically [Qi05, CS11, Lim05] and...The reduction First, let W ∈ Rd×k be a linear transformation such that M2(W,W ) = W M2W = I where I is the k × k identity matrix (i.e., W whitens ...approximate the whitening matrix W ∈ Rd×k from second-moment matrix M2 ∈ Rd×d. To do this, one first multiplies M2 by a random matrix R ∈ Rd×k′ for some k′ ≥ k
Effect on Tensor Correlations on Gamow- Teller States in 90Zr and 208Pb
Bai, C. L.; Sagawa, H.; Zhang, H. Q.
2009-01-01
The tensor terms of the Skyrme effective interaction are included in the self-consistent Hartree-Fock plus Random Phase Approximation (HF-RPA) model. The Gamow-Teller (GT) strength function of 9 0Z r and 2 08P b are calculated with and without the tensor terms. The main peaks are moved downwards by about 2 MeV when including the tensor contribution. About 10% of the non-energy weighted sum rule is shifted to the excitation energy region above 30 MeV by the RPA tensor correlations. The contribution of the tensor terms to the energy weighted sum rule is given analytically, and compared to the outcome of RPA. A microscopic origin of the quenching of GT sum rule is discussed in relation with the coupling to giant spin-quadrupole excitations by the tensor interactions.(author)
Effect of Tensor Correlations on Gamow-Teller States in 90Zr and 208Pb
Bai, C. L.; Zhang, H. Q.; Zhang, X. Z.
2009-01-01
The tensor terms of the Skyrme effective interaction are included in the self-consistent Hartree-Fock plus Random Phase Approximation (HF-RPA) model. The Gamow-Teller (GT) strength functions of 9 0Z r and 2 08P b is calculated with and without the tensor terms. The main peaks are moved downwards by about 2 MeV when including the tensor contribution. About 10% of the non-energy weighted sum rule is shifted to the excitation energy region above 30 MeV by the RPA tensor correlations. The contribution of the tensor terms to the energy weighted sum rule is given analytically, and compared to the outcome of RPA. A microscopic origin of the quenching of GT sum rule due to the tensor force is discussed.(author)
Efficient tensor completion for color image and video recovery: Low-rank tensor train
Bengua, Johann A.; Phien, Ho N.; Tuan, Hoang D.; Do, Minh N.
2016-01-01
This paper proposes a novel approach to tensor completion, which recovers missing entries of data represented by tensors. The approach is based on the tensor train (TT) rank, which is able to capture hidden information from tensors thanks to its definition from a well-balanced matricization scheme. Accordingly, new optimization formulations for tensor completion are proposed as well as two new algorithms for their solution. The first one called simple low-rank tensor completion via tensor tra...
Grebenkov, Denis S.; Nguyen, Hang T.; Li, Jing-Rebecca
2013-01-01
A fast random walk (FRW) algorithm is adapted to compute diffusion-weighted NMR signals in a Menger sponge which is formed by multiple channels of broadly distributed sizes and often considered as a model for soils and porous materials. The self-similar structure of a Menger sponge allows for rapid simulations that were not feasible by other numerical techniques. The role of multiple length scales on diffusion-weighted NMR signals is investigated. (authors)
Trepanowski, John F; Kroeger, Cynthia M; Barnosky, Adrienne; Klempel, Monica C; Bhutani, Surabhi; Hoddy, Kristin K; Gabel, Kelsey; Freels, Sally; Rigdon, Joseph; Rood, Jennifer; Ravussin, Eric; Varady, Krista A
2017-07-01
Alternate-day fasting has become increasingly popular, yet, to date, no long-term randomized clinical trials have evaluated its efficacy. To compare the effects of alternate-day fasting vs daily calorie restriction on weight loss, weight maintenance, and risk indicators for cardiovascular disease. A single-center randomized clinical trial of obese adults (18 to 64 years of age; mean body mass index, 34) was conducted between October 1, 2011, and January 15, 2015, at an academic institution in Chicago, Illinois. Participants were randomized to 1 of 3 groups for 1 year: alternate-day fasting (25% of energy needs on fast days; 125% of energy needs on alternating "feast days"), calorie restriction (75% of energy needs every day), or a no-intervention control. The trial involved a 6-month weight-loss phase followed by a 6-month weight-maintenance phase. The primary outcome was change in body weight. Secondary outcomes were adherence to the dietary intervention and risk indicators for cardiovascular disease. Among the 100 participants (86 women and 14 men; mean [SD] age, 44 [11] years), the dropout rate was highest in the alternate-day fasting group (13 of 34 [38%]), vs the daily calorie restriction group (10 of 35 [29%]) and control group (8 of 31 [26%]). Mean weight loss was similar for participants in the alternate-day fasting group and those in the daily calorie restriction group at month 6 (-6.8% [95% CI, -9.1% to -4.5%] vs -6.8% [95% CI, -9.1% to -4.6%]) and month 12 (-6.0% [95% CI, -8.5% to -3.6%] vs -5.3% [95% CI, -7.6% to -3.0%]) relative to those in the control group. Participants in the alternate-day fasting group ate more than prescribed on fast days, and less than prescribed on feast days, while those in the daily calorie restriction group generally met their prescribed energy goals. There were no significant differences between the intervention groups in blood pressure, heart rate, triglycerides, fasting glucose, fasting insulin, insulin resistance, C
Tucker Tensor analysis of Matern functions in spatial statistics
Litvinenko, Alexander
2018-03-09
In this work, we describe advanced numerical tools for working with multivariate functions and for the analysis of large data sets. These tools will drastically reduce the required computing time and the storage cost, and, therefore, will allow us to consider much larger data sets or finer meshes. Covariance matrices are crucial in spatio-temporal statistical tasks, but are often very expensive to compute and store, especially in 3D. Therefore, we approximate covariance functions by cheap surrogates in a low-rank tensor format. We apply the Tucker and canonical tensor decompositions to a family of Matern- and Slater-type functions with varying parameters and demonstrate numerically that their approximations exhibit exponentially fast convergence. We prove the exponential convergence of the Tucker and canonical approximations in tensor rank parameters. Several statistical operations are performed in this low-rank tensor format, including evaluating the conditional covariance matrix, spatially averaged estimation variance, computing a quadratic form, determinant, trace, loglikelihood, inverse, and Cholesky decomposition of a large covariance matrix. Low-rank tensor approximations reduce the computing and storage costs essentially. For example, the storage cost is reduced from an exponential O(n^d) to a linear scaling O(drn), where d is the spatial dimension, n is the number of mesh points in one direction, and r is the tensor rank. Prerequisites for applicability of the proposed techniques are the assumptions that the data, locations, and measurements lie on a tensor (axes-parallel) grid and that the covariance function depends on a distance, ||x-y||.
An On-Demand Optical Quantum Random Number Generator with In-Future Action and Ultra-Fast Response.
Stipčević, Mario; Ursin, Rupert
2015-06-09
Random numbers are essential for our modern information based society e.g. in cryptography. Unlike frequently used pseudo-random generators, physical random number generators do not depend on complex algorithms but rather on a physical process to provide true randomness. Quantum random number generators (QRNG) do rely on a process, which can be described by a probabilistic theory only, even in principle. Here we present a conceptually simple implementation, which offers a 100% efficiency of producing a random bit upon a request and simultaneously exhibits an ultra low latency. A careful technical and statistical analysis demonstrates its robustness against imperfections of the actual implemented technology and enables to quickly estimate randomness of very long sequences. Generated random numbers pass standard statistical tests without any post-processing. The setup described, as well as the theory presented here, demonstrate the maturity and overall understanding of the technology.
Mason, Ashley E; Epel, Elissa S; Kristeller, Jean; Moran, Patricia J; Dallman, Mary; Lustig, Robert H; Acree, Michael; Bacchetti, Peter; Laraia, Barbara A; Hecht, Frederick M; Daubenmier, Jennifer
2016-04-01
We evaluated changes in mindful eating as a potential mechanism underlying the effects of a mindfulness-based intervention for weight loss on eating of sweet foods and fasting glucose levels. We randomized 194 obese individuals (M age = 47.0 ± 12.7 years; BMI = 35.5 ± 3.6; 78% women) to a 5.5-month diet-exercise program with or without mindfulness training. The mindfulness group, relative to the active control group, evidenced increases in mindful eating and maintenance of fasting glucose from baseline to 12-month assessment. Increases in mindful eating were associated with decreased eating of sweets and fasting glucose levels among mindfulness group participants, but this association was not statistically significant among active control group participants. Twelve-month increases in mindful eating partially mediated the effect of intervention arm on changes in fasting glucose levels from baseline to 12-month assessment. Increases in mindful eating may contribute to the effects of mindfulness-based weight loss interventions on eating of sweets and fasting glucose levels.
Tensor Product of Polygonal Cell Complexes
Chien, Yu-Yen
2017-01-01
We introduce the tensor product of polygonal cell complexes, which interacts nicely with the tensor product of link graphs of complexes. We also develop the unique factorization property of polygonal cell complexes with respect to the tensor product, and study the symmetries of tensor products of polygonal cell complexes.
The Einstein tensor characterizing some Riemann spaces
Rahman, M.S.
1993-07-01
A formal definition of the Einstein tensor is given. Mention is made of how this tensor plays a role of expressing certain conditions in a precise form. The cases of reducing the Einstein tensor to a zero tensor are studied on its merit. A lucid account of results, formulated as theorems, on Einstein symmetric and Einstein recurrent spaces is then presented. (author). 5 refs
Tensor Completion Algorithms in Big Data Analytics
Song, Qingquan; Ge, Hancheng; Caverlee, James; Hu, Xia
2017-01-01
Tensor completion is a problem of filling the missing or unobserved entries of partially observed tensors. Due to the multidimensional character of tensors in describing complex datasets, tensor completion algorithms and their applications have received wide attention and achievement in areas like data mining, computer vision, signal processing, and neuroscience. In this survey, we provide a modern overview of recent advances in tensor completion algorithms from the perspective of big data an...
Quantum chaos and holographic tensor models
Krishnan, Chethan [Center for High Energy Physics, Indian Institute of Science,Bangalore 560012 (India); Sanyal, Sambuddha [International Center for Theoretical Sciences, Tata Institute of Fundamental Research,Bangalore 560089 (India); Subramanian, P.N. Bala [Center for High Energy Physics, Indian Institute of Science,Bangalore 560012 (India)
2017-03-10
A class of tensor models were recently outlined as potentially calculable examples of holography: their perturbative large-N behavior is similar to the Sachdev-Ye-Kitaev (SYK) model, but they are fully quantum mechanical (in the sense that there is no quenched disorder averaging). These facts make them intriguing tentative models for quantum black holes. In this note, we explicitly diagonalize the simplest non-trivial Gurau-Witten tensor model and study its spectral and late-time properties. We find parallels to (a single sample of) SYK where some of these features were recently attributed to random matrix behavior and quantum chaos. In particular, the spectral form factor exhibits a dip-ramp-plateau structure after a running time average, in qualitative agreement with SYK. But we also observe that even though the spectrum has a unique ground state, it has a huge (quasi-?)degeneracy of intermediate energy states, not seen in SYK. If one ignores the delta function due to the degeneracies however, there is level repulsion in the unfolded spacing distribution hinting chaos. Furthermore, there are gaps in the spectrum. The system also has a spectral mirror symmetry which we trace back to the presence of a unitary operator with which the Hamiltonian anticommutes. We use it to argue that to the extent that the model exhibits random matrix behavior, it is controlled not by the Dyson ensembles, but by the BDI (chiral orthogonal) class in the Altland-Zirnbauer classification.
Quantum chaos and holographic tensor models
Krishnan, Chethan; Sanyal, Sambuddha; Subramanian, P.N. Bala
2017-01-01
A class of tensor models were recently outlined as potentially calculable examples of holography: their perturbative large-N behavior is similar to the Sachdev-Ye-Kitaev (SYK) model, but they are fully quantum mechanical (in the sense that there is no quenched disorder averaging). These facts make them intriguing tentative models for quantum black holes. In this note, we explicitly diagonalize the simplest non-trivial Gurau-Witten tensor model and study its spectral and late-time properties. We find parallels to (a single sample of) SYK where some of these features were recently attributed to random matrix behavior and quantum chaos. In particular, the spectral form factor exhibits a dip-ramp-plateau structure after a running time average, in qualitative agreement with SYK. But we also observe that even though the spectrum has a unique ground state, it has a huge (quasi-?)degeneracy of intermediate energy states, not seen in SYK. If one ignores the delta function due to the degeneracies however, there is level repulsion in the unfolded spacing distribution hinting chaos. Furthermore, there are gaps in the spectrum. The system also has a spectral mirror symmetry which we trace back to the presence of a unitary operator with which the Hamiltonian anticommutes. We use it to argue that to the extent that the model exhibits random matrix behavior, it is controlled not by the Dyson ensembles, but by the BDI (chiral orthogonal) class in the Altland-Zirnbauer classification.
Boniol, Mathieu; Dragomir, Miruna; Autier, Philippe; Boyle, Peter
2017-11-01
A systematic review was conducted of randomized trials which evaluated the impact of physical activity on the change in fasting glucose and HbA1c. A literature search was conducted in PubMed until December 2015. Studies reporting glucose or HbA1c at baseline and at the end of study were included, and the change and its variance were estimated from studies with complete data. Mixed-effect random models were used to estimate the change of fasting glucose (mg/dl) and HbA1c (%) per additional minutes of physical activity per week. A total of 125 studies were included in the meta-analysis. Based on 105 studies, an increase of 100 min in physical activity per week was associated with an average change of -2.75 mg/dl of fasting glucose (95% CI -3.96; -1.55), although there was a high degree of heterogeneity (83.5%). When restricting the analysis on type 2 diabetes and prediabetes subjects (56 studies), the average change in fasting glucose was -4.71 mg/dl (95% CI -7.42; -2.01). For HbA1c, among 76 studies included, an increase of 100 min in physical activity per week was associated with an average change of -0.14% of HbA1c (95% CI -0.18; -0.09) with heterogeneity (73%). A large degree of publication bias was identified (Egger test p HbA1c was -0.16% (95% CI -0.21; -0.11). This analysis demonstrates that moderate increases in physical activity are associated with significant reductions in both fasting glucose and HbA1c.
Development of the Tensoral Computer Language
Ferziger, Joel; Dresselhaus, Eliot
1996-01-01
The research scientist or engineer wishing to perform large scale simulations or to extract useful information from existing databases is required to have expertise in the details of the particular database, the numerical methods and the computer architecture to be used. This poses a significant practical barrier to the use of simulation data. The goal of this research was to develop a high-level computer language called Tensoral, designed to remove this barrier. The Tensoral language provides a framework in which efficient generic data manipulations can be easily coded and implemented. First of all, Tensoral is general. The fundamental objects in Tensoral represent tensor fields and the operators that act on them. The numerical implementation of these tensors and operators is completely and flexibly programmable. New mathematical constructs and operators can be easily added to the Tensoral system. Tensoral is compatible with existing languages. Tensoral tensor operations co-exist in a natural way with a host language, which may be any sufficiently powerful computer language such as Fortran, C, or Vectoral. Tensoral is very-high-level. Tensor operations in Tensoral typically act on entire databases (i.e., arrays) at one time and may, therefore, correspond to many lines of code in a conventional language. Tensoral is efficient. Tensoral is a compiled language. Database manipulations are simplified optimized and scheduled by the compiler eventually resulting in efficient machine code to implement them.
Physical and Geometric Interpretations of the Riemann Tensor, Ricci Tensor, and Scalar Curvature
Loveridge, Lee C.
2004-01-01
Various interpretations of the Riemann Curvature Tensor, Ricci Tensor, and Scalar Curvature are described. Also, the physical meanings of the Einstein Tensor and Einstein's Equations are discussed. Finally a derivation of Newtonian Gravity from Einstein's Equations is given.
Hamid Reza Rahimi
2016-08-01
Full Text Available Objective: Diabetes mellitus is defined as a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both or insulin resistance. Curcumin inhibits NF-κB signaling pathway. The aim of this study is evaluation of the effect of Nano-curcumin on HbA1C, fast blood glucose and lipid profile in diabetic patients. Materials and Methods: Seventy type-2 diabetic patients (fasting blood glucose (FBG ≥ 126 mg/dL or 2-hr postprandial blood glucose ≥200 mg/dl randomly receivedeither Curcumin (as nano-micelle 80 mg/day or placebo for 3 months in a double blind randomized clinical trial. Fasting blood glucose, HbA1C, and lipids profile were checked before and after the intervention. Data analyses, including parametric and nonparametric tests were done using the SPSS 11.5 software. A p value < 0.05 was regarded as statistically significant. (RCT registration code: IRCT2013081114330N1 Results: Mean age, BMI, FBG, total cholesterol (TC, triglyceride (TG, LDL, HDL, HbA1c , and sex and had no significant difference at the baseline between the groups. In Nano-curcumin group, a significant decrease was found in HbA1C, FBG, TG, and BMI comparing results of each subject before and after the treatment (p
The 1/ N Expansion of Tensor Models Beyond Perturbation Theory
Gurau, Razvan
2014-09-01
We analyze in full mathematical rigor the most general quartically perturbed invariant probability measure for a random tensor. Using a version of the Loop Vertex Expansion (which we call the mixed expansion) we show that the cumulants write as explicit series in 1/ N plus bounded rest terms. The mixed expansion recasts the problem of determining the subleading corrections in 1/ N into a simple combinatorial problem of counting trees decorated by a finite number of loop edges. As an aside, we use the mixed expansion to show that the (divergent) perturbative expansion of the tensor models is Borel summable and to prove that the cumulants respect an uniform scaling bound. In particular the quartically perturbed measures fall, in the N→ ∞ limit, in the universality class of Gaussian tensor models.
Tensor Completion for Estimating Missing Values in Visual Data
Liu, Ji
2012-01-25
In this paper, we propose an algorithm to estimate missing values in tensors of visual data. The values can be missing due to problems in the acquisition process or because the user manually identified unwanted outliers. Our algorithm works even with a small amount of samples and it can propagate structure to fill larger missing regions. Our methodology is built on recent studies about matrix completion using the matrix trace norm. The contribution of our paper is to extend the matrix case to the tensor case by proposing the first definition of the trace norm for tensors and then by building a working algorithm. First, we propose a definition for the tensor trace norm that generalizes the established definition of the matrix trace norm. Second, similarly to matrix completion, the tensor completion is formulated as a convex optimization problem. Unfortunately, the straightforward problem extension is significantly harder to solve than the matrix case because of the dependency among multiple constraints. To tackle this problem, we developed three algorithms: simple low rank tensor completion (SiLRTC), fast low rank tensor completion (FaLRTC), and high accuracy low rank tensor completion (HaLRTC). The SiLRTC algorithm is simple to implement and employs a relaxation technique to separate the dependant relationships and uses the block coordinate descent (BCD) method to achieve a globally optimal solution; the FaLRTC algorithm utilizes a smoothing scheme to transform the original nonsmooth problem into a smooth one and can be used to solve a general tensor trace norm minimization problem; the HaLRTC algorithm applies the alternating direction method of multipliers (ADMMs) to our problem. Our experiments show potential applications of our algorithms and the quantitative evaluation indicates that our methods are more accurate and robust than heuristic approaches. The efficiency comparison indicates that FaLTRC and HaLRTC are more efficient than SiLRTC and between Fa
Tensor Completion for Estimating Missing Values in Visual Data
Liu, Ji; Musialski, Przemyslaw; Wonka, Peter; Ye, Jieping
2012-01-01
In this paper, we propose an algorithm to estimate missing values in tensors of visual data. The values can be missing due to problems in the acquisition process or because the user manually identified unwanted outliers. Our algorithm works even with a small amount of samples and it can propagate structure to fill larger missing regions. Our methodology is built on recent studies about matrix completion using the matrix trace norm. The contribution of our paper is to extend the matrix case to the tensor case by proposing the first definition of the trace norm for tensors and then by building a working algorithm. First, we propose a definition for the tensor trace norm that generalizes the established definition of the matrix trace norm. Second, similarly to matrix completion, the tensor completion is formulated as a convex optimization problem. Unfortunately, the straightforward problem extension is significantly harder to solve than the matrix case because of the dependency among multiple constraints. To tackle this problem, we developed three algorithms: simple low rank tensor completion (SiLRTC), fast low rank tensor completion (FaLRTC), and high accuracy low rank tensor completion (HaLRTC). The SiLRTC algorithm is simple to implement and employs a relaxation technique to separate the dependant relationships and uses the block coordinate descent (BCD) method to achieve a globally optimal solution; the FaLRTC algorithm utilizes a smoothing scheme to transform the original nonsmooth problem into a smooth one and can be used to solve a general tensor trace norm minimization problem; the HaLRTC algorithm applies the alternating direction method of multipliers (ADMMs) to our problem. Our experiments show potential applications of our algorithms and the quantitative evaluation indicates that our methods are more accurate and robust than heuristic approaches. The efficiency comparison indicates that FaLTRC and HaLRTC are more efficient than SiLRTC and between Fa
Tensor completion for estimating missing values in visual data.
Liu, Ji; Musialski, Przemyslaw; Wonka, Peter; Ye, Jieping
2013-01-01
In this paper, we propose an algorithm to estimate missing values in tensors of visual data. The values can be missing due to problems in the acquisition process or because the user manually identified unwanted outliers. Our algorithm works even with a small amount of samples and it can propagate structure to fill larger missing regions. Our methodology is built on recent studies about matrix completion using the matrix trace norm. The contribution of our paper is to extend the matrix case to the tensor case by proposing the first definition of the trace norm for tensors and then by building a working algorithm. First, we propose a definition for the tensor trace norm that generalizes the established definition of the matrix trace norm. Second, similarly to matrix completion, the tensor completion is formulated as a convex optimization problem. Unfortunately, the straightforward problem extension is significantly harder to solve than the matrix case because of the dependency among multiple constraints. To tackle this problem, we developed three algorithms: simple low rank tensor completion (SiLRTC), fast low rank tensor completion (FaLRTC), and high accuracy low rank tensor completion (HaLRTC). The SiLRTC algorithm is simple to implement and employs a relaxation technique to separate the dependent relationships and uses the block coordinate descent (BCD) method to achieve a globally optimal solution; the FaLRTC algorithm utilizes a smoothing scheme to transform the original nonsmooth problem into a smooth one and can be used to solve a general tensor trace norm minimization problem; the HaLRTC algorithm applies the alternating direction method of multipliers (ADMMs) to our problem. Our experiments show potential applications of our algorithms and the quantitative evaluation indicates that our methods are more accurate and robust than heuristic approaches. The efficiency comparison indicates that FaLTRC and HaLRTC are more efficient than SiLRTC and between FaLRTC an
The tensor rank of tensor product of two three-qubit W states is eight
Chen, Lin; Friedland, Shmuel
2017-01-01
We show that the tensor rank of tensor product of two three-qubit W states is not less than eight. Combining this result with the recent result of M. Christandl, A. K. Jensen, and J. Zuiddam that the tensor rank of tensor product of two three-qubit W states is at most eight, we deduce that the tensor rank of tensor product of two three-qubit W states is eight. We also construct the upper bound of the tensor rank of tensor product of many three-qubit W states.
Link prediction via generalized coupled tensor factorisation
Ermiş, Beyza; Evrim, Acar Ataman; Taylan Cemgil, A.
2012-01-01
and higher-order tensors. We propose to use an approach based on probabilistic interpretation of tensor factorisation models, i.e., Generalised Coupled Tensor Factorisation, which can simultaneously fit a large class of tensor models to higher-order tensors/matrices with com- mon latent factors using...... different loss functions. Numerical experiments demonstrate that joint analysis of data from multiple sources via coupled factorisation improves the link prediction performance and the selection of right loss function and tensor model is crucial for accurately predicting missing links....
Confinement through tensor gauge fields
Salam, A.; Strathdee, J.
1977-12-01
Using the 0(3,2)-symmetric de Sitter solution of Einstein's equation describing a strongly interacting tensor field it is shown that hadronic bags confining quarks can be represented as de Sitter ''micro-universes'' with radii given 1/R 2 =lambdak 2 /6. Here k 2 and lambda are the strong coupling and the ''cosmological'' constant which apear in the Einstein equation used. Surprisingly the energy spectrum for the two-body hadronic states is the same as that for a harmonic oscillator potential, though the wave functions are completely different. The Einstein equation can be extended to include colour for the tensor fields
Tensor product of quantum logics
Pulmannová, Sylvia
1985-01-01
A quantum logic is the couple (L,M) where L is an orthomodular σ-lattice and M is a strong set of states on L. The Jauch-Piron property in the σ-form is also supposed for any state of M. A ``tensor product'' of quantum logics is defined. This definition is compared with the definition of a free orthodistributive product of orthomodular σ-lattices. The existence and uniqueness of the tensor product in special cases of Hilbert space quantum logics and one quantum and one classical logic are studied.
The 'gravitating' tensor in the dualistic theory
Mahanta, M.N.
1989-01-01
The exact microscopic system of Einstein-type field equations of the dualistic gravitation theory is investigated as well as an analysis of the modified energy-momentum tensor or so called 'gravitating' tensor is presented
Tensor calculus for physics a concise guide
Neuenschwander, Dwight E
2015-01-01
Understanding tensors is essential for any physics student dealing with phenomena where causes and effects have different directions. A horizontal electric field producing vertical polarization in dielectrics; an unbalanced car wheel wobbling in the vertical plane while spinning about a horizontal axis; an electrostatic field on Earth observed to be a magnetic field by orbiting astronauts—these are some situations where physicists employ tensors. But the true beauty of tensors lies in this fact: When coordinates are transformed from one system to another, tensors change according to the same rules as the coordinates. Tensors, therefore, allow for the convenience of coordinates while also transcending them. This makes tensors the gold standard for expressing physical relationships in physics and geometry. Undergraduate physics majors are typically introduced to tensors in special-case applications. For example, in a classical mechanics course, they meet the "inertia tensor," and in electricity and magnetism...
Mean template for tensor-based morphometry using deformation tensors.
Leporé, Natasha; Brun, Caroline; Pennec, Xavier; Chou, Yi-Yu; Lopez, Oscar L; Aizenstein, Howard J; Becker, James T; Toga, Arthur W; Thompson, Paul M
2007-01-01
Tensor-based morphometry (TBM) studies anatomical differences between brain images statistically, to identify regions that differ between groups, over time, or correlate with cognitive or clinical measures. Using a nonlinear registration algorithm, all images are mapped to a common space, and statistics are most commonly performed on the Jacobian determinant (local expansion factor) of the deformation fields. In, it was shown that the detection sensitivity of the standard TBM approach could be increased by using the full deformation tensors in a multivariate statistical analysis. Here we set out to improve the common space itself, by choosing the shape that minimizes a natural metric on the deformation tensors from that space to the population of control subjects. This method avoids statistical bias and should ease nonlinear registration of new subjects data to a template that is 'closest' to all subjects' anatomies. As deformation tensors are symmetric positive-definite matrices and do not form a vector space, all computations are performed in the log-Euclidean framework. The control brain B that is already the closest to 'average' is found. A gradient descent algorithm is then used to perform the minimization that iteratively deforms this template and obtains the mean shape. We apply our method to map the profile of anatomical differences in a dataset of 26 HIV/AIDS patients and 14 controls, via a log-Euclidean Hotelling's T2 test on the deformation tensors. These results are compared to the ones found using the 'best' control, B. Statistics on both shapes are evaluated using cumulative distribution functions of the p-values in maps of inter-group differences.
Gao, Peng
2018-04-01
This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.
Gao, Peng
2018-06-01
This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.
An optimization approach for fitting canonical tensor decompositions.
Dunlavy, Daniel M. (Sandia National Laboratories, Albuquerque, NM); Acar, Evrim; Kolda, Tamara Gibson
2009-02-01
Tensor decompositions are higher-order analogues of matrix decompositions and have proven to be powerful tools for data analysis. In particular, we are interested in the canonical tensor decomposition, otherwise known as the CANDECOMP/PARAFAC decomposition (CPD), which expresses a tensor as the sum of component rank-one tensors and is used in a multitude of applications such as chemometrics, signal processing, neuroscience, and web analysis. The task of computing the CPD, however, can be difficult. The typical approach is based on alternating least squares (ALS) optimization, which can be remarkably fast but is not very accurate. Previously, nonlinear least squares (NLS) methods have also been recommended; existing NLS methods are accurate but slow. In this paper, we propose the use of gradient-based optimization methods. We discuss the mathematical calculation of the derivatives and further show that they can be computed efficiently, at the same cost as one iteration of ALS. Computational experiments demonstrate that the gradient-based optimization methods are much more accurate than ALS and orders of magnitude faster than NLS.
Reciprocal mass tensor : a general form
Roy, C.L.
1978-01-01
Using the results of earlier treatment of wave packets, a general form of reciprocal mass tensor has been obtained. The elements of this tensor are seen to be dependent on momentum as well as space coordinates of the particle under consideration. The conditions under which the tensor would reduce to the usual space-independent form, are discussed and the impact of the space-dependence of this tensor on the motion of Bloch electrons, is examined. (author)
A new deteriorated energy-momentum tensor
Duff, M.J.
1982-01-01
The stress-tensor of a scalar field theory is not unique because of the possibility of adding an 'improvement term'. In supersymmetric field theories the stress-tensor will appear in a super-current multiplet along with the sypersymmetry current. The general question of the supercurrent multiplet for arbitrary deteriorated stress tensors and their relationship to supercurrent multiplets for models with gauge antisymmetric tensors is answered for various models of N = 1, 2 and 4 supersymmetry. (U.K.)
Tensor-based spatiotemporal saliency detection
Dou, Hao; Li, Bin; Deng, Qianqian; Zhang, LiRui; Pan, Zhihong; Tian, Jinwen
2018-03-01
This paper proposes an effective tensor-based spatiotemporal saliency computation model for saliency detection in videos. First, we construct the tensor representation of video frames. Then, the spatiotemporal saliency can be directly computed by the tensor distance between different tensors, which can preserve the complete temporal and spatial structure information of object in the spatiotemporal domain. Experimental results demonstrate that our method can achieve encouraging performance in comparison with the state-of-the-art methods.
Engel, Sara; Elhauge, Mie; Tholstrup, Tine
2018-01-01
overall dairy intake and risk of cardiovascular disease and even point to an inverse association with type 2 diabetes. The objective was to compare the effects of whole milk (3.5% fat) with skimmed milk (0.1% fat) on fasting serum blood lipids, insulin, and plasma glucose in healthy subjects. Subject....../methods A randomized, controlled 2 × 3-week crossover dietary intervention in 18 healthy adults randomly assigned to a sequence of treatments consisting of 0.5 L/d of whole milk and skimmed milk as part of their habitual diet. A total of 17 subjects completed the intervention. Results Whole milk increased HDL...... affect fasting blood lipids, glucose, or insulin compared to skimmed milk. Moreover, intake of whole milk increased HDL cholesterol concentration compared to skimmed milk. These findings suggest that if the higher energy content is taken into account, whole milk might be considered a part of a healthy diet...
Akkerman, Erik M.
2010-01-01
Both in diffusion tensor imaging (DTI) and in generalized diffusion tensor imaging (GDTI) the relation between the diffusion tensor and the measured apparent diffusion coefficients is given by a tensorial equation, which needs to be inverted in order to solve the diffusion tensor. The traditional
Efficient Tensor Strategy for Recommendation
Aboagye Emelia Opoku
2017-07-01
Full Text Available The era of big data has witnessed the explosion of tensor datasets, and large scale Probabilistic Tensor Factorization (PTF analysis is important to accommodate such increasing trend of data. Sparsity, and Cold-Start are some of the inherent problems of recommender systems in the era of big data. This paper proposes a novel Sentiment-Based Probabilistic Tensor Analysis technique senti-PTF to address the problems. The propose framework first applies a Natural Language Processing technique to perform sentiment analysis taking advantage of the huge sums of textual data generated available from the social media which are predominantly left untouched. Although some current studies do employ review texts, many of them do not consider how sentiments in reviews influence recommendation algorithm for prediction. There is therefore this big data text analytics gap whose modeling is computationally expensive. From our experiments, our novel machine learning sentiment-based tensor analysis is computationally less expensive, and addresses the cold-start problem, for optimal recommendation prediction.
Characteristics of the Residual Stress tensor when filter width is larger than the Ozmidov scale
de Bragança Alves, Felipe Augusto; de Bruyn Kops, Stephen
2017-11-01
In stratified turbulence, the residual stress tensor is statistically anisotropic unless the smallest resolved length scale is smaller than the Ozmidov scale and the buoyancy Reynolds number is sufficiently high for there to exist a range of scales that is statistically isotropic. We present approximations to the residual stress tensor that are derived analytically. These approximations are evaluated by filtering data from direct numerical simulations of homogeneous stratified turbulence, with unity Prandtl number, resolved on up to 8192 × 8192 × 4096 grid points along with an isotropic homogeneous case resolved on 81923 grid points. It is found that the best possible scaling of the strain rate tensor yields a residual stress tensor (RST) that is less well statistically aligned with the exact RST than a randomly generated tensor. It is also found that, while a scaling of the strain rate tensor can dissipate the right amount of energy, it produces incorrect anisotropic dissipation, removing energy from the wrong components of the velocity vector. We find that a combination of the strain rate tensor and a tensor related to energy redistribution caused by a Newtonian fluid viscous stress yields an excellent tensorial basis for modelling the RST.
Groot, Stefanie de; Vreeswijk, Maaike PG; Welters, Marij JP; Gravesteijn, Gido; Boei, Jan JWA; Jochems, Anouk; Houtsma, Daniel; Putter, Hein; Hoeven, Jacobus JM van der; Nortier, Johan WR; Pijl, Hanno; Kroep, Judith R
2015-01-01
Preclinical evidence shows that short-term fasting (STF) protects healthy cells against side effects of chemotherapy and makes cancer cells more vulnerable to it. This pilot study examines the feasibility of STF and its effects on tolerance of chemotherapy in a homogeneous patient group with early breast cancer (BC). Eligible patients had HER2-negative, stage II/III BC. Women receiving (neo)-adjuvant TAC (docetaxel/doxorubicin/cyclophosphamide) were randomized to fast 24 h before and after commencing chemotherapy, or to eat according to the guidelines for healthy nutrition. Toxicity in the two groups was compared. Chemotherapy-induced DNA damage in peripheral blood mononuclear cells (PBMCs) was quantified by the level of γ-H2AX analyzed by flow cytometry. Thirteen patients were included of whom seven were randomized to the STF arm. STF was well tolerated. Mean erythrocyte- and thrombocyte counts 7 days post-chemotherapy were significantly higher (P = 0.007, 95 % CI 0.106-0.638 and P = 0.00007, 95 % CI 38.7-104, respectively) in the STF group compared to the non-STF group. Non-hematological toxicity did not differ between the groups. Levels of γ-H2AX were significantly increased 30 min post-chemotherapy in CD45 + CD3- cells in non-STF, but not in STF patients. STF during chemotherapy was well tolerated and reduced hematological toxicity of TAC in HER2-negative BC patients. Moreover, STF may reduce a transient increase in, and/or induce a faster recovery of DNA damage in PBMCs after chemotherapy. Larger studies, investigating a longer fasting period, are required to generate more insight into the possible benefits of STF during chemotherapy. ClinicalTrials.gov: NCT01304251, March 2011
de Groot, Stefanie; Vreeswijk, Maaike P G; Welters, Marij J P; Gravesteijn, Gido; Boei, Jan J W A; Jochems, Anouk; Houtsma, Daniel; Putter, Hein; van der Hoeven, Jacobus J M; Nortier, Johan W R; Pijl, Hanno; Kroep, Judith R
2015-10-05
Preclinical evidence shows that short-term fasting (STF) protects healthy cells against side effects of chemotherapy and makes cancer cells more vulnerable to it. This pilot study examines the feasibility of STF and its effects on tolerance of chemotherapy in a homogeneous patient group with early breast cancer (BC). Eligible patients had HER2-negative, stage II/III BC. Women receiving (neo)-adjuvant TAC (docetaxel/doxorubicin/cyclophosphamide) were randomized to fast 24 h before and after commencing chemotherapy, or to eat according to the guidelines for healthy nutrition. Toxicity in the two groups was compared. Chemotherapy-induced DNA damage in peripheral blood mononuclear cells (PBMCs) was quantified by the level of γ-H2AX analyzed by flow cytometry. Thirteen patients were included of whom seven were randomized to the STF arm. STF was well tolerated. Mean erythrocyte- and thrombocyte counts 7 days post-chemotherapy were significantly higher (P = 0.007, 95 % CI 0.106-0.638 and P = 0.00007, 95 % CI 38.7-104, respectively) in the STF group compared to the non-STF group. Non-hematological toxicity did not differ between the groups. Levels of γ-H2AX were significantly increased 30 min post-chemotherapy in CD45 + CD3- cells in non-STF, but not in STF patients. STF during chemotherapy was well tolerated and reduced hematological toxicity of TAC in HER2-negative BC patients. Moreover, STF may reduce a transient increase in, and/or induce a faster recovery of DNA damage in PBMCs after chemotherapy. Larger studies, investigating a longer fasting period, are required to generate more insight into the possible benefits of STF during chemotherapy. ClinicalTrials.gov: NCT01304251 , March 2011.
Weyl tensors for asymmetric complex curvatures
Oliveira, C.G.
Considering a second rank Hermitian field tensor and a general Hermitian connection the associated complex curvature tensor is constructed. The Weyl tensor that corresponds to this complex curvature is determined. The formalism is applied to the Weyl unitary field theory and to the Moffat gravitational theory. (Author) [pt
Spherical Tensor Calculus for Local Adaptive Filtering
Reisert, Marco; Burkhardt, Hans
In 3D image processing tensors play an important role. While rank-1 and rank-2 tensors are well understood and commonly used, higher rank tensors are rare. This is probably due to their cumbersome rotation behavior which prevents a computationally efficient use. In this chapter we want to introduce the notion of a spherical tensor which is based on the irreducible representations of the 3D rotation group. In fact, any ordinary cartesian tensor can be decomposed into a sum of spherical tensors, while each spherical tensor has a quite simple rotation behavior. We introduce so called tensorial harmonics that provide an orthogonal basis for spherical tensor fields of any rank. It is just a generalization of the well known spherical harmonics. Additionally we propose a spherical derivative which connects spherical tensor fields of different degree by differentiation. Based on the proposed theory we present two applications. We propose an efficient algorithm for dense tensor voting in 3D, which makes use of tensorial harmonics decomposition of the tensor-valued voting field. In this way it is possible to perform tensor voting by linear-combinations of convolutions in an efficient way. Secondly, we propose an anisotropic smoothing filter that uses a local shape and orientation adaptive filter kernel which can be computed efficiently by the use spherical derivatives.
A new Weyl-like tensor of geometric origin
Vishwakarma, Ram Gopal
2018-04-01
A set of new tensors of purely geometric origin have been investigated, which form a hierarchy. A tensor of a lower rank plays the role of the potential for the tensor of one rank higher. The tensors have interesting mathematical and physical properties. The highest rank tensor of the hierarchy possesses all the geometrical properties of the Weyl tensor.
Comparison of Magnetic Susceptibility Tensor and Diffusion Tensor of the Brain.
Li, Wei; Liu, Chunlei
2013-10-01
Susceptibility tensor imaging (STI) provides a novel approach for noninvasive assessment of the white matter pathways of the brain. Using mouse brain ex vivo , we compared STI with diffusion tensor imaging (DTI), in terms of tensor values, principal tensor values, anisotropy values, and tensor orientations. Despite the completely different biophysical underpinnings, magnetic susceptibility tensors and diffusion tensors show many similarities in the tensor and principal tensor images, for example, the tensors perpendicular to the fiber direction have the highest gray-white matter contrast, and the largest principal tensor is along the fiber direction. Comparison to DTI fractional anisotropy, the susceptibility anisotropy provides much higher sensitivity to the chemical composition of the white matter, especially myelin. The high sensitivity can be further enhanced with the perfusion of ProHance, a gadolinium-based contrast agent. Regarding the tensor orientations, the direction of the largest principal susceptibility tensor agrees with that of diffusion tensors in major white matter fiber bundles. The STI fiber tractography can reconstruct the fiber pathways for the whole corpus callosum and for white matter fiber bundles that are in close contact but in different orientations. There are some differences between susceptibility and diffusion tensor orientations, which are likely due to the limitations in the current STI reconstruction. With the development of more accurate reconstruction methods, STI holds the promise for probing the white matter micro-architectures with more anatomical details and higher chemical sensitivity.
Tensor voting for robust color edge detection
Moreno, Rodrigo; García, Miguel Ángel; Puig, Domenec
2014-01-01
The final publication is available at Springer via http://dx.doi.org/10.1007/978-94-007-7584-8_9 This chapter proposes two robust color edge detection methods based on tensor voting. The first method is a direct adaptation of the classical tensor voting to color images where tensors are initialized with either the gradient or the local color structure tensor. The second method is based on an extension of tensor voting in which the encoding and voting processes are specifically tailored to ...
The Physical Interpretation of the Lanczos Tensor
Roberts, Mark D.
1999-01-01
The field equations of general relativity can be written as first order differential equations in the Weyl tensor, the Weyl tensor in turn can be written as a first order differential equation in a three index tensor called the Lanczos tensor. The Lanczos tensor plays a similar role in general relativity to that of the vector potential in electro-magnetic theory. The Aharonov-Bohm effect shows that when quantum mechanics is applied to electro-magnetic theory the vector potential is dynamicall...
Robust estimation of adaptive tensors of curvature by tensor voting.
Tong, Wai-Shun; Tang, Chi-Keung
2005-03-01
Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise.
Antisymmetric tensor generalizations of affine vector fields.
Houri, Tsuyoshi; Morisawa, Yoshiyuki; Tomoda, Kentaro
2016-02-01
Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank- p antisymmetric affine tensor fields in n -dimensions is bounded by ( n + 1)!/ p !( n - p )!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes.
Extended vector-tensor theories
Kimura, Rampei; Naruko, Atsushi; Yoshida, Daisuke, E-mail: rampei@th.phys.titech.ac.jp, E-mail: naruko@th.phys.titech.ac.jp, E-mail: yoshida@th.phys.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)
2017-01-01
Recently, several extensions of massive vector theory in curved space-time have been proposed in many literatures. In this paper, we consider the most general vector-tensor theories that contain up to two derivatives with respect to metric and vector field. By imposing a degeneracy condition of the Lagrangian in the context of ADM decomposition of space-time to eliminate an unwanted mode, we construct a new class of massive vector theories where five degrees of freedom can propagate, corresponding to three for massive vector modes and two for massless tensor modes. We find that the generalized Proca and the beyond generalized Proca theories up to the quartic Lagrangian, which should be included in this formulation, are degenerate theories even in curved space-time. Finally, introducing new metric and vector field transformations, we investigate the properties of thus obtained theories under such transformations.
Scalar-tensor linear inflation
Artymowski, Michał [Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Racioppi, Antonio, E-mail: Michal.Artymowski@uj.edu.pl, E-mail: Antonio.Racioppi@kbfi.ee [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia)
2017-04-01
We investigate two approaches to non-minimally coupled gravity theories which present linear inflation as attractor solution: a) the scalar-tensor theory approach, where we look for a scalar-tensor theory that would restore results of linear inflation in the strong coupling limit for a non-minimal coupling to gravity of the form of f (φ) R /2; b) the particle physics approach, where we motivate the form of the Jordan frame potential by loop corrections to the inflaton field. In both cases the Jordan frame potentials are modifications of the induced gravity inflationary scenario, but instead of the Starobinsky attractor they lead to linear inflation in the strong coupling limit.
Diffusion tensor optical coherence tomography
Marks, Daniel L.; Blackmon, Richard L.; Oldenburg, Amy L.
2018-01-01
In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.
Warris, Sven; Boymans, Sander; Muiser, Iwe; Noback, Michiel; Krijnen, Wim; Nap, Jan-Peter
2014-01-13
Small RNAs are important regulators of genome function, yet their prediction in genomes is still a major computational challenge. Statistical analyses of pre-miRNA sequences indicated that their 2D structure tends to have a minimal free energy (MFE) significantly lower than MFE values of equivalently randomized sequences with the same nucleotide composition, in contrast to other classes of non-coding RNA. The computation of many MFEs is, however, too intensive to allow for genome-wide screenings. Using a local grid infrastructure, MFE distributions of random sequences were pre-calculated on a large scale. These distributions follow a normal distribution and can be used to determine the MFE distribution for any given sequence composition by interpolation. It allows on-the-fly calculation of the normal distribution for any candidate sequence composition. The speedup achieved makes genome-wide screening with this characteristic of a pre-miRNA sequence practical. Although this particular property alone will not be able to distinguish miRNAs from other sequences sufficiently discriminative, the MFE-based P-value should be added to the parameters of choice to be included in the selection of potential miRNA candidates for experimental verification.
Christos Vagionas
2017-07-01
Full Text Available Electronic Content Addressable Memories (CAM implement Address Look-Up (AL table functionalities of network routers; however, they typically operate in the MHz regime, turning AL into a critical network bottleneck. In this communication, we demonstrate the first steps towards developing optical CAM alternatives to enable a re-engineering of AL memories. Firstly, we report on the photonic integration of Semiconductor Optical Amplifier-Mach Zehnder Interferometer (SOA-MZI-based optical Flip-Flop and Random Access Memories on a monolithic InP platform, capable of storing the binary prefix-address data-bits and the outgoing port information for next hop routing, respectively. Subsequently the first optical Binary CAM cell (B-CAM is experimentally demonstrated, comprising an InP Flip-Flop and a SOA-MZI Exclusive OR (XOR gate for fast search operations through an XOR-based bit comparison, yielding an error-free 10 Gb/s operation. This is later extended via physical layer simulations in an optical Ternary-CAM (T-CAM cell and a 4-bit Matchline (ML configuration, supporting a third state of the “logical X” value towards wildcard bits of network subnet masks. The proposed functional CAM and Random Access Memories (RAM sub-circuits may facilitate light-based Address Look-Up tables supporting search operations at 10 Gb/s and beyond, paving the way towards minimizing the disparity with the frantic optical transmission linerates, and fast re-configurability through multiple simultaneous Wavelength Division Multiplexed (WDM memory access requests.
Joris, Peter J; Mensink, Ronald P
2015-03-10
The effects of fat-soluble vitamin supplementation on cardiovascular disease (CVD) risk are not clear. Therefore, we performed a meta-analysis to quantify effects of fat-soluble vitamin supplements on fasting flow-mediated vasodilation (FMD) of the brachial artery, a validated marker to assess CVD risk. Randomized placebo-controlled trials (RCTs) were identified by a systematic search till July 2014. Seven RCTs studying the effects of vitamin E supplements (range: 300 to 1800 IU per day) and nine RCTs examining the effects of vitamin D supplements, that involved, respectively, 303 and 658 adults, were included. No studies with carotenoid or vitamin K supplements were found. Vitamin E supplementation increased FMD vs. control by 2.42% (95% CI: 0.46% to 4.37%; p = 0.015). No effects of vitamin D supplementation were found (0.15%; 95% CI: -0.21% to 0.51%; p = 0.41). These effects did not depend on subject characteristics, treatment characteristics or technical aspects of the FMD measurement. However, no dose-response relationship was evident for vitamin E, statistical significance depended on one study, while the levels of supplement were far above recommended intakes. The current meta-analysis, therefore, does not provide unambiguous evidence to support the use of fat-soluble vitamin supplements to improve fasting FMD in adults.
Chen, Cuiping; Bujanover, Shay; Kareht, Stephanie; Rapoport, Alan M
2015-02-01
To compare the pharmacokinetics of, and food effect on, diclofenac potassium delivered as an oral solution vs an immediate-release tablet. Diclofenac potassium for oral solution is the only nonsteroidal anti-inflammatory drug approved as monotherapy for the acute treatment of migraine attacks with or without aura in adults 18 years of age or older. It is formulated with potassium bicarbonate as a buffering agent to raise the pH and consequently increase the aqueous solubility of diclofenac in the acidic environment of the stomach following oral administration. The dosage is 50 mg of powdered diclofenac potassium dissolved in 1 to 2 ounces (30 to 60 mL) of water prior to administration, with dosing time in relation to food intake not specified - this was the case for the pivotal efficacy and safety trials in subjects with acute migraine attacks in which the primary endpoints were achieved. For acute treatment of migraine attacks, rapid onset of pain relief is desirable and is likely related to a rapid appearance of an effective concentration of the drug in the systemic circulation. The rate at which an orally administered drug reaches the blood is affected by both its formulation and the presence of food in the stomach. The present study was designed to investigate the pharmacokinetics of 2 formulations of diclofenac potassium, an immediate-release tablet and an oral solution, and to ascertain the effect of food. This was an open-label, randomized, single-center, crossover trial in healthy volunteers. Subjects were randomized using computer-generated list to 1:1:1:1 ratio. They received a single 50-mg dose of diclofenac potassium in 4 sequences (ABCD, BADC, CDBA, and DCAB) during each of the 4 treatment periods. The 4 treatments were: A, oral solution fasting; B, tablet fasting; C, oral solution fed; and D, tablet fed. There was a ≥7-day washout period between dosing. Blood samples for pharmacokinetic analysis were taken for up to 12 hours post-dose and
Sparse alignment for robust tensor learning.
Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Zhao, Cairong; Sun, Mingming
2014-10-01
Multilinear/tensor extensions of manifold learning based algorithms have been widely used in computer vision and pattern recognition. This paper first provides a systematic analysis of the multilinear extensions for the most popular methods by using alignment techniques, thereby obtaining a general tensor alignment framework. From this framework, it is easy to show that the manifold learning based tensor learning methods are intrinsically different from the alignment techniques. Based on the alignment framework, a robust tensor learning method called sparse tensor alignment (STA) is then proposed for unsupervised tensor feature extraction. Different from the existing tensor learning methods, L1- and L2-norms are introduced to enhance the robustness in the alignment step of the STA. The advantage of the proposed technique is that the difficulty in selecting the size of the local neighborhood can be avoided in the manifold learning based tensor feature extraction algorithms. Although STA is an unsupervised learning method, the sparsity encodes the discriminative information in the alignment step and provides the robustness of STA. Extensive experiments on the well-known image databases as well as action and hand gesture databases by encoding object images as tensors demonstrate that the proposed STA algorithm gives the most competitive performance when compared with the tensor-based unsupervised learning methods.
Shape anisotropy: tensor distance to anisotropy measure
Weldeselassie, Yonas T.; El-Hilo, Saba; Atkins, M. S.
2011-03-01
Fractional anisotropy, defined as the distance of a diffusion tensor from its closest isotropic tensor, has been extensively studied as quantitative anisotropy measure for diffusion tensor magnetic resonance images (DT-MRI). It has been used to reveal the white matter profile of brain images, as guiding feature for seeding and stopping in fiber tractography and for the diagnosis and assessment of degenerative brain diseases. Despite its extensive use in DT-MRI community, however, not much attention has been given to the mathematical correctness of its derivation from diffusion tensors which is achieved using Euclidean dot product in 9D space. But, recent progress in DT-MRI has shown that the space of diffusion tensors does not form a Euclidean vector space and thus Euclidean dot product is not appropriate for tensors. In this paper, we propose a novel and robust rotationally invariant diffusion anisotropy measure derived using the recently proposed Log-Euclidean and J-divergence tensor distance measures. An interesting finding of our work is that given a diffusion tensor, its closest isotropic tensor is different for different tensor distance metrics used. We demonstrate qualitatively that our new anisotropy measure reveals superior white matter profile of DT-MR brain images and analytically show that it has a higher signal to noise ratio than fractional anisotropy.
Transposes, L-Eigenvalues and Invariants of Third Order Tensors
Qi, Liqun
2017-01-01
Third order tensors have wide applications in mechanics, physics and engineering. The most famous and useful third order tensor is the piezoelectric tensor, which plays a key role in the piezoelectric effect, first discovered by Curie brothers. On the other hand, the Levi-Civita tensor is famous in tensor calculus. In this paper, we study third order tensors and (third order) hypermatrices systematically, by regarding a third order tensor as a linear operator which transforms a second order t...
Shetty, Anil N; Chiang, Sharon; Maletic-Savatic, Mirjana; Kasprian, Gregor; Vannucci, Marina; Lee, Wesley
2014-01-01
In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal-Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain.
Tensor SOM and tensor GTM: Nonlinear tensor analysis by topographic mappings.
Iwasaki, Tohru; Furukawa, Tetsuo
2016-05-01
In this paper, we propose nonlinear tensor analysis methods: the tensor self-organizing map (TSOM) and the tensor generative topographic mapping (TGTM). TSOM is a straightforward extension of the self-organizing map from high-dimensional data to tensorial data, and TGTM is an extension of the generative topographic map, which provides a theoretical background for TSOM using a probabilistic generative model. These methods are useful tools for analyzing and visualizing tensorial data, especially multimodal relational data. For given n-mode relational data, TSOM and TGTM can simultaneously organize a set of n-topographic maps. Furthermore, they can be used to explore the tensorial data space by interactively visualizing the relationships between modes. We present the TSOM algorithm and a theoretical description from the viewpoint of TGTM. Various TSOM variations and visualization techniques are also described, along with some applications to real relational datasets. Additionally, we attempt to build a comprehensive description of the TSOM family by adapting various data structures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Applications of tensor functions in creep mechanics
Betten, J.
1991-01-01
Within this contribution a short survey is given of some recent advances in the mathematical modelling of materials behaviour under creep conditions. The mechanical behaviour of anisotropic solids requires a suitable mathematical modelling. The properties of tensor functions with several argument tensors constitute a rational basis for a consistent mathematical modelling of complex material behaviour. This paper presents certain principles, methods, and recent successfull applications of tensor functions in solid mechanics. The rules for specifying irreducible sets of tensor invariants and tensor generators for material tensors of rank two and four are also discussed. Furthermore, it is very important that the scalar coefficients in constitutive and evolutional equations are determined as functions of the integrity basis and experimental data. It is explained in detail that these coefficients can be determined by using tensorial interpolation methods. Some examples for practical use are discussed. (orig./RHM)
Seamless warping of diffusion tensor fields
Xu, Dongrong; Hao, Xuejun; Bansal, Ravi
2008-01-01
To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping...... of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot...... transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT...
The Topology of Symmetric Tensor Fields
Levin, Yingmei; Batra, Rajesh; Hesselink, Lambertus; Levy, Yuval
1997-01-01
Combinatorial topology, also known as "rubber sheet geometry", has extensive applications in geometry and analysis, many of which result from connections with the theory of differential equations. A link between topology and differential equations is vector fields. Recent developments in scientific visualization have shown that vector fields also play an important role in the analysis of second-order tensor fields. A second-order tensor field can be transformed into its eigensystem, namely, eigenvalues and their associated eigenvectors without loss of information content. Eigenvectors behave in a similar fashion to ordinary vectors with even simpler topological structures due to their sign indeterminacy. Incorporating information about eigenvectors and eigenvalues in a display technique known as hyperstreamlines reveals the structure of a tensor field. The simplify and often complex tensor field and to capture its important features, the tensor is decomposed into an isotopic tensor and a deviator. A tensor field and its deviator share the same set of eigenvectors, and therefore they have a similar topological structure. A a deviator determines the properties of a tensor field, while the isotopic part provides a uniform bias. Degenerate points are basic constituents of tensor fields. In 2-D tensor fields, there are only two types of degenerate points; while in 3-D, the degenerate points can be characterized in a Q'-R' plane. Compressible and incompressible flows share similar topological feature due to the similarity of their deviators. In the case of the deformation tensor, the singularities of its deviator represent the area of vortex core in the field. In turbulent flows, the similarities and differences of the topology of the deformation and the Reynolds stress tensors reveal that the basic addie-viscosity assuptions have their validity in turbulence modeling under certain conditions.
On improving the efficiency of tensor voting
Moreno, Rodrigo; Garcia, Miguel Angel; Puig, Domenec; Pizarro, Luis; Burgeth, Bernhard; Weickert, Joachim
2011-01-01
This paper proposes two alternative formulations to reduce the high computational complexity of tensor voting, a robust perceptual grouping technique used to extract salient information from noisy data. The first scheme consists of numerical approximations of the votes, which have been derived from an in-depth analysis of the plate and ball voting processes. The second scheme simplifies the formulation while keeping the same perceptual meaning of the original tensor voting: The stick tensor v...
Schrimpf, Martin
2016-01-01
Google's Machine Learning framework TensorFlow was open-sourced in November 2015 [1] and has since built a growing community around it. TensorFlow is supposed to be flexible for research purposes while also allowing its models to be deployed productively. This work is aimed towards people with experience in Machine Learning considering whether they should use TensorFlow in their environment. Several aspects of the framework important for such a decision are examined, such as the heterogenity,...
Efficient Low Rank Tensor Ring Completion
Wang, Wenqi; Aggarwal, Vaneet; Aeron, Shuchin
2017-01-01
Using the matrix product state (MPS) representation of the recently proposed tensor ring decompositions, in this paper we propose a tensor completion algorithm, which is an alternating minimization algorithm that alternates over the factors in the MPS representation. This development is motivated in part by the success of matrix completion algorithms that alternate over the (low-rank) factors. In this paper, we propose a spectral initialization for the tensor ring completion algorithm and ana...
The Riemann-Lovelock Curvature Tensor
Kastor, David
2012-01-01
In order to study the properties of Lovelock gravity theories in low dimensions, we define the kth-order Riemann-Lovelock tensor as a certain quantity having a total 4k-indices, which is kth-order in the Riemann curvature tensor and shares its basic algebraic and differential properties. We show that the kth-order Riemann-Lovelock tensor is determined by its traces in dimensions 2k \\le D
The 1/ N Expansion of Tensor Models with Two Symmetric Tensors
Gurau, Razvan
2018-06-01
It is well known that tensor models for a tensor with no symmetry admit a 1/ N expansion dominated by melonic graphs. This result relies crucially on identifying jackets, which are globally defined ribbon graphs embedded in the tensor graph. In contrast, no result of this kind has so far been established for symmetric tensors because global jackets do not exist. In this paper we introduce a new approach to the 1/ N expansion in tensor models adapted to symmetric tensors. In particular we do not use any global structure like the jackets. We prove that, for any rank D, a tensor model with two symmetric tensors and interactions the complete graph K D+1 admits a 1/ N expansion dominated by melonic graphs.
A closed-form solution to tensor voting: theory and applications.
Wu, Tai-Pang; Yeung, Sai-Kit; Jia, Jiaya; Tang, Chi-Keung; Medioni, Gérard
2012-08-01
We prove a closed-form solution to tensor voting (CFTV): Given a point set in any dimensions, our closed-form solution provides an exact, continuous, and efficient algorithm for computing a structure-aware tensor that simultaneously achieves salient structure detection and outlier attenuation. Using CFTV, we prove the convergence of tensor voting on a Markov random field (MRF), thus termed as MRFTV, where the structure-aware tensor at each input site reaches a stationary state upon convergence in structure propagation. We then embed structure-aware tensor into expectation maximization (EM) for optimizing a single linear structure to achieve efficient and robust parameter estimation. Specifically, our EMTV algorithm optimizes both the tensor and fitting parameters and does not require random sampling consensus typically used in existing robust statistical techniques. We performed quantitative evaluation on its accuracy and robustness, showing that EMTV performs better than the original TV and other state-of-the-art techniques in fundamental matrix estimation for multiview stereo matching. The extensions of CFTV and EMTV for extracting multiple and nonlinear structures are underway.
Beleggia, M.; Graef, M. de
2003-01-01
A method is presented to compute the demagnetization tensor field for uniformly magnetized particles of arbitrary shape. By means of a Fourier space approach it is possible to compute analytically the Fourier representation of the demagnetization tensor field for a given shape. Then, specifying the direction of the uniform magnetization, the demagnetizing field and the magnetostatic energy associated with the particle can be evaluated. In some particular cases, the real space representation is computable analytically. In general, a numerical inverse fast Fourier transform is required to perform the inversion. As an example, the demagnetization tensor field for the tetrahedron will be given
Dictionary-Based Tensor Canonical Polyadic Decomposition
Cohen, Jeremy Emile; Gillis, Nicolas
2018-04-01
To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images.
Bayesian regularization of diffusion tensor images
Frandsen, Jesper; Hobolth, Asger; Østergaard, Leif
2007-01-01
Diffusion tensor imaging (DTI) is a powerful tool in the study of the course of nerve fibre bundles in the human brain. Using DTI, the local fibre orientation in each image voxel can be described by a diffusion tensor which is constructed from local measurements of diffusion coefficients along...... several directions. The measured diffusion coefficients and thereby the diffusion tensors are subject to noise, leading to possibly flawed representations of the three dimensional fibre bundles. In this paper we develop a Bayesian procedure for regularizing the diffusion tensor field, fully utilizing...
Eshuis, Henk; Yarkony, Julian; Furche, Filipp
2010-06-01
The random phase approximation (RPA) is an increasingly popular post-Kohn-Sham correlation method, but its high computational cost has limited molecular applications to systems with few atoms. Here we present an efficient implementation of RPA correlation energies based on a combination of resolution of the identity (RI) and imaginary frequency integration techniques. We show that the RI approximation to four-index electron repulsion integrals leads to a variational upper bound to the exact RPA correlation energy if the Coulomb metric is used. Auxiliary basis sets optimized for second-order Møller-Plesset (MP2) calculations are well suitable for RPA, as is demonstrated for the HEAT [A. Tajti et al., J. Chem. Phys. 121, 11599 (2004)] and MOLEKEL [F. Weigend et al., Chem. Phys. Lett. 294, 143 (1998)] benchmark sets. Using imaginary frequency integration rather than diagonalization to compute the matrix square root necessary for RPA, evaluation of the RPA correlation energy requires O(N4 log N) operations and O(N3) storage only; the price for this dramatic improvement over existing algorithms is a numerical quadrature. We propose a numerical integration scheme that is exact in the two-orbital case and converges exponentially with the number of grid points. For most systems, 30-40 grid points yield μH accuracy in triple zeta basis sets, but much larger grids are necessary for small gap systems. The lowest-order approximation to the present method is a post-Kohn-Sham frequency-domain version of opposite-spin Laplace-transform RI-MP2 [J. Jung et al., Phys. Rev. B 70, 205107 (2004)]. Timings for polyacenes with up to 30 atoms show speed-ups of two orders of magnitude over previous implementations. The present approach makes it possible to routinely compute RPA correlation energies of systems well beyond 100 atoms, as is demonstrated for the octapeptide angiotensin II.
A RENORMALIZATION PROCEDURE FOR TENSOR MODELS AND SCALAR-TENSOR THEORIES OF GRAVITY
SASAKURA, NAOKI
2010-01-01
Tensor models are more-index generalizations of the so-called matrix models, and provide models of quantum gravity with the idea that spaces and general relativity are emergent phenomena. In this paper, a renormalization procedure for the tensor models whose dynamical variable is a totally symmetric real three-tensor is discussed. It is proven that configurations with certain Gaussian forms are the attractors of the three-tensor under the renormalization procedure. Since these Gaussian config...
Sparse tensor spherical harmonics approximation in radiative transfer
Grella, K.; Schwab, Ch.
2011-01-01
The stationary monochromatic radiative transfer equation is a partial differential transport equation stated on a five-dimensional phase space. To obtain a well-posed problem, boundary conditions have to be prescribed on the inflow part of the domain boundary. We solve the equation with a multi-level Galerkin FEM in physical space and a spectral discretization with harmonics in solid angle and show that the benefits of the concept of sparse tensor products, known from the context of sparse grids, can also be leveraged in combination with a spectral discretization. Our method allows us to include high spectral orders without incurring the 'curse of dimension' of a five-dimensional computational domain. Neglecting boundary conditions, we find analytically that for smooth solutions, the convergence rate of the full tensor product method is retained in our method up to a logarithmic factor, while the number of degrees of freedom grows essentially only as fast as for the purely spatial problem. For the case with boundary conditions, we propose a splitting of the physical function space and a conforming tensorization. Numerical experiments in two physical and one angular dimension show evidence for the theoretical convergence rates to hold in the latter case as well.
The tensor network theory library
Al-Assam, S.; Clark, S. R.; Jaksch, D.
2017-09-01
In this technical paper we introduce the tensor network theory (TNT) library—an open-source software project aimed at providing a platform for rapidly developing robust, easy to use and highly optimised code for TNT calculations. The objectives of this paper are (i) to give an overview of the structure of TNT library, and (ii) to help scientists decide whether to use the TNT library in their research. We show how to employ the TNT routines by giving examples of ground-state and dynamical calculations of one-dimensional bosonic lattice system. We also discuss different options for gaining access to the software available at www.tensornetworktheory.org.
Dirac tensor with heavy photon
Bytev, V.V.; Kuraev, E.A. [Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Scherbakova, E.S. [Hamburg Univ. (Germany). 1. Inst. fuer Theoretische Physik
2012-01-15
For the large-angles hard photon emission by initial leptons in process of high energy annihilation of e{sup +}e{sup -} {yields} to hadrons the Dirac tensor is obtained, taking into account the lowest order radiative corrections. The case of large-angles emission of two hard photons by initial leptons is considered. This result is being completed by the kinematics case of collinear hard photons emission as well as soft virtual and real photons and can be used for construction of Monte-Carlo generators. (orig.)
3D reconstruction of tensors and vectors
Defrise, Michel; Gullberg, Grant T.
2005-01-01
Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields
Raman scattering tensors of tyrosine.
Tsuboi, M; Ezaki, Y; Aida, M; Suzuki, M; Yimit, A; Ushizawa, K; Ueda, T
1998-01-01
Polarized Raman scattering measurements have been made of a single crystal of L-tyrosine by the use of a Raman microscope with the 488.0-nm exciting beam from an argon ion laser. The L-tyrosine crystal belongs to the space group P2(1)2(1)2(1) (orthorhombic), and Raman scattering intensities corresponding to the aa, bb, cc, ab and ac components of the crystal Raman tensor have been determined for each prominent Raman band. A similar set of measurements has been made of L-tyrosine-d4, in which four hydrogen atoms on the benzene ring are replaced by deuterium atoms. The effects of NH3-->ND3 and OH-->OD on the Raman spectrum have also been examined. In addition, depolarization ratios of some bands of L-tyrosine in aqueous solutions of pH 13 and pH 1 were examined. For comparison with these experimental results, on the other hand, ab initio molecular orbital calculations have been made of the normal modes of vibration and their associated polarizability oscillations of the L-tyrosine molecule. On the basis of these experimental data and by referring to the results of the calculations, discussions have been presented on the Raman tensors associated to some Raman bands, including those at 829 cm-1 (benzene ring breathing), 642 cm-1 (benzene ring deformation), and 432 cm-1 (C alpha-C beta-C gamma bending).
Gravitational Metric Tensor Exterior to Rotating Homogeneous ...
The covariant and contravariant metric tensors exterior to a homogeneous spherical body rotating uniformly about a common φ axis with constant angular velocity ω is constructed. The constructed metric tensors in this gravitational field have seven non-zero distinct components.The Lagrangian for this gravitational field is ...
Tensor Network Quantum Virtual Machine (TNQVM)
2016-11-18
There is a lack of state-of-the-art quantum computing simulation software that scales on heterogeneous systems like Titan. Tensor Network Quantum Virtual Machine (TNQVM) provides a quantum simulator that leverages a distributed network of GPUs to simulate quantum circuits in a manner that leverages recent results from tensor network theory.
Tensor product varieties and crystals. GL case
Malkin, Anton
2001-01-01
The role of Spaltenstein varieties in the tensor product for GL is explained. In particular a direct (non-combinatorial) proof of the fact that the number of irreducible components of a Spaltenstein variety is equal to a Littlewood-Richardson coefficient (i.e. certain tensor product multiplicity) is obtained.
Differential invariants for higher-rank tensors. A progress report
Tapial, V.
2004-07-01
We outline the construction of differential invariants for higher-rank tensors. In section 2 we outline the general method for the construction of differential invariants. A first result is that the simplest tensor differential invariant contains derivatives of the same order as the rank of the tensor. In section 3 we review the construction for the first-rank tensors (vectors) and second-rank tensors (metrics). In section 4 we outline the same construction for higher-rank tensors. (author)
Beyond Low Rank: A Data-Adaptive Tensor Completion Method
Zhang, Lei; Wei, Wei; Shi, Qinfeng; Shen, Chunhua; Hengel, Anton van den; Zhang, Yanning
2017-01-01
Low rank tensor representation underpins much of recent progress in tensor completion. In real applications, however, this approach is confronted with two challenging problems, namely (1) tensor rank determination; (2) handling real tensor data which only approximately fulfils the low-rank requirement. To address these two issues, we develop a data-adaptive tensor completion model which explicitly represents both the low-rank and non-low-rank structures in a latent tensor. Representing the no...
Unique characterization of the Bel-Robinson tensor
Bergqvist, G; Lankinen, P
2004-01-01
We prove that a completely symmetric and trace-free rank-4 tensor is, up to sign, a Bel-Robinson-type tensor, i.e., the superenergy tensor of a tensor with the same algebraic symmetries as the Weyl tensor, if and only if it satisfies a certain quadratic identity. This may be seen as the first Rainich theory result for rank-4 tensors
Tensor completion and low-n-rank tensor recovery via convex optimization
Gandy, Silvia; Yamada, Isao; Recht, Benjamin
2011-01-01
In this paper we consider sparsity on a tensor level, as given by the n-rank of a tensor. In an important sparse-vector approximation problem (compressed sensing) and the low-rank matrix recovery problem, using a convex relaxation technique proved to be a valuable solution strategy. Here, we will adapt these techniques to the tensor setting. We use the n-rank of a tensor as a sparsity measure and consider the low-n-rank tensor recovery problem, i.e. the problem of finding the tensor of the lowest n-rank that fulfills some linear constraints. We introduce a tractable convex relaxation of the n-rank and propose efficient algorithms to solve the low-n-rank tensor recovery problem numerically. The algorithms are based on the Douglas–Rachford splitting technique and its dual variant, the alternating direction method of multipliers
Weyl curvature tensor in static spherical sources
Ponce de Leon, J.
1988-01-01
The role of the Weyl curvature tensor in static sources of the Schwarzschild field is studied. It is shown that in general the contribution from the Weyl curvature tensor (the ''purely gravitational field energy'') to the mass-energy inside the body may be positive, negative, or zero. It is proved that a positive (negative) contribution from the Weyl tensor tends to increase (decrease) the effective gravitational mass, the red-shift (from a point in the sphere to infinity), as well as the gravitational force which acts on a constituent matter element of a body. It is also proved that the contribution from the Weyl tensor always is negative in sources with surface gravitational potential larger than (4/9. It is pointed out that large negative contributions from the Weyl tensor could give rise to the phenomenon of gravitational repulsion. A simple example which illustrates the results is discussed
A recursive reduction of tensor Feynman integrals
Diakonidis, T.; Riemann, T.; Tausk, J.B.; Fleischer, J.
2009-07-01
We perform a recursive reduction of one-loop n-point rank R tensor Feynman integrals [in short: (n,R)-integrals] for n≤6 with R≤n by representing (n,R)-integrals in terms of (n,R-1)- and (n-1,R-1)-integrals. We use the known representation of tensor integrals in terms of scalar integrals in higher dimension, which are then reduced by recurrence relations to integrals in generic dimension. With a systematic application of metric tensor representations in terms of chords, and by decomposing and recombining these representations, we find the recursive reduction for the tensors. The procedure represents a compact, sequential algorithm for numerical evaluations of tensor Feynman integrals appearing in next-to-leading order contributions to massless and massive three- and four-particle production at LHC and ILC, as well as at meson factories. (orig.)
On Lovelock analogs of the Riemann tensor
Camanho, Xián O.; Dadhich, Naresh
2016-03-01
It is possible to define an analog of the Riemann tensor for Nth order Lovelock gravity, its characterizing property being that the trace of its Bianchi derivative yields the corresponding analog of the Einstein tensor. Interestingly there exist two parallel but distinct such analogs and the main purpose of this note is to reconcile both formulations. In addition we will introduce a simple tensor identity and use it to show that any pure Lovelock vacuum in odd d=2N+1 dimensions is Lovelock flat, i.e. any vacuum solution of the theory has vanishing Lovelock-Riemann tensor. Further, in the presence of cosmological constant it is the Lovelock-Weyl tensor that vanishes.
Late inspiral and merger of binary black holes in scalar–tensor theories of gravity
Healy, James; Bode, Tanja; Laguna, Pablo; Shoemaker, Deirdre M; Haas, Roland; Pazos, Enrique; Yunes, Nicolás
2012-01-01
Gravitational wave observations will probe nonlinear gravitational interactions and thus enable strong tests of Einstein’s theory of general relativity. We present a numerical relativity study of the late inspiral and merger of binary black holes in scalar–tensor theories of gravity. We consider binaries inside a scalar field bubble, including in some cases a potential. We demonstrate how an evolving scalar field is able to trigger detectable differences between gravitational waves in scalar–tensor gravity and the corresponding waves in general relativity. (fast track communication)
A stochastic collocation method for the second order wave equation with a discontinuous random speed
Motamed, Mohammad
2012-08-31
In this paper we propose and analyze a stochastic collocation method for solving the second order wave equation with a random wave speed and subjected to deterministic boundary and initial conditions. The speed is piecewise smooth in the physical space and depends on a finite number of random variables. The numerical scheme consists of a finite difference or finite element method in the physical space and a collocation in the zeros of suitable tensor product orthogonal polynomials (Gauss points) in the probability space. This approach leads to the solution of uncoupled deterministic problems as in the Monte Carlo method. We consider both full and sparse tensor product spaces of orthogonal polynomials. We provide a rigorous convergence analysis and demonstrate different types of convergence of the probability error with respect to the number of collocation points for full and sparse tensor product spaces and under some regularity assumptions on the data. In particular, we show that, unlike in elliptic and parabolic problems, the solution to hyperbolic problems is not in general analytic with respect to the random variables. Therefore, the rate of convergence may only be algebraic. An exponential/fast rate of convergence is still possible for some quantities of interest and for the wave solution with particular types of data. We present numerical examples, which confirm the analysis and show that the collocation method is a valid alternative to the more traditional Monte Carlo method for this class of problems. © 2012 Springer-Verlag.
Berry, A; Przybylski, M M; Sumner, I [Science Research Council, Daresbury (UK). Daresbury Lab.
1982-10-01
A fast multichannel analyser (MCA) capable of sampling at a rate of 10/sup 7/ s/sup -1/ has been developed. The instrument is based on an 8 bit parallel encoding analogue to digital converter (ADC) reading into a fast histogramming random access memory (RAM) system, giving 256 channels of 64 k count capacity. The prototype unit is in CAMAC format.
Berry, A.; Przybylski, M.M.; Sumner, I.
1982-01-01
A fast multichannel analyser (MCA) capable of sampling at a rate of 10 7 s -1 has been developed. The instrument is based on an 8 bit parallel encoding analogue to digital converter (ADC) reading into a fast histogramming random access memory (RAM) system, giving 256 channels of 64 k count capacity. The prototype unit is in CAMAC format. (orig.)
Efficient Tensor Completion for Color Image and Video Recovery: Low-Rank Tensor Train.
Bengua, Johann A; Phien, Ho N; Tuan, Hoang Duong; Do, Minh N
2017-05-01
This paper proposes a novel approach to tensor completion, which recovers missing entries of data represented by tensors. The approach is based on the tensor train (TT) rank, which is able to capture hidden information from tensors thanks to its definition from a well-balanced matricization scheme. Accordingly, new optimization formulations for tensor completion are proposed as well as two new algorithms for their solution. The first one called simple low-rank tensor completion via TT (SiLRTC-TT) is intimately related to minimizing a nuclear norm based on TT rank. The second one is from a multilinear matrix factorization model to approximate the TT rank of a tensor, and is called tensor completion by parallel matrix factorization via TT (TMac-TT). A tensor augmentation scheme of transforming a low-order tensor to higher orders is also proposed to enhance the effectiveness of SiLRTC-TT and TMac-TT. Simulation results for color image and video recovery show the clear advantage of our method over all other methods.
Tensor network method for reversible classical computation
Yang, Zhi-Cheng; Kourtis, Stefanos; Chamon, Claudio; Mucciolo, Eduardo R.; Ruckenstein, Andrei E.
2018-03-01
We develop a tensor network technique that can solve universal reversible classical computational problems, formulated as vertex models on a square lattice [Nat. Commun. 8, 15303 (2017), 10.1038/ncomms15303]. By encoding the truth table of each vertex constraint in a tensor, the total number of solutions compatible with partial inputs and outputs at the boundary can be represented as the full contraction of a tensor network. We introduce an iterative compression-decimation (ICD) scheme that performs this contraction efficiently. The ICD algorithm first propagates local constraints to longer ranges via repeated contraction-decomposition sweeps over all lattice bonds, thus achieving compression on a given length scale. It then decimates the lattice via coarse-graining tensor contractions. Repeated iterations of these two steps gradually collapse the tensor network and ultimately yield the exact tensor trace for large systems, without the need for manual control of tensor dimensions. Our protocol allows us to obtain the exact number of solutions for computations where a naive enumeration would take astronomically long times.
On improving the efficiency of tensor voting.
Moreno, Rodrigo; Garcia, Miguel Angel; Puig, Domenec; Pizarro, Luis; Burgeth, Bernhard; Weickert, Joachim
2011-11-01
This paper proposes two alternative formulations to reduce the high computational complexity of tensor voting, a robust perceptual grouping technique used to extract salient information from noisy data. The first scheme consists of numerical approximations of the votes, which have been derived from an in-depth analysis of the plate and ball voting processes. The second scheme simplifies the formulation while keeping the same perceptual meaning of the original tensor voting: The stick tensor voting and the stick component of the plate tensor voting must reinforce surfaceness, the plate components of both the plate and ball tensor voting must boost curveness, whereas junctionness must be strengthened by the ball component of the ball tensor voting. Two new parameters have been proposed for the second formulation in order to control the potentially conflictive influence of the stick component of the plate vote and the ball component of the ball vote. Results show that the proposed formulations can be used in applications where efficiency is an issue since they have a complexity of order O(1). Moreover, the second proposed formulation has been shown to be more appropriate than the original tensor voting for estimating saliencies by appropriately setting the two new parameters.
Conformal field theories and tensor categories. Proceedings
Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics
2014-08-01
First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.
Conformal field theories and tensor categories. Proceedings
Bai, Chengming; Fuchs, Juergen; Huang, Yi-Zhi; Kong, Liang; Runkel, Ingo; Schweigert, Christoph
2014-01-01
First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.
Tensor harmonic analysis on homogenous space
Wrobel, G.
1997-01-01
The Hilbert space of tensor functions on a homogenous space with the compact stability group is considered. The functions are decomposed onto a sum of tensor plane waves (defined in the text), components of which are transformed by irreducible representations of the appropriate transformation group. The orthogonality relation and the completeness relation for tensor plane waves are found. The decomposition constitutes a unitary transformation, which allows to obtain the Parseval equality. The Fourier components can be calculated by means of the Fourier transformation, the form of which is given explicitly. (author)
Abelian gauge theories with tensor gauge fields
Kapuscik, E.
1984-01-01
Gauge fields of arbitrary tensor type are introduced. In curved space-time the gravitational field serves as a bridge joining different gauge fields. The theory of second order tensor gauge field is developed on the basis of close analogy to Maxwell electrodynamics. The notion of tensor current is introduced and an experimental test of its detection is proposed. The main result consists in a coupled set of field equations representing a generalization of Maxwell theory in which the Einstein equivalence principle is not satisfied. (author)
Local Tensor Radiation Conditions For Elastic Waves
Krenk, S.; Kirkegaard, Poul Henning
2001-01-01
A local boundary condition is formulated, representing radiation of elastic waves from an arbitrary point source. The boundary condition takes the form of a tensor relation between the stress at a point on an arbitrarily oriented section and the velocity and displacement vectors at the point....... The tensor relation generalizes the traditional normal incidence impedance condition by accounting for the angle between wave propagation and the surface normal and by including a generalized stiffness term due to spreading of the waves. The effectiveness of the local tensor radiation condition...
Scalable Tensor Factorizations with Missing Data
Acar, Evrim; Dunlavy, Daniel M.; Kolda, Tamara G.
2010-01-01
of missing data, many important data sets will be discarded or improperly analyzed. Therefore, we need a robust and scalable approach for factorizing multi-way arrays (i.e., tensors) in the presence of missing data. We focus on one of the most well-known tensor factorizations, CANDECOMP/PARAFAC (CP...... is shown to successfully factor tensors with noise and up to 70% missing data. Moreover, our approach is significantly faster than the leading alternative and scales to larger problems. To show the real-world usefulness of CP-WOPT, we illustrate its applicability on a novel EEG (electroencephalogram...
Tensor products of higher almost split sequences
Pasquali, Andrea
2015-01-01
We investigate how the higher almost split sequences over a tensor product of algebras are related to those over each factor. Herschend and Iyama gave a precise criterion for when the tensor product of an $n$-representation finite algebra and an $m$-representation finite algebra is $(n+m)$-representation finite. In this case we give a complete description of the higher almost split sequences over the tensor product by expressing every higher almost split sequence as the mapping cone of a suit...
Scalable tensor factorizations for incomplete data
Acar, Evrim; Dunlavy, Daniel M.; KOlda, Tamara G.
2011-01-01
to factorize data sets with missing values with the goal of capturing the underlying latent structure of the data and possibly reconstructing missing values (i.e., tensor completion). We focus on one of the most well-known tensor factorizations that captures multi-linear structure, CANDECOMP/PARAFAC (CP...... experiments, our algorithm is shown to successfully factorize tensors with noise and up to 99% missing data. A unique aspect of our approach is that it scales to sparse large-scale data, e.g., 1000 × 1000 × 1000 with five million known entries (0.5% dense). We further demonstrate the usefulness of CP...
Evans M
2015-06-01
Full Text Available Malkanthi Evans,1 William V Judy,2 Dale Wilson,3 John A Rumberger,4 Najla Guthrie,1 1KGK Synergize Inc., London, ON, Canada; 2SIBR Research Inc., Bradenton, FL, USA; 3London Health Sciences Center, University of Western Ontario, London, ON, Canada; 4Princeton Longevity Center, Princeton, NJ, USA Background: This study investigated the efficacy of Diabetinol® in people with diabetes on medication but not meeting the American Association of Clinical Endocrinologists and American Diabetes Association glycemic, blood pressure, and lipid targets. Subjects and methods: Fifty subjects, aged 18–75 years, with fasting blood glucose ≤15.4 mmol/L, hemoglobin A1c levels ≤12%, and a body mass index between 25 and 40 kg/m2, were enrolled in a 24-week, randomized, double-blind, placebo-controlled, parallel study. Diabetinol® or placebo was administered as 2×525 mg capsules/day. Results: In the Diabetinol® group, 14.3% versus 0% in the placebo group, 33.3% versus 15.4% in placebo, 20.0% versus 12.5% in placebo, and 83.3% versus 60% in placebo achieved the American Association of Clinical Endocrinologists and American Diabetes Association targets for hemoglobin A1c, low-density lipoprotein, total cholesterol, and systolic blood pressure, respectively. There was no difference in the maximum concentration (Cmax of serum glucose or area under the curve (AUC0–240 minutes. The time to Cmax was longer for participants on Diabetinol® than placebo group at week 12 (P=0.01. Fasting blood glucose increased from baseline to week 24 in both groups; however, this increase was 14.3 mg/dL lower in the Diabetinol® group versus placebo. The Diabetinol® group showed an increase of 5.53 mg/dL in fasting insulin at week 12 (P=0.09 and 3.2 mg/dL at week 24 (P=0.41 over and above the placebo group. A decrease of 1.5% in total cholesterol, 5.8% in low-density lipoprotein, and a 1.6% increase in high-density lipoprotein concentrations were seen in the Diabetinol® group
Rittig, Nikolaj; Bach, Ermina; Thomsen, Henrik H; Møller, Andreas B; Hansen, Jakob; Johannsen, Mogens; Jensen, Erik; Serena, Anja; Jørgensen, Jens O; Richelsen, Bjørn; Jessen, Niels; Møller, Niels
2017-06-01
Protein-rich beverages are widely used clinically to preserve muscle protein and improve physical performance. Beverages with high contents of leucine or its keto-metabolite β-hydroxy-β-methylbutyrate (HMB) are especially anabolic in muscle, but it is uncertain whether this also applies to catabolic conditions such as fasting and whether common or separate intracellular signaling cascades are involved. To compare a specific leucine-rich whey protein beverage (LWH) with isocaloric carbohydrate- (CHO), soy protein (SOY), and soy protein +3 g HMB (HMB) during fasting-induced catabolic conditions. Eight healthy lean male subjects underwent four interventions (LWH, CHO, SOY, and HMB) using a randomized crossover design. Each trial included a 36 h fast and consisted of a 3 h basal fasting period and a 4 h 'sipping' period. Forearm net balances of phenylalanine (NB phe , measure of net protein loss) improved for all groups (p HMB compared with SOY (p HMB have superior anabolic effects on muscle protein kinetics after 36 h of fasting, and LWH distinctly activates the mTOR pathway. These novel findings suggest that leucine-rich whey protein and/or HMB are specifically beneficial during fasting-induced catabolic conditions. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
General projective relativity and the vector-tensor gravitational field
Arcidiacono, G.
1986-01-01
In the general projective relativity, the induced 4-dimensional metric is symmetric in three cases, and we obtain the vector-tensor, the scalar-tensor, and the scalar-vector-tensor theories of gravitation. In this work we examine the vector-tensor theory, similar to the Veblen's theory, but with a different physical interpretation
Tucker tensor analysis of Matern functions in spatial statistics
Litvinenko, Alexander
2018-04-20
Low-rank Tucker tensor methods in spatial statistics 1. Motivation: improve statistical models 2. Motivation: disadvantages of matrices 3. Tools: Tucker tensor format 4. Tensor approximation of Matern covariance function via FFT 5. Typical statistical operations in Tucker tensor format 6. Numerical experiments
TensorFlow Agents: Efficient Batched Reinforcement Learning in TensorFlow
Hafner, Danijar; Davidson, James; Vanhoucke, Vincent
2017-01-01
We introduce TensorFlow Agents, an efficient infrastructure paradigm for building parallel reinforcement learning algorithms in TensorFlow. We simulate multiple environments in parallel, and group them to perform the neural network computation on a batch rather than individual observations. This allows the TensorFlow execution engine to parallelize computation, without the need for manual synchronization. Environments are stepped in separate Python processes to progress them in parallel witho...
Reconstruction of convex bodies from surface tensors
Kousholt, Astrid; Kiderlen, Markus
. The output of the reconstruction algorithm is a polytope P, where the surface tensors of P and K are identical up to rank s. We establish a stability result based on a generalization of Wirtinger’s inequality that shows that for large s, two convex bodies are close in shape when they have identical surface...... that are translates of each other. An algorithm for reconstructing an unknown convex body in R 2 from its surface tensors up to a certain rank is presented. Using the reconstruction algorithm, the shape of an unknown convex body can be approximated when only a finite number s of surface tensors are available...... tensors up to rank s. This is used to establish consistency of the developed reconstruction algorithm....
Reconstruction of convex bodies from surface tensors
Kousholt, Astrid; Kiderlen, Markus
2016-01-01
We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. When only measurements subject to noise...... of surface tensors are available for reconstruction, we recommend to use certain values of the surface tensors, namely harmonic intrinsic volumes instead of the surface tensors evaluated at the standard basis. The second algorithm we present is based on harmonic intrinsic volumes and allows for noisy...... measurements. From a generalized version of Wirtinger's inequality, we derive stability results that are utilized to ensure consistency of both reconstruction procedures. Consistency of the reconstruction procedure based on measurements subject to noise is established under certain assumptions on the noise...
Energy-momentum tensor in scalar QED
Joglekar, S.D.; Misra, A.
1988-01-01
We consider the renormalization of the energy-momentum tensor in scalar quantum electrodynamics. We show the need for adding an improvement term to the conventional energy-momentum tensor. We consider two possible forms for the improvement term: (i) one in which the improvement coefficient is a finite function of bare parameters of the theory (so that the energy-momentum tensor can be obtained from an action that is a finite function of bare quantities); (ii) one in which the improvement coefficient is a finite quantity, i.e., a finite function of renormalized parameters. We establish a negative result; viz., neither form leads to a finite energy-momentum tensor to O(e 2 λ/sup n/). .AE
Unsupervised Tensor Mining for Big Data Practitioners.
Papalexakis, Evangelos E; Faloutsos, Christos
2016-09-01
Multiaspect data are ubiquitous in modern Big Data applications. For instance, different aspects of a social network are the different types of communication between people, the time stamp of each interaction, and the location associated to each individual. How can we jointly model all those aspects and leverage the additional information that they introduce to our analysis? Tensors, which are multidimensional extensions of matrices, are a principled and mathematically sound way of modeling such multiaspect data. In this article, our goal is to popularize tensors and tensor decompositions to Big Data practitioners by demonstrating their effectiveness, outlining challenges that pertain to their application in Big Data scenarios, and presenting our recent work that tackles those challenges. We view this work as a step toward a fully automated, unsupervised tensor mining tool that can be easily and broadly adopted by practitioners in academia and industry.
Calculus of tensors and differential forms
Sinha, Rajnikant
2014-01-01
Calculus of tensors and differential forms is an introductory-level textbook. Through this book, students will familiarize themselves with tools they need in order to use for further study on general relativity and research, such as affine tensors, tensor calculus on manifolds, relative tensors, Lie derivatives, wedge products, differential forms, and Stokes' theorem. The treatment is concrete and in detail, so that abstract concepts do not deter even physics and engineering students. This self contained book requires undergraduate-level calculus of several variables and linear algebra as prerequisite. Fubini's theorem in real analysis, to be used in Stokes' theorem, has been proved earlier than Stokes' theorem so that students don't have to search elsewhere.
Potentials for transverse trace-free tensors
Conboye, Rory; Murchadha, Niall Ó
2014-01-01
In constructing and understanding initial conditions in the 3 + 1 formalism for numerical relativity, the transverse and trace-free (TT) part of the extrinsic curvature plays a key role. We know that TT tensors possess two degrees of freedom per space point. However, finding an expression for a TT tensor depending on only two scalar functions is a non-trivial task. Assuming either axial or translational symmetry, expressions depending on two scalar potentials alone are derived here for all TT tensors in flat 3-space. In a more general spatial slice, only one of these potentials is found, the same potential given in (Baker and Puzio 1999 Phys. Rev. D 59 044030) and (Dain 2001 Phys. Rev. D 64 124002), with the remaining equations reduced to a partial differential equation, depending on boundary conditions for a solution. As an exercise, we also derive the potentials which give the Bowen-York curvature tensor in flat space. (paper)
Correlators in tensor models from character calculus
A. Mironov
2017-11-01
Full Text Available We explain how the calculations of [20], which provided the first evidence for non-trivial structures of Gaussian correlators in tensor models, are efficiently performed with the help of the (Hurwitz character calculus. This emphasizes a close similarity between technical methods in matrix and tensor models and supports a hope to understand the emerging structures in very similar terms. We claim that the 2m-fold Gaussian correlators of rank r tensors are given by r-linear combinations of dimensions with the Young diagrams of size m. The coefficients are made from the characters of the symmetric group Sm and their exact form depends on the choice of the correlator and on the symmetries of the model. As the simplest application of this new knowledge, we provide simple expressions for correlators in the Aristotelian tensor model as tri-linear combinations of dimensions.
Loop optimization for tensor network renormalization
Yang, Shuo; Gu, Zheng-Cheng; Wen, Xiao-Gang
We introduce a tensor renormalization group scheme for coarse-graining a two-dimensional tensor network, which can be successfully applied to both classical and quantum systems on and off criticality. The key idea of our scheme is to deform a 2D tensor network into small loops and then optimize tensors on each loop. In this way we remove short-range entanglement at each iteration step, and significantly improve the accuracy and stability of the renormalization flow. We demonstrate our algorithm in the classical Ising model and a frustrated 2D quantum model. NSF Grant No. DMR-1005541 and NSFC 11274192, BMO Financial Group, John Templeton Foundation, Government of Canada through Industry Canada, Province of Ontario through the Ministry of Economic Development & Innovation.
An introduction to linear algebra and tensors
Akivis, M A; Silverman, Richard A
1978-01-01
Eminently readable, completely elementary treatment begins with linear spaces and ends with analytic geometry, covering multilinear forms, tensors, linear transformation, and more. 250 problems, most with hints and answers. 1972 edition.
Algebraic classification of the conformal tensor
Ares de Parga, Gonzalo; Chavoya, O.; Lopez B, J.L.; Ovando Z, Gerardo
1989-01-01
Starting from the Petrov matrix method, we deduce a new algorithm (adaptable to computers), within the Newman-Penrose formalism, to obtain the algebraic type of the Weyl tensor in general relativity. (author)
Effects of tensor forces in nuclei
Tanihata, Isao
2013-01-01
Recent studies of nuclei far from the stability line have revealed drastic changes in nuclear orbitals and reported the appearance of new magic numbers and the disappearance of magic numbers observed at the stability line. One of the important reasons for such changes is considered to be because of the effect of tensor forces on nuclear structure. Although the role of tensor forces in binding very light nuclei such as deuterons and 4 He has been known, direct experimental evidence for the effect on nuclear structure is scarce. In this paper, I review known effects of tensor forces in nuclei and then discuss the recently raised question of s–p wave mixing in a halo nucleus of 11 Li. Following these reviews, the development of a new experiment to see the high-momentum components due to the tensor forces is discussed and some of the new data are presented. (paper)
The energy–momentum tensor(s in classical gauge theories
Daniel N. Blaschke
2016-11-01
Full Text Available We give an introduction to, and review of, the energy–momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space–time. For the canonical energy–momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy–momentum tensor. The relationship with the Einstein–Hilbert tensor following from the coupling to a gravitational field is also discussed.
Geometric decomposition of the conformation tensor in viscoelastic turbulence
Hameduddin, Ismail; Meneveau, Charles; Zaki, Tamer A.; Gayme, Dennice F.
2018-05-01
This work introduces a mathematical approach to analysing the polymer dynamics in turbulent viscoelastic flows that uses a new geometric decomposition of the conformation tensor, along with associated scalar measures of the polymer fluctuations. The approach circumvents an inherent difficulty in traditional Reynolds decompositions of the conformation tensor: the fluctuating tensor fields are not positive-definite and so do not retain the physical meaning of the tensor. The geometric decomposition of the conformation tensor yields both mean and fluctuating tensor fields that are positive-definite. The fluctuating tensor in the present decomposition has a clear physical interpretation as a polymer deformation relative to the mean configuration. Scalar measures of this fluctuating conformation tensor are developed based on the non-Euclidean geometry of the set of positive-definite tensors. Drag-reduced viscoelastic turbulent channel flow is then used an example case study. The conformation tensor field, obtained using direct numerical simulations, is analysed using the proposed framework.
Estimation of Uncertainties of Full Moment Tensors
2017-10-06
For our moment tensor inversions, we use the ‘cut-and-paste’ ( CAP ) code of Zhu and Helmberger (1996) and Zhu and Ben-Zion (2013), with some...modifications. For the misfit function we use an L1 norm Silwal and Tape (2016), and we incorporate the number of misfitting polarities into the waveform... norm of the eigenvalue triple provides the magnitude of the moment tensor, leaving two free parameters to define the source type. In the same year
Superconformal tensor calculus in five dimensions
Fujita, Tomoyuki; Ohashi, Keisuke
2001-01-01
We present a full superconformal tensor calculus in five spacetime dimensions in which the Weyl multiplet has 32 Bose plus 32 Fermi degrees of freedom. It is derived using dimensional reduction from the 6D superconformal tensor calculus. We present two types of 32+32 Weyl multiplets, a vector multiplet, linear multiplet, hypermultiplet and nonlinear multiplet. Their superconformal transformation laws and the embedding and invariant action formulas are given. (author)
Goldsborough, Peter
2016-01-01
Deep learning is a branch of artificial intelligence employing deep neural network architectures that has significantly advanced the state-of-the-art in computer vision, speech recognition, natural language processing and other domains. In November 2015, Google released $\\textit{TensorFlow}$, an open source deep learning software library for defining, training and deploying machine learning models. In this paper, we review TensorFlow and put it in context of modern deep learning concepts and ...
Geometrical foundations of tensor calculus and relativity
Schuller , Frédéric; Lorent , Vincent
2006-01-01
Manifolds, particularly space curves: basic notions 1 The first groundform, the covariant metric tensor 11 The second groundform, Meusnier's theorem 19 Transformation groups in the plane 28 Co- and contravariant components for a special affine transformation in the plane 29 Surface vectors 32 Elements of tensor calculus 36 Generalization of the first groundform to the space 46 The covariant (absolute) derivation 57 Examples from elasticity theory 61 Geodesic lines 63 Main curvatur...
Diffusion tensor MRI: clinical applications
Meli, Francisco; Romero, Carlos; Carpintiero, Silvina; Salvatico, Rosana; Lambre, Hector; Vila, Jose
2005-01-01
Purpose: To evaluate the usefulness of diffusion-tensor imaging (DTI) on different neurological diseases, and to know if this technique shows additional information than conventional Magnetic Resonance Imaging (MRI). Materials and method: Eight patients, with neurological diseases (five patients with brain tumors, one with multiple sclerosis (MS), one with variant Creutzfeldt-Jakob disease (vCJD) and the other with delayed CO intoxication were evaluated. A MR scanner of 1.5 T was used and conventional sequences and DTI with twenty-five directions were done. Quantitative maps were gotten, where the fractional anisotropy (FA) through regions of interest (ROIs) in specific anatomic area were quantified (i.e.: internal and external capsules, frontal and temporal bundles, corpus fibers). Results: In the patients with brain tumors, there was a decrease of FA on intra and peritumoral fibers. Some of them had a disruption in their pattern. In patients with MS and CO intoxication, partial interruption along white matter bundles was demonstrated. However, a 'mismatch' between the findings of FLAIR, Diffusion-weighted images (DWI) and DTI, in the case of CO intoxication, was seen. Conclusions: DTI gave more information compared to conventional sequences about ultrastructural brain tissue in almost all the diseases above mentioned. Therefore, there is a work in progress about DTI acquisition, to evaluate a new technique, called tractography. (author)
Measuring Nematic Susceptibilities from the Elastoresistivity Tensor
Hristov, A. T.; Shapiro, M. C.; Hlobil, Patrick; Maharaj, Akash; Chu, Jiun-Haw; Fisher, Ian
The elastoresistivity tensor mijkl relates changes in resistivity to the strain on a material. As a fourth-rank tensor, it contains considerably more information about the material than the simpler (second-rank) resistivity tensor; in particular, certain elastoresistivity coefficients can be related to thermodynamic susceptibilities and serve as a direct probe of symmetry breaking at a phase transition. The aim of this talk is twofold. First, we enumerate how symmetry both constrains the structure of the elastoresistivity tensor into an easy-to-understand form and connects tensor elements to thermodynamic susceptibilities. In the process, we generalize previous studies of elastoresistivity to include the effects of magnetic field. Second, we describe an approach to measuring quantities in the elastoresistivity tensor with a novel transverse measurement, which is immune to relative strain offsets. These techniques are then applied to BaFe2As2 in a proof of principle measurement. This work is supported by the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC02-76SF00515.
Spierings, Egilius L H; Volkerts, Edmund R; Heitland, Ivo; Thomson, Heather
2014-02-01
The maximum plasma concentration (Cmax ) of oxymorphone extended release (ER) 20 mg and 40 mg is approximately 50% higher in fed than in fasted subjects, with most of the difference in area-under-the-curve (AUC) occurring in the first 4 hours post-dose. Hence, the US FDA recommends in the approved labeling that oxymorphone ER is taken at least 1 hour before or 2 hours after eating. In order to determine the potential impact on cognitive performance of the increased absorption of oxymorphone ER, fed versus fasting, we conducted a randomized, rater-blinded, crossover study in 30 opioid-tolerant subjects, using tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB). The subjects randomly received 40 mg oxymorphone ER after a high-fat meal of approximately 1,010 kCal or after fasting for 8-12 hours, and were tested 1 hour and 3 hours post-dose. The CANTAB tests, Spatial Recognition Memory (SRM) and Spatial Working Memory (SWM), showed no statistically significant differences between the fed and fasting conditions. However, sustained attention, as measured by the Rapid Visual Information Processing (RVP) CANTAB test, showed a statistically significant interaction of fed versus fasting and post-dose time of testing (F[1,28] = 6.88, P = 0.01), suggesting that 40 mg oxymorphone ER after a high-fat meal versus fasting mitigates the learning effect in this particular cognition domain from 1 hour to 3 hours post-dose. Oxymorphone 40 mg ER affected cognitive performance similarly within 3 hours post-dose, whether given on an empty stomach or after a high-fat meal, suggesting that the effect of food on plasma concentration may not be relevant in the medication's impact on cognition. Wiley Periodicals, Inc.
On the concircular curvature tensor of Riemannian manifolds
Rahman, M.S.; Lal, S.
1990-06-01
Definition of the concircular curvature tensor, Z hijk , along with Z-tensor, Z ij , is given and some properties of Z hijk are described. Tensors identical with Z hijk are shown. A necessary and sufficient condition that a Riemannian V n has zero Z-tensor is found. A number of theorems on concircular symmetric space, concircular recurrent space (Z n -space) and Z n -space with zero Z-tensor are deduced. (author). 6 refs
(Ln-bar, g)-spaces. Special tensor fields
Manoff, S.; Dimitrov, B.
1998-01-01
The Kronecker tensor field, the contraction tensor field, as well as the multi-Kronecker and multi-contraction tensor fields are determined and the action of the covariant differential operator, the Lie differential operator, the curvature operator, and the deviation operator on these tensor fields is established. The commutation relations between the operators Sym and Asym and the covariant and Lie differential operators are considered acting on symmetric and antisymmetric tensor fields over (L n bar, g)-spaces
Lammers, Laureen A.; Achterbergh, Roos; van Schaik, Ron H. N.; Romijn, Johannes A.; Mathôt, Ron A. A.
2017-01-01
Short-term fasting can alter drug exposure but it is unknown whether this is an effect of altered oral bioavailability and/or systemic clearance. Therefore, the aim of our study was to assess the effect of short-term fasting on oral bioavailability and systemic clearance of different drugs. In a
Elshafeey, Ahmed H; Elsherbiny, Mohamed A; Fathallah, Mohsen M
2009-03-01
Olanzapine is a psychotropic agent that belongs to the thienobenzodiazepine class. The aim of this study was to assess the bioequivalence of 2 commercial 10-mg tablet formulations of olanzapine by statistical analysis of the pharmacokinetic parameters C(max), AUC from 0 to 72 hours after dosing (AUC(0-72)), and AUC(0-infinity) as required by the Egyptian health authority for the marketing of a generic product. This bioequivalence study was carried out in healthy male volunteers using a single-dose, randomized, 2-way crossover design under fasting conditions. Statistical analysis of the pharmacokinetic parameters C(max), AUC(0-72), and AUC(0-infinity) was conducted to determine bioequivalence (after log-transformation of data using analysis of variance and 90% CIs) and to gain marketing approval in Egypt. The formulations were considered to be bioequivalent if the log-transformed ratios of the 3 pharmacokinetic parameters were within the predetermined bioequivalence range (ie, 80%-125%), as established by the US Food and Drug Administration (FDA). Both the test product (Trademark: Integrol((R)) [Global Napi Pharmaceuticals, Cairo, Egypt]) and the reference product (Trademark: Zyprexa((R)) [Eli Lilly and Company, Basingstoke, Hampshire, United Kingdom]) were administered as 10-mg tablets with 240 mL of water after an overnight fast on 2 treatment days, separated by a 2-week washout period. After dosing, serial blood samples were collected for 72 hours. Plasma samples were analyzed using a sensitive, reproducible, and accurate liquid chromatography-tandem mass spectrometry method capable of quantitating olanzapine in the range of 0.167 to 16.7 ng/mL, with a lower limit of quantitation of 0.167 ng/mL. Adverse events were reported by the volunteers as instructed or observed by the resident physician, and were recorded, tabulated, and evaluated. Twenty-four healthy adult male volunteers participated in this study. Their mean (SD) age was 24.7 (6.2) years (range, 19
Nonlocal elasticity tensors in dislocation and disclination cores
Taupin, V.; Gbemou, K.; Fressengeas, C.; Capolungo, L.
2017-01-01
We introduced nonlocal elastic constitutive laws for crystals containing defects such as dislocations and disclinations. Additionally, the pointwise elastic moduli tensors adequately reflect the elastic response of defect-free regions by relating stresses to strains and couple-stresses to curvatures, elastic cross-moduli tensors relating strains to couple-stresses and curvatures to stresses within convolution integrals are derived from a nonlocal analysis of strains and curvatures in the defects cores. Sufficient conditions are derived for positive-definiteness of the resulting free energy, and stability of elastic solutions is ensured. The elastic stress/couple stress fields associated with prescribed dislocation/disclination density distributions and solving the momentum and moment of momentum balance equations in periodic media are determined by using a Fast Fourier Transform spectral method. Here, the convoluted cross-moduli bring the following results: (i) Nonlocal stresses and couple stresses oppose their local counterparts in the defects core regions, playing the role of restoring forces and possibly ensuring spatio-temporal stability of the simulated defects, (ii) The couple stress fields are strongly affected by nonlocality. Such effects favor the stability of the simulated grain boundaries and allow investigating their elastic interactions with extrinsic defects, (iii) Driving forces inducing grain growth or refinement derive from the self-stress and couple stress fields of grain boundaries in nanocrystalline configurations.
Marin Quintero, Maider J.
2013-01-01
The structure tensor for vector valued images is most often defined as the average of the scalar structure tensors in each band. The problem with this definition is the assumption that all bands provide the same amount of edge information giving them the same weights. As a result non-edge pixels can be reinforced and edges can be weakened…
Lepore, N; Brun, C; Chou, Y Y; Chiang, M C; Dutton, R A; Hayashi, K M; Luders, E; Lopez, O L; Aizenstein, H J; Toga, A W; Becker, J T; Thompson, P M
2008-01-01
This paper investigates the performance of a new multivariate method for tensor-based morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full information in deformation tensor fields. In TBM, multiple brain images are warped to a common neuroanatomical template via 3-D nonlinear registration; the resulting deformation fields are analyzed statistically to identify group differences in anatomy. Rather than study the Jacobian determinant (volume expansion factor) of these deformations, as is common, we retain the full deformation tensors and apply a manifold version of Hotelling's $T(2) test to them, in a Log-Euclidean domain. In 2-D and 3-D magnetic resonance imaging (MRI) data from 26 HIV/AIDS patients and 14 matched healthy subjects, we compared multivariate tensor analysis versus univariate tests of simpler tensor-derived indices: the Jacobian determinant, the trace, geodesic anisotropy, and eigenvalues of the deformation tensor, and the angle of rotation of its eigenvectors. We detected consistent, but more extensive patterns of structural abnormalities, with multivariate tests on the full tensor manifold. Their improved power was established by analyzing cumulative p-value plots using false discovery rate (FDR) methods, appropriately controlling for false positives. This increased detection sensitivity may empower drug trials and large-scale studies of disease that use tensor-based morphometry.
Tensor network state correspondence and holography
Singh, Sukhwinder
2018-01-01
In recent years, tensor network states have emerged as a very useful conceptual and simulation framework to study quantum many-body systems at low energies. In this paper, we describe a particular way in which any given tensor network can be viewed as a representation of two different quantum many-body states. The two quantum many-body states are said to correspond to each other by means of the tensor network. We apply this "tensor network state correspondence"—a correspondence between quantum many-body states mediated by tensor networks as we describe—to the multi-scale entanglement renormalization ansatz (MERA) representation of ground states of one dimensional (1D) quantum many-body systems. Since the MERA is a 2D hyperbolic tensor network (the extra dimension is identified as the length scale of the 1D system), the two quantum many-body states obtained from the MERA, via tensor network state correspondence, are seen to live in the bulk and on the boundary of a discrete hyperbolic geometry. The bulk state so obtained from a MERA exhibits interesting features, some of which caricature known features of the holographic correspondence of String theory. We show how (i) the bulk state admits a description in terms of "holographic screens", (ii) the conformal field theory data associated with a critical ground state can be obtained from the corresponding bulk state, in particular, how pointlike boundary operators are identified with extended bulk operators. (iii) We also present numerical results to illustrate that bulk states, dual to ground states of several critical spin chains, have exponentially decaying correlations, and that the bulk correlation length generally decreases with increase in central charge for these spin chains.
Killing-Yano tensors, rank-2 Killing tensors, and conserved quantities in higher dimensions
Krtous, Pavel [Institute of Theoretical Physics, Charles University, V Holesovickach 2, Prague (Czech Republic); Kubiznak, David [Institute of Theoretical Physics, Charles University, V Holesovickach 2, Prague (Czech Republic); Page, Don N. [Theoretical Physics Institute, University of Alberta, Edmonton T6G 2G7, Alberta (Canada); Frolov, Valeri P. [Theoretical Physics Institute, University of Alberta, Edmonton T6G 2G7, Alberta (Canada)
2007-02-15
From the metric and one Killing-Yano tensor of rank D-2 in any D-dimensional spacetime with such a principal Killing-Yano tensor, we show how to generate k = [(D+1)/2] Killing-Yano tensors, of rank D-2j for all 0 {<=} j {<=} k-1, and k rank-2 Killing tensors, giving k constants of geodesic motion that are in involution. For the example of the Kerr-NUT-AdS spacetime (hep-th/0604125) with its principal Killing-Yano tensor (gr-qc/0610144), these constants and the constants from the k Killing vectors give D independent constants in involution, making the geodesic motion completely integrable (hep-th/0611083). The constants of motion are also related to the constants recently obtained in the separation of the Hamilton-Jacobi and Klein-Gordon equations (hep-th/0611245)
Killing-Yano tensors, rank-2 Killing tensors, and conserved quantities in higher dimensions
Krtous, Pavel; Kubiznak, David; Page, Don N.; Frolov, Valeri P.
2007-01-01
From the metric and one Killing-Yano tensor of rank D-2 in any D-dimensional spacetime with such a principal Killing-Yano tensor, we show how to generate k = [(D+1)/2] Killing-Yano tensors, of rank D-2j for all 0 ≤ j ≤ k-1, and k rank-2 Killing tensors, giving k constants of geodesic motion that are in involution. For the example of the Kerr-NUT-AdS spacetime (hep-th/0604125) with its principal Killing-Yano tensor (gr-qc/0610144), these constants and the constants from the k Killing vectors give D independent constants in involution, making the geodesic motion completely integrable (hep-th/0611083). The constants of motion are also related to the constants recently obtained in the separation of the Hamilton-Jacobi and Klein-Gordon equations (hep-th/0611245)
Gap filling of 3-D microvascular networks by tensor voting.
Risser, L; Plouraboue, F; Descombes, X
2008-05-01
We present a new algorithm which merges discontinuities in 3-D images of tubular structures presenting undesirable gaps. The application of the proposed method is mainly associated to large 3-D images of microvascular networks. In order to recover the real network topology, we need to fill the gaps between the closest discontinuous vessels. The algorithm presented in this paper aims at achieving this goal. This algorithm is based on the skeletonization of the segmented network followed by a tensor voting method. It permits to merge the most common kinds of discontinuities found in microvascular networks. It is robust, easy to use, and relatively fast. The microvascular network images were obtained using synchrotron tomography imaging at the European Synchrotron Radiation Facility. These images exhibit samples of intracortical networks. Representative results are illustrated.
Vlug, Malaika S.; Wind, Jan; Hollmann, Markus W.; Ubbink, Dirk T.; Cense, Huib A.; Engel, Alexander F.; Gerhards, Michael F.; van Wagensveld, Bart A.; van der Zaag, Edwin S.; van Geloven, Anna A. W.; Sprangers, Mirjam A. G.; Cuesta, Miguel A.; Bemelman, Willem A.; Preckel, Benedikt; Bossuyt, Patrick; Gouma, Dirk; van Berge Henegouwen, Mark; Fuhring, Jan; van Lenthe, Ineke Picard; Bakker, Chris; King-Kalimanis, Bellinda; Hofland, Jan; Dejong, Cornelis; van Dam, Ronald; van der Peet, Donald; van Zalingen, Edith; Noordhuis, Astrid; de Jong, Dick; Goei, T. Hauwy; de Stoppelaar, Erica; van den Dongen, Marjon; van Tets, Willem; van den Elsen, Maarten; Swart, Annemiek; deWit, Laurens; Siepel, Muriel; Molly, Glaresa; Juttmann, Jan; Clevers, Wilfred; Bieleman, Andrea; Coenen, Ludo; Bonekamp, Elly; van Abeelen, Jacobus; van Iterson-de Jong, Diana; Krombeen, Margriet
2011-01-01
To investigate which perioperative treatment, ie, laparoscopic or open surgery combined with fast track (FT) or standard care, is the optimal approach for patients undergoing segmental resection for colon cancer. Important developments in elective colorectal surgery are the introduction of
Susceptibility tensor imaging (STI) of the brain.
Li, Wei; Liu, Chunlei; Duong, Timothy Q; van Zijl, Peter C M; Li, Xu
2017-04-01
Susceptibility tensor imaging (STI) is a recently developed MRI technique that allows quantitative determination of orientation-independent magnetic susceptibility parameters from the dependence of gradient echo signal phase on the orientation of biological tissues with respect to the main magnetic field. By modeling the magnetic susceptibility of each voxel as a symmetric rank-2 tensor, individual magnetic susceptibility tensor elements as well as the mean magnetic susceptibility and magnetic susceptibility anisotropy can be determined for brain tissues that would still show orientation dependence after conventional scalar-based quantitative susceptibility mapping to remove such dependence. Similar to diffusion tensor imaging, STI allows mapping of brain white matter fiber orientations and reconstruction of 3D white matter pathways using the principal eigenvectors of the susceptibility tensor. In contrast to diffusion anisotropy, the main determinant factor of the susceptibility anisotropy in brain white matter is myelin. Another unique feature of the susceptibility anisotropy of white matter is its sensitivity to gadolinium-based contrast agents. Mechanistically, MRI-observed susceptibility anisotropy is mainly attributed to the highly ordered lipid molecules in the myelin sheath. STI provides a consistent interpretation of the dependence of phase and susceptibility on orientation at multiple scales. This article reviews the key experimental findings and physical theories that led to the development of STI, its practical implementations, and its applications for brain research. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Susceptibility Tensor Imaging (STI) of the Brain
Li, Wei; Liu, Chunlei; Duong, Timothy Q.; van Zijl, Peter C.M.; Li, Xu
2016-01-01
Susceptibility tensor imaging (STI) is a recently developed MRI technique that allows quantitative determination of orientation-independent magnetic susceptibility parameters from the dependence of gradient echo signal phase on the orientation of biological tissues with respect to the main magnetic field. By modeling the magnetic susceptibility of each voxel as a symmetric rank-2 tensor, individual magnetic susceptibility tensor elements as well as the mean magnetic susceptibility (MMS) and magnetic susceptibility anisotropy (MSA) can be determined for brain tissues that would still show orientation dependence after conventional scalar-based quantitative susceptibility mapping (QSM) to remove such dependence. Similar to diffusion tensor imaging (DTI), STI allows mapping of brain white matter fiber orientations and reconstruction of 3D white matter pathways using the principal eigenvectors of the susceptibility tensor. In contrast to diffusion anisotropy, the main determinant factor of susceptibility anisotropy in brain white matter is myelin. Another unique feature of susceptibility anisotropy of white matter is its sensitivity to gadolinium-based contrast agents. Mechanistically, MRI-observed susceptibility anisotropy is mainly attributed to the highly ordered lipid molecules in myelin sheath. STI provides a consistent interpretation of the dependence of phase and susceptibility on orientation at multiple scales. This article reviews the key experimental findings and physical theories that led to the development of STI, its practical implementations, and its applications for brain research. PMID:27120169
Off-shell N = 2 tensor supermultiplets
Wit, Bernard de; Saueressig, Frank
2006-01-01
A multiplet calculus is presented for an arbitrary number n of N = 2 tensor supermultiplets. For rigid supersymmetry the known couplings are reproduced. In the superconformal case the target spaces parametrized by the scalar fields are cones over (3n-1)-dimensional spaces encoded in homogeneous SU(2) invariant potentials, subject to certain constraints. The coupling to conformal supergravity enables the derivation of a large class of supergravity Lagrangians with vector and tensor multiplets and hypermultiplets. Dualizing the tensor fields into scalars leads to hypermultiplets with hyperkaehler or quaternion-Kaehler target spaces with at least n abelian isometries. It is demonstrated how to use the calculus for the construction of Lagrangians containing higher-derivative couplings of tensor multiplets. For the application of the c-map between vector and tensor supermultiplets to Lagrangians with higher-order derivatives, an off-shell version of this map is proposed. Various other implications of the results are discussed. As an example an elegant derivation of the classification of 4-dimensional quaternion-Kaehler manifolds with two commuting isometries is given
Huf, P A; Carminati, J
2015-01-01
In this paper we: (1) introduce TensorPack, a software package for the algebraic manipulation of tensors in covariant index format in Maple; (2) briefly demonstrate the use of the package with an orthonormal tensor proof of the shearfree conjecture for dust. TensorPack is based on the Riemann and Canon tensor software packages and uses their functions to express tensors in an indexed covariant format. TensorPack uses a string representation as input and provides functions for output in index form. It extends the functionality to basic algebra of tensors, substitution, covariant differentiation, contraction, raising/lowering indices, symmetry functions and other accessory functions. The output can be merged with text in the Maple environment to create a full working document with embedded dynamic functionality. The package offers potential for manipulation of indexed algebraic tensor expressions in a flexible software environment. (paper)
Energy-momentum tensor in the fermion-pairing model
Kawati, S.; Miyata, H.
1980-01-01
The symmetric energy-momentum tensor for the self-interacting fermion theory (psi-barpsi) 2 is expressed in terms of the collective mode within the Hartree approximation. The divergent part of the energy-momentum tensor for the fermion theory induces an effective energy-momentum tensor for the collective mode, and this effective energy-momentum tensor automatically has the Callan-Coleman-Jackiw improved form. The renormalized energy-momentum tensor is structurally equivalent to the Callan-Coleman-Jackiw improved tensor for the Yukawa theory
(Ln-bar, g)-spaces. Ordinary and tensor differentials
Manoff, S.; Dimitrov, B.
1998-01-01
Different types of differentials as special cases of differential operators acting on tensor fields over (L n bar, g)-spaces are considered. The ordinary differential, the covariant differential as a special case of the covariant differential operator, and the Lie differential as a special case of the Lie differential operator are investigated. The tensor differential and its special types (Covariant tensor differential, and Lie tensor differential) are determined and their properties are discussed. Covariant symmetric and antisymmetric (external) tensor differentials, Lie symmetric, and Lie antisymmetric (external) tensor differentials are determined and considered over (L n bar, g)-spaces
Federated Tensor Factorization for Computational Phenotyping
Kim, Yejin; Sun, Jimeng; Yu, Hwanjo; Jiang, Xiaoqian
2017-01-01
Tensor factorization models offer an effective approach to convert massive electronic health records into meaningful clinical concepts (phenotypes) for data analysis. These models need a large amount of diverse samples to avoid population bias. An open challenge is how to derive phenotypes jointly across multiple hospitals, in which direct patient-level data sharing is not possible (e.g., due to institutional policies). In this paper, we developed a novel solution to enable federated tensor factorization for computational phenotyping without sharing patient-level data. We developed secure data harmonization and federated computation procedures based on alternating direction method of multipliers (ADMM). Using this method, the multiple hospitals iteratively update tensors and transfer secure summarized information to a central server, and the server aggregates the information to generate phenotypes. We demonstrated with real medical datasets that our method resembles the centralized training model (based on combined datasets) in terms of accuracy and phenotypes discovery while respecting privacy. PMID:29071165
Tensor calculus for engineers and physicists
de Souza Sánchez Filho, Emil
2016-01-01
This textbook provides a rigorous approach to tensor manifolds in several aspects relevant for Engineers and Physicists working in industry or academia. With a thorough, comprehensive, and unified presentation, this book offers insights into several topics of tensor analysis, which covers all aspects of N dimensional spaces. The main purpose of this book is to give a self-contained yet simple, correct and comprehensive mathematical explanation of tensor calculus for undergraduate and graduate students and for professionals. In addition to many worked problems, this book features a selection of examples, solved step by step. Although no emphasis is placed on special and particular problems of Engineering or Physics, the text covers the fundamentals of these fields of science. The book makes a brief introduction into the basic concept of the tensorial formalism so as to allow the reader to make a quick and easy review of the essential topics that enable having the grounds for the subsequent themes, without need...
Exploring extra dimensions through inflationary tensor modes
Im, Sang Hui; Nilles, Hans Peter; Trautner, Andreas
2018-03-01
Predictions of inflationary schemes can be influenced by the presence of extra dimensions. This could be of particular relevance for the spectrum of gravitational waves in models where the extra dimensions provide a brane-world solution to the hierarchy problem. Apart from models of large as well as exponentially warped extra dimensions, we analyze the size of tensor modes in the Linear Dilaton scheme recently revived in the discussion of the "clockwork mechanism". The results are model dependent, significantly enhanced tensor modes on one side and a suppression on the other. In some cases we are led to a scheme of "remote inflation", where the expansion is driven by energies at a hidden brane. In all cases where tensor modes are enhanced, the requirement of perturbativity of gravity leads to a stringent upper limit on the allowed Hubble rate during inflation.
On an uninterpretated tensor in Dirac's theory
Costa de Beauregard, O.
1989-01-01
Franz, in 1935, deduced systematically from the Dirac equation 10 tensorial equations, 5 with a mechanical interpretation, 5 with an electromagnetic interpretation, which are also consequences of Kemmer's formalism for spins 1 and 0; Durand, in 1944, operating similarly with the second order Dirac equation, obtained, 10 equations, 5 of which expressing the divergences of the Gordon type tensors. Of these equations, together with the tensors they imply, some are easily interpreted by reference to the classical theories, some other remain uniterpreted. Recently (1988) we proposed a theory of the coupling between Einstein's gravity field and the 5 Franz mechanical equations, yielding as a bonus the complete interpretation of the 5 Franz mechanical equations. This is an incitation to reexamine the 5 electromagnetic equations. We show here that two of these, together with one of the Durand equations, implying the same tensor, remain uninterpreted. This is proposed as a challenge to the reader's sagacity [fr
The Riemann-Lovelock curvature tensor
Kastor, David
2012-01-01
In order to study the properties of Lovelock gravity theories in low dimensions, we define the kth-order Riemann-Lovelock tensor as a certain quantity having a total 4k-indices, which is kth order in the Riemann curvature tensor and shares its basic algebraic and differential properties. We show that the kth-order Riemann-Lovelock tensor is determined by its traces in dimensions 2k ≤ D < 4k. In D = 2k + 1 this identity implies that all solutions of pure kth-order Lovelock gravity are 'Riemann-Lovelock' flat. It is verified that the static, spherically symmetric solutions of these theories, which are missing solid angle spacetimes, indeed satisfy this flatness property. This generalizes results from Einstein gravity in D = 3, which corresponds to the k = 1 case. We speculate about some possible further consequences of Riemann-Lovelock curvature. (paper)
Diffusion tensor smoothing through weighted Karcher means
Carmichael, Owen; Chen, Jun; Paul, Debashis; Peng, Jie
2014-01-01
Diffusion tensor magnetic resonance imaging (MRI) quantifies the spatial distribution of water Diffusion at each voxel on a regular grid of locations in a biological specimen by Diffusion tensors– 3 × 3 positive definite matrices. Removal of noise from DTI is an important problem due to the high scientific relevance of DTI and relatively low signal to noise ratio it provides. Leading approaches to this problem amount to estimation of weighted Karcher means of Diffusion tensors within spatial neighborhoods, under various metrics imposed on the space of tensors. However, it is unclear how the behavior of these estimators varies with the magnitude of DTI sensor noise (the noise resulting from the thermal e!ects of MRI scanning) as well as the geometric structure of the underlying Diffusion tensor neighborhoods. In this paper, we combine theoretical analysis, empirical analysis of simulated DTI data, and empirical analysis of real DTI scans to compare the noise removal performance of three kernel-based DTI smoothers that are based on Euclidean, log-Euclidean, and affine-invariant metrics. The results suggest, contrary to conventional wisdom, that imposing a simplistic Euclidean metric may in fact provide comparable or superior noise removal, especially in relatively unstructured regions and/or in the presence of moderate to high levels of sensor noise. On the contrary, log-Euclidean and affine-invariant metrics may lead to better noise removal in highly structured anatomical regions, especially when the sensor noise is of low magnitude. These findings emphasize the importance of considering the interplay of sensor noise magnitude and tensor field geometric structure when assessing Diffusion tensor smoothing options. They also point to the necessity for continued development of smoothing methods that perform well across a large range of scenarios. PMID:25419264
Aspects of the Antisymmetric Tensor Field
Lahiri, Amitabha
1991-02-01
With the possible exception of gravitation, fundamental interactions are generally described by theories of point particles interacting via massless gauge fields. Since the advent of string theories the picture of physical interaction has changed to accommodate one in which extended objects interact with each other. The generalization of the gauge theories to extended objects leads to theories of antisymmetric tensor fields. At scales corresponding to present-day laboratory experiments one expects to see only point particles, their interactions modified by the presence of antisymmetric tensor fields in the theory. Therefore, in order to establish the validity of any theory with antisymmetric tensor fields one needs to look for manifestations of these fields at low energies. The principal problem of gauge theories is the failure to provide a suitable explanation for the generation of masses for the fields in the theory. While there is a known mechanism (spontaneous symmetry breaking) for generating masses for both the matter fields and the gauge fields, the lack of experimental evidence in support of an elementary scalar field suggests that one look for alternative ways of generating masses for the fields. The interaction of gauge fields with an antisymmetric tensor field seems to be an attractive way of doing so, especially since all indications point to the possibility that there will be no remnant degrees of freedom. On the other hand the interaction of such a field with black holes suggest an independent way of verifying the existence of such fields. In this dissertation the origins of the antisymmetric tensor field are discussed in terms of string theory. The interaction of black holes with such a field is discussed next. The last chapter discusses the effects of an antisymmetric tensor field on quantum electrodynamics when the fields are minimally coupled.
Tensor hypercontraction. II. Least-squares renormalization
Parrish, Robert M.; Hohenstein, Edward G.; Martínez, Todd J.; Sherrill, C. David
2012-12-01
The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)], 10.1063/1.4732310. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1/r12 operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N^5) effort if exact integrals are decomposed, or O(N^4) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N^4) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.
Diffusion tensor imaging in spinal cord compression
Wang, Wei; Qin, Wen; Hao, Nanxin; Wang, Yibin; Zong, Genlin
2012-01-01
Background Although diffusion tensor imaging has been successfully applied in brain research for decades, several main difficulties have hindered its extended utilization in spinal cord imaging. Purpose To assess the feasibility and clinical value of diffusion tensor imaging and tractography for evaluating chronic spinal cord compression. Material and Methods Single-shot spin-echo echo-planar DT sequences were scanned in 42 spinal cord compression patients and 49 healthy volunteers. The mean values of the apparent diffusion coefficient and fractional anisotropy were measured in region of interest at the cervical and lower thoracic spinal cord. The patients were divided into two groups according to the high signal on T2WI (the SCC-HI group and the SCC-nHI group for with or without high signal). A one-way ANOVA was used. Diffusion tensor tractography was used to visualize the morphological features of normal and impaired white matter. Results There were no statistically significant differences in the apparent diffusion coefficient and fractional anisotropy values between the different spinal cord segments of the normal subjects. All of the patients in the SCC-HI group had increased apparent diffusion coefficient values and decreased fractional anisotropy values at the lesion level compared to the normal controls. However, there were no statistically significant diffusion index differences between the SCC-nHI group and the normal controls. In the diffusion tensor imaging maps, the normal spinal cord sections were depicted as fiber tracts that were color-encoded to a cephalocaudal orientation. The diffusion tensor images were compressed to different degrees in all of the patients. Conclusion Diffusion tensor imaging and tractography are promising methods for visualizing spinal cord tracts and can provide additional information in clinical studies in spinal cord compression
Kronecker-Basis-Representation Based Tensor Sparsity and Its Applications to Tensor Recovery.
Xie, Qi; Zhao, Qian; Meng, Deyu; Xu, Zongben
2017-08-02
It is well known that the sparsity/low-rank of a vector/matrix can be rationally measured by nonzero-entries-number ($l_0$ norm)/nonzero- singular-values-number (rank), respectively. However, data from real applications are often generated by the interaction of multiple factors, which obviously cannot be sufficiently represented by a vector/matrix, while a high order tensor is expected to provide more faithful representation to deliver the intrinsic structure underlying such data ensembles. Unlike the vector/matrix case, constructing a rational high order sparsity measure for tensor is a relatively harder task. To this aim, in this paper we propose a measure for tensor sparsity, called Kronecker-basis-representation based tensor sparsity measure (KBR briefly), which encodes both sparsity insights delivered by Tucker and CANDECOMP/PARAFAC (CP) low-rank decompositions for a general tensor. Then we study the KBR regularization minimization (KBRM) problem, and design an effective ADMM algorithm for solving it, where each involved parameter can be updated with closed-form equations. Such an efficient solver makes it possible to extend KBR to various tasks like tensor completion and tensor robust principal component analysis. A series of experiments, including multispectral image (MSI) denoising, MSI completion and background subtraction, substantiate the superiority of the proposed methods beyond state-of-the-arts.
Reconstruction of convex bodies from surface tensors
Kousholt, Astrid; Kiderlen, Markus
We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. The second algorithm uses harmonic intrinsic...... volumes which are certain values of the surface tensors and allows for noisy measurements. From a generalized version of Wirtinger's inequality, we derive stability results that are utilized to ensure consistency of both reconstruction procedures. Consistency of the reconstruction procedure based...
Improving Tensor Based Recommenders with Clustering
Leginus, Martin; Dolog, Peter; Zemaitis, Valdas
2012-01-01
Social tagging systems (STS) model three types of entities (i.e. tag-user-item) and relationships between them are encoded into a 3-order tensor. Latent relationships and patterns can be discovered by applying tensor factorization techniques like Higher Order Singular Value Decomposition (HOSVD),...... of the recommendations and execution time are improved and memory requirements are decreased. The clustering is motivated by the fact that many tags in a tag space are semantically similar thus the tags can be grouped. Finally, promising experimental results are presented...
Tensor modes in pure natural inflation
Nomura, Yasunori; Yamazaki, Masahito
2018-05-01
We study tensor modes in pure natural inflation [1], a recently-proposed inflationary model in which an axionic inflaton couples to pure Yang-Mills gauge fields. We find that the tensor-to-scalar ratio r is naturally bounded from below. This bound originates from the finiteness of the number of metastable branches of vacua in pure Yang-Mills theories. Details of the model can be probed by future cosmic microwave background experiments and improved lattice gauge theory calculations of the θ-angle dependence of the vacuum energy.
Khoromskaia, Venera; Khoromskij, Boris N.
2014-12-01
Our recent method for low-rank tensor representation of sums of the arbitrarily positioned electrostatic potentials discretized on a 3D Cartesian grid reduces the 3D tensor summation to operations involving only 1D vectors however retaining the linear complexity scaling in the number of potentials. Here, we introduce and study a novel tensor approach for fast and accurate assembled summation of a large number of lattice-allocated potentials represented on 3D N × N × N grid with the computational requirements only weakly dependent on the number of summed potentials. It is based on the assembled low-rank canonical tensor representations of the collected potentials using pointwise sums of shifted canonical vectors representing the single generating function, say the Newton kernel. For a sum of electrostatic potentials over L × L × L lattice embedded in a box the required storage scales linearly in the 1D grid-size, O(N) , while the numerical cost is estimated by O(NL) . For periodic boundary conditions, the storage demand remains proportional to the 1D grid-size of a unit cell, n = N / L, while the numerical cost reduces to O(N) , that outperforms the FFT-based Ewald-type summation algorithms of complexity O(N3 log N) . The complexity in the grid parameter N can be reduced even to the logarithmic scale O(log N) by using data-sparse representation of canonical N-vectors via the quantics tensor approximation. For justification, we prove an upper bound on the quantics ranks for the canonical vectors in the overall lattice sum. The presented approach is beneficial in applications which require further functional calculus with the lattice potential, say, scalar product with a function, integration or differentiation, which can be performed easily in tensor arithmetics on large 3D grids with 1D cost. Numerical tests illustrate the performance of the tensor summation method and confirm the estimated bounds on the tensor ranks.
Tensor completion for PDEs with uncertain coefficients and Bayesian Update
Litvinenko, Alexander
2017-03-05
In this work, we tried to show connections between Bayesian update and tensor completion techniques. Usually, only a small/sparse vector/tensor of measurements is available. The typical measurement is a function of the solution. The solution of a stochastic PDE is a tensor, the measurement as well. The idea is to use completion techniques to compute all "missing" values of the measurement tensor and only then apply the Bayesian technique.
Tensor completion for PDEs with uncertain coefficients and Bayesian Update
Litvinenko, Alexander
2017-01-01
In this work, we tried to show connections between Bayesian update and tensor completion techniques. Usually, only a small/sparse vector/tensor of measurements is available. The typical measurement is a function of the solution. The solution of a stochastic PDE is a tensor, the measurement as well. The idea is to use completion techniques to compute all "missing" values of the measurement tensor and only then apply the Bayesian technique.
Concatenated image completion via tensor augmentation and completion
Bengua, Johann A.; Tuan, Hoang D.; Phien, Ho N.; Do, Minh N.
2016-01-01
This paper proposes a novel framework called concatenated image completion via tensor augmentation and completion (ICTAC), which recovers missing entries of color images with high accuracy. Typical images are second- or third-order tensors (2D/3D) depending if they are grayscale or color, hence tensor completion algorithms are ideal for their recovery. The proposed framework performs image completion by concatenating copies of a single image that has missing entries into a third-order tensor,...
Spencer C. Greene, MD, FACEP, FACMT
2016-01-01
Conclusions: Data from this study of a single dose of 11 g oral NAC demonstrated that effervescent NAC tablets and oral solution NAC met the regulatory criteria for bioequivalence in fasting healthy adult subjects. Effervescent NAC tablets appear to be a more palatable alternative for treatment of acetaminophen overdose. ClinicalTrials.gov identifier: NCT02723669.
Groot, S. de; Vreeswijk, M.P.; Welters, M.J.; Gravesteijn, G.; Boei, J.J.; Jochems, A.; Houtsma, D.; Putter, H.; Hoeven, J.J.M. van der; Nortier, J.W.; Pijl, H.; Kroep, J.R.
2015-01-01
BACKGROUND: Preclinical evidence shows that short-term fasting (STF) protects healthy cells against side effects of chemotherapy and makes cancer cells more vulnerable to it. This pilot study examines the feasibility of STF and its effects on tolerance of chemotherapy in a homogeneous patient group
Norm of the Riemannian Curvature Tensor
We consider the Riemannian functional R p ( g ) = ∫ M | R ( g ) | p d v g defined on the space of Riemannian metrics with unit volume on a closed smooth manifold where R ( g ) and d v g denote the corresponding Riemannian curvature tensor and volume form and p ∈ ( 0 , ∞ ) . First we prove that the Riemannian metrics ...
Abelian tensor models on the lattice
Chaudhuri, Soumyadeep; Giraldo-Rivera, Victor I.; Joseph, Anosh; Loganayagam, R.; Yoon, Junggi
2018-04-01
We consider a chain of Abelian Klebanov-Tarnopolsky fermionic tensor models coupled through quartic nearest-neighbor interactions. We characterize the gauge-singlet spectrum for small chains (L =2 ,3 ,4 ,5 ) and observe that the spectral statistics exhibits strong evidence in favor of quasi-many-body localization.
Fermionic topological quantum states as tensor networks
Wille, C.; Buerschaper, O.; Eisert, J.
2017-06-01
Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.
Higher-order tensors in diffusion imaging
Schultz, T.; Fuster, A.; Ghosh, A.; Deriche, R.; Florack, L.M.J.; Lim, L.H.; Westin, C.-F.; Vilanova, A.; Burgeth, B.
2014-01-01
Diffusion imaging is a noninvasive tool for probing the microstructure of fibrous nerve and muscle tissue. Higher-order tensors provide a powerful mathematical language to model and analyze the large and complex data that is generated by its modern variants such as High Angular Resolution Diffusion
Visualization and processing of tensor fields
Weickert, Joachim
2007-01-01
Presents information on the visualization and processing of tensor fields. This book serves as an overview for the inquiring scientist, as a basic foundation for developers and practitioners, and as a textbook for specialized classes and seminars for graduate and doctoral students.
Dark energy in scalar-tensor theories
Moeller, J.
2007-12-15
We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of {sigma}-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)
Introduction to vector and tensor analysis
Wrede, Robert C
1972-01-01
A broad introductory treatment, this volume examines general Cartesian coordinates, the cross product, Einstein's special theory of relativity, bases in general coordinate systems, maxima and minima of functions of two variables, line integrals, integral theorems, fundamental notions in n-space, Riemannian geometry, algebraic properties of the curvature tensor, and more. 1963 edition.
Curvature tensor copies in affine geometry
Srivastava, P.P.
1981-01-01
The sets of space-time and spin-connections which give rise to the same curvature tensor are constructed. The corresponding geometries are compared. Results are illustrated by an explicit calculation and comment on the copies in Einstein-Cartan and Weyl-Cartan geometries. (Author) [pt
Positivity of linear maps under tensor powers
Müller-Hermes, Alexander, E-mail: muellerh@ma.tum.de; Wolf, Michael M., E-mail: m.wolf@tum.de [Zentrum Mathematik, Technische Universität München, 85748 Garching (Germany); Reeb, David, E-mail: reeb.qit@gmail.com [Zentrum Mathematik, Technische Universität München, 85748 Garching (Germany); Institute for Theoretical Physics, Leibniz Universität Hannover, 30167 Hannover (Germany)
2016-01-15
We investigate linear maps between matrix algebras that remain positive under tensor powers, i.e., under tensoring with n copies of themselves. Completely positive and completely co-positive maps are trivial examples of this kind. We show that for every n ∈ ℕ, there exist non-trivial maps with this property and that for two-dimensional Hilbert spaces there is no non-trivial map for which this holds for all n. For higher dimensions, we reduce the existence question of such non-trivial “tensor-stable positive maps” to a one-parameter family of maps and show that an affirmative answer would imply the existence of non-positive partial transpose bound entanglement. As an application, we show that any tensor-stable positive map that is not completely positive yields an upper bound on the quantum channel capacity, which for the transposition map gives the well-known cb-norm bound. We, furthermore, show that the latter is an upper bound even for the local operations and classical communications-assisted quantum capacity, and that moreover it is a strong converse rate for this task.
An introduction to diffusion tensor image analysis.
O'Donnell, Lauren J; Westin, Carl-Fredrik
2011-04-01
Diffusion tensor magnetic resonance imaging (DTI) is a relatively new technology that is popular for imaging the white matter of the brain. This article provides a basic and broad overview of DTI to enable the reader to develop an intuitive understanding of these types of data, and an awareness of their strengths and weaknesses. Copyright © 2011 Elsevier Inc. All rights reserved.
Primordial tensor modes from quantum corrected inflation
Joergensen, Jakob; Sannino, Francesco; Svendsen, Ole
2014-01-01
. Finally we confront these theories with the Planck and BICEP2 data. We demonstrate that the discovery of primordial tensor modes by BICEP2 require the presence of sizable quantum departures from the $\\phi^4$-Inflaton model for the non-minimally coupled scenario which we parametrize and quantify. We...
From stochastic completion fields to tensor voting
Almsick, van M.A.; Duits, R.; Franken, E.M.; Haar Romenij, ter B.M.; Olsen, O.F.; Florack, L.M.J.; Kuijper, A.
2005-01-01
Several image processing algorithms imitate the lateral interaction of neurons in the visual striate cortex V1 to account for the correlations along contours and lines. Here we focus on two methodologies: tensor voting by Guy and Medioni, and stochastic completion fields by Mumford, Williams and
Positivity of linear maps under tensor powers
Müller-Hermes, Alexander; Wolf, Michael M.; Reeb, David
2016-01-01
We investigate linear maps between matrix algebras that remain positive under tensor powers, i.e., under tensoring with n copies of themselves. Completely positive and completely co-positive maps are trivial examples of this kind. We show that for every n ∈ ℕ, there exist non-trivial maps with this property and that for two-dimensional Hilbert spaces there is no non-trivial map for which this holds for all n. For higher dimensions, we reduce the existence question of such non-trivial “tensor-stable positive maps” to a one-parameter family of maps and show that an affirmative answer would imply the existence of non-positive partial transpose bound entanglement. As an application, we show that any tensor-stable positive map that is not completely positive yields an upper bound on the quantum channel capacity, which for the transposition map gives the well-known cb-norm bound. We, furthermore, show that the latter is an upper bound even for the local operations and classical communications-assisted quantum capacity, and that moreover it is a strong converse rate for this task
Dark energy in scalar-tensor theories
Moeller, J.
2007-12-01
We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of σ-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)
Tensors in image processing and computer vision
De Luis García, Rodrigo; Tao, Dacheng; Li, Xuelong
2009-01-01
Tensor signal processing is an emerging field with important applications to computer vision and image processing. This book presents the developments in this branch of signal processing, offering research and discussions by experts in the area. It is suitable for advanced students working in the area of computer vision and image processing.
Tensor operators in R-matrix approach
Bytsko, A.G.; Rossijskaya Akademiya Nauk, St. Petersburg
1995-12-01
The definitions and some properties (e.g. the Wigner-Eckart theorem, the fusion procedure) of covariant and contravariant q-tensor operators for quasitriangular quantum Lie algebras are formulated in the R-matrix language. The case of U q (sl(n)) (in particular, for n=2) is discussed in more detail. (orig.)
Tensors, differential forms, and variational principles
Lovelock, David
1989-01-01
Incisive, self-contained account of tensor analysis and the calculus of exterior differential forms, interaction between the concept of invariance and the calculus of variations. Emphasis is on analytical techniques, with large number of problems, from routine manipulative exercises to technically difficult assignments.
Tensor algebra and tensor analysis for engineers with applications to continuum mechanics
Itskov, Mikhail
2015-01-01
This is the fourth and revised edition of a well-received book that aims at bridging the gap between the engineering course of tensor algebra on the one side and the mathematical course of classical linear algebra on the other side. In accordance with the contemporary way of scientific publications, a modern absolute tensor notation is preferred throughout. The book provides a comprehensible exposition of the fundamental mathematical concepts of tensor calculus and enriches the presented material with many illustrative examples. In addition, the book also includes advanced chapters dealing with recent developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics. Hence, this monograph addresses graduate students as well as scientists working in this field. In each chapter numerous exercises are included, allowing for self-study and intense practice. Solutions to the exercises are also provided.
Baust, Maximilian; Weinmann, Andreas; Wieczorek, Matthias; Lasser, Tobias; Storath, Martin; Navab, Nassir
2016-08-01
In this paper, we consider combined TV denoising and diffusion tensor fitting in DTI using the affine-invariant Riemannian metric on the space of diffusion tensors. Instead of first fitting the diffusion tensors, and then denoising them, we define a suitable TV type energy functional which incorporates the measured DWIs (using an inverse problem setup) and which measures the nearness of neighboring tensors in the manifold. To approach this functional, we propose generalized forward- backward splitting algorithms which combine an explicit and several implicit steps performed on a decomposition of the functional. We validate the performance of the derived algorithms on synthetic and real DTI data. In particular, we work on real 3D data. To our knowledge, the present paper describes the first approach to TV regularization in a combined manifold and inverse problem setup.
The nonabelian tensor square of a bieberbach group with ...
The main objective of this paper is to compute the nonabelian tensor square of one Bieberbach group with elementary abelian 2-group point group of dimension three by using the computational method of the nonabelian tensor square for polycyclic groups. The finding of the computation showed that the nonabelian tensor ...
[An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].
Xu, Yonghong; Gao, Shangce; Hao, Xiaofei
2016-04-01
Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.
Tensor based structure estimation in multi-channel images
Schou, Jesper; Dierking, Wolfgang; Skriver, Henning
2000-01-01
. In the second part tensors are used for representing the structure information. This approach has the advantage, that tensors can be averaged either spatially or by applying several images, and the resulting tensor provides information of the average strength as well as orientation of the structure...
Relativistic particles with spin and antisymmetric tensor fields
Sandoval Junior, L.
1990-09-01
A study is made on antisymmetric tensor fields particularly on second order tensor field as far as his equivalence to other fields and quantization through the path integral are concerned. Also, a particle model is studied which has been recently proposed and reveals to be equivalent to antisymmetric tensor fields of any order. (L.C.J.A.)
Efficient MATLAB computations with sparse and factored tensors.
Bader, Brett William; Kolda, Tamara Gibson (Sandia National Lab, Livermore, CA)
2006-12-01
In this paper, the term tensor refers simply to a multidimensional or N-way array, and we consider how specially structured tensors allow for efficient storage and computation. First, we study sparse tensors, which have the property that the vast majority of the elements are zero. We propose storing sparse tensors using coordinate format and describe the computational efficiency of this scheme for various mathematical operations, including those typical to tensor decomposition algorithms. Second, we study factored tensors, which have the property that they can be assembled from more basic components. We consider two specific types: a Tucker tensor can be expressed as the product of a core tensor (which itself may be dense, sparse, or factored) and a matrix along each mode, and a Kruskal tensor can be expressed as the sum of rank-1 tensors. We are interested in the case where the storage of the components is less than the storage of the full tensor, and we demonstrate that many elementary operations can be computed using only the components. All of the efficiencies described in this paper are implemented in the Tensor Toolbox for MATLAB.
Sampling-free Bayesian inversion with adaptive hierarchical tensor representations
Eigel, Martin; Marschall, Manuel; Schneider, Reinhold
2018-03-01
A sampling-free approach to Bayesian inversion with an explicit polynomial representation of the parameter densities is developed, based on an affine-parametric representation of a linear forward model. This becomes feasible due to the complete treatment in function spaces, which requires an efficient model reduction technique for numerical computations. The advocated perspective yields the crucial benefit that error bounds can be derived for all occuring approximations, leading to provable convergence subject to the discretization parameters. Moreover, it enables a fully adaptive a posteriori control with automatic problem-dependent adjustments of the employed discretizations. The method is discussed in the context of modern hierarchical tensor representations, which are used for the evaluation of a random PDE (the forward model) and the subsequent high-dimensional quadrature of the log-likelihood, alleviating the ‘curse of dimensionality’. Numerical experiments demonstrate the performance and confirm the theoretical results.
Lepore, Natasha; Brun, Caroline; Chou, Yi-Yu; Chiang, Ming-Chang; Dutton, Rebecca A.; Hayashi, Kiralee M.; Luders, Eileen; Lopez, Oscar L.; Aizenstein, Howard J.; Toga, Arthur W.; Becker, James T.; Thompson, Paul M.
2008-01-01
This paper investigates the performance of a new multivariate method for tensor-based morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full information in deformation tensor fields. In TBM, multiple brain images are warped to a common neuroanatomical template via 3-D nonlinear registration; the resulting deformation fields are analyzed statistically to identify group differences in anatomy. Rather than study the Jacobian determinant (volume expansion factor...
Tensor Norms and the Classical Communication Complexity of Nonlocal Quantum Measurement
Shi, Yaoyun; Zhu, Yufan
2005-01-01
We initiate the study of quantifying nonlocalness of a bipartite measurement by the minimum amount of classical communication required to simulate the measurement. We derive general upper bounds, which are expressed in terms of certain tensor norms of the measurement operator. As applications, we show that (a) If the amount of communication is constant, quantum and classical communication protocols with unlimited amount of shared entanglement or shared randomness compute the same set of funct...
Massless and massive quanta resulting from a mediumlike metric tensor
Soln, J.
1985-01-01
A simple model of the ''primordial'' scalar field theory is presented in which the metric tensor is a generalization of the metric tensor from electrodynamics in a medium. The radiation signal corresponding to the scalar field propagates with a velocity that is generally less than c. This signal can be associated simultaneously with imaginary and real effective (momentum-dependent) masses. The requirement that the imaginary effective mass vanishes, which we take to be the prerequisite for the vacuumlike signal propagation, leads to the ''spontaneous'' splitting of the metric tensor into two distinct metric tensors: one metric tensor gives rise to masslesslike radiation and the other to a massive particle. (author)
Simultaneous analysis and quality assurance for diffusion tensor imaging.
Carolyn B Lauzon
Full Text Available Diffusion tensor imaging (DTI enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI acquisitions, each differently sensitized to water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware changes/failures. Furthermore, the quantity of data acquired per voxel, the non-linear estimation process, and numerous potential use cases complicate traditional visual data inspection approaches. Currently, quality inspection of DTI data has relied on visual inspection and individual processing in DTI analysis software programs (e.g. DTIPrep, DTI-studio. However, recent advances in applied statistical methods have yielded several different metrics to assess noise level, artifact propensity, quality of tensor fit, variance of estimated measures, and bias in estimated measures. To date, these metrics have been largely studied in isolation. Herein, we select complementary metrics for integration into an automatic DTI analysis and quality assurance pipeline. The pipeline completes in 24 hours, stores statistical outputs, and produces a graphical summary quality analysis (QA report. We assess the utility of this streamlined approach for empirical quality assessment on 608 DTI datasets from pediatric neuroimaging studies. The efficiency and accuracy of quality analysis using the proposed pipeline is compared with quality analysis based on visual inspection. The unified pipeline is found to save a statistically significant amount of time (over 70% while improving the consistency of QA between a DTI expert and a pool of research associates. Projection of QA
4D cone beam CT via spatiotemporal tensor framelet
Gao, Hao; Li, Ruijiang; Xing, Lei; Lin, Yuting
2012-01-01
Purpose: On-board 4D cone beam CT (4DCBCT) offers respiratory phase-resolved volumetric imaging, and improves the accuracy of target localization in image guided radiation therapy. However, the clinical utility of this technique has been greatly impeded by its degraded image quality, prolonged imaging time, and increased imaging dose. The purpose of this letter is to develop a novel iterative 4DCBCT reconstruction method for improved image quality, increased imaging speed, and reduced imaging dose. Methods: The essence of this work is to introduce the spatiotemporal tensor framelet (STF), a high-dimensional tensor generalization of the 1D framelet for 4DCBCT, to effectively take into account of highly correlated and redundant features of the patient anatomy during respiration, in a multilevel fashion with multibasis sparsifying transform. The STF-based algorithm is implemented on a GPU platform for improved computational efficiency. To evaluate the method, 4DCBCT full-fan scans were acquired within 30 s, with a gantry rotation of 200°; STF is also compared with a state-of-art reconstruction method via spatiotemporal total variation regularization. Results: Both the simulation and experimental results demonstrate that STF-based reconstruction achieved superior image quality. The reconstruction of 20 respiratory phases took less than 10 min on an NVIDIA Tesla C2070 GPU card. The STF codes are available at https://sites.google.com/site/spatiotemporaltensorframelet . Conclusions: By effectively utilizing the spatiotemporal coherence of the patient anatomy among different respiratory phases in a multilevel fashion with multibasis sparsifying transform, the proposed STF method potentially enables fast and low-dose 4DCBCT with improved image quality.
4D cone beam CT via spatiotemporal tensor framelet
Gao, Hao, E-mail: hao.gao@emory.edu [Departments of Mathematics and Computer Science, and Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322 (United States); Li, Ruijiang; Xing, Lei [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Lin, Yuting [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)
2012-11-15
Purpose: On-board 4D cone beam CT (4DCBCT) offers respiratory phase-resolved volumetric imaging, and improves the accuracy of target localization in image guided radiation therapy. However, the clinical utility of this technique has been greatly impeded by its degraded image quality, prolonged imaging time, and increased imaging dose. The purpose of this letter is to develop a novel iterative 4DCBCT reconstruction method for improved image quality, increased imaging speed, and reduced imaging dose. Methods: The essence of this work is to introduce the spatiotemporal tensor framelet (STF), a high-dimensional tensor generalization of the 1D framelet for 4DCBCT, to effectively take into account of highly correlated and redundant features of the patient anatomy during respiration, in a multilevel fashion with multibasis sparsifying transform. The STF-based algorithm is implemented on a GPU platform for improved computational efficiency. To evaluate the method, 4DCBCT full-fan scans were acquired within 30 s, with a gantry rotation of 200°; STF is also compared with a state-of-art reconstruction method via spatiotemporal total variation regularization. Results: Both the simulation and experimental results demonstrate that STF-based reconstruction achieved superior image quality. The reconstruction of 20 respiratory phases took less than 10 min on an NVIDIA Tesla C2070 GPU card. The STF codes are available at https://sites.google.com/site/spatiotemporaltensorframelet . Conclusions: By effectively utilizing the spatiotemporal coherence of the patient anatomy among different respiratory phases in a multilevel fashion with multibasis sparsifying transform, the proposed STF method potentially enables fast and low-dose 4DCBCT with improved image quality.
Bani Salameh, Ayman; Al-Sheyab, Nihaya; El-Hneiti, Mamdouh; Shaheen, Abeer; Williams, Leonie M; Gallagher, Robyn
2017-06-01
To assess the effectiveness of a 12-week school-based educational preventive programme for type 2 diabetes by change in weight and fasting blood glucose level in Jordanian adolescents. Sixteen percent of Jordanian adults have obesity-related type 2 diabetes and 5.6% of obese adolescents examined, however one-third unexamined. Rates in Arabic countries will double in 20 years, but this can be prevented and reversed by controlling obesity. A single-blinded randomized controlled trial was conducted in 2 unisex high schools in Irbid, Jordan, in 2012. Intervention and control participants, aged 12 to 18 years, were visibly overweight/obese. They were randomly allocated to the intervention (n = 205) or control (n = 196) groups. At-risk students were assessed before and after the 12-week intervention, for change in weight and fasting blood glucose level following preventive instruction and parent-supported changes. Mean age of participants was 15.3 years with equal percentages of both males (49.4%) and females. Post intervention, the intervention group, demonstrated statistically significant reductions: mean difference of 3.3 kg in weight (P blood glucose (P blood glucose in Jordanian at-risk adolescents. © 2017 John Wiley & Sons Australia, Ltd.
Feature Surfaces in Symmetric Tensor Fields Based on Eigenvalue Manifold.
Palacios, Jonathan; Yeh, Harry; Wang, Wenping; Zhang, Yue; Laramee, Robert S; Sharma, Ritesh; Schultz, Thomas; Zhang, Eugene
2016-03-01
Three-dimensional symmetric tensor fields have a wide range of applications in solid and fluid mechanics. Recent advances in the (topological) analysis of 3D symmetric tensor fields focus on degenerate tensors which form curves. In this paper, we introduce a number of feature surfaces, such as neutral surfaces and traceless surfaces, into tensor field analysis, based on the notion of eigenvalue manifold. Neutral surfaces are the boundary between linear tensors and planar tensors, and the traceless surfaces are the boundary between tensors of positive traces and those of negative traces. Degenerate curves, neutral surfaces, and traceless surfaces together form a partition of the eigenvalue manifold, which provides a more complete tensor field analysis than degenerate curves alone. We also extract and visualize the isosurfaces of tensor modes, tensor isotropy, and tensor magnitude, which we have found useful for domain applications in fluid and solid mechanics. Extracting neutral and traceless surfaces using the Marching Tetrahedra method can cause the loss of geometric and topological details, which can lead to false physical interpretation. To robustly extract neutral surfaces and traceless surfaces, we develop a polynomial description of them which enables us to borrow techniques from algebraic surface extraction, a topic well-researched by the computer-aided design (CAD) community as well as the algebraic geometry community. In addition, we adapt the surface extraction technique, called A-patches, to improve the speed of finding degenerate curves. Finally, we apply our analysis to data from solid and fluid mechanics as well as scalar field analysis.
Glyph-Based Comparative Visualization for Diffusion Tensor Fields.
Zhang, Changgong; Schultz, Thomas; Lawonn, Kai; Eisemann, Elmar; Vilanova, Anna
2016-01-01
Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept, simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we design a new glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor scale, anisotropy type, and orientation are related to anatomical information relevant for DTI applications, we focus on visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently and effectively identify the tensor differences. We also apply our new glyphs to investigate the differences between DTI datasets of the human brain in two different contexts using different b-values, and to compare datasets from a healthy and HIV-infected subject.
Tensoral for post-processing users and simulation authors
Dresselhaus, Eliot
1993-01-01
The CTR post-processing effort aims to make turbulence simulations and data more readily and usefully available to the research and industrial communities. The Tensoral language, which provides the foundation for this effort, is introduced here in the form of a user's guide. The Tensoral user's guide is presented in two main sections. Section one acts as a general introduction and guides database users who wish to post-process simulation databases. Section two gives a brief description of how database authors and other advanced users can make simulation codes and/or the databases they generate available to the user community via Tensoral database back ends. The two-part structure of this document conforms to the two-level design structure of the Tensoral language. Tensoral has been designed to be a general computer language for performing tensor calculus and statistics on numerical data. Tensoral's generality allows it to be used for stand-alone native coding of high-level post-processing tasks (as described in section one of this guide). At the same time, Tensoral's specialization to a minute task (namely, to numerical tensor calculus and statistics) allows it to be easily embedded into applications written partly in Tensoral and partly in other computer languages (here, C and Vectoral). Embedded Tensoral, aimed at advanced users for more general coding (e.g. of efficient simulations, for interfacing with pre-existing software, for visualization, etc.), is described in section two of this guide.
Tensor manifold-based extreme learning machine for 2.5-D face recognition
Chong, Lee Ying; Ong, Thian Song; Teoh, Andrew Beng Jin
2018-01-01
We explore the use of the Gabor regional covariance matrix (GRCM), a flexible matrix-based descriptor that embeds the Gabor features in the covariance matrix, as a 2.5-D facial descriptor and an effective means of feature fusion for 2.5-D face recognition problems. Despite its promise, matching is not a trivial problem for GRCM since it is a special instance of a symmetric positive definite (SPD) matrix that resides in non-Euclidean space as a tensor manifold. This implies that GRCM is incompatible with the existing vector-based classifiers and distance matchers. Therefore, we bridge the gap of the GRCM and extreme learning machine (ELM), a vector-based classifier for the 2.5-D face recognition problem. We put forward a tensor manifold-compliant ELM and its two variants by embedding the SPD matrix randomly into reproducing kernel Hilbert space (RKHS) via tensor kernel functions. To preserve the pair-wise distance of the embedded data, we orthogonalize the random-embedded SPD matrix. Hence, classification can be done using a simple ridge regressor, an integrated component of ELM, on the random orthogonal RKHS. Experimental results show that our proposed method is able to improve the recognition performance and further enhance the computational efficiency.
Energy-momentum tensor of the electromagnetic field
Horndeski, G.W.; Wainwright, J.
1977-01-01
In this paper we investigate the energy-momentum tensor of the most general second-order vector-tensor theory of gravitation and electromagnetism which has field equations which are (i) derivable from a variational principle, (ii) consistent with the notion of conservation of charge, and (iii) compatible with Maxwell's equations in a flat space. This energy-momentum tensor turns out to be quadratic in the first partial derivatives of the electromagnetic field tensor and depends upon the curvature tensor. The asymptotic behavior of this energy-momentum tensor is examined for solutions to Maxwell's equations in Minkowski space, and it is demonstrated that this energy-momentum tensor predicts regions of negative energy density in the vicinity of point sources
Quantum mechanics of Yano tensors: Dirac equation in curved spacetime
Cariglia, Marco
2004-01-01
In spacetimes admitting Yano tensors, the classical theory of the spinning particle possesses enhanced worldline supersymmetry. Quantum mechanically generators of extra supersymmetries correspond to operators that in the classical limit commute with the Dirac operator and generate conserved quantities. We show that the result is preserved in the full quantum theory, that is, Yano symmetries are not anomalous. This was known for Yano tensors of rank 2, but our main result is to show that it extends to Yano tensors of arbitrary rank. We also describe the conformal Yano equation and show that is invariant under Hodge duality. There is a natural relationship between Yano tensors and supergravity theories. As the simplest possible example, we show that when the spacetime admits a Killing spinor then this generates Yano and conformal Yano tensors. As an application, we construct Yano tensors on maximally symmetric spaces: they are spanned by tensor products of Killing vectors
Algebraic and computational aspects of real tensor ranks
Sakata, Toshio; Miyazaki, Mitsuhiro
2016-01-01
This book provides comprehensive summaries of theoretical (algebraic) and computational aspects of tensor ranks, maximal ranks, and typical ranks, over the real number field. Although tensor ranks have been often argued in the complex number field, it should be emphasized that this book treats real tensor ranks, which have direct applications in statistics. The book provides several interesting ideas, including determinant polynomials, determinantal ideals, absolutely nonsingular tensors, absolutely full column rank tensors, and their connection to bilinear maps and Hurwitz-Radon numbers. In addition to reviews of methods to determine real tensor ranks in details, global theories such as the Jacobian method are also reviewed in details. The book includes as well an accessible and comprehensive introduction of mathematical backgrounds, with basics of positive polynomials and calculations by using the Groebner basis. Furthermore, this book provides insights into numerical methods of finding tensor ranks through...
Tensor-product preconditioners for higher-order space-time discontinuous Galerkin methods
Diosady, Laslo T.; Murman, Scott M.
2017-02-01
A space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high-order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.
Tensor-Product Preconditioners for Higher-Order Space-Time Discontinuous Galerkin Methods
Diosady, Laslo T.; Murman, Scott M.
2016-01-01
space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equat ions. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.
Shi, Shaojun; Liu, Yani; Wu, Jianhong; Li, Zhongfang; Zhao, Yan; Zhong, Dafang; Zeng, Fandian
2010-10-01
The proprietary formulation of fluoxetine hydrochloride is an antidepressant of the selective serotonin reuptake inhibitor class. Pharmacokinetic studies investigating the bioequivalence of generic and branded formulations are needed to market generic fluoxetine in China. The aim of this study was to compare the bioavailability and tolerability of the proposed generic formulation with the established reference formulation of fluoxetine hydrochloride 20 mg in a fasting, healthy Chinese male population. This 10-week, open-label, randomized-sequence, single-dose, 2-period crossover study was conducted in healthy native Han Chinese male volunteers. Eligible subjects were randomly assigned in a 1:1 ratio to receive a single 20-mg dose of the test or reference formulation, followed by a 35-day washout period and administration of the alternate formulation. Doses were administered after a 12-hour overnight fast. For analysis of pharmacokinetic properties (including C(max), T(max), AUC(0-t), AUC(0-∞), and t(½)), blood samples were obtained over a 672-hour period after dosing. Plasma concentrations of fluoxetine and its active metabolite, norfluoxetine, were analyzed using a validated LC-MS/MS method. The formulations were to be considered bioequivalent if the ln-transformed ratios (test/ reference) of C(max) and AUC were within the predetermined bioequivalence range of 80% to 125%, as established by the US Food and Drug Administration, and if the P values were fasting, healthy Chinese male volunteers. Both formulations appeared to be well tolerated. Copyright © 2010 Excerpta Medica Inc. All rights reserved.
Entanglement entropy from the holographic stress tensor
Bhattacharyya, Arpan; Sinha, Aninda
2013-01-01
We consider entanglement entropy in the context of gauge/gravity duality for conformal field theories in even dimensions. The holographic prescription due to Ryu and Takayanagi (RT) leads to an equation describing how the entangling surface extends into the bulk geometry. We show that setting to zero, the time–time component of the Brown–York stress tensor evaluated on the co-dimension 1 entangling surface, leads to the same equation. By considering a spherical entangling surface as an example, we observe that the Euclidean action methods in AdS/CFT will lead to the RT area functional arising as a counterterm needed to regularize the stress tensor. We present arguments leading to a justification for the minimal area prescription. (paper)
Tensor modes on the string theory landscape
Westphal, Alexander
2012-06-01
We attempt an estimate for the distribution of the tensor mode fraction r over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.
Tensor modes on the string theory landscape
Westphal, Alexander
2012-06-15
We attempt an estimate for the distribution of the tensor mode fraction r over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.
Kibler, M.; Grenet, G.
1979-07-01
The SU 2 unit tensor operators tsub(k,α) are studied. In the case where the spinor point group G* coincides with U 1 , then tsub(k α) reduces up to a constant to the Wigner-Racah-Schwinger tensor operator tsub(kqα), an operator which produces an angular momentum state. One first investigates those general properties of tsub(kα) which are independent of their realization. The tsub(kα) in terms of two pairs of boson creation and annihilation operators are realized. This leads to look at the Schwinger calculus relative to one angular momentum of two coupled angular momenta. As a by-product, a procedure is given for producing recursion relationships between SU 2 Wigner coefficients. Finally, some of the properties of the Wigner and Racah operators for an arbitrary compact group and the SU 2 coupling coefficients are studied
Tensor Networks and Quantum Error Correction
Ferris, Andrew J.; Poulin, David
2014-07-01
We establish several relations between quantum error correction (QEC) and tensor network (TN) methods of quantum many-body physics. We exhibit correspondences between well-known families of QEC codes and TNs, and demonstrate a formal equivalence between decoding a QEC code and contracting a TN. We build on this equivalence to propose a new family of quantum codes and decoding algorithms that generalize and improve upon quantum polar codes and successive cancellation decoding in a natural way.
Old tensor mesons in QCD sum rules
Aliev, T.M.; Shifman, M.A.
1981-01-01
Tensor mesons f, A 2 and A 3 are analyzed within the framework of QCD sum rules. The effects of gluon and quark condensate is accounted for phenomenologically. Accurate estimates of meson masses and coupling constants of the lowest-lying states are obtained. It is shown that the masses are reproduced within theoretical uncertainty of about 80 MeV. The coupling of f meson to the corresponding quark current is determined. The results are in good aqreement with experimental data [ru
Energy-momentum-tensor in quantumelectrodynamics
Schott, T
1974-01-01
This work deals with the operator properties of the energy-momentum-tensor (ET) in the framework of quantum electrodynamics. The principles of construction of the ET are discussed for quantized fields in the Schwinger variation principle. Dealing with the conserved quantities for quantized fields operator problems are coming up in the Coulomb gauge because Dirac- and Maxwellfield do not commute completely. Further on contemporary commutators of the ET components are investigated mutually. Finally non-canonical methods are developed.
Embryo Cell Membranes Reconstruction by Tensor Voting
Michelin , Gaël; Guignard , Léo; Fiuza , Ulla-Maj; Malandain , Grégoire
2014-01-01
International audience; Image-based studies of developing organs or embryos produce a huge quantity of data. To handle such high-throughput experimental protocols, automated computer-assisted methods are highly desirable. This article aims at designing an efficient cell segmentation method from microscopic images. The proposed approach is twofold: first, cell membranes are enhanced or extracted by the means of structure-based filters, and then perceptual grouping (i.e. tensor voting) allows t...
Sasakian manifolds with purely transversal Bach tensor
Ghosh, Amalendu; Sharma, Ramesh
2017-10-01
We show that a (2n + 1)-dimensional Sasakian manifold (M, g) with a purely transversal Bach tensor has constant scalar curvature ≥2 n (2 n +1 ) , equality holding if and only if (M, g) is Einstein. For dimension 3, M is locally isometric to the unit sphere S3. For dimension 5, if in addition (M, g) is complete, then it has positive Ricci curvature and is compact with finite fundamental group π1(M).
Vector-tensor interaction of gravitation
Zhang Yuan-zhong; Guo han-ying
1982-11-01
In the paper, by using the equation of motion a particle, we show that the antigravity exist in the vector-tensor model of gravitation. Thus the motion of a particle deviates from the geodesic equation. In Newtonian approximation and weak gravitational field, acceleration of a particle in a spherically symmetric and astatic gravitation field is zero. The result is obviously not in agreement with gravitational phenomena.
Anisotropic diffusion tensor applied to temporal mammograms
Karemore, Gopal; Brandt, Sami; Sporring, Jon
2010-01-01
changes related to specific effects like Hormonal Replacement Therapy (HRT) and aging. Given effect-grouped patient data, we demonstrated how anisotropic diffusion tensor and its coherence features computed in an anatomically oriented breast coordinate system followed by statistical learning...
Numerical CP Decomposition of Some Difficult Tensors
Tichavský, Petr; Phan, A. H.; Cichocki, A.
2017-01-01
Roč. 317, č. 1 (2017), s. 362-370 ISSN 0377-0427 R&D Projects: GA ČR(CZ) GA14-13713S Institutional support: RVO:67985556 Keywords : Small matrix multiplication * Canonical polyadic tensor decomposition * Levenberg-Marquardt method Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Applied mathematics Impact factor: 1.357, year: 2016 http://library.utia.cas.cz/separaty/2017/SI/tichavsky-0468385. pdf
Experimental status of scalar and tensor mesons
Von Dombrowski, S.
1997-01-01
The recent discoveries of a 0 (1450) and f 0 (1370)/f 0 (1500) in antiproton-proton annihilation at rest shed new light on the interpretation of light scalar mesons. The properties of f 0 (1500) match the expectations of a scalar glueball mixed with nearby qq states. New decay modes of the ξ(2230) are reported in radiative J/Ψ decays, pointing also towards a (tensor) glueball nature of this state. Results from different experiments are discussed and compared. (orig.)
Bayesian approach to magnetotelluric tensor decomposition
Červ, Václav; Pek, Josef; Menvielle, M.
2010-01-01
Roč. 53, č. 2 (2010), s. 21-32 ISSN 1593-5213 R&D Projects: GA AV ČR IAA200120701; GA ČR GA205/04/0746; GA ČR GA205/07/0292 Institutional research plan: CEZ:AV0Z30120515 Keywords : galvanic distortion * telluric distortion * impedance tensor * basic procedure * inversion * noise Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.336, year: 2010
Electrical tensor Green functions for cylindrical waveguides
Prijmenko, S.D.; Papkovich, V.G.; Khizhnyak, N.A.
1988-01-01
Formation of electrical tensor Green functions for cylindrical waveguides is considered. Behaviour of these functions in the source region is studied. Cases of electrical tensor Green functions for vector potential G E (r-vector, r'-vector) and electric field G e (r-vector, r'-vector) are analysed. When forming G E (r-vector, r'-vector), its dependence on lateral coordinates is taken into account by means of two-dimensional fundamental vector Hansen functions, several methods are used to take into account the dependence on transverse coordinate. When forming G e (r-vector, r'-vector) we use the fact that G E (r-vector, r'-vector) and G e (r-vector, r'-vector) are the generalized functions. It is shown that G e (r-vector, r'-vector) behaviour in the source region is defined by a singular term, which properties are described by the delta-function. Two variants of solving the problem of defining singular and regular sides of tensor function G E (r-vector, r'-vector) are presented. 23 refs
Tensor integrand reduction via Laurent expansion
Hirschi, Valentin [SLAC, National Accelerator Laboratory,2575 Sand Hill Road, Menlo Park, CA 94025-7090 (United States); Peraro, Tiziano [Higgs Centre for Theoretical Physics, School of Physics and Astronomy,The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom)
2016-06-09
We introduce a new method for the application of one-loop integrand reduction via the Laurent expansion algorithm, as implemented in the public C++ library Ninja. We show how the coefficients of the Laurent expansion can be computed by suitable contractions of the loop numerator tensor with cut-dependent projectors, making it possible to interface Ninja to any one-loop matrix element generator that can provide the components of this tensor. We implemented this technique in the Ninja library and interfaced it to MADLOOP, which is part of the public MADGRAPH5{sub A}MC@NLO framework. We performed a detailed performance study, comparing against other public reduction tools, namely CUTTOOLS, SAMURAI, IREGI, PJFRY++ and GOLEM95. We find that Ninja outperforms traditional integrand reduction in both speed and numerical stability, the latter being on par with that of the tensor integral reduction tool GOLEM95 which is however more limited and slower than Ninja. We considered many benchmark multi-scale processes of increasing complexity, involving QCD and electro-weak corrections as well as effective non-renormalizable couplings, showing that Ninja’s performance scales well with both the rank and multiplicity of the considered process.
Liu, Chunlei; Murphy, Nicole E.; Li, Wei
2012-01-01
Diffusion MRI has become an invaluable tool for studying white matter microstructure and brain connectivity. The emergence of quantitative susceptibility mapping and susceptibility tensor imaging (STI) has provided another unique tool for assessing the structure of white matter. In the highly ordered white matter structure, diffusion MRI measures hindered water mobility induced by various tissue and cell membranes, while susceptibility sensitizes to the molecular composition and axonal arrangement. Integrating these two methods may produce new insights into the complex physiology of white matter. In this study, we investigated the relationship between diffusion and magnetic susceptibility in the white matter. Experiments were conducted on phantoms and human brains in vivo. Diffusion properties were quantified with the diffusion tensor model and also with the higher order tensor model based on the cumulant expansion. Frequency shift and susceptibility tensor were measured with quantitative susceptibility mapping and susceptibility tensor imaging. These diffusion and susceptibility quantities were compared and correlated in regions of single fiber bundles and regions of multiple fiber orientations. Relationships were established with similarities and differences identified. It is believed that diffusion MRI and susceptibility MRI provide complementary information of the microstructure of white matter. Together, they allow a more complete assessment of healthy and diseased brains. PMID:23507987
Non-Newtonian stress tensor and thermal conductivity tensor in granular plane shear flow
Alam, Meheboob; Saha, Saikat
2014-11-01
The non-Newtonian stress tensor and the heat flux in the plane shear flow of smooth inelastic disks are analysed from the Grad-level moment equations using the anisotropic Gaussian as a reference. Closed-form expressions for shear viscosity, pressure, first normal stress difference (N1) and the dissipation rate are given as functions of (i) the density or the area fraction (ν), (ii) the restitution coefficient (e), (iii) the dimensionless shear rate (R), (iv) the temperature anisotropy [ η, the difference between the principal eigenvalues of the second moment tensor] and (v) the angle (ϕ) between the principal directions of the shear tensor and the second moment tensor. Particle simulation data for a sheared hard-disk system is compared with theoretical results, with good agreement for p, μ and N1 over a large range of density. In contrast, the predictions from a Navier-Stokes order constitutive model are found to deviate significantly from both the simulation and the moment theory even at moderate values of e. We show that the gradient of the deviatoric part of the kinetic stress drives a heat current and the thermal conductivity is characterized by an anisotropic 2nd rank tensor for which explicit expressions are derived.
Tensor interaction in heavy-ion scattering. Pt. 1
Nishioka, H.; Johnson, R.C.
1985-01-01
The Heidelberg shape-effect model for heavy-ion tensor interactions is reformulated and generalized using the Hooton-Johnson formulation. The generalized semiclassical model (the turning-point model) predicts that the components of the tensor analysing power anti Tsub(2q) have certain relations with each other for each type of tensor interaction (Tsub(R), Tsub(P) and Tsub(L) types). The predicted relations between the anti Tsub(2q) are very simple and have a direct connection with the properties of the tensor interaction at the turning point. The model predictions are satisfied in quantum-mechanical calculations for 7 Li and 23 Na elastic scattering from 58 Ni in the Fresnel-diffraction energy region. As a consequence of this model, it becomes possible to single out effects from a Tsub(P)- or Tsub(L)-type tensor interaction in polarized heavy-ion scattering. The presence of a Tsub(P)-type tensor interaction is suggested by measured anti T 20 /anti T 22 ratios for 7 Li + 58 Ni scattering. In the turning-point model the three types of tensor operator are not independent, and this is found to be true also in a quantum-mechanical calculation. The model also predicts relations between the components of higher-rank tensor analysing power in the presence of a higher-rank tensor interaction. The rank-3 tensor case is discussed in detail. (orig.)
Tensor network decompositions in the presence of a global symmetry
Singh, Sukhwinder; Pfeifer, Robert N. C.; Vidal, Guifre
2010-01-01
Tensor network decompositions offer an efficient description of certain many-body states of a lattice system and are the basis of a wealth of numerical simulation algorithms. We discuss how to incorporate a global symmetry, given by a compact, completely reducible group G, in tensor network decompositions and algorithms. This is achieved by considering tensors that are invariant under the action of the group G. Each symmetric tensor decomposes into two types of tensors: degeneracy tensors, containing all the degrees of freedom, and structural tensors, which only depend on the symmetry group. In numerical calculations, the use of symmetric tensors ensures the preservation of the symmetry, allows selection of a specific symmetry sector, and significantly reduces computational costs. On the other hand, the resulting tensor network can be interpreted as a superposition of exponentially many spin networks. Spin networks are used extensively in loop quantum gravity, where they represent states of quantum geometry. Our work highlights their importance in the context of tensor network algorithms as well, thus setting the stage for cross-fertilization between these two areas of research.
Expectation-Maximization Tensor Factorization for Practical Location Privacy Attacks
Murakami Takao
2017-10-01
Full Text Available Location privacy attacks based on a Markov chain model have been widely studied to de-anonymize or de-obfuscate mobility traces. An adversary can perform various kinds of location privacy attacks using a personalized transition matrix, which is trained for each target user. However, the amount of training data available to the adversary can be very small, since many users do not disclose much location information in their daily lives. In addition, many locations can be missing from the training traces, since many users do not disclose their locations continuously but rather sporadically. In this paper, we show that the Markov chain model can be a threat even in this realistic situation. Specifically, we focus on a training phase (i.e. mobility profile building phase and propose Expectation-Maximization Tensor Factorization (EMTF, which alternates between computing a distribution of missing locations (E-step and computing personalized transition matrices via tensor factorization (M-step. Since the time complexity of EMTF is exponential in the number of missing locations, we propose two approximate learning methods, one of which uses the Viterbi algorithm while the other uses the Forward Filtering Backward Sampling (FFBS algorithm. We apply our learning methods to a de-anonymization attack and a localization attack, and evaluate them using three real datasets. The results show that our learning methods significantly outperform a random guess, even when there is only one training trace composed of 10 locations per user, and each location is missing with probability 80% (i.e. even when users hardly disclose two temporally-continuous locations.
Diffusion tensor imaging tensor shape analysis for assessment of regional white matter differences.
Middleton, Dana M; Li, Jonathan Y; Lee, Hui J; Chen, Steven; Dickson, Patricia I; Ellinwood, N Matthew; White, Leonard E; Provenzale, James M
2017-08-01
Purpose The purpose of this study was to investigate a novel tensor shape plot analysis technique of diffusion tensor imaging data as a means to assess microstructural differences in brain tissue. We hypothesized that this technique could distinguish white matter regions with different microstructural compositions. Methods Three normal canines were euthanized at seven weeks old. Their brains were imaged using identical diffusion tensor imaging protocols on a 7T small-animal magnetic resonance imaging system. We examined two white matter regions, the internal capsule and the centrum semiovale, each subdivided into an anterior and posterior region. We placed 100 regions of interest in each of the four brain regions. Eigenvalues for each region of interest triangulated onto tensor shape plots as the weighted average of three shape metrics at the plot's vertices: CS, CL, and CP. Results The distribution of data on the plots for the internal capsule differed markedly from the centrum semiovale data, thus confirming our hypothesis. Furthermore, data for the internal capsule were distributed in a relatively tight cluster, possibly reflecting the compact and parallel nature of its fibers, while data for the centrum semiovale were more widely distributed, consistent with the less compact and often crossing pattern of its fibers. This indicates that the tensor shape plot technique can depict data in similar regions as being alike. Conclusion Tensor shape plots successfully depicted differences in tissue microstructure and reflected the microstructure of individual brain regions. This proof of principle study suggests that if our findings are reproduced in larger samples, including abnormal white matter states, the technique may be useful in assessment of white matter diseases.
Neighborhood fast food availability and fast food consumption.
Oexle, Nathalie; Barnes, Timothy L; Blake, Christine E; Bell, Bethany A; Liese, Angela D
2015-09-01
Recent nutritional and public health research has focused on how the availability of various types of food in a person's immediate area or neighborhood influences his or her food choices and eating habits. It has been theorized that people living in areas with a wealth of unhealthy fast-food options may show higher levels of fast-food consumption, a factor that often coincides with being overweight or obese. However, measuring food availability in a particular area is difficult to achieve consistently: there may be differences in the strict physical locations of food options as compared to how individuals perceive their personal food availability, and various studies may use either one or both of these measures. The aim of this study was to evaluate the association between weekly fast-food consumption and both a person's perceived availability of fast-food and an objective measure of fast-food presence - Geographic Information Systems (GIS) - within that person's neighborhood. A randomly selected population-based sample of eight counties in South Carolina was used to conduct a cross-sectional telephone survey assessing self-report fast-food consumption and perceived availability of fast food. GIS was used to determine the actual number of fast-food outlets within each participant's neighborhood. Using multinomial logistic regression analyses, we found that neither perceived availability nor GIS-based presence of fast-food was significantly associated with weekly fast-food consumption. Our findings indicate that availability might not be the dominant factor influencing fast-food consumption. We recommend using subjective availability measures and considering individual characteristics that could influence both perceived availability of fast food and its impact on fast-food consumption. If replicated, our findings suggest that interventions aimed at reducing fast-food consumption by limiting neighborhood fast-food availability might not be completely effective
An introduction to tensors and group theory for physicists
Jeevanjee, Nadir
2011-01-01
An Introduction to Tensors and Group Theory for Physicists provides both an intuitive and rigorous approach to tensors and groups and their role in theoretical physics and applied mathematics. A particular aim is to demystify tensors and provide a unified framework for understanding them in the context of classical and quantum physics. Connecting the component formalism prevalent in physics calculations with the abstract but more conceptual formulation found in many mathematical texts, the work will be a welcome addition to the literature on tensors and group theory. Part I of the text begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to classical and quantum physics through the use of tensor products. Part II introduces abstract groups along with matrix Lie groups and Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Exercises and examples are provided throughout for go...
Theoretical study of lithium clusters by electronic stress tensor
Ichikawa, Kazuhide; Nozaki, Hiroo; Komazawa, Naoya; Tachibana, Akitomo
2012-01-01
We study the electronic structure of small lithium clusters Li_n (n = 2 ∼ 8) using the electronic stress tensor. We find that the three eigenvalues of the electronic stress tensor of the Li clusters are negative and degenerate, just like the stress tensor of liquid. This leads us to propose that we may characterize a metallic bond in terms of the electronic stress tensor. Our proposal is that in addition to the negativity of the three eigenvalues of the electronic stress tensor, their degeneracy characterizes some aspects of the metallic nature of chemical bonding. To quantify the degree of degeneracy, we use the differential eigenvalues of the electronic stress tensor. By comparing the Li clusters and hydrocarbon molecules, we show that the sign of the largest eigenvalue and the differential eigenvalues could be useful indices to evaluate the metallicity or covalency of a chemical bond.
Radiative corrections in a vector-tensor model
Chishtie, F.; Gagne-Portelance, M.; Hanif, T.; Homayouni, S.; McKeon, D.G.C.
2006-01-01
In a recently proposed model in which a vector non-Abelian gauge field interacts with an antisymmetric tensor field, it has been shown that the tensor field possesses no physical degrees of freedom. This formal demonstration is tested by computing the one-loop contributions of the tensor field to the self-energy of the vector field. It is shown that despite the large number of Feynman diagrams in which the tensor field contributes, the sum of these diagrams vanishes, confirming that it is not physical. Furthermore, if the tensor field were to couple with a spinor field, it is shown at one-loop order that the spinor self-energy is not renormalizable, and hence this coupling must be excluded. In principle though, this tensor field does couple to the gravitational field
Supergravity tensor calculus in 5D from 6D
Kugo, Taichiro; Ohashi, Keisuke
2000-01-01
Supergravity tensor calculus in five spacetime dimensions is derived by dimensional reduction from the d=6 superconformal tensor calculus. In particular, we obtain an off-shell hypermultiplet in 5D from the on-shell hypermultiplet in 6D. Our tensor calculus retains the dilatation gauge symmetry, so that it is a trivial gauge fixing to make the Einstein term canonical in a general matter-Yang-Mills-supergravity coupled system. (author)
Mesh Denoising based on Normal Voting Tensor and Binary Optimization
Yadav, S. K.; Reitebuch, U.; Polthier, K.
2016-01-01
This paper presents a tensor multiplication based smoothing algorithm that follows a two step denoising method. Unlike other traditional averaging approaches, our approach uses an element based normal voting tensor to compute smooth surfaces. By introducing a binary optimization on the proposed tensor together with a local binary neighborhood concept, our algorithm better retains sharp features and produces smoother umbilical regions than previous approaches. On top of that, we provide a stoc...
Comparison of two global digital algorithms for Minkowski tensor estimation
The geometry of real world objects can be described by Minkowski tensors. Algorithms have been suggested to approximate Minkowski tensors if only a binary image of the object is available. This paper presents implementations of two such algorithms. The theoretical convergence properties...... are confirmed by simulations on test sets, and recommendations for input arguments of the algorithms are given. For increasing resolutions, we obtain more accurate estimators for the Minkowski tensors. Digitisations of more complicated objects are shown to require higher resolutions....
Properties of the tensor correlation in He isotopes
Myo, Takayuki; Sugimoto, Satoru; Kato, Kiyoshi; Toki, Hiroshi; Ikeda, Kiyomi
2006-01-01
We investigate the roles of the tensor correlation on the structures of 4,5 He. For 4 He, we take the high angular momentum states as much as possible with the 2p2h excitations of the shell model type method to describe the tensor correlation. Three specific configurations are found to be favored for the tensor correlation. This correlation is also important to describe the scattering phenomena of the 4 He+nsystem including the higher partial waves consistently
A General Expression for the Quartic Lovelock Tensor
Briggs, C. C.
1997-01-01
A general expression is given for the quartic Lovelock tensor in terms of the Riemann-Christoffel and Ricci curvature tensors and the Riemann curvature scalar for n-dimensional differentiable manifolds having a general linear connection. In addition, expressions are given (in the appendix) for the coefficient of the quartic Lovelock Lagrangian as well as for lower-order Lovelock tensors and Lovelock Lagrangian coefficients.
Energy-momentum tensor in the quantum field theory
Azakov, S.I.
1977-01-01
An energy-momentum tensor in the scalar field theory is built. The tensor must satisfy the finiteness requirement of the Green function. The Green functions can always be made finite by renormalizations in the S-matrix by introducing counter terms into the Hamiltonian (or Lagrangian) of the interaction. Such a renormalization leads to divergencies in the Green functions. Elimination of these divergencies requires the introduction of new counter terms, which must be taken into account in the energy-momentum tensor
Elucidation of impact of tensor force on the β decay of magic and semi-magic nuclei
Minato, Futoshi
2016-01-01
The authors theoretically examined the β decay of neutron-rich nuclei with a magic number and semi-magic number, using a proton-neutron random phase approximation method. The tensor force previously believed to have a significant impact on the development of the structure of unstable nuclei was found to potentially have an impact on β decay, too. This paper introduces how β decay half-life is reproduced by the tensor force, with a focus on its microscopic mechanism. It was found that the tensor force plays an important role in the β decay of 34 Si, 68,78 Ni, and 132 Sn. Although the calculation of Gamow-Teller transition (GT transition) leaves room for theoretical confirmation, it is clear that the tensor force has a large impact on the 1+ excited state of GT transition. Therefore, for the reliable prediction of the β decay half-life of unknown nuclei, it is necessary to take into account the impact of tensor force. β decay, along with the mass, radius, and excited state, is one of the characteristics possessed by unstable nuclei, and it is important to increase the knowledge of nuclear structure theory so as to be able to systematically predict the probability of β decay. (A.O.)
Gamow-Teller resonances and a separable approximation for Skyrme tensor interactions
Severyukhin A. P.
2012-12-01
Full Text Available A finite rank separable approximation for the quasiparticle random phase approximation (QRPA with Skyrme interactions is applied to study properties of the Gamow-Teller (GT resonances in the neutron-rich Cd isotopes. This approximation enables one to reduce considerably the dimension of matrix that must be diagonalized to perform QRPA calculations in a very large configuration space. Our results from the SGII Skyrme interaction with the tensor interactions and the density-dependent zero-range pairing interaction show that the GT distribution is noticeably modified when the tensor correlations are taken into account. In particular, for 130Cd the dominant peak is moved 3.6 MeV downward and 10% of the GT distribution is shifted to the high excitation energy region near E=50MeV.
Joint Tensor Feature Analysis For Visual Object Recognition.
Wong, Wai Keung; Lai, Zhihui; Xu, Yong; Wen, Jiajun; Ho, Chu Po
2015-11-01
Tensor-based object recognition has been widely studied in the past several years. This paper focuses on the issue of joint feature selection from the tensor data and proposes a novel method called joint tensor feature analysis (JTFA) for tensor feature extraction and recognition. In order to obtain a set of jointly sparse projections for tensor feature extraction, we define the modified within-class tensor scatter value and the modified between-class tensor scatter value for regression. The k-mode optimization technique and the L(2,1)-norm jointly sparse regression are combined together to compute the optimal solutions. The convergent analysis, computational complexity analysis and the essence of the proposed method/model are also presented. It is interesting to show that the proposed method is very similar to singular value decomposition on the scatter matrix but with sparsity constraint on the right singular value matrix or eigen-decomposition on the scatter matrix with sparse manner. Experimental results on some tensor datasets indicate that JTFA outperforms some well-known tensor feature extraction and selection algorithms.
The Topology of Three-Dimensional Symmetric Tensor Fields
Lavin, Yingmei; Levy, Yuval; Hesselink, Lambertus
1994-01-01
We study the topology of 3-D symmetric tensor fields. The goal is to represent their complex structure by a simple set of carefully chosen points and lines analogous to vector field topology. The basic constituents of tensor topology are the degenerate points, or points where eigenvalues are equal to each other. First, we introduce a new method for locating 3-D degenerate points. We then extract the topological skeletons of the eigenvector fields and use them for a compact, comprehensive description of the tensor field. Finally, we demonstrate the use of tensor field topology for the interpretation of the two-force Boussinesq problem.
QCD vacuum tensor susceptibility and properties of transversely polarized mesons
Bakulev, A.P.; Mikhajlov, S.V.
1999-01-01
We re-estimate the tensor susceptibility of QCD vacuum, χ, and to this end, we re-estimate the leptonic decay constants for transversely polarized ρ-, ρ'- and b 1 -mesons. The origin of the susceptibility is analyzed using duality between ρ- and b 1 -channels in a 2-point correlator of tensor currents and disagree with [2] on both OPE expansion and the value of QCD vacuum tensor susceptibility. Using our value for the latter we determine new estimations of nucleon tensor charges related to the first moment of the transverse structure functions h 1 of a nucleon
3D Inversion of SQUID Magnetic Tensor Data
Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn
2012-01-01
Developments in SQUID-based technology have enabled direct measurement of magnetic tensor data for geophysical exploration. For quantitative interpretation, we introduce 3D regularized inversion for magnetic tensor data. For mineral exploration-scale targets, our model studies show that magnetic...... tensor data have significantly improved resolution compared to magnetic vector data for the same model. We present a case study for the 3D regularized inversion of magnetic tensor data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from our 3D regularized inversion agree...
Superconformal tensor calculus and matter couplings in six dimensions
Bergshoeff, E.; Sezgin, E.; van Proeyen, A.
1989-01-01
Using superconformal tensor calculus the authors construct general interactions of N = 2, d = 6 supergravity with a tensor multiplet and a number of scalar, vector and linear multiplets. They start from the superconformal algebra which they realize on a 40 + 40 Weyl multiplet and on several matter multiplets. A special role is played by the tensor multiplet, which cannot be treated as an ordinary matter multiplet, but leads to a second 40 + 40 version of the Weyl multiplet. The authors also obtain a 48 + 48 off-shell formulation of Poincare supergravity coupled to a tensor multiplet
Superconformal tensor calculus and matter couplings in six dimensions
Bergshoeff, E.; Sezgin, E.; Proeyen, A. van
1986-01-01
Using superconformal tensor calculus we construct general interactions of N = 2, d = 6 supergravity with a tensor multiplet and a number of scalar, vector and linear multiplets. We start from the superconformal algebra which we realize on a 40 + 40 Weyl multiplet and on several matter multiplets. A special role is played by the tensor multiplet, which cannot be treated as an ordinary matter multiplet, but leads to a second 40 + 40 version of the Weyl multiplet. We also obtain a 48 + 48 off-shell formulation of Poincare supergravity coupled to a tensor multiplet. (orig.)
TENSOR MODELING BASED FOR AIRBORNE LiDAR DATA CLASSIFICATION
N. Li
2016-06-01
Full Text Available Feature selection and description is a key factor in classification of Earth observation data. In this paper a classification method based on tensor decomposition is proposed. First, multiple features are extracted from raw LiDAR point cloud, and raster LiDAR images are derived by accumulating features or the “raw” data attributes. Then, the feature rasters of LiDAR data are stored as a tensor, and tensor decomposition is used to select component features. This tensor representation could keep the initial spatial structure and insure the consideration of the neighborhood. Based on a small number of component features a k nearest neighborhood classification is applied.
p-Norm SDD tensors and eigenvalue localization
Qilong Liu
2016-07-01
Full Text Available Abstract We present a new class of nonsingular tensors (p-norm strictly diagonally dominant tensors, which is a subclass of strong H $\\mathcal{H}$ -tensors. As applications of the results, we give a new eigenvalue inclusion set, which is tighter than those provided by Li et al. (Linear Multilinear Algebra 64:727-736, 2016 in some case. Based on this set, we give a checkable sufficient condition for the positive (semidefiniteness of an even-order symmetric tensor.
Prescribed curvature tensor in locally conformally flat manifolds
Pina, Romildo; Pieterzack, Mauricio
2018-01-01
A global existence theorem for the prescribed curvature tensor problem in locally conformally flat manifolds is proved for a special class of tensors R. Necessary and sufficient conditions for the existence of a metric g ¯ , conformal to Euclidean g, are determined such that R ¯ = R, where R ¯ is the Riemannian curvature tensor of the metric g ¯ . The solution to this problem is given explicitly for special cases of the tensor R, including the case where the metric g ¯ is complete on Rn. Similar problems are considered for locally conformally flat manifolds.
The classification of the Ricci tensor in the general theory of relativity
Cormack, W.J.
1979-10-01
A comprehensive classification of the Ricci tensor in General Relativity using several techniques is given and their connection with existing classification studied under the headings; canonical forms for the Ricci tensor, invariant 2-spaces in the classification of the Ricci tensor, Riemannian curvature and the classification of the Riemann and Ricci tensors, and spinor classifications of the Ricci tensor. (U.K.)
Symmetric Topological Phases and Tensor Network States
Jiang, Shenghan
Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.
A supersymmetric SYK-like tensor model
Peng, Cheng; Spradlin, Marcus; Volovich, Anastasia [Department of Physics, Brown University,Providence, RI, 02912 (United States)
2017-05-11
We consider a supersymmetric SYK-like model without quenched disorder that is built by coupling two kinds of fermionic N=1 tensor-valued superfields, “quarks” and “mesons”. We prove that the model has a well-defined large-N limit in which the (s)quark 2-point functions are dominated by mesonic “melon” diagrams. We sum these diagrams to obtain the Schwinger-Dyson equations and show that in the IR, the solution agrees with that of the supersymmetric SYK model.
Tensor glueball-meson mixing phenomenology
Burakovsky, L.; Page, P.R.
2000-01-01
The overpopulated isoscalar tensor states are sifted using Schwinger-type mass relations. Two solutions are found: one where the glueball is the f J (2220), and one where the glueball is more distributed, with f 2 (1820) having the largest component. The f 2 (1565) and f J (1710) cannot be accommodated as glueball-(hybrid) meson mixtures in the absence of significant coupling to decay channels. f 2 '(1525)→ππ is in agreement with experiment. The f J (2220) decays neither flavour democratically nor is narrow. (orig.)
Tensor Network Wavefunctions for Topological Phases
Ware, Brayden Alexander
The combination of quantum effects and interactions in quantum many-body systems can result in exotic phases with fundamentally entangled ground state wavefunctions--topological phases. Topological phases come in two types, both of which will be studied in this thesis. In topologically ordered phases, the pattern of entanglement in the ground state wavefunction encodes the statistics of exotic emergent excitations, a universal indicator of a phase that is robust to all types of perturbations. In symmetry protected topological phases, the entanglement instead encodes a universal response of the system to symmetry defects, an indicator that is robust only to perturbations respecting the protecting symmetry. Finding and creating these phases in physical systems is a motivating challenge that tests all aspects--analytical, numerical, and experimental--of our understanding of the quantum many-body problem. Nearly three decades ago, the creation of simple ansatz wavefunctions--such as the Laughlin fractional quantum hall state, the AKLT state, and the resonating valence bond state--spurred analytical understanding of both the role of entanglement in topological physics and physical mechanisms by which it can arise. However, quantitative understanding of the relevant phase diagrams is still challenging. For this purpose, tensor networks provide a toolbox for systematically improving wavefunction ansatz while still capturing the relevant entanglement properties. In this thesis, we use the tools of entanglement and tensor networks to analyze ansatz states for several proposed new phases. In the first part, we study a featureless phase of bosons on the honeycomb lattice and argue that this phase can be topologically protected under any one of several distinct subsets of the crystalline lattice symmetries. We discuss methods of detecting such phases with entanglement and without. In the second part, we consider the problem of constructing fixed-point wavefunctions for
Scalar-tensor cosmology with cosmological constant
Maslanka, K.
1983-01-01
The equations of scalar-tensor theory of gravitation with cosmological constant in the case of homogeneous and isotropic cosmological model can be reduced to dynamical system of three differential equations with unknown functions H=R/R, THETA=phi/phi, S=e/phi. When new variables are introduced the system becomes more symmetrical and cosmological solutions R(t), phi(t), e(t) are found. It is shown that when cosmological constant is introduced large class of solutions which depend also on Dicke-Brans parameter can be obtained. Investigations of these solutions give general limits for cosmological constant and mean density of matter in plane model. (author)
Electrical conductivity tensor of an irradiated metal
Corciovei, A.; Dumitru, R.D.
1979-01-01
A method to calculate the electrical conductivity tensor of an irradiated metal is presented. The proposed method relies on the use of the Kubo formula, evaluated by a perturbation method. The one electron Hamiltonian is written as a sum of two terms: the Hamiltonian of the conduction electrons moving in a periodic lattice and the perturbation, namely, the scattering potential due to the irradiation defects of the ideal crystal. Then, the lowest order of the conductivity is determined by the lowest order of the Laplace transform of the current. An integral equation is written for this last quantity. (author)
A supersymmetric SYK-like tensor model
Peng, Cheng; Spradlin, Marcus; Volovich, Anastasia
2017-01-01
We consider a supersymmetric SYK-like model without quenched disorder that is built by coupling two kinds of fermionic N=1 tensor-valued superfields, “quarks” and “mesons”. We prove that the model has a well-defined large-N limit in which the (s)quark 2-point functions are dominated by mesonic “melon” diagrams. We sum these diagrams to obtain the Schwinger-Dyson equations and show that in the IR, the solution agrees with that of the supersymmetric SYK model.
Hassanein M
2014-05-01
Full Text Available Mohamed Hassanein,1 Khalifa Abdallah,2 Anja Schweizer31Betsi Cadwaladr University Health Board, Wales, United Kingdom; 2Clinical Research Center, Alexandria University Hospital, Alexandria, Egypt; 3Global Medical Affairs, Novartis Pharma AG, Basel, SwitzerlandBackground: Several observational studies were conducted with vildagliptin in patients with type 2 diabetes mellitus (T2DM fasting during Ramadan, showing significantly lower incidences of hypoglycemia with vildagliptin versus sulfonylureas, including gliclazide. It was of interest to complement the existing real-life evidence with data from a randomized, double-blind, clinical trial.Clinical Trials Identifier: NCT01758380.Methods: This multiregional, double-blind study randomized 557 patients with T2DM (mean glycated hemoglobin [HbA1c], 6.9%, previously treated with metformin and any sulfonylurea to receive either vildagliptin (50 mg twice daily or gliclazide plus metformin. The study included four office visits (three pre-Ramadan and multiple telephone contacts, as well as Ramadan-focused advice. Hypoglycemic events were assessed during Ramadan; HbA1c and weight were analyzed before and after Ramadan.Results: The proportion of patients reporting confirmed (<3.9 mmol/L and/or severe hypoglycemic events during Ramadan was 3.0% with vildagliptin and 7.0% with gliclazide (P=0.039; one-sided test, and this was 6.0% and 8.7%, respectively, for any hypoglycemic events (P=0.173. The adjusted mean change pre- to post-Ramadan in HbA1c was 0.05%±0.04% with vildagliptin and -0.03%±0.04% with gliclazide, from baselines of 6.84% and 6.79%, respectively (P=0.165. In both groups, the adjusted mean decrease in weight was -1.1±0.2 kg (P=0.987. Overall safety was similar between the treatments.Conclusion: In line with the results from previous observational studies, vildagliptin was shown in this interventional study to be an effective, safe, and well-tolerated treatment in patients with T2DM fasting
Li, Yi; Chen, Wei; Xu, Hongyi; Jin, Xuejun
2016-01-01
To provide a seamless integration of manufacturing processing simulation and fiber microstructure modeling, two new stochastic 3D microstructure reconstruction methods are proposed for two types of random fiber composites: random short fiber composites, and Sheet Molding Compounds (SMC) chopped fiber composites. A Random Sequential Adsorption (RSA) algorithm is first developed to embed statistical orientation information into 3D RVE reconstruction of random short fiber composites. For the SMC composites, an optimized Voronoi diagram based approach is developed for capturing the substructure features of SMC chopped fiber composites. The proposed methods are distinguished from other reconstruction works by providing a way of integrating statistical information (fiber orientation tensor) obtained from material processing simulation, as well as capturing the multiscale substructures of the SMC composites.
Alizadeh Z
2011-07-01
Full Text Available "n 800x600 Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Background: Obesity is a major health problem all around the world. On the other hand, few people, especially women, are physically active to the levels recommended by Healthy People 2010 web site managed by the U.S. Department of Health and Human Services. The objective of this study was to compare the potential effects of intermittent and continuous exercise programs combined with concurrent calorie restriction diets on lipid profile and fasting blood sugar in overweight and obese females."n"nMethods : Forty-five women with a sedentary life style and a BMI greater than 25 kg/m2, were randomly assigned to one of the three groups (15 subjects in each group: a 40 minutes of medium-intensity intermittent exercise (64-76% of maximal heart rate, 3 bouts per day for 5 days a week, b a single bout of a 40-minute continuous exercise per day for 5 days a week, C the non-exercising control group. A self-monitored calorie restricted diet was recommended to all participants by a dietitian. The lipid profile, fasting blood sugar and blood pressure of all participants were assessed at baseline and 12 weeks after the intervention period."n"nResults : After the intervention, there were no significant differences among the groups in terms of lipid profile [cholesterol (P=0.94, triglyceride (P=0.62] fasting blood sugar (P=0.054, systolic blood pressure (P=0.84 or diastolic blood pressure (P=0.30."n"nConclusion: There seems to be no significant differences between short term continuous and intermittent aerobic
Clare L Atzema
Full Text Available Emergency department discharge instructions are variably understood by patients, and in the setting of emergency department crowding, innovations are needed to counteract shortened interaction times with the physician. We evaluated the effect of viewing an online video of diagnosis-specific discharge instructions on patient comprehension and recall of instructions.In this prospective, single-center, randomized controlled trial conducted between November 2011 and January 2012, we randomized emergency department patients who were discharged with one of 38 diagnoses to either view (after they left the emergency department a vetted online video of diagnosis-specific discharge instructions, or to usual care. Patients were subsequently contacted by telephone and asked three standardized questions about their discharge instructions; one point was awarded for each correct answer. Using an intention-to-treat analysis, differences between groups were assessed using univariate testing, and with logistic regression that accounted for clustering on managing physician. A secondary outcome measure was patient satisfaction with the videos, on a 10-point scale.Among 133 patients enrolled, mean age was 46.1 (s.d.D. 21.5 and 55% were female. Patients in the video group had 19% higher mean scores (2.5, s.d. 0.7 than patients in the control group (2.1, s.d. 0.8 (p=0.002. After adjustment for patient age, sex, first language, triage acuity score, and clustering, the odds of achieving a fully correct score (3 out of 3 were 3.5 (95% CI, 1.7 to 7.2 times higher in the video group, compared to the control group. Among those who viewed the videos, median rating of the videos was 10 (IQR 8 to 10.In this single-center trial, patients who viewed an online video of their discharge instructions scored higher on their understanding of key concepts around their diagnosis and subsequent care. Those who viewed the videos found them to be a helpful addition to standard care
Atzema, Clare L; Austin, Peter C; Wu, Libo; Brzozowski, Michael; Feldman, Michael J; McDonnell, Michael; Mazurik, Laurie
2013-01-01
Emergency department discharge instructions are variably understood by patients, and in the setting of emergency department crowding, innovations are needed to counteract shortened interaction times with the physician. We evaluated the effect of viewing an online video of diagnosis-specific discharge instructions on patient comprehension and recall of instructions. In this prospective, single-center, randomized controlled trial conducted between November 2011 and January 2012, we randomized emergency department patients who were discharged with one of 38 diagnoses to either view (after they left the emergency department) a vetted online video of diagnosis-specific discharge instructions, or to usual care. Patients were subsequently contacted by telephone and asked three standardized questions about their discharge instructions; one point was awarded for each correct answer. Using an intention-to-treat analysis, differences between groups were assessed using univariate testing, and with logistic regression that accounted for clustering on managing physician. A secondary outcome measure was patient satisfaction with the videos, on a 10-point scale. Among 133 patients enrolled, mean age was 46.1 (s.d.D. 21.5) and 55% were female. Patients in the video group had 19% higher mean scores (2.5, s.d. 0.7) than patients in the control group (2.1, s.d. 0.8) (p=0.002). After adjustment for patient age, sex, first language, triage acuity score, and clustering, the odds of achieving a fully correct score (3 out of 3) were 3.5 (95% CI, 1.7 to 7.2) times higher in the video group, compared to the control group. Among those who viewed the videos, median rating of the videos was 10 (IQR 8 to 10). In this single-center trial, patients who viewed an online video of their discharge instructions scored higher on their understanding of key concepts around their diagnosis and subsequent care. Those who viewed the videos found them to be a helpful addition to standard care. Clinical
Moment-tensor solutions estimated using optimal filter theory: Global seismicity, 2001
Sipkin, S.A.; Bufe, C.G.; Zirbes, M.D.
2003-01-01
This paper is the 12th in a series published yearly containing moment-tensor solutions computed at the US Geological Survey using an algorithm based on the theory of optimal filter design (Sipkin, 1982 and Sipkin, 1986b). An inversion has been attempted for all earthquakes with a magnitude, mb or MS, of 5.5 or greater. Previous listings include solutions for earthquakes that occurred from 1981 to 2000 (Sipkin, 1986b; Sipkin and Needham, 1989, Sipkin and Needham, 1991, Sipkin and Needham, 1992, Sipkin and Needham, 1993, Sipkin and Needham, 1994a and Sipkin and Needham, 1994b; Sipkin and Zirbes, 1996 and Sipkin and Zirbes, 1997; Sipkin et al., 1998, Sipkin et al., 1999, Sipkin et al., 2000a, Sipkin et al., 2000b and Sipkin et al., 2002).The entire USGS moment-tensor catalog can be obtained via anonymous FTP at ftp://ghtftp.cr.usgs.gov. After logging on, change directory to “momten”. This directory contains two compressed ASCII files that contain the finalized solutions, “mt.lis.Z” and “fmech.lis.Z”. “mt.lis.Z” contains the elements of the moment tensors along with detailed event information; “fmech.lis.Z” contains the decompositions into the principal axes and best double-couples. The fast moment-tensor solutions for more recent events that have not yet been finalized and added to the catalog, are gathered by month in the files “jan01.lis.Z”, etc. “fmech.doc.Z” describes the various fields.
Interactive Volume Rendering of Diffusion Tensor Data
Hlawitschka, Mario; Weber, Gunther; Anwander, Alfred; Carmichael, Owen; Hamann, Bernd; Scheuermann, Gerik
2007-03-30
As 3D volumetric images of the human body become an increasingly crucial source of information for the diagnosis and treatment of a broad variety of medical conditions, advanced techniques that allow clinicians to efficiently and clearly visualize volumetric images become increasingly important. Interaction has proven to be a key concept in analysis of medical images because static images of 3D data are prone to artifacts and misunderstanding of depth. Furthermore, fading out clinically irrelevant aspects of the image while preserving contextual anatomical landmarks helps medical doctors to focus on important parts of the images without becoming disoriented. Our goal was to develop a tool that unifies interactive manipulation and context preserving visualization of medical images with a special focus on diffusion tensor imaging (DTI) data. At each image voxel, DTI provides a 3 x 3 tensor whose entries represent the 3D statistical properties of water diffusion locally. Water motion that is preferential to specific spatial directions suggests structural organization of the underlying biological tissue; in particular, in the human brain, the naturally occuring diffusion of water in the axon portion of neurons is predominantly anisotropic along the longitudinal direction of the elongated, fiber-like axons [MMM+02]. This property has made DTI an emerging source of information about the structural integrity of axons and axonal connectivity between brain regions, both of which are thought to be disrupted in a broad range of medical disorders including multiple sclerosis, cerebrovascular disease, and autism [Mos02, FCI+01, JLH+99, BGKM+04, BJB+03].
Black holes in vector-tensor theories
Heisenberg, Lavinia [Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich (Switzerland); Kase, Ryotaro; Tsujikawa, Shinji [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Minamitsuji, Masato, E-mail: lavinia.heisenberg@eth-its.ethz.ch, E-mail: r.kase@rs.tus.ac.jp, E-mail: masato.minamitsuji@tecnico.ulisboa.pt, E-mail: shinji@rs.kagu.tus.ac.jp [Centro Multidisciplinar de Astrofisica—CENTRA, Departamento de Fisica, Instituto Superior Tecnico—IST, Universidade de Lisboa—UL, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2017-08-01
We study static and spherically symmetric black hole (BH) solutions in second-order generalized Proca theories with nonminimal vector field derivative couplings to the Ricci scalar, the Einstein tensor, and the double dual Riemann tensor. We find concrete Lagrangians which give rise to exact BH solutions by imposing two conditions of the two identical metric components and the constant norm of the vector field. These exact solutions are described by either Reissner-Nordström (RN), stealth Schwarzschild, or extremal RN solutions with a non-trivial longitudinal mode of the vector field. We then numerically construct BH solutions without imposing these conditions. For cubic and quartic Lagrangians with power-law couplings which encompass vector Galileons as the specific cases, we show the existence of BH solutions with the difference between two non-trivial metric components. The quintic-order power-law couplings do not give rise to non-trivial BH solutions regular throughout the horizon exterior. The sixth-order and intrinsic vector-mode couplings can lead to BH solutions with a secondary hair. For all the solutions, the vector field is regular at least at the future or past horizon. The deviation from General Relativity induced by the Proca hair can be potentially tested by future measurements of gravitational waves in the nonlinear regime of gravity.
Emergent symmetries in the canonical tensor model
Obster, Dennis; Sasakura, Naoki
2018-04-01
The canonical tensor model (CTM) is a tensor model proposing a classically and quantum mechanically consistent description of gravity, formulated as a first-class constraint system with structural similarities to the ADM formalism of general relativity. The classical CTM produces a general relativistic system in a formal continuum limit, the emergence of which should be explained by the quantum CTM. In this paper we study the symmetry properties of a wave function that exactly solves the quantum constraints of the CTM. We have found that it has strong peaks at configurations invariant under some Lie groups, as predicted by a mechanism described in our previous paper. A surprising result is the preference for configurations invariant not only under Lie groups with positive definite signature, but also with Lorentzian signature. Such symmetries could characterize the global structures of spacetimes, and our results are encouraging towards showing spacetime emergence in the CTM. To verify the asymptotic convergence of the wave function we have also analyzed the asymptotic behavior, which for the most part seems to be well under control.
Stress tensor fluctuations in de Sitter spacetime
Pérez-Nadal, Guillem; Verdaguer, Enric [Departament de Física Fonamental and Institut de Ciències del Cosmos, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain); Roura, Albert, E-mail: guillem@ffn.ub.es, E-mail: albert.roura@aei.mpg.de, E-mail: enric.verdaguer@ub.edu [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14476 Golm (Germany)
2010-05-01
The two-point function of the stress tensor operator of a quantum field in de Sitter spacetime is calculated for an arbitrary number of dimensions. We assume the field to be in the Bunch-Davies vacuum, and formulate our calculation in terms of de Sitter-invariant bitensors. Explicit results for free minimally coupled scalar fields with arbitrary mass are provided. We find long-range stress tensor correlations for sufficiently light fields (with mass m much smaller than the Hubble scale H), namely, the two-point function decays at large separations like an inverse power of the physical distance with an exponent proportional to m{sup 2}/H{sup 2}. In contrast, we show that for the massless case it decays at large separations like the fourth power of the physical distance. There is thus a discontinuity in the massless limit. As a byproduct of our work, we present a novel and simple geometric interpretation of de Sitter-invariant bitensors for pairs of points which cannot be connected by geodesics.
Tensor estimation for double-pulsed diffusional kurtosis imaging.
Shaw, Calvin B; Hui, Edward S; Helpern, Joseph A; Jensen, Jens H
2017-07-01
Double-pulsed diffusional kurtosis imaging (DP-DKI) represents the double diffusion encoding (DDE) MRI signal in terms of six-dimensional (6D) diffusion and kurtosis tensors. Here a method for estimating these tensors from experimental data is described. A standard numerical algorithm for tensor estimation from conventional (i.e. single diffusion encoding) diffusional kurtosis imaging (DKI) data is generalized to DP-DKI. This algorithm is based on a weighted least squares (WLS) fit of the signal model to the data combined with constraints designed to minimize unphysical parameter estimates. The numerical algorithm then takes the form of a quadratic programming problem. The principal change required to adapt the conventional DKI fitting algorithm to DP-DKI is replacing the three-dimensional diffusion and kurtosis tensors with the 6D tensors needed for DP-DKI. In this way, the 6D diffusion and kurtosis tensors for DP-DKI can be conveniently estimated from DDE data by using constrained WLS, providing a practical means for condensing DDE measurements into well-defined mathematical constructs that may be useful for interpreting and applying DDE MRI. Data from healthy volunteers for brain are used to demonstrate the DP-DKI tensor estimation algorithm. In particular, representative parametric maps of selected tensor-derived rotational invariants are presented. Copyright © 2017 John Wiley & Sons, Ltd.
Secoond order parallel tensors on some paracontact manifolds | Liu ...
The object of the present paper is to study the symmetric and skewsymmetric properties of a second order parallel tensor on paracontact metric (k;μ)- spaces and almost β-para-Kenmotsu (k;μ)-spaces. In this paper, we prove that if there exists a second order symmetric parallel tensor on a paracontact metric (k;μ)- space M, ...
Visualizing Tensor Normal Distributions at Multiple Levels of Detail.
Abbasloo, Amin; Wiens, Vitalis; Hermann, Max; Schultz, Thomas
2016-01-01
Despite the widely recognized importance of symmetric second order tensor fields in medicine and engineering, the visualization of data uncertainty in tensor fields is still in its infancy. A recently proposed tensorial normal distribution, involving a fourth order covariance tensor, provides a mathematical description of how different aspects of the tensor field, such as trace, anisotropy, or orientation, vary and covary at each point. However, this wealth of information is far too rich for a human analyst to take in at a single glance, and no suitable visualization tools are available. We propose a novel approach that facilitates visual analysis of tensor covariance at multiple levels of detail. We start with a visual abstraction that uses slice views and direct volume rendering to indicate large-scale changes in the covariance structure, and locations with high overall variance. We then provide tools for interactive exploration, making it possible to drill down into different types of variability, such as in shape or orientation. Finally, we allow the analyst to focus on specific locations of the field, and provide tensor glyph animations and overlays that intuitively depict confidence intervals at those points. Our system is demonstrated by investigating the effects of measurement noise on diffusion tensor MRI, and by analyzing two ensembles of stress tensor fields from solid mechanics.
A tensor approach to the estimation of hydraulic conductivities in ...
Based on the field measurements of the physical properties of fractured rocks, the anisotropic properties of hydraulic conductivity (HC) of the fractured rock aquifer can be assessed and presented using a tensor approach called hydraulic conductivity tensor. Three types of HC values, namely point value, axial value and flow ...
Tensor meson dominance and e+e--physics
Genz, H.; Karlsruhe Univ.; Mallik, S.
1983-01-01
The phenomenological status of tensor meson dominance is reported. Some new results concerning hadronic decays of the 2 ++ -meson chi 2 (3.55) and the heavy lepton tau are also included. Considering experimental errors, tensor meson dominance is in agreement with experiment. (author)
Tensor Excitations in Nambu - Jona-Lasinio Model
Chizhov, M V
1996-01-01
It is shown that in the one-flavour NJL model the vector and axial-vector quasiparticles described by the antisymmetric tensor field are generated. These excitations have tensor interactions with quarks in contrast to usual vector ones. Phenomenological applications are discussed.
Tensor Basis Neural Network v. 1.0 (beta)
2017-03-28
This software package can be used to build, train, and test a neural network machine learning model. The neural network architecture is specifically designed to embed tensor invariance properties by enforcing that the model predictions sit on an invariant tensor basis. This neural network architecture can be used in developing constitutive models for applications such as turbulence modeling, materials science, and electromagnetism.
Energy momentum tensor in local causal perturbation theory
Prange, D.
2001-01-01
We study the energy momentum tensor in the Bogolyubov-Epstein-Glaser approach to perturbation theory. It is found to be locally conserved for a class of theories containing to derivated fields in the interaction. For the massless φ 4 -theory we derive the trace anomaly of the improved tensor. (orig.)
Exploring the tensor networks/AdS correspondence
Bhattacharyya, Arpan [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Centre For High Energy Physics, Indian Institute of Science,560012 Bangalore (India); Gao, Zhe-Shen [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Hung, Ling-Yan [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); State Key Laboratory of Surface Physics and Department of Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University,Nanjing, 210093 (China); Liu, Si-Nong [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China)
2016-08-11
In this paper we study the recently proposed tensor networks/AdS correspondence. We found that the Coxeter group is a useful tool to describe tensor networks in a negatively curved space. Studying generic tensor network populated by perfect tensors, we find that the physical wave function generically do not admit any connected correlation functions of local operators. To remedy the problem, we assume that wavefunctions admitting such semi-classical gravitational interpretation are composed of tensors close to, but not exactly perfect tensors. Computing corrections to the connected two point correlation functions, we find that the leading contribution is given by structures related to geodesics connecting the operators inserted at the boundary physical dofs. Such considerations admit generalizations at least to three point functions. This is highly suggestive of the emergence of the analogues of Witten diagrams in the tensor network. The perturbations alone however do not give the right entanglement spectrum. Using the Coxeter construction, we also constructed the tensor network counterpart of the BTZ black hole, by orbifolding the discrete lattice on which the network resides. We found that the construction naturally reproduces some of the salient features of the BTZ black hole, such as the appearance of RT surfaces that could wrap the horizon, depending on the size of the entanglement region A.
Black holes with surrounding matter in scalar-tensor theories.
Cardoso, Vitor; Carucci, Isabella P; Pani, Paolo; Sotiriou, Thomas P
2013-09-13
We uncover two mechanisms that can render Kerr black holes unstable in scalar-tensor gravity, both associated with the presence of matter in the vicinity of the black hole and the fact that this introduces an effective mass for the scalar. Our results highlight the importance of understanding the structure of spacetime in realistic, astrophysical black holes in scalar-tensor theories.
A Gradient Based Iterative Solutions for Sylvester Tensor Equations
Zhen Chen
2013-01-01
proposed by Ding and Chen, 2005, and by using tensor arithmetic concepts, an iterative algorithm and its modification are established to solve the Sylvester tensor equation. Convergence analysis indicates that the iterative solutions always converge to the exact solution for arbitrary initial value. Finally, some examples are provided to show that the proposed algorithms are effective.
Relativistic interpretation of the nature of the nuclear tensor force
Zong, Yao-Yao; Sun, Bao-Yuan
2018-02-01
The spin-dependent nature of the nuclear tensor force is studied in detail within the relativistic Hartree-Fock approach. The relativistic formalism for the tensor force is supplemented with an additional Lorentz-invariant tensor formalism in the σ-scalar channel, so as to take into account almost fully the nature of the tensor force brought about by the Fock diagrams in realistic nuclei. Specifically, the tensor sum rules are tested for the spin and pseudo-spin partners with and without nodes, to further understand the nature of the tensor force within the relativistic model. It is shown that the interference between the two components of nucleon spinors causes distinct violations of the tensor sum rules in realistic nuclei, mainly due to the opposite signs on the κ quantities of the upper and lower components, as well as the nodal difference. However, the sum rules can be precisely reproduced if the same radial wave functions are taken for the spin/pseudo-spin partners in addition to neglecting the lower/upper components, revealing clearly the nature of the tensor force. Supported by National Natural Science Foundation of China (11375076, 11675065) and the Fundamental Research Funds for the Central Universities (lzujbky-2016-30)
Parity and isospin in pion condensation and tensor binding
Pace, E.; Palumbo, F.
1978-01-01
In infinite nuclear matter with pion condensates or tensor binding both parity and isospin symmetries are broken. Finite nuclei with pion condensates or tensor binding, however, can have definite parity. They cannot have a definite value of isospin, whose average value is of the order of the number of nucleons. (Auth.)
Superspace actions and duality transformations for N=2 tensor multiplets
Galperin, A.; Ivanov, E.; Ogievetsky, V.
1985-01-01
General actions for self-interacting N=2 tensor multiplets are considered in the harmonic superspace approach. All of them are shown to be equivalent, by superfield duality transformations, to some restricted class of the hypermultiplets actions. In particular, the improved tensor multiplet theory is dual to a free hypermultiplet one. Superspace couplings of these improved matter multiplets against conformal supergravity are also constructed
Multiple M2-branes and the embedding tensor
Bergshoeff, Eric A.; de Roo, Mees; Hohm, Olaf
2008-01-01
We show that the Bagger-Lambert theory of multiple M2-branes fits into the general construction of maximally supersymmetric gauge theories using the embedding tensor technique. We apply the embedding tensor technique in order to systematically obtain the consistent gaugings of N = 8 superconformal
Subtracting a best rank-1 approximation may increase tensor rank
Stegeman, Alwin; Comon, Pierre
2010-01-01
It has been shown that a best rank-R approximation of an order-k tensor may not exist when R >= 2 and k >= 3. This poses a serious problem to data analysts using tensor decompositions it has been observed numerically that, generally, this issue cannot be solved by consecutively computing and
Couplings of self-dual tensor multiplet in six dimensions
Bergshoeff, E.; Sezgin, E.; Sokatchev, E.
1996-01-01
The (1, 0) supersymmetry in six dimensions admits a tensor multiplet which contains a second-rank antisymmetric tensor field with a self-dual field strength and a dilaton. We describe the fully supersymmetric coupling of this multiplet to a Yangâ€“Mills multiplet, in the absence of supergravity. The
Superconformal tensor calculus and matter couplings in six dimensions
Bergshoeff, E.; Sezgin, E.; Proeyen, A. Van
1986-01-01
Using superconformal tensor calculus we construct general interactions of N = 2, d = 6 supergravity with a tensor multiplet and a number of scalar, vector and linear multiplets. We start from the superconformal algebra which we realize on a 40+40 Weyl multiplet and on several matter multiplets. A
Data fusion in metabolomics using coupled matrix and tensor factorizations
Evrim, Acar Ataman; Bro, Rasmus; Smilde, Age Klaas
2015-01-01
of heterogeneous (i.e., in the form of higher order tensors and matrices) data sets with shared/unshared factors. In order to jointly analyze such heterogeneous data sets, we formulate data fusion as a coupled matrix and tensor factorization (CMTF) problem, which has already proved useful in many data mining...
Gauge theories, duality relations and the tensor hierarchy
Bergshoeff, Eric A.; Hartong, Jelle; Hohm, Olaf; Huebscher, Mechthild; Ortin, Tomas; Hübscher, Mechthild
We compute the complete 3- and 4-dimensional tensor hierarchies, i.e. sets of p-form fields, with 1 We construct gauge-invariant actions that include all the fields in the tensor hierarchies. We elucidate the relation between the gauge transformations of the p-form fields in the action and those of
OPERATOR NORM INEQUALITIES BETWEEN TENSOR UNFOLDINGS ON THE PARTITION LATTICE.
Wang, Miaoyan; Duc, Khanh Dao; Fischer, Jonathan; Song, Yun S
2017-05-01
Interest in higher-order tensors has recently surged in data-intensive fields, with a wide range of applications including image processing, blind source separation, community detection, and feature extraction. A common paradigm in tensor-related algorithms advocates unfolding (or flattening) the tensor into a matrix and applying classical methods developed for matrices. Despite the popularity of such techniques, how the functional properties of a tensor changes upon unfolding is currently not well understood. In contrast to the body of existing work which has focused almost exclusively on matricizations, we here consider all possible unfoldings of an order- k tensor, which are in one-to-one correspondence with the set of partitions of {1, …, k }. We derive general inequalities between the l p -norms of arbitrary unfoldings defined on the partition lattice. In particular, we demonstrate how the spectral norm ( p = 2) of a tensor is bounded by that of its unfoldings, and obtain an improved upper bound on the ratio of the Frobenius norm to the spectral norm of an arbitrary tensor. For specially-structured tensors satisfying a generalized definition of orthogonal decomposability, we prove that the spectral norm remains invariant under specific subsets of unfolding operations.
The superspace-translation tensor and linearized N = 1 supergravities
Bedding, S.P.; Lang, W.
1982-01-01
The recently proposed superspace-translation tensor is considered as the source of supergravities in the context of N = 1 supersymmetry. It is shown how the structure of this tensor leads to a complete evaluation of the linearized supervielbein in terms of unconstrained prepotentials with derived transformation laws. Connection with formulations using torsion constraints is made. (orig.)
(2, 0) tensor multiplets and conformal supergravity in D = 6
Bergshoeff, Eric; Sezgin, Ergin; Proeyen, Antoine Van
1999-01-01
We construct the supercurrent multiplet that contains the energyâ€“momentum tensor of the (2, 0) tensor multiplet. By coupling this multiplet of currents to the fields of conformal supergravity, we first construct the linearized superconformal transformations rules of the (2, 0) Weyl multiplet.
A General Expression for the Quintic Lovelock Tensor
Briggs, C. C.
1996-01-01
A general expression is given for the quintic Lovelock tensor as well as for the coefficient of the quintic Lovelock Lagrangian in terms of the Riemann-Christoffel and Ricci curvature tensors and the Riemann curvature scalar for n-dimensional differentiable manifolds having a general linear connection.
Shang, D-W; Guo, W; Zhou, F-C; Wang, X-P; Li, A-N; Zhang, L; Li, W-B; Lu, W; Wang, C-Y
2013-11-01
To evaluate the bioequivalence of a new formulation of atomoxetine hydrochloride (CAS 82248-59-7) capsules (test) and an available branded capsules (reference) after administration of a single 40 mg dose, randomized, open-label, 2-period crossover study was conducted in 22 healthy male Chinese subjects with a 1-week wash-out period. This study was designed for/the Honglin Pharmaceutical Co. Ltd and contracted to be done by the Beijing Anding Hospital in order to satisfy Chinese regulatory requirements to allow marketing of this generic product and performed according to the criteria of SFDA. Blood samples were collected before and 0.25, 0.5, 1, 1.5, 2, 3, 4, 6, 9, 12, 16 and 24 h after drug administration. Plasma concentrations were determined by high-performance liquid chromatography (HPLC) with UV detection. A non-compartmental method was used to calculate the pharmacokinetic parameters and evaluate bioequivalence of the 2 formulations. The 90% confidence interval (CI) of the ratios (test/reference) of atomoxetine for AUC0-24, AUC0-∞ and Cmax were 100.9% (93.6-108.8%), 103.1% (95.1-111.7%) and 105.2% (92.8-119.4%), respectively, which fell within the interval of 80-125% and 75-133%. No clinically significant changes or abnormalities were noted in laboratory data and vital signs. From these results it can be concluded that the test formulation of atomoxetine capsules met the regulatory criterion for bioequivalence to the reference formulation. © Georg Thieme Verlag KG Stuttgart · New York.
Decomposition of a symmetric second-order tensor
Heras, José A.
2018-05-01
In the three-dimensional space there are different definitions for the dot and cross products of a vector with a second-order tensor. In this paper we show how these products can uniquely be defined for the case of symmetric tensors. We then decompose a symmetric second-order tensor into its ‘dot’ part, which involves the dot product, and the ‘cross’ part, which involves the cross product. For some physical applications, this decomposition can be interpreted as one in which the dot part identifies with the ‘parallel’ part of the tensor and the cross part identifies with the ‘perpendicular’ part. This decomposition of a symmetric second-order tensor may be suitable for undergraduate courses of vector calculus, mechanics and electrodynamics.
On energy-momentum tensors of gravitational field
Nikishov, A.I.
2001-01-01
The phenomenological approach to gravitation is discussed in which the 3-graviton interaction is reduced to the interaction of each graviton with the energy-momentum tensor of two others. If this is so, (and in general relativity this is not so), then the problem of choosing the correct energy-momentum tensor comes to finding the right 3-graviton vertex. Several energy-momentum tensors od gravitational field are considered and compared in the lowest approximation. Each of them together with the energy-momentum tensor of point-like particles satisfies the conservation laws when equations of motion of particles are the same as in general relativity. It is shown that in Newtonian approximation the considered tensors differ one from other in the way their energy density is distributed between energy density of interaction (nonzero only at locations of particles) and energy density of gravitational field. Stating from Lorentz invariance, the Lagrangians for spin-2, mass-0 field are considered [ru
On the energy-momentum tensor in Moyal space
Balasin, Herbert; Schweda, Manfred; Blaschke, Daniel N.; Gieres, Francois
2015-01-01
We study the properties of the energy-momentum tensor of gauge fields coupled to matter in non-commutative (Moyal) space. In general, the non-commutativity affects the usual conservation law of the tensor as well as its transformation properties (gauge covariance instead of gauge invariance). It is well known that the conservation of the energy-momentum tensor can be achieved by a redefinition involving another star-product. Furthermore, for a pure gauge theory it is always possible to define a gauge invariant energy-momentum tensor by means of a Wilson line. We show that the last two procedures are incompatible with each other if couplings of gauge fields to matter fields (scalars or fermions) are considered: The gauge invariant tensor (constructed via Wilson line) does not allow for a redefinition assuring its conservation, and vice versa the introduction of another star-product does not allow for gauge invariance by means of a Wilson line. (orig.)
Gauge theories, duality relations and the tensor hierarchy
Bergshoeff, Eric A.; Hohm, Olaf; Hartong, Jelle; Huebscher, Mechthild; OrtIn, Tomas
2009-01-01
We compute the complete 3- and 4-dimensional tensor hierarchies, i.e. sets of p-form fields, with 1 ≤ p ≤ D, which realize an off-shell algebra of bosonic gauge transformations. We show how these tensor hierarchies can be put on-shell by introducing a set of duality relations, thereby introducing additional scalars and a metric tensor. These so-called duality hierarchies encode the equations of motion of the bosonic part of the most general gauged supergravity theories in those dimensions, including the (projected) scalar equations of motion. We construct gauge-invariant actions that include all the fields in the tensor hierarchies. We elucidate the relation between the gauge transformations of the p-form fields in the action and those of the same fields in the tensor hierarchy.
Coordinate independent expression for transverse trace-free tensors
Conboye, Rory
2016-01-01
The transverse and trace-free (TT) part of the extrinsic curvature represents half of the dynamical degrees of freedom of the gravitational field in the 3 + 1 formalism. As such, it is part of the freely specifiable initial data for numerical relativity. Though TT tensors in three-space possess only two component degrees of freedom, they cannot ordinarily be given solely by two scalar potentials. Such expressions have been derived, however, in coordinate form, for all TT tensors in flat space which are also translationally or axially symmetric (Conboye and Murchadha 2014 Class. Quantum Grav. 31 085019). Since TT tensors are conformally covariant, these also give TT tensors in conformally flat space. In this article, the work above has been extended by giving a coordinate-independent expression for these TT tensors. The translational and axial symmetry conditions have also been generalized to invariance along any hypersurface orthogonal Killing vector. (paper)
Nilsson, Philip Mørkeberg; Todsen, Tobias; Subhi, Yousif; Graumann, Ole; Nolsøe, Christian Pallson; Tolsgaard, Martin Grønnebæk
2017-12-01
Ultrasound training is associated with a long learning curve and use of substantial faculty resources. Self-directed ultrasound training may decrease the need for faculty-led teaching. Mobile apps seem promising for use in self-directed ultrasound training, but no studies have examined the cost-effectiveness of mobile app-guided training versus traditional formats such as textbook-guided training. This study evaluated the cost-effectiveness of mobile app-guided versus textbook-guided ultrasound training. First-year residents (n = 38) with no previous ultrasound experience were randomized into mobile app-guided versus textbook-guided self-directed ultrasound training groups. Participants completed a transfer test involving four patient cases and a theoretical test on diagnostic accuracy. Two ultrasound experts assessed the residents' performance using the Objective Structured Assessment of Ultrasound Skills (OSAUS) scale. The costs of developing mobile app and textbook material were calculated and used for the analysis of cost-effectiveness. 34 participants completed the transfer test. There was no statistically significant difference in test performance or diagnostic accuracy between the mobile app-guided (mean-OSAUS 42.3 % [95 %CI38.5 - 46.0 %]) and textbook-guided groups (mean-OSAUS 45.3 % [95 %CI39.3 - 51.3 %]) (d.f. [1.33] = 0.45, p = 0.41). However, development costs differed greatly for each instructional format. Textbook-guided training was significantly more cost-effective than mobile app-guided training (Incremental Cost Effectiveness Ratio -861 967 [95 %CI-1071.7 to-3.2] USD/pct. point change in OSAUS score). Mobile app-guided ultrasound training is less cost-effective than textbook-guided self-directed training. This study underlines the need for careful evaluation of cost-effectiveness when introducing technological innovations for clinical skills training. © Georg Thieme Verlag KG Stuttgart · New York.
The Scalar-Tensor Theory of Gravitation
Ibanez, J
2003-01-01
Since the scalar-tensor theory of gravitation was proposed almost 50 years ago, it has recently become a robust alternative theory to Einstein's general relativity due to the fact that it appears to represent the lower level of a more fundamental theory and can serve both as a phenomenological theory to explain the recently observed acceleration of the universe, and to solve the cosmological constant problem. To my knowledge The Scalar-Tensor Theory of Gravitation by Y Fujii and K Maeda is the first book to develop a modern view on this topic and is one of the latest titles in the well-presented Cambridge Monographs on Mathematical Physics series. This book is an excellent readable introduction and up-to-date review of the subject. The discussion is well organized; after a comprehensible introduction to the Brans-Dicke theory and the important role played by conformal transformations, the authors review cosmologies with the cosmological constant and how the scalar-tensor theory can serve to explain the accelerating universe, including discussions on dark energy, quintessence and braneworld cosmologies. The book ends with a chapter devoted to quantum effects. To make easy the lectures of the book, each chapter starts with a summary of the subject to be dealt with. As the book proceeds, important issues like conformal frames and the weak equivalence principle are fully discussed. As the authors warn in the preface, the book is not encyclopedic (from my point of view the list of references is fairly short, for example, but this is a minor drawback) and the choice of included topics corresponds to the authors' interests. Nevertheless, the book seems to cover a broad range of the most essential aspects of the subject. Long and 'boring' mathematical derivations are left to appendices so as not to interrupt the flow of the reasoning, allowing the reader to focus on the physical aspects of each subject. These appendices are a valuable help in entering into the mathematical
The effects of noise over the complete space of diffusion tensor shape.
Gahm, Jin Kyu; Kindlmann, Gordon; Ennis, Daniel B
2014-01-01
Diffusion tensor magnetic resonance imaging (DT-MRI) is a technique used to quantify the microstructural organization of biological tissues. Multiple images are necessary to reconstruct the tensor data and each acquisition is subject to complex thermal noise. As such, measures of tensor invariants, which characterize components of tensor shape, derived from the tensor data will be biased from their true values. Previous work has examined this bias, but over a narrow range of tensor shape. Herein, we define the mathematics for constructing a tensor from tensor invariants, which permits an intuitive and principled means for building tensors with a complete range of tensor shape and salient microstructural properties. Thereafter, we use this development to evaluate by simulation the effects of noise on characterizing tensor shape over the complete space of tensor shape for three encoding schemes with different SNR and gradient directions. We also define a new framework for determining the distribution of the true values of tensor invariants given their measures, which provides guidance about the confidence the observer should have in the measures. Finally, we present the statistics of tensor invariant estimates over the complete space of tensor shape to demonstrate how the noise sensitivity of tensor invariants varies across the space of tensor shape as well as how the imaging protocol impacts measures of tensor invariants. Copyright © 2013 Elsevier B.V. All rights reserved.
Endoscopic Anatomy of the Tensor Fold and Anterior Attic.
Li, Bin; Doan, Phi; Gruhl, Robert R; Rubini, Alessia; Marchioni, Daniele; Fina, Manuela
2018-02-01
Objectives The objectives of the study were to (1) study the anatomical variations of the tensor fold and its anatomic relation with transverse crest, supratubal recess, and anterior epitympanic space and (2) explore the most appropriate endoscopic surgical approach to each type of the tensor fold variants. Study Design Cadaver dissection study. Setting Temporal bone dissection laboratory. Subjects and Methods Twenty-eight human temporal bones (26 preserved and 2 fresh) were dissected through an endoscopic transcanal approach between September 2016 and June 2017. The anatomical variations of the tensor fold, transverse crest, supratubal recess, and anterior epitympanic space were studied before and after removing ossicles. Results Three different tensor fold orientations were observed: vertical (type A, 11/28, 39.3%) with attachment to the transverse crest, oblique (type B, 13/28, 46.4%) with attachment to the anterior tegmen tympani, and horizontal (type C, 4/28, 14.3%) with attachment to the tensor tympani canal. The tensor fold was a complete membrane in 20 of 28 (71.4%) specimens, preventing direct ventilation between the supratubal recess and anterior epitympanic space. We identified 3 surgical endoscopic approaches, which allowed visualization of the tensor fold without removing the ossicles. Conclusions The orientation of the tensor fold is the determining structure that dictates the conformation and limits of the epitympanic space. We propose a classification of the tensor fold based on 3 anatomical variants. We also describe 3 different minimally invasive endoscopic approaches to identify the orientation of the tensor fold while maintaining ossicular chain continuity.
The Full Ward-Takahashi Identity for Colored Tensor Models
Pérez-Sánchez, Carlos I.
2018-03-01
Colored tensor models (CTM) is a random geometrical approach to quantum gravity. We scrutinize the structure of the connected correlation functions of general CTM-interactions and organize them by boundaries of Feynman graphs. For rank- D interactions including, but not restricted to, all melonic φ^4 -vertices—to wit, solely those quartic vertices that can lead to dominant spherical contributions in the large- N expansion—the aforementioned boundary graphs are shown to be precisely all (possibly disconnected) vertex-bipartite regularly edge- D-colored graphs. The concept of CTM-compatible boundary-graph automorphism is introduced and an auxiliary graph calculus is developed. With the aid of these constructs, certain U (∞)-invariance of the path integral measure is fully exploited in order to derive a strong Ward-Takahashi Identity for CTMs with a symmetry-breaking kinetic term. For the rank-3 φ^4 -theory, we get the exact integral-like equation for the 2-point function. Similarly, exact equations for higher multipoint functions can be readily obtained departing from this full Ward-Takahashi identity. Our results hold for some Group Field Theories as well. Altogether, our non-perturbative approach trades some graph theoretical methods for analytical ones. We believe that these tools can be extended to tensorial SYK-models.
Shentu, Jianzhong; Zhou, Huili; Hu, Xingjiang; Wu, Guolan; Wu, Lihua; Zhu, Meixiang; Zhai, You; Zheng, Yunliang; Liu, Jian
2014-04-01
Bepotastine is a second-generation histamine1 receptor antagonist that is used in the treatment of allergic rhinitis, urticaria, and pruritus associated with skin disease. A new generic formulation of bepotastine has been developed in China, and information concerning bioavailability and pharmacokinetic properties in the Chinese population has not been reported. The aim of the present study was to compare the bioavailability and pharmacokinetic properties of 2 tablet formulations of bepotastine, the 10-mg generic formulation (test) and a branded formulation (reference), in healthy male Chinese volunteers to obtain registration approval of the test formulation. A single-center, open-label, randomized, 2-way crossover study with a 1-week washout period was conducted in 24 healthy male volunteers. Blood samples were collected for 16 hours after a single dose of the 10-mg bepotastine test formulation or the reference formulation. Plasma bepotastine concentrations were determined using a validated LC-MS/MS method. Cmax, Tmax, AUC₀-t, AUC₀-∞, and t½ were determined using noncompartmental analysis. The formulations were considered bioequivalent if the 90% CIs for the log-transformed Cmax and AUC values were within the predetermined interval of 75% to 133% and 80% to 125%, respectively, according to the guidelines of the China Food and Drug Administration. No significant differences were found in mean (SD) pharmacokinetic parameters between the test and reference drugs, including Cmax (74.81 [9.91] ng/mL vs 78.60 [29.58] ng/mL), AUC₀-t (295.55[115.29] ng·h/mL vs 299.17[109.29] ng·h/mL), and AUC0-∞ (305.28 [118.50] ng·h/mL vs 310.90 [112.20] ng·h/mL). The mean (SD) t½ values of the test and reference formulations were 2.53 (0.50) hours and 2.62 (0.41) hours, respectively. The 90% CIs of the treatment ratios for the logarithmic transformed values of Cmax, AUC₀-t, and AUC₀-∞ were 86.96% to 101.80%, 93.22% to 104.13%, and 92.66% to 103.30%, respectively
Tensor products of quantized tilting modules
Andersen, H.H.
1992-01-01
Let U k denote the quantized enveloping algebra corresponding to a finite dimensional simple complex Lie algebra L. Assume that the quantum parameter is a root of unity in k of order at least the Coxeter number for pound. Also assume that this order is odd and not divisible by 3 if type G 2 occurs. We demonstrate how one can define a reduced tensor product on the family F consisting of those finite dimensional simple U k -modules which are deformations of simple L-modules and which have non-zero quantum dimension. This together with the work of Reshetikhin-Turaev and Turaev-Wenzl prove that (U k , F) is a modular Hopf algebra and hence produces invariants of 3-manifolds. Also by recent work of Duurhus, Jakobsen and Nest it leads to a general topological quantum field theory. The method of proof explores quantized analogues of tilting modules for algebraic groups. (orig.)
Image denoising using non linear diffusion tensors
Benzarti, F.; Amiri, H.
2011-01-01
Image denoising is an important pre-processing step for many image analysis and computer vision system. It refers to the task of recovering a good estimate of the true image from a degraded observation without altering and changing useful structure in the image such as discontinuities and edges. In this paper, we propose a new approach for image denoising based on the combination of two non linear diffusion tensors. One allows diffusion along the orientation of greatest coherences, while the other allows diffusion along orthogonal directions. The idea is to track perfectly the local geometry of the degraded image and applying anisotropic diffusion mainly along the preferred structure direction. To illustrate the effective performance of our model, we present some experimental results on a test and real photographic color images.
Diffusion tensor in electron swarm transport
Makabe, T.; Mori, T.
1983-01-01
Expression for the diffusion tensor of the electron (or light ion) swarm is presented from the higher-order expansion of the velocity distribution in the Boltzmann equation in hydrodynamic stage. Derived diffusion coefficients for the transverse and longitudinal directions include the additional terms representative of the curvature effect under the action of an electric field with the usual-two-term expressions. Numerical analysis is given for the electron swarm in model gases having the momentum transfer cross section Qsub(m)(epsilon)=Q 0 epsilon sup(beta) (β=0, 1/2, 1) using the present theory. As the result, appreciable degree of discrepancy appears between the transverse diffusion coefficient defined here and the conventional expression with increasing of β in Qsub(m). (Author)
Poisson-Jacobi reduction of homogeneous tensors
Grabowski, J; Iglesias, D; Marrero, J C; Padron, E; Urbanski, P
2004-01-01
The notion of homogeneous tensors is discussed. We show that there is a one-to-one correspondence between multivector fields on a manifold M, homogeneous with respect to a vector field Δ on M, and first-order polydifferential operators on a closed submanifold N of codimension 1 such that Δ is transversal to N. This correspondence relates the Schouten-Nijenhuis bracket of multivector fields on M to the Schouten-Jacobi bracket of first-order polydifferential operators on N and generalizes the Poissonization of Jacobi manifolds. Actually, it can be viewed as a super-Poissonization. This procedure of passing from a homogeneous multivector field to a first-order polydifferential operator can also be understood as a sort of reduction; in the standard case-a half of a Poisson reduction. A dual version of the above correspondence yields in particular the correspondence between Δ-homogeneous symplectic structures on M and contact structures on N
Lectures on tensor categories and modular functors
Bakalov, Bojko
2000-01-01
This book gives an exposition of the relations among the following three topics: monoidal tensor categories (such as a category of representations of a quantum group), 3-dimensional topological quantum field theory, and 2-dimensional modular functors (which naturally arise in 2-dimensional conformal field theory). The following examples are discussed in detail: the category of representations of a quantum group at a root of unity and the Wess-Zumino-Witten modular functor. The idea that these topics are related first appeared in the physics literature in the study of quantum field theory. Pioneering works of Witten and Moore-Seiberg triggered an avalanche of papers, both physical and mathematical, exploring various aspects of these relations. Upon preparing to lecture on the topic at MIT, however, the authors discovered that the existing literature was difficult and that there were gaps to fill. The text is wholly expository and finely succinct. It gathers results, fills existing gaps, and simplifies some pro...
Complete stress tensor determination by microearthquake analysis
Slunga, R.
2010-12-01
Jones 1984 found that half of the shallow strike-slip EQ in California had at least one M>2 foreshock. By the Gutenberg law this means at least 3-20 M>0 (low b-value 0.4-0.8). deformations within the crust. This was confirmed by observations in Iceland after 1990 when anew seismic network in Iceland operated by IMO started. Like the Parkfield project in California the SIL network in Iceland was established in an area predicted (Einarsson et al 1981, Stefansson and Halldorsson 1988) to be struck by major EQs within decades of years. The area of main interest have a detection threshold of M=0. A physical approach was chosen to the earthquake warning problem (Stefansson et al 1993) and therefore all microearthquakes were analyzed for FPS by the spectral amplitude method (Slunga 1981). As the shear slip is caused by the in situ stress it is logical to investigate what bounds the FPS puts on the stress tensor. McKenzie 1969 assumed that the earthquake takes place in a crust containing only one fracture, the fault plane. He found that in s uch a case only very weak constraints could be put on the stress. This was widely accepted t o be valid also for microearthquakes in the real crust and lead to methods (Angelier 1978, G ephart and Forsythe 1984 etc) to put four constraints on the stress tensor by assuming that the same stress tensor is causing the slip on four or more different fractures. Another and more realistic approach is to assume that the crust have frequent fractures with almost all orientations. In such a case one can rely on Coulomb's failure criterion for isotropic mat erial (gives four constraints) instead of the weaker Bolt's criterion (giving only one const raint). One obvious fifth constraint is to require the vertical stress to equal the lithosta tic pressure. A sixth constraint is achieved by requiring that the deviatoric elastic energy is minimized. The water pressure is also needed for the fourth constraint by Coulomb (CFS=0 ). It can be related to
Tensor ghosts in the inflationary cosmology
Clunan, Tim; Sasaki, Misao
2010-01-01
Theories with curvature-squared terms in the action are known to contain ghost modes in general. However, if we regard curvature-squared terms as quantum corrections to the original theory, the emergence of ghosts may be simply due to the perturbative truncation of a full non-perturbative theory. If this is the case, there should be a way to live with ghosts. In this paper, we take the Euclidean path integral approach, in which ghost degrees of freedom can be, and are integrated out in the Euclideanized spacetime. We apply this procedure to Einstein gravity with a Weyl curvature-squared correction in the inflationary background. We find that the amplitude of tensor perturbations is modified by a term of O(α 2 H 2 ) where α 2 is a coupling constant in front of the Weyl-squared term and H is the Hubble parameter during inflation.
Holographic spin networks from tensor network states
Singh, Sukhwinder; McMahon, Nathan A.; Brennen, Gavin K.
2018-01-01
In the holographic correspondence of quantum gravity, a global on-site symmetry at the boundary generally translates to a local gauge symmetry in the bulk. We describe one way how the global boundary on-site symmetries can be gauged within the formalism of the multiscale renormalization ansatz (MERA), in light of the ongoing discussion between tensor networks and holography. We describe how to "lift" the MERA representation of the ground state of a generic one dimensional (1D) local Hamiltonian, which has a global on-site symmetry, to a dual quantum state of a 2D "bulk" lattice on which the symmetry appears gauged. The 2D bulk state decomposes in terms of spin network states, which label a basis in the gauge-invariant sector of the bulk lattice. This decomposition is instrumental to obtain expectation values of gauge-invariant observables in the bulk, and also reveals that the bulk state is generally entangled between the gauge and the remaining ("gravitational") bulk degrees of freedom that are not fixed by the symmetry. We present numerical results for ground states of several 1D critical spin chains to illustrate that the bulk entanglement potentially depends on the central charge of the underlying conformal field theory. We also discuss the possibility of emergent topological order in the bulk using a simple example, and also of emergent symmetries in the nongauge (gravitational) sector in the bulk. More broadly, our holographic model translates the MERA, a tensor network state, to a superposition of spin network states, as they appear in lattice gauge theories in one higher dimension.
Randomized interpolative decomposition of separated representations
Biagioni, David J.; Beylkin, Daniel; Beylkin, Gregory
2015-01-01
We introduce an algorithm to compute tensor interpolative decomposition (dubbed CTD-ID) for the reduction of the separation rank of Canonical Tensor Decompositions (CTDs). Tensor ID selects, for a user-defined accuracy ɛ, a near optimal subset of terms of a CTD to represent the remaining terms via a linear combination of the selected terms. CTD-ID can be used as an alternative to or in combination with the Alternating Least Squares (ALS) algorithm. We present examples of its use within a convergent iteration to compute inverse operators in high dimensions. We also briefly discuss the spectral norm as a computational alternative to the Frobenius norm in estimating approximation errors of tensor ID. We reduce the problem of finding tensor IDs to that of constructing interpolative decompositions of certain matrices. These matrices are generated via randomized projection of the terms of the given tensor. We provide cost estimates and several examples of the new approach to the reduction of separation rank.
Vasile, A.
2001-01-01
Fast reactors have capacities to spare uranium natural resources by their breeding property and to propose solutions to the management of radioactive wastes by limiting the inventory of heavy nuclei. This article highlights the role that fast reactors could play for reducing the radiotoxicity of wastes. The conversion of 238 U into 239 Pu by neutron capture is more efficient in fast reactors than in light water reactors. In fast reactors multi-recycling of U + Pu leads to fissioning up to 95% of the initial fuel ( 238 U + 235 U). 2 strategies have been studied to burn actinides: - the multi-recycling of heavy nuclei is made inside the fuel element (homogeneous option); - the unique recycling is made in special irradiation targets placed inside the core or at its surroundings (heterogeneous option). Simulations have shown that, for the same amount of energy produced (400 TWhe), the mass of transuranium elements (Pu + Np + Am + Cm) sent to waste disposal is 60,9 Kg in the homogeneous option and 204.4 Kg in the heterogeneous option. Experimental programs are carried out in Phenix and BOR60 reactors in order to study the feasibility of such strategies. (A.C.)
Pagh, Peter
Bogen omfatter en gennemgang af lovgivning, praksis og teori vedrørende køb af fast ejendom og offentligretlig og privatretlig regulering. Bogen belyser bl.a. de privatretlige emner: købers misligholdelsesbeføjelser, servitutter, naboret, hævd og erstatningsansvar for miljøskader samt den...
Tensor-Based Dictionary Learning for Spectral CT Reconstruction.
Zhang, Yanbo; Mou, Xuanqin; Wang, Ge; Yu, Hengyong
2017-01-01
Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods.
Tensor Rank Preserving Discriminant Analysis for Facial Recognition.
Tao, Dapeng; Guo, Yanan; Li, Yaotang; Gao, Xinbo
2017-10-12
Facial recognition, one of the basic topics in computer vision and pattern recognition, has received substantial attention in recent years. However, for those traditional facial recognition algorithms, the facial images are reshaped to a long vector, thereby losing part of the original spatial constraints of each pixel. In this paper, a new tensor-based feature extraction algorithm termed tensor rank preserving discriminant analysis (TRPDA) for facial image recognition is proposed; the proposed method involves two stages: in the first stage, the low-dimensional tensor subspace of the original input tensor samples was obtained; in the second stage, discriminative locality alignment was utilized to obtain the ultimate vector feature representation for subsequent facial recognition. On the one hand, the proposed TRPDA algorithm fully utilizes the natural structure of the input samples, and it applies an optimization criterion that can directly handle the tensor spectral analysis problem, thereby decreasing the computation cost compared those traditional tensor-based feature selection algorithms. On the other hand, the proposed TRPDA algorithm extracts feature by finding a tensor subspace that preserves most of the rank order information of the intra-class input samples. Experiments on the three facial databases are performed here to determine the effectiveness of the proposed TRPDA algorithm.
Tensor-based Dictionary Learning for Spectral CT Reconstruction
Zhang, Yanbo; Wang, Ge
2016-01-01
Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods. PMID:27541628
Exact tensor network ansatz for strongly interacting systems
Zaletel, Michael P.
It appears that the tensor network ansatz, while not quite complete, is an efficient coordinate system for the tiny subset of a many-body Hilbert space which can be realized as a low energy state of a local Hamiltonian. However, we don't fully understand precisely which phases are captured by the tensor network ansatz, how to compute their physical observables (even numerically), or how to compute a tensor network representation for a ground state given a microscopic Hamiltonian. These questions are algorithmic in nature, but their resolution is intimately related to understanding the nature of quantum entanglement in many-body systems. For this reason it is useful to compute the tensor network representation of various `model' wavefunctions representative of different phases of matter; this allows us to understand how the entanglement properties of each phase are expressed in the tensor network ansatz, and can serve as test cases for algorithm development. Condensed matter physics has many illuminating model wavefunctions, such as Laughlin's celebrated wave function for the fractional quantum Hall effect, the Bardeen-Cooper-Schrieffer wave function for superconductivity, and Anderson's resonating valence bond ansatz for spin liquids. This thesis presents some results on exact tensor network representations of these model wavefunctions. In addition, a tensor network representation is given for the time evolution operator of a long-range one-dimensional Hamiltonian, which allows one to numerically simulate the time evolution of power-law interacting spin chains as well as two-dimensional strips and cylinders.
Reduction schemes for one-loop tensor integrals
Denner, A.; Dittmaier, S.
2006-01-01
We present new methods for the evaluation of one-loop tensor integrals which have been used in the calculation of the complete electroweak one-loop corrections to e + e - ->4 fermions. The described methods for 3-point and 4-point integrals are, in particular, applicable in the case where the conventional Passarino-Veltman reduction breaks down owing to the appearance of Gram determinants in the denominator. One method consists of different variants for expanding tensor coefficients about limits of vanishing Gram determinants or other kinematical determinants, thereby reducing all tensor coefficients to the usual scalar integrals. In a second method a specific tensor coefficient with a logarithmic integrand is evaluated numerically, and the remaining coefficients as well as the standard scalar integral are algebraically derived from this coefficient. For 5-point tensor integrals, we give explicit formulas that reduce the corresponding tensor coefficients to coefficients of 4-point integrals with tensor rank reduced by one. Similar formulas are provided for 6-point functions, and the generalization to functions with more internal propagators is straightforward. All the presented methods are also applicable if infrared (soft or collinear) divergences are treated in dimensional regularization or if mass parameters (for unstable particles) become complex
Algebraic Rainich conditions for the fourth rank tensor V
So, Lau Loi
2011-01-01
Algebraic conditions on the Ricci tensor in the Rainich-Misner-Wheeler unified field theory are known as the Rainich conditions. Penrose and more recently Bergqvist and Lankinen made an analogy from the Ricci tensor to the Bel-Robinson tensor B αβμν , a certain fourth rank tensor quadratic in the Weyl curvature, which also satisfies algebraic Rainich-like conditions. However, we found that not only does the tensor B αβμν fulfill these conditions, but so also does our recently proposed tensor V αβμν , which has many of the desirable properties of B αβμν . For the quasilocal small sphere limit restriction, we found that there are only two fourth rank tensors, B αβμν and V αβμν , which form a basis for good energy expressions. Both of them have the completely trace free and causal properties, these two form necessary and sufficient conditions. Surprisingly either completely traceless or causal is enough to fulfill the algebraic Rainich conditions.
The tensor bi-spectrum in a matter bounce
Chowdhury, Debika; Sreenath, V.; Sriramkumar, L., E-mail: debika@physics.iitm.ac.in, E-mail: sreenath@lsu.edu, E-mail: sriram@physics.iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)
2015-11-01
Matter bounces are bouncing scenarios wherein the universe contracts as in a matter dominated phase at early times. Such scenarios are known to lead to a scale invariant spectrum of tensor perturbations, just as de Sitter inflation does. In this work, we examine if the tensor bi-spectrum can discriminate between the inflationary and the bouncing scenarios. Using the Maldacena formalism, we analytically evaluate the tensor bi-spectrum in a matter bounce for an arbitrary triangular configuration of the wavevectors. We show that, over scales of cosmological interest, the non-Gaussianity parameter h{sub NL} that characterizes the amplitude of the tensor bi-spectrum is quite small when compared to the corresponding values in de Sitter inflation. During inflation, the amplitude of the tensor perturbations freeze on super-Hubble scales, a behavior that results in the so-called consistency condition relating the tensor bi-spectrum and the power spectrum in the squeezed limit. In contrast, in the bouncing scenarios, the amplitude of the tensor perturbations grow strongly as one approaches the bounce, which suggests that the consistency condition will not be valid in such situations. We explicitly show that the consistency relation is indeed violated in the matter bounce. We discuss the implications of the results.
Teh, Irvin; McClymont, Darryl; Zdora, Marie-Christine; Whittington, Hannah J; Davidoiu, Valentina; Lee, Jack; Lygate, Craig A; Rau, Christoph; Zanette, Irene; Schneider, Jürgen E
2017-03-10
Diffusion tensor imaging (DTI) is widely used to assess tissue microstructure non-invasively. Cardiac DTI enables inference of cell and sheetlet orientations, which are altered under pathological conditions. However, DTI is affected by many factors, therefore robust validation is critical. Existing histological validation is intrinsically flawed, since it requires further tissue processing leading to sample distortion, is routinely limited in field-of-view and requires reconstruction of three-dimensional volumes from two-dimensional images. In contrast, synchrotron radiation imaging (SRI) data enables imaging of the heart in 3D without further preparation following DTI. The objective of the study was to validate DTI measurements based on structure tensor analysis of SRI data. One isolated, fixed rat heart was imaged ex vivo with DTI and X-ray phase contrast SRI, and reconstructed at 100 μm and 3.6 μm isotropic resolution respectively. Structure tensors were determined from the SRI data and registered to the DTI data. Excellent agreement in helix angles (HA) and transverse angles (TA) was observed between the DTI and structure tensor synchrotron radiation imaging (STSRI) data, where HA DTI-STSRI = -1.4° ± 23.2° and TA DTI-STSRI = -1.4° ± 35.0° (mean ± 1.96 standard deviation across all voxels in the left ventricle). STSRI confirmed that the primary eigenvector of the diffusion tensor corresponds with the cardiomyocyte long-axis across the whole myocardium. We have used STSRI as a novel and high-resolution gold standard for the validation of DTI, allowing like-with-like comparison of three-dimensional tissue structures in the same intact heart free of distortion. This represents a critical step forward in independently verifying the structural basis and informing the interpretation of cardiac DTI data, thereby supporting the further development and adoption of DTI in structure-based electro-mechanical modelling and routine clinical
Kim, Youn Hwan; Kim, Sang Wha; Kim, Jeong Tae; Kim, Chang Yeon
2013-06-01
Tensor fascia lata (TFL) musculocutaneous flaps often require a donor site graft when harvesting a large flap. However, a major drawback is that it also sacrifices the muscle. To overcome this disadvantage, we designed a TFL perforator-based island flap that was harvested from a site near the defect and involved transposition within 90 degrees without full isolation of the pedicles. We performed procedures on 17 musculocutaneous flaps and 23 perforator-based island flaps, and compared the outcomes of these surgeries. The overall complication rate was 27.5% (11 regions). There were 7 complications related to the musculocutaneous flaps and 4 complications related to the perforator flaps. Although there were no statistical differences between those groups, lower complication rates were associated with procedures involving perforator flaps. The TFL perforator procedure is a simple and fast operation that avoids sacrificing muscle. This decreases complication rates compared to true perforator flap techniques that require dissection around the perforator or pedicle.
Rachel C. Veasey
2015-07-01
Full Text Available Exercise undertaken in a fasted state can lead to higher post-exercise mental fatigue. The administration of a vitamin and mineral complex with guaraná (MVM + G has been shown to attenuate mental fatigue and improve performance during cognitively demanding tasks. This placebo-controlled, double-blind, randomized, balanced cross-over study examined the effect of MVM + G consumed prior to morning exercise on cognitive performance, affect, exertion, and substrate metabolism. Forty active males (age 21.4 ± 3.0 year; body mass index (BMI 24.0 ± 2.4 kg/m2; maximal oxygen consumption (V̇O2max 57.6 ± 7.3 mL/min/kg completed two main trials, consuming either MVM + G or placebo prior to a 30-min run at 60% V̇O2max. Supplementation prior to exercise led to a small but significant reduction in Rating of Perceived Exertion (RPE during exercise compared to the placebo. The MVM + G combination also led to significantly increased accuracy of numeric working memory and increased speed of picture recognition, compared to the placebo. There were no significant effects of supplementation on any other cognitive or mood measures or on substrate metabolism during exercise. These findings demonstrate that consuming a vitamin and mineral complex containing guaraná, prior to exercise, can positively impact subsequent memory performance and reduce perceived exertion during a moderate-intensity run in active males.
Tensor force and debye screening in quarkonium-type mesons
Kovacs, L.B.; Kovacs, T.G.; Lovas, I.
1990-01-01
We use a non-relativistic quantum-mechanical model to investigate the effect of a screening plasma on two quarkonium-type mesons: the charmonium and bottonium. The stability of these mesons in the plasma is estimated in two cases: including the tensor and spin-orbit term in the potential and without these terms. It turns out that while the bottonium is somewhat stabilized by the tensor force, the charmonium becomes less stabil due to this modification of the potential. Thus the charmonium seems to be a more sensitive probe of the quark-gluon plasma formation than it was thought to be without including the tensor force. (Authors)
Tensor polarized deuteron targets for intermediate energy physics experiments
Meyer, W.; Schilling, E.
1985-03-01
At intermediate energies measurements from a tensor polarized deuteron target are being prepared for the following reactions: the photodisintegration of the deuteron, the elastic pion-deuteron scattering and the elastic electron-deuteron scattering. The experimental situation of the polarization experiments for these reactions is briefly discussed in section 2. In section 3 the definitions of the deuteron polarization and the possibilities to determine the vector and tensor polarization are given. Present tensor polarization values and further improvements in this field are reported in section 4. (orig.)
Extracting the diffusion tensor from molecular dynamics simulation with Milestoning
Mugnai, Mauro L.; Elber, Ron
2015-01-01
We propose an algorithm to extract the diffusion tensor from Molecular Dynamics simulations with Milestoning. A Kramers-Moyal expansion of a discrete master equation, which is the Markovian limit of the Milestoning theory, determines the diffusion tensor. To test the algorithm, we analyze overdamped Langevin trajectories and recover a multidimensional Fokker-Planck equation. The recovery process determines the flux through a mesh and estimates local kinetic parameters. Rate coefficients are converted to the derivatives of the potential of mean force and to coordinate dependent diffusion tensor. We illustrate the computation on simple models and on an atomically detailed system—the diffusion along the backbone torsions of a solvated alanine dipeptide
Some spacetimes with higher rank Killing-Staeckel tensors
Gibbons, G.W.; Houri, T.; Kubiznak, D.; Warnick, C.M.
2011-01-01
By applying the lightlike Eisenhart lift to several known examples of low-dimensional integrable systems admitting integrals of motion of higher-order in momenta, we obtain four- and higher-dimensional Lorentzian spacetimes with irreducible higher-rank Killing tensors. Such metrics, we believe, are first examples of spacetimes admitting higher-rank Killing tensors. Included in our examples is a four-dimensional supersymmetric pp-wave spacetime, whose geodesic flow is superintegrable. The Killing tensors satisfy a non-trivial Poisson-Schouten-Nijenhuis algebra. We discuss the extension to the quantum regime.
Tensor valuations and their applications in stochastic geometry and imaging
Kiderlen, Markus
2017-01-01
The purpose of this volume is to give an up-to-date introduction to tensor valuations and their applications. Starting with classical results concerning scalar-valued valuations on the families of convex bodies and convex polytopes, it proceeds to the modern theory of tensor valuations. Product and Fourier-type transforms are introduced and various integral formulae are derived. New and well-known results are presented, together with generalizations in several directions, including extensions to the non-Euclidean setting and to non-convex sets. A variety of applications of tensor valuations to models in stochastic geometry, to local stereology and to imaging are also discussed.
A Nonlinear GMRES Optimization Algorithm for Canonical Tensor Decomposition
De Sterck, Hans
2011-01-01
A new algorithm is presented for computing a canonical rank-R tensor approximation that has minimal distance to a given tensor in the Frobenius norm, where the canonical rank-R tensor consists of the sum of R rank-one components. Each iteration of the method consists of three steps. In the first step, a tentative new iterate is generated by a stand-alone one-step process, for which we use alternating least squares (ALS). In the second step, an accelerated iterate is generated by a nonlinear g...
One-loop tensor Feynman integral reduction with signed minors
Fleischer, Jochem; Riemann, Tord; Yundin, Valery
2012-01-01
of the formalism is the immediate evaluation of complete contractions of the tensor integrals with external momenta. This leads to the problem of evaluating sums over products of signed minors with scalar products of chords. Chords are differences of external momenta. These sums may be evaluated analytically......We present an algebraic approach to one-loop tensor integral reduction. The integrals are presented in terms of scalar one- to four-point functions. The reduction is worked out explicitly until five-point functions of rank five. The numerical C++ package PJFry evaluates tensor coefficients in terms...
Scalar-Tensor Black Holes Embedded in an Expanding Universe
Tretyakova, Daria; Latosh, Boris
2018-02-01
In this review we focus our attention on scalar-tensor gravity models and their empirical verification in terms of black hole and wormhole physics. We focus on a black hole, embedded in an expanding universe, describing both cosmological and astrophysical scales. We show that in scalar-tensor gravity it is quite common that the local geometry is isolated from the cosmological expansion, so that it does not backreact on the black hole metric. We try to extract common features of scalar-tensor black holes in an expanding universe and point out the gaps that must be filled.
Scalar-Tensor Black Holes Embedded in an Expanding Universe
Daria Tretyakova
2018-02-01
Full Text Available In this review, we focus our attention on scalar-tensor gravity models and their empirical verification in terms of black hole and wormhole physics. We focus on black holes, embedded in an expanding universe, describing both cosmological and astrophysical scales. We show that in scalar-tensor gravity it is quite common that the local geometry is isolated from the cosmological expansion, so that it does not backreact on the black hole metric. We try to extract common features of scalar-tensor black holes in an expanding universe and point out the issues that are not fully investigated.
Two-perfect fluid interpretation of an energy tensor
Ferrando, J.J.; Morales, J.A.; Portilla, M.
1990-01-01
There are many topics in General Relativity where matter is represented by a mixture of two fluids. In fact, some astrophysical and cosmological situations need to be described by an energy tensor made up of the sum of two or more perfect fluids rather than that with only one. The paper contains the necessary and sufficient conditions for a given energy tensor to be interpreted as a sum of two perfect fluids. Given a tensor of this class, the decomposition in two perfect fluids (which is determined up to a couple of real functions) is obtained
Parrillo-Campiglia, Susana; Ercoli, Mónica Cedres; Umpierrez, Ofelia; Rodríguez, Patricia; Márquez, Sara; Guarneri, Carolina; Estevez-Parrillo, Francisco T; Laurenz, Marilena; Estevez-Carrizo, Francisco E
2009-10-01
Imatinib is a tyrosine kinase inhibitor that has been established as a highly effective therapy for chronic myelogenous leukemia and gastrointestinal stromal tumors. A new generic, once-daily 400-mg tablet of imatinib has been developed by a pharmaceutical company in Argentina, where the regulatory standard for marketing authorization of an imatinib generic is in vitro dissolution testing. The aim of this study was to assess the bioequivalence of a new generic film-coated test tablet formulation versus a film-coated reference tablet formulation of imatinib 400 mg. The local manufacturer seeks to validate the in vitro performance of this new formulation with a bioequivalence study. A randomized, open-label, single-dose, fasting, 2-period, 2-sequence crossover design with a 2-week washout period was used in this study. The study population consisted of healthy male South American (Uruguayan) volunteers, who were assigned in a 1:1 ratio to a randomized sequence (test-reference or reference-test). In each period, the test or reference formulation was administered after an overnight fast. During the 72-hour follow-up period, participants were monitored for vital signs and symptoms. Blood samples were collected at 15 time points, including baseline, until 72 hours. Physical examination and laboratory tests (blood, urine) were repeated 1 week after study completion. A noncompartmental model was used to determine the pharmacokinetic parameters of imatinib. The 90% CIs of the test/reference ratios for AUC(0-infinity) and C(max) were determined; the test and reference formulations were considered bioequivalent if the 90% CIs were between 0.80 and 1.25. Adverse events were assessed by a nurse who administered a questionnaire while the healthy volunteers were admitted in the unit. The bioequivalence study was conducted in 30 Uruguayan male volunteers. Demographic characteristics (mean [SD]) included age, 27.8 (6.5) years; weight, 71.2 (9.8) kg; height, 1.71 (0.09) m; and body
Liu, Yan-Mei; Liu, Yun; Lu, Chuan; Jia, Jing-Ying; Liu, Gang-Yi; Weng, Li-Ping; Wang, Jia-Yan; Li, Guo-Xiu; Wang, Wei; Li, Shui-Jun; Yu, Chen
2010-11-01
Acetylcysteine may be used as a muco- lytic agent for the treatment of chronic bronchitis, chronic obstructive pulmonary disease, and other pulmonary diseases complicated by the production of viscous mucus. However, little is known of its pharmacokinetic properties when given orally in healthy volunteers, particularly in a Chinese Han population. This study was conducted to provide support for the marketing of a generic product in China. The purpose of this study was to compare the pharmacokinetics and relative bioavailability of a generic test formulation and a branded reference formulation of acetylcysteine in fasting healthy Chinese male volunteers. A single-dose, open-label, randomized-sequence, 2-period crossover design with a 7-day washout period between doses was used in this study. Healthy Chinese male nonsmokers aged 18 to 40 years with a body mass index (BMI) of 19 to 25 kg/m(2) were selected. Eligible volunteers were randomly assigned to receive acetylcysteine 600 mg PO as either the test formulation (3 tablets of 200 mg each) or reference formulation (1 tablet of 600 mg) under fasting conditions. A total of 15 serial blood samples were collected over a 24-hour interval, and total plasma acetylcysteine concentrations were analyzed by a validated liquid chromatography-isotopic dilution mass spectrometry method. Pharmacokinetic parameters (C(max), T(max), t(½) AUC(0-t), and AUC(0-∞) were calculated and analyzed statistically. The 2 formulations were considered bioequivalent if the 90% CIs of the log-transformed ratios (test/reference) of C(max) and AUC were within the predetermined bioequivalence ranges (70%-143% for C(max); 80%-125% for AUC), as established by the State Food and Drug Administration of China. Tolerability was determined by vital signs, clinical laboratory tests, 12-lead ECGs, physical examinations, and interviews with the subjects about adverse events (AEs). A total of 24 healthy Chinese Han male volunteers were enrolled in and
Diffusion tensor magnetic resonance imaging of the pancreas.
Noam Nissan
Full Text Available To develop a diffusion-tensor-imaging (DTI protocol that is sensitive to the complex diffusion and perfusion properties of the healthy and malignant pancreas tissues.Twenty-eight healthy volunteers and nine patients with pancreatic-ductal-adenocacinoma (PDAC, were scanned at 3T with T2-weighted and DTI sequences. Healthy volunteers were also scanned with multi-b diffusion-weighted-imaging (DWI, whereas a standard clinical protocol complemented the PDAC patients' scans. Image processing at pixel resolution yielded parametric maps of three directional diffusion coefficients λ1, λ2, λ3, apparent diffusion coefficient (ADC, and fractional anisotropy (FA, as well as a λ1-vector map, and a main diffusion-direction map.DTI measurements of healthy pancreatic tissue at b-values 0,500 s/mm² yielded: λ1 = (2.65±0.35×10⁻³, λ2 = (1.87±0.22×10⁻³, λ3 = (1.20±0.18×10⁻³, ADC = (1.91±0.22×10⁻³ (all in mm²/s units and FA = 0.38±0.06. Using b-values of 100,500 s/mm² led to a significant reduction in λ1, λ2, λ3 and ADC (p<.0001 and a significant increase (p<0.0001 in FA. The reduction in the diffusion coefficients suggested a contribution of a fast intra-voxel-incoherent-motion (IVIM component at b≤100 s/mm², which was confirmed by the multi-b DWI results. In PDACs, λ1, λ2, λ3 and ADC in both 0,500 s/mm² and 100,500 s/mm² b-values sets, as well as the reduction in these diffusion coefficients between the two sets, were significantly lower in comparison to the distal normal pancreatic tissue, suggesting higher cellularity and diminution of the fast-IVIM component in the cancer tissue.DTI using two reference b-values 0 and 100 s/mm² enabled characterization of the water diffusion and anisotropy of the healthy pancreas, taking into account a contribution of IVIM. The reduction in the diffusion coefficients of PDAC, as compared to normal pancreatic tissue, and the smaller change in these coefficients in PDAC
Ran, Bin; Song, Li; Zhang, Jian; Cheng, Yang; Tan, Huachun
2016-01-01
Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, many methods have been proposed to estimate the traffic state for the uncovered links. However, these methods cannot provide traffic state of the entire road networks. In this paper, the traffic state estimation is transformed to solve a missing data imputation problem, and the tensor completion framework is proposed to estimate missing traffic state. A tensor is constructed to model traffic state in which observed entries are directly derived from floating car system and unobserved traffic states are modeled as missing entries of constructed tensor. The constructed traffic state tensor can represent spatial and temporal correlations of traffic data and encode the multi-way properties of traffic state. The advantage of the proposed approach is that it can fully mine and utilize the multi-dimensional inherent correlations of traffic state. We tested the proposed approach on a well calibrated simulation network. Experimental results demonstrated that the proposed approach yield reliable traffic state estimation from very sparse floating car data, particularly when dealing with the floating car penetration rate is below 1%.
Bin Ran
Full Text Available Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, many methods have been proposed to estimate the traffic state for the uncovered links. However, these methods cannot provide traffic state of the entire road networks. In this paper, the traffic state estimation is transformed to solve a missing data imputation problem, and the tensor completion framework is proposed to estimate missing traffic state. A tensor is constructed to model traffic state in which observed entries are directly derived from floating car system and unobserved traffic states are modeled as missing entries of constructed tensor. The constructed traffic state tensor can represent spatial and temporal correlations of traffic data and encode the multi-way properties of traffic state. The advantage of the proposed approach is that it can fully mine and utilize the multi-dimensional inherent correlations of traffic state. We tested the proposed approach on a well calibrated simulation network. Experimental results demonstrated that the proposed approach yield reliable traffic state estimation from very sparse floating car data, particularly when dealing with the floating car penetration rate is below 1%.
On the skew-symmetric character of the couple-stress tensor
Hadjesfandiari, Ali R.
2013-01-01
In this paper, the skew-symmetric character of the couple-stress tensor is established as the result of arguments from tensor analysis. Consequently, the couple-stress pseudo-tensor has a true vectorial character. The fundamental step in this development is that the isotropic couple-stress tensor cannot exist.
Smirnov, Yu.F.; Tolstoi, V.N.; Kharitonov, Yu.I.
1993-01-01
The tree technique for the quantum algebra su q (2) developed in an earlier study is used to construct the q analog of the algebra of irreducible tensor operators. The adjoint action of the algebra su q (2) on irreducible tensor operators is discussed, and the adjoint R matrix is introduced. A set of expressions is obtained for the matrix elements of various irreducible tensor operators and combinations of them. As an application, the recursion relations for the Clebsch-Gordan and Racah coefficients of the algebra su q (2) are derived. 16 refs
Tensor products of process matrices with indefinite causal structure
Jia, Ding; Sakharwade, Nitica
2018-03-01
Theories with indefinite causal structure have been studied from both the fundamental perspective of quantum gravity and the practical perspective of information processing. In this paper we point out a restriction in forming tensor products of objects with indefinite causal structure in certain models: there exist both classical and quantum objects the tensor products of which violate the normalization condition of probabilities, if all local operations are allowed. We obtain a necessary and sufficient condition for when such unrestricted tensor products of multipartite objects are (in)valid. This poses a challenge to extending communication theory to indefinite causal structures, as the tensor product is the fundamental ingredient in the asymptotic setting of communication theory. We discuss a few options to evade this issue. In particular, we show that the sequential asymptotic setting does not suffer the violation of normalization.
Distance Adaptive Tensor Discriminative Geometry Preserving Projection for Face Recognition
Ziqiang Wang
2012-09-01
Full Text Available There is a growing interest in dimensionality reduction techniques for face recognition, however, the traditional dimensionality reduction algorithms often transform the input face image data into vectors before embedding. Such vectorization often ignores the underlying data structure and leads to higher computational complexity. To effectively cope with these problems, a novel dimensionality reduction algorithm termed distance adaptive tensor discriminative geometry preserving projection (DATDGPP is proposed in this paper. The key idea of DATDGPP is as follows: first, the face image data are directly encoded in high-order tensor structure so that the relationships among the face image data can be preserved; second, the data-adaptive tensor distance is adopted to model the correlation among different coordinates of tensor data; third, the transformation matrix which can preserve discrimination and local geometry information is obtained by an iteration algorithm. Experimental results on three face databases show that the proposed algorithm outperforms other representative dimensionality reduction algorithms.
Vectors, tensors and the basic equations of fluid mechanics
Aris, Rutherford
1962-01-01
Introductory text, geared toward advanced undergraduate and graduate students, applies mathematics of Cartesian and general tensors to physical field theories and demonstrates them in terms of the theory of fluid mechanics. 1962 edition.
On the projective curvature tensor of generalized Sasakian-space ...
space-forms under some conditions regarding projective curvature tensor. All the results obtained in this paper are in the form of necessary and sufficient conditions. Keywords: Generalized Sasakian-space-forms; projectively flat; ...
An introduction to tensors and group theory for physicists
Jeevanjee, Nadir
2015-01-01
The second edition of this highly praised textbook provides an introduction to tensors, group theory, and their applications in classical and quantum physics. Both intuitive and rigorous, it aims to demystify tensors by giving the slightly more abstract but conceptually much clearer definition found in the math literature, and then connects this formulation to the component formalism of physics calculations. New pedagogical features, such as new illustrations, tables, and boxed sections, as well as additional “invitation” sections that provide accessible introductions to new material, offer increased visual engagement, clarity, and motivation for students. Part I begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to physics through the use of tensor products. Part II introduces group theory, including abstract groups and Lie groups and their associated Lie algebras, then intertwines this material with that of Part...
Holographic stress tensor for non-relativistic theories
Ross, Simon F.; Saremi, Omid
2009-01-01
We discuss the calculation of the field theory stress tensor from the dual geometry for two recent proposals for gravity duals of non-relativistic conformal field theories. The first of these has a Schroedinger symmetry including Galilean boosts, while the second has just an anisotropic scale invariance (the Lifshitz case). For the Lifshitz case, we construct an appropriate action principle. We propose a definition of the non-relativistic stress tensor complex for the field theory as an appropriate variation of the action in both cases. In the Schroedinger case, we show that this gives physically reasonable results for a simple black hole solution and agrees with an earlier proposal to determine the stress tensor from the familiar AdS prescription. In the Lifshitz case, we solve the linearised equations of motion for a general perturbation around the background, showing that our stress tensor is finite on-shell.
Gauge and non-gauge curvature tensor copies
Srivastava, P.P.
1982-10-01
A procedure for constructing curvature tensor copies is discussed using the anholonomic geometrical framework. The corresponding geometries are compared and the notion of gauge copy is elucidated. An explicit calculation is also made. (author)
Motion Detection in Ultrasound Image-Sequences Using Tensor Voting
Inba, Masafumi; Yanagida, Hirotaka; Tamura, Yasutaka
2008-05-01
Motion detection in ultrasound image sequences using tensor voting is described. We have been developing an ultrasound imaging system adopting a combination of coded excitation and synthetic aperture focusing techniques. In our method, frame rate of the system at distance of 150 mm reaches 5000 frame/s. Sparse array and short duration coded ultrasound signals are used for high-speed data acquisition. However, many artifacts appear in the reconstructed image sequences because of the incompleteness of the transmitted code. To reduce the artifacts, we have examined the application of tensor voting to the imaging method which adopts both coded excitation and synthetic aperture techniques. In this study, the basis of applying tensor voting and the motion detection method to ultrasound images is derived. It was confirmed that velocity detection and feature enhancement are possible using tensor voting in the time and space of simulated ultrasound three-dimensional image sequences.